WO2009099209A1 - 放射性硝酸塩廃液処理装置 - Google Patents
放射性硝酸塩廃液処理装置 Download PDFInfo
- Publication number
- WO2009099209A1 WO2009099209A1 PCT/JP2009/052097 JP2009052097W WO2009099209A1 WO 2009099209 A1 WO2009099209 A1 WO 2009099209A1 JP 2009052097 W JP2009052097 W JP 2009052097W WO 2009099209 A1 WO2009099209 A1 WO 2009099209A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tank
- sludge
- denitrification
- waste liquid
- radioactive
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/302—Nitrification and denitrification treatment
- C02F3/305—Nitrification and denitrification treatment characterised by the denitrification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2853—Anaerobic digestion processes using anaerobic membrane bioreactors
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
- G21F9/18—Processing by biological processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2315/00—Details relating to the membrane module operation
- B01D2315/06—Submerged-type; Immersion type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/006—Radioactive compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
Definitions
- the present invention relates to a radioactive nitrate waste liquid treatment apparatus capable of removing nitric acid contained in waste water.
- Nitrate waste liquid generated from nuclear facilities such as reprocessing factories is highly concentrated (salt concentration of 1% or more) and radioactive, so it cannot be discharged as it is, and is finally molded into cemented solids. It is supposed to be buried.
- Methods for treating nitrate include an electroreduction method, a chemical reduction method, a bioreduction method, and the like.
- the electroreduction method has problems such as inhibition by heavy metals and generation of ammonia.
- the chemical reduction method has problems such as exothermic reaction and generation of ammonia.
- Patent Document 1 a method of treating nitrate by biological treatment has been studied (Patent Document 1).
- Patent Document 1 uses only one type of carbon source, there is a problem that the amount of surplus sludge generated with the nitric acid reduction treatment is increased and the secondary waste disposal cost is increased. .
- FIG. 6 is a schematic diagram showing the configuration of a conventional radioactive nitrate waste liquid treatment apparatus using living organisms.
- a conventional radioactive nitrate waste liquid treatment apparatus 100 includes a denitrification tank 102 for reducing nitric acid in nitrate waste liquid 101 generated from a nuclear power facility (not shown) to nitrogen gas, and a denitrified denitrification liquid 103.
- the denitrification tank 102 contains activated sludge containing a large amount of denitrification bacteria (not shown), and nitrate ions in the nitric acid waste liquid in the denitrification tank 102 are expressed by the following formula (1) by the action of anaerobic microorganisms (denitrification bacteria). ) To be reduced to nitrogen gas (N 2 ) and removed from the nitric acid waste solution. At this time, for example, methanol and a pH adjusting agent 120 are supplied to the denitrification tank 102 as the carbon source 121. Further, the inside of the denitrification tank 102 is stirred by a stirrer 110. NO 3 ⁇ + 5 / 6CH 3 OH ⁇ 1 / 2N 2 + 5 / 6CO 2 + 7 / 6H 2 O + OH ⁇ (1)
- the re-aeration liquid 105 is sent from the re-aeration tank 104 to the subsequent process (not shown) as the processing liquid 107 through the precipitation tank 108.
- the sludge 106 that has settled in the sedimentation tank 108 is recovered as excess sludge 131 by the circulation pump 111.
- Part of the sludge 106 that has settled in the sedimentation tank 108 is returned to the denitrification tank 102 via the return sludge supply line 112 and reused. Sludge that is not reused is pulled out of the system as surplus sludge 131 and sent to a disposal step (not shown).
- Patent Document 2 there is a method and apparatus for treating nitrate-containing waste liquid with multiple treatment tanks that include microbial treatment steps for reducing nitrate nitrogen and nitrite nitrogen to nitrogen by anaerobic denitrifying bacteria in microorganism-containing sludge.
- the concentration of nitrate in the nitrate waste liquid 101 is low (the salt concentration is less than 1%), the denitrifying bacteria are not killed, but the nitrate in the nitrate waste liquid 101 When the concentration of is high (for example, about 1 to 7%), there is a problem that the denitrifying bacteria may be killed due to an increase in pH accompanying the biological denitrification reaction.
- the nitrate concentration in the nitrate waste liquid 101 is high (for example, about 1 to 7%), water is leached out from the living body due to the increase in osmotic pressure, and the organism cannot be maintained. There is a problem that the sludge flocs become finer and the sludge 106 does not settle in the settling tank 108 and, as a result, flows out to the rear side together with the treatment liquid 107.
- the carbon source 121 supplied in the denitrification tank 102 for example, organic acid such as acetic acid or saccharides
- the growth of microorganisms occurs, the amount of surplus sludge 131 generated increases, and the amount of disposal increases. There is a problem.
- an object of the present invention is to provide a radioactive nitrate waste liquid treatment apparatus that is installed in a radiation control area and that can efficiently microbially treat waste liquid having a high nitrate concentration.
- the first invention of the present invention for solving the above-described problem is that an anaerobic microorganism that adsorbs or absorbs a radioactive substance in a nitrate waste liquid containing nitric acid and a radioactive substance and reduces the nitric acid to nitrogen gas.
- a radioactive nitrate waste liquid treatment apparatus comprising: a denitrification tank that contains activated sludge that grows; and a re-aeration tank that aeration mixes the denitrification treatment liquid treated in the denitrification tank with the activated sludge in which aerobic microorganisms grow.
- a sludge dissolution tank for dissolving excess sludge discharged from the denitrification tank and the re-aeration tank, and supplying the sludge dissolution agent to the sludge dissolution tank to dissolve the excess sludge,
- the radioactive nitrate waste liquid treatment apparatus is characterized in that it is supplied to the denitrification tank as a source.
- the second invention is the radioactive nitrate waste liquid treatment apparatus according to the first invention, wherein the sludge solubilizer is peracetic acid or a nitrate waste liquid having a pH of 12 or more.
- the third invention adsorbs or absorbs the radioactive substance in the nitrate waste liquid containing nitric acid and radioactive substance, and also contains a denitrification tank that contains activated sludge in which anaerobic microorganisms that reduce the nitric acid to nitrogen gas grow, A denitrification treatment liquid treated in the denitrification tank, a radioactive nitrate waste liquid treatment apparatus having a re-aeration tank for aeration mixing with activated sludge on which aerobic microorganisms grow, wherein the denitrification tank and the re-aeration tank are discharged.
- a sludge dissolution tank for dissolving the excess sludge to be supplied, supplying peracetic acid to the sludge dissolution tank to dissolve the excess sludge, supplying the sludge melt as a carbon source to the denitrification tank, and It exists in the radioactive nitrate waste liquid processing apparatus characterized by supplying to a denitrification tank.
- a fourth invention is a denitrification tank that accommodates activated sludge in which anaerobic microorganisms that adsorb or absorb the radioactive substance in a nitrate waste liquid containing nitric acid and radioactive substance and reduce the nitric acid to nitrogen gas grow;
- a sludge dissolution tank for dissolving the excess sludge to be supplied, supplying nitrate waste liquid having a pH of 12 or more to the sludge dissolution tank to dissolve the excess sludge, and supplying the sludge melt as a carbon source to the denitrification tank
- a radioactive nitrate waste liquid treatment apparatus characterized in that the nitrate waste liquid is supplied to a denitrification tank.
- the denitrification tank supplies a pH adjuster for adjusting the pH of the nitrate waste liquid, and the desulfurization treated with the activated sludge.
- a first solid-liquid separation means for separating the nitrogen solution into a solid content including sludge and a denitrification treatment liquid; and a lower side of the first solid-liquid separation means, wherein the denitrification tank contains oxygen.
- a second solid-liquid separation means for further separating the denitrification treatment liquid treated with the activated sludge into excess sludge and treatment liquid.
- the radioactive nitrate waste liquid treatment apparatus includes an air supply means provided on a lower side of the second solid-liquid separation means and for supplying air into the re-aeration tank.
- a sixth invention is the radioactive nitrate waste liquid treatment apparatus according to any one of the first to fifth inventions, wherein the pH of the denitrification liquid in the denitrification tank is 7.0 to 10.0. .
- a seventh invention in the first or second invention, nitrogen gas and carbon dioxide produced by the reaction of the aerobic microorganisms with the nitric acid in the denitrification liquid are supplied to the denitrification tank. It exists in the radioactive nitrate waste liquid processing apparatus characterized by having the gas circulation line to circulate.
- the eighth invention is the radioactive nitrate waste liquid treatment apparatus according to the fifth invention, wherein the first solid-liquid separation means and the second solid-liquid separation means are solid-liquid separation membranes.
- a total organic carbon measuring device for analyzing organic carbon in the nitrate waste liquid discharged from the sludge dissolution tank, and a nitrogen compound in the nitrate waste liquid discharged from the sludge dissolution tank And a total amount of nitrogen measuring device for measuring the amount of nitrogen in the radioactive nitrate waste liquid treatment device.
- an adjustment tank is provided upstream of the denitrification tank, and the adjustment tank includes an electric conductivity (EC) meter for measuring electric conductivity.
- EC electric conductivity
- a radioactive nitrate comprising: an industrial water introduction line; and an industrial water supply adjustment valve which is interposed in the industrial water introduction line and adjusts the industrial water supply amount based on the measured value of the electric conductivity meter. It is in the waste liquid treatment equipment.
- a part of the excess sludge is supplied to the sludge dissolution tank, where it is decomposed using peracetic acid or the like as the sludge solubilizer, thereby killing the grown microorganisms and the killed microorganisms are organic matter. Therefore, it can be used as a carbon source to be supplied to the denitrification tank.
- the denitrification tank has a first solid-liquid separation means for separating the denitrification liquid treated with activated sludge into a solid content containing sludge and a denitrification treatment liquid, and the renitrification tank treated with the re-aeration tank. Since it has the 2nd solid-liquid separation means which further separates aeration liquid into solid content containing sludge, and re-aeration processing liquid, it prevents that refined sludge flows out with processing liquid, respectively. Can do.
- FIG. 1 is a conceptual diagram showing a radioactive nitrate waste liquid treatment apparatus according to Embodiment 1 of the present invention.
- FIG. 2 is a schematic diagram showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 2 of the present invention.
- FIG. 3 is a schematic view showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 3 of the present invention.
- FIG. 4 is a schematic diagram showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 4 of the present invention.
- FIG. 5 is a schematic diagram showing a configuration of a biological treatment system using a radioactive nitrate waste liquid treatment apparatus according to Embodiment 5 of the present invention.
- FIG. 6 is a schematic diagram showing the configuration of a conventional radioactive nitrate waste liquid treatment apparatus using living organisms.
- FIG. 1 is a conceptual diagram showing a radioactive nitrate waste liquid treatment apparatus according to Embodiment 1 of the present invention.
- the radioactive nitrate waste liquid treatment apparatus 10A according to the present embodiment adsorbs or absorbs the radioactive substance in the nitrate waste liquid 11 containing nitric acid and radioactive substance, and reduces the nitric acid to nitrogen gas.
- a radioactive nitrate waste liquid treatment apparatus comprising a sludge dissolution tank 81 for dissolving excess sludge 26A, 26B discharged from the denitrification tank 12 and the re-aeration tank 14, and the sludge dissolution tank 81 with a sludge dissolution agent.
- the peracetic acid 80 is supplied to dissolve excess sludge, and the sludge solution is supplied to the denitrification tank 12 as the carbon source 22.
- the denitrification tank 12 supplies pH adjusting means (not shown) for supplying a pH adjusting agent 21 for adjusting the pH of the nitrate waste liquid 11, and carbon source supply means (not shown) for supplying the carbon source 22 to the denitrification tank 12.
- a first solid-liquid separation membrane 25 which is a first solid-liquid separation means for separating the denitrification liquid 23 treated with the activated sludge into a solid containing sludge (excess sludge 26A) and a treatment liquid.
- a gas not provided with oxygen in the denitrification tank 12 for example, one or both of nitrogen gas (N 2 ) and carbon dioxide gas (CO 2 ) provided on the lower side of the first solid-liquid separation membrane 25.
- the re-aeration tank 14 re-aerates the denitrification treatment liquid 24 treated with the activated sludge, and the re-aeration liquid 29 and the excess sludge 26B and the re-aeration treatment liquid.
- 27 and a second solid-liquid separation membrane 28 that is further separated into In that provided in the lower side of the second solid-liquid separation membrane 28, those having an air supply means 34 for supplying air by the blower 35 to the re-aeration tank 14.
- the first solid-liquid separation membrane 25 and the second solid-liquid separation membrane 28 have gas supply means 30 and air supply means 34 below the first solid-liquid separation membrane 28, respectively, and activated sludge as the supply gas rises.
- reference numeral P 1 denotes a denitrification treatment liquid supply pump that supplies the denitrification treatment liquid 24 to the reaeration tank 14, and reference symbol P 2 denotes a reaeration treatment liquid supply pump that sends out the reaeration treatment liquid 27.
- a part of the excess sludge 26A, 26B from the denitrification tank 12 and the re-aeration tank 14 is supplied to the sludge dissolution tank 81 through the excess sludge supply line L 1 , where peracetic acid 80 is used as the sludge dissolver.
- peracetic acid 80 is used as the sludge dissolver.
- peracetic acid 80 is used as the sludge solubilizer, acetic acid is generated by the decomposition thereof, and this acetic acid is also used as the carbon source 22. Therefore, the carbon source is added separately or the addition of the carbon source is reduced. That is, what contributes to the original denitrification reaction can be obtained from excess sludge. Therefore, not only the peracetic acid 80 is used for dissolving the excess sludge, but also the decomposed organic matter and acetic acid can be used as the carbon source 22 of the denitrification tank 12, so that effective utilization can be achieved.
- chlorine or ozone can also be used as a means of killing microorganisms, but these contribute to dissolution of excess sludge, but cannot be supplied to the denitrification tank afterwards, Only an adverse effect is caused, which is not preferable.
- the first solid-liquid separation membrane 25 and the second solid-liquid separation membrane 27 are provided in the denitrification tank 12 and the re-aeration tank 14, respectively.
- the refined sludge can be completely separated from the denitrification liquid 23 or the re-aeration liquid 29. Thereby, the outflow of sludge can be prevented.
- the types of the first solid-liquid separation membrane 25 and the second solid-liquid separation membrane 28 are not particularly limited, but known solid-liquid separation membranes such as flat membranes and hollow fiber membranes are used. What should I do?
- the refined sludge is completely separated from the denitrification treatment liquid 24 or the re-aeration treatment liquid 27, so that the suspended solid (SS) concentration of the discharged re-aeration treatment liquid 27 can be reduced. it can.
- the first solid-liquid separation membrane 25 in the denitrification tank 12, it is possible to prevent the outflow of denitrification bacteria and there is no contamination with other bacteria, so only the denitrification bacteria that grow in the denitrification tank 12 Will be present in the tank in large quantities. As a result, a sufficient amount of sludge can be secured and the sludge concentration in the denitrification tank 12 can be maintained at a high concentration, so that the denitrification performance of the denitrification tank 12 can be maintained high, Compactness can be achieved.
- the sludge concentration in the denitrification tank 12 can be maintained at a high concentration, the denitrification performance of the denitrification tank 12 can be increased, and the apparatus can be made compact.
- the particulate radioactive material contained in the nitrate waste liquid 11 can also be separated from the re-aeration liquid 29.
- the radioactive concentration of the re-aeration treatment liquid 27 discharged can be reduced, and the radioactive concentration of the re-aeration treatment liquid 27 can be reduced.
- the pH in the denitrification liquid 23 of the denitrification tank 12 is preferably adjusted to 7.0 to 10.0.
- the pH is preferably 8.0 to 9.5, more preferably 8.0 to 9.0. This is because microorganisms are killed when the pH in the denitrification solution 23 exceeds 10.0. Further, if the pH is less than 7.0, the reaction rate of the reaction of reducing the nitrogen gas of the microorganism decreases.
- the denitrification liquid 23 of the denitrification tank 12 is placed on the lower side (bottom face side of the tank) of the first solid-liquid separation membrane 25 of the denitrification tank 12.
- a gas not containing oxygen gas for example, nitrogen gas
- the gas supply means 30 is because, when oxygen is present in the nitrate waste liquid 11, the reaction of reducing the nitrogen gas of anaerobic microorganisms does not proceed well.
- the denitrification liquid 23 in the denitrification tank 12 can be forcibly stirred, and the microorganisms Reaction of the reduction treatment of nitrogen gas can be promoted. Further, since nitrogen gas is supplied from the lower side of the first solid-liquid separation membrane 25 through the gas supply means 30, the activated sludge adhering to the first solid-liquid separation membrane 25 is removed. The clogging of the film can be prevented by the gas cleaning effect.
- nitrogen gas is supplied from the gas supply means, but the present invention is not limited to this, for example, carbon dioxide Any gas that does not contain oxygen, such as gas (CO 2 gas) or inert gas, may be used.
- nitrogen gas (N 2 ) and carbon dioxide gas (CO 2 ) generated in the denitrification tank 12 are released to the outside through the gas discharge line 31.
- activated sludge is initially charged with sewage sludge or sludge used in industrial wastewater treatment as seed sludge, and the activated sludge concentration is, for example, about 5,000. Those grown up to about 20,000 mg / L can be used.
- the activated sludge can be held by a granular carrier or a fibrous carrier. However, in the preferred embodiment of the present invention, it is preferable to use floating activated sludge without using these various carriers.
- the surplus sludge decomposition product can be used as the carbon source 22, but when separately supplied from the outside, an organic acid can be used.
- an organic acid can be used.
- the present invention is not limited to this.
- radioactive nitrate waste liquid treatment apparatus 10A in the radioactive nitrate waste liquid treatment apparatus 10A according to the present embodiment, sulfuric acid, hydrochloric acid, or the like can be used as the pH adjuster 21, but the present invention is not limited to this.
- a known anaerobic microorganism that exhibits denitrification performance can be used in the denitrification tank 12 as a microorganism contained in the activated sludge.
- known aerobic microorganisms for re-aeration can be used, and there is no particular limitation.
- the solid-liquid separation membrane is used as the solid-liquid separation means, but the present invention is not limited to this, and the sludge and liquid can be separated. Anything is acceptable.
- a part of the excess sludge 26A, 26B is supplied to the sludge dissolution tank 81, where peracetic acid 80 is used as the sludge dissolver.
- peracetic acid 80 is used as the sludge dissolver.
- the grown microorganisms are killed, and since the killed microorganisms are organic matter, the carbon source 22 supplied to the denitrification tank 12 can be obtained.
- peracetic acid 80 is used as the sludge solubilizer, acetic acid is generated by the decomposition thereof, and this acetic acid is also used as the carbon source 22. Therefore, the carbon source is added separately or the addition of the carbon source is reduced.
- the refined sludge is removed from the denitrification treatment liquid 24 and the re-aeration. It can be completely separated from the treatment liquid 27. For this reason, the outflow of sludge can be prevented. Further, the suspended matter (SS) concentration in the re-aeration treatment liquid 27 discharged from the re-aeration tank 14 and separately processed can be improved.
- SS suspended matter
- the sludge concentration in the denitrification tank 12 can be maintained at a high concentration, so that the denitrification performance of the denitrification tank 12 can be maintained high.
- the apparatus can be made compact.
- nitrogen gas (N 2 ) and carbon dioxide gas (CO 2 ) generated by the anaerobic microorganisms reacting with the nitric acid in the denitrification liquid 23 are circulated in the denitrification tank 12.
- a gas circulation line (not shown) is provided to be branched from a part of the gas discharge line 31.
- the nitrogen gas (N 2 ) and carbon dioxide gas (CO 2 ) generated in the denitrification tank 12 are fed to the gas supply means 30 by a blower interposed in the gas circulation line and introduced into the denitrification tank 12. Can do.
- nitrogen gas (N 2 ) and carbon dioxide gas (CO 2 ) generated by the microbial reaction in the denitrification tank 12 are recycled and reused in the denitrification tank, as shown in FIG.
- the nitrogen gas supply means and the gas purchase cost can be reduced.
- the raw water nitrate nitrogen concentration is 6700-9200 mg / L (salt concentration: 4.0-5.5%), methanol and acetic acid are used as carbon sources, and the test temperature is 20
- the denitrification test was performed at ⁇ 25 ° C. (room temperature).
- the denitrification performance is 2 kg-N / m 3 / d. Improved the denitrification performance to 7 kg-N / m 3 / d.
- FIG. 2 is a schematic diagram showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 2 of the present invention. As shown in FIG.
- the radioactive nitrate waste liquid treatment apparatus 10 ⁇ / b> B uses a nitrate waste liquid (raw solution) 83 having a pH of 12 or more as a sludge dissolving agent added to the sludge dissolving tank 81.
- a nitrate waste liquid (raw solution) 83 having a pH of 12 or more as a sludge dissolving agent added to the sludge dissolving tank 81.
- an alkaline (pH 12 or higher) nitrate waste solution (stock solution) is used instead of peracetic acid. Therefore, the excess sludges 26A and 26B are dissolved under alkaline conditions to become an organic solution.
- This solution is supplied to the denitrification tank 12 as a nitrate waste liquid 11 and the organic matter is used as a carbon source.
- nitrate waste liquid (raw solution) 83 is lowered in pH by dissolution of the sludge dissolution tank 81, and the amount of the pH adjuster 21 added in the denitrification tank 12 can be reduced.
- FIG. 3 is a schematic view showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 3 of the present invention. As shown in FIG.
- the radioactive nitrate waste liquid treatment device 10C includes a total organic carbon measuring device (TOC) 84 that analyzes organic carbon in the nitrate waste liquid 11 discharged from the sludge dissolution tank 81, and And a total nitrogen measuring device (TN) 85 that measures the amount of nitrogen in the nitrogen compound in the nitrate waste liquid 11.
- TOC total organic carbon measuring device
- TN total nitrogen measuring device
- FIG. 4 is a schematic diagram showing a configuration of a radioactive nitrate waste liquid treatment apparatus according to Embodiment 4 of the present invention. As shown in FIG.
- the radioactive nitrate waste liquid treatment apparatus 10D has a nitrate waste liquid (raw water: salt) on the upstream side of the denitrification tank 12 of the radioactive nitrate waste liquid treatment apparatus 10A according to the first embodiment shown in FIG.
- the adjusting tank 51 for supplying 50 (concentration 30 to 40%) 50 is provided.
- the adjusting tank 51 includes an electric conductivity meter (EC meter) 52 for measuring electric conductivity, an industrial water introduction line 53, and the industrial water.
- the introduction line 53 has an industrial water supply amount adjustment valve 54 for adjusting the flow rate of the diluted water based on the measured value of the electric conductivity meter 52.
- the water supplied to the adjustment tank 51 is controlled by controlling the industrial water supply amount adjustment valve 54 provided in the industrial water introduction line 53 based on the EC value measured by the electric conductivity meter (EC meter) 52 provided in the adjustment tank 51.
- the flow rate is adjusted. Specifically, when the EC value measured by the electric conductivity meter (EC meter) 52 is high, the industrial water supply amount adjustment valve 54 is opened, and the EC value measured by the electric conductivity meter (EC meter) 52 is When it is low, the industrial water supply amount adjustment valve 54 is closed.
- the radioactive nitrate waste liquid treatment apparatus 10D when the nitrate waste liquid (raw water: salt concentration 30 to 40%) is diluted and biologically treated in a high salt concentration state of, for example, about 4%, the electric conduction at this time
- the control range of the EC value measured by the meter (EC meter) 52 is preferably 50 to 70 mS / cm, more preferably 53 to 68 mS / cm.
- a nitrate waste liquid supply pump P 4 is provided in a nitric acid waste liquid supply line 55 that feeds the nitrate waste liquid (raw solution) 50 to the adjustment tank 51.
- the nitrate waste liquid supply pump P 4 is controlled to adjust the supply amount of the nitrate waste liquid (raw solution) 50 fed to the adjustment tank 51. Yes. Specifically, when the EC value measured by the electric conductivity meter (EC meter) 52 is high, the nitrate waste liquid supply pump P 4 is stopped and the nitrate waste liquid (raw solution) 50 is supplied to the adjustment tank 51.
- the nitrate waste liquid supply pump P 4 is operated to supply the nitrate waste liquid (raw solution) 50 to the adjustment tank 51.
- the concentration of the high concentration nitrate waste liquid from the treatment facility is not always constant, even if the concentration of the nitrate waste liquid (raw solution) 50 is not constant, the fluctuation of the salt concentration in the nitrate waste liquid (raw solution) 50 is changed. Since transmission to the denitrification tank 12 can be prevented, it is possible to prevent the denitrification performance from being significantly lowered when the salt concentration greatly fluctuates.
- the nitrate waste (diluent) 11 of a constant salt concentration can be supplied via the nitrate waste liquid supply pump P 5 to the denitrification tank 12, it is possible to stabilize the denitrification performance.
- the radioactive nitrate waste liquid treatment apparatus As the radioactive nitrate waste liquid treatment apparatus according to this embodiment, the radioactive nitrate waste liquid treatment apparatus according to Embodiments 1 to 4 shown in FIGS. 1 to 4 can be used, and the description thereof is omitted.
- the biological treatment system 60 according to the present embodiment performs a microbial treatment on a diluting device 62 for diluting a nitrate waste liquid (raw solution) 50 with industrial water 61 and nitrate ions in the diluted nitrate waste liquid 11.
- the sludge 65 and the treatment liquid 70 are separated from the biological treatment apparatus (the radioactive nitrate waste liquid treatment apparatus of Examples 1 to 4) 63 that performs nitrogen reduction and re-aeration, and the biological treatment liquid treated by the biological treatment apparatus 63.
- the sludge dewatering device 67 for dewatering the water in the separated sludge 65 and the incinerator 69 for incinerating the dewatered sludge 68 are included.
- the diluting device 62 is performed in the adjustment tank 51 for diluting the raw water as shown in FIG.
- the biological treatment device 63 is a radioactive nitrate waste liquid treatment device including the denitrification tank 12 having the sludge dissolution tank 81 and the re-aeration tank 14.
- the sludge dewatering device 67 dewaters excess sludge discharged from the denitrification tank and the re-aeration tank of the biological treatment device 63, and the incinerator 69 is a secondary waste discharged from the sludge dewatering device 67.
- This dehydrated sludge 68 is incinerated to form incinerated ash 71.
- secondary waste may increase because the salt concentration of water adhering to the sludge during dehydration of excess sludge is high.
- industrial water 61 is added to wash away the high salt concentration adhering water, and the washed washing water 72 is used as dilution water in the diluting device 62 for diluting the nitrate waste liquid 11. Therefore, since a part of the industrial water 61 used in the diluting device 62 is used for washing during dehydration, it is not necessary to use additional industrial water 61.
- the amount of secondary waste (incineration ash) can be reduced to about 1/2 by lowering the salt concentration of adhering water.
- the radioactive nitrate waste liquid treatment apparatus As described above, if the radioactive nitrate waste liquid treatment apparatus according to the present invention is used, the waste liquid with a high nitrate concentration discharged from nuclear facilities such as a reprocessing plant is efficiently microbially treated, and the refined sludge is combined with the treatment liquid. Each can be prevented from flowing out.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Microbiology (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Biodiversity & Conservation Biology (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Activated Sludge Processes (AREA)
- Treatment Of Sludge (AREA)
Abstract
硝酸と放射性物質とを含む硝酸塩廃液(11)中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽(12)と、該脱窒槽(12)で処理された脱窒処理液(24)を、好気性微生物が生育する活性汚泥と曝気混合する再曝気槽(14)とを有する放射性硝酸塩廃液処理装置であって、前記脱窒槽(12)及び前記再曝気槽(14)から排出される余剰汚泥(26A)、(26B)を溶解する汚泥溶解槽(81)を有してなり、該汚泥溶解槽(81)に汚泥溶解剤として過酢酸(80)を供給して余剰汚泥を溶解させ、汚泥溶解物を炭素源(22)として前記脱窒槽(12)に供給する。
Description
本発明は、排水中に含まれる硝酸を除去することが可能な放射性硝酸塩廃液処理装置に関する。
再処理工場などの原子力施設から発生する硝酸塩廃液は高濃度(塩濃度が1%以上)であると共に、放射性であるため、そのままでは放流できず、最終的にはセメント固化体などに成型して埋設処分することになっている。
近年、セメント固化体が硝酸塩を含有する場合、この硝酸塩が漏水し、周辺の地下水、土壌環境を汚染することが懸念され、硝酸塩を分解することが検討されている。
硝酸塩を処理する方法として、電気還元法、化学還元法、生物還元法などがあるが、電気還元法では、重金属のよる阻害、アンモニアの発生等の問題を有している。
また、化学還元法では、発熱反応、アンモニアの発生等の問題を有している。
また、化学還元法では、発熱反応、アンモニアの発生等の問題を有している。
一方、生物還元法では、常温常圧で処理ができると共に、アンモニアの発生もないため、生物処理により硝酸塩を処理する方法が検討されている(特許文献1)。しかし、特許文献1の方法では使用する炭素源が1種類であるために、硝酸還元処理に伴って発生する余剰汚泥量が増え、2次廃棄物処分費が増大するという課題を有している。
図6は、従来の生物を利用した放射性硝酸塩廃液処理装置の構成を示す概略図である。
図6に示すように、従来の放射性硝酸塩廃液処理装置100は、図示しない原子力施設から発生する硝酸塩廃液101中の硝酸を窒素ガスに還元処理する脱窒槽102と、脱窒された脱窒液103を活性汚泥と曝気混合する再曝気槽104と、該再曝気槽104から排出された脱窒処理液である再曝気液105を沈澱した汚泥106と処理液107とに分離する沈澱槽108とを有するものである。
図6に示すように、従来の放射性硝酸塩廃液処理装置100は、図示しない原子力施設から発生する硝酸塩廃液101中の硝酸を窒素ガスに還元処理する脱窒槽102と、脱窒された脱窒液103を活性汚泥と曝気混合する再曝気槽104と、該再曝気槽104から排出された脱窒処理液である再曝気液105を沈澱した汚泥106と処理液107とに分離する沈澱槽108とを有するものである。
前記脱窒槽102には、図示しない脱窒菌を多量に含有する活性汚泥が含まれており、該脱窒槽102において硝酸廃液中の硝酸イオンは嫌気性微生物(脱窒菌)の働きにより下記式(1)の反応で窒素ガス(N2)に還元され、硝酸廃液中から除去される。
この時、脱窒槽102には、炭素源121として例えばメタノールと、pH調整剤120が供給される。また、脱窒槽102内は攪拌機110により攪拌されている。
NO3 -+5/6CH3OH→1/2N2+5/6CO2+7/6H2O+OH-・・・(1)
この時、脱窒槽102には、炭素源121として例えばメタノールと、pH調整剤120が供給される。また、脱窒槽102内は攪拌機110により攪拌されている。
NO3 -+5/6CH3OH→1/2N2+5/6CO2+7/6H2O+OH-・・・(1)
その後、再曝気液105は再曝気槽104から沈澱槽108を経て、処理液107として図示しない後の工程に送られる。また、沈澱槽108に沈澱した汚泥106は、循環ポンプ111によって余剰汚泥131として回収される。また、沈澱槽108に沈澱した汚泥106の一部は、返送汚泥供給ライン112を介して脱窒槽102に返送され、再利用されている。再利用されない汚泥は余剰汚泥131として系外に引き抜かれ、図示しない処分工程に送られる。
また、微生物含有汚泥中の嫌気性脱窒菌により、硝酸態窒素と亜硝酸態窒素を窒素に還元するための微生物処理工程を含む複数の処理槽を持った硝酸塩含有廃液の処理方法と処理装置が利用されている(特許文献2)。
しかしながら、従来の硝酸塩廃液処理装置100では、硝酸塩廃液101中の硝酸塩の濃度が低い場合(塩濃度が1%未満)には、脱窒菌が死滅することはなかったが、硝酸塩廃液101中の硝酸塩の濃度が高濃度(例えば、1~7%程度)の場合には、生物脱窒反応に伴うpHの上昇により前記脱窒菌が死滅してしまうおそれがある、という問題がある。
また、硝酸塩廃液101中の硝酸塩の濃度が高濃度(例えば、1~7%程度)の場合には、浸透圧の上昇により生体内から水が浸出し、生態を維持できずに死滅するので、汚泥フロックの微細化が発生し、汚泥106が沈殿槽108において沈殿しなくなり、この結果、処理液107と共に後側に流出してしまう、という問題がある。
また、脱窒槽102において供給する炭素源121を変更(例えば酢酸などの有機酸や糖類等)することにより、微生物の増殖が発生し、余剰汚泥131の発生量が増大し、処分量が増加する、という問題がある。
この余剰汚泥131の発生量の増大は、原子力施設にとっては、二次廃棄物は固化体として埋設処分されるため、処分するために膨大な費用がかかる、いわゆる、二次廃棄物量を削減する必要がある、という問題がある。
また、放射性硝酸塩廃液を処理する設備は、放射線管理区域内に設置する必要があるため、その処理設備をコンパクトにする必要がある、という要望がある。
また、これと共に、二次廃棄物量を削減する必要がある、という要望がある。
さらには、放射線管理区域内に設置する微生物処理システムとしては、反応、性能の安定化を図る必要がある、という要望がある。
本発明は、前記問題に鑑み、放射線管理区域内に設置され、且つ高い硝酸塩濃度の廃液を効率的に微生物処理することができる放射性硝酸塩廃液処理装置を提供することを課題とする。
上述した課題を解決するための本発明の第1の発明は、硝酸と放射性物質とを含む硝酸塩廃液中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽と、該脱窒槽で処理された脱窒処理液を、好気性微生物が生育する活性汚泥と曝気混合する再曝気槽とを有する放射性硝酸塩廃液処理装置であって、前記脱窒槽及び前記再曝気槽から排出される余剰汚泥を溶解する汚泥溶解槽を有してなり、該汚泥溶解槽に汚泥溶解剤を供給して余剰汚泥を溶解させ、汚泥溶解物を炭素源として前記脱窒槽に供給することを特徴とする放射性硝酸塩廃液処理装置にある。
第2の発明は、第1の発明において、前記汚泥溶解剤が、過酢酸又はpH12以上の硝酸塩廃液であることを特徴とする放射性硝酸塩廃液処理装置にある。
第3の発明は、硝酸と放射性物質とを含む硝酸塩廃液中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽と、該脱窒槽で処理された脱窒処理液を、好気性微生物が生育する活性汚泥と曝気混合する再曝気槽とを有する放射性硝酸塩廃液処理装置であって、前記脱窒槽及び前記再曝気槽から排出される余剰汚泥を溶解する汚泥溶解槽を有してなり、該汚泥溶解槽に過酢酸を供給して余剰汚泥を溶解させ、汚泥溶解物を炭素源として前記脱窒槽に供給すると共に、酢酸を脱窒槽に供給することを特徴とする放射性硝酸塩廃液処理装置にある。
第4の発明は、硝酸と放射性物質とを含む硝酸塩廃液中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽と、該脱窒槽で処理された脱窒処理液を、好気性微生物が生育する活性汚泥と曝気混合する再曝気槽とを有する放射性硝酸塩廃液処理装置であって、前記脱窒槽及び前記再曝気槽から排出される余剰汚泥を溶解する汚泥溶解槽を有してなり、該汚泥溶解槽にpH12以上の硝酸塩廃液を供給して余剰汚泥を溶解させ、汚泥溶解物を炭素源として前記脱窒槽に供給すると共に、硝酸塩廃液を脱窒槽に供給することを特徴とする放射性硝酸塩廃液処理装置にある。
第5の発明は、第1乃至4のいずれか一つの発明において、前記脱窒槽が、前記硝酸塩廃液のpHを調整するpH調整剤を供給するpH調整手段と、前記活性汚泥で処理された脱窒液を、汚泥を含む固形分と脱窒処理液とに分離する第一の固液分離手段と、該第一の固液分離手段の下部側に設けられ、前記脱窒槽内に酸素を含まないガスを供給するガス供給手段とを有すると共に、前記再曝気槽が、前記活性汚泥で処理された脱窒処理液を、余剰汚泥と処理液とに更に分離する第二の固液分離手段と、該第二の固液分離手段の下部側に設けられ、前記再曝気槽内に空気を供給する空気供給手段と、を有することを特徴とする放射性硝酸塩廃液処理装置にある。
第6の発明は、第1乃至5のいずれか一つの発明において、前記脱窒槽の脱窒液のpHが、7.0~10.0であることを特徴とする放射性硝酸塩廃液処理装置にある。
第7の発明は、第1又は2の発明において、前記脱窒槽において、前記好気性微生物が前記脱窒液中の前記硝酸と反応することにより生成される窒素ガス及び二酸化炭素を前記脱窒槽に循環させるガス循環ラインを有することを特徴とする放射性硝酸塩廃液処理装置にある。
第8の発明は、第5の発明において、前記第一の固液分離手段及び前記第二の固液分離手段が、固液分離膜であることを特徴とする放射性硝酸塩廃液処理装置にある。
第9の発明は、第4の発明において、前記汚泥溶解槽から排出される硝酸塩廃液中の有機炭素を分析する全有機炭素測定装置と、前記汚泥溶解槽から排出される硝酸塩廃液中の窒素化合物における窒素の量を測定する全窒素計測装置とを有することを特徴とする放射性硝酸塩廃液処理装置にある。
第10の発明は、第1乃至9のいずれか一つの発明において、前記脱窒槽の上流側に調整槽を設けてなり、前記調整槽が、電気伝導度を測定する電気伝導(EC)計と、工業用水導入ラインと、該工業用水導入ラインに介装され、前記電気伝導計の測定値に基づいて工業用水供給量を調整する工業用水供給量調整バルブとを有することを特徴とする放射性硝酸塩廃液処理装置にある。
本発明によれば、余剰汚泥一部を汚泥溶解槽に供給し、ここで汚泥溶解剤として過酢酸等を用いて分解させることにより、増殖した微生物を死滅させると共に、該死滅させた微生物が有機物であるので、脱窒槽に供給する炭素源して用いることができる。
また、脱窒槽において、活性汚泥で処理された脱窒液を、汚泥を含む固形分と脱窒処理液とに分離する第一の固液分離手段を有すると共に、再曝気槽において処理された再曝気液を、汚泥を含む固形分と再曝気処理液とに更に分離する第二の固液分離手段とを有しているため、微細化した汚泥が処理液と共に各々流出するのを防止することができる。
10A~10D 放射性硝酸塩廃液処理装置
11 硝酸塩廃液
12 脱窒槽
14 再曝気槽
21 pH調整剤
22 炭素源
23 脱窒液
24 脱窒処理液
25 第一の固液分離手段
26A、26B 固形分(余剰汚泥)
27 再曝気処理液
28 第二の固液分離手段
29 再曝気液
30 ガス供給手段
31 ガス排出ライン
34 空気供給手段
35 ブロワ
51 調整槽
52 電気伝導計(EC計)
53 工業用水導入ライン
54 工業用水供給量調整バルブ
55 硝酸廃液供給ライン
61 工業用水
62 希釈装置
63 生物処理装置
65 汚泥
67 汚泥脱水装置
68 脱水汚泥
69 焼却装置
70 処理液
71 焼却灰
72 洗浄水
81 汚泥溶解槽
11 硝酸塩廃液
12 脱窒槽
14 再曝気槽
21 pH調整剤
22 炭素源
23 脱窒液
24 脱窒処理液
25 第一の固液分離手段
26A、26B 固形分(余剰汚泥)
27 再曝気処理液
28 第二の固液分離手段
29 再曝気液
30 ガス供給手段
31 ガス排出ライン
34 空気供給手段
35 ブロワ
51 調整槽
52 電気伝導計(EC計)
53 工業用水導入ライン
54 工業用水供給量調整バルブ
55 硝酸廃液供給ライン
61 工業用水
62 希釈装置
63 生物処理装置
65 汚泥
67 汚泥脱水装置
68 脱水汚泥
69 焼却装置
70 処理液
71 焼却灰
72 洗浄水
81 汚泥溶解槽
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
本発明による実施例に係る放射性硝酸塩廃液処理装置について、図面を参照して説明する。
図1は、本発明の実施例1に係る放射性硝酸塩廃液処理装置を示す概念図である。
図1に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Aは、硝酸と放射性物質とを含む硝酸塩廃液11中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽12と、該脱窒槽12で処理された脱窒処理液24を、好気性微生物が生育する活性汚泥と曝気混合する再曝気槽14とを有する放射性硝酸塩廃液処理装置であって、前記脱窒槽12及び前記再曝気槽14から排出される余剰汚泥26A、26Bを溶解する汚泥溶解槽81を有してなり、該汚泥溶解槽81に汚泥溶解剤として過酢酸80を供給して余剰汚泥を溶解させ、汚泥溶解物を炭素源22として前記脱窒槽12に供給するものである。
図1は、本発明の実施例1に係る放射性硝酸塩廃液処理装置を示す概念図である。
図1に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Aは、硝酸と放射性物質とを含む硝酸塩廃液11中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽12と、該脱窒槽12で処理された脱窒処理液24を、好気性微生物が生育する活性汚泥と曝気混合する再曝気槽14とを有する放射性硝酸塩廃液処理装置であって、前記脱窒槽12及び前記再曝気槽14から排出される余剰汚泥26A、26Bを溶解する汚泥溶解槽81を有してなり、該汚泥溶解槽81に汚泥溶解剤として過酢酸80を供給して余剰汚泥を溶解させ、汚泥溶解物を炭素源22として前記脱窒槽12に供給するものである。
ここで前記脱窒槽12が、硝酸塩廃液11のpHを調整するpH調整剤21を供給するpH調整手段(図示せず)と、脱窒槽12に炭素源22を供給する炭素源供給手段(図示せず)と、前記活性汚泥で処理された脱窒液23を汚泥(余剰汚泥26A)を含む固形分と処理液とに分離する第一の固液分離手段である第一の固液分離膜25と、該第一の固液分離膜25の下部側に設けられ、脱窒槽12内に酸素を含まないガス(例えば、窒素ガス(N2)、炭酸ガス(CO2)の何れか一方又は両方)を供給するガス供給手段30とを有すると共に、再曝気槽14が、前記活性汚泥で処理された脱窒処理液24を再曝気処理し、再曝気液29を余剰汚泥26Bと再曝気処理液27とに更に分離する第二の固液分離膜28と、該第二の固液分離手段である第二の固液分離膜28の下部側に設けられ、前記再曝気槽14内に空気をブロワ35により供給する空気供給手段34とを有するものである。
また、前記第一の固液分離膜25と第二の固液分離膜28の下部には、各々ガス供給手段30と空気供給手段34とを有し、供給ガスの上昇に伴って、活性汚泥混合液が分離膜表面を通過する際に、液のみが膜を透過して固液分離が行われる。膜の表面には分離された後の活性汚泥が付着するが、膜表面は前記供給ガス流によって常に洗浄されるため、膜表面に付着した活性汚泥は洗浄除去され、常に清浄な膜表面で固液分離を行うことが出来る。なお、図1中、符号P1は脱窒処理液24を再曝気槽14に供給する脱窒処理液供給ポンプ、符号P2は再曝気処理液27を送出する再曝気処理液供給ポンプを図示する。
また、前記第一の固液分離膜25と第二の固液分離膜28の下部には、各々ガス供給手段30と空気供給手段34とを有し、供給ガスの上昇に伴って、活性汚泥混合液が分離膜表面を通過する際に、液のみが膜を透過して固液分離が行われる。膜の表面には分離された後の活性汚泥が付着するが、膜表面は前記供給ガス流によって常に洗浄されるため、膜表面に付着した活性汚泥は洗浄除去され、常に清浄な膜表面で固液分離を行うことが出来る。なお、図1中、符号P1は脱窒処理液24を再曝気槽14に供給する脱窒処理液供給ポンプ、符号P2は再曝気処理液27を送出する再曝気処理液供給ポンプを図示する。
本実施例では、脱窒槽12と再曝気槽14からの余剰汚泥26A、26Bの一部を余剰汚泥供給ラインL1により汚泥溶解槽81に供給し、ここで汚泥溶解剤として過酢酸80を用いて分解させることにより、増殖した微生物を死滅させると共に、該死滅させた微生物が有機物であるので、脱窒槽12に、供給ポンプP3を介して供給する炭素源22として用いるようにしている。
また、汚泥溶解剤として過酢酸80を用いているので、その分解により酢酸が生成され、この酢酸も炭素源22としてなるので、別途炭素源を添加又は炭素源の添加の削減となる。
すなわち、本来の脱窒反応に寄与するものを余剰汚泥から得ることができるものとなる。よって、余剰汚泥の溶解に過酢酸80を用いるのみならず、分解物の有機物と酢酸は脱窒槽12の炭素源22として用いることができるので、有効利用を図ることができる。
なお、微生物を死滅させるものとして、過酢酸以外に、例えば塩素やオゾン等を用いることもできるが、これらは余剰汚泥の溶解には寄与するものの、その後に脱窒槽に供給することはできず、悪影響のみを与えることとなり、好ましくない。
すなわち、本来の脱窒反応に寄与するものを余剰汚泥から得ることができるものとなる。よって、余剰汚泥の溶解に過酢酸80を用いるのみならず、分解物の有機物と酢酸は脱窒槽12の炭素源22として用いることができるので、有効利用を図ることができる。
なお、微生物を死滅させるものとして、過酢酸以外に、例えば塩素やオゾン等を用いることもできるが、これらは余剰汚泥の溶解には寄与するものの、その後に脱窒槽に供給することはできず、悪影響のみを与えることとなり、好ましくない。
また、余剰汚泥は、溶解された後、炭素源として再利用され、炭酸ガスとして放出されるので、二次廃棄物の発生量の低減を図ることもできる。
さらに、本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、第一の固液分離膜25と第二の固液分離膜27とを、それぞれ脱窒槽12と再曝気槽14に設けているため、微細化した汚泥は完全に脱窒液23、又は再曝気液29と分離することができることとなる。これにより、汚泥の流出を防ぐことができる。ここで、第一の固液分離膜25と第二の固液分離膜28の種類としては特に限定されるものではないが、例えば平膜、中空糸膜等の公知の固液分離膜を用いるようにすればよい。
この結果、微細化した汚泥を脱窒処理液24、又は再曝気処理液27と完全に分離することで、排出される再曝気処理液27の浮遊物質(SS)濃度の低減化を図ることができる。
また、脱窒槽12内に第一の固液分離膜25を設置することにより、脱窒菌の流出を防止できると共に、他の菌の混入もないことから、脱窒槽12内で増殖する脱窒菌のみが大量に槽内に存在することになる。その結果、十分な量の汚泥を確保することができ、脱窒槽12内の汚泥濃度を高濃度に維持することができるため、脱窒槽12の脱窒性能を高く維持することができ、装置のコンパクト化を図ることができる。
また、脱窒槽12内の汚泥濃度を高濃度に維持することできるため、脱窒槽12の脱窒性能を高くすることができ、装置のコンパクト化を図ることができる。
また、第一の固液分離膜25及び第二の固液分離膜27を設けることにより、硝酸塩廃液11中に含まれる粒子状の放射性物質も再曝気液29から分離することができるため、外部に排出される再曝気処理液27の放射能濃度を低くすることができ、再曝気処理液27の放射能濃度の低減化を図ることができる。
また、本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、脱窒槽12の脱窒液23中のpHは、7.0~10.0に調整するのがよい。またpHを8.0~9.5、更にはpHを8.0~9.0とするのが好ましい。これは、脱窒液23中のpHが10.0を超えると、微生物が死滅するからである。また、pHが7.0未満であると、微生物の窒素ガスの還元処理の反応の反応速度が低下するためである。
また、本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、脱窒槽12の第一の固液分離膜25の下部側(槽の底面側)には、脱窒槽12の脱窒液23中に酸素ガスを含まないガス(例えば窒素ガス等)をガス供給手段30により供給するようにしている。これは、硝酸塩廃液11中に酸素が存在すると、嫌気性微生物の窒素ガスの還元処理の反応が良好に進行しないためである。
また、前記ガス供給手段30を介して脱窒槽12内の脱窒液23中に窒素ガスを供給することにより、脱窒槽12内の脱窒液23を強制的に攪拌することができ、微生物の窒素ガスの還元処理の反応を促進することができる。また、第一の固液分離膜25の下方側からガス供給手段30を介して窒素ガスを供給するようにしているので、第一の固液分離膜25に付着する活性汚泥を除去することとなり、ガス洗浄効果により膜の目詰りを防止することができる。
また、本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、ガス供給手段より窒素ガス(N2ガス)を供給するようにしているが、本発明はこれに限定されるものではなく、例えば炭酸ガス(CO2ガス)や不活性ガス等の酸素を含まないガスであればいずれでもよい。
また、本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、脱窒槽12で発生した窒素ガス(N2)、二酸化炭素ガス(CO2)はガス排出ライン31を介して外部に放出される。
また、本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、活性汚泥は、当初、下水汚泥や産業排水処理で用いられている汚泥を種汚泥として投入し、活性汚泥濃度が例えば約5,000~20,000mg/L程度に達するまで増殖させたものを用いることができる。活性汚泥は、粒状担体や繊維状担体により保持することもできるが、本発明の好適な実施の形態ではこれらの各種担体を用いず、浮遊性の活性汚泥を用いることが好ましい。
また、本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、炭素源22として、前記余剰汚泥分解物を用いることができるが、別途外部から供給する場合には、有機酸を用いることができるが、本発明はこれに限定されるものではない。
また、本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、pH調整剤21として硫酸、塩酸等を用いることができるが、本発明はこれに限定されるものではない。
本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、活性汚泥中に含まれる微生物としては、脱窒槽12では、脱窒性能が発揮される公知の嫌気性微生物を用いることができる。また再曝気槽14では再曝気用の公知の好気性微生物を用いることができ、特に限定されるものではない。
本実施例に係る放射性硝酸塩廃液処理装置10Aにおいては、固液分離手段として固液分離膜を用いているが、本発明はこれに限定されるものではなく、汚泥と液体とを分離できるようなものであればよい。
以上説明したように、本実施例に係る放射性硝酸塩廃液処理装置10Aによれば、余剰汚泥26A、26Bの一部を汚泥溶解槽81に供給し、ここで汚泥溶解剤として過酢酸80を用いて分解させることにより、増殖した微生物を死滅させると共に、該死滅させた微生物が有機物であるので、脱窒槽12に供給する炭素源22とすることができる。
また、汚泥溶解剤として過酢酸80を用いているので、その分解により酢酸が生成され、この酢酸も炭素源22としてなるので、別途炭素源を添加又は炭素源の添加の削減となる。
また、汚泥溶解剤として過酢酸80を用いているので、その分解により酢酸が生成され、この酢酸も炭素源22としてなるので、別途炭素源を添加又は炭素源の添加の削減となる。
さらに、第一の固液分離膜25及び第二の固液分離膜28を、それぞれ脱窒槽12及び再曝気槽14内に設けているため、微細化した汚泥は脱窒処理液24及び再曝気処理液27と完全に分離することができる。このため、汚泥の流出を防ぐことができる。また再曝気槽14から排出され、別途処理される再曝気処理液27中の浮遊物質(SS)濃度を改善することができる。
また、脱窒槽12内に十分な量の汚泥を確保することができるため、脱窒槽12内の汚泥濃度を高濃度に維持することできるため、脱窒槽12の脱窒性能を高く維持することができ、装置のコンパクト化を図ることができる。
また、脱窒槽12において、前記嫌気性微生物が脱窒液23中の前記硝酸と反応することにより生成される窒素ガス(N2)及び二酸化炭素ガス(CO2)を脱窒槽12内に循環させるガス循環ライン(図示せず)をガス排出ライン31の一部から分岐して設けるようにしている。
この結果、脱窒槽12で発生した窒素ガス(N2)及び二酸化炭素ガス(CO2)をガス循環ラインに介装されたブロワによりガス供給手段30に送給し、脱窒槽12に導入することができる。
これにより、脱窒槽12内の微生物反応で発生した窒素ガス(N2)、二酸化炭素ガス(CO2)を再循環させて脱窒槽内で再利用して用いることにより、図1に示すような酸素を含まないガスを供給する窒素ガス供給手段を別途設ける必要がなくなる。この結果、窒素ガス供給手段及びガス購入費を削減することができる。
これにより、脱窒槽12内の微生物反応で発生した窒素ガス(N2)、二酸化炭素ガス(CO2)を再循環させて脱窒槽内で再利用して用いることにより、図1に示すような酸素を含まないガスを供給する窒素ガス供給手段を別途設ける必要がなくなる。この結果、窒素ガス供給手段及びガス購入費を削減することができる。
[試験例]
本実施例に係る装置を用い、原水硝酸態窒素濃度が6700~9200mg/L(塩濃度:4.0~5.5%)のものを、炭素源としてメタノールと酢酸を用いて、試験温度20~25℃(室温)で脱窒試験を行った。
脱窒槽に第一の固液分離膜を設けない場合には、脱窒性能が2kg-N/m3/dであったものが、脱窒槽に第一の固液分離膜を設けた場合には、脱窒性能が7kg-N/m3/dに向上した。
脱窒槽に第一の固液分離膜を設けた場合の脱窒性能である7kg-N/m3/dを維持すると同時に、余剰汚泥の発生量を2/3以下に、また、炭素源添加量(過酢酸+酢酸)を1/2以下に低減することができた。
本実施例に係る装置を用い、原水硝酸態窒素濃度が6700~9200mg/L(塩濃度:4.0~5.5%)のものを、炭素源としてメタノールと酢酸を用いて、試験温度20~25℃(室温)で脱窒試験を行った。
脱窒槽に第一の固液分離膜を設けない場合には、脱窒性能が2kg-N/m3/dであったものが、脱窒槽に第一の固液分離膜を設けた場合には、脱窒性能が7kg-N/m3/dに向上した。
脱窒槽に第一の固液分離膜を設けた場合の脱窒性能である7kg-N/m3/dを維持すると同時に、余剰汚泥の発生量を2/3以下に、また、炭素源添加量(過酢酸+酢酸)を1/2以下に低減することができた。
本発明による実施例2に係る放射性硝酸塩廃液処理装置について、図2を参照して説明する。
本実施例に係る放射性硝酸塩廃液処理装置10Bは、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置10Aの構成と略同様であるため、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置と同一構成には同一符号を付して重複した説明は省略する。
図2は、本発明の実施例2に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。図2に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Bは、汚泥溶解槽81に添加する汚泥溶解剤としてpH12以上の硝酸塩廃液(原液)83を用いるようにしたものである。
本実施例では、過酢酸の代わりに、アルカリ性(pH12以上)の硝酸塩廃液(原液)を用いるようにしているので、余剰汚泥26A、26Bがアルカリ条件下で溶解し、有機物の溶解液となる。この溶解液は硝酸塩廃液11として脱窒槽12に供給され、有機物は炭素源として利用される。
本実施例に係る放射性硝酸塩廃液処理装置10Bは、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置10Aの構成と略同様であるため、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置と同一構成には同一符号を付して重複した説明は省略する。
図2は、本発明の実施例2に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。図2に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Bは、汚泥溶解槽81に添加する汚泥溶解剤としてpH12以上の硝酸塩廃液(原液)83を用いるようにしたものである。
本実施例では、過酢酸の代わりに、アルカリ性(pH12以上)の硝酸塩廃液(原液)を用いるようにしているので、余剰汚泥26A、26Bがアルカリ条件下で溶解し、有機物の溶解液となる。この溶解液は硝酸塩廃液11として脱窒槽12に供給され、有機物は炭素源として利用される。
また、硝酸塩廃液(原液)83は汚泥溶解槽81の溶解により、pHが低下することとなり脱窒槽12で添加するpH調整剤21の使用量の削減を図ることができる。
本発明による実施例3に係る放射性硝酸塩廃液処理装置について、図3を参照して説明する。
本実施例に係る放射性硝酸塩廃液処理装置は、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置の構成と略同様であるため、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置と同一構成には同一符号を付して重複した説明は省略する。
図3は、本発明の実施例3に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。
図3に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Cは、前記汚泥溶解槽81から排出される硝酸塩廃液11中の有機炭素を分析する全有機炭素測定装置(TOC)84と、前記硝酸塩廃液11中の窒素化合物における窒素の量を測定する全窒素計測装置(T-N)85とを有するものである。
本実施例に係る放射性硝酸塩廃液処理装置は、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置の構成と略同様であるため、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置と同一構成には同一符号を付して重複した説明は省略する。
図3は、本発明の実施例3に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。
図3に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Cは、前記汚泥溶解槽81から排出される硝酸塩廃液11中の有機炭素を分析する全有機炭素測定装置(TOC)84と、前記硝酸塩廃液11中の窒素化合物における窒素の量を測定する全窒素計測装置(T-N)85とを有するものである。
この計測結果をもとに、TOC/T-Nの値が7.5~11(C/Nとして3.0~4.5)の範囲となるように、脱窒槽12に別途添加する炭素源22の添加量の増減を調整するようにしている。
これにより、過剰な炭素源22の供給がなくなり、適切な炭素源の供給を行うことができ、安定した脱窒反応が行われることとなる。
よって、炭素源添加量の低減を図ると共に、二次廃棄物の発生量の低減も図ることができる。
これにより、過剰な炭素源22の供給がなくなり、適切な炭素源の供給を行うことができ、安定した脱窒反応が行われることとなる。
よって、炭素源添加量の低減を図ると共に、二次廃棄物の発生量の低減も図ることができる。
本発明による実施例4に係る放射性硝酸塩廃液処理装置について、図4を参照して説明する。
本実施例に係る放射性硝酸塩廃液処理装置は、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置の構成と略同様であるため、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置と同一構成には同一符号を付して重複した説明は省略する。
図4は、本発明の実施例4に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。
図4に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Dは、図1に示す実施例1に係る放射性硝酸塩廃液処理装置10Aの脱窒槽12の上流側に、硝酸塩廃液(原水:塩濃度30~40%)50を供給する調整槽51を設けており、調整槽51には、電気伝導度を測定する電気伝導計(EC計)52と、工業用水導入ライン53と、該工業用水導入ライン53に前記電気伝導計52の測定値に基づいて希釈する水の流量を調整する工業用水供給量調整バルブ54とを有するものである。
本実施例に係る放射性硝酸塩廃液処理装置は、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置の構成と略同様であるため、前記図1に示した実施例1に係る放射性硝酸塩廃液処理装置と同一構成には同一符号を付して重複した説明は省略する。
図4は、本発明の実施例4に係る放射性硝酸塩廃液処理装置の構成を示す概略図である。
図4に示すように、本実施例に係る放射性硝酸塩廃液処理装置10Dは、図1に示す実施例1に係る放射性硝酸塩廃液処理装置10Aの脱窒槽12の上流側に、硝酸塩廃液(原水:塩濃度30~40%)50を供給する調整槽51を設けており、調整槽51には、電気伝導度を測定する電気伝導計(EC計)52と、工業用水導入ライン53と、該工業用水導入ライン53に前記電気伝導計52の測定値に基づいて希釈する水の流量を調整する工業用水供給量調整バルブ54とを有するものである。
調整槽51に設けた電気伝導計(EC計)52により計測されるEC値に基づいて工業用水導入ライン53に設けた工業用水供給量調整バルブ54を制御し、調整槽51に供給される水の流量を調整するようにしている。
具体的には、電気伝導計(EC計)52により計測されるEC値が高い場合には、工業用水供給量調整バルブ54を開き、電気伝導計(EC計)52により計測されるEC値が低い場合には、工業用水供給量調整バルブ54を閉じる。
具体的には、電気伝導計(EC計)52により計測されるEC値が高い場合には、工業用水供給量調整バルブ54を開き、電気伝導計(EC計)52により計測されるEC値が低い場合には、工業用水供給量調整バルブ54を閉じる。
本実施例に係る放射性硝酸塩廃液処理装置10Dにおいては、硝酸塩廃液(原水:塩濃度30~40%)を希釈して例えば4%程度の高塩濃度状態で生物処理する場合、このときの電気伝導計(EC計)52により計測されるEC値の制御範囲は、50~70mS/cm、更には53~68mS/cmとするのが好ましい。
また、本実施例に係る放射性硝酸塩廃液処理装置10Dにおいては、硝酸塩廃液(原液)50を調整槽51に送給する硝酸廃液供給ライン55に硝酸塩廃液供給ポンプP4を設けている。電気伝導計(EC計)52により計測されるEC値に基づいて硝酸塩廃液供給ポンプP4を制御して調整槽51に送給される硝酸塩廃液(原液)50の供給量を調整するようにしている。
具体的には、電気伝導計(EC計)52により計測されるEC値が高い場合には、硝酸塩廃液供給ポンプP4を停止して硝酸塩廃液(原液)50を調整槽51に供給するのを停止し、電気伝導計(EC計)52により計測されるEC値が低い場合には、硝酸塩廃液供給ポンプP4を稼働して硝酸塩廃液(原液)50を調整槽51に供給する。
具体的には、電気伝導計(EC計)52により計測されるEC値が高い場合には、硝酸塩廃液供給ポンプP4を停止して硝酸塩廃液(原液)50を調整槽51に供給するのを停止し、電気伝導計(EC計)52により計測されるEC値が低い場合には、硝酸塩廃液供給ポンプP4を稼働して硝酸塩廃液(原液)50を調整槽51に供給する。
よって、処理設備からの高濃度の硝酸塩廃液の濃度は常に一定となるわけではないため、硝酸塩廃液(原液)50の濃度が一定でない場合でも、硝酸塩廃液(原液)50中の塩濃度の変動を脱窒槽12に伝えるのを防止することができるため、塩濃度が大きく変動した場合における脱窒性能の著しく低下するのを防止することができる。
また、一定の塩濃度の硝酸塩廃液(希釈液)11を硝酸塩廃液供給ポンプP5を介して脱窒槽12に供給することができるため、脱窒性能を安定にすることができる。
本発明による実施例5に係る放射性硝酸塩廃液処理装置を用いた生物処理システムについて、図5を参照して説明する。
本実施例に係る放射性硝酸塩廃液処理装置は、前記図1~4に示した実施例1~4に係る放射性硝酸塩廃液処理装置を用いることができ、説明は省略する。
本実施例に係る生物処理システム60は、図5に示すように、硝酸塩廃液(原液)50を工業用水61で希釈する希釈装置62と、希釈された硝酸塩廃液11中の硝酸イオンを微生物処理して窒素還元すると共に、再曝気する生物処理装置(実施例1~4の放射性硝酸塩廃液処理装置)63と、生物処理装置63で処理された生物処理液から汚泥65と処理液70とを分離し、分離した汚泥65中の水分を脱水する汚泥脱水装置67と、脱水汚泥68を焼却する焼却装置69とからなる。
本実施例に係る放射性硝酸塩廃液処理装置は、前記図1~4に示した実施例1~4に係る放射性硝酸塩廃液処理装置を用いることができ、説明は省略する。
本実施例に係る生物処理システム60は、図5に示すように、硝酸塩廃液(原液)50を工業用水61で希釈する希釈装置62と、希釈された硝酸塩廃液11中の硝酸イオンを微生物処理して窒素還元すると共に、再曝気する生物処理装置(実施例1~4の放射性硝酸塩廃液処理装置)63と、生物処理装置63で処理された生物処理液から汚泥65と処理液70とを分離し、分離した汚泥65中の水分を脱水する汚泥脱水装置67と、脱水汚泥68を焼却する焼却装置69とからなる。
希釈装置62は、前述した実施例4の図4に示すような原水を希釈する調整槽51で行われる。
生物処理装置63は、前述した汚泥溶解槽81を有する脱窒槽12と再曝気槽14とからなる放射性硝酸塩廃液処理装置である。
また、汚泥脱水装置67は、生物処理装置63の脱窒槽と再曝気槽とから排出される余剰汚泥を脱水するものであり、焼却装置69は、汚泥脱水装置67から排出される2次廃棄物である脱水汚泥68を焼却し、焼却灰71としている。
生物処理装置63は、前述した汚泥溶解槽81を有する脱窒槽12と再曝気槽14とからなる放射性硝酸塩廃液処理装置である。
また、汚泥脱水装置67は、生物処理装置63の脱窒槽と再曝気槽とから排出される余剰汚泥を脱水するものであり、焼却装置69は、汚泥脱水装置67から排出される2次廃棄物である脱水汚泥68を焼却し、焼却灰71としている。
高塩濃度の硝酸廃液を生物処理する生物処理装置63においては、余剰汚泥脱水時に汚泥に付着する水の塩濃度が高いため、2次廃棄物(焼却灰)が増加することがあるが、余剰汚泥脱水装置67において、工業用水61を加えて高塩濃度の付着水を洗い流し、洗い流された洗浄水72を硝酸塩廃液11の希釈する希釈装置62における希釈水として使用するようにしている。
よって、希釈装置62で用いる工業用水61の一部を脱水時の洗浄に使用するため、追加の工業用水61を用いる必要がない。また、付着水の塩濃度を下げることで、2次廃棄物量(焼却灰)を約1/2程度にまで低減することができる。
よって、希釈装置62で用いる工業用水61の一部を脱水時の洗浄に使用するため、追加の工業用水61を用いる必要がない。また、付着水の塩濃度を下げることで、2次廃棄物量(焼却灰)を約1/2程度にまで低減することができる。
以上のように、本発明に係る放射性硝酸塩廃液処理装置を用いれば、再処理工場などの原子力施設から排出される高い硝酸塩濃度の廃液を効率的に微生物処理し、微細化した汚泥が処理液と共に各々流出するのを防止することができる。
Claims (10)
- 硝酸と放射性物質とを含む硝酸塩廃液中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽と、
該脱窒槽で処理された脱窒処理液を、好気性微生物が生育する活性汚泥と曝気混合する再曝気槽とを有する放射性硝酸塩廃液処理装置であって、
前記脱窒槽及び前記再曝気槽から排出される余剰汚泥を溶解する汚泥溶解槽を有してなり、
該汚泥溶解槽に汚泥溶解剤を供給して余剰汚泥を溶解させ、汚泥溶解物を炭素源として前記脱窒槽に供給することを特徴とする放射性硝酸塩廃液処理装置。 - 請求項1において、
前記汚泥溶解剤が、過酢酸又はpH12以上の硝酸塩廃液であることを特徴とする放射性硝酸塩廃液処理装置。 - 硝酸と放射性物質とを含む硝酸塩廃液中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽と、
該脱窒槽で処理された脱窒処理液を、好気性微生物が生育する活性汚泥と曝気混合する再曝気槽とを有する放射性硝酸塩廃液処理装置であって、
前記脱窒槽及び前記再曝気槽から排出される余剰汚泥を溶解する汚泥溶解槽を有してなり、
該汚泥溶解槽に過酢酸を供給して余剰汚泥を溶解させ、汚泥溶解物を炭素源として前記脱窒槽に供給すると共に、酢酸を脱窒槽に供給することを特徴とする放射性硝酸塩廃液処理装置。 - 硝酸と放射性物質とを含む硝酸塩廃液中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽と、
該脱窒槽で処理された脱窒処理液を、好気性微生物が生育する活性汚泥と曝気混合する再曝気槽とを有する放射性硝酸塩廃液処理装置であって、
前記脱窒槽及び前記再曝気槽から排出される余剰汚泥を溶解する汚泥溶解槽を有してなり、
該汚泥溶解槽にpH12以上の硝酸塩廃液を供給して余剰汚泥を溶解させ、汚泥溶解物を炭素源として前記脱窒槽に供給すると共に、硝酸塩廃液を脱窒槽に供給することを特徴とする放射性硝酸塩廃液処理装置。 - 請求項1乃至4のいずれか一つにおいて、
前記脱窒槽が、
前記硝酸塩廃液のpHを調整するpH調整剤を供給するpH調整手段と、
前記活性汚泥で処理された脱窒液を、汚泥を含む固形分と脱窒処理液とに分離する第一の固液分離手段と、
該第一の固液分離手段の下部側に設けられ、前記脱窒槽内に酸素を含まないガスを供給するガス供給手段とを有すると共に、
前記再曝気槽が、
前記活性汚泥で処理された脱窒処理液を、余剰汚泥と処理液とに更に分離する第二の固液分離手段と、
該第二の固液分離手段の下部側に設けられ、前記再曝気槽内に空気を供給する空気供給手段と、
を有することを特徴とする放射性硝酸塩廃液処理装置。 - 請求項1乃至5のいずれか一つにおいて、
前記脱窒槽の脱窒液のpHが、7.0~10.0であることを特徴とする放射性硝酸塩廃液処理装置。 - 請求項1又は2において、
前記脱窒槽において、前記好気性微生物が前記脱窒液中の前記硝酸と反応することにより生成される窒素ガス及び二酸化炭素を前記脱窒槽に循環させるガス循環ラインを有することを特徴とする放射性硝酸塩廃液処理装置。 - 請求項5において、
前記第一の固液分離手段及び前記第二の固液分離手段が、固液分離膜であることを特徴とする放射性硝酸塩廃液処理装置。 - 請求項4において、
前記汚泥溶解槽から排出される硝酸塩廃液中の有機炭素を分析する全有機炭素測定装置と、
前記汚泥溶解槽から排出される硝酸塩廃液中の窒素化合物における窒素の量を測定する全窒素計測装置とを有することを特徴とする放射性硝酸塩廃液処理装置。 - 請求項1乃至9のいずれか一つにおいて、
前記脱窒槽の上流側に調整槽を設けてなり、
前記調整槽が、
電気伝導度を測定する電気伝導(EC)計と、
工業用水導入ラインと、
該工業用水導入ラインに介装され、前記電気伝導計の測定値に基づいて工業用水供給量を調整する工業用水供給量調整バルブと、
を有することを特徴とする放射性硝酸塩廃液処理装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09709223.3A EP2242061B1 (en) | 2008-02-08 | 2009-02-06 | Apparatus and method for treatment of radioactive nitrate salt liquid waste |
US12/811,896 US8696892B2 (en) | 2008-02-08 | 2009-02-06 | Apparatus for treating radioactive nitrate waste liquid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008029554A JP4774065B2 (ja) | 2008-02-08 | 2008-02-08 | 放射性硝酸塩廃液処理装置 |
JP2008-029554 | 2008-02-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009099209A1 true WO2009099209A1 (ja) | 2009-08-13 |
Family
ID=40952277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/052097 WO2009099209A1 (ja) | 2008-02-08 | 2009-02-06 | 放射性硝酸塩廃液処理装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8696892B2 (ja) |
EP (1) | EP2242061B1 (ja) |
JP (1) | JP4774065B2 (ja) |
WO (1) | WO2009099209A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105060623A (zh) * | 2015-07-29 | 2015-11-18 | 吉林建筑大学 | 基于产氢产乙酸/氢自养反硝化耦合的双泥污水处理方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8992780B2 (en) * | 2013-05-10 | 2015-03-31 | Ecolab Usa Inc | Reduction of hydrogen sulfide and/or malodor gassing from water via the addition of peroxyacetic acid/hydrogen peroxide product |
CN105293848A (zh) * | 2015-11-20 | 2016-02-03 | 天津大学 | 一种溶解污泥胞外聚合物促进污水脱氮的方法及装置 |
KR101792758B1 (ko) | 2016-09-28 | 2017-11-01 | 롯데케미칼 주식회사 | 폐유기 용매의 연속 처리 장치 |
JP6699792B2 (ja) * | 2018-11-08 | 2020-05-27 | 王子ホールディングス株式会社 | 水処理装置、脱水汚泥の製造装置、水処理方法および脱水汚泥の製造方法 |
US11802067B2 (en) * | 2020-03-04 | 2023-10-31 | United States Government, as represented by the Administrator of the U.S. EPA | Nitrogen sparging assisted anoxic biological water treatment system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0713497U (ja) * | 1993-08-13 | 1995-03-07 | 大同ほくさん株式会社 | 排水処理装置 |
JP2003225698A (ja) * | 2002-01-30 | 2003-08-12 | L'air Liquide Sa Pour L'etude & L'exploitation Des Procedes Georges Claude | 余剰汚泥の減容方法 |
JP3697037B2 (ja) | 1997-09-22 | 2005-09-21 | 中部電力株式会社 | 生物脱窒方法 |
JP2006015236A (ja) * | 2004-07-01 | 2006-01-19 | Toray Ind Inc | 再生水の製造装置および方法 |
JP2007105627A (ja) | 2005-10-13 | 2007-04-26 | Mitsubishi Heavy Ind Ltd | 硝酸塩含有廃液の処理方法と処理装置 |
JP2007271306A (ja) * | 2006-03-30 | 2007-10-18 | Mitsubishi Heavy Ind Ltd | セシウム吸着剤と放射性核種除去方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2896291B2 (ja) * | 1993-06-14 | 1999-05-31 | 株式会社エイ・ティ・アール通信システム研究所 | 画像表示装置 |
AU2005210477B2 (en) * | 2004-01-30 | 2011-01-20 | University Of Maryland, Baltimore County | Dissimilatory sulfate reduction as a process to promote denitrification in marine recirculating aquaculture systems |
JP2007021285A (ja) | 2005-07-12 | 2007-02-01 | Mitsubishi Rayon Eng Co Ltd | 余剰汚泥減容化方法及び余剰汚泥減容化装置 |
JP4859192B2 (ja) * | 2005-12-09 | 2012-01-25 | 三菱重工環境・化学エンジニアリング株式会社 | 下水の高度処理方法及びシステム |
JP4625508B2 (ja) * | 2008-02-08 | 2011-02-02 | 三菱重工業株式会社 | 硝酸塩廃液処理方法及び装置 |
WO2009099208A1 (ja) * | 2008-02-08 | 2009-08-13 | Mitsubishi Heavy Industries, Ltd. | 放射性硝酸塩廃液処理装置及び方法 |
-
2008
- 2008-02-08 JP JP2008029554A patent/JP4774065B2/ja active Active
-
2009
- 2009-02-06 EP EP09709223.3A patent/EP2242061B1/en active Active
- 2009-02-06 WO PCT/JP2009/052097 patent/WO2009099209A1/ja active Application Filing
- 2009-02-06 US US12/811,896 patent/US8696892B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0713497U (ja) * | 1993-08-13 | 1995-03-07 | 大同ほくさん株式会社 | 排水処理装置 |
JP3697037B2 (ja) | 1997-09-22 | 2005-09-21 | 中部電力株式会社 | 生物脱窒方法 |
JP2003225698A (ja) * | 2002-01-30 | 2003-08-12 | L'air Liquide Sa Pour L'etude & L'exploitation Des Procedes Georges Claude | 余剰汚泥の減容方法 |
JP2006015236A (ja) * | 2004-07-01 | 2006-01-19 | Toray Ind Inc | 再生水の製造装置および方法 |
JP2007105627A (ja) | 2005-10-13 | 2007-04-26 | Mitsubishi Heavy Ind Ltd | 硝酸塩含有廃液の処理方法と処理装置 |
JP2007271306A (ja) * | 2006-03-30 | 2007-10-18 | Mitsubishi Heavy Ind Ltd | セシウム吸着剤と放射性核種除去方法 |
Non-Patent Citations (3)
Title |
---|
OGAWA N. ET AL.: "Shosan Haieki Seibutsu Shori System no Kaihatsu : Ko Nodo Haieki eno Seibutsu Shori no Tekiyo", 2006 NEN ATOMIC ENERGY SOCIETY OF JAPAN AKI NO TAIKAI YOKOSHU, vol. A24, 17 August 2006 (2006-08-17), XP008137399 * |
SAGAWA H. ET AL.: "Kassei Odeiho o Mochiita Hoshasei Senjo Haieki Shori Sochi no Kaihatsu", THE THERMAL AND NUCLEAR POWER, vol. 54, no. 4, 15 April 2003 (2003-04-15), pages 14 - 21, XP008137463 * |
See also references of EP2242061A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105060623A (zh) * | 2015-07-29 | 2015-11-18 | 吉林建筑大学 | 基于产氢产乙酸/氢自养反硝化耦合的双泥污水处理方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2009186437A (ja) | 2009-08-20 |
EP2242061A4 (en) | 2015-04-22 |
US8696892B2 (en) | 2014-04-15 |
US20100276345A1 (en) | 2010-11-04 |
EP2242061A1 (en) | 2010-10-20 |
JP4774065B2 (ja) | 2011-09-14 |
EP2242061B1 (en) | 2016-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI410378B (zh) | Wastewater treatment plant containing organic matter and its handling method | |
JP4625508B2 (ja) | 硝酸塩廃液処理方法及び装置 | |
US8192626B2 (en) | Wastewater chemical/biological treatment method for open water discharge | |
JP4774120B2 (ja) | 放射性硝酸塩廃液処理装置及び方法 | |
JP4774065B2 (ja) | 放射性硝酸塩廃液処理装置 | |
JP5914964B2 (ja) | 超純水製造方法 | |
US20130112617A1 (en) | Redox wastewater biological nutrient removal treatment method | |
KR20140063454A (ko) | 폐수 처리 방법 및 폐수 처리 장치 | |
JP5262735B2 (ja) | 嫌気処理方法及び装置 | |
JP2008284428A (ja) | 有機物含有排水の処理方法 | |
JP5581872B2 (ja) | アンモニア性窒素廃液の脱窒処理方法及び処理装置 | |
JP2012011376A (ja) | 汚水処理方法および装置 | |
JP3477187B2 (ja) | 排水の脱色方法および装置 | |
WO2012128212A1 (ja) | 水処理方法及び超純水製造方法 | |
JP2007275846A (ja) | 廃水処理装置及び廃水処理方法 | |
JP4298602B2 (ja) | 有機性汚泥の嫌気性消化処理方法及び装置 | |
JP4648872B2 (ja) | 高濃度有機物含有排水の排水処理方法 | |
JP2002210489A (ja) | ポリエチレングリコール含有排水の処理方法およびその装置 | |
JP2003311286A (ja) | Dmf分解菌の培養方法および排水処理方法 | |
JP2002326088A (ja) | リン、cod含有水の処理方法及び装置 | |
JP2007117948A (ja) | 高濃度有機性廃液の処理方法及び装置 | |
JP2022171516A (ja) | 高濃度有機物含有排水の処理方法 | |
KR20200122653A (ko) | 오폐수 처리장치 및 그 처리방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09709223 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009709223 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12811896 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |