[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009003150A2 - Photovoltaïques à collecte latérale - Google Patents

Photovoltaïques à collecte latérale Download PDF

Info

Publication number
WO2009003150A2
WO2009003150A2 PCT/US2008/068446 US2008068446W WO2009003150A2 WO 2009003150 A2 WO2009003150 A2 WO 2009003150A2 US 2008068446 W US2008068446 W US 2008068446W WO 2009003150 A2 WO2009003150 A2 WO 2009003150A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
elements
collection
collector
trenches
Prior art date
Application number
PCT/US2008/068446
Other languages
English (en)
Other versions
WO2009003150A3 (fr
Inventor
Stephen Fonash
Wook Jun Nam
Original Assignee
Solarity, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2008/050780 external-priority patent/WO2008086482A2/fr
Priority claimed from US11/972,491 external-priority patent/US8294025B2/en
Application filed by Solarity, Inc. filed Critical Solarity, Inc.
Priority to US12/666,768 priority Critical patent/US20110023955A1/en
Priority to EP08781048A priority patent/EP2171763A2/fr
Publication of WO2009003150A2 publication Critical patent/WO2009003150A2/fr
Publication of WO2009003150A3 publication Critical patent/WO2009003150A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1872Recrystallisation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • H10K30/352Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles the inorganic nanostructures being nanotubes or nanowires, e.g. CdTe nanotubes in P3HT polymer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates generally to electronic and opto-electronic devices and a production method for the production of electronic and opto-electronic devices from an interpenetrating network configuration of nano structured high surface to volume ratio porous thin films with organic/inorganic metal, semiconductor or insulator material positioned within the interconnected void volume of the nano structure.
  • the present application relates more specifically to lateral collection photovoltaic (LCP) structures.
  • the absorption and the collection lengths in the horizontal structure of Figure 1 are essentially parallel means they are not independent.
  • the appropriate collection length or lengths of the top active layer must be at least long enough to allow carriers generated by absorption in the top active layer to be collected and the appropriate collection length or lengths of the bottom active layer should be at least long enough to allow carriers generated by absorption in the bottom active layer to be collected and should be at least as long as the absorption length in that material for effective operation.
  • one electrode is a composite wherein a conductor is separated by an insulator, which is part of each collector element, from the opposing electrode and this opposing electrode is a conductor covering a surface.
  • the collection structure is a composite containing both the anode and cathode collecting elements for lateral collection. The opposing electrode may or may not be in contact with a conductor covering a surface.
  • a further embodiment is directed to a photovoltaic device having a first conductive layer, a collection structure in physical and electrical contact with the first conductive layer, an active layer disposed adjacent to the first conductive layer and in contact with all surfaces of the collection structure, and a second conductive layer disposed opposite the first conductive layer and in contact with the active layer.
  • the active layer has an absorption length and a collection length.
  • the collection structure includes a plurality of collector elements positioned substantially perpendicular to the conductive layer. The plurality of collector elements extending from the first conductive layer by a distance corresponding to the absorption length of the active layer and the plurality of collector elements being spaced apart by a distance corresponding to two times the collection length of the active layer.
  • Figure 5 illustrates a collecting structure with fin-like elements.
  • Figure 7 illustrates growth of the absorbing active layer using a catalyst layer positioned among the collector elements.
  • Figure 8 illustrates a patterned catalyst on the substrate.
  • Figure 15 illustrates a cross-section of a photovoltaic device with the composite electrode structure of Figure 14.
  • Figures 27A-27H illustrate an exemplary lateral collection structure fabricated using metal seed, VLS catalyst, or both layers is disposed across the whole substrate. Atty. Docket No. 25416-0002
  • the lateral collection photovoltaic structure of Figure 2 can be fabricated from an interpenetrating network of a film material and a metal, semiconductor, or insulator material forming a large interface area.
  • the high surface area to volume film material can include collector structure 110, i.e., an array of one or more collector elements, e.g., an array of nano- and/or micro-protrusions, separated by voids or a void matrix, on a a conductive layer 112, which conductive layer 112 is on a non-conductive substrate 114.
  • the substrate can be a conductive material and can operate as the Atty. Docket No. 25416-0002
  • the collection structure 110 can be designed with the excitons determining the lateral collection length and thereby determining the inter-element or collector structure array spacing C. If free carriers are the principal entities collected at the collector element surfaces, the collection structure 110 can be designed so that the carrier collected is the one with the lower mobility. In this case, the collection length of the free carrier is the lateral collection length and the lateral collection length determines the collector structure spacing C. Whether the collecting elements of the collection structure 110 are principally collecting excitons or free carriers, the collection structure 110 provides a collecting interface within the appropriate collection length of essentially all of the active material. The collection structure 110 may or may not itself be an absorber.
  • the active materials have all the possibilities discussed above, as do the conductor materials.
  • the catalyst may be disposed on a patterned conductor by techniques such as self-assembly (e.g., catalyst particles tethered onto patterned Au using thiol bonds) or it may be patterned using, for example, any of the etching or deposition techniques discussed above for patterning a deposited material as well as by other techniques such as ink jet printing or the dip pen approach.
  • the collector elements themselves are then grown from a precursor at the catalyst positions at the required temperature. For example, if the collector structure 110 is to be silicon, then the precursor is a silicon bearing compound such as silane and the temperature, using gold (Au) as the catalyst, can be around 550 0 C or less.
  • Material bearing a dopant may also be used with the catalyst or with the precursor if the silicon (Si) is to be doped. Any residual catalyst present after growth may be removed from the collector elements using an etchant specific to the catalyst (e.g., a gold etchant for an Au catalyst for Si growth).
  • Nanoparticle catalysts for collector growth can be employed to automatically attain advantageous aspect ratios (AAV) in Figures 3-5, i.e., greater than one, for collector structures 110 where W is a measure of the collector element characteristic width. For example, if a nanoparticle catalyst for carbon nanotubes or wires is stamped onto a surface in the collector pattern, nanotube or wire growth can be exploited to give essentially perpendicular collector elements with advantageous aspect ratios. These stuctures can be used, as manufactured, as the collector elements, or coated (e.g., by electro-chemical means). Atty. Docket No. 25416-0002
  • the collector structure 110 which may be on a substrate including glass, metal foil, or plastic, is positioned by being pressed (in layed) into an already present active (absorber) material thereby also resulting in the structure of Figure 6.
  • Collector structures 110 for this in lay approach are produced in the same way collector structures 110 are produced in the discussion above, e.g., they may be produced by etching or deposition and techniques used may employ block-co-polymers, printing or stamping techniques, optical or e-beam lithography, and deposition/lift off or other approaches such as electrochemical deposition.
  • the collector elements may be on a conducting surface or be the entire electrode themselves.
  • the catalyst 128 may be positioned with the collector elements present. If desired, the catalyst 128 may be kept off the top surfaces of the collector elements by means such as masking. Alternatively, the catalyst 128 may be positioned before the collector elements are present. In this embodiment, the catalyst 128 is deposited using standard approaches with the requisite pattern needed to accommodate the collector structure 110 to be used. This pattern may be generated using approaches comprising block-co-polymer, stamping, imprinting, or beam or optical lithography methods and lift-off and/or etching. After VLS growth, the collector may be positioned with the absorber regions dictating the collector pattern by, for example, using deposition. Lift-off and/or etching may be used also.
  • the structures of Figures 10 and 11 can be positioned and produced using catalytic approaches.
  • the nano-particles 130 seen in Figure 10 act as a catalyst for the growth of the nano-elements 132 penetrating the active layer 116.
  • the nano-particles 130 may or may not remain after the nano-element 132 growth.
  • the metal nano-particles 130 can be designed to remain after growth to be used to generate plasmons to enhance light absorption on the active layer 116.
  • the collection of only one carrier is done at an angle to the absorption length direction.
  • the two electrodes are each formed, in general, of an independent array ofnano- and/or micro-scale elements.
  • the electrodes 134, 136 may be treated (e.g., with a plasma) or coated with films or with monolayers using self-assembly to adjust the workfunctions. Additionally, the electrode materials may also have energy band steps (off-sets) that act to block holes (at the cathode) or block electrons (at the anode) to assist in carrier collection.
  • energy band steps off-sets
  • sequential biasing of the first pattern with the first solution applied to the substrate may be used to obtain the electrochemical deposition of the first electrode 134 and sequential biasing of the second pattern with the second solution applied to the substrate may be used to obtain the electrochemical deposition of the second electrode 136.
  • the c-Si can be etched for the counter- electrode elements as shown in Figure 23E, a seed layer can be applied having a thickness of about lOOnm as shown in Figure 23F and the counter-electrode element is deposited, for example, by electrodeposition.
  • the actual SPC step may be done before or after the creation of the trenches used for the fabrication of the counter-electrode elements.
  • This figure shows high work function Ni counter-electrode elements, as an example. Since the first electrode was taken to be the cathode in Figure 23E, the counter- electrode can be composed of a high work function material, such as Ni or p-Si. The latter may be created by another application of a VLS catalyst layer at the bottom of the trenches which will house the anode and subsequent VLS deposition.
  • SISPC thereby removing impurities that may affect photo-carrier collection. SISPC is then done and the result is shown Figure 24D. The remainder of the processing proceeds as discussed above. After the material to undergo SISPC (a-Si in this example) is deposited, the etching of the second set of trenches may be accomplished before or after SISPC.
  • Figure 27D shows anodization being used to turn the second metal layer areas adjacent to the completed set of trenches into an insulating region.
  • Figure 27E shows Ni, as an example, being electro-deposited thereby forming the first set of electrode elements. Since Ni was chosen in this example, these elements constitute the anode.
  • Figure 27F shows the trenches being completed for the counter-electrode elements and being filled.
  • Al is shown as an exemplary low work function material.
  • Figures 27G and 27H depict the resist removal and the active layer positioning. Here the deposition of Si, which may be a-Si or polycrystalline, is shown, as an example. If the former is used, then Ni may be used for SPC. In that alternative, Al would be filled into the second set of trenches after SPC or would not be used for the low work function cathode material.
  • the completed structure is shown in Figure 27H.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne des structures photovoltaïques à collecte latérale comprenant des microéléments et des nanoéléments de collecte, utilisés pour collecter des porteuses photoproduites. Selon un mode de réalisation de l'invention, les éléments de collecte sont mis en réseau sur un substrat conducteur. Dans d'autres versions, les éléments de collecte sont sensiblement perpendiculaires au substrat conducteur. Dans un autre mode de réalisation, les éléments à l'échelle micro ou nano de collecte ne sont pas en contact direct physique et électrique avec le substrat conducteur. Dans une autre version, les deux électrodes cathode et anode sont mises en réseau de manière latérale. Dans une autre version, les éléments de collecte d'une électrode sont un matériau composite, un conducteur étant séparé par un élément isolant, lequel fait partie de chaque élément collecteur, à partir de l'électrode opposée résidant sur le substrat. Dans un autre mode de réalisation de l'invention, l'ensemble d'une structure d'électrode est un matériau composite contenant à la fois les éléments de collecte de l'anode et de la cathode pour la collecte. Un matériau actif est positionné parmi les éléments collecteurs.
PCT/US2008/068446 2007-06-26 2008-06-26 Photovoltaïques à collecte latérale WO2009003150A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/666,768 US20110023955A1 (en) 2007-06-26 2008-06-26 Lateral collection photovoltaics
EP08781048A EP2171763A2 (fr) 2007-06-26 2008-06-26 Photovoltaïques à collecte latérale

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US94625007P 2007-06-26 2007-06-26
US60/946,250 2007-06-26
USPCT/US2008/050780 2008-01-10
PCT/US2008/050780 WO2008086482A2 (fr) 2007-01-10 2008-01-10 Structures photovoltaïques à zone collectrice latérale
US11/972,491 2008-01-10
US11/972,491 US8294025B2 (en) 2002-06-08 2008-01-10 Lateral collection photovoltaics

Publications (2)

Publication Number Publication Date
WO2009003150A2 true WO2009003150A2 (fr) 2008-12-31
WO2009003150A3 WO2009003150A3 (fr) 2010-01-28

Family

ID=40186286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/068446 WO2009003150A2 (fr) 2007-06-26 2008-06-26 Photovoltaïques à collecte latérale

Country Status (4)

Country Link
US (1) US20110023955A1 (fr)
EP (1) EP2171763A2 (fr)
KR (1) KR20100051055A (fr)
WO (1) WO2009003150A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256820A3 (fr) * 2009-05-25 2011-04-20 Nxp B.V. Dispositif photo-électronique comportant une jonction verticale p-n ou p-i-n et son procédé the fabrication
US20110220192A1 (en) * 2010-05-23 2011-09-15 Fariba Tajabadi Single-sided dye-sensitized solar cells having a vertical patterned structure
WO2011134464A1 (fr) * 2010-04-30 2011-11-03 Humboldt-Universität Zu Berlin Dispositif de génération de rayonnement électromagnétique
EP2408036A1 (fr) * 2010-07-16 2012-01-18 Hitachi, Ltd. Dispositif répondant à un rayonnement électromagnétique
WO2016178571A1 (fr) * 2015-05-04 2016-11-10 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Dispositif et procédé permettant de fabrication de structures à rapport d'aspect élevé
EP3157063A1 (fr) * 2015-10-16 2017-04-19 Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives Cellule photovoltaïque pour serre agricole
EP3155668A4 (fr) * 2014-06-16 2018-02-28 B.G. Negev Technologies & Applications Ltd., at Ben-Gurion University Dispositif intégré d'interpolation d'ircl en image visible

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101654555B (zh) * 2008-08-22 2013-01-09 清华大学 碳纳米管/导电聚合物复合材料的制备方法
CN101659789B (zh) * 2008-08-29 2012-07-18 清华大学 碳纳米管/导电聚合物复合材料的制备方法
WO2010144551A2 (fr) * 2009-06-10 2010-12-16 Applied Materials, Inc. Cellules solaires à base de nanotubes de carbone
JP5299105B2 (ja) * 2009-06-16 2013-09-25 ソニー株式会社 二酸化バナジウムナノワイヤとその製造方法、及び二酸化バナジウムナノワイヤを用いたナノワイヤデバイス
EP2483919B1 (fr) * 2009-10-01 2021-04-28 Northeastern University Procédé de fabrication d'interconnexions à l'échelle nanométrique
US10069459B1 (en) * 2013-10-21 2018-09-04 University Of South Florida Solar cells having internal energy storage capacity
DE102014100627A1 (de) * 2014-01-21 2015-07-23 Osram Oled Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelementes
EP3254316B1 (fr) * 2015-02-04 2019-04-03 Kordsa Teknik Tekstil Anonim Sirketi Fil photovoltaïque et son procédé de production
US9911660B2 (en) * 2016-04-26 2018-03-06 Lam Research Corporation Methods for forming germanium and silicon germanium nanowire devices
US9722125B1 (en) 2016-06-30 2017-08-01 International Business Machines Corporation Radiation sensor, method of forming the sensor and device including the sensor
JP6666285B2 (ja) * 2017-03-03 2020-03-13 株式会社東芝 放射線検出器
TWI661599B (zh) * 2017-12-04 2019-06-01 鈺邦科技股份有限公司 鋰電池結構及其鋰電池負電極箔
CN111525032A (zh) * 2020-04-06 2020-08-11 杭州纤纳光电科技有限公司 一种二维网状背接触式钙钛矿太阳能电池及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040109666A1 (en) * 2002-12-10 2004-06-10 John Kim Optoelectronic devices employing fibers for light collection and emission
US20050098204A1 (en) * 2003-05-21 2005-05-12 Nanosolar, Inc. Photovoltaic devices fabricated from nanostructured template
EP1703569A2 (fr) * 2005-03-16 2006-09-20 General Electric Company Cellules photovoltaiques inorganiques a haut rendement améliorés par des nanotiges

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999283A (en) * 1975-06-11 1976-12-28 Rca Corporation Method of fabricating a photovoltaic device
US4668840A (en) * 1984-06-29 1987-05-26 Sanyo Electric Co., Ltd. Photovoltaic device
US5147826A (en) * 1990-08-06 1992-09-15 The Pennsylvania Research Corporation Low temperature crystallization and pattering of amorphous silicon films
US5275851A (en) * 1993-03-03 1994-01-04 The Penn State Research Foundation Low temperature crystallization and patterning of amorphous silicon films on electrically insulating substrates
US5994164A (en) * 1997-03-18 1999-11-30 The Penn State Research Foundation Nanostructure tailoring of material properties using controlled crystallization
CA2306384A1 (fr) * 1997-10-14 1999-04-22 Patterning Technologies Limited Procede de formation d'un dispositif electronique
AU753205B2 (en) * 1998-05-29 2002-10-10 Catalysts & Chemicals Industries Co., Ltd. Method of manufacturing photoelectric cell and oxide semiconductor for photoelectric cell
CA2375138A1 (fr) * 1999-06-03 2000-12-14 The Penn State Research Foundation Matieres a reseau de colonnes de porosite de surface deposees en film mince
ATE365223T1 (de) * 1999-12-20 2007-07-15 Penn State Res Found Aufgebrachte dünne filme und ihr gebrauch in nachweis, anheftung und biomedizinischen anwendungen
US6919119B2 (en) * 2000-05-30 2005-07-19 The Penn State Research Foundation Electronic and opto-electronic devices fabricated from nanostructured high surface to volume ratio thin films
US7122790B2 (en) * 2000-05-30 2006-10-17 The Penn State Research Foundation Matrix-free desorption ionization mass spectrometry using tailored morphology layer devices
CA2442985C (fr) * 2001-03-30 2016-05-31 The Regents Of The University Of California Procede de realisation de nanostructures et de nanocables, et dispositifs etablis a partir de ce type d'equipement
US7259324B2 (en) * 2001-12-05 2007-08-21 Konarka Technologies, Inc. Photovoltaic solar cell
US20070251570A1 (en) * 2002-03-29 2007-11-01 Konarka Technologies, Inc. Photovoltaic cells utilizing mesh electrodes
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US7253017B1 (en) * 2002-06-22 2007-08-07 Nanosolar, Inc. Molding technique for fabrication of optoelectronic devices
US6852920B2 (en) * 2002-06-22 2005-02-08 Nanosolar, Inc. Nano-architected/assembled solar electricity cell
US7291782B2 (en) * 2002-06-22 2007-11-06 Nanosolar, Inc. Optoelectronic device and fabrication method
US6946597B2 (en) * 2002-06-22 2005-09-20 Nanosular, Inc. Photovoltaic devices fabricated by growth from porous template
EP1537187B1 (fr) * 2002-09-05 2012-08-15 Nanosys, Inc. Especes organiques facilitant le transfert de charge depuis ou vers des nanostructures
WO2004023527A2 (fr) * 2002-09-05 2004-03-18 Nanosys, Inc. Compositions et dispositifs photovoltaiques a base de nanostructures et de nanocomposites
CN100584921C (zh) * 2002-09-05 2010-01-27 奈米系统股份有限公司 促进电荷转移至纳米结构或自纳米结构转移出电荷的有机物
US20050126628A1 (en) * 2002-09-05 2005-06-16 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US7067867B2 (en) * 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
US7378347B2 (en) * 2002-10-28 2008-05-27 Hewlett-Packard Development Company, L.P. Method of forming catalyst nanoparticles for nanowire growth and other applications
US7253014B2 (en) * 2002-11-19 2007-08-07 William Marsh Rice University Fabrication of light emitting film coated fullerenes and their application for in-vivo light emission
US7056409B2 (en) * 2003-04-17 2006-06-06 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US7074294B2 (en) * 2003-04-17 2006-07-11 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US7511217B1 (en) * 2003-04-19 2009-03-31 Nanosolar, Inc. Inter facial architecture for nanostructured optoelectronic devices
US7462774B2 (en) * 2003-05-21 2008-12-09 Nanosolar, Inc. Photovoltaic devices fabricated from insulating nanostructured template
DE10326546A1 (de) * 2003-06-12 2005-01-05 Siemens Ag Organische Solarzelle mit einer Zwischenschicht mit asymmetrischen Transporteigenschaften
WO2005017962A2 (fr) * 2003-08-04 2005-02-24 Nanosys, Inc. Systeme et procede de production de composites nanocables et substrats electroniques fabriques a partir de ceux-ci
US7067328B2 (en) * 2003-09-25 2006-06-27 Nanosys, Inc. Methods, devices and compositions for depositing and orienting nanostructures
US6987071B1 (en) * 2003-11-21 2006-01-17 Nanosolar, Inc. Solvent vapor infiltration of organic materials into nanostructures
US20060060238A1 (en) * 2004-02-05 2006-03-23 Advent Solar, Inc. Process and fabrication methods for emitter wrap through back contact solar cells
US20070163638A1 (en) * 2004-02-19 2007-07-19 Nanosolar, Inc. Photovoltaic devices printed from nanostructured particles
US7306823B2 (en) * 2004-09-18 2007-12-11 Nanosolar, Inc. Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
US7045205B1 (en) * 2004-02-19 2006-05-16 Nanosolar, Inc. Device based on coated nanoporous structure
EP1738378A4 (fr) * 2004-03-18 2010-05-05 Nanosys Inc Condensateurs a base de surface de nanofibres
US7227066B1 (en) * 2004-04-21 2007-06-05 Nanosolar, Inc. Polycrystalline optoelectronic devices based on templating technique
CA2564220A1 (fr) * 2004-04-30 2005-12-15 Nanosys, Inc. Systemes et procedes de croissance et de culture de nanofils
WO2006016914A2 (fr) * 2004-07-07 2006-02-16 Nanosys, Inc. Procedes de croissance de nanofils
EP1622212B1 (fr) * 2004-07-29 2010-04-21 Konarka Technologies, Inc. Porcédé pour couvrir des électrodes nanostructurées
US8309843B2 (en) * 2004-08-19 2012-11-13 Banpil Photonics, Inc. Photovoltaic cells based on nanoscale structures
US20060112983A1 (en) * 2004-11-17 2006-06-01 Nanosys, Inc. Photoactive devices and components with enhanced efficiency
US7466376B2 (en) * 2005-03-22 2008-12-16 Konarka Technologies, Inc. Photovoltaic cell
US8344241B1 (en) * 2005-08-22 2013-01-01 Q1 Nanosystems Corporation Nanostructure and photovoltaic cell implementing same
US8314327B2 (en) * 2005-11-06 2012-11-20 Banpil Photonics, Inc. Photovoltaic cells based on nano or micro-scale structures
US8816191B2 (en) * 2005-11-29 2014-08-26 Banpil Photonics, Inc. High efficiency photovoltaic cells and manufacturing thereof
US20080023067A1 (en) * 2005-12-27 2008-01-31 Liangbing Hu Solar cell with nanostructure electrode
US8791359B2 (en) * 2006-01-28 2014-07-29 Banpil Photonics, Inc. High efficiency photovoltaic cells
JP2009532851A (ja) * 2006-02-16 2009-09-10 ソレクサント・コーポレイション ナノ粒子増感ナノ構造太陽電池
WO2008054845A2 (fr) * 2006-03-23 2008-05-08 Solexant Corporation Dispositif photovoltaïque contenant des nanotubes de carbone sensibilisés par nanoparticules
US8017860B2 (en) * 2006-05-15 2011-09-13 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
US9105776B2 (en) * 2006-05-15 2015-08-11 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials
DE102006027737A1 (de) * 2006-06-10 2007-12-20 Hahn-Meitner-Institut Berlin Gmbh Einseitig kontaktierte Solarzelle mit Durchkontaktierungen und Verfahren zur Herstellung
US7491376B2 (en) * 2006-06-12 2009-02-17 Newcyte, Inc. Chemical derivatization of silica coated fullerenes and use of derivatized silica coated fullerenes
US20070289627A1 (en) * 2006-06-20 2007-12-20 University Of Kentucky Research Foundation Nanoscale solar cell with vertical and lateral junctions
US20080023066A1 (en) * 2006-07-28 2008-01-31 Unidym, Inc. Transparent electrodes formed of metal electrode grids and nanostructure networks
US8716594B2 (en) * 2006-09-26 2014-05-06 Banpil Photonics, Inc. High efficiency photovoltaic cells with self concentrating effect
US7786024B2 (en) * 2006-11-29 2010-08-31 Nanosys, Inc. Selective processing of semiconductor nanowires by polarized visible radiation
WO2008085813A2 (fr) * 2007-01-03 2008-07-17 Nanosys, Inc, Et Al. Procédés d'élaboration de nanomotifs et production de nanostructureurs
US7999176B2 (en) * 2007-05-08 2011-08-16 Vanguard Solar, Inc. Nanostructured solar cells
US8071179B2 (en) * 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
US7919400B2 (en) * 2007-07-10 2011-04-05 Stion Corporation Methods for doping nanostructured materials and nanostructured thin films
US8614396B2 (en) * 2007-09-28 2013-12-24 Stion Corporation Method and material for purifying iron disilicide for photovoltaic application
US20090087939A1 (en) * 2007-09-28 2009-04-02 Stion Corporation Column structure thin film material using metal oxide bearing semiconductor material for solar cell devices
US8106289B2 (en) * 2007-12-31 2012-01-31 Banpil Photonics, Inc. Hybrid photovoltaic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040109666A1 (en) * 2002-12-10 2004-06-10 John Kim Optoelectronic devices employing fibers for light collection and emission
US20050098204A1 (en) * 2003-05-21 2005-05-12 Nanosolar, Inc. Photovoltaic devices fabricated from nanostructured template
EP1703569A2 (fr) * 2005-03-16 2006-09-20 General Electric Company Cellules photovoltaiques inorganiques a haut rendement améliorés par des nanotiges

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256820A3 (fr) * 2009-05-25 2011-04-20 Nxp B.V. Dispositif photo-électronique comportant une jonction verticale p-n ou p-i-n et son procédé the fabrication
WO2011134464A1 (fr) * 2010-04-30 2011-11-03 Humboldt-Universität Zu Berlin Dispositif de génération de rayonnement électromagnétique
US8987713B2 (en) 2010-04-30 2015-03-24 Humboldt-Universitat Zu Berlin Arrangement for generating electromagnetic radiation
US20110220192A1 (en) * 2010-05-23 2011-09-15 Fariba Tajabadi Single-sided dye-sensitized solar cells having a vertical patterned structure
EP2408036A1 (fr) * 2010-07-16 2012-01-18 Hitachi, Ltd. Dispositif répondant à un rayonnement électromagnétique
EP3155668A4 (fr) * 2014-06-16 2018-02-28 B.G. Negev Technologies & Applications Ltd., at Ben-Gurion University Dispositif intégré d'interpolation d'ircl en image visible
US10033946B2 (en) 2014-06-16 2018-07-24 B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University SWIR to visible image up-conversion integrated device
CN107710473A (zh) * 2015-05-04 2018-02-16 荷兰应用自然科学研究组织Tno 制造高纵横比结构的装置和方法
WO2016178571A1 (fr) * 2015-05-04 2016-11-10 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Dispositif et procédé permettant de fabrication de structures à rapport d'aspect élevé
US10923724B2 (en) 2015-05-04 2021-02-16 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Device and method of manufacturing high aspect ratio structures
CN107710473B (zh) * 2015-05-04 2021-08-03 荷兰应用自然科学研究组织Tno 制造高纵横比结构的装置和方法
EP3157063A1 (fr) * 2015-10-16 2017-04-19 Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives Cellule photovoltaïque pour serre agricole
FR3042643A1 (fr) * 2015-10-16 2017-04-21 Commissariat Energie Atomique Cellule photovoltaique pour serre agricole

Also Published As

Publication number Publication date
KR20100051055A (ko) 2010-05-14
EP2171763A2 (fr) 2010-04-07
WO2009003150A3 (fr) 2010-01-28
US20110023955A1 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
US9634163B2 (en) Lateral collection photovoltaics
US20110023955A1 (en) Lateral collection photovoltaics
Yu et al. Design and fabrication of silicon nanowires towards efficient solar cells
TWI381536B (zh) 微奈米結構pn二極體陣列薄膜太陽能電池及其製作方法
US20110248315A1 (en) Structured pillar electrodes
Lin et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function
KR101636750B1 (ko) 프린팅­기반 어셈블리에 의해 제조되는 광학 시스템
US8344241B1 (en) Nanostructure and photovoltaic cell implementing same
CN101132028B (zh) 单个共形结纳米线光伏器件
US6919119B2 (en) Electronic and opto-electronic devices fabricated from nanostructured high surface to volume ratio thin films
Zhang et al. Large-scale fabrication of silicon nanowires for solar energy applications
US20090050204A1 (en) Photovoltaic device using nanostructured material
US20110214709A1 (en) Nanostructure and photovoltaic cell implementing same
WO2008047847A1 (fr) Encapsulation et transfert de structures de dimensions basses
JP2015216379A (ja) ナノワイヤ構造を製造する方法
KR101542249B1 (ko) 기판의 재사용이 가능한 태양 전지
KR101027493B1 (ko) 와이어 어레이를 이용한 태양광 전지 및 그 제조 방법
WO2008086482A9 (fr) Structures photovoltaïques à zone collectrice latérale
Peksu et al. Towards the fabrication of third generation solar cells on amorphous, flexible and transparent substrates with well-ordered and disordered Si-nanowires/pillars
KR101132268B1 (ko) 플렉서블 광전변환 소자 및 이의 제조방법
KR20110129629A (ko) 나노와이어 구조의 태양전지 및 제조방법
KR101830536B1 (ko) 미세 구조가 형성된 pdms 스탬프 롤을 이용한 마이크로 구조를 갖는 태양 전지의 제조 방법 및 이에 따른 태양 전지
Chern et al. Ordered silicon nanowire array based solar cells produced by metal assisted chemical etching
KR20100128194A (ko) 표면 플라즈몬 효과를 이용한 태양 전지 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08781048

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008781048

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107001644

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12666768

Country of ref document: US