[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009017256A1 - High-strength steel sheet - Google Patents

High-strength steel sheet Download PDF

Info

Publication number
WO2009017256A1
WO2009017256A1 PCT/JP2008/064175 JP2008064175W WO2009017256A1 WO 2009017256 A1 WO2009017256 A1 WO 2009017256A1 JP 2008064175 W JP2008064175 W JP 2008064175W WO 2009017256 A1 WO2009017256 A1 WO 2009017256A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
amount
precipitates
strength
Prior art date
Application number
PCT/JP2008/064175
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Nakagawa
Takeshi Yokota
Nobuyuki Nakamura
Kazuhiro Seto
Satoshi Kinoshiro
Katsumi Yamada
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to CA2693489A priority Critical patent/CA2693489C/en
Priority to EP08792282.9A priority patent/EP2177640B1/en
Priority to CN2008801012051A priority patent/CN101772584B/en
Priority to US12/670,153 priority patent/US20100196189A1/en
Priority to MX2010001110A priority patent/MX2010001110A/en
Publication of WO2009017256A1 publication Critical patent/WO2009017256A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a high-strength steel sheet excellent in stretch flange characteristics after processing and corrosion resistance after coating.
  • Parts such as automobile undercarriage and truck frames are required to have formability (mainly stretch and stretch flange characteristics), and steels with a tensile strength of 590 MPa have been used in the past.
  • formability mainly stretch and stretch flange characteristics
  • steels with a tensile strength of 590 MPa have been used in the past.
  • the strength of automobile steel sheets has been increased, and the use of steel with a tensile strength of 780 MPa class has begun to be considered.
  • Patent Documents 1 to 6 are examples of techniques for improving stretch and stretch flange characteristics.
  • Patent Document 1 has a tensile strength of 590 MPa or more, characterized in that it is substantially a ferrite single-phase structure and carbides containing Ti and Mo having an average particle size of lOnm are dispersed and precipitated. A technique relating to a high-tensile steel plate excellent in workability is disclosed.
  • Patent Document 2 by mass, C: 0.08 to 0.20%, S i: 0.001% or more and less than 0.2%, Mn: more than 1.03 ⁇ 4 3.0% or less, A1: 0.001 to 0.5%, V: more than 0.1% 0.5 % Or less, T i: 0.05% or more and less than 0.23 ⁇ 4 and Nb: 0.0053 ⁇ 4 to 0.5%, and
  • a technology relating to a high-strength hot-rolled steel sheet having a steel structure containing 70 volume% or more of ferrite having a degree of 250 Hv or more and having a strength of 880 MPa or more and a yield ratio of 0.80 or more is disclosed.
  • Patent Document 3 by mass, C: 0.05 to 0.2%, S i: 0.001% to 3.0%, M n: 0.5 to 3.0, P: 0.001 to 0.2%, A 1: 0.001 to 3%, V: 0.1 over 13 ⁇ 4 to 1.53 ⁇ 4, the balance is Fe and impurities, and the structure has an average particle size of 1 to 5 m
  • a technology related to hot-rolled steel sheets characterized by the presence of V carbonitrides with ferrite as the main phase and an average grain size of 50 nm or less in the ferrite grains is disclosed.
  • Patent Document 4 discloses a high-strength thin steel sheet having excellent thermal stability obtained by precipitating carbides in a steel structure.
  • This thin steel sheet has a Na C 1 type crystal structure represented by MC when the carbide is M as a metal element, and the metal element M is composed of two or more kinds of metals. It is characterized by the superlattice structure in which the metals of the above are regularly arranged in the crystal lattice.
  • Patent Document 5 discloses the following hot-rolled steel sheet.
  • Ingredient composition is% by mass, C: 0.0002 to 0.25%, Si: 0.003 to 3.0%, Mn: 0.003 to 3.0%, and A1: 0.002 to 2.0%, the remainder from Fe and inevitable impurities
  • P is 0.15% or less
  • S is 0.05% or less
  • N is 0.01% or less.
  • 70% or more of the metal structure is the ferrite phase
  • the average crystal grain size is 20 ⁇ or less
  • the aspect ratio is 3 or less.
  • 70% or more of ferrite grain boundaries are composed of large-angle grain boundaries, and among the ferrite phases formed at large-angle grain boundaries, the area ratio of precipitates with a maximum diameter of 30 ⁇ or less and a minimum diameter of 5 nm or more Is less than 2% of the metallographic structure. Furthermore, the average grain size of the second phase, which has the largest area ratio among the remaining phases excluding the ferrite phase and precipitates, is 20 / zm or less, and the large-angle grain boundary of the ferrite phase is between the nearest second phases.
  • Patent Document 6 includes, in mass%, ⁇ : 0.01 to 0.1%, 8 ⁇ 0.03%, 1 ⁇ ⁇ 0.005%, 1 1 1: 0.05 to 0.5%, and Ti-48 / 12C-48 / 14N -48 / 32S ⁇ 0% of Ti is contained, the balance is Fe and inevitable impurities, and ⁇ 100 ⁇ ⁇ 011> to ⁇ 223 ⁇ of the plate surface at least 1/2 the plate thickness
  • the average X-ray random intensity ratio of the 110> orientation group is 3 or more, and the X-ray random intensity ratio of the three directions of ⁇ 554 ⁇ ⁇ 225>, ⁇ 111 ⁇ ⁇ 112> and ⁇ 111 ⁇ ⁇ 110> Average value is 3.5 or less
  • a squeezable burring property with excellent shape freezing characteristics characterized in that a composition having a lubricating effect is applied to a copper plate having an arithmetic average roughness Ra of 1 to 3.5 on the surface of at least one copper plate.
  • the strength thin steel sheet is disclosed.
  • Patent Document 1 Registered Patent No. 3591502
  • Patent Document 2 JP-A-2006-161 112
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-143518
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-321740
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-293083
  • Patent Document 6 Japanese Patent Laid-Open No. 2003-160836 Disclosure of Invention
  • Patent Documents 1 and 4 contain Mo, there is a problem in that the cost of raw materials for Mo has increased significantly in recent years, resulting in a significant increase in cost.
  • Patent Document 5 a ferrite single-phase steel sheet having a tensile strength TS of up to 422 MPa (for example, Table 6 in Examples, Test Nos. 1 to 5 and Table 8 in Examples, Test No. 45), and a tensile strength TS of 780 MPa or more.
  • a composite structure copper plate composed of a ferrite phase and a second phase (for example, Example Table 6, Test Nos. 33 to 36 and Example Table 8, Test No. 49) is disclosed.
  • These steel sheets disclosed in Patent Document 5 mainly utilize solid solution strengthening by Si or Mn and transformation structure strengthening using a hard second phase.
  • the copper sheet is cooled to a temperature range of 600 to 800 ° C at an average cooling rate of 30 ° C / s or more within 2 seconds after finishing rolling, and then air-cooled for 3 to 15 seconds, and then further averaged. It must be water-cooled and scraped off at a cooling rate of 303 ⁇ 4 / sec or more. This promotes two-phase separation during ferrite transformation, and the steel sheet has a composite structure consisting of a ferrite phase and a second phase. Further, the finish rolling temperature is set to a temperature range (from Ae3 point +100) to Ae3 point, which is lower than a temperature range considered suitable for manufacturing the present invention described later.
  • the finish rolling temperature was 871 to ⁇ 800.
  • the finish rolling temperature is low, the solid solubility limit of carbide-forming elements such as Ti in the austenite phase is lowered, and precipitation sites are introduced by processing by rolling, so precipitates of 20 nm or more are generated. This phenomenon is called strain-induced precipitation.
  • strain-induced precipitation occurs, so that the amount of precipitates having a size of 20 nm or more increases.
  • Patent Document 5 discloses a technique that realizes the production of a ferrite single-phase structure by significantly reducing the C content of the steel composition and reducing the content of Mn, which is an austenite stabilizing element.
  • Mn which is an austenite stabilizing element.
  • the content of Mn which is also a solid solution strengthening element, decreases, so that the solid solution strengthening amount decreases.
  • the decrease in the C content reduces the precipitation amount of carbides such as Ti and Nb, which are effective for precipitation strengthening, and the precipitation strengthening amount also decreases.
  • Patent Document 6 discloses a copper plate (for example, steel symbols A-4, A-8, A-10, C, E, H in Example Table 2) having a tensile strength ⁇ ⁇ of 780 MPa or more.
  • the YR (unit%, where YR is ⁇ ⁇ / ⁇ ⁇ ⁇ 100) of these steel sheets is as low as 69% to 74%, so these copper plates have a hard second phase such as martensite phase. It is guessed that it contains.
  • the design philosophy of steel sheets of 780 MPa or more in Patent Document 6 mainly uses solid solution strengthening by Si or Mn and transformation structure strengthening using a hard second phase, as in Patent Document 5. It is thought to do. Therefore, as in Patent Document 5, rolling with a total compression ratio of 25% or more is performed at a finish rolling temperature (Ar3 point +100 or less) lower than the temperature range considered suitable for manufacturing the present invention described later. Need to do.
  • the finish rolling temperature of a steel sheet having a tensile strength ⁇ B of 780 MPa or more was 800 ° C to 890 ° C.
  • an object of the present invention is to provide a high-strength steel sheet having excellent stretch flange characteristics after processing and excellent corrosion resistance after coating.
  • the present inventors have studied to obtain a high-strength hot-rolled copper sheet having excellent stretch flange characteristics during processing and corrosion resistance after coating and having a tensile strength of 780 MPa or more, and obtained the following knowledge.
  • i) In order to obtain a steel sheet with high strength and excellent corrosion resistance after painting, it is necessary to refine the precipitates (less than 20 mn in size) and increase the proportion of fine precipitates (less than 20 nm in size).
  • the precipitate contains Ti i Mo or Ti i-V. From the viewpoint of improving the corrosion resistance after coating, the precipitate is Ti. Combined analysis of V is useful.
  • any one of mass%, Cr: 0. ⁇ ) 1% to 0.5%, W: 0.005% to 0.2%, Zr: 0.0005% to 0.05% 1 A high-strength steel sheet characterized by containing two or more seeds.
  • the high-strength steel plate in the present invention is a steel plate having a tensile strength (hereinafter sometimes referred to as TS) of 780 MPa or more, a hot-rolled steel plate, and further, for example, a surface such as a staking treatment. Surface treated steel sheets that have been treated are also targeted.
  • TS tensile strength
  • target properties of the present invention stretch flangeability 10 after rolling in elongation percentage 10%
  • the maximum peel width on one side after the tape peel test in the salt warm water immersion test (SDT) described later is 3.0 mm or less.
  • a high-strength hot-rolled steel sheet having excellent stretch flange characteristics after processing and corrosion resistance after coating and having a TS of 780 MPa or more can be obtained. Furthermore, in the present invention, the above effect can be obtained without adding Mo, so that the cost can be reduced.
  • the thickness can be reduced, the environmental load of the automobile is reduced, and the impact characteristics are greatly improved. It is expected.
  • C is an element that contributes to strengthening of the steel sheet by forming carbides with Ti and V and precipitating in the ferrite.
  • C amount needs to be more than 0 ⁇ 023 ⁇ 4.
  • the C content is 0.02% to 0.20%, preferably 0.03% to 0.15%.
  • Si is an element that contributes to solid solution strengthening, but if added over 0.3%, cementite is generated at the grain boundaries, and the stretched flange characteristics after processing deteriorate. Therefore, the Si amount is 0.3% or less. Preferably, it is 0.001% or more and 0.2% or less.
  • Mn 0.5% or more and 2.5% or less
  • Mn is an element that contributes to solid solution strengthening. However, if the amount is less than 0.5%, TS of 780 MPa or more cannot be obtained. On the other hand, if the Mn content exceeds 2.5%, weldability is reduced. Reduce significantly. From the above, the Mn content is 0.5 ⁇ 2.5% to 2.5%, preferably 0.63 ⁇ 4 to 2.0%.
  • the soot amount is 0.001% or more and 0.055% or less.
  • the stretch flangeability is significantly reduced regardless of the presence or absence of processing. Therefore, it is preferable to reduce the amount of S as much as possible, and it should be 0.01% or less.
  • the content is 0.0001% or more and 0.005% or less.
  • a 1 is added as a steel deoxidizer and is an effective element for improving the cleanliness of steel. In order to acquire this effect, it is preferable to make it contain 0.001% or more. However, if it exceeds 0.1 3 ⁇ 4, a large amount of inclusions will be generated, causing copper plate wrinkles. Therefore, the A 1 amount is 0.13 ⁇ 4 or less. Preferably, it is 0.01% or more and 0.04% or less.
  • T i 0.05% or more and 0.25 or less
  • Ti is an extremely important element for precipitation strengthening of fluorite, and is an important requirement for obtaining the effects of the present invention. If the Ti amount is less than 0.05%, it is difficult to secure the required strength. On the other hand, if it exceeds 0.25%, the effect is saturated and only the cost is increased. Therefore, the Ti amount is set to 0.05 to 0.25%, preferably 0.008 to 0.20%.
  • V 0.05% or more 0.25% or less
  • V is an element that contributes to improving the strength as precipitation strengthening or solid solution strengthening, and along with Ti, is an important requirement for obtaining the effects of the present invention.
  • By adding an appropriate amount together with Ti there is a tendency to precipitate as fine Ti-V carbides with a particle size of less than 20nm (hereinafter also referred to as "size"), and like Mo There is no reduction in corrosion resistance after painting. If the amount of V is less than 0.05%, the effect of addition is poor. On the other hand, V amount exceeds 0.25% Then, the effect is saturated and only the cost is increased. Therefore, the V amount is 0.053 ⁇ 4 or more and 0.25% or less, preferably 0.06% or more and 0.20% or less.
  • the steel according to the present invention can achieve the desired properties.
  • the Cr is further 0.01% or more and 0.5% or less, and W: 0.005% or more for the following reasons. Any one of 0.2% or less, Zr: 0.0005% or more and 0.05% or less may be added.
  • C r 0.01% or more and 0.5% or less
  • W 0.005% or more and 0.2% or less
  • Z r 0.0005% or more and 0.05% or less
  • C, W, and Zr like V, form precipitates or dissolve It has the function of strengthening the light in the state. If the amount of Cr is less than 0.01%, the amount of W is less than 0.005%, or the amount of Zr is less than 0.0005%, it will hardly contribute to increasing the strength. On the other hand, if the Cr content exceeds 0.5%, the W content exceeds 0.2%, or the Zr content exceeds 0.05%, the workability deteriorates.
  • the amount added is Cr: 0.01% to 0.5%, W: 0.005% to 0.2%, Zr: 0.0005 % To 0.05%.
  • C r is 0.03% or more and 0.3% or less
  • W is 0.01% or more and 0.183 ⁇ 4 or less
  • Z r is 0.001% or more and 0.04% or less.
  • the remainder other than the above consists of 'Fe and inevitable impurities.
  • an unavoidable impurity for example, O forms nonmetallic inclusions and adversely affects quality, so it is desirable to reduce it to 0.003% or less.
  • Cu, Ni, Sn, and Sb may be contained in a range of 0.1% or less as trace elements that do not impair the effects of the present invention.
  • ferrite with a low dislocation density is effective, and it is effective to have a single-phase structure.
  • the effect of improving stretch flangeability after processing becomes significant.
  • substantially the ferrite single-phase structure means that a small amount of other phases or precipitates are allowed in addition to the carbide of the present invention.
  • the volume ratio of ferrite is 95% or more. In addition, if the volume ratio is in the range of up to 5%, the characteristics of the present invention are not affected even if cementite, pearlite, and vein structures are included.
  • the volume fraction of ferrite As for the volume fraction of ferrite, the microstructure of the plate thickness cross section parallel to the rolling direction was revealed in 33 ⁇ 4 night, and the 1/4 position of the plate thickness was observed at 1500 times using a scanning electron microscope (SEM). For example, it is obtained by measuring the ferrite area ratio using “particle analysis II” image processing software manufactured by Sumitomo Metal Technology.
  • Ti contained in precipitates with a size of less than 20 nm is 200 ppm or more and 1750 ppm or less, and V is 150 ppm or more and 1750 ppm or less.
  • the size of the precipitate is preferably less than 20 nm.
  • This fine precipitate of less than 20 nm is achieved by adding both T i and V.
  • V is mainly T i and mixed coal Forms a compound.
  • the amount of Ti and V contained in precipitates with a size of less than 20 nm. If the amount of Ti contained in precipitates of less than 20 nm is less than 200 ppm and the amount of V is less than 150 ppm, the number density of the precipitates is reduced and the interval between the precipitates is widened, thereby suppressing the movement of dislocations. It turned out that the effect to do becomes small. For this reason, ferrite cannot be hardened sufficiently, and a strength of TS of 780 MPa or more cannot be obtained.
  • the precipitate of less than 20 nm when the amount of Ti contained in the precipitate of less than 20 nm is 200 P pm or more and the amount of V contained in the precipitate of less than 20 nm is less than 150 ppm, the precipitate tends to be coarsened. A strength of 780MPa or more may not be obtained.
  • the amount of Ti contained in the precipitate of less than 20 nm is less than 200 ppm and the amount of V contained in the precipitate of less than 20 nm is 150 ppm or more, the precipitation efficiency of V deteriorates, so TS is 780 MPa. The above strength may not be obtained.
  • the amount of Ti contained in precipitates with a size of less than 20 nm is 200 ppm or more and 1750 ppm or less, and the amount of V is 150 ppm or more and 1750 ppm or less. Furthermore, the ratio of Ti content to V content in precipitates with a size of less than 20 nm is preferably 0.4 ⁇ (Ti / 48) / (V / 51) ⁇ 2.5.
  • precipitates and Z or inclusions may be collectively referred to as precipitates.
  • the above Ti amount and V amount can be controlled by the tapping temperature.
  • the cutting temperature at this time is preferably 500 ° C or higher and 700 ° C or lower.
  • the coarsening occurs, and the precipitation amounts of Ti and V contained in the precipitates of less than 20 nm are less than 200 ppm and less than 150 ppm, respectively, and TS of 780 MPa or more cannot be obtained.
  • the cutting temperature is less than 500 ° C, the amounts of Ti and V contained in the precipitates of less than 20 nm are less than 200 ppm and 150 ppm, respectively. This is thought to be due to insufficient diffusion of Ti and V due to the low trapping temperature.
  • the amount of Ti and V contained in precipitates with a size of less than 20 nm can be confirmed by the following method.
  • the sample piece is taken out of the electrolytic solution and immersed in a solution having dispersibility.
  • the precipitate contained in this solution is filtered using a filter having a pore diameter of 20 nm. Precipitates that have passed through the filter with a pore size of 20 nm together with the filtrate are less than 20 nm in size.
  • the filtrate after filtration is appropriately selected from inductively coupled plasma (ICP) emission spectroscopy, ICP mass spectrometry, atomic absorption spectrometry, etc., and contained in precipitates with a size of less than 20 nm. Obtain the amount of Ti and the amount of V.
  • ICP inductively coupled plasma
  • solute V is the most important requirement.
  • V solid solution is important for improving the stretch flange characteristics after processing. If the solid solution V is less than 200 ppm, the effect is poor. In order to obtain the above effect, the solid solution V amount needs to be 200 ppm or more. On the other hand, when the amount of solute V is 1750ppm or more, the effect is saturated, so the upper limit was set.
  • the amount of solute V should be 200 PP m or more and less than 1750 ppm.
  • the steel of the present invention also has a slight decrease in workability as the strength increases.
  • the Ti content in the precipitates with a size of less than 20 ⁇ is 1750ppm or less and the V content is 1750ppm or less, it is a solid solution.
  • Electrolyze a sample in a non-aqueous solvent electrolyte solution and then use the electrolyte solution as the analysis solution for elemental analysis.
  • Analytical methods include inductively coupled plasma (ICP) emission spectroscopy, ICP mass spectrometry, or atomic absorption spectrometry.
  • the high-strength steel sheet of the present invention is, for example, hot-rolled by heating a steel slab adjusted to the above chemical composition range to 1150 ° C or more and 1350 ° C or less and then setting the finish rolling temperature to 850 or more and 1100 ° C or less. And then rolled up from 500 ° C to 700 ° C. These preferred conditions are described in detail below.
  • carbide-forming elements such as Ti and V exist as precipitates in steel slabs.
  • carbides with a size of 20 nm or more that do not contribute to precipitation strengthening and post-coating corrosion resistance remain, so that it is necessary to produce fine precipitates with a size of less than 20 nm necessary for obtaining the effects of the present invention.
  • the amount of Ti and V involved is reduced, and the amount of precipitates with a size of less than 20 nm cannot be obtained as planned when cutting is described later.
  • carbides containing Ti and V remain dissolved during slab heating and finish rolling, and are precipitated as fine carbides containing Ti and V at the time of cutting after finish rolling. Is the most desirable form. Therefore, the heating temperature is more preferably 1170 or higher as the temperature at which the carbide is almost completely dissolved.
  • the crystal grain size becomes too coarse and the elongation flange characteristics and elongation characteristics after processing deteriorate. Further, considering such heat treatment conditions, if the temperature is 1300 ° C. or less, the coarsening of the crystal grain size can be almost completely prevented.
  • the slab heating temperature is preferably 1150 ° C or higher and 1350 ° C or lower. More preferably, it is 1170 ° C or higher and 1300 ° C or lower.
  • Finishing rolling temperature in hot rolling 850 ⁇ or more 1100T: or less
  • the processed steel slab is preferably hot-rolled at a finish rolling temperature of 850 ° C to 1100 ° C, which is the end temperature of hot rolling. Finish rolling temperature If it is less than 850 ⁇ , it will be rolled in the ferrite + austenite region, resulting in an expanded ferrite structure, which may degrade the stretch flange characteristics and elongation characteristics after processing.
  • the finish rolling temperature is more preferably 935 or more.
  • the finish rolling temperature exceeds 1100, the ferrite grains become coarse, and a TS of 780 MPa may not be obtained.
  • the temperature is more preferably 990 ° C or lower.
  • the finish rolling temperature is preferably 850 or more and 1100 or less. More preferably, it is 990 or more and the following.
  • the cutting temperature is preferably 500 or more and 700 or less.
  • the cutting temperature is less than 500, the amount of carbides containing Ti and / or V becomes insufficient, which may lead to a decrease in strength.
  • a bainite phase may be generated, and a ferrite single phase structure may not be obtained.
  • the temperature is preferably higher, and more preferably 550 or more.
  • the cutting temperature exceeds 700 ° C, the precipitated carbides become coarse, which may lead to a decrease in strength.
  • a pearlite phase is likely to be generated, and the stretch flangeability after processing may be reduced.
  • the temperature is 650 ° C. or lower, it is more preferable because the coarsely precipitated carbide can be prevented from coarsening.
  • the scraping temperature is preferably 500 ° C. or more and 700 or less, and more preferably 550 to 650 ° C. or less.
  • the steel sheet of the present invention includes those having a surface subjected to surface treatment or surface coating treatment.
  • the steel sheet of the present invention can be suitably applied to a steel sheet having a hot-dip zinc-based steel sheet formed thereon. That is, since the copper plate of the present invention has good workability, good workability can be maintained even when a molten zinc-based plating film is formed.
  • the molten zinc-based plating is a molten solder mainly composed of zinc and zinc (that is, containing about 90% or more).
  • alloy elements such as A 1 Cr are used.
  • the alloy may be subjected to an alloying treatment after plating, even with the hot-dip zinc plating.
  • the method for melting steel is not particularly limited, and all known melting methods can be applied.
  • a melting method a method of melting in a converter, electric furnace or the like and performing secondary scouring in a vacuum degassing furnace is suitable.
  • the forging method is preferably continuous forging from the viewpoint of productivity and quality.
  • the effect of the present invention is not affected even if the direct feed rolling in which the hot rolling is performed as it is immediately after the forging or after the heating for the purpose of supplementary heat is performed.
  • the hot rolled material may be heated after rough rolling and before finish rolling, or even if continuous hot rolling is performed by joining the rolled material after rough rolling, and further, the heating material of the rolled material may be heated. Even if continuous rolling is performed simultaneously, the effect of the present invention is not impaired.
  • the microstructure of the obtained hot-rolled steel sheet was analyzed by the method described below, and the amount of Ti and V in the precipitates of less than 20 nm were determined. Also, tensile strength: T S, stretch flange characteristics after processing: Corrosion resistance after painting: S D T One side maximum peel width was determined and evaluated. ,
  • the hot-rolled steel sheet obtained above was cut to an appropriate size, and about 0.2 g of current was applied in 10% AA electrolyte (10 vol% acetylacetone-lmass% tetramethylammonium chloride-methanol). Constant current electrolysis was performed at a density of 20 mA / cm 2 .
  • SHMP aqueous solution sodium hexametaphosphate (500 mg / l)
  • SHMP aqueous solution sodium hexametaphosphate (500 mg / l)
  • the precipitate was peeled from the sample piece and extracted into an aqueous SHMP solution.
  • the SHMP aqueous solution containing the precipitate is filtered using a filter with a pore size of 20 ⁇ , and the filtrate after filtration is analyzed using an ICP emission spectroscopic analyzer. The absolute amounts of T i and V in the filtrate are analyzed. Was measured.
  • the absolute amounts of T i and V were divided by the electrolysis weight to obtain the amounts of Ti and V contained in precipitates having a size of less than 20 nm.
  • the electrolytic weight was determined by measuring the weight of the sample after the deposit was peeled off and subtracting it from the sample weight before the electrolysis.
  • the electrolytic solution after electrolysis was used as an analysis solution, and the concentration of Fe in the solution as a reference element and V was measured using ICP mass spectrometry. Based on the obtained concentration, the concentration ratio of V to Fe was calculated, and the amount of V in the solid solution state was obtained by multiplying the content of Fe in the sample.
  • the content of Fe in the sample can be determined by subtracting the total composition value other than Fe from 100%.
  • a tensile test was carried out by a method based on JIS Z 2241 using a JIS5 test piece with the rolling direction as the tensile direction, and TS was obtained.
  • Corrosion resistance after painting was performed using Nippon Paint Co., Ltd. degreasing agent: Surf Cleaner ECO 90, surface conditioner; Surf Fine 5 N—10, chemical conversion treatment agent: Surfdyne SD 2800
  • the temperature and concentration conditions were worse than the standard conditions.
  • the degreasing process has a concentration of 16 g / l, a processing temperature of 42 to 44, a processing time of 120 s, spray degreasing, and the surface conditioning process has a total alkalinity of 1.5 to 2.5 points, free acidity 0.7 ⁇ 0.9 points, accelerator concentration 2.8 ⁇ 3.5 points, treatment temperature 44 " ⁇ :, treatment time 120s.
  • the treatment temperature in the chemical conversion treatment process is 38 ° C
  • electrodeposition coating was performed using Nippon Paint's electrodeposition coating agent V-50, and the amount of chemical conversion coating was 2 to 2.5 g / m 2 .
  • the coating was aimed at a film thickness of 25 / m.
  • the corrosion resistance after painting was evaluated by a salt warm water immersion test (S D T).
  • S D T salt warm water immersion test
  • the tape was peeled off, and the maximum peel width on the left and right sides of the cut collar was measured. If the maximum peel width on one side is 3.0 mm or less, the corrosion resistance after painting is good.
  • TS is 780 MPa or more in the present invention example. Is 60% or more, and the maximum peel width on one side of the SDT is 3.0 mm or less, which indicates that it is a hot-rolled copper sheet with excellent stretch flange characteristics after processing and excellent corrosion resistance after painting.
  • the comparative example is inferior in one or more of TS (strength), ⁇ 10 (stretch flange after processing), and SDT one-side maximum peel width (corrosion resistance after painting).
  • the obtained hot-rolled copper sheet was analyzed for microtexture in the same manner as in Example 1, and the amounts of Ti and V contained in precipitates of less than 20 nm and the amount of solute V were determined. Also, tensile strength: TS, stretch flange characteristics after processing: Corrosion resistance after painting: The maximum peel width on one side of SDT was determined and evaluated.
  • TS is 780 MPa or more; Is 60% or more, and the maximum peel width on one side of the SDT is 3.0 or less. It can be seen that this is a hot-rolled steel sheet with excellent stretch flange characteristics after processing and corrosion resistance after painting.
  • the steel sheet of the present invention has high strength, and has excellent stretch flange characteristics after processing and corrosion resistance after painting.
  • parts that require stretch stretch flange characteristics such as automobile and truck frames. As best.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The invention provides a high-strength steel sheet excellent in stretch-flange characteristics after working and in corrosion resistance after coating. A steel sheet which has a composition containing by mass C: 0.02 to 0.20%, Si: 0.3% or below, Mn: 0.5 to 2.5%, P: 0.06% or below, S: 0.01% or below, Al: 0.1% or below, Ti: 0.05 to 0.25%, and V: 0.05 to 0.25% with the balance consisting of Fe and unavoidable impurities and a substantially ferrite single-phase structure wherein the contents of Ti, V, and solid-soluted V in precipitates of less than 20nm in size are 200 to 1750 mass ppm, 150 to 1750 mass ppm, and 200 to less than 1750 mass ppm respectively.

Description

明細書 高強度鋼板 技術分野  Specification High Strength Steel Sheet Technical Field
本発明は、 加工後の伸びフランジ特性および塗装後耐食性に優れた高強度鋼板に関 するものである。 背景技術  The present invention relates to a high-strength steel sheet excellent in stretch flange characteristics after processing and corrosion resistance after coating. Background art
自動車の足回り部材ゃトラック用フレーム等といった部品には成形性 (主に伸びお ょぴ伸びフランジ特性) が必要とされており、 従来は引張強度が 590MP a級の鋼が 使用されてきた。 しかし、 近年、 自動車の環境負荷低減や衝撃特性向上の観点から、 自動車用鋼板の高強度化が推進されており、 引張強度が 780MP a級の鋼の使用が検 討され始めている。  Parts such as automobile undercarriage and truck frames are required to have formability (mainly stretch and stretch flange characteristics), and steels with a tensile strength of 590 MPa have been used in the past. However, in recent years, from the viewpoint of reducing the environmental impact of automobiles and improving impact properties, the strength of automobile steel sheets has been increased, and the use of steel with a tensile strength of 780 MPa class has begun to be considered.
鉄鋼材料は、 一般に、 強度が上昇するに伴い加工性が低下する。 そのため、 高強度 かつ高加工性を有する鋼板についての研究がなされてきた。 伸びおよび伸びフランジ 特性を向上させる技術として、 例えば、 特許文献 1〜6が挙げられる。  In general, steel materials have lower workability as the strength increases. For this reason, research has been conducted on steel sheets having high strength and high workability. Examples of techniques for improving stretch and stretch flange characteristics include Patent Documents 1 to 6.
特許文献 1には、実質的にフェライト単相組織であり、平均粒径 lOnm未瀹の T iお よび Moを含む炭化物が分散析出していることを特徴とする、 引張強度が 590MP a 以上の加工性に優れた高張力鋼板に関する技術が開示されている。  Patent Document 1 has a tensile strength of 590 MPa or more, characterized in that it is substantially a ferrite single-phase structure and carbides containing Ti and Mo having an average particle size of lOnm are dispersed and precipitated. A technique relating to a high-tensile steel plate excellent in workability is disclosed.
特許文献 2には、 質量で、 C: 0.08〜0.20%、 S i : 0.001%以上 0.2%未満、 Mn : 1. 0¾超 3.0%以下、 A 1 : 0.001~0.5%、 V: 0.1%超 0.5%以下、 T i : 0.05%以上 0.2¾未 満および Nb : 0.005¾〜0.5%を含有し、 かつ、  In Patent Document 2, by mass, C: 0.08 to 0.20%, S i: 0.001% or more and less than 0.2%, Mn: more than 1.0¾ 3.0% or less, A1: 0.001 to 0.5%, V: more than 0.1% 0.5 % Or less, T i: 0.05% or more and less than 0.2¾ and Nb: 0.005¾ to 0.5%, and
(式 1) (T i /48+N b/93) X C/12 ≤ 4.5X10一5(Equation 1) (T i / 48 + N b / 93) XC / 12 ≤ 4.5X10 one 5,
(式 2) 0.5 ≤ (V/51 + T i /48+N b/93) / (C/12) ≤ 1.5、  (Equation 2) 0.5 ≤ (V / 51 + T i / 48 + N b / 93) / (C / 12) ≤ 1.5,
(式 3) V + T i X2+ X1.4+CX2 + Mn X0.1 ≥ 0.80  (Equation 3) V + T i X2 + X1.4 + CX2 + Mn X0.1 ≥ 0.80
の 3式を満たし、 残部 F eおよび不可避的不純物からなり、 平均粒径 5 m以下で硬 度が 250H v以上のフェライ トを 70体積%以上含有する鋼組織を有し、 880M P a以上 の強度と降伏比 0. 80以上を有する高強度熱延鋼板に関する技術が開示されている。 特許文献 3には、 質量で、 C : 0. 05〜0. 2%、 S i : 0. 001%〜3. 0%、 M n: 0. 5〜3. 0、 P : 0. 001〜0. 2%、 A 1 : 0. 001〜3%、 V: 0. 1¾を超えて 1. 5¾までを含み、 残部は F e 及ぴ不純物からなり、 組織は平均粒径 l〜5 mのフェライトを主相とし、 フェライ ト 粒内に平均粒径が 50nm以下の Vの炭窒化物が存在することを特徴とする熱延鋼板に 関する技術が開示されている。 3 and consists of the balance Fe and unavoidable impurities. A technology relating to a high-strength hot-rolled steel sheet having a steel structure containing 70 volume% or more of ferrite having a degree of 250 Hv or more and having a strength of 880 MPa or more and a yield ratio of 0.80 or more is disclosed. In Patent Document 3, by mass, C: 0.05 to 0.2%, S i: 0.001% to 3.0%, M n: 0.5 to 3.0, P: 0.001 to 0.2%, A 1: 0.001 to 3%, V: 0.1 over 1¾ to 1.5¾, the balance is Fe and impurities, and the structure has an average particle size of 1 to 5 m A technology related to hot-rolled steel sheets characterized by the presence of V carbonitrides with ferrite as the main phase and an average grain size of 50 nm or less in the ferrite grains is disclosed.
特許文献 4には、 鋼組織中に炭化物を析出させてなる熱的安定性に優れた高強度薄 鋼板が開示されている。 この薄鋼板は、 炭化物が Mを金属元素とした場合に M Cで表 される N a C 1型の結晶構造を有し、 金属元素 Mは 2種以上の金属からなり、 かっこ れら 2種以上の金属が結晶格子内で規則的に配列した超格子構造を形成していること を特微とする。  Patent Document 4 discloses a high-strength thin steel sheet having excellent thermal stability obtained by precipitating carbides in a steel structure. This thin steel sheet has a Na C 1 type crystal structure represented by MC when the carbide is M as a metal element, and the metal element M is composed of two or more kinds of metals. It is characterized by the superlattice structure in which the metals of the above are regularly arranged in the crystal lattice.
特許文献 5には、 以下の熱延鋼板が開示されている。 成分組成は、 質量%で、 C : 0.0002〜0.25%、 Si: 0.003〜3.0%、 Mn: 0.003~3·0%及び A1: 0.002〜2.0%を含有し、 残部は Fe及ぴ不可避的不純物からなり、 不純物中の Pは 0.15%以下、 Sは 0.05%以 下、 Nは 0.01%以下である。 そして、 面積割合で金属組織の 70%以上がフェライト相 で、 その平均結晶粒径が 20 μ πι以下、 アスペク ト比が 3以下である。 さらに、 フエ ライト粒界の 70%以上が大角粒界からなり、大角粒界で形成されたフェライト相のう ち、 最大径が 30 μ ιη以下、 最小径が 5nm以上である析出物の面積割合が金属組織の 2%以下である。 さらに、 フェライト相と析出物とを除く残部相のなかで面積割合が最 大である第二相の平均結晶粒径が 20 /z m以下であり、最も近い第二相間にフェライト 相の大角粒界が存在する。  Patent Document 5 discloses the following hot-rolled steel sheet. Ingredient composition is% by mass, C: 0.0002 to 0.25%, Si: 0.003 to 3.0%, Mn: 0.003 to 3.0%, and A1: 0.002 to 2.0%, the remainder from Fe and inevitable impurities In the impurities, P is 0.15% or less, S is 0.05% or less, and N is 0.01% or less. In terms of area ratio, 70% or more of the metal structure is the ferrite phase, the average crystal grain size is 20 μπι or less, and the aspect ratio is 3 or less. Furthermore, 70% or more of ferrite grain boundaries are composed of large-angle grain boundaries, and among the ferrite phases formed at large-angle grain boundaries, the area ratio of precipitates with a maximum diameter of 30 μιη or less and a minimum diameter of 5 nm or more Is less than 2% of the metallographic structure. Furthermore, the average grain size of the second phase, which has the largest area ratio among the remaining phases excluding the ferrite phase and precipitates, is 20 / zm or less, and the large-angle grain boundary of the ferrite phase is between the nearest second phases. Exists.
特許文献 6には、質量%にて、〇:0.01〜0.1%、8≤0.03%、1^≤0.005%、111: 0.05~0.5% を含み、 さらに Ti-48/12C-48/14N-48/32S≥0%を満たす範囲で Tiを含有し、 残部が Fe及ぴ不可避的不純物からなり、少なくとも板厚の 1/2厚における板面の {100}<011> 〜{223}く 110>方位群の X線ランダム強度比の平均値が 3以上、 かつ、 {554}く 225>、 {111}く 112>および {111}く 110>の 3方位の X.線ランダム強度比の平均値が 3.5以下であ り、 少なくとも一方の銅板表面の算術平均粗さ Raが 1〜3.5である銅板に、 潤滑効果 のある組成物が塗布されていることを特徴とする形状凍結性に優れる絞り可能なバー リング性高強度薄鋼板について、 開示されている。 Patent Document 6 includes, in mass%, ○: 0.01 to 0.1%, 8≤0.03%, 1 ^ ≤0.005%, 1 1 1: 0.05 to 0.5%, and Ti-48 / 12C-48 / 14N -48 / 32S≥0% of Ti is contained, the balance is Fe and inevitable impurities, and {100} <011> to {223} of the plate surface at least 1/2 the plate thickness The average X-ray random intensity ratio of the 110> orientation group is 3 or more, and the X-ray random intensity ratio of the three directions of {554} <225>, {111} <112> and {111} <110> Average value is 3.5 or less A squeezable burring property with excellent shape freezing characteristics, characterized in that a composition having a lubricating effect is applied to a copper plate having an arithmetic average roughness Ra of 1 to 3.5 on the surface of at least one copper plate. The strength thin steel sheet is disclosed.
特許文献 1 :登録特許第 3591502号公報  Patent Document 1: Registered Patent No. 3591502
特許文献 2 :特開 2006— 161 1 12号公報  Patent Document 2: JP-A-2006-161 112
特許文献 3 :特開 2004— 143518号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-143518
特許文献 4 :特開 2003— 321740号公報  Patent Document 4: Japanese Patent Laid-Open No. 2003-321740
特許文献 5 :特開 2003— 293083号公報  Patent Document 5: Japanese Patent Laid-Open No. 2003-293083
特許文献 6 :特開 2003— 160836号公報 発明の開示  Patent Document 6: Japanese Patent Laid-Open No. 2003-160836 Disclosure of Invention
しかしながら、 上述の従来技術には、 次のような問題がある。  However, the above-described conventional technology has the following problems.
特許文献 1および 4では、 Moを含有しているため、 近年の Moの原材料価格の高騰 に絡んで、 著しいコスト増加を招く問題がある。 Since Patent Documents 1 and 4 contain Mo, there is a problem in that the cost of raw materials for Mo has increased significantly in recent years, resulting in a significant increase in cost.
さらに、 自動車産業のグローバル化が進み、 自動車に使用される銅板.は、 厳しい腐食 環境下において使用されるようになり、 鋼板に対してより高い塗装後耐食性が必要と されている。これに対して、 Moの添加は化成結晶の生成または成長を阻害するため、 鋼板の塗装後耐食性を低下させ、 上記要求に対応することができない。 すなわち、 特 許文献 1および特許文献 4に記載の鋼では、 近年の自動車産業の要求を満たす塗装後 耐食性が得られない。 Furthermore, with the globalization of the automotive industry, copper plates used in automobiles are used in severe corrosive environments, and higher post-coating corrosion resistance is required for steel sheets. On the other hand, the addition of Mo hinders the formation or growth of chemical crystals, so that the corrosion resistance after coating of the steel sheet is lowered and the above requirement cannot be met. That is, the steels described in Patent Document 1 and Patent Document 4 cannot provide post-coating corrosion resistance that satisfies the demands of the automobile industry in recent years.
一方、 近年のプレス技術の進歩により、 ドロー (絞りおよ 張り出し) —トリム(穴 抜き)→リス トライク (穴広げ) のような加工工程が採用され始めており、 このような 加工工程を経て成形される銅板の伸ぴフランジ部位には、 ドロー ' トリム後、 すなわ ち加工後の伸ぴフランジ特性が必要とされる。 しカゝし、 特許文献 2、 3、 4では、 780 MP a以上の TSを得ようとすると、 必ずしも十分な加工後の伸ぴフランジ特性が得 られない。 特許文献 3に添加される Nbは、 熱間圧延後のオーステナイ トの再結晶を 抑制する働きが高い。 そのため、 鋼板に未再結晶粒を残存させ、 加工性を低下させる 問題がある.。 また、 熱間圧延時の圧延荷重を増加させる問題がある。 On the other hand, due to recent advances in press technology, processing processes such as drawing (drawing and stretching) — trimming (hole punching) → retriking (hole expanding) have begun to be adopted. The stretch flange part of the copper plate that is to be stretched requires draw flange characteristics after draw trimming, that is, after processing. However, in Patent Documents 2, 3, and 4, when trying to obtain a TS of 780 MPa or more, sufficient stretch flange characteristics after processing cannot always be obtained. Nb added to Patent Document 3 has a high function of suppressing recrystallization of austenite after hot rolling. Therefore, non-recrystallized grains remain on the steel sheet, and workability is reduced. There's a problem.. There is also a problem of increasing the rolling load during hot rolling.
特許文献 5では、 引張強度 T Sが 422MPaまでのフェライト単相鋼板 (例えば、 実 施例の表 6、 試験番号 1から 5および実施例の表 8、 試験番号 45) と、 引張強度 T S が 780MPa以上のフェライト相と第二相で構成される複合組織銅板 (例えば、 実施例 表 6、 試験番号 33から 36および実施例表 8、 試験番号 49) が開示されている。 これ ら特許文献 5の鋼板では、 主に、 Siまたは Mnによる固溶強化と、 硬質な第二相を利 用した変態組織強化が活用されている。 そのため、 銅板は、 仕上げ圧延終了後 2秒以 内に平均冷却速度 30°C/s以上で 600〜800°Cの温度範囲まで冷却され、 次いで 3〜15 秒の間空冷された後、 さらに平均冷却速度 30¾/秒以上で水冷されて卷き取られる必 要がある。 これにより、 フェライト変態時の二相分離が促進され、 鋼板の組織はフエ ライト相と第二相による複合組織となる。 また仕上げ圧延温度が、 (Ae3点 +100で)〜 Ae3点と、 後述する本発明を製造するにあたり好適と考える温度範囲よりも低い温度 範囲に設定されている。 例えば、 引張強度 T Sが 780MPa以上の複合組織鋼板 (実施 例の表 6、 試験番号 33カノら 36) では、 仕上げ圧延温度が 871で〜 800 であった。 仕 上げ圧延温度が低い場合、 オーステナイト相中の T iなどの炭化物形成元素の固溶限 が低下し、 かつ、 圧延による加工によって析出サイトが導入されるため、 20nm以上の 析出物が生成する。 の現象は歪誘起析出と呼ばれる。 特許文献 5における鋼板およ び製造方法では、歪誘起析出が生じるために、大きさ 20nm以上の析出物の生成量が多 くなつてしまう。  According to Patent Document 5, a ferrite single-phase steel sheet having a tensile strength TS of up to 422 MPa (for example, Table 6 in Examples, Test Nos. 1 to 5 and Table 8 in Examples, Test No. 45), and a tensile strength TS of 780 MPa or more. A composite structure copper plate composed of a ferrite phase and a second phase (for example, Example Table 6, Test Nos. 33 to 36 and Example Table 8, Test No. 49) is disclosed. These steel sheets disclosed in Patent Document 5 mainly utilize solid solution strengthening by Si or Mn and transformation structure strengthening using a hard second phase. Therefore, the copper sheet is cooled to a temperature range of 600 to 800 ° C at an average cooling rate of 30 ° C / s or more within 2 seconds after finishing rolling, and then air-cooled for 3 to 15 seconds, and then further averaged. It must be water-cooled and scraped off at a cooling rate of 30¾ / sec or more. This promotes two-phase separation during ferrite transformation, and the steel sheet has a composite structure consisting of a ferrite phase and a second phase. Further, the finish rolling temperature is set to a temperature range (from Ae3 point +100) to Ae3 point, which is lower than a temperature range considered suitable for manufacturing the present invention described later. For example, in the case of a composite steel sheet having a tensile strength T S of 780 MPa or more (Table 6 in the example, test number 33 Kano et al. 36), the finish rolling temperature was 871 to ˜800. When the finish rolling temperature is low, the solid solubility limit of carbide-forming elements such as Ti in the austenite phase is lowered, and precipitation sites are introduced by processing by rolling, so precipitates of 20 nm or more are generated. This phenomenon is called strain-induced precipitation. In the steel sheet and the manufacturing method in Patent Document 5, strain-induced precipitation occurs, so that the amount of precipitates having a size of 20 nm or more increases.
さらに、 特許文献 5では、 鋼組成の C含有量を非常に少なくし、 かつオーステナイト 安定化元素である M nの含有量を少なくすることで、 フェライト単相組織の製造を実 現した技術が開示されている (参照:実施例の表 2、 鋼番 AAから AE)。 し力 し、 こ の場合は、 固溶強化元素でもある M nの含有量が減るので、 固溶強化量が低下する。 また、 C含有量の減少により析出強化に効果のある Tiや Nbなどの炭化物の析出量が 減少し、 析出強化量も減少する。 その結果、 固溶強化量および析出強化量を合わせて も、 フェライ ト単相組織鋼板の場合は、 780MPa以上の強度が出せないということにな る (参照:実施例の表 6、 試験番号 1から 5および実施例の表 8、 試験番号 45)。 以上の理由から、 特許文献 5の技術においては、 本発明が目的とする、 組織が実質的 にフェライト単相で引張強度が 780MPa以上であり他の特性も有する鋼板は製造でき ない。 Furthermore, Patent Document 5 discloses a technique that realizes the production of a ferrite single-phase structure by significantly reducing the C content of the steel composition and reducing the content of Mn, which is an austenite stabilizing element. (Reference: Table 2 in Examples, Steel numbers AA to AE). However, in this case, the content of Mn, which is also a solid solution strengthening element, decreases, so that the solid solution strengthening amount decreases. In addition, the decrease in the C content reduces the precipitation amount of carbides such as Ti and Nb, which are effective for precipitation strengthening, and the precipitation strengthening amount also decreases. As a result, even if the solid solution strengthening amount and precipitation strengthening amount are combined, the strength of 780 MPa or more cannot be obtained in the case of a ferritic single phase steel sheet (see: Table 6 of the example, test number 1). To 5 and Table 8 of Examples, Test No. 45). For the reasons described above, the technique of Patent Document 5 cannot produce a steel sheet having a structure that is substantially a ferrite single phase, has a tensile strength of 780 MPa or more, and has other characteristics.
特許文献 6では、 引張強度 σ Βが 780MPa以上の銅板 (例えば、 実施例表 2中の鋼 記号 A-4、 A-8、 A-10、 C、 E、 H)が開示されているが、 これらの鋼板の Y R (単位%、 ここで Y Rとは、 σ γ/ σ Β Χ 100) は 69%から 74%と低いことから、 これらの銅板はマ ルテンサイト相などの硬質な第二相を含んでいることが推察される。 Patent Document 6 discloses a copper plate (for example, steel symbols A-4, A-8, A-10, C, E, H in Example Table 2) having a tensile strength σ 以上 of 780 MPa or more. The YR (unit%, where YR is σ γ / σ Β Χ 100) of these steel sheets is as low as 69% to 74%, so these copper plates have a hard second phase such as martensite phase. It is guessed that it contains.
これより、特許文献 6における 780MPa以上の鋼板の設計思想は、特許文献 5と同様 に、 主に、 S iまたは M nによる固溶強化と、 硬質な第二相を利用した変態組織強化 を活用するものと考えられる。 そのため、 特許文献 5と同様に、 後述する本発明を製 造するにあたり好適と考える温度範囲よりも低い仕上げ圧延温度 (Ar3 点 +100で以 下) で、 合計圧化率 25%以上の圧延を行なう必要がある。 例えば、 特許文献 6の実施 例によれば、引張強度 σ Bが 780MPa以上の鋼板の仕上げ圧延温度は 800°Cから 890で であった。 特許文献 6における鋼板および製造方法では、 特許文献 5と同様に、 歪誘 起析出が生じて大きさ 20nm以上の析出物の生成量が多くなり、結果として本発明が目 的とする、組織が実質的にフェライト単相で引張強度が 780MPa以上および他の特性 も有する鋼板は製造できない。 From this, the design philosophy of steel sheets of 780 MPa or more in Patent Document 6 mainly uses solid solution strengthening by Si or Mn and transformation structure strengthening using a hard second phase, as in Patent Document 5. It is thought to do. Therefore, as in Patent Document 5, rolling with a total compression ratio of 25% or more is performed at a finish rolling temperature (Ar3 point +100 or less) lower than the temperature range considered suitable for manufacturing the present invention described later. Need to do. For example, according to the example of Patent Document 6, the finish rolling temperature of a steel sheet having a tensile strength σ B of 780 MPa or more was 800 ° C to 890 ° C. In the steel sheet and the manufacturing method in Patent Document 6, as in Patent Document 5, strain-induced precipitation occurs and the amount of precipitates having a size of 20 nm or more increases, resulting in the structure of the present invention. It is not possible to produce a steel sheet that is essentially a ferrite single phase with a tensile strength of 780 MPa or more and other properties.
本発明は、 かかる事情に鑑み、 加工後の伸ぴフランジ特性に優れ、 かつ、 塗装後耐 食性に優れた高強度鋼板を提供することを目的とする。  In view of such circumstances, an object of the present invention is to provide a high-strength steel sheet having excellent stretch flange characteristics after processing and excellent corrosion resistance after coating.
本発明者等は、 加工 の伸びフランジ特性および塗装後耐食性に優れ、 引張強度が 780M P a以上である高強度熱延銅板を得るべく検討したところ、 以下の知見を得た。 i)高強度と塗装後耐食性に優れた鋼板を得るためには、析出物を微細化 (大きさ 20mn 未満) し、 微細な析出物 (大きさ 20nm未満) の割合を高め必要がある。 そして、 析出 物を微細なまま維持するには析出物として T i一 M oを含むもの、 または、 T i— V を含むものが挙げられるが、 塗装後耐食性を向上させる観点からは T iと Vの複合析 出が有用である。  The present inventors have studied to obtain a high-strength hot-rolled copper sheet having excellent stretch flange characteristics during processing and corrosion resistance after coating and having a tensile strength of 780 MPa or more, and obtained the following knowledge. i) In order to obtain a steel sheet with high strength and excellent corrosion resistance after painting, it is necessary to refine the precipitates (less than 20 mn in size) and increase the proportion of fine precipitates (less than 20 nm in size). In order to keep the precipitate fine, the precipitate contains Ti i Mo or Ti i-V. From the viewpoint of improving the corrosion resistance after coating, the precipitate is Ti. Combined analysis of V is useful.
ii)加工後の伸びフランジ性の向上には Vの固溶が重要であり、特性向上に最適な Vの 固溶量が存在する。 ' 本発明は、 以上の知見に基づきなされたもので、 その要旨は以下のとおりである。 ii) Solid solution of V is important for improving stretch flangeability after processing. There is a solid solution amount. 'The present invention has been made on the basis of the above findings, and the gist thereof is as follows.
[ 1 ] mass%で、 C: 0.02%以上 0.20%以下、 Si: 0.3%以下、 Mn: 0.5%以上 2.5%以下、 P: 0.06%以下、 S: 0.01%以下、 A1: 0.1¾以下、 Ti: 0.05%以上 0.25%以下、 V: 0.05%以上 0.25%以下を含有し、 残部が Feおよび不可避的不純物からなる成分組成と、 実質的に フェライト単相組織であり、前記フェライト単相組織中には、大きさが 20nm未満の析 出物に含まれる Tiが 200mass ppm以上 1750mass ppm以下、 V力 S 150 mass ppm以上 1750 mass ppm以下であり、 固溶 Vカ 200 mass ppm以上 1750 mass ppm未満である糸且織を 有することを特徴とする高強度銅板。  [1] In mass%, C: 0.02% to 0.20%, Si: 0.3% or less, Mn: 0.5% to 2.5%, P: 0.06% or less, S: 0.01% or less, A1: 0.1¾ or less, Ti : 0.05% or more and 0.25% or less, V: 0.05% or more and 0.25% or less, with the remaining component composition consisting of Fe and inevitable impurities, and substantially a ferrite single-phase structure, In the precipitate with a size of less than 20 nm, Ti is 200 mass ppm or more and 1750 mass ppm or less, V force S is 150 mass ppm or more and 1750 mass ppm or less, and solid solution V is 200 mass ppm or more and less than 1750 mass ppm. A high-strength copper plate characterized by having a certain yarn and weave.
[2] 前記 [ 1 ] において、 mass%で、 さらに、 Cr: 0.^)1%以上 0.5%以下、 W:0.005%以 上 0.2%以下、 Zr: 0.0005%以上 0.05%以下のいずれか 1種または 2種以上を含有するこ とを特徵とする高強度鋼板。  [2] In the above [1], any one of mass%, Cr: 0. ^) 1% to 0.5%, W: 0.005% to 0.2%, Zr: 0.0005% to 0.05% 1 A high-strength steel sheet characterized by containing two or more seeds.
[3] 前記 [ 1 ] または [2] において、 引張強度 T Sが 780MP a以上であること を特徴とする高強度鋼板。  [3] The high-strength steel sheet according to [1] or [2], wherein the tensile strength TS is 780 MPa or more.
[4] 前記 [ 1] または [2] において、 塩温水浸漬試験におけるテープ剥離試験後 の片側最大剥離幅が 3.0mm以下であることを特徴とする高強度鋼板。  [4] The high-strength steel sheet according to [1] or [2], wherein the maximum peel width on one side after the tape peel test in the salt warm water immersion test is 3.0 mm or less.
[5] 前記 [3] において、 塩温水浸漬試験におけるテープ剥離試験後の片側最大剥 離幅が 3.0議以下であることを特徴とする高強度鋼板。  [5] The high-strength steel sheet according to [3], wherein the one-side maximum peel width after the tape peel test in the salt warm water immersion test is 3.0 or less.
[6] 前記 [ 1 ] または [2] において、 伸張率 10%での圧延後の伸びフランジ特性 λ 10が 60%以上であることを特徴とする高強度銅板。 [6] A high-strength copper sheet according to [1] or [2], wherein the stretch flange characteristic λ 10 after rolling at an elongation rate of 10% is 60% or more.
[7] 前記 [3] において、 伸張率 10%での圧延後の伸ぴフランジ特性 。が 60%以 上であることを特徴とする高強度鋼板。  [7] In the above [3], the stretch flange characteristics after rolling at an elongation rate of 10%. A high-strength steel sheet characterized by having a content of 60% or more.
なお、本明細書において、鋼の成分を示す%、 ppmは、すべて mass%、 mass ppmである。 また、 本発明における高強度鋼板とは、 引張強度 (以下、 T Sと称する場合もある) が 780MP a以上の鋼板であり、 熱延鋼板、 さらには、 これらの鋼板に例えばめつき 処理等の表面処理を施した表面処理鋼板も対象とする。 In this specification, “%” and “ppm” indicating the components of steel are mass% and mass ppm, respectively. The high-strength steel plate in the present invention is a steel plate having a tensile strength (hereinafter sometimes referred to as TS) of 780 MPa or more, a hot-rolled steel plate, and further, for example, a surface such as a staking treatment. Surface treated steel sheets that have been treated are also targeted.
さらに、 本発明の目標とする特性は、 伸張率 10%で圧延後の伸びフランジ特性 10) が 60%以上、 後述する塩温水浸漬試験(SDT)におけるテープ剥離試験後の片側最大 剥離幅が 3.0mm以下である。 発明の効果 Furthermore, target properties of the present invention, stretch flangeability 10 after rolling in elongation percentage 10%) Is 60% or more, and the maximum peel width on one side after the tape peel test in the salt warm water immersion test (SDT) described later is 3.0 mm or less. The invention's effect
本発明によれば、 加工後の伸びフランジ特性および塗装後耐食性に優れ、 TSが 780MPa以上である高強度熱延鋼板が得られる。 さらに、 本発明では、 Moを添加せ ずとも上記効果が得られるので、 コス ト削減がはかれることになる。  According to the present invention, a high-strength hot-rolled steel sheet having excellent stretch flange characteristics after processing and corrosion resistance after coating and having a TS of 780 MPa or more can be obtained. Furthermore, in the present invention, the above effect can be obtained without adding Mo, so that the cost can be reduced.
そして、 例えば、 本発明の高強度熱延鋼板を自動車の足回り部材ゃトラック用フレー ムなどに用いることにより、 板厚減少が可能となり、 自動車の環境負荷が低減され、 衝撃特性が大きく向上することが期待される。 発明を実施十るための最良の形態 For example, by using the high-strength hot-rolled steel sheet of the present invention for an automobile undercarriage member or a truck frame, the thickness can be reduced, the environmental load of the automobile is reduced, and the impact characteristics are greatly improved. It is expected. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
(1)まず、本発明における銅の化学成分(成分組成)の限定理由について説明する。 C: 0.02%以上 0.20%以下  (1) First, the reasons for limiting the chemical component (component composition) of copper in the present invention will be described. C: 0.02% to 0.20%
Cは、 T iや Vと炭化物を形成しフユライ ト中に析出することで、 鋼板の強度化に寄 与する元素である。 TSを 780MP a以上とするためには、 C量を 0· 02¾以上 する必 要がある。 一方、 C量が 0.20%を超えると析出物の粗大化や第二相組織の形成により 加工後の伸びフランジ特性が低下する。以上より、 C量は 0.02%以上 0.20%以下、好ま しくは、 0.03%以上 0.15%以下とする。 C is an element that contributes to strengthening of the steel sheet by forming carbides with Ti and V and precipitating in the ferrite. In order to make TS more than 780MPa, C amount needs to be more than 0 · 02¾. On the other hand, if the C content exceeds 0.20%, the stretch flange characteristics after processing deteriorate due to coarsening of precipitates and formation of the second phase structure. Based on the above, the C content is 0.02% to 0.20%, preferably 0.03% to 0.15%.
S i : 0.3%以下  S i: 0.3% or less
S iは固溶強化に寄与する元素であるが、 0.3%を超えて添加すると粒界にセメンタイ トが生成し、 加工後の伸ぴフランジ特性が低下する。 よって、 S i量は 0.3%以下とす る。 好ましくは、 0.001%以上 0.2%以下とする。  Si is an element that contributes to solid solution strengthening, but if added over 0.3%, cementite is generated at the grain boundaries, and the stretched flange characteristics after processing deteriorate. Therefore, the Si amount is 0.3% or less. Preferably, it is 0.001% or more and 0.2% or less.
Mn : 0.5%以上 2.5%以下  Mn: 0.5% or more and 2.5% or less
Mnは固溶強化に寄与する元素である。しかしながら、その量が 0· 5%に満たないと 780 MP a以上の TSが得られない。 一方、 Mn量が 2.5%を越えて添加すると、 溶接性を 著しく低下させる。以上より、 M n量は 0· 5%以上 2. 5%以下、好ましくは 0. 6¾以上 2. 0% 以下である。 Mn is an element that contributes to solid solution strengthening. However, if the amount is less than 0.5%, TS of 780 MPa or more cannot be obtained. On the other hand, if the Mn content exceeds 2.5%, weldability is reduced. Reduce significantly. From the above, the Mn content is 0.5 · 2.5% to 2.5%, preferably 0.6¾ to 2.0%.
Ρ : 0. 06%以下  Ρ: 0.06% or less
Ρは旧オーステナイト粒界に偏析するため、 低温靭性劣化と加工性低下を招く。 その ため、 Ρ量は極力低減することが好ましく、 0. 06%以下とする。 好ましくは、 0. 001% 以上 0. 055%以下とする。  Ρ segregates at the prior austenite grain boundaries, leading to low temperature toughness degradation and workability degradation. Therefore, it is preferable to reduce the soot amount as much as possible, and it should be 0.06% or less. Preferably, the content is 0.001% or more and 0.055% or less.
S : 0. 01%以下  S: 0.01% or less
Sは旧オーステナイト粒界に偏析したり M n Sとして多量に析出すると、 低温靭性を 低下させる。 また、 加工の有無に関わらず伸びフランジ性を著しく低下させる。 その ため、 S量は極力低減することが好ましく、 0. 01%以下とする。 好ましくは、 0. 0001% 以上、 0. 005%以下とする。  When S segregates at the prior austenite grain boundaries or precipitates in large amounts as MnS, it lowers the low temperature toughness. In addition, the stretch flangeability is significantly reduced regardless of the presence or absence of processing. Therefore, it is preferable to reduce the amount of S as much as possible, and it should be 0.01% or less. Preferably, the content is 0.0001% or more and 0.005% or less.
A 1 : 0. 1%以下  A 1: 0.1% or less
A 1は、鋼の脱酸剤として添加され、鋼の清浄度を向上させるのに有効な元素である。 この効果を得るためには 0. 001%以上含有させることが好ましい。 し力 し、 0. 1¾を超え ると介在物が多量に発生し、 銅板の疵の原因になる。 よって、 A 1量は 0. 1¾以下とす る。 好ましくは、 0. 01%以上 0. 04%以下である。  A 1 is added as a steel deoxidizer and is an effective element for improving the cleanliness of steel. In order to acquire this effect, it is preferable to make it contain 0.001% or more. However, if it exceeds 0.1 ¾, a large amount of inclusions will be generated, causing copper plate wrinkles. Therefore, the A 1 amount is 0.1¾ or less. Preferably, it is 0.01% or more and 0.04% or less.
T i : 0. 05%以上 0. 25¾以下  T i: 0.05% or more and 0.25 or less
T iは、 フニライトを析出強化する上で非常に重要な元素であり、 本発明の効果を得 る上で、 重要な要件となる。 T i量が 0. 05%未満では必要な強度を確保することが困 難である。一方、 0. 25%を超えるとその効果は飽和し、コス トアップとなるだけである。 よって、 T i量は 0. 05¾以上 0. 25%以下、 好ましくは 0. 08¾以上 0. 20%以下とする。 Ti is an extremely important element for precipitation strengthening of fluorite, and is an important requirement for obtaining the effects of the present invention. If the Ti amount is less than 0.05%, it is difficult to secure the required strength. On the other hand, if it exceeds 0.25%, the effect is saturated and only the cost is increased. Therefore, the Ti amount is set to 0.05 to 0.25%, preferably 0.008 to 0.20%.
V: 0. 05%以上 0. 25%以下  V: 0.05% or more 0.25% or less
Vは、 析出強化または固溶強化として強度の向上に寄与する元素であり、 上記 T iと 並んで、 本発明の効果を得る上で、 重要な要件となる。 適量を T i とともに複合添加 することで、 粒径 (以下、 「大きさ」 と称することもある) 20nm未満の微細な T i一 V炭化物として析出する傾向にあり、 かつ、 M oのように塗装後耐食性を低下させる ことはない。 V量が 0. 05%未満では、 上記添加効果が乏しい。 一方、 V量が 0. 25%超え では、 その効果は飽和し、 コストアップとなるだけである。 よって、 V量は 0.05¾以 上 0.25%以下、 好ましくは、 0.06%以上 0.20%以下とする。 V is an element that contributes to improving the strength as precipitation strengthening or solid solution strengthening, and along with Ti, is an important requirement for obtaining the effects of the present invention. By adding an appropriate amount together with Ti, there is a tendency to precipitate as fine Ti-V carbides with a particle size of less than 20nm (hereinafter also referred to as "size"), and like Mo There is no reduction in corrosion resistance after painting. If the amount of V is less than 0.05%, the effect of addition is poor. On the other hand, V amount exceeds 0.25% Then, the effect is saturated and only the cost is increased. Therefore, the V amount is 0.05¾ or more and 0.25% or less, preferably 0.06% or more and 0.20% or less.
以上の必須添加元素で、 本発明鋼は目的とする特性が得られるが、 上記の必須添加 元素に加えて、 以下の理由により、 さらに C r : 0.01%以上 0.5%以下、 W:0.005%以上 0.2%以下、 Z r : 0.0005%以上 0.05%以下のいずれが 1種または 2種以上を添加しても よい。  With the above essential additive elements, the steel according to the present invention can achieve the desired properties. In addition to the above essential additive elements, the Cr is further 0.01% or more and 0.5% or less, and W: 0.005% or more for the following reasons. Any one of 0.2% or less, Zr: 0.0005% or more and 0.05% or less may be added.
C r : 0.01%以上 0.5%以下、 W:0.005%以上 0.2%以下、 Z r : 0.0005%以上 0.05%以下 C r、 Wおよび Z rは、 Vと同様、 析出物を形成してあるいは固溶状態でフヱライト を強化する働きを有する。 C r量が 0.01%未満、 W量が 0.005%未満、 あるいは Z r量 が 0.0005%未満では高強度化にほとんど寄与しない。 一方、 C r量が 0.5%超え、 W量 が 0.2%超え、あるいは Z r量が 0.05%超えでは加工性が劣化する。 したがって、 C r、 W、 Z rのいずれか 1種または 2種以上を添加する場合、 その添加量は C r : 0.01% 以上 0.5%以下、 W:0.005%以上 0.2%以下、 Z r : 0.0005%以上 0.05%以下とする。 好ま しくは、 C r : 0.03%以上 0.3%以下、 W: 0.01%以上 0.18¾以下、 Z r : 0.001%以上 0.04% 以下である。  C r: 0.01% or more and 0.5% or less, W: 0.005% or more and 0.2% or less, Z r: 0.0005% or more and 0.05% or less C, W, and Zr, like V, form precipitates or dissolve It has the function of strengthening the light in the state. If the amount of Cr is less than 0.01%, the amount of W is less than 0.005%, or the amount of Zr is less than 0.0005%, it will hardly contribute to increasing the strength. On the other hand, if the Cr content exceeds 0.5%, the W content exceeds 0.2%, or the Zr content exceeds 0.05%, the workability deteriorates. Therefore, when one or more of Cr, W, Zr is added, the amount added is Cr: 0.01% to 0.5%, W: 0.005% to 0.2%, Zr: 0.0005 % To 0.05%. Preferably, C r is 0.03% or more and 0.3% or less, W is 0.01% or more and 0.18¾ or less, and Z r is 0.001% or more and 0.04% or less.
なお、 上記以外の残部は' F e及び不可避不純物からなる。 不可避的不純物として、 例えば、 Oは非金属介在物を形成し品質に悪影響を及ぼすため、 0.003%以下に低減す るのが望ましい。 また、 本発明では、 本発明の作用効果を害さない微量元素として、 Cu、 N i、 S n、 S bを 0.1%以下の範囲で含有してもよい。  The remainder other than the above consists of 'Fe and inevitable impurities. As an unavoidable impurity, for example, O forms nonmetallic inclusions and adversely affects quality, so it is desirable to reduce it to 0.003% or less. In the present invention, Cu, Ni, Sn, and Sb may be contained in a range of 0.1% or less as trace elements that do not impair the effects of the present invention.
(2) 次に、 本発明の高強度鋼板の組織について説明する。  (2) Next, the structure of the high strength steel sheet of the present invention will be described.
実質的にフェライト単相組織  Substantial ferrite single phase structure
TSが 780MPa以上で、 かつ、 加工後の伸びフランジ性の向上には、 転位密度の低いフ エライトが有効であり、 かつ、 単相組織とすることが有効である。 特に、 延性に富む フェライト単相組織とすることで、加工後の伸びフランジ性の向上効果が顕著となる。 ただし、 必ずしも完全にフェライト単相組織でなくてもよく、 実質的にフェライト単 相組織であれば上記効果は十分に得られる。 ここで、 実質的にフェライト単相組織と は、 本発明の炭化物以外に、 微量の他の相ないしは析出物を許容することであり、 好 ましくはフェライ トの体積率が 95%以上である。 また、 体積率が 5%までの範囲であれ ば、 セメンタイ ト、 パーライ ト、 べィナイ トの組織を含んでも、 本発明の特性に影響 ない。 In order to improve the stretch flangeability after processing with TS of 780 MPa or more, ferrite with a low dislocation density is effective, and it is effective to have a single-phase structure. In particular, by using a ferrite single-phase structure rich in ductility, the effect of improving stretch flangeability after processing becomes significant. However, it is not always necessary to have a ferrite single-phase structure. If the ferrite single-phase structure is substantially obtained, the above effect can be sufficiently obtained. Here, substantially the ferrite single-phase structure means that a small amount of other phases or precipitates are allowed in addition to the carbide of the present invention. Preferably, the volume ratio of ferrite is 95% or more. In addition, if the volume ratio is in the range of up to 5%, the characteristics of the present invention are not affected even if cementite, pearlite, and vein structures are included.
なお、 フェライ トの体積率は、 圧延方向に平行な板厚断面のミクロ組織を 3¾ナイター ルで現出し、 走査型電子顕微鏡 (S E M) を用いて 1500倍で板厚 1/4位置を観察し、 例えば、 住友金属テクノロジー株式会社製の画像処理ソフト 「粒子解析 II」 を用いて フェライ ト面積率を測定することで求められる。 As for the volume fraction of ferrite, the microstructure of the plate thickness cross section parallel to the rolling direction was revealed in 3¾ night, and the 1/4 position of the plate thickness was observed at 1500 times using a scanning electron microscope (SEM). For example, it is obtained by measuring the ferrite area ratio using “particle analysis II” image processing software manufactured by Sumitomo Metal Technology.
フェライ ト単相組織中には、 大きさ 20nm未満の析出物に含まれる T iが 200ppm以 上 1750ppm以下、 Vが 150ppm以上 1750ppm以下  In the ferrite single-phase structure, Ti contained in precipitates with a size of less than 20 nm is 200 ppm or more and 1750 ppm or less, and V is 150 ppm or more and 1750 ppm or less.
本発明の高強度銅板において、 T iおよび/または Vを含む析出物は、主に炭化物とし てフェライ ト中に析出している。 これは、 フェライ トにおける Cの固溶限が小さく、 過飽和の Cがフェライ ト中に炭化 として析出しやすいためと考えられる。 そして、 このような析出物により軟質のフユライ トが硬質化 (高強度化) し、 780M P a以上の T Sが得られることになる。 また、 YSが高くなり、 83%以上の YR (=YS/YR)が得られる ことになる。 In the high-strength copper plate of the present invention, precipitates containing Ti and / or V are mainly precipitated as carbides in the ferrite. This is thought to be because the solid solubility limit of C in ferrite is small, and supersaturated C tends to precipitate as carbonized in the ferrite. Such precipitates harden (strengthen) the soft fulite, and a TS of 780 MPa or more can be obtained. In addition, YS increases and YR (= YS / YR) of 83% or more is obtained.
高強度鋼板を得るためには、 上述したように、 析出物を微細化 (大きさ 20nm未満) し、 この微細な析出物 (大きさ 20ηπι未満) の割合を高めることが重要である。 析出物 の大きさが 20nm以上では、転位の移動を抑制する効果が小さく、 フェライ トを十分に 硬質化できないため、 強度が低下する場合がある。  In order to obtain a high-strength steel sheet, as described above, it is important to refine the precipitates (size less than 20 nm) and increase the proportion of the fine precipitates (size less than 20ηπι). If the size of the precipitate is 20 nm or more, the effect of suppressing the movement of dislocations is small, and the ferrite may not be sufficiently hardened, so the strength may decrease.
さらに、 検討した結果、 塗装後耐食性については、 析出物サイズが微細であることが 重要であることが明らかとなった。 従来の T i系(T i単独添加) H S L A鋼において は、 T iの添加量が増すに伴い、 析出物は粗大化し易い傾向にある。 そのため、 この ような鋼板では強度低下に伴い塗装後耐食性も低下する傾向にあった。 析出物の粗大 化に伴う塗装後耐食性の低下の理由は明らかではないが、 粗大な析出物は化成結晶の 生成、 または、 成長を阻害するためと考えられる。  Furthermore, as a result of examination, it became clear that the fine precipitate size is important for post-coating corrosion resistance. In conventional Ti-based (Ti single addition) H S L A steel, precipitates tend to become coarser as the amount of Ti increases. For this reason, with such steel sheets, the corrosion resistance after coating tended to decrease as the strength decreased. The reason for the decrease in post-coating corrosion resistance associated with the coarsening of the precipitates is not clear, but it is thought that the coarse precipitates inhibit the formation or growth of chemical crystals.
以上より、 析出物の大きさは 20nm未満とすることが好ましい。 この 20nm未満の微細 な析出物は、 T i と Vを共に添加することにより達成される。 Vは主に T i と複合炭 化物を形成する。 理由は明らかではないが、 これらの析出物は、 本発明範囲の卷取温 度内の高温長時間下において、 安定的に微細なままで存在することがわかった。 From the above, the size of the precipitate is preferably less than 20 nm. This fine precipitate of less than 20 nm is achieved by adding both T i and V. V is mainly T i and mixed coal Forms a compound. Although the reason is not clear, it has been found that these precipitates exist stably and finely at a high temperature for a long time within the temperature range of the present invention.
さらに、大きさが 20nm未満の析出物に含まれる T i量および V量の制御が重要とな る。 20nm未満の析出物に含まれる T i量が 200ppm未満、 また、 V量が 150 ppm未満 であると、 析出物の数密度が小さくなり、 各析出物の間隔が広くなるため、 転位の移 動を抑制する効果が小さくなることがわかった。 そのため、 フェライトを十分に硬質 化できないため、 T Sが 780M P a以上の強度が得られなくなる。 また、 20nm未満の 析出物に含まれる T i量が 200Ppm以上で、 20nm未満の析出物に含まれる V量が 150ppm 未満の時は、 析出物は粗大化し易い傾向にあるため、 T Sが 780M P a以上の強度が 得られなくなる場合がある。 また、 20nm未満の析出物に含まれる T i量が 200ppm未 満で、 20nm未満の析出物に含まれる V量が 150ppm以上の時は、 Vの析出効率が悪く なるため、 T Sが 780M P a以上の強度が得られなくなる場合がある。 一方、 20nm未 満の析出物に含まれる T i量が 1750ppmを越え、 または、 V量が 1750ppmを越えて析 出すると、 塗装後耐食性が低下し、 目標の特性が得られなくなる。 これは、 多量の微 細析出物は銷板表面において、 化成結晶の生成、 または、 成長を阻害するためと考え られる。 よって、大きさが 20nm未満の析出物に含まれる析出 T i量および析出 V量は 共に満足する必要がある。 Furthermore, it is important to control the amount of Ti and V contained in precipitates with a size of less than 20 nm. If the amount of Ti contained in precipitates of less than 20 nm is less than 200 ppm and the amount of V is less than 150 ppm, the number density of the precipitates is reduced and the interval between the precipitates is widened, thereby suppressing the movement of dislocations. It turned out that the effect to do becomes small. For this reason, ferrite cannot be hardened sufficiently, and a strength of TS of 780 MPa or more cannot be obtained. In addition, when the amount of Ti contained in the precipitate of less than 20 nm is 200 P pm or more and the amount of V contained in the precipitate of less than 20 nm is less than 150 ppm, the precipitate tends to be coarsened. A strength of 780MPa or more may not be obtained. In addition, when the amount of Ti contained in the precipitate of less than 20 nm is less than 200 ppm and the amount of V contained in the precipitate of less than 20 nm is 150 ppm or more, the precipitation efficiency of V deteriorates, so TS is 780 MPa. The above strength may not be obtained. On the other hand, if the amount of Ti contained in precipitates of less than 20 nm exceeds 1750 ppm or if the amount of V exceeds 1750 ppm, the corrosion resistance after coating decreases and the target characteristics cannot be obtained. This is probably because a large amount of fine precipitates inhibits the formation or growth of chemical crystals on the surface of the plate. Therefore, both the amount of precipitation Ti and the amount of precipitation V contained in precipitates with a size of less than 20 nm must be satisfied.
さらに大きさ 20nm未満の析出物に含まれる Ti量と V量の比が 0.4≤(Ti/48)/(V/51) ≤2.5であるとき、 785MPa以上の TSが得られ、 より好適な状態となることがわかつ た。 理由は明らかではないが、 Tiと Vの組成比が最適化されることによって、熱的な 安定性が向上したためと考えられる。 Furthermore, when the ratio of Ti and V contained in precipitates with a size of less than 20 nm is 0.4≤ (Ti / 48) / (V / 51) ≤2.5, a TS of 785 MPa or more is obtained, which is a more favorable state. I found out that The reason is not clear, but it is thought that the thermal stability has been improved by optimizing the composition ratio of Ti and V.
以上より、 大きさが 20nm未満の析出物に含まれる T i量は 200ppm以上 1750ppm以 下、 V量は 150ppm以上 1750ppm以下とする。 さらには、 大きさ 20nm未満の析出物 に含まれる Ti量と V量の比は 0.4≤(Ti/48)/(V/51)≤2.5が好ましい。  Based on the above, the amount of Ti contained in precipitates with a size of less than 20 nm is 200 ppm or more and 1750 ppm or less, and the amount of V is 150 ppm or more and 1750 ppm or less. Furthermore, the ratio of Ti content to V content in precipitates with a size of less than 20 nm is preferably 0.4≤ (Ti / 48) / (V / 51) ≤2.5.
なお、 析出物及び Z又は介在物をまとめて析出物等と称する場合がある。 Note that precipitates and Z or inclusions may be collectively referred to as precipitates.
なお、 上記 T i量おょぴ V量は、 卷取温度によって制御することができる。 この時 の卷取温度は 500°C以上 700°C以下が好ましい。卷取温度が 700 を超えると析出物の 粗大化が起こり、 20nm未満の析出物に含まれる T iおよび Vの析出量がそれぞれ 200ppm未満、 150ppm未満となり、 780M P a以上の T Sが得られない。 また、 卷取温 度が 500°C未満でも、 20nm未満の析出物に含まれる T iおよび Vの析出量がそれぞれ 200ppm、 150ppm未満となる。 これは、 卷取温度が低いため、 T iおよび Vの拡散が不 十分なためであると考えられる。 Note that the above Ti amount and V amount can be controlled by the tapping temperature. The cutting temperature at this time is preferably 500 ° C or higher and 700 ° C or lower. When the scraping temperature exceeds 700, The coarsening occurs, and the precipitation amounts of Ti and V contained in the precipitates of less than 20 nm are less than 200 ppm and less than 150 ppm, respectively, and TS of 780 MPa or more cannot be obtained. In addition, even when the cutting temperature is less than 500 ° C, the amounts of Ti and V contained in the precipitates of less than 20 nm are less than 200 ppm and 150 ppm, respectively. This is thought to be due to insufficient diffusion of Ti and V due to the low trapping temperature.
大きさが 20nm未満の析出物に含まれる T i量および V量は、以下の方法により確認 することができる。  The amount of Ti and V contained in precipitates with a size of less than 20 nm can be confirmed by the following method.
試料を電解液中で所定量電解した後、 試料片を電解液から取り出して分散性を有する 溶液中に浸漬する。 次いで、 この溶液中に含まれる析出物を、孔径 20nmのフィルタを 用いてろ過する。この孔径 20nmのフィルタをろ液と共に通過した析出物が大きさ 20nm 未満である。 次いで、 ろ過後のろ液に対して、 誘導結合プラズマ (I C P ) 発光分光 分析法、 I C P質量分析法、 および原子吸光分析法等から適宜選択して分析し、 大き さ 20nm未満の析出物に含まれる T i量おょぴ V量を求める。 After the sample is electrolyzed in a predetermined amount in the electrolytic solution, the sample piece is taken out of the electrolytic solution and immersed in a solution having dispersibility. Next, the precipitate contained in this solution is filtered using a filter having a pore diameter of 20 nm. Precipitates that have passed through the filter with a pore size of 20 nm together with the filtrate are less than 20 nm in size. Next, the filtrate after filtration is appropriately selected from inductively coupled plasma (ICP) emission spectroscopy, ICP mass spectrometry, atomic absorption spectrometry, etc., and contained in precipitates with a size of less than 20 nm. Obtain the amount of Ti and the amount of V.
固溶 V量が 200ppm以上 1750ppm未満の組織  Structure with a solid solution V content of 200ppm or more and less than 1750ppm
本発明において、 固溶 Vは最も重要な要件である。 加工後の伸びフランジ特性向上に は、 Vの固溶が重要である。 固溶 Vが 200ppm未満ではその効果に乏しく、上記効果を 得るためには固溶 V量は 200 ppm以上必要である。 一方、 固溶 V量が 1750ppm以上で は、 その効果が飽和するために、 上限値とした。 In the present invention, solute V is the most important requirement. V solid solution is important for improving the stretch flange characteristics after processing. If the solid solution V is less than 200 ppm, the effect is poor. In order to obtain the above effect, the solid solution V amount needs to be 200 ppm or more. On the other hand, when the amount of solute V is 1750ppm or more, the effect is saturated, so the upper limit was set.
以上より、 固溶 V量は 200PPm以上 1750ppm未満とする。 なお、本発明鋼も強度の上昇 に伴い、 加工性が若干低下するが、 大きさが 20ηπι未満の析出物に含まれる T i量が 1750ppm以下、 V量が 1750ppm以下の範囲内では、 固溶 V量を 200ppm以上とすること で、 目標とする加工後の伸びフランジ特性が十分確保される。 Based on the above, the amount of solute V should be 200 PP m or more and less than 1750 ppm. The steel of the present invention also has a slight decrease in workability as the strength increases. However, when the Ti content in the precipitates with a size of less than 20ηπι is 1750ppm or less and the V content is 1750ppm or less, it is a solid solution. By setting the V amount to 200 ppm or more, the target stretch flange characteristics after processing are sufficiently secured.
なお、 固溶 V量が 200ppm以上 1750pPm未満については、例えば、 以下の方法により確 認することができる。 Note that less than solid solution V amount is 200ppm or 1750p P m, for example, it can be confirmed by the following method.
試料を非水溶媒系電解液中で所定量だけ電解した後、 電解液を分析溶液とし、 元素分 析を行う。 分析方法としては、 誘導結合プラズマ (I C P ) 発光分光分析法、 I C P 質量分析法、 又は原子吸光分析法等が挙げられる。 ( 3 ) 次に、 本発明の高強度鋼板の製造方法について説明する。 Electrolyze a sample in a non-aqueous solvent electrolyte solution, and then use the electrolyte solution as the analysis solution for elemental analysis. Analytical methods include inductively coupled plasma (ICP) emission spectroscopy, ICP mass spectrometry, or atomic absorption spectrometry. (3) Next, a method for producing a high-strength steel sheet according to the present invention will be described.
本発明の高強度鋼板は、 例えば、 上記化学成分範囲に調整された鋼スラブを、 1150°C 以上 1350°C以下に加熱したのち、仕上げ圧延温度を 850で以上 1100°C以下として熱間 圧延を行ない、 その後、 500°Cから 700 で巻き取ることにより得られる。 これらの好 適条件について以下に詳細に説明する。 The high-strength steel sheet of the present invention is, for example, hot-rolled by heating a steel slab adjusted to the above chemical composition range to 1150 ° C or more and 1350 ° C or less and then setting the finish rolling temperature to 850 or more and 1100 ° C or less. And then rolled up from 500 ° C to 700 ° C. These preferred conditions are described in detail below.
鋼スラブ加熱温度: 1150"^以上 1350¾以下  Steel slab heating temperature: 1150 "^ or more and 1350¾ or less
T iあるいは Vなどの炭化物形成元素は、 鋼スラブ中ではほとんどが析出物として存 在している。 熱間圧延後にフェライト組織中に目標どおりに析出させるためには熱間 圧延前に炭化物として析出している析出物を一旦溶解させる必要がある。 そのために は 1150°C以上で加熱する必要がある。 Most carbide-forming elements such as Ti and V exist as precipitates in steel slabs. In order to precipitate as desired in the ferrite structure after hot rolling, it is necessary to dissolve the precipitates that have precipitated as carbides before hot rolling. For this purpose, heating at 1150 ° C or higher is necessary.
1150°C未満では、析出強化や塗装後耐食性に寄与しない 20nm以上の大きさの炭化物が 残存するため、本発明の効果を得るために必要な大きさ 20nm未満の微細な析出物の生 成に関わる Ti量および V量が減少し、 後述する卷取時に大きさ 20nm未満の析出物の 量が目標どおり得られない。 さらに本発明の鋼板の製造方法では、 スラブ加熱時と仕 上げ圧延時には T iや Vを含む炭化物は溶解させたままで、 仕上げ圧延後の卷取時に T iや Vを含む微細な炭化物として析出させるのが: 最も望ましい形態である。 その ため、 当該炭化物がほぼ完全に溶解する温度として、加熱温度は 1170で以上とするの がより好ましい。  If it is less than 1150 ° C, carbides with a size of 20 nm or more that do not contribute to precipitation strengthening and post-coating corrosion resistance remain, so that it is necessary to produce fine precipitates with a size of less than 20 nm necessary for obtaining the effects of the present invention. The amount of Ti and V involved is reduced, and the amount of precipitates with a size of less than 20 nm cannot be obtained as planned when cutting is described later. Furthermore, in the steel sheet manufacturing method of the present invention, carbides containing Ti and V remain dissolved during slab heating and finish rolling, and are precipitated as fine carbides containing Ti and V at the time of cutting after finish rolling. Is the most desirable form. Therefore, the heating temperature is more preferably 1170 or higher as the temperature at which the carbide is almost completely dissolved.
一方、 1350°Cを超えて加熱すると、 結晶粒径が粗大になりすぎて加工後の伸びフラン ジ特性、伸び特性ともに劣化する。さらに、この後にかかる熱処理条件を考慮すると、 1300°C以下とすれば、 結晶粒径の粗大化はほぼ完全に防ぐことができる。 On the other hand, if it is heated above 1350 ° C, the crystal grain size becomes too coarse and the elongation flange characteristics and elongation characteristics after processing deteriorate. Further, considering such heat treatment conditions, if the temperature is 1300 ° C. or less, the coarsening of the crystal grain size can be almost completely prevented.
よって、スラブ加熱温度は、 1150°C以上 1350°C以下が好ましい。より好ましくは 1170°C 以上 1300°C以下である。  Therefore, the slab heating temperature is preferably 1150 ° C or higher and 1350 ° C or lower. More preferably, it is 1170 ° C or higher and 1300 ° C or lower.
熱間圧延における仕上げ圧延温度: 850^以上 1100T:以下  Finishing rolling temperature in hot rolling: 850 ^ or more 1100T: or less
本発明における大きさ 20nm未満の析出物に含まれる T i量おょぴ V量を得るために は、 仕上げ圧延温度の制御が重要となる。 加工後の鋼スラブを、 熱間圧延の終了温度 である仕上げ圧延温度 850°C〜1100°Cで熱間圧延するのが好ましい。 仕上げ圧延温度 が 850^未満では、 フェライト +オーステナイ トの領域で圧延され、展伸したフェライ ト組織となるため、 加工後の伸びフランジ特性や伸び特性が劣化する場合がある。 ま た、鋼スラブ加熱温度を 1150°C以上で行い圧延前の炭化物として析出している析出物 がー且溶解されたとしても、 仕上げ圧延温度が 850¾未満の場合は、 歪誘起析出によ り、 T iや Vを含んだ炭化物が析出してしまう。 そのため、 本発明の効果に必要な大 きさ 20nm未満の微細な析出物の生成にかかわる T i量おょぴ V量が減少し、後述する 卷取時にて大きさ 20nm未満の析出物の量が目標どおり得られない。つまり、前述のス ラブ加熱時にー且溶解した T iや Vを含む炭化物が、 この仕上げ圧延においてもなる ベく溶解した状態のまま、 次の卷取工程に進むのが重要となる。 そのため、 炭化物が 溶解した状態を保つには、 仕上げ圧延温度は 935で以上とするのがより好ましい。 一方、 仕上げ圧延温度が 1100でを超えると、 フェライト粒が粗大化するため、 780M P aの T Sが得られない場合がある。 フヱライ ト粒の粗大化を防ぐには、 990°C以下と するのがより好ましい。 In order to obtain the Ti amount and the V amount contained in the precipitates having a size of less than 20 nm in the present invention, it is important to control the finish rolling temperature. The processed steel slab is preferably hot-rolled at a finish rolling temperature of 850 ° C to 1100 ° C, which is the end temperature of hot rolling. Finish rolling temperature If it is less than 850 ^, it will be rolled in the ferrite + austenite region, resulting in an expanded ferrite structure, which may degrade the stretch flange characteristics and elongation characteristics after processing. In addition, even if the precipitate precipitated as carbide before rolling at a steel slab heating temperature of 1150 ° C or higher is dissolved, if the final rolling temperature is less than 850 ¾, strain-induced precipitation may occur. , Carbides containing Ti and V are precipitated. Therefore, the amount of Ti and the amount of V related to the formation of fine precipitates with a size of less than 20 nm necessary for the effect of the present invention are reduced, and the amount of precipitates with a size of less than 20 nm at the time of cutting described later. Cannot be achieved as intended. In other words, it is important that the carbides containing Ti and V, which are dissolved during the slab heating described above, proceed to the next cutting process while still being dissolved in this finish rolling. Therefore, in order to keep the carbide dissolved, the finish rolling temperature is more preferably 935 or more. On the other hand, when the finish rolling temperature exceeds 1100, the ferrite grains become coarse, and a TS of 780 MPa may not be obtained. In order to prevent coarsening of the ferrite grains, the temperature is more preferably 990 ° C or lower.
よって、仕上げ圧延温度は 850 以上 1100で以下が好ましい。 より好ましくは、 以上 990で以下である。 Therefore, the finish rolling temperature is preferably 850 or more and 1100 or less. More preferably, it is 990 or more and the following.
卷取温度: 500 以上 700で以下  Sampling temperature: 500 to 700
本発明における大きさ 20nm未満の析出物に含まれる T i量おょぴ V量を得るために は、 卷取温度の制御が重要となる。 前述したとおり、 この卷取工程にて、 析出サイト が多数形成され、 この析出サイ トから炭化物が析出し、 かつ、 当該炭化物の粒成長が 大きさ 20nm以上とならないように抑制されること力 最も望ましい製造形態だからで ある。 組織を実質的にフェライト単相組織とし、 本発明の特性を得るためには、 卷取 温度は 500 以上 700で以下が好ましい。 In order to obtain the amount of Ti and the amount of V contained in the precipitate having a size of less than 20 nm in the present invention, it is important to control the cutting temperature. As described above, in this cutting process, a large number of precipitation sites are formed, carbides are precipitated from this precipitation site, and the grain growth of the carbides is suppressed so as not to exceed 20 nm in size. This is because it is a desirable form of production. In order to obtain a structure of a ferrite single phase structure substantially and obtain the characteristics of the present invention, the cutting temperature is preferably 500 or more and 700 or less.
本発明では、卷取温度が 500 未満では、 T iおよび/または Vを含む炭化物の析出量 が不十分となり、 強度低下を招く場合がある。 また、 ベイナイト相が生成し、 フェラ ィト単相組織が得られない場合がある。 In the present invention, if the cutting temperature is less than 500, the amount of carbides containing Ti and / or V becomes insufficient, which may lead to a decrease in strength. In addition, a bainite phase may be generated, and a ferrite single phase structure may not be obtained.
析出サイ 卜が多数形成され、 かっこの析出サイトから炭化物を生成させるには、 温度 はより高い方が好ましく、 550 以上であるのがより好ましい条件となる。 一方、 卷取温度が 700°Cを超えると、 析出した炭化物の粗大化が起こり、 強度低下を 招く場合がある。 また、 パーライト相が生成しやすくなり、 加工後の伸びフランジ性 の低下を招く場合がある。 650°C以下とすれば、確実に析出した炭化物の粗大化が防げ るのでより好ましい。 In order to form a large number of precipitate sizes and to generate carbides from the parenthesis precipitation sites, the temperature is preferably higher, and more preferably 550 or more. On the other hand, if the cutting temperature exceeds 700 ° C, the precipitated carbides become coarse, which may lead to a decrease in strength. In addition, a pearlite phase is likely to be generated, and the stretch flangeability after processing may be reduced. When the temperature is 650 ° C. or lower, it is more preferable because the coarsely precipitated carbide can be prevented from coarsening.
よって、卷取温度は 500°C以上 700で以下が好ましく、より好ましくは、 550¾以上 650°C 以下である。 Accordingly, the scraping temperature is preferably 500 ° C. or more and 700 or less, and more preferably 550 to 650 ° C. or less.
本発明の鋼板には、 表面に表面処理や表面被覆処理を施したものを含む。 特に、 本 発明の鋼板には溶融亜鉛系めつき皮膜を形成し、 溶融亜鉛めつき系鋼板としたものに 好適に適用できる。 すなわち、 本発明の銅板は良好な加工性を有することから、 溶融 亜鉛系めつき皮膜を形成しても良好な加工性を維持できる。 ここで、 溶融亜鉛系めつ きとは、 亜鉛おょぴ亜鉛を主体とした(すなわち約 90%以上を含有する)溶融めつきで あり、 亜鉛のほかに A 1 C rなどの合金元素を含んだものも含む、 また、 溶融亜鉛 系めつきを施したままでも、 めっき後に合金化処理を行なってもかまわない。  The steel sheet of the present invention includes those having a surface subjected to surface treatment or surface coating treatment. In particular, the steel sheet of the present invention can be suitably applied to a steel sheet having a hot-dip zinc-based steel sheet formed thereon. That is, since the copper plate of the present invention has good workability, good workability can be maintained even when a molten zinc-based plating film is formed. Here, the molten zinc-based plating is a molten solder mainly composed of zinc and zinc (that is, containing about 90% or more). In addition to zinc, alloy elements such as A 1 Cr are used. In addition, the alloy may be subjected to an alloying treatment after plating, even with the hot-dip zinc plating.
なお、 鋼の溶製方法は特に限定されず、 公知の溶製方法の全てを適応することがで きる。 例えば、 溶製方法としては、 転炉、 電気炉等で溶製し、 真空脱ガス炉にて 2次 精練を行なう方法が好適である。 铸造方法は、 生産性、 品質上の観点から、 連続铸造 が好ましい。 また、 錶造後、 直ちに、 または補熱を目的とする加熱を施した後に、 そ のまま熱間圧延を行なう直送圧延を行なつても、本発明の効果に影響はない。さらに、 粗圧延後に、 仕上圧延前で、 熱延材を加熱してもよく、 粗圧延後に圧延材を接合して 行なう連続熱延を行なっても、 さらには、 圧延材の加熱材の加熱と連続圧延を同時に 行なっても、 本発明の効果は損なわれない。 実施例  The method for melting steel is not particularly limited, and all known melting methods can be applied. For example, as a melting method, a method of melting in a converter, electric furnace or the like and performing secondary scouring in a vacuum degassing furnace is suitable. The forging method is preferably continuous forging from the viewpoint of productivity and quality. Further, the effect of the present invention is not affected even if the direct feed rolling in which the hot rolling is performed as it is immediately after the forging or after the heating for the purpose of supplementary heat is performed. Furthermore, the hot rolled material may be heated after rough rolling and before finish rolling, or even if continuous hot rolling is performed by joining the rolled material after rough rolling, and further, the heating material of the rolled material may be heated. Even if continuous rolling is performed simultaneously, the effect of the present invention is not impaired. Example
実施例 1 Example 1
表 1に示す組成の鋼を転炉で溶製し、 連続铸造により鋼スラブとした。 次いで、 こ れらの鋼スラブに対して、表 2に示す条件で加熱、熱間圧延、卷取りを施し板厚 2. 0 の熱延銅板を作製した。 成分組成 (mass%) Steels with the composition shown in Table 1 were melted in a converter and made into steel slabs by continuous forging. Next, these steel slabs were heated, hot-rolled and scraped under the conditions shown in Table 2 to produce hot rolled copper sheets having a thickness of 2.0. Ingredient composition (mass%)
鋼種 備考 Steel grade Remarks
C Si Mn P S Al Ti V C Si Mn P S Al Ti V
A 0.040 0.01 1.45 0.01 0.0015 0.03 0.105 0.120 適合鋼A 0.040 0.01 1.45 0.01 0.0015 0.03 0.105 0.120 Compatible steel
B 0.120 0.02 1.20 0.02 0.0008 0.03 0.240 0.100 適合鋼B 0.120 0.02 1.20 0.02 0.0008 0.03 0.240 0.100 Compatible steel
C 0.100 0.02 1.20 0.01 0.0080 0.03 0.1 10 0.245 適合鋼C 0.100 0.02 1.20 0.01 0.0080 0.03 0.1 10 0.245 Compatible steel
D 0.150 0.02 1.40 0.03 0.0020 0.03 0.230 0.224 適合鋼D 0.150 0.02 1.40 0.03 0.0020 0.03 0.230 0.224 Compatible steel
E 0.050 0.01 2.02 0.01 0.0020 0.03 0.120 0.120 適合鋼E 0.050 0.01 2.02 0.01 0.0020 0.03 0.120 0.120 Compatible steel
F 0.050 0.01 0.65 0.01 0.0015 0.03 0.1 10 0.136 適合鋼F 0.050 0.01 0.65 0.01 0.0015 0.03 0.1 10 0.136 Applicable steel
G 0.045 0.02 1.34 0.02 0.0007 0.02 0.060 0.1 10 適合鋼G 0.045 0.02 1.34 0.02 0.0007 0.02 0.060 0.1 10 Compatible steel
H 0.050 0.02 1.30 0.01 0.0008 0.02 0.1 10 0.052 適合鋼H 0.050 0.02 1.30 0.01 0.0008 0.02 0.1 10 0.052 Compatible steel
I 0.030 0.01 1.32 0.01 0.0007 0.02 0.080 0.070 適合鋼I 0.030 0.01 1.32 0.01 0.0007 0.02 0.080 0.070 Compatible steel
J 0.040 0.01 1.40 0.02 0.0015 0.03 0.126 0.152 適合鋼J 0.040 0.01 1.40 0.02 0.0015 0.03 0.126 0.152 Applicable steel
K 0.250 0.01 1.20 0.02 0.0020 0.03 0.120 0.130 不適合 し 0.001 0.01 1.19 0.02 0.0020 0.03 0.120 0.130 不適合K 0.250 0.01 1.20 0.02 0.0020 0.03 0.120 0.130 Not compliant 0.001 0.01 1.19 0.02 0.0020 0.03 0.120 0.130 Not compliant
M 0.080 0.50 1.30 0.01 0.0012 0.03 0.070 0.070 不適合M 0.080 0.50 1.30 0.01 0.0012 0.03 0.070 0.070 Nonconforming
N 0.050 0.01 0.35 0.02 0.0015 0.03 0.080 0.080 不適合N 0.050 0.01 0.35 0.02 0.0015 0.03 0.080 0.080 Nonconforming
0 0.050 0.01 3.00 0.02 0.0014 0.03 0.080 0.080 不適合0 0.050 0.01 3.00 0.02 0.0014 0.03 0.080 0.080 Nonconforming
P 0.150 0.01 1.60 0.02 0.0015 0.03 0.040 0.120 不適合P 0.150 0.01 1.60 0.02 0.0015 0.03 0.040 0.120 Nonconforming
Q 0.160 0.01 1.60 0.02 0.0016 0.02 0.070 0.032 不適合Q 0.160 0.01 1.60 0.02 0.0016 0.02 0.070 0.032 Nonconforming
R 0.152 0.01 1.62 0.02 0.0015 0.03 0.280 0.120 不適合R 0.152 0.01 1.62 0.02 0.0015 0.03 0.280 0.120 Nonconforming
S 0.161 0.01 1.61 0.02 0.0014 0.03 0.150 0.300 不適合S 0.161 0.01 1.61 0.02 0.0014 0.03 0.150 0.300 Nonconformity
X 0.090 0.06 1.35 0.04 0.0014 0.05 0.150 0.160 適'口鋼 X 0.090 0.06 1.35 0.04 0.0014 0.05 0.150 0.160 Suitable steel
得られた熱延鋼板に対して、 以下に示す方法でミクロ組織を解析し、 20nm未満の析出 物に含まれる T i量おょぴ V量と、 固溶 Vの量を求めた。 また、 以下に示す方法で引 張強度: T S、 加工後の伸びフランジ特性: え ,。および塗装後耐食性: S D T片側最 大剥離幅を求め、 評価した。 、 The microstructure of the obtained hot-rolled steel sheet was analyzed by the method described below, and the amount of Ti and V in the precipitates of less than 20 nm were determined. Also, tensile strength: T S, stretch flange characteristics after processing: Corrosion resistance after painting: S D T One side maximum peel width was determined and evaluated. ,
ミク口組織の解析  Analysis of Miku mouth tissue
上記により得られた熱延鋼板を適当な大きさに切断し、 10%AA 系電解液 (10vol%ァ セチルアセトン- lmass%塩化テトラメチルアンモニゥム-メタノール) 中で、 約 0. 2g を電流密度 20mA/cm2で定電流電解した。 The hot-rolled steel sheet obtained above was cut to an appropriate size, and about 0.2 g of current was applied in 10% AA electrolyte (10 vol% acetylacetone-lmass% tetramethylammonium chloride-methanol). Constant current electrolysis was performed at a density of 20 mA / cm 2 .
大きさ 20nm未満の析出物に含まれる T i量および Vの量の測定  Measurement of the amount of Ti and V contained in precipitates with a size of less than 20 nm
電解後の、 表面に析出物が付着している試料片を電解液から取り mして、 へキサメタ リン酸ナトリウム水溶液 (500mg/l) (以下、 SHMP水溶液と称す) 中に浸漬し、 超音波 振動を付与して、析出物を試料片から剥離し SHMP水溶液中に抽出した。 次いで、 析出 物を含む SHMP水溶液を、 孔径 20ηπιのフィルタを用いてろ過し、 ろ過後のろ液に対し て ICP発光分光分析装置を用いて分析し、 ろ液中の T i と Vの絶対量を測定した。 次 いで、 T i と Vの絶対量を電解重量で除して、大きさ 20nm未満の析出物に含まれる T i量および V量を得た。 なお、 電解重量は、 析出物剥離後の試料に対して重量を測定 し、 電解前の試料重量から差し引くことで求めた。 After electrolysis, remove the sample piece with deposits on the surface from the electrolyte and immerse it in an aqueous solution of sodium hexametaphosphate (500 mg / l) (hereinafter referred to as SHMP aqueous solution). By applying vibration, the precipitate was peeled from the sample piece and extracted into an aqueous SHMP solution. Next, the SHMP aqueous solution containing the precipitate is filtered using a filter with a pore size of 20ηπι, and the filtrate after filtration is analyzed using an ICP emission spectroscopic analyzer. The absolute amounts of T i and V in the filtrate are analyzed. Was measured. Next, the absolute amounts of T i and V were divided by the electrolysis weight to obtain the amounts of Ti and V contained in precipitates having a size of less than 20 nm. The electrolytic weight was determined by measuring the weight of the sample after the deposit was peeled off and subtracting it from the sample weight before the electrolysis.
固溶 Vの量の測定 ·  Measurement of the amount of solid solution V ·
電解後の電解液を分析溶液とし、 I C P質量分析法を用いて Vおよび比較元素として Fe の液中濃度を測定した。 得られた濃度を基に、 F eに対する Vの濃度比を算出し、 さらに、 試料中の F eの含有率を乗じることで、 固溶状態にある Vの量を求めた。 な お、 試料中の F eの含有率は、 F e以外の組成値の合計を 100%から減算することで求 めることができる。 The electrolytic solution after electrolysis was used as an analysis solution, and the concentration of Fe in the solution as a reference element and V was measured using ICP mass spectrometry. Based on the obtained concentration, the concentration ratio of V to Fe was calculated, and the amount of V in the solid solution state was obtained by multiplying the content of Fe in the sample. The content of Fe in the sample can be determined by subtracting the total composition value other than Fe from 100%.
T S  T S
圧延方向を引張り方向として J I S 5号試験片を用いて J I S Z 2241に準拠した 方法で引張り試験を行ない、 T Sを求めた。 A tensile test was carried out by a method based on JIS Z 2241 using a JIS5 test piece with the rolling direction as the tensile direction, and TS was obtained.
加工後の伸びフランジ特性: え,。  Stretch flange characteristics after processing:
伸張率 10%で圧延後、 鉄連規格 J F S T 1001 に準じて穴広げ試験を行ない、 λ 10を 求めた。 After rolling at an extension ratio 10%, subjected to hole expansion test in accordance with Tetsuren standards JFST 1001, it was determined lambda 10.
塗装後耐食性: S D Τ片側最大剥離幅 化成処理は、 日本ペイント (株) 製の脱脂剤 ;サーフクリーナー E C O 9 0、 表面調 整剤;サーフファイン 5 N— 1 0、 化成処理剤;サーフダイン S D 2 8 0 0用い、 そ れぞれの温度や濃度条件は標準条件より劣悪な条件で実施した。 標準条件の 1.例とし て、 脱脂工程は濃度 16g/l、 処理温度 42〜44で、 処理時間 120s、 スプレー脱脂、 表面 調整工程は、 全アルカリ度 1. 5〜2. 5ポイント、 遊離酸度 0. 7〜0. 9ポイント、 促進剤 濃度 2. 8〜3. 5ポイント、 処理温度 44"ϊ:、 処理時間 120s とした。 劣悪条件としては、 化成処理工程での処理温度を 38°Cに低下させた。 その後、 日本ペイント社製の電着塗 装剤; V- 50 を使用して電着塗装を行った。 化成処理皮膜の付着量は 2〜2. 5g/m2、 電 着塗装は膜厚 25 / mを狙いとした。 Corrosion resistance after painting: SD Chemical conversion treatment was performed using Nippon Paint Co., Ltd. degreasing agent: Surf Cleaner ECO 90, surface conditioner; Surf Fine 5 N—10, chemical conversion treatment agent: Surfdyne SD 2800 The temperature and concentration conditions were worse than the standard conditions. As an example of standard conditions, the degreasing process has a concentration of 16 g / l, a processing temperature of 42 to 44, a processing time of 120 s, spray degreasing, and the surface conditioning process has a total alkalinity of 1.5 to 2.5 points, free acidity 0.7 ~ 0.9 points, accelerator concentration 2.8 ~ 3.5 points, treatment temperature 44 "ϊ :, treatment time 120s. As a bad condition, the treatment temperature in the chemical conversion treatment process is 38 ° C After that, electrodeposition coating was performed using Nippon Paint's electrodeposition coating agent V-50, and the amount of chemical conversion coating was 2 to 2.5 g / m 2 . The coating was aimed at a film thickness of 25 / m.
塗装後耐食性の評価は、 塩温水浸漬試験(S D T )で行なった。 化成処理、 電着塗装を 施した試料に力ッターにてクロスカツ ト疵を付与し、塩温水(5%NaCl: 55°C)に 10 日間 浸漬したのち、 水洗、 乾燥し、 カッ ト疵部についてテープ剥離を行い、 カッ ト疵部左 右の最大剥離幅を測定.した。 片側最大剥離幅が 3. 0mm以下であれば、 塗装後耐食性は 良好といえる。 The corrosion resistance after painting was evaluated by a salt warm water immersion test (S D T). For samples subjected to chemical conversion treatment and electrodeposition coating, apply a cross-cut kite with a force cutter and immerse in salt warm water (5% NaCl: 55 ° C) for 10 days, then rinse with water and dry. The tape was peeled off, and the maximum peel width on the left and right sides of the cut collar was measured. If the maximum peel width on one side is 3.0 mm or less, the corrosion resistance after painting is good.
以上により得られた結果を表 2に製造条件と併せて示す。 The results obtained above are shown in Table 2 together with the manufacturing conditions.
表 2 Table 2
Figure imgf000020_0001
Figure imgf000020_0001
表 2より、 本発明例では、 TSが 780MP a以上、 え ,。が 60%以上であり、 SDT片 側最大剥離幅 3.0mm以下となっており、 加工後の伸びフランジ特性および塗装後耐食 性に優れた熱延銅板であることがわかる。 From Table 2, TS is 780 MPa or more in the present invention example. Is 60% or more, and the maximum peel width on one side of the SDT is 3.0 mm or less, which indicates that it is a hot-rolled copper sheet with excellent stretch flange characteristics after processing and excellent corrosion resistance after painting.
一方、 比較例は、 TS (強度)、 λ10 (加工後の伸びフランジ姓)、 SDT片側最大 剥離幅 (塗装後耐食性) のいずれか 1つ以上が劣っている。 On the other hand, the comparative example is inferior in one or more of TS (strength), λ 10 (stretch flange after processing), and SDT one-side maximum peel width (corrosion resistance after painting).
実施例 2 Example 2
表 3に示す組成の鋼を転炉で溶製し、 連続铸造により鋼スラブとした。 次いで、 こ れらの鋼スラブに対して、表 4に示す条件で加熱、熱間圧延、巻取りを施し板厚 2.0mm の熱延鋼板を作製した。 表 3  Steel with the composition shown in Table 3 was melted in a converter and steel slabs were formed by continuous forging. Next, these steel slabs were heated, hot-rolled and wound under the conditions shown in Table 4 to produce hot-rolled steel sheets having a thickness of 2.0 mm. Table 3
Figure imgf000021_0001
得られた熱延銅板に対して、 実施例 1と同様の方法でミクロ組耩を解析し、 20nm未満 の析出物に含まれる T i量および V量と、 固溶 Vの量を求めた。 また、 実施例 1と同 様の方法で引張強度: TS、 加工後の伸びフランジ特性: 。および塗装後耐食性: SDT片側最大剥離幅を求め、 評価した。
Figure imgf000021_0001
The obtained hot-rolled copper sheet was analyzed for microtexture in the same manner as in Example 1, and the amounts of Ti and V contained in precipitates of less than 20 nm and the amount of solute V were determined. Also, tensile strength: TS, stretch flange characteristics after processing: Corrosion resistance after painting: The maximum peel width on one side of SDT was determined and evaluated.
以上により得られた結果を表 4に示す。 Table 4 shows the results obtained as described above.
表 4 Table 4
スラブ 仕上げ 巻取り TS 予変形後 加工後の伸び ぐ 20nmの ぐ 20nmの 固溶 V量 片側最大 Slab Finish Winding TS After pre-deformation Elongation after processing 20nm soon 20nm solid solution V amount Maximum on one side
No 鋼種 加熱温度 圧延温度 /皿度 の伸び フランジ特性: λ 10析出 Ti量 析出 V量 剥離幅 No Steel type Heating temperature Rolling temperature / Elongation of dishness Flange characteristics: λ 10 Precipitation Ti amount Precipitation V amount Peel width
(。c) (°C) (°C) (MPa) (%) (%) (mass ppm; (mass ppm; mass ppm) (mm) (.C) (° C) (° C) (MPa) (%) (%) (mass ppm; (mass ppm; mass ppm) (mm)
25 T 1 250 921 625 832 1 7 99 750 815 250 2.525 T 1 250 921 625 832 1 7 99 750 815 250 2.5
26 U 1250 918 620 830 1 8 90 753 760 252 2.226 U 1250 918 620 830 1 8 90 753 760 252 2.2
27 V 1250 920" 621 829 1 7 93 753 770 250 2.027 V 1250 920 "621 829 1 7 93 753 770 250 2.0
28 W 1250 921 620 842 1 8 98 760 823 251 2.628 W 1250 921 620 842 1 8 98 760 823 251 2.6
35 T 1250 940 600 835 18 92 780 820 240 2.235 T 1250 940 600 835 18 92 780 820 240 2.2
36 T 1270 960 630 840 17 93 782 823 244 2.136 T 1270 960 630 840 17 93 782 823 244 2.1
37 丁 1300 980 620 837 18 95 788 830 245 2.3 37 1300 980 620 837 18 95 788 830 245 2.3
表 4より、 本発明例では、 TSが 780MP a以上; え i。が 60%以上であり、 SDT片側 最大剥離幅 3.0 以下となっており、 加工後の伸びフランジ特性および塗装後耐食性 に優れた熱延鋼板であることがわかる。 From Table 4, in the present invention, TS is 780 MPa or more; Is 60% or more, and the maximum peel width on one side of the SDT is 3.0 or less. It can be seen that this is a hot-rolled steel sheet with excellent stretch flange characteristics after processing and corrosion resistance after painting.
さらに、 鋼板 No. l (表 2) に比べて、 C r Wや Z rを添加した鋼板 No25 28 35 37においては、 T Sがより向上していることがわかる。 , 産業上の利用可能性 Furthermore, compared to steel plate No. l (Table 2), it can be seen that steel plate No25 28 35 37 to which CrW or Zr is added has improved TS. , Industrial applicability
本発明の鋼板は高強度であり、 かつ、 優れた加工後の伸びフランジ特性および塗装 後耐食性を有するので、 例えば、 自動車やトラック用のフレーム等、 伸びおょぴ伸び フランジ特性を必要とする部品として最適である。  The steel sheet of the present invention has high strength, and has excellent stretch flange characteristics after processing and corrosion resistance after painting. For example, parts that require stretch stretch flange characteristics such as automobile and truck frames. As best.

Claims

請求の範囲 The scope of the claims
1 . massy。で、 C: 0. 02%以上 0. 20%以下、 Si: 0. 3%以下、 Mn: 0. 5%以上 2. 5%以下、 P: 0. 06%以下、 S: 0. 01¾以下、 A1: 0. 1%以下、 Ti: 0. 05%以上 0. 25%以下、 V: 0. 05%以上 0. 25%以下を含有し、 残部が Feおよび不可避的不純物からなる成分組成と、 1. massy. C: 0.02% or more, 0.20% or less, Si: 0.3% or less, Mn: 0.5% or more, 2.5% or less, P: 0.06% or less, S: 0.013 or less A1: 0.1% or less, Ti: 0.05% or more and 0.25% or less, V: 0.05% or more and 0.25% or less, with the balance consisting of Fe and inevitable impurities ,
実質的にフェライト単相組織であり、 前 fcフェライト単相組織中には、 大きさが 20mn 未満の析出物に含まれる Tiが 200mass ppm以上 1750mass ppm以下、 V力 S 150 mass p pm以上 1750 mass ppm以下であり、 固溶 Vカ 200 mass ppm以上 1750 mass ppm未満 である組織を有することを特徴とする高強度鋼板。 It is essentially a ferrite single-phase structure. In the pre-fc ferrite single-phase structure, Ti contained in precipitates with a size of less than 20mn is 200 mass ppm to 1750 mass ppm, V force S 150 mass p pm to 1750 mass A high-strength steel sheet characterized by having a structure of not more than ppm and having a solid solution V content of 200 mass ppm or more and less than 1750 mass ppm.
2 . mass%で、 さらに、 Cr: 0. 01%以上 0. 5%以下、 W : 0. 005%以上 0. 2%以下、 Zr: 0. 0 005%以上 0. 05¾以下のいずれか 1種または 2種以上を含有することを特徴とする請求 項 1に記載の高強度鋼板。 2. In mass%, Cr: 0.01% or more and 0.5% or less, W: 0.005% or more, 0.2% or less, Zr: any of 0.005% or more, 0.05% or less 1 The high-strength steel sheet according to claim 1, comprising seeds or two or more kinds.
3 . 引張強度 T Sが 780M P a以上であることを特徴とする請求項 1または 2に記 載の高強度鋼板。 3. The high-strength steel sheet according to claim 1 or 2, wherein the tensile strength T S is 780 MPa or more.
4 . 塩温水浸漬試験におけるテープ剥離試験後の片側最大剥離幅が 3. 0mm以下であ ることを特徴とする請求項 1または 2に記載の高強度鋼板。 4. The high-strength steel sheet according to claim 1 or 2, wherein the maximum peel width on one side after the tape peel test in the salt warm water immersion test is 3.0 mm or less.
5 . 塩温水浸漬試験におけるテープ剥離試験後の片側最大剥離幅が 3. 0mm以下であ ることを特徴とする請求項 3に記載の高強度鋼板。 5. The high-strength steel sheet according to claim 3, wherein the one-side maximum peel width after the tape peel test in the salt warm water immersion test is 3.0 mm or less.
6 . 伸張率 10%での圧延後の伸びフランジ特性 ぇ10カ 60%以上であること^特徴と する請求項 1または 2に記載の高強度鋼板。 6. Steel plate according to claim 1 or 2, stretch flangeability tut ten less than 60% ^ characterized after rolling with stretching rate of 10%.
7 . 伸張率 10%での圧延後の伸びフランジ特性 。が 60%以上であることを特徴と する請求項 3に記載の高強度鋼板。 7. Stretch flange characteristics after rolling at 10% elongation. 4. The high-strength steel plate according to claim 3, wherein is 60% or more.
PCT/JP2008/064175 2007-07-31 2008-07-31 High-strength steel sheet WO2009017256A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2693489A CA2693489C (en) 2007-07-31 2008-07-31 High-strength steel sheet
EP08792282.9A EP2177640B1 (en) 2007-07-31 2008-07-31 High-strength steel sheet
CN2008801012051A CN101772584B (en) 2007-07-31 2008-07-31 high-strength steel plate
US12/670,153 US20100196189A1 (en) 2007-07-31 2008-07-31 High-strength steel sheet
MX2010001110A MX2010001110A (en) 2007-07-31 2008-07-31 High-strength steel sheet.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-198944 2007-07-31
JP2007198944 2007-07-31

Publications (1)

Publication Number Publication Date
WO2009017256A1 true WO2009017256A1 (en) 2009-02-05

Family

ID=40304476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/064175 WO2009017256A1 (en) 2007-07-31 2008-07-31 High-strength steel sheet

Country Status (9)

Country Link
US (1) US20100196189A1 (en)
EP (1) EP2177640B1 (en)
JP (1) JP5326403B2 (en)
KR (1) KR20100029138A (en)
CN (1) CN101772584B (en)
CA (1) CA2693489C (en)
MX (1) MX2010001110A (en)
TW (1) TWI390050B (en)
WO (1) WO2009017256A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120107633A1 (en) * 2009-07-10 2012-05-03 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
JP2012172238A (en) * 2011-02-24 2012-09-10 Jfe Steel Corp High strength alloyed hot-dip galvanized hot-rolled steel sheet and method for producing the same

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098843B2 (en) * 2007-06-29 2012-12-12 Jfeスチール株式会社 Method for determining the solid solution content of the element of interest in a metal sample
JP5041083B2 (en) * 2010-03-31 2012-10-03 Jfeスチール株式会社 High-tensile hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5041084B2 (en) * 2010-03-31 2012-10-03 Jfeスチール株式会社 High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP5765080B2 (en) * 2010-06-25 2015-08-19 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP5609786B2 (en) * 2010-06-25 2014-10-22 Jfeスチール株式会社 High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP5884151B2 (en) 2010-11-25 2016-03-15 Jfeスチール株式会社 Steel sheet for hot press and method for producing hot press member using the same
JP5699680B2 (en) * 2011-02-24 2015-04-15 Jfeスチール株式会社 High-strength galvannealed hot-rolled steel sheet and method for producing the same
JP5754279B2 (en) * 2011-07-20 2015-07-29 Jfeスチール株式会社 High strength steel sheet for warm forming and manufacturing method thereof
JP5831056B2 (en) * 2011-09-02 2015-12-09 Jfeスチール株式会社 High-strength hot-rolled steel sheet with excellent weld corrosion resistance and method for producing the same
CN102337459A (en) * 2011-10-31 2012-02-01 首钢总公司 Steel for electric power tower and production method thereof
JP5541263B2 (en) * 2011-11-04 2014-07-09 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP5321672B2 (en) * 2011-11-08 2013-10-23 Jfeスチール株式会社 High-tensile hot-rolled steel sheet with excellent material uniformity and manufacturing method thereof
JP5321671B2 (en) * 2011-11-08 2013-10-23 Jfeスチール株式会社 High-tensile hot-rolled steel sheet with excellent strength and workability uniformity and method for producing the same
JP5957878B2 (en) * 2011-12-27 2016-07-27 Jfeスチール株式会社 High strength hot-rolled steel sheet for warm forming and manufacturing method thereof
EP2803745B1 (en) * 2012-01-13 2017-08-02 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and manufacturing method for same
CN104053806B (en) * 2012-01-26 2018-07-10 杰富意钢铁株式会社 High tensile hot rolled steel sheet and its manufacturing method
US9738273B2 (en) 2012-01-31 2017-08-22 Mitsubishi Electric Corporation Vehicle control apparatus
EP2811046B1 (en) * 2012-01-31 2020-01-15 JFE Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing same
CN104136650B (en) * 2012-03-07 2017-04-19 杰富意钢铁株式会社 Steel sheet for hot pressing, manufacturing process therefor, and process for producing hot-pressed member using same
CN104254633B (en) 2012-04-26 2016-10-12 杰富意钢铁株式会社 There is good ductility, stretch flangeability, the high tensile hot rolled steel sheet of uniform in material and manufacture method thereof
US10077485B2 (en) * 2012-06-27 2018-09-18 Jfe Steel Corporation Steel sheet for soft-nitriding and method for manufacturing the same
US20140137990A1 (en) * 2012-11-20 2014-05-22 Thyssenkrupp Steel Usa, Llc Process for manufacturing ferritic hot rolled steel strip
JP6052503B2 (en) * 2013-03-29 2016-12-27 Jfeスチール株式会社 High-strength hot-rolled steel sheet and its manufacturing method
JP6052504B2 (en) * 2013-03-29 2016-12-27 Jfeスチール株式会社 High-strength hot-rolled steel sheet and its manufacturing method
JP5892147B2 (en) * 2013-03-29 2016-03-23 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
JP5729523B1 (en) * 2013-06-27 2015-06-03 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
JP6131872B2 (en) * 2014-02-05 2017-05-24 Jfeスチール株式会社 High strength thin steel sheet and method for producing the same
JP6048423B2 (en) * 2014-02-05 2016-12-21 Jfeスチール株式会社 High strength thin steel sheet with excellent toughness and method for producing the same
CN107075652A (en) * 2014-08-25 2017-08-18 塔塔钢铁艾默伊登有限责任公司 Cold-rolled high-strength low-alloy steel
CN106756539B (en) * 2016-12-05 2018-05-18 北京科技大学 A kind of endurance high-strength steel with nanometer precipitated phase and preparation method thereof
CN109957716A (en) * 2017-12-22 2019-07-02 鞍钢股份有限公司 High-strength high-hole-expansibility single ferrite precipitation steel plate and preparation method thereof
EP3926064B1 (en) * 2020-06-16 2022-08-24 SSAB Technology AB High strength strip steel product and method of manufacturing the same
KR20230072050A (en) 2021-11-17 2023-05-24 주식회사 포스코 High strength steel plate having excellent impact toughness after cold forming and high yield ratio and method for manufacturing the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591502B2 (en) 1980-07-01 1984-01-12 三島光産株式会社 thermal slab cutting equipment
JP2002161340A (en) * 2000-11-24 2002-06-04 Nippon Steel Corp Hot rolled steel sheet superior in burring workability and fatigue characteristics, and manufacturing method therefor
JP2003160836A (en) 2001-11-26 2003-06-06 Nippon Steel Corp Drawable high-strength steel thin-sheet with burring property superior in shape freezability, and manufacturing method therefor
JP2003293083A (en) 2002-04-01 2003-10-15 Sumitomo Metal Ind Ltd Hot rolled steel sheet and method of producing hot rolled steel sheet and cold rolled steel sheet
JP2003321740A (en) 2002-04-30 2003-11-14 Jfe Steel Kk High strength thin steel sheet with excellent thermal stability
JP2004143518A (en) 2002-10-23 2004-05-20 Sumitomo Metal Ind Ltd Hot rolled steel sheet
JP2005120430A (en) * 2003-10-16 2005-05-12 Jfe Steel Kk Designing method for precipitation-strengthened high-strength steel sheet, manufacturing method therefor, and precipitation-strengthened high-strength steel sheet
JP2006161112A (en) 2004-12-08 2006-06-22 Sumitomo Metal Ind Ltd High-strength hot rolled steel sheet and its production method
JP2007070647A (en) * 2005-09-02 2007-03-22 Nippon Steel Corp High strength steel sheet, and method for producing the same
JP2007231352A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Precipitation hardening high strength steel sheet and its production method
JP2007247049A (en) * 2006-03-20 2007-09-27 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch-flanging property

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336573B2 (en) * 1994-11-04 2002-10-21 新日本製鐵株式会社 High-strength ferritic heat-resistant steel and manufacturing method thereof
CN1153841C (en) * 2000-10-31 2004-06-16 杰富意钢铁株式会社 High-strength hot-rolled steel sheet and method for producing same
JP4023106B2 (en) * 2001-05-09 2007-12-19 住友金属工業株式会社 Ferritic heat resistant steel with low softening of heat affected zone
JP3879440B2 (en) * 2001-06-07 2007-02-14 Jfeスチール株式会社 Manufacturing method of high strength cold-rolled steel sheet
KR100949694B1 (en) * 2002-03-29 2010-03-29 제이에프이 스틸 가부시키가이샤 Cold rolled steel sheet having ultrafine grain structure and method for producing the same
JP4214840B2 (en) * 2003-06-06 2009-01-28 住友金属工業株式会社 High-strength steel sheet and manufacturing method thereof
JP4232545B2 (en) * 2003-06-11 2009-03-04 住友金属工業株式会社 High-strength hot-rolled steel sheet and its manufacturing method
JP4452191B2 (en) * 2005-02-02 2010-04-21 新日本製鐵株式会社 Manufacturing method of high-stretch flange-formable hot-rolled steel sheet with excellent material uniformity
WO2007018246A1 (en) * 2005-08-05 2007-02-15 Jfe Steel Corporation High-tension steel sheet and process for producing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591502B2 (en) 1980-07-01 1984-01-12 三島光産株式会社 thermal slab cutting equipment
JP2002161340A (en) * 2000-11-24 2002-06-04 Nippon Steel Corp Hot rolled steel sheet superior in burring workability and fatigue characteristics, and manufacturing method therefor
JP2003160836A (en) 2001-11-26 2003-06-06 Nippon Steel Corp Drawable high-strength steel thin-sheet with burring property superior in shape freezability, and manufacturing method therefor
JP2003293083A (en) 2002-04-01 2003-10-15 Sumitomo Metal Ind Ltd Hot rolled steel sheet and method of producing hot rolled steel sheet and cold rolled steel sheet
JP2003321740A (en) 2002-04-30 2003-11-14 Jfe Steel Kk High strength thin steel sheet with excellent thermal stability
JP2004143518A (en) 2002-10-23 2004-05-20 Sumitomo Metal Ind Ltd Hot rolled steel sheet
JP2005120430A (en) * 2003-10-16 2005-05-12 Jfe Steel Kk Designing method for precipitation-strengthened high-strength steel sheet, manufacturing method therefor, and precipitation-strengthened high-strength steel sheet
JP2006161112A (en) 2004-12-08 2006-06-22 Sumitomo Metal Ind Ltd High-strength hot rolled steel sheet and its production method
JP2007070647A (en) * 2005-09-02 2007-03-22 Nippon Steel Corp High strength steel sheet, and method for producing the same
JP2007231352A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Precipitation hardening high strength steel sheet and its production method
JP2007247049A (en) * 2006-03-20 2007-09-27 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch-flanging property

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2177640A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120107633A1 (en) * 2009-07-10 2012-05-03 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
US9212411B2 (en) * 2009-07-10 2015-12-15 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
JP2012172238A (en) * 2011-02-24 2012-09-10 Jfe Steel Corp High strength alloyed hot-dip galvanized hot-rolled steel sheet and method for producing the same

Also Published As

Publication number Publication date
TW200912015A (en) 2009-03-16
EP2177640B1 (en) 2017-11-01
CN101772584A (en) 2010-07-07
MX2010001110A (en) 2010-03-09
US20100196189A1 (en) 2010-08-05
JP2009052139A (en) 2009-03-12
CA2693489C (en) 2013-11-19
CA2693489A1 (en) 2009-02-05
EP2177640A4 (en) 2012-01-18
KR20100029138A (en) 2010-03-15
EP2177640A1 (en) 2010-04-21
JP5326403B2 (en) 2013-10-30
TWI390050B (en) 2013-03-21
CN101772584B (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP5326403B2 (en) High strength steel plate
EP3228722B1 (en) High-strength, cold-rolled, thin steel sheet and method for manufacturing the same
JP5359296B2 (en) High strength steel plate and manufacturing method thereof
JP5423191B2 (en) High strength steel plate and manufacturing method thereof
JP5482162B2 (en) High-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and a tensile strength of 780 MPa or more, and a method for producing the same
JP2013133499A (en) High-tensile hot-rolled steel sheet excellent in bendability and manufacturing method therefor
JP5637225B2 (en) High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof
JP6224704B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP4924052B2 (en) High yield ratio high tensile cold-rolled steel sheet and method for producing the same
JP5272412B2 (en) High strength steel plate and manufacturing method thereof
JP5821864B2 (en) High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof
JP4325508B2 (en) High tensile hot dip galvanized steel sheet and manufacturing method
KR102286953B1 (en) High-strength hot-rolled steel sheet
KR20180014092A (en) High-strength thin steel sheet and method for manufacturing same
WO2015118863A1 (en) High-strength hot-rolled steel sheet and production method therefor
JP5610089B2 (en) High-tensile hot-rolled steel sheet and manufacturing method thereof
JP5903883B2 (en) High-strength hot-rolled steel sheet for plating with excellent corrosion resistance and its manufacturing method
JP2015028199A (en) High strength hot rolled steel sheet having excellent fatigue resistance and shape freezing properties after slit processing, and manufacturing method thereof
JP5556157B2 (en) Method for producing high-strength hot-rolled steel sheet having excellent elongation and stretch flange characteristics and tensile strength of 780 MPa or more
JP6086078B2 (en) High-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP5699680B2 (en) High-strength galvannealed hot-rolled steel sheet and method for producing the same
JP5678716B2 (en) High-strength galvannealed hot-rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880101205.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792282

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 170/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2693489

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20107001975

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/001110

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2008792282

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008792282

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12670153

Country of ref document: US