WO2009025663A1 - Fuels derived from biological oils and fats - Google Patents
Fuels derived from biological oils and fats Download PDFInfo
- Publication number
- WO2009025663A1 WO2009025663A1 PCT/US2007/076233 US2007076233W WO2009025663A1 WO 2009025663 A1 WO2009025663 A1 WO 2009025663A1 US 2007076233 W US2007076233 W US 2007076233W WO 2009025663 A1 WO2009025663 A1 WO 2009025663A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fatty acid
- medium chain
- chain fatty
- jet
- oil
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 73
- 235000014593 oils and fats Nutrition 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 86
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims abstract description 64
- 230000008569 process Effects 0.000 claims abstract description 63
- 150000004665 fatty acids Chemical group 0.000 claims abstract description 59
- 150000004667 medium chain fatty acids Chemical class 0.000 claims abstract description 44
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 33
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 31
- 125000005456 glyceride group Chemical group 0.000 claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 claims abstract description 12
- 241000219992 Cuphea Species 0.000 claims abstract description 11
- 230000000911 decarboxylating effect Effects 0.000 claims abstract description 6
- 235000021588 free fatty acids Nutrition 0.000 claims abstract description 3
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 45
- 239000000194 fatty acid Substances 0.000 claims description 45
- 229930195729 fatty acid Natural products 0.000 claims description 45
- 239000003921 oil Substances 0.000 claims description 26
- 235000019198 oils Nutrition 0.000 claims description 26
- 239000003054 catalyst Substances 0.000 claims description 21
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 241000195493 Cryptophyta Species 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 8
- 239000000295 fuel oil Substances 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- -1 cobalt- molvbdenum Chemical compound 0.000 claims description 6
- 230000031018 biological processes and functions Effects 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 150000001924 cycloalkanes Chemical class 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 239000003350 kerosene Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 238000006114 decarboxylation reaction Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 125000005313 fatty acid group Chemical group 0.000 claims description 3
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 claims description 3
- 240000001936 Cuphea carthagenensis Species 0.000 claims description 2
- 241001254266 Cuphea epilobiifolia Species 0.000 claims description 2
- 241000219919 Cuphea lanceolata Species 0.000 claims description 2
- 241001254916 Cuphea strigulosa Species 0.000 claims description 2
- 235000019482 Palm oil Nutrition 0.000 claims description 2
- WHDPTDWLEKQKKX-UHFFFAOYSA-N cobalt molybdenum Chemical compound [Co].[Co].[Mo] WHDPTDWLEKQKKX-UHFFFAOYSA-N 0.000 claims description 2
- 235000019864 coconut oil Nutrition 0.000 claims description 2
- 239000003240 coconut oil Substances 0.000 claims description 2
- 230000002255 enzymatic effect Effects 0.000 claims description 2
- 239000002540 palm oil Substances 0.000 claims description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 2
- 239000001294 propane Substances 0.000 claims description 2
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 claims description 2
- 229920006395 saturated elastomer Polymers 0.000 claims description 2
- 238000005336 cracking Methods 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 description 33
- 239000000047 product Substances 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000004215 Carbon black (E152) Substances 0.000 description 8
- 239000003225 biodiesel Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000004821 distillation Methods 0.000 description 5
- 238000006317 isomerization reaction Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000006392 deoxygenation reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 235000015112 vegetable and seed oil Nutrition 0.000 description 4
- 239000008158 vegetable oil Substances 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 3
- 239000002283 diesel fuel Substances 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000003626 triacylglycerols Chemical class 0.000 description 3
- 235000019737 Animal fat Nutrition 0.000 description 2
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 125000005907 alkyl ester group Chemical group 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 2
- 239000012075 bio-oil Substances 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- MVLVMROFTAUDAG-UHFFFAOYSA-N ethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC MVLVMROFTAUDAG-UHFFFAOYSA-N 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000005809 transesterification reaction Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 1
- 244000188595 Brassica sinapistrum Species 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 235000019498 Walnut oil Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 238000005899 aromatization reaction Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000828 canola oil Substances 0.000 description 1
- 235000019519 canola oil Nutrition 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 229910001657 ferrierite group Inorganic materials 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 239000008169 grapeseed oil Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 125000005471 saturated fatty acid group Chemical group 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 125000005314 unsaturated fatty acid group Chemical group 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000008170 walnut oil Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
- C11C3/12—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/08—Jet fuel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Definitions
- This invention relates to a process for producing fuels. More specifically, the invention relates to an energy efficient process of producing jet fuels utilizing biological fatty acid sources.
- Alkyl esters including methyl ester or ethyl ester, also known as "biodiesel", are a renewable and clean burning alternative to conventional petroleum-derived diesel fuel.
- Biodiesel is made from a raw or used vegetable oil or animal fat, typically soybean oil or rapeseed oil (which are composed of triglycerides, diglycerides, monoglycerides, fatty acids (FA), or combinations thereof). Because biodiesel is made from natural oil or fat sources, the alkyl esters typically comprise C 14 to C 1S fatty chains if derived from vegetable oil, and C 16 to C 22 fatty chains if derived from animal fat. Biodiesel can be combusted in diesel (combustion- ignition) engines either in pure form or as blended with petroleum-derived diesel fuel. Biodiesel provides the benefits of a renewable resource as well as providing lower sulfur emissions than petroleum diesel.
- transesterification A common route to produce biodiesel from biologically derived oils is through a process called transesterification.
- transesterification process A common transesterification process is illustrated below.
- biodiesel produced by this process typically does not meet transportation diesel requirements, e.g., these esters typically gel below -1O 0 C.
- thermal and catalytic chemical bond-breaking (cracking) technologies have been developed that enable converting bio-oils into bio-based alternatives to petroleum-derived diesel fuel and other fuels, such as jet fuel.
- Cleaving FA chains from glycerol and cracking longer FA chains into shorter (lower- carbon-number) molecules are used to ensure adequate fuel flow performance at low (down to - 5O 0 C) temperatures, oxygen removal is required to ensure adequate fuel energy density, and replacement of oxygen with hydrogen is required to ensure fuel chemical stability (resistance to polymerization).
- C16 and Cl 8 FA chains which comprise the primary FA constituents of soybean, sunflower, corn, rapeseed, canola, cottonseed, and other common vegetable oils
- a novel, energy efficient process of producing jet fuel is disclosed herein.
- the process is based on utilizing a medium chain fatty acid source such as cuphea oil, which precludes the need for high-energy fatty acid chain cracking to achieve the shorter molecules needed for jet fuels and other fuels with low-temperature flow requirements.
- a medium chain fatty acid source such as cuphea oil
- a process for producing a jet fuel comprises providing a medium chain fatty acid source comprising glycerides having one or more medium chain fatty acid groups with no more than 16 carbon atoms.
- the method also comprises cleaving the one or more medium chain fatty acid groups from the glycerides to form glycerol and one or more free fatty acids.
- the method comprises separating the one or more medium chain fatty acids from the glycerol.
- the method further comprises decarboxylating the one or more medium chain fatty acids to form one or more hydrocarbons for the production of the jet fuel.
- a process for producing a jet fuel comprises providing a medium chain fatty acid source comprising glycerides having one or more medium chain fatty acid groups with no more than 16 carbon atoms. The method also comprises directly decarboxylating the glycerides to simultaneously cleave the one or more medium chain fatty acid groups and form one or more hydrocarbons for the production of jet fuel.
- a process for producing a jet fuel comprise providing a medium chain fatty acid source comprising glycerides having one or more medium chain fatty acid groups with no more than 16 carbon atoms.
- the method comprises reducing the glycerides to form one or more hydrocarbons for the production of jet fuel.
- Figures IA-B illustrating an embodiment of the disclosed process
- Figure 2A is an idealized chromatogram of showing a mixture of normal alkanes in a jet fuel such as JP-8 jet fuel;
- Figure 2B is a chromatogram of JP-8 jet fuel showing that it primarily comprises C6 through Cl 6 hydrocarbons.
- Figure 3 is a block diagram illustrating an embodiment of a process for the production of a fuel such as JP-8 jet fuel.
- jet fuel may refer to any composition used as fuel in jet-engined aircraft.
- FIGURES IA-B illustrate an embodiment of a method of producing a liquid fuel such as jet fuel.
- the feedstock mixture e.g. a natural fatty acid source such as natural plant or vegetable oils and/or fats
- the feedstock mixture may be subjected to the following processing steps either sequentially, or in tandem, or simultaneously, such that the operations are achieved in no particular order.
- a fatty acid (FA) source may initially be provided. The fatty acid source is then disassembled or cleaved into FA chains and glycerol as shown in Figure IA.
- FA fatty acid
- the FA chains may then be separated from the glycerol. Ultimately, the FA chains may be decarboxylated to form one or more hydrocarbons and, potentially if required, any unsaturated hydrocarbon chains may be hydrogenated to produce one or more alkanes for the desired jet fuel as shown in Figure IB.
- jet fuel comprises a mixture of hydrocarbons having from 8 to 16 carbon atoms with traces of C6 - C8 as well as traces of C17 and higher. Preferably these traces are less than 10%, even more preferably less than 5%.
- fatty acid sources having fatty acid composition with the same or substantially similar numbers of carbon atoms, or the same or substantially similar molecular weight distribution as the ultimate jet fuel product (e.g. JP-4, JP-5, JP-6, JP-7, JP-8, Jet Al, Jet A, Jet B, kerosene, Diesel 1, Diesel 2, Fuel Oil 1, Fuel Oil 2, etc.).
- a medium chain fatty acid source is provided as feedstock for the method.
- “medium chain fatty acids” refer to saturated or unsaturated fatty acid groups having no more than 16 carbon atoms in the primary fatty acid chain. Examples of medium chain fatty acids include without limitation, caproic acid (C6), caprylic acid (C8), capric acid (ClO) and lauric acid (C 12).
- a medium chain fatty acid source refers to biologically derived or natural oils or a blend of oils comprising glycerides having medium chain fatty acid groups. The glycerides may be monoglycerides, diglycerides, triglycerides, or combinations thereof. Accordingly, embodiments of the method eliminate the need for the high-energy input requirements cracking of C16, C18, and longer FA chains into shorter hydrocarbons.
- medium chain fatty acid source may comprise a glyceride with the following formula:
- R x -R 3 may each independently comprise an alkyl group, alkenyl group or hydrogen.
- R 1 - R 3 may be the same or different from one another.
- the alkyl group or alkenyl group may have from 1 to 16 carbon atoms.
- the alkyl or alkenyl group may be branched or unbranched.
- the medium chain fatty acid source may be cuphea oil.
- the cuphea oil may be a blend of oils obtained from the four Cuphea flowering plant species: Cuphea lanceolata, Cuphea carthagenensis, Cuphea epilobiifolia, and Cuphea strigulosa.
- the medium chain fatty acid source may include without limitation, coconut oil, palm oil, almond oil, canola oil, cocoa butter oil, corn oil, cotton seed oil, flaxseed oil, grape seed oil, olive oil, palm kernel, peanut oil, safflower oil, sesame oil, soybean oil, sunflower oil, walnut oil, or combinations thereof.
- the FA composition of each of these oils is listed in Tables 1 and 2.
- the medium chain fatty acid source may also, in some embodiments, be derived from genetically modified plant sources.
- the medium fatty acid source may be algae oil.
- the algae oil may be derived from any species of algae.
- the algae oil may be derived from a genetically modified species of algae.
- the oil blend after undergoing the aforementioned processing steps, may provide a product mixture of normal paraffins corresponding to the hydrocarbon composition of typical jet fuels such as JP-8 and/or molecular weight distribution representative.
- fatty acid sources from animal or fish sources may be blended with cuphea-derived oil.
- the FA composition of selected fatty acid sources from this group is listed in Table 3.
- Blends of Cuphea-de ⁇ ved, vegetable-derived, animal, and also single-cell-derived oils may be utilized for the conversion of these blends to jet fuel. Additionally, oil from genetically modified sources may be used in blending suitable feedstocks. The oils listed in Tables 1, 2, and 3 are not to be considered inclusive, as oils both currently known and currently unknown may serve equally well as feedstocks for the spirit of this invention.
- the fatty acid source may be processed to cleave the fatty acids from the glycerol backbone. The fatty acids may be cleaved from the glycerol using any methods and techniques known to one of skill in the art.
- the fatty acid group may be cleaved without a chemical change to the glycerol backbone.
- the fatty acids are preferably cleaved using a process such as for example, a thermochemical-catalytic process.
- thermochemical-catalytic process is any process where the reactants are heated to initiate the reaction and additionally involves the use of one or more catalysts.
- One such thermochemical-catalytic process for cleaving fatty acids from a glycerol backbone is described in Myllyoja et al, U.S. Patent Application No. 11/477,922 ("Myllyoja"), herein incorporated by reference in its entirety.
- the cleavage process involves a decarboxylation reaction as described in Myllyoja.
- the process may comprise the disassembly of a medium chain fatty acid source from glycerol by decarboxylation of the FA chains while still attached to the glycerol backbone, thus simultaneously cleaving the fatty acid group and producing glycerol and one or more hydrocarbon products.
- the hydrocarbon product may therefore be one carbon shorter in chain length than the original FA.
- the FA chains may be reduced while still attached to the glycerol backbone, also producing glycerol and one or more hydrocarbon products.
- the hydrocarbon product may therefore comprise the same carbon length as the original FA coupled to the glyceride.
- the reduction is preferably performed in the presence of hydrogen and any suitable catalyst.
- the fatty acid source may be disassembled by chemical reduction of the glycerol backbone, thereby producing propane, propanol, propanediol, other glycerol-derived products, or combinations thereof.
- Catalysts which would be suitable for the conversion of natural fatty acid sources to normal hydrocarbons would be individual metals such as palladium, platinum, nickel, silver, gold, copper, or mixed or promoted metals, such as cobalt-molybdenum, nickel-molybdenum.
- the catalyst metal or mixed metals may be supported by carbon, silica, alumina, or other materials known to the art. In addition, the catalyst may be porous.
- the metal-support combination may be in the form or a powder or a formed extrudate. The extrudate may be shaped into any 3-dimensional shape. This list is not included to be inclusive, and other metals many function equally well as those listed here.
- the conversion of the medium chain fatty acid source may be performed in the presence of the catalyst at temperatures from about 25O 0 C to about 35O 0 C, preferably about 28O 0 C to about 32O 0 C, but more preferably about 300 0 C.
- the conversion of the fatty acid source may be performed in the presence of hydrogen, preferably at a gauge pressure ranging from about 50 psig to about 200 psig, preferably ranging from about 75 psig to about 150 psig, more preferably from about 90 psig to about 125 psig.
- the catalyst is most preferably prepared for usage bv pretreatment with hydrogen, resulting in reduction of the active metal.
- the reduction of catalyst is performed at an elevated temperature resulting in removal of water during the reduction step.
- fatty acids may be cleaved by an enzymatic process such as the process described in U.S. Patent No. 4,394,445, herein incorporated by reference in its entirety for all purposes, or other biological processes known in the art.
- enzymes include without limitation, esterases, lipases, proteases, or combinations thereof.
- biological process is any process utilizing biological organisms (e.g. bacteria, algae, etc.) to accomplish the desired reaction.
- the fatty acids may be cleaved from the glycerol backbone by acid-catalyzed hydrolysis of the glycerides in the fatty acid source.
- the glycerol may be separated from the fatty acids.
- the separation may be accomplished by any suitable methods including without limitation, liquid-liquid extraction, supercritical solvent extraction, distillation, membrane filtration, acidulation, centrifugation, by gravity separation, or combinations thereof.
- the separated glycerol may be used for further reforming or other purposes.
- the fatty acids may then be processed to form the C8- C16 alkanes needed for jet fuel.
- the fatty acids may be deoxygenated or decarboxylated to form the desired alkanes.
- the fatty acid deoxygenation may be accomplished using thermochemical-catalytic processes or biological processes.
- An example of a suitable thermochemical catalytic deoxygenation process is described in detail in Snare, M., Kubickova, L, Maki-Arvela, P., Eranen, K., Murzin, D.
- a specific type of jet fuel that may be produced by embodiments of the method is JP-8 jet fuel.
- This jet fuel comprises a mixture of primarily C8-C16 normal alkanes, with lesser amounts of other hydrocarbon compounds.
- the resulting product may comprise a mixture of primarily normal alkanes within the C8-C16 carbon number range and in appropriate proportion to be able to meet the MIL-DTL-83133E specification for JP-8, as shown in Figure 2 for example.
- the one or more hydrocarbons formed from the disclosed processes may be distilled to remove longer or shorter FA chains or hydrocarbon products thereof to meet specific fuel requirements. Any known distillation columns and techniques may be used in conjunction with the disclosed processes.
- the resulting jet fuel may comprise iso-alkanes, cyclo-alkanes, and alkyl- aromatic hydrocarbons.
- the jet fuel may comprise the following composition: approximately 20% normal alkanes, about 40% iso- alkanes, about 20% cycloalkanes, and about 20% alkyl-aromatic hydrocarbons.
- at least a portion of the one or more hydrocarbons produced from the fatty acids may be isomerized.
- the iso-alkanes required for jet fuel production may be prepared by isomerization of the normal alkanes via standard oil refining technologies employing commercially utilized catalyst.
- the isomerization may be achieved, for example, by use of platinum, palladium, silver, gold, copper, nickel, other transition metals, or other known catalysts on a suitable support. Heteropolyacids may also be employed as catalyst.
- the support may by mordenite, ferrierite, alumina silicate, or other support known in the art.
- the isomerization temperature may be in the range of 200 0 C to 300 0 C, with 24O 0 C to 275 0 C being preferred, and 24O 0 C being most preferred.
- the initial hydrogen pressure may be in the range of atmospheric to 10,000 psig, with 200 to 2000 psig being preferred, and 500-1200 psig being most preferred.
- the reactor may be of any type suitable for the intended purpose, including, but not limited to autoclave-type, and continuous tubular-type.
- the catalyst may be in the form of powder or shaped pellets.
- Jet fuel alkyl-aromatics typically comprise alkylbenzene compounds ranging in carbon number from C8 to C16 which may be prepared techniques known in the art such as described in U.S. Patent 4,229,602, incorporated herein by reference in its entirety for all purposes.
- aromatics can be provided by a variety of scenarios, one of which could involve the use of technologies for converting lignin (recoverable from cuphea and other biooil- containing seeds or husks or from other sources such as algaes) into jet fuel-quality alkylbenzene compounds.
- the cyclo-alkanes could be prepared from the alkyl-aromatics by art such as described in U.S. Patent 5,000,839, incorporated herein by reference in its entirety for all purposes.
- other sources of natural alkanes such as conventional fossil-based fuels could be blended to make up a bio-fossil fuel blend.
- a full integrated scheme of an embodiment of the disclosed process for producing fuel-grade products is outlined in Figure 3.
- Figure 3 illustrates a set of general process steps, some of which could be conducted via thermochemical-catalytic methods, biological (including enzyme-based, organism-based, or other biological) methods, or a combination of thermochemical catalytic and biological methods, which, when applied to a specific mixture of feedstock triglycerides, yields a fuel- grade product.
- the fatty acid source; thermochemical-catalytic, biological, and/or combination of thermochemical-catalytic and biological technologies; and reaction conditions utilized are appropriate for production of a fuel, such as a fuel that is able to meet the U.S. military MIL DTL-83133E specification for JP- 8 jet fuel.
- the jet fuel produced comprises at least about 10% hydrocarbons produced from the natural medium chain fatty acid source, preferably at least about 25%, more preferably at least about 50%.
- embodiments of the method may be applied to other types of fuels besides jet fuels.
- a suitable reactor containing reduced catalyst is heated to 300 0 C.
- a flow of hydrogen gas is initiated to the heated reactor at a pressure of 100 psig.
- the hydrogen flow is adjusted to be in excess of that required based upon biooil feed rate and minimum stoichiometric requirements.
- a natural fatty acid source such as a biological oil is pumped into the reactor while both temperature and hydrogen flow are maintained.
- the fatty acid source is contacted with the catalyst in the presence of hydrogen.
- the result is conversion of the fatty acid source to predominantly a normal hydrocarbon product. Some isomerization of the normal hydrocarbon may or may not occur, based upon both the catalyst and support employed.
- the product mixture is condensed by chilling the outlet line from the reactor and the product is collected in a receiver vessel.
- the crude product may be subjected to distillation, and the paraffinic product of appropriate boiling point range for jet fuel is recovered from the distillation process.
- the paraffinic product is subjected to isomerization catalyst and conditions in a suitable reactor.
- the resulting product is a crude product which may be subjected to a second distillation.
- the resulting product contains a mixture of normal and isomerized hydrocarbons useful as a jet fuel blend stock.
- Further processing either by subjecting either the normal paraffin product or the isomerized product to aromatization and reduction conditions may provide aromatic and cycloparaffinic products useful as additional blendstocks for jet fuel. Appropriate combination of these blend stocks will provide a mixture useful as jet fuel.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Liquid Carbonaceous Fuels (AREA)
Abstract
A novel, energy efficient process of producing jet fuel is disclosed herein. The process is based on utilizing a medium chain fatty acid source such as cuphea oil, which precludes the need for high-energy fatty acid chain cracking to achieve the shorter molecules needed for jet fuels and other fuels with low-temperature flow requirements. In an embodiment, a process for producing a jet fuel comprises providing a medium chain fatty acid source. The method also comprises cleaving the one or more medium chain fatty acid groups from the glycerides to form glycerol and one or more free fatty acids. The method further comprises decarboxylating the one or more medium chain fatty acids to form one or more hydrocarbons for the production of the jet fuel.
Description
ENERGY EFFICIENT PROCESS TO PRODUCE BIOLOGICALLY BASED FUELS
BACKGROUND
This invention relates to a process for producing fuels. More specifically, the invention relates to an energy efficient process of producing jet fuels utilizing biological fatty acid sources.
Alkyl esters, including methyl ester or ethyl ester, also known as "biodiesel", are a renewable and clean burning alternative to conventional petroleum-derived diesel fuel. Biodiesel is made from a raw or used vegetable oil or animal fat, typically soybean oil or rapeseed oil (which are composed of triglycerides, diglycerides, monoglycerides, fatty acids (FA), or combinations thereof). Because biodiesel is made from natural oil or fat sources, the alkyl esters typically comprise C14 to C1S fatty chains if derived from vegetable oil, and C16 to C22 fatty chains if derived from animal fat. Biodiesel can be combusted in diesel (combustion- ignition) engines either in pure form or as blended with petroleum-derived diesel fuel. Biodiesel provides the benefits of a renewable resource as well as providing lower sulfur emissions than petroleum diesel.
A common route to produce biodiesel from biologically derived oils is through a process called transesterification. A common transesterification process is illustrated below.
CH ,-
R,
~ CH, Ch,
However, biodiesel produced by this process typically does not meet transportation diesel requirements, e.g., these esters typically gel below -1O0C. For improved performance, thermal and catalytic chemical bond-breaking (cracking) technologies have been developed that enable converting bio-oils into bio-based alternatives to petroleum-derived diesel fuel and other fuels, such as jet fuel.
Cleaving FA chains from glycerol and cracking longer FA chains into shorter (lower- carbon-number) molecules are used to ensure adequate fuel flow performance at low (down to - 5O0C) temperatures, oxygen removal is required to ensure adequate fuel energy density, and replacement of oxygen with hydrogen is required to ensure fuel chemical stability (resistance to polymerization). Because additional energy input is required to crack C16 and Cl 8 FA chains (which comprise the primary FA constituents of soybean, sunflower, corn, rapeseed, canola, cottonseed, and other common vegetable oils) into shorter molecules, the overall energy efficiency of such a process is diminished.
Consequently, there is a need for a more energy efficient method of producing fuels from biological sources such as natural oils and fats.
BRIEF SUMMARY
A novel, energy efficient process of producing jet fuel is disclosed herein. The process is based on utilizing a medium chain fatty acid source such as cuphea oil, which precludes the need for high-energy fatty acid chain cracking to achieve the shorter molecules needed for jet fuels and other fuels with low-temperature flow requirements. Other aspect and advantages of the process will be described in more detail below.
In an embodiment, a process for producing a jet fuel comprises providing a medium chain fatty acid source comprising glycerides having one or more medium chain fatty acid groups with no more than 16 carbon atoms. The method also comprises cleaving the one or more medium chain fatty acid groups from the glycerides to form glycerol and one or more free fatty acids. In addition the method comprises separating the one or more medium chain fatty acids from the glycerol. The method further comprises decarboxylating the one or more medium chain fatty acids to form one or more hydrocarbons for the production of the jet fuel.
In another embodiment, a process for producing a jet fuel comprises providing a medium chain fatty acid source comprising glycerides having one or more medium chain fatty acid groups with no more than 16 carbon atoms. The method also comprises directly decarboxylating the glycerides to simultaneously cleave the one or more medium chain fatty acid groups and form one or more hydrocarbons for the production of jet fuel.
In yet another embodiment, a process for producing a jet fuel comprise providing a medium chain fatty acid source comprising glycerides having one or more medium chain fatty acid groups with no more than 16 carbon atoms. In addition, the method comprises reducing the glycerides to form one or more hydrocarbons for the production of jet fuel.
The foregoing has outlined rather broadly the features and technical advantages of embodiments of the invention in order that the detailed description of the invention that follows
may be better understood. Additional features and advantages of the invention will be described hereinafter that form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
For a detailed description of the preferred embodiments of the invention, reference will now be made to the accompanying drawings in which:
Figures IA-B illustrating an embodiment of the disclosed process; Figure 2A is an idealized chromatogram of showing a mixture of normal alkanes in a jet fuel such as JP-8 jet fuel;
Figure 2B is a chromatogram of JP-8 jet fuel showing that it primarily comprises C6 through Cl 6 hydrocarbons; and
Figure 3 is a block diagram illustrating an embodiment of a process for the production of a fuel such as JP-8 jet fuel.
NOTATION AND NOMENCLATURE
Certain terms are used throughout the following description and claims to refer to particular system components. This document does not intend to distinguish between components that differ in name but not function.
In the following discussion and in the claims, the terms "including" and "comprising" are used in an open-ended fashion, and thus should be interpreted to mean "including, but not limited to...". As used herein, "jet fuel" may refer to any composition used as fuel in jet-engined aircraft.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIGURES IA-B illustrate an embodiment of a method of producing a liquid fuel such as jet fuel. Generally, the feedstock mixture (e.g. a natural fatty acid source such as natural plant or vegetable oils and/or fats) may be subjected to the following processing steps either sequentially, or in tandem, or simultaneously, such that the operations are achieved in no particular order. In embodiments, a fatty acid (FA) source may initially be provided. The fatty acid source is then disassembled or cleaved into FA chains and glycerol as shown in Figure IA.
The FA chains may then be separated from the glycerol. Ultimately, the FA chains may be
decarboxylated to form one or more hydrocarbons and, potentially if required, any unsaturated hydrocarbon chains may be hydrogenated to produce one or more alkanes for the desired jet fuel as shown in Figure IB.
An innovative aspect of the disclosed methods is the production of bio-based jet fuel by first selecting natural oils comprised of FA chains of lengths corresponding to the desired fuel product. That is, a mixture of normal and isomerized alkanes may be produced that matches the carbon chain mixture of existing jet fuel types. Typically, jet fuel comprises a mixture of hydrocarbons having from 8 to 16 carbon atoms with traces of C6 - C8 as well as traces of C17 and higher. Preferably these traces are less than 10%, even more preferably less than 5%. Thus, it is desirable to select fatty acid sources having fatty acid composition with the same or substantially similar numbers of carbon atoms, or the same or substantially similar molecular weight distribution as the ultimate jet fuel product (e.g. JP-4, JP-5, JP-6, JP-7, JP-8, Jet Al, Jet A, Jet B, kerosene, Diesel 1, Diesel 2, Fuel Oil 1, Fuel Oil 2, etc.).
Preferably, a medium chain fatty acid source is provided as feedstock for the method. As used here, "medium chain fatty acids" refer to saturated or unsaturated fatty acid groups having no more than 16 carbon atoms in the primary fatty acid chain. Examples of medium chain fatty acids include without limitation, caproic acid (C6), caprylic acid (C8), capric acid (ClO) and lauric acid (C 12). A medium chain fatty acid source refers to biologically derived or natural oils or a blend of oils comprising glycerides having medium chain fatty acid groups. The glycerides may be monoglycerides, diglycerides, triglycerides, or combinations thereof. Accordingly, embodiments of the method eliminate the need for the high-energy input requirements cracking of C16, C18, and longer FA chains into shorter hydrocarbons.
In an embodiment, medium chain fatty acid source may comprise a glyceride with the following formula:
where Rx-R3 may each independently comprise an alkyl group, alkenyl group or hydrogen. R1- R3 may be the same or different from one another. The alkyl group or alkenyl group may have
from 1 to 16 carbon atoms. Furthermore, the alkyl or alkenyl group may be branched or unbranched.
In an embodiment, the medium chain fatty acid source may be cuphea oil. The cuphea oil may be a blend of oils obtained from the four Cuphea flowering plant species: Cuphea lanceolata, Cuphea carthagenensis, Cuphea epilobiifolia, and Cuphea strigulosa. Additionally, the medium chain fatty acid source may include without limitation, coconut oil, palm oil, almond oil, canola oil, cocoa butter oil, corn oil, cotton seed oil, flaxseed oil, grape seed oil, olive oil, palm kernel, peanut oil, safflower oil, sesame oil, soybean oil, sunflower oil, walnut oil, or combinations thereof. The FA composition of each of these oils is listed in Tables 1 and 2. The medium chain fatty acid source may also, in some embodiments, be derived from genetically modified plant sources. In a further embodiment, the medium fatty acid source may be algae oil. The algae oil may be derived from any species of algae. Alternatively, the algae oil may be derived from a genetically modified species of algae.
The oil blend, after undergoing the aforementioned processing steps, may provide a product mixture of normal paraffins corresponding to the hydrocarbon composition of typical jet fuels such as JP-8 and/or molecular weight distribution representative. Alternatively, fatty acid sources from animal or fish sources may be blended with cuphea-derived oil. The FA composition of selected fatty acid sources from this group is listed in Table 3.
Table 1. Fatty Acid Composition (as % of total fatty acids) of Selected Cuphea Species
Table 3. Fatty Acid Composition of Selected Animal Oils.
Blends of Cuphea-deήved, vegetable-derived, animal, and also single-cell-derived oils may be utilized for the conversion of these blends to jet fuel. Additionally, oil from genetically modified sources may be used in blending suitable feedstocks. The oils listed in Tables 1, 2, and 3 are not to be considered inclusive, as oils both currently known and currently unknown may serve equally well as feedstocks for the spirit of this invention. Once the appropriate medium chain fatty acid source has been selected, in the form of oils and blends, the fatty acid source may be processed to cleave the fatty acids from the glycerol backbone. The fatty acids may be cleaved from the glycerol using any methods and techniques known to one of skill in the art. Furthermore, the fatty acid group may be cleaved without a chemical change to the glycerol backbone. However, the fatty acids are preferably
cleaved using a process such as for example, a thermochemical-catalytic process. As used herein, "thermochemical-catalytic process" is any process where the reactants are heated to initiate the reaction and additionally involves the use of one or more catalysts. One such thermochemical-catalytic process for cleaving fatty acids from a glycerol backbone is described in Myllyoja et al, U.S. Patent Application No. 11/477,922 ("Myllyoja"), herein incorporated by reference in its entirety. In one embodiment, the cleavage process involves a decarboxylation reaction as described in Myllyoja.
Alternatively, the process may comprise the disassembly of a medium chain fatty acid source from glycerol by decarboxylation of the FA chains while still attached to the glycerol backbone, thus simultaneously cleaving the fatty acid group and producing glycerol and one or more hydrocarbon products. The hydrocarbon product may therefore be one carbon shorter in chain length than the original FA.
In another embodiment, the FA chains may be reduced while still attached to the glycerol backbone, also producing glycerol and one or more hydrocarbon products. The hydrocarbon product may therefore comprise the same carbon length as the original FA coupled to the glyceride. The reduction is preferably performed in the presence of hydrogen and any suitable catalyst. In an additional embodiment, the fatty acid source may be disassembled by chemical reduction of the glycerol backbone, thereby producing propane, propanol, propanediol, other glycerol-derived products, or combinations thereof. Catalysts which would be suitable for the conversion of natural fatty acid sources to normal hydrocarbons would be individual metals such as palladium, platinum, nickel, silver, gold, copper, or mixed or promoted metals, such as cobalt-molybdenum, nickel-molybdenum. The catalyst metal or mixed metals may be supported by carbon, silica, alumina, or other materials known to the art. In addition, the catalyst may be porous. The metal-support combination may be in the form or a powder or a formed extrudate. The extrudate may be shaped into any 3-dimensional shape. This list is not included to be inclusive, and other metals many function equally well as those listed here.
The conversion of the medium chain fatty acid source may be performed in the presence of the catalyst at temperatures from about 25O0C to about 35O0C, preferably about 28O0C to about 32O0C, but more preferably about 3000C. The conversion of the fatty acid source may be performed in the presence of hydrogen, preferably at a gauge pressure ranging from about 50 psig to about 200 psig, preferably ranging from about 75 psig to about 150 psig, more preferably from about 90 psig to about 125 psig. The catalyst is most preferably prepared for usage bv pretreatment with hydrogen, resulting in reduction of the active metal. The
reduction of catalyst is performed at an elevated temperature resulting in removal of water during the reduction step.
Alternatively, fatty acids may be cleaved by an enzymatic process such as the process described in U.S. Patent No. 4,394,445, herein incorporated by reference in its entirety for all purposes, or other biological processes known in the art. Examples of enzymes that may be used include without limitation, esterases, lipases, proteases, or combinations thereof. As used herein, "biological process" is any process utilizing biological organisms (e.g. bacteria, algae, etc.) to accomplish the desired reaction. In another embodiment, the fatty acids may be cleaved from the glycerol backbone by acid-catalyzed hydrolysis of the glycerides in the fatty acid source.
After cleavage of the fatty acids from the glycerol, the glycerol may be separated from the fatty acids. The separation may be accomplished by any suitable methods including without limitation, liquid-liquid extraction, supercritical solvent extraction, distillation, membrane filtration, acidulation, centrifugation, by gravity separation, or combinations thereof. Once separated from the fatty acids, the separated glycerol may be used for further reforming or other purposes.
Upon separation from glycerol, the fatty acids may then be processed to form the C8- C16 alkanes needed for jet fuel. In embodiments, the fatty acids may be deoxygenated or decarboxylated to form the desired alkanes. As with cleavage of the fatty acids from glycerol, the fatty acid deoxygenation may be accomplished using thermochemical-catalytic processes or biological processes. An example of a suitable thermochemical catalytic deoxygenation process is described in detail in Snare, M., Kubickova, L, Maki-Arvela, P., Eranen, K., Murzin, D. Yu., Continuous deoxygenation of ethyl stearate - a model reaction for production of dies el fuel hydrocarbons, Catalysis of Organic Reactions 115, (2006), 415-425, herein incorporated by reference in its entirety for all purposes. The deoxygenation reaction may be carried out in a fixed bed tubular reactor over a heterogeneous catalyst under elevated temperatures and pressures.
As shown in Figure 2, a specific type of jet fuel that may be produced by embodiments of the method is JP-8 jet fuel. This jet fuel comprises a mixture of primarily C8-C16 normal alkanes, with lesser amounts of other hydrocarbon compounds. The resulting product may comprise a mixture of primarily normal alkanes within the C8-C16 carbon number range and in appropriate proportion to be able to meet the MIL-DTL-83133E specification for JP-8, as shown in Figure 2 for example. In embodiments, the one or more hydrocarbons formed from the disclosed processes may be distilled to remove longer or shorter FA chains or hydrocarbon
products thereof to meet specific fuel requirements. Any known distillation columns and techniques may be used in conjunction with the disclosed processes.
In addition to C8-C16 normal alkanes, the resulting jet fuel may comprise iso-alkanes, cyclo-alkanes, and alkyl- aromatic hydrocarbons. In a specific embodiment, the jet fuel may comprise the following composition: approximately 20% normal alkanes, about 40% iso- alkanes, about 20% cycloalkanes, and about 20% alkyl-aromatic hydrocarbons. Thus, in an embodiment, at least a portion of the one or more hydrocarbons produced from the fatty acids may be isomerized. The iso-alkanes required for jet fuel production may be prepared by isomerization of the normal alkanes via standard oil refining technologies employing commercially utilized catalyst. The isomerization may be achieved, for example, by use of platinum, palladium, silver, gold, copper, nickel, other transition metals, or other known catalysts on a suitable support. Heteropolyacids may also be employed as catalyst. The support may by mordenite, ferrierite, alumina silicate, or other support known in the art. The isomerization temperature may be in the range of 2000C to 3000C, with 24O0C to 2750C being preferred, and 24O0C being most preferred. The initial hydrogen pressure may be in the range of atmospheric to 10,000 psig, with 200 to 2000 psig being preferred, and 500-1200 psig being most preferred. The reactor may be of any type suitable for the intended purpose, including, but not limited to autoclave-type, and continuous tubular-type. The catalyst may be in the form of powder or shaped pellets. Jet fuel alkyl-aromatics typically comprise alkylbenzene compounds ranging in carbon number from C8 to C16 which may be prepared techniques known in the art such as described in U.S. Patent 4,229,602, incorporated herein by reference in its entirety for all purposes. Alternatively, aromatics can be provided by a variety of scenarios, one of which could involve the use of technologies for converting lignin (recoverable from cuphea and other biooil- containing seeds or husks or from other sources such as algaes) into jet fuel-quality alkylbenzene compounds. The cyclo-alkanes could be prepared from the alkyl-aromatics by art such as described in U.S. Patent 5,000,839, incorporated herein by reference in its entirety for all purposes. In addition, other sources of natural alkanes such as conventional fossil-based fuels could be blended to make up a bio-fossil fuel blend. A full integrated scheme of an embodiment of the disclosed process for producing fuel-grade products is outlined in Figure 3.
Figure 3 illustrates a set of general process steps, some of which could be conducted via thermochemical-catalytic methods, biological (including enzyme-based, organism-based, or other biological) methods, or a combination of thermochemical catalytic and biological methods, which, when applied to a specific mixture of feedstock triglycerides, yields a fuel-
grade product. As an example, in the method described above, the fatty acid source; thermochemical-catalytic, biological, and/or combination of thermochemical-catalytic and biological technologies; and reaction conditions utilized are appropriate for production of a fuel, such as a fuel that is able to meet the U.S. military MIL DTL-83133E specification for JP- 8 jet fuel. Some examples of other jet fuels which may be produced by embodiments of the disclosed process include without limitation, JP-4, JP-5, JP-6, JP-7, JP-8, Jet Al, Jet A, Jet B, kerosene, Diesel 1, Diesel 2, Fuel Oil 1, Fuel Oil 2 or combinations thereof. Preferably, the jet fuel produced comprises at least about 10% hydrocarbons produced from the natural medium chain fatty acid source, preferably at least about 25%, more preferably at least about 50%. Of course, embodiments of the method may be applied to other types of fuels besides jet fuels.
To further illustrate various illustrative embodiments of the invention, the following example is provided.
EXAMPLE A suitable reactor containing reduced catalyst is heated to 3000C. A flow of hydrogen gas is initiated to the heated reactor at a pressure of 100 psig. The hydrogen flow is adjusted to be in excess of that required based upon biooil feed rate and minimum stoichiometric requirements. A natural fatty acid source such as a biological oil is pumped into the reactor while both temperature and hydrogen flow are maintained. The fatty acid source is contacted with the catalyst in the presence of hydrogen. The result is conversion of the fatty acid source to predominantly a normal hydrocarbon product. Some isomerization of the normal hydrocarbon may or may not occur, based upon both the catalyst and support employed. The product mixture is condensed by chilling the outlet line from the reactor and the product is collected in a receiver vessel. The crude product may be subjected to distillation, and the paraffinic product of appropriate boiling point range for jet fuel is recovered from the distillation process. The paraffinic product is subjected to isomerization catalyst and conditions in a suitable reactor. The resulting product is a crude product which may be subjected to a second distillation. The resulting product contains a mixture of normal and isomerized hydrocarbons useful as a jet fuel blend stock. Further processing, either by subjecting either the normal paraffin product or the isomerized product to aromatization and reduction conditions may provide aromatic and cycloparaffinic products useful as additional blendstocks for jet fuel. Appropriate combination of these blend stocks will provide a mixture useful as jet fuel. Alternatively, appropriate alkyl- aromatic components may be purchased and blended with the isomerized product. Alternatively, appropriate cycloparaffinic products may be blend with the isomerized and alkyl aromatic mixture, thus providing a mixture useful as jet fuel.
While embodiments of the invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the spirit and teachings of the invention. The embodiments described and the examples provided herein are exemplary only, and are not intended to be limiting. Many variations and modifications of the invention disclosed herein are possible and are within the scope of the invention. Accordingly, the scope of protection is not limited by the description set out above, but is only limited by the claims which follow, that scope including all equivalents of the subject matter of the claims.
The discussion of a reference in the Description of the Related Art is not an admission that it is prior art to the invention, especially any reference that may have a publication date after the priority date of this application. The disclosures of all patents, patent applications, and publications cited herein are hereby incorporated herein by reference in their entirety, to the extent that they provide exemplary, procedural, or other details supplementary to those set forth herein.
Claims
1. A process for producing a jet fuel comprising: a) providing a medium chain fatty acid source comprising glycerides having one or more medium chain fatty acid groups with no more than 16 carbon atoms; b) cleaving the one or more medium chain fatty acid groups from the glycerides to form glycerol and one or more free fatty acids; c) separating the one or more medium chain fatty acids from the glycerol; and d) decarboxylating the one or more medium chain fatty acids to form one or more hydrocarbons for the production of the jet fuel.
2. The process of claim 1 wherein the one or more medium chain fatty acid groups are C6 to Cl 6 fatty acid groups.
3. The process of claim 1 wherein the one or more medium chain fatty acid groups have a molecular weight distribution substantially similar to a jet fuel selected from the group consisting of JP-4, JP-5, JP-6, JP-7, JP-8, Jet Al, Jet A, Jet B, kerosene, Diesel 1, Diesel 2, Fuel Oil 1, and Fuel Oil 2.
4. The process of claim 1 wherein the fatty acid source comprises cuphea oil, coconut oil, palm oil, algae oil, or combinations thereof.
5. The process of claim 1 wherein the cuphea oil is derived from a Cuphea plant species selected from the group consisting of Cuphea lanceolata, Cuphea carthagenensis, Cuphea epilobiifolia, Cuphea strigulosa, and combinations thereof.
6. The process of claim 1 wherein the one or more medium chain fatty acid groups are unsaturated or saturated.
7. The process of claim 1 further comprising hydrogenating the one or more hydrocarbons to form one or more alkanes.
8. The process of claim 1 wherein (b) comprises cleaving the one or more medium chain fatty acid groups from the glycerides by using a thermochemical-catalytic process, a biological process, or an enzymatic process.
9. The process of claim 8 wherein (b) comprises a decarboxylation reaction.
10. The process of claim 8 wherein the thermochemical-catalytic process uses a catalyst, the catalyst comprising palladium, platinum, nickel, silver, gold, copper, cobalt- molvbdenum, nickel-molybdenum, or combinations thereof
11. The process of claim 1 wherein (c) comprises decarboxylating the one or more medium chain fatty acids by a thermochemical-catalytic process, a biological process, or combinations thereof.
12. The process of claim 11 wherein the thermochemical-catalytic process uses a catalyst, the catalyst comprising palladium, platinum, nickel, silver, gold, copper, cobalt- molybdenum, nickel-molybdenum, or combinations thereof.
13. The process of claim 1 further comprising distilling the one or more hydrocarbons.
14. The process of claim 1 further comprising reducing the glycerol to form propane, propanol, propanediol, or combinations thereof.
15. The process of claim 1 further comprising isomerizing at least a portion of the one or more hydrocarbons.
16. The process of claim 1 further comprising forming cycloalkanes from at least a portion of the one or more hydrocarbons.
17. The process of claim 1 further comprising forming alkylbenzene compounds from at least a portion of the one or more hydrocarbons.
18. The process of claim 1 wherein the jet fuel comprises JP-4, JP-5, JP-6, JP-7, JP-8, Jet Al, Jet A, Jet B, kerosene, Diesel 1, Diesel 2, Fuel Oil 1 or Fuel Oil 2.
19. The process of claim 1 wherein the jet fuel comprises at least 50% by weight the one or more hydrocarbons produced from the medium chain fatty acid source.
20. A process for producing a jet fuel comprising: a) providing a medium chain fatty acid source comprising glycerides having one or more medium chain fatty acid groups with no more than 16 carbon atoms; and b) directly decarboxylating the glycerides to simultaneously cleave the one or more medium chain fatty acid groups and to form one or more hydrocarbons for the production of jet fuel.
21. The process of claim 20 wherein (b) comprises using a thermochemical-catalytic process to decarboxylate the glycerides.
22. A process for producing a jet fuel comprising: a) providing a medium chain fatty acid source comprising glycerides having one or more medium chain fatty acid groups with no more than 16 carbon atoms; and b) reducing the glycerides to form one or more hydrocarbons for the production of jet fuel.
23. The process of claim 22 wherein (b) comprises reducing the glycerides in the presence of hydrogen and a catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2007/076233 WO2009025663A1 (en) | 2007-08-17 | 2007-08-17 | Fuels derived from biological oils and fats |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2007/076233 WO2009025663A1 (en) | 2007-08-17 | 2007-08-17 | Fuels derived from biological oils and fats |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009025663A1 true WO2009025663A1 (en) | 2009-02-26 |
Family
ID=40378414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/076233 WO2009025663A1 (en) | 2007-08-17 | 2007-08-17 | Fuels derived from biological oils and fats |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009025663A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110263914A1 (en) * | 2010-04-26 | 2011-10-27 | Accelergy Corporation | Synthetic Fluids and Methods of Manufacture |
WO2012082627A1 (en) | 2010-12-13 | 2012-06-21 | Accelergy Corporation | Integrated coal to liquids process and system with co2 mitigation using algal biomass |
US8882990B2 (en) | 2010-08-02 | 2014-11-11 | Battelle Memorial Institute | Deoxygenation of fatty acids for preparation of hydrocarbons |
US8927795B2 (en) | 2012-05-18 | 2015-01-06 | Uop Llc | Process for controlling the simultaneous production of diesel and jet fuel range paraffins by blending feedstocks |
WO2023056172A1 (en) * | 2021-10-01 | 2023-04-06 | ExxonMobil Technology and Engineering Company | Catalyst configuration for renewable jet production |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5713965A (en) * | 1996-04-12 | 1998-02-03 | The United States Of America As Represented By The Secretary Of Agriculture | Production of biodiesel, lubricants and fuel and lubricant additives |
US20040074760A1 (en) * | 2002-10-17 | 2004-04-22 | Carnegie Mellon University | Production of biofuels |
US20050188606A1 (en) * | 1999-03-26 | 2005-09-01 | Rinaldo Caprotti | Fuel oil compositions |
US20050262760A1 (en) * | 2003-11-12 | 2005-12-01 | Lawson J A | Chemical synthesis methods using electro-catalysis |
-
2007
- 2007-08-17 WO PCT/US2007/076233 patent/WO2009025663A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5713965A (en) * | 1996-04-12 | 1998-02-03 | The United States Of America As Represented By The Secretary Of Agriculture | Production of biodiesel, lubricants and fuel and lubricant additives |
US20050188606A1 (en) * | 1999-03-26 | 2005-09-01 | Rinaldo Caprotti | Fuel oil compositions |
US20040074760A1 (en) * | 2002-10-17 | 2004-04-22 | Carnegie Mellon University | Production of biofuels |
US20050262760A1 (en) * | 2003-11-12 | 2005-12-01 | Lawson J A | Chemical synthesis methods using electro-catalysis |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110263914A1 (en) * | 2010-04-26 | 2011-10-27 | Accelergy Corporation | Synthetic Fluids and Methods of Manufacture |
US8748679B2 (en) * | 2010-04-26 | 2014-06-10 | Accelergy Corporation | Synthetic fluids and methods of manufacture |
US8882990B2 (en) | 2010-08-02 | 2014-11-11 | Battelle Memorial Institute | Deoxygenation of fatty acids for preparation of hydrocarbons |
WO2012082627A1 (en) | 2010-12-13 | 2012-06-21 | Accelergy Corporation | Integrated coal to liquids process and system with co2 mitigation using algal biomass |
EP3401296A1 (en) | 2010-12-13 | 2018-11-14 | Accelergy Corporation | Production of biofertilizer in a photobioreactor using carbon dioxide |
US8927795B2 (en) | 2012-05-18 | 2015-01-06 | Uop Llc | Process for controlling the simultaneous production of diesel and jet fuel range paraffins by blending feedstocks |
WO2023056172A1 (en) * | 2021-10-01 | 2023-04-06 | ExxonMobil Technology and Engineering Company | Catalyst configuration for renewable jet production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8304591B2 (en) | Optimal energy pathway to renewable domestic and other fuels | |
CA2696812C (en) | Energy efficient process to produce biologically based fuels | |
EP2362892B1 (en) | Hydroprocessing of biodiesel fuels and blends | |
JP5410983B2 (en) | Process for conversion of biomass to fuel | |
JP5690734B2 (en) | Co-processing diesel with vegetable oil to produce a low cloud point hybrid diesel biofuel | |
JP5506791B2 (en) | Method for producing biological hydrocarbons | |
JP5536057B2 (en) | Conversion of vegetable oil to base oil and transportation fuel | |
US9206367B2 (en) | Method for cold stable biojet fuel | |
AU2009258035B2 (en) | Production of aviation fuel from renewable feedstocks | |
JP5580822B2 (en) | Conversion of vegetable oil to base oil and transportation fuel | |
AU2009333684B2 (en) | Controlling cold flow properties of transportation fuels from renewable feedstocks | |
JP2011526640A5 (en) | ||
JP2011174066A (en) | Advanced fuel composition from renewable source, and related methods for making and using fuel | |
WO2012057945A2 (en) | Fuel and base oil blendstocks from a single feedstock | |
RU2441903C2 (en) | Energy efficient method for obtaining fuel of biological origin | |
WO2009025663A1 (en) | Fuels derived from biological oils and fats | |
US20140005448A1 (en) | Reforming process for renewable aviation fuel | |
KR20220069151A (en) | Method for producing high purity normal paraffin from biomass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07841078 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07841078 Country of ref document: EP Kind code of ref document: A1 |