[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009098981A1 - 送信機、受信機、基地局装置、移動局装置および無線通信システム - Google Patents

送信機、受信機、基地局装置、移動局装置および無線通信システム Download PDF

Info

Publication number
WO2009098981A1
WO2009098981A1 PCT/JP2009/051353 JP2009051353W WO2009098981A1 WO 2009098981 A1 WO2009098981 A1 WO 2009098981A1 JP 2009051353 W JP2009051353 W JP 2009051353W WO 2009098981 A1 WO2009098981 A1 WO 2009098981A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission signal
harq
signal sequence
harq transmission
transport block
Prior art date
Application number
PCT/JP2009/051353
Other languages
English (en)
French (fr)
Inventor
Yosuke Akimoto
Shohei Yamada
Seiji Sato
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2009098981A1 publication Critical patent/WO2009098981A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity

Definitions

  • the present invention relates to a technique for retransmitting a signal transmitted using a multiplexing technique by HARQ (Hybrid Automatic Repeat reQuest).
  • HARQ Hybrid Automatic Repeat reQuest
  • 3GPP 3rd Generation Partnership Project
  • W-CDMA Wideband-Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • MIMO Multi-Input / Multi-Output
  • a transmission-side apparatus is provided with a plurality of antennas, and communication data independent from each antenna is transmitted by radio waves called carriers.
  • the receiving side apparatus receives this with a plurality of antennas, and uses a communication propagation path estimation technique or the like to convert a carrier wave including a plurality of different communication data transmitted from the transmitting side apparatus and synthesized in the communication propagation path, By separating and using each communication data, high communication efficiency is realized.
  • Non-Patent Document 2 a technique called HARQ (Hybrid Automatic Repeat reQuest) as described in Non-Patent Document 2 is also attracting attention as a highly efficient communication technique.
  • HARQ Hybrid Automatic Repeat reQuest
  • a transmission signal sequence provided with error correction bits (parity bits) having a sufficient sequence length using a Turbo code or the like is stored in a buffer.
  • the transmitting side apparatus reads the additional error correction information stepwise to the receiving side apparatus and transmits it, so that the error of the communication data including the error already received in the receiving side apparatus can be further corrected. become. Thereby, data communication can be performed efficiently.
  • E-UTRA is considering introducing MIMO communication technology and HARQ.
  • the MIMO communication scheme is applied to the downlink.
  • a plurality of signal sequences can be spatially multiplexed and transmitted.
  • a unit of the spatially multiplexed signal sequence is called a stream, and a stream that can be transmitted between the base station device and the mobile station device.
  • This number is called Rank. Since the rank can be calculated only by the mobile station apparatus that can know the downlink propagation path information, it is fed back from the mobile station apparatus to the base station apparatus, and the base station apparatus determines the number of downlink streams based on this information. Send a signal.
  • HARQ transmission is a unit transmitted for each initial transmission and retransmission generated based on HARQ from a transmission signal sequence (referred to as a transport block) transmitted from a MAC (Medium Access Control) layer to a physical layer. It is called a signal sequence and is transmitted as downlink data.
  • the bit sequence transmitted as the HARQ transmission signal sequence is assigned a number (defined as a redundancy version or RV (Redundancy Version)) for each pattern, and this number is assigned to the downlink control channel immediately before transmission of the downlink data.
  • RV Redundancy Version
  • Such a mechanism in the transmission side apparatus is called rate matching, and a mechanism for synthesizing bit sequences transmitted in stages in the reception side apparatus is called rate dematching.
  • a buffer in E-UTRA, it is considered to use a buffer called a circular buffer in which the end of the buffer and the head are linked. As a result, when the bit sequence is read from the buffer, the bit sequence can be read sequentially from the beginning when the end is reached.
  • One HARQ retransmission signal sequence is spatially multiplexed using one or more streams and transmitted to the receiver. A group of multiplexed signal sequences is called a multiplexed signal group. In the spatial multiplexing system, a group of streams matches this.
  • HARQ can execute multiple processes simultaneously.
  • a plurality of buffers for storing transmission signal sequences are prepared for transmission and reception, and it is possible to transmit other transport blocks that are not related during the retransmission process.
  • a HARQ process is executed for each transport block, a number identifying the process is signaled to the receiving side device, and which transmission sequence is retransmitted by using this number is transmitted to the transmitting side device and the receiving side.
  • This identifier is referred to as a process number, and is notified to the receiving side device through a control channel.
  • a plurality of transport blocks are made to correspond to a plurality of HARQ transmission signal sequences, and this HARQ transmission signal sequence is made to correspond to a multiplexed signal group and spatially multiplexed. You can send and receive. This concept is as shown in FIGS. 33A and 33B.
  • Each of the N transport blocks is transmitted as N HARQ transmission signal sequences corresponding to the above-described HARQ.
  • the receiver performs decoding processing from each HARQ transmission signal sequence to obtain N transport blocks.
  • FIG. 34 and FIG. 35 are diagrams showing an example of the configuration of the transmission side apparatus and the reception side apparatus when the conventional MIMO communication technique and the HARQ communication technique are combined.
  • the transmission side device performs error correction coding in the error correction coding unit 101 for each of a plurality of transport blocks transmitted from the higher layer to the reception side device, and the rate matching unit 102 performs the error correction coding on the reception side device.
  • the encoded output signal of the rate matching unit 102 is defined as “encoded sequence”. These encoded sequences are scrambled (104) and modulated (105), respectively, and transmission layer mapping is performed (106).
  • a sequence of signals to be subjected to processing such as scramble and modulation on a signal corresponding to HARQ each sequence is called a “codeword”, and one codeword is one HARQ transmission.
  • the transmission layer mapping unit 106 generates a plurality of streams by performing serial / parallel conversion or the like according to the configuration of the stream for transmitting the plurality of transmission data from the modulation mapping unit 105 as necessary. Is transmitted to the receiving side device by spatial multiplexing.
  • E-UTRA In the downlink of E-UTRA, it is considered to use MIMO communication systems of ranks 1 to 4 and a maximum of two transport blocks, a maximum of two HARQ transmission signal sequences, and a maximum of two codewords corresponding thereto. Has been. And a rank can change the number of the ranks which can be utilized according to the condition of a propagation path at any time.
  • the transport blocks from rank 1 to rank 4, the HARQ transmission signal sequence generated therefrom, and the correspondence between codewords and streams are as shown in FIGS. 32A to 32D.
  • the receiving side apparatus performs processing such as propagation path estimation, separation of streams multiplexed in space, demodulation processing, and the like on the received signals received through the plurality of antennas, and obtains a plurality of symbol sequences corresponding to each transmission stream.
  • the reception layer inverse mapping unit 201 determines which antenna of the transmitting apparatus the stream is transmitted from, and reproduces a plurality of data series. This data sequence corresponds to the HARQ transmission signal sequence in the transmitter.
  • each HARQ transmission signal sequence is input to the inverse modulation mapping section 202, the descrambling section 203, and the rate dematching section 205.
  • the signal input to the rate dematching unit 205 matches the encoded sequence at the transmitter.
  • error correction decoding (206) is performed to check whether there is an error in the received data for each transport block.
  • the receiving side apparatus transmits an ACK (Positive Acknowledge) for a sequence in which received data has no error, and a NACK (Negative Acknowledge) for a series having an error in the transport block unit, respectively.
  • the transmission side device ends transmission there, and then repeats the above operation for the transport block passed from the upper layer to the reception side device.
  • Send For the transport block in which NACK is transmitted from the receiving side device, according to the instruction of the scheduler unit in the MAC layer, as shown in FIG. 31, the rate matching unit centering on the error correction information data not transmitted in the previous transmission Select and transmit to the receiving side apparatus using the same HARQ transmission signal sequence / stream.
  • the encoded bit pattern of the transport block retransmitted here is identified by the receiving side device using the redundancy version transmitted by the control channel as described above, and the error correction information data transmitted from the transmitting side device is received at the previous reception.
  • the reception side apparatus can remove the reception error of the transport block that has been previously received in error, it transmits an ACK to the transmission side apparatus, and if the reception error still cannot be removed, the transmission side again A NACK is transmitted to the apparatus, and the next error correction information data is requested to the transmission side apparatus.
  • the transmission side device and the reception side device repeat the above operation for a predetermined maximum number of retransmissions until the reception error of each transport block can be eliminated.
  • Non-Patent Document 3 states that no data is sent when there is no transmission of a transport block that uses a multiplexed signal group 1 and a corresponding codeword (this is called NULL). is suggesting. Specifically, if the index indicating the size of the transport block (transport block size, TBS: Transport Block Size) transmitted with the control channel is transmitted as 0 along with the transmission of the downlink data, it is received that NULL is transmitted. The machine processes. This will be described by taking rank 4 transmission in E-UTRA shown in FIG. 32D as an example. As shown in FIG.
  • the HARQ transmission signal sequence 1 corresponding to the first transport block is transmitted, and the HARQ transmission signal sequence 2 corresponding to the second transport block is transmitted using the multiplexed signal group 2 and the codeword corresponding thereto. . If an error occurs only in the second transport block, in the second transmission, nothing is transmitted in the codeword 1 that transmitted the first transport block and the stream corresponding thereto, and the second transport block Only the block is retransmitted as in the first transmission.
  • Non-Patent Document 4 in order to solve the above problem, a new rank form capable of transmitting the same number of bits is defined, and only one transport block in which a reception error has occurred is transmitted. is suggesting. This will be explained by taking the transmission of rank 4 of E-UTRA shown in FIG. 32D as an example.
  • the first transmission uses the multiplexed signal group 1 and the codeword 1 corresponding thereto.
  • HARQ transmission signal sequence 1 corresponding to one transport block is transmitted
  • HARQ transmission signal sequence 2 corresponding to the second transport block is transmitted using multiplexed signal group 2 and codeword 2 corresponding thereto.
  • the HARQ transmission signal sequence corresponding to the second transport block is retransmitted using transmission mapping that can transmit one HARQ transmission signal sequence in two streams.
  • transmission mapping that can transmit one HARQ transmission signal sequence in two streams.
  • Non-Patent Documents 3 and 4 are used in the situation where one transport block is retransmitted and the other transport block is not transmitted as described above. None will be sent in the stream corresponding to the codeword that is not. That is, there is a problem in that the communication efficiency is lowered because the multiplexing that uses the maximum capacity of the communication path is not performed.
  • FIGS. 33A and 33B a stream used for HARQ retransmission of a specific transport block is fixed, and an available and unused stream cannot be effectively used.
  • Non-Patent Document 2 Furthermore, if limited to E-UTRA, in the method of Non-Patent Document 2, there are two representations of the signal transmission scheme corresponding to rank 2, and in order to identify this with the receiver, the transmitter Therefore, it is necessary to transmit information for identification, and it is not preferable that the control information increases in wireless communication with a limited bandwidth.
  • the present invention has been made in view of such circumstances, and by effectively using a stream having no transport block to be transmitted, and enabling flexible retransmission of transport blocks, MIMO communication can be performed. It is an object of the present invention to provide a technique for maximizing the communication efficiency and error rate characteristics of HARQ retransmission at the time of system.
  • the transmitter of the present invention is a transmitter that transmits a HARQ transmission signal sequence that is generated from a transport block that is a signal sequence passed to the physical layer by the MAC layer and matches a transmission unit by HARQ, A plurality of HARQ transmission signal sequences are generated based on the same transport block, and the generated plurality of HARQ transmission signal sequences are transmitted simultaneously.
  • the communication efficiency of HARQ retransmission at the time of MIMO communication is maximized and the coding gain is maximized.
  • communication quality can be improved.
  • the transmitter of the present invention is characterized in that each of the plurality of HARQ transmission signal sequences corresponds to a different redundancy version.
  • each of the plurality of HARQ transmission signal sequences corresponds to a different redundancy version, it is possible to improve HARQ characteristics.
  • the transmitter of the present invention is a transmitter that includes a plurality of antennas, performs spatial multiplexing of a plurality of signal sequences by a MIMO communication method, and retransmits a transport block based on HARQ.
  • the HARQ transmission signal sequence is multiplexed by a MIMO communication method using a selection / distribution unit that generates a larger number of HARQ transmission signal sequences than the number of transport blocks and the plurality of antennas.
  • a transmitter for re-transmission is a transmitter that includes a plurality of antennas, performs spatial multiplexing of a plurality of signal sequences by a MIMO communication method, and retransmits a transport block based on HARQ.
  • the HARQ transmission signal sequence is multiplexed by a MIMO communication method using a selection / distribution unit that generates a larger number of HARQ transmission signal sequences than the number of transport blocks and the plurality of antennas.
  • the selection / distribution unit has failed to receive one of the transmission signal sequences from the destination communication apparatus, and has successfully received the other transmission signal sequences. If there is no new transport block that is different from the sequence to be retransmitted and the HARQ transmission signal sequence that is generated from the transport block that has been failed to be received, the transport that has been successfully received.
  • a feature is that transmission is performed using multiple resources used by the HARQ transmission signal sequence generated from the block.
  • the selection / distribution unit failed to receive any one of the transmission signal sequences from the destination communication apparatus and succeeded in receiving the other transmission signal sequences.
  • the HARQ transmission signal sequence generated from the transport block that has been failed to be received is It is characterized in that transmission is performed using all the multiple resources including the multiple resources used by the HARQ transmission signal sequence corresponding to the port block.
  • the HARQ transmission signal sequence generated from the transport block assumed to have failed to receive includes multiple resources used by the HARQ transmission signal sequence corresponding to the transport block assumed to be successfully received. Since all multiplex resources are used for transmission, retransmission using a stream that cannot be used in the conventional method can be performed. As a result, it is possible to realize efficient retransmission that effectively uses the free physical resources.
  • the receiver of the present invention is a receiver that receives a HARQ transmission signal sequence that is generated from a transport block that is a signal sequence passed to the physical layer by the MAC layer and matches a transmission unit by HARQ.
  • a HARQ transmission signal sequence that is generated from a transport block that is a signal sequence passed to the physical layer by the MAC layer and matches a transmission unit by HARQ.
  • a smaller number of transport blocks than the number of HARQ transmission signal sequences are restored, so that, for example, the communication efficiency of HARQ retransmission during MIMO communication is maximized.
  • the coding gain can be maximized and the communication quality can be improved.
  • the receiver of the present invention includes a plurality of antennas, receives a plurality of HARQ transmission signal sequences spatially multiplexed by the MIMO communication scheme, and receives a HARQ transmission signal sequence retransmitted based on HARQ.
  • a receiver that receives a plurality of HARQ transmission signal sequences retransmitted in a MIMO communication scheme using the plurality of antennas, and a HARQ transmission signal sequence that has already received the received HARQ transmission signal sequence And a switching unit that switches to a processing unit that decodes the same transport block.
  • the HARQ transmission based on the received HARQ transmission signal sequence It is possible to restore fewer transport blocks than the number of signal sequences, to maximize the communication efficiency of HARQ retransmission during MIMO communication, to maximize the coding gain, and to improve the communication quality.
  • the receiver of the present invention includes a plurality of antennas, receives a plurality of HARQ transmission signal sequences spatially multiplexed by the MIMO communication scheme, and receives a HARQ transmission signal sequence retransmitted based on HARQ.
  • the block corresponding to the block is characterized by comprising a switching unit that combines them and switches to a processing unit that decodes the HARQ transmission signal sequence that has already been received and that has the same transport block.
  • the switching unit determines a transmission signal sequence corresponding to each HARQ transmission signal sequence based on a transmission bit pattern specified by a transmission source communication device. It is said.
  • the transmission signal sequence corresponding to each HARQ transmission signal sequence is determined based on the transmission bit pattern specified by the transmission source communication apparatus. For example, when the transmission signal sequence cannot be identified by the process number Also, it is possible to identify which transmission signal sequence is the retransmitted data. As a result, extra control bits for this identification can be reduced.
  • the switching unit determines a transmission signal sequence to which each HARQ transmission signal sequence corresponds based on the size of the transmission signal sequence designated by the transmission source communication apparatus. It is characterized by that.
  • the transmission signal sequence corresponding to each HARQ transmission signal sequence is determined based on the size of the transmission signal sequence specified by the transmission source communication apparatus. For example, the transmission signal sequence is identified by the process number. Even if it is not possible, it is possible to identify which transmission signal sequence is the retransmitted data. As a result, extra control bits for this identification can be reduced.
  • the receiver of the present invention is characterized in that ACK / NACK corresponding to the number of transmission signal sequences transmitted from the transmission source communication device is returned.
  • the base station apparatus of the present invention is characterized by including any of the transmitters described above.
  • this base station apparatus since HARQ transmission signal sequences corresponding to HARQ more than the number of transmission signal sequences are generated, for example, the communication efficiency of HARQ retransmission at the time of MIMO communication is maximized and encoded. Communication quality can be improved by maximizing the gain.
  • the mobile station apparatus of the present invention is characterized by including any of the receivers described above.
  • the transmission signal sequences processed in a smaller number of higher layers than the number of the HARQ transmission signal sequences are restored.
  • the communication quality can be improved by maximizing the communication gain of HARQ retransmission at the time of MIMO communication and maximizing the coding gain.
  • the radio communication system of the present invention is characterized by comprising the above base station apparatus and the above mobile station apparatus.
  • the communication efficiency of HARQ retransmission at the time of MIMO communication is maximized and encoded. Communication quality can be improved by maximizing the gain.
  • the communication quality can be improved by maximizing the coding gain by utilizing the communication efficiency of HARQ retransmission at the time of MIMO communication to the maximum.
  • the transmitter generates a plurality of HARQ transmission signal sequences from one transport block, and multiplexes and transmits the generated plurality of HARQ transmission signal sequences.
  • the receiver recovers one transport block from a plurality of HARQ transmission signal sequences.
  • the transport block to be retransmitted is efficiently retransmitted using an empty HARQ transmission signal sequence / stream.
  • the process of associating the HARQ transmission signal sequence with a plurality of multiplexed signal groups is logically supported, and includes processing performed on each signal sequence such as scrambling in the process. It is also included in the scope of the present invention that it is not included.
  • a specific operation of a transmitter that associates one transport block with a plurality of HARQ transmission signal sequences and a specific operation of a receiver that associates a plurality of HARQ transmission signal sequences with one transport block An example will be described.
  • FIG. 2 is a block diagram illustrating a configuration example of a transmitter included in the base station apparatus according to the present embodiment
  • FIG. 3 is a block diagram illustrating a configuration example of a receiver included in the mobile station apparatus according to the present embodiment.
  • the transmitter 10 includes an encoding unit 101, a rate matching unit 102, a selection / distribution unit 103, a scramble unit 104, a modulation mapping unit 105, a transmission layer mapping unit 106, and a scheduler unit 107. Yes. Also, as shown in FIG.
  • the receiver 20 includes a reception layer inverse mapping unit 201, an inverse modulation mapping unit 202, a descrambling unit 203, a switching unit 204, a rate dematching unit 205, an error correction decoding unit 206, a control A unit 207 is provided.
  • transmission processing at the base station device and reception processing at the mobile station device will be described taking transmission signals from the base station device to the mobile station device as an example.
  • the processing of the transmitter that generates a plurality of HARQ transmission signal sequences corresponding to one transport block is performed by the selection / distribution unit 103, and the HARQ transmission signal sequence described above is scrambled by 104. It corresponds to the signal after the signal input to.
  • the processing of the receiver corresponding to the opposite is performed by the switching unit 204.
  • the transmitter 10 is provided with N transport blocks from the upper layer.
  • the encoding unit 101 receives this as an input, adds a parity bit for error correction and error detection, and outputs the result.
  • the rate matching unit 102 receives this as input, selects and aggregates bits according to the transmission band, and outputs an encoded sequence. Retransmission control using HARQ is performed for each transport block. Also, control information necessary for this is notified to the receiving side using another control information transmission channel.
  • the serially connected encoding unit 101 and rate matching unit 102 are physically or logically provided in parallel.
  • the selection / distribution unit 103 receives the output signals from the N rate matching units 102 according to the control signal of the scheduler unit 107 controlled by the MAC layer, and selects the output signals to the N output terminals. Sort and output.
  • the selection / distribution unit 103 outputs N HARQ transmission signal sequences, but an output from one rate matching unit 102 may correspond to zero or a plurality of HARQ transmission signal sequences.
  • the scrambler 104 receives one output signal of the selection / distribution unit 103, that is, the HARQ transmission signal sequence, scrambles it, and outputs it to the modulation mapping unit 105.
  • the scramble process is realized by taking an exclusive OR with a predetermined sequence.
  • Modulation mapping section 105 performs processing corresponding to the modulation method such as symbolization and complex number expression on the input bit string from scramble section 104, and outputs this as a symbol string.
  • the scrambler 104 and the modulation mapping unit 105 connected in series are physically or logically provided in parallel with the selection / distribution unit 103.
  • the transmission layer mapping unit 106 converts the N input signal sequences from the modulation mapping unit 105 into the number of streams that can be communicated by MIMO (M is the number of streams) and outputs the number of streams.
  • the scheduler unit 107 is configured to include downlink scheduling, uplink scheduling, control data creation, and control data reception functions. Further, the scheduling information is included in the control information and notified to the receiver. The received user data and control data are processed or output to a higher layer.
  • downlink scheduling user data is transmitted to each downlink channel from channel state information notified from the mobile station apparatus, ACK / NACK information of downlink data, data information of each user notified from higher layers, and the like. And scheduling for mapping control data.
  • uplink scheduling scheduling for mapping user data to each uplink channel is performed based on the uplink channel estimation result and the resource allocation request from the mobile station.
  • an ACK / NACK signal is created as control data for correctness of uplink received data.
  • uplink and downlink scheduling information is created as control data.
  • the scheduling unit instructs the encoding unit and the rate matching unit to perform the number of HARQ retransmission signal sequences and control after encoding.
  • the receiver 20 receives a number (M) of symbol series signals corresponding to the number of streams received and demodulated by the MIMO scheme.
  • reception layer inverse mapping section 201 processing reverse to that of transmission layer mapping section 106 is performed, processing for returning the input stream to the HARQ transmission signal sequence is performed, and N HARQ transmission signals corresponding to the transmitter are performed.
  • a series is output.
  • the inverse modulation mapping unit 202 receives one HARQ transmission signal sequence output from the reception layer inverse mapping unit 201, demodulates symbols in accordance with the processing of the modulation mapping unit 105, and outputs a bit sequence.
  • the descrambling unit 203 performs processing reverse to that of the scrambler 104 and outputs this bit string.
  • the inverse modulation mapping unit 202 and the descrambling unit 203 connected in series are physically or logically provided in parallel with the reception layer inverse mapping unit 201.
  • the outputs of the N descrambling units 203 are input to the switching unit 204, and are distributed and output for each HARQ processing unit, that is, for each corresponding transport block, under the control of the control unit 207.
  • the operation of the control unit 207 is determined based on information indicating which transport block corresponds to the HARQ transmission signal sequence transmitted by the downlink control channel. This distribution is performed based on a control signal sent simultaneously with the downlink signal.
  • this output signal is an encoded sequence corresponding to the transmitter. When encoded sequences corresponding to the same transport block are provided from the descrambling unit 203, these are collectively output as one signal.
  • the output of the switching unit 204 is input to the rate dematching unit 205, and the transmitted signals including retransmission are combined and output to the error correction decoding unit 206.
  • the error correction decoding unit 206 performs error correction / error detection processing, removes the parity bits, and outputs a signal sequence corresponding to the transmitted transport block.
  • FIG. 4 shows the number of transmission signal sequences (501), the signal flow (502) corresponding to the first HARQ transmission signal sequence, and the second HARQ transmission signal in communication between the base station apparatus and mobile station apparatus in this embodiment.
  • Signal flow (503) corresponding to the sequence, specific sequence chart (504), and specific signal flows of the base station apparatus and mobile station apparatus in each subframe (S551a, S552a, S553a, S554a, S555a) )It is shown.
  • the mobile station apparatus calculates channel information using a signal transmitted from the base station apparatus, and information (rank) of the number of streams applied to the downlink signal is transmitted from the mobile station apparatus to the base station apparatus. To give feedback.
  • rank 4 is transmitted (S551a).
  • the base station apparatus determines the number of streams based on the rank information notified from the mobile station apparatus, and corresponds to two transport blocks using four streams using two HARQ transmission signal sequences.
  • the downlink data is transmitted and received by the mobile station apparatus (S552a).
  • information identifying the signal sequence (process number) and selection pattern information (redundancy version, RV) of the transmission signal bit sequence selected by the rate matching unit are transmitted simultaneously on the downlink control channel.
  • the process number and RV in the encoded sequence 1 are 1 and 0, respectively, and the process number and RV in the encoded sequence 2 are 2 and 0, respectively.
  • the selection / distribution unit 103 operates to associate the encoded sequence 1 with the HARQ transmission signal sequence 1 and associate the encoded sequence 2 with the HARQ transmission signal sequence 2.
  • the transmission layer mapping unit 106 creates four streams from two HARQ transmission signal sequences by the serial / parallel (S / P) conversion unit 601 from the HARQ transmission signal sequences modulated by the modulation mapping unit 105.
  • the reception layer inverse mapping unit 201 corresponds to two HARQ transmission signal sequences from four streams by a parallel / serial (P / S) conversion unit 602.
  • switching section 204 Based on the control signal from control section 207, switching section 204 associates HARQ transmission signal sequence 1 with encoded sequence 1 and HARQ transmission signal sequence 2 with encoded sequence 2, and outputs them to rate dematching section 205. To do.
  • the control unit 207 determines a corresponding distribution method based on the process number notified by the control channel.
  • decoding processing is performed on the HARQ retransmission signal sequence received by the mobile station apparatus in # Subframe2, and ACK or NACK is transmitted according to the presence or absence of the error (S553a).
  • the mobile station apparatus since no error has occurred in HARQ retransmission signal sequence 1, the mobile station apparatus transmits ACK to the base station apparatus. Since the occurrence of an error is detected for HARQ retransmission signal sequence 2, the mobile station apparatus transmits NACK to the base station apparatus.
  • the base station apparatus performs retransmission processing in response to ACK / NACK transmitted from the mobile station apparatus in # Subframe3.
  • the buffer in the base station apparatus is already empty, there is no transport block transferred from the upper layer, and only the sequence for which transmission failed may be retransmitted.
  • the base station apparatus determines the number of streams based on the rank information notified from the mobile station apparatus in # Subframe1, and uses four streams using two HARQ transmission signal sequences to download one stream block corresponding to one transport block.
  • Link data is transmitted and received by the mobile station apparatus (S554a).
  • the process number and the redundancy version are transmitted simultaneously on the downlink control channel.
  • the process number and RV in the encoded sequence 1 are 2, 0, respectively, and the process number and RV in the encoded sequence 2 are 2, 0, respectively. That is, the HARQ transmission signal sequences 1 and 2 indicate that the sequences transmitted in the HARQ transmission signal sequence 2 in # Subframe2 are retransmitted in parallel.
  • FIG. 7 shows an example of the operation of the transmitter at this time
  • FIG. 8 shows an example of the operation of the receiver.
  • selection / distribution section 103 associates encoded sequence 2 with HARQ transmission signal sequence 1 and HARQ transmission signal sequence 2, and does not associate encoded sequence 1 with each HARQ transmission signal sequence.
  • the switching unit 204 determines a corresponding distribution method from the process number notified by the control channel, associates the HARQ transmission signal sequence 1 and the HARQ transmission signal sequence 2 with the encoded sequence 2, and outputs these signals. Is output to the rate dematching unit 205.
  • the selection / distribution unit 103 is provided in the preceding stage of the scrambler 104. However, this can be provided in the preceding stage of the modulation mapping unit 105. A configuration including the operation of the allocating unit 103 may be taken. The position where the switching unit 204 is provided in the receiver is also changed according to the position of the selection / distribution unit 103 of the transmitter.
  • FIG. 9 is a block diagram illustrating a configuration example of a transmitter included in the base station apparatus according to the present embodiment
  • FIG. 10 is a block diagram illustrating a configuration example of a receiver included in the mobile station apparatus according to the present embodiment.
  • FIG. The difference between the transmitter illustrated in FIG. 2 and the receiver illustrated in FIG. 3 is a rate matching unit 102, a selection / distribution unit 103, a switching unit 204, and a rate dematching unit 205.
  • the processing of the transmitter that generates a plurality of HARQ transmission signal sequences corresponding to one transport block is performed by the selection / distribution unit 103, and the HARQ transmission signal sequence described above is scrambled by 104. It corresponds to the subsequent output.
  • the processing of the receiver corresponding to the opposite is performed by the switching unit 204.
  • the rate matching unit 102 in the transmitter shown in FIG. 9 receives information bits to which parity bits for error correction and error detection are added.
  • selection and aggregation of bits according to the transmission band are performed and output, and the output bit sequence corresponds to the supported redundancy version.
  • four redundancy versions (0, 1, 2, and 3) correspond, and in the above bit selection and aggregation, four different sequences are created for each output sequence and are output.
  • the redundancy version for identifying this bit sequence is notified to the reception side using another control information transmission channel together with other information necessary for decoding.
  • the output signals (total L) of the N rate matching units 102 are input to the selection / distribution unit 103, and the selection / distribution unit 103 selects one of the input signals to be transmitted under the control of the scheduler unit 107, Sort to N output terminals.
  • the switching unit 204 in the receiver 91 shown in FIG. 10 receives the HARQ transmission signal sequence that is the output signal of the N descrambling units 203 as an input, and distributes each HARQ processing unit, that is, for each corresponding transport block. To the rate dematching unit 205. For this reason, a plurality of codewords having the same or different RV may be simultaneously input to one rate dematching unit 205, and these are combined and output to the error correction decoding unit 206.
  • the mobile station apparatus calculates channel information using a signal transmitted from the base station apparatus, and feeds back information (rank) of the number of streams applied to the downlink signal from the mobile station apparatus to the base station apparatus.
  • rank 4 is transmitted (S551b).
  • the base station apparatus determines the number of streams based on the rank information notified from the mobile station apparatus, and corresponds to two transport blocks using four streams using two HARQ transmission signal sequences.
  • the downlink data is transmitted and received by the mobile station apparatus (S552b).
  • the process number and the redundancy version are transmitted simultaneously on the downlink control channel.
  • the process number and RV in the encoded sequence 1 are 1 and 0, respectively, and the process number and RV in the encoded sequence 2 are 2 and 0, respectively.
  • FIG. 12 shows a detailed operation example of the transmitter at this time
  • FIG. 13 shows an operation example of the receiver.
  • 14A and 14B are diagrams illustrating a circular buffer 1001 that holds transmission data sequences provided in the rate matching unit 102 and a state in which data of redundancy version 0 is read from the buffer.
  • the rate matching unit 102 holds the signal sequence with the parity bit added in the circular buffer 1001, and changes the information amount that can be transmitted on the physical channel from the start position according to the redundancy version. Read the corresponding number of bits.
  • the rate matching unit 102 corresponds to four redundancy versions, and performs four outputs corresponding to each.
  • the selection / distribution unit 103 receives a total of eight signals output from the two rate matching units 102.
  • RV0 signal in encoded sequence 1 is made to correspond to HARQ transmission signal sequence 1
  • RV0 signal in encoded sequence 2 is made to correspond to HARQ transmission signal sequence 2.
  • the transmission layer mapping unit uses the serial / parallel (S / P) conversion unit 601 to create four streams from the two HARQ transmission signal sequences from the HARQ transmission signal sequence modulated by the modulation mapping unit 105.
  • the reception layer inverse mapping unit 201 causes the parallel / serial (P / S) conversion unit 602 to associate four streams with two HARQ transmission signal sequences.
  • switching section 204 Based on the control signal from control section 207, switching section 204 associates HARQ transmission signal sequence 1 with RV0 of encoded sequence 1 and HARQ transmission signal sequence 2 with RV0 of encoded sequence 2, and performs rate dematching.
  • the data is output to the unit 205.
  • the control unit 207 determines a corresponding distribution method from the process number notified by the control channel.
  • decoding processing is performed on the HARQ retransmission signal sequence received by the mobile station apparatus in # Subframe2, and ACK or NACK is transmitted according to the presence or absence of the error (S553b).
  • the mobile station apparatus since no error has occurred in HARQ retransmission signal sequence 1, the mobile station apparatus transmits ACK to the base station apparatus. Since the occurrence of an error is detected for HARQ retransmission signal sequence 2, the mobile station apparatus transmits NACK to the base station apparatus.
  • the base station apparatus performs retransmission processing in response to ACK / NACK transmitted from the mobile station apparatus in # Subframe3.
  • the buffer in the base station apparatus is already empty, there is no transport block transferred from the upper layer, and only the sequence for which transmission failed may be retransmitted.
  • the base station apparatus determines the number of streams based on the rank information notified from the mobile station apparatus in # Subframe1, and uses two HARQ transmission signal sequences and four streams to correspond to one transport block.
  • the downlink data is transmitted and received by the mobile station device (S554b).
  • the process number and redundancy version information are transmitted simultaneously on the downlink control channel.
  • the process number and RV in the encoded sequence 1 are 2 and 1, respectively, and the process number and RV in the encoded sequence 2 are 2 and 2, respectively. That is, the HARQ transmission signal sequences 1 and 2 indicate that transport blocks corresponding to the encoded sequence 2 transmitted in #Subframe 2 are retransmitted in parallel.
  • FIG. 15 shows a detailed operation example of the transmitter at this time
  • FIG. 16 shows an operation example of the receiver.
  • FIGS. 17A and 17B are diagrams illustrating a circular buffer 1001 that holds transmission data series provided in the rate matching unit 102 and a state in which data of redundancy version 0 is read from the buffer.
  • the buffer is empty. For this reason, all the extracted data is empty.
  • the second rate matching unit 102 holds the signal sequence to which the parity bit is added in the circular buffer 1001, and reads data according to the number of bits that can be transmitted on the physical channel from the start position corresponding to the redundancy version.
  • the rate matching unit 102 corresponds to four redundancy versions, and performs four outputs corresponding to each.
  • the selection / distribution unit 103 receives a total of eight signals output from the two rate matching units 102 as inputs.
  • the RV1 signal in the encoded sequence 2 is made to correspond to the HARQ transmission signal sequence 1
  • the RV2 signal in the encoded sequence 2 is made to correspond to the HARQ transmission signal sequence 2.
  • the receiver 91 determines which transport block is transmitted based on the process number transmitted on the control channel.
  • the HARQ transmission signal sequences 1 and 2 both receive the signal having the process number 2, it can be determined that these are one transport block.
  • HARQ transmission signal sequence 1 is associated with RV 1 of encoded sequence 2
  • HARQ transmission signal sequence 2 is associated with RV 2 of encoded sequence 2, and output to rate dematching section 205.
  • the second embodiment when retransmission occurs in a situation where there is no transport block to be newly transmitted, retransmission using a stream that cannot be used in the conventional method can be performed. It is possible to realize an efficient retransmission that effectively uses the free physical resources. Furthermore, in the present embodiment, since different redundancy versions of data can be transmitted in different streams, it is possible to realize efficient retransmission with higher coding gain.
  • This wireless communication system includes a base station device and a mobile station device.
  • the difference from the second embodiment is that the number of streams in which two codes can be used is different, the first HARQ transmission signal sequence can be transmitted using one stream, and the second HARQ transmission signal sequence Is assumed to be rank 3 communication capable of transmission using two streams.
  • the transmitter in this embodiment is the same as the transmitter shown in FIG. 9 in the second embodiment, and the receiver in this embodiment is the same as the receiver shown in FIG. 10 in the second embodiment. It is the same.
  • the processing of the transmitter that generates a plurality of HARQ transmission signal sequences corresponding to one transport block is performed by the selection / distribution unit 103, and the HARQ transmission signal sequence described above is scrambled by 104. It corresponds to the subsequent output.
  • the processing of the receiver corresponding to the opposite is performed by the switching unit 204.
  • the HARQ retransmission process performed using the transmitter shown in FIG. 9 and the receiver shown in FIG. 10 will be described using the sequence chart of FIG.
  • the mobile station apparatus calculates channel information using a signal transmitted from the base station apparatus, and feeds back information (rank) of the number of streams applied to the downlink signal from the mobile station apparatus to the base station apparatus.
  • rank 3 is transmitted (S551c).
  • the base station apparatus determines the number of streams based on the rank information notified from the mobile station apparatus, and corresponds to two transport blocks using three streams using two HARQ transmission signal sequences.
  • the downlink data is transmitted and received by the mobile station apparatus (S552c).
  • the process number and the redundancy version are transmitted simultaneously on the downlink control channel.
  • the process number and RV in the encoded sequence 1 are 1 and 0, respectively, and the process number and RV in the encoded sequence 2 are 2 and 0, respectively.
  • FIG. 19 shows a detailed operation example of the transmitter at this time
  • FIG. 20 shows an operation example of the receiver.
  • the rate matching unit 102 corresponds to four redundancy versions, and performs four outputs corresponding to each.
  • the selection / distribution unit 103 receives a total of eight signals output from the two rate matching units 102.
  • RV0 signal in coded sequence 1 is made to correspond to HARQ transmission signal sequence 1
  • RV0 signal in coded sequence 2 is made to correspond to HARQ transmission signal sequence 2.
  • the transmission layer mapping unit creates only three signals corresponding to the HARQ transmission signal sequence 2 by the serial / parallel (S / P) conversion unit 601, and creates three streams. To do.
  • the reception layer inverse mapping unit 201 causes the parallel / serial (P / S) conversion unit 602 to associate the three streams with the two HARQ transmission signal sequences.
  • Switching section 204 determines the corresponding allocation method from the process number notified by the control channel, and converts HARQ transmission signal sequence 1 to RV0 of encoded sequence 1 and HARQ transmission signal sequence 2 to RV0 of encoded sequence 2. Corresponding to each of them, it is output to the rate dematching unit 205.
  • FIG. 18 is a sequence chart showing the HARQ retransmission process.
  • decoding processing is performed on the HARQ retransmission signal sequence received by the mobile station apparatus in # Subframe2, and ACK or NACK is transmitted according to the presence or absence of the error (S553c).
  • the mobile station apparatus since no error has occurred in HARQ retransmission signal sequence 1, the mobile station apparatus transmits ACK to the base station apparatus. Since the occurrence of an error is detected for HARQ retransmission signal sequence 2, the mobile station apparatus transmits NACK to the base station apparatus.
  • the base station apparatus performs retransmission processing in response to ACK / NACK transmitted from the mobile station apparatus in # Subframe3.
  • the buffer in the base station apparatus is already empty, there is no transport block transferred from the upper layer, and only the sequence for which transmission failed may be retransmitted.
  • the base station apparatus determines the number of streams based on the rank information notified from the mobile station apparatus in # Subframe1, and uses three streams using two HARQ transmission signal sequences to correspond to one transport block.
  • Data is transmitted and received by the mobile station device (S554c).
  • information for identifying a signal sequence (process number) and redundancy version information are transmitted simultaneously on the downlink control channel.
  • the process number and RV in the encoded sequence 1 are 2 and 1, respectively, and the process number and RV in the encoded sequence 2 are 2 and 2, respectively. That is, in the encoded sequences 1 and 2, the transport block corresponding to the encoded sequence 2 transmitted in #Subframe 2 is retransmitted in parallel.
  • FIG. 21 shows a detailed operation example of the transmitter at this time
  • FIG. 22 shows an operation example of the receiver.
  • FIG. 23A and FIG. 23B are diagrams showing a circular buffer 1001 that holds a transmission data sequence provided in the rate matching unit 102 and a state in which redundancy version 0 data is read from the buffer.
  • the second rate matching unit 102 holds the signal sequence to which the parity bit is added in the circular buffer 1001, and controls the scheduler unit 107 according to the number of bits that can be transmitted from the start position according to the redundancy version. Read the data.
  • the rate matching unit 102 is compatible with four redundancy versions, and performs four outputs corresponding to each.
  • the selection / distribution unit 103 receives a total of eight signals output from the two rate matching units 102.
  • the RV1 signal in the encoded sequence 2 is made to correspond to the HARQ transmission signal sequence 1
  • the RV2 signal in the encoded sequence 2 is made to correspond to the HARQ transmission signal sequence 2.
  • the HARQ transmission signal sequence 1 has half the number of streams that can be used compared to the HARQ transmission signal sequence 2, the number of bits that can be transmitted is reduced by half. That is, here, only the first half of the sequence output from rate matching section 102 is used as HARQ transmission signal sequence 1.
  • switching unit 204 associates HARQ transmission signal sequence 1 with RV1 of encoded sequence 2 and HARQ transmission signal sequence 2 with RV2 of encoded sequence 2 based on the control signal of control unit 207, and Output to the dematching unit 205.
  • the control unit 207 determines a corresponding distribution method from the process number notified by the control channel.
  • #Subframe 5 decoding processing is performed on the HARQ retransmission signal sequence received by the mobile station apparatus in #Subframe 4, and ACK or NACK is transmitted according to the presence or absence of the error (S555c).
  • S555c the error since no error has occurred for one transmission signal sequence, only one ACK / NACK transmission is required.
  • the mobile station apparatus transmits ACK to the base station apparatus.
  • the third embodiment when retransmission occurs in a state where there is no transport block to be newly transmitted, it is possible to perform retransmission using a stream that cannot be used in the conventional method. It is possible to realize efficient retransmission that effectively utilizes the available resources. Furthermore, in this embodiment, it is possible to transmit different redundancy versions of data in different streams, and furthermore, encoding by enabling retransmission when the number of transmittable bits is reduced by changing the HARQ transmission signal sequence Efficient retransmission with high gain can be realized.
  • This wireless communication system includes a base station device and a mobile station device.
  • TBS Transport Block Size
  • the processing of the transmitter that generates a plurality of HARQ transmission signal sequences corresponding to one transport block is performed by the selection / distribution unit 103, and the HARQ transmission signal sequence described above is scrambled by 104. It corresponds to the subsequent output.
  • the processing of the receiver corresponding to the opposite is performed by the switching unit 204.
  • the configurations of the transmitter and the receiver for implementing this are the same as those in the second embodiment, and are shown in FIGS. 9 and 10, respectively.
  • the mobile station apparatus calculates channel information using a signal transmitted from the base station apparatus, and information (rank) of the number of streams applied to the downlink signal is transmitted from the mobile station apparatus to the base station apparatus. To give feedback.
  • rank 4 is transmitted (S551d).
  • the base station apparatus determines the number of streams based on the rank information notified from the mobile station apparatus, and corresponds to two transport blocks using four streams using two HARQ transmission signal sequences.
  • the downlink data is transmitted and received by the mobile station apparatus (S552d).
  • the process number, redundancy version, and transport block size are transmitted simultaneously on the downlink control channel.
  • the process number and RV and TBS in the HARQ transmission signal sequence 1 are 1, 0 and 100, respectively, and the process number and RV in the HARQ transmission signal sequence 2 are 2, 0 and 100.
  • decoding processing is performed on the HARQ retransmission signal sequence received by the mobile station apparatus in # Subframe2, and ACK or NACK is transmitted according to the presence or absence of the error (S553d).
  • the mobile station apparatus since no error has occurred in HARQ retransmission signal sequence 1, the mobile station apparatus transmits ACK to the base station apparatus. Since the occurrence of an error is detected for HARQ retransmission signal sequence 2, the mobile station apparatus transmits NACK to the base station apparatus.
  • the base station apparatus performs retransmission processing in response to ACK / NACK transmitted from the mobile station apparatus in # Subframe3.
  • the buffer in the base station apparatus is already empty, there is no transport block transferred from the upper layer, and only the sequence for which transmission failed may be retransmitted.
  • the base station apparatus determines the number of streams based on the rank information notified from the mobile station apparatus in # Subframe1, and uses four streams using two HARQ transmission signal sequences to download one stream block corresponding to one transport block.
  • the link data is transmitted and received by the mobile station apparatus (S554d).
  • the process number, redundancy version, and transport block size information are simultaneously transmitted on the downlink control channel.
  • the process number and RV and TBS in the HARQ transmission signal sequence 1 are 2, 1, and 0, respectively, and the process number and RV in the HARQ transmission signal sequence 2 are 2, 2, and 100, respectively.
  • switching section 204 associates HARQ transmission signal sequence 1 with RV 1 of encoded sequence 2 and HARQ transmission signal sequence 2 with RV 2 of encoded sequence 2 based on the control signal of control section 207, respectively.
  • the control unit 207 determines a corresponding distribution method based on the transport block size notified by the control channel.
  • the fourth embodiment when retransmission occurs in a situation where there is no transport block to be newly transmitted, retransmission using a stream that cannot be used in the conventional method can be performed. It is possible to realize an efficient retransmission that effectively uses the free physical resources. Further, in this embodiment, even when the transport block cannot be identified by the process number, it is possible to identify which transport block is the retransmitted data by looking at the transport block size. Extra control bits can be reduced.
  • This wireless communication system includes a base station device and a mobile station device.
  • the difference from the first embodiment is that the redundancy version notified from the transmission side is used for the information for identifying the transport block in the receiver.
  • the processing of the transmitter that generates a plurality of HARQ transmission signal sequences corresponding to one transport block is performed by the selection / distribution unit 103, and the HARQ transmission signal sequence described above is scrambled. This corresponds to the output after the unit 104.
  • the processing of the receiver corresponding to the opposite is performed by the switching unit 204.
  • the configurations of the transmitter and the receiver for implementing this are the same as those in the second embodiment, and are shown in FIGS. 9 and 10, respectively.
  • the mobile station apparatus calculates channel information using a signal transmitted from the base station apparatus, and obtains information on the number of streams (rank) applied to the downlink signal from the mobile station apparatus to the base station. Feedback to the device.
  • rank 4 is transmitted (S551e).
  • the base station apparatus determines the number of streams based on the rank information notified from the mobile station apparatus, and supports two transport blocks using four streams using two HARQ transmission signal sequences.
  • the downlink data is transmitted and received by the mobile station apparatus (S552e).
  • the process number and the redundancy version are transmitted simultaneously on the downlink control channel.
  • the process number and RV in the HARQ transmission signal sequence 1 are 2 and 1, respectively, and the process number and RV in the HARQ transmission signal sequence 2 are 2 and 1, respectively.
  • decoding processing is performed on the HARQ retransmission signal sequence received by the mobile station apparatus in # Subframe2, and ACK or NACK is transmitted according to the presence or absence of the error (S553e).
  • the mobile station apparatus since no error has occurred in HARQ retransmission signal sequence 1, the mobile station apparatus transmits ACK to the base station apparatus. Since the occurrence of an error is detected for HARQ retransmission signal sequence 2, the mobile station apparatus transmits NACK to the base station apparatus.
  • the base station apparatus performs retransmission processing in response to ACK / NACK transmitted from the mobile station apparatus in # Subframe3.
  • the buffer in the base station apparatus is already empty, there is no transport block transferred from the upper layer, and only the sequence for which transmission failed may be retransmitted.
  • the base station apparatus determines the number of streams based on the rank information notified from the mobile station apparatus in # Subframe1, and corresponds to one transport block using four streams using two HARQ transmission signal sequences.
  • the downlink data is transmitted and received by the mobile station apparatus (S554e).
  • the process number and redundancy version information are transmitted simultaneously on the downlink control channel.
  • the process number and RV in the HARQ transmission signal sequence 1 are 2, 0, respectively, and the process number and RV in the HARQ transmission signal sequence 2 are 2, 2 respectively.
  • the redundancy version of the HARQ transmission signal sequence 1 is determined by a rule determined in advance from the redundancy version of the HARQ transmission signal sequence 2.
  • RV 2 which is the same as that of the HARQ transmission signal sequence 2 is used. That is, this represents that the transport block corresponding to the encoded sequence 2 transmitted in # Subframe2 is retransmitted in parallel.
  • the switching unit 204 associates the HARQ transmission signal sequence 1 with the RV2 of the encoded sequence 2 and the HARQ transmission signal sequence 2 with the RV2 of the encoded sequence 2 based on the control signal of the control unit 207, respectively.
  • the control unit 207 determines a corresponding distribution method based on the redundancy version notified by the control channel.
  • the HARQ retransmission signal sequence received by the mobile station apparatus in # Subframe4 is subjected to decoding processing, and ACK or NACK is transmitted depending on the presence or absence of the error (S555e).
  • S555e the error since no error has occurred for one transmission signal sequence, only one ACK / NACK transmission is required.
  • the mobile station apparatus transmits ACK to the base station apparatus.
  • the fifth embodiment when retransmission occurs in a situation where there is no transport block to be newly transmitted, it is possible to perform retransmission using a stream that cannot be used in the conventional method. It is possible to realize an efficient retransmission that effectively uses the free physical resources. Further, in this embodiment, even when the transport block cannot be identified by the process number, it is possible to identify which transport block is the retransmitted data by looking at the redundancy version. Extra control bits can be reduced.
  • FIG. 26 is a block diagram illustrating a configuration example of a transmitter included in the base station apparatus according to the present embodiment
  • FIG. 27 is a block diagram illustrating a configuration example of a receiver included in the mobile station apparatus according to the present embodiment. It is.
  • the difference between the transmitter shown in FIG. 26 and the transmitter shown in FIG. 9 is that the transport block transmitted in each stream is controlled in the MAC layer without using the selection / distribution unit 103 in FIG. It is to be.
  • the processing of the transmitter that generates a plurality of HARQ transmission signal sequences corresponding to one transport block is already prepared at the stage of arranging the transport block, and after the output of the rate matching unit 102 Thus, a plurality of HARQ transmission signal sequences corresponding to one transport block are obtained.
  • the processing of the receiver corresponding to the opposite is performed by the switching unit 204.
  • the operation of the receiver shown in FIG. 10 is the same as that of the second embodiment.
  • the mobile station apparatus calculates channel information using a signal transmitted from the base station apparatus, and information on the number of streams (rank) applied to the downlink signal is transmitted from the mobile station apparatus to the base station apparatus. To give feedback.
  • rank 4 is transmitted (S551f).
  • the base station apparatus determines the number of streams based on the rank information notified from the mobile station apparatus, and corresponds to two transport blocks using four streams using two HARQ transmission signal sequences.
  • the downlink data is transmitted and received by the mobile station apparatus (S552f).
  • the process number and the redundancy version are transmitted simultaneously on the downlink control channel.
  • the process number and RV in the encoded sequence 1 are 1 and 0, respectively, and the process number and RV in the encoded sequence 2 are 2 and 0, respectively (FIG. 26).
  • decoding processing is performed on the HARQ retransmission signal sequence received by the mobile station apparatus in # Subframe2, and ACK or NACK is transmitted depending on the presence or absence of the error (S553f).
  • the mobile station apparatus since no error has occurred in HARQ retransmission signal sequence 1, the mobile station apparatus transmits ACK to the base station apparatus. Since the occurrence of an error is detected for HARQ retransmission signal sequence 2, the mobile station apparatus transmits NACK to the base station apparatus.
  • the base station apparatus performs retransmission processing in response to ACK / NACK transmitted from the mobile station apparatus in # Subframe3.
  • the base station apparatus determines the number of streams based on the rank information notified from the mobile station apparatus in # Subframe1, and retransmits the transport block 2 using two HARQ transmission signal sequences and four streams.
  • the transport block 2 is provided for both the first encoded sequence / HARQ transmission signal sequence and the second encoded sequence / HARQ transmission signal sequence. Perform resend processing.
  • the rate mobile station apparatus receives this (S554f).
  • the process number and redundancy version information are transmitted simultaneously on the downlink control channel.
  • the process number and RV in the encoded sequence 1 are 2 and 1, respectively, and the process number and RV in the encoded sequence 2 are 2 and 2, respectively. That is, the HARQ transmission signal sequences 1 and 2 indicate that transport blocks corresponding to the encoded sequence 2 transmitted in #Subframe 2 are retransmitted in parallel.
  • the receiver 93 determines which transport block is transmitted based on the process number transmitted on the control channel.
  • control unit 207 since control unit 207 has received signals with process numbers 2 for both HARQ transmission signal sequences 1 and 2, it can be determined that these are one transport block.
  • the control unit 207 outputs, to the switching unit 204, a control signal that associates the HARQ transmission signal sequence 1 with the RV1 of the encoded sequence 2 and the HARQ transmission signal sequence 2 with the RV2 of the encoded sequence 2, and performs the control.
  • #Subframe 5 decoding processing is performed on the HARQ retransmission signal sequence received by the mobile station apparatus in #Subframe 4, and ACK or NACK is transmitted depending on the presence or absence of the error (S555f).
  • S555f the error since no error has occurred for one transmission signal sequence, only one ACK / NACK transmission is required.
  • the mobile station apparatus transmits ACK to the base station apparatus.
  • the sixth embodiment when retransmission occurs in a situation where there is no transport block to be newly transmitted, retransmission using a stream that cannot be used in the conventional method can be performed. It is possible to realize an efficient retransmission that effectively uses the free physical resources. Furthermore, in this embodiment, since data of different redundancy versions can be transmitted in different streams, efficient retransmission with higher coding gain can be realized.
  • the process number notified from the transmitter is used as the information for identifying the transmitted transport block, but the procedure described in the fourth and fifth embodiments is used. Street, redundancy version or transport block size may be used.
  • the retransmission process corresponding to rank 4 has been described. However, as in the third embodiment, the case of rank 3 can be similarly performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 MIMO通信方式時におけるHARQ再送の通信効率および符号化ゲインを最大限に向上させる。MACレイヤにより物理レイヤに対して渡される信号系列であるトランスポートブロックから生成され、HARQによる送信単位に一致するHARQ送信信号系列を送信する送信機であって、同一のトランスポートブロックに基づいて、複数のHARQ送信信号系列を生成し、生成した複数のHARQ送信信号系列を同時に送信する。また、複数のHARQ送信信号系列のそれぞれは、異なるリダンダンシーバージョンに対応している。

Description

送信機、受信機、基地局装置、移動局装置および無線通信システム
 本発明は、多重化技術を用いて送信される信号を、HARQ(Hybrid Automatic Repeat reQuest)によって再送を行なう技術に関する。
 3GPP(3rd Generation Partnership Project)は、W-CDMA(Wideband-Code Division Multiple Access)とGSM(Global System for Mobile Communications)を発展させたネットワークを基本とした移動通信システムの仕様を検討・作成を行なうプロジェクトである。3GPPでは、W-CDMA方式が第3世代セルラー移動通信方式として標準化され、順次サービスが開始されている。また、通信速度を更に上げたHSPA(High-Speed Packet Access)も標準化され、サービスが開始されている。3GPPでは、第3世代無線アクセス技術の進化(Evolved Universal Terrestrial Radio Access:以下、「E-UTRA」と呼称する。)が検討されている。
 移動通信において、より高い通信効率を実現する様々な技術の1つとして、非特許文献1に記載されているようなMIMO(Multi-Input/Multi-Output)通信と呼ばれる技術がある。このMIMO通信技術においては、送信側装置に複数のアンテナを備え、それぞれのアンテナからそれぞれ独立した通信データを搬送波(キャリア)と呼ばれる電波にて送信する。受信側装置では複数のアンテナでこれを受信し、送信側装置から送信され通信伝搬路にて合成された複数の異なる通信データが含まれる搬送波を、通信伝搬路推定技術などを利用し、元のそれぞれの通信データに分離して利用することにより、高い通信効率を実現している。
 一方、非特許文献2に記載されているようなHARQ(Hybrid Automatic Repeat reQuest)という技術についても、高効率通信技術として注目されている。移動通信においては、通信伝搬路上の様々な要因で起こり得る通信誤りが発生しても、正常に通信が行なえるようにする誤り訂正符号技術を使用することが一般的であるが、その誤り訂正の能力を超えた通信誤りが発生すると、送信側装置から受信側装置に対して通信データ情報を正常に伝達できなくなる。HARQ通信技術では、図31に示されるようにTurbo符号などを用いて十分な系列長のある誤り訂正ビット(パリティビット)を付与した送信信号系列をバッファに蓄えている。送信側装置は受信側装置に対して追加の誤り訂正情報を段階的に読みだして送信することにより、受信側装置においてすでに受信済みの誤りを含む通信データの誤りをさらに訂正することができるようになる。これにより、効率的にデータ通信を行なうことができる。
 E-UTRAではMIMO通信技術とHARQを導入することが検討されている。E-UTRAにおいてMIMO通信方式は下りリンクに適用される。MIMO通信方式では複数の信号系列を空間多重して送信することが可能であり、この空間多重される信号系列の単位をストリームと呼び、基地局装置と移動局装置の間で送信可能となるストリームの数はこれをランク(Rank)と呼ばれる。ランクは下りリンクの伝搬路情報を知ることができる移動局装置のみが計算できるため、移動局装置から基地局装置へフィードバックされ、基地局装置はこの情報を元に下りリンクのストリーム数を決定して信号を送信する。
 また、MAC(Medium Access Control)レイヤから物理レイヤへ伝達される送信信号系列(これをトランスポートブロックと呼ぶ。)からHARQに基づき生成される初期送信および再送信ごとに送信される単位をHARQ送信信号系列と呼び、下りリンクデータとして送信される。HARQ送信信号系列として送信されるビットの系列はそのパターンごとに番号(これをリダンダンシーバージョン若しくはRV(Redundancy Version)と定義する)が割り当てられ、この番号を下りリンクデータの送信直前に下りリンク制御チャネルで送信することにより、どのビットが選択されたかという情報を送信側装置および受信側装置で共有することが可能である。このような送信側装置における仕組みをレートマッチングと呼び、受信側装置で段階的に送信されたビット系列を合成する仕組みをレートデマッチングと呼ぶ。また、上記バッファについて、E-UTRAでは、サーキュラーバッファと呼ばれるバッファの最後尾と先頭がリンクしたバッファを用いることが検討されている。これにより、バッファからビット系列を読み出す際に、最後尾までたどり着くと引き続き先頭から順にビット系列を読み出すことができる。一つのHARQ再送信号系列は一つ以上のストリームを用いて空間多重され、受信機へ送信される。この多重化される信号の系列をまとめたものを多重化信号グループと呼び、空間多重方式においてはストリームをまとめたものがこれに一致する。
 E-UTRAにおけるHARQについて、HARQは同時に複数のプロセスを実行させることができる。送信信号の系列を蓄えるためのバッファは送受に複数個用意されており、再送プロセスを実行する最中にも関連のない他のトランスポートブロックを送信することが可能となる。E-UTRAでは、トラスポートブロックごとにHARQのプロセスが実行され、プロセスを識別する番号が受信側装置にシグナルされ、これを用いることでどの送信系列が再送されたのかを送信側装置および受信側装置で共有できる。この識別子をプロセスナンバーと呼び、制御チャネルで受信側装置に通知される。
 以上のようなMIMO通信技術とHARQ通信技術を組み合わせて、複数のトランスポートブロックを複数のHARQ送信信号系列に対応させ、そして、このHARQ送信信号系列を多重化信号グループに対応させ空間多重して送信・受信することができる。この概念は図33Aおよび図33Bに示す通りである。N個のトランスポートブロックはそれぞれ上記のようなHARQに対応されたN個のHARQ送信信号系列となり送信される。受信機はそれぞれのHARQ送信信号系列から復号処理を行ないN個のトランスポートブロックを得る。これらの詳細な動作について、図34および図35を用いて説明する。
 図34および図35は、従来のMIMO通信技術とHARQ通信技術を組み合わせた場合の、送信側装置と受信側装置の構成の一例を示す図である。まず、送信側装置では、上位レイヤから渡される受信側装置に送信する複数のトランスポートブロックそれぞれについて、誤り訂正符号化部101において誤り訂正符号化を施し、レートマッチング部102によって、受信側装置に送出する誤り訂正情報データを選択する。つまりHARQによる再送制御はトランスポートブロック単位で実施されることになる。符号化されたレートマッチング部102の出力信号は「符号化系列」と定義する。これらの符号化系列はそれぞれスクランブル(104)、変調(105)を行ない、送信層マッピングが行なわれる(106)。ここで実施される、HARQに対応した信号に対してスクランブルおよび変調などの処理を施す対象となる信号の系列はそれぞれの系列は「符号語」と呼ばれ、一つの符号語はひとつのHARQ送信信号系列に対応する。送信層マッピング部106では、変調マッピング部105からの複数の送信データを送信するストリームの構成に合わせて必要に応じてシリアル・パラレル変換などを施して複数のストリームを生成し、これをMIMO通信方式により空間多重することで受信側装置に送信する。
 E-UTRAの下りリンクでは、ランク1から4までのMIMO通信方式および、最大2つのトランスポートブロックと、最大2つのHARQ送信信号系列と、それに対応した最大2つの符号語を利用することが検討されている。そして、ランクは伝搬路の状況に応じて利用できるランクの数を随時変更することができる。ランク1からランク4までのトランスポートブロック、これより生成されるHARQ送信信号系列、符号語とストリームの対応関係は、図32A~図32Dに示すとおりである。
 受信側装置では、複数のアンテナを通して受信した受信信号について伝搬路推定、空間で多重されたストリームの分離、復調処理などの処理を行ない、各送信ストリームに対応した複数のシンボル系列を得る。これに対し、受信層逆マッピング部201にて、送信側装置のどのアンテナから送信されたストリームであるかを判別して、複数のデータ系列の再生を行なう。このデータ系列は送信機におけるHARQ送信信号系列に対応するものである。次に、それぞれのHARQ送信信号系列について、逆変調マッピング部202、逆スクランブル部203、レートデマッチング部205に入力する。レートデマッチング部205に入力される信号は送信機における符号化系列と一致するものである。符号化系列についてHARQ合成をおこなった後、誤り訂正復号化(206)を行ない、受信データに誤りがないかをトランスポートブロック単位でチェックする。受信側装置は、受信データに誤りがなかった系列についてはACK(Positive Acknowledge)を、誤りがあった系列についてはNACK(Negative Acknowledge)をそれぞれトランスポートブロック単位で送信側装置に送信する。
 送信側装置は、受信側装置からACKが送信されたトランスポートブロックについては、そこで送信を終了し、次に上位レイヤから渡されるトランスポートブロックに対して、前記の動作を繰り返して受信側装置に送信する。受信側装置からNACKが送信されたトランスポートブロックについては、MACレイヤにおけるスケジューラ部の指示に従い、図31で示す通り、前回の送信で送信されなかった誤り訂正情報データを中心にレートマッチング部にて選択し、同じHARQ送信信号系列・ストリームを用いて受信側装置に送信する。ここで再送されるトランスポートブロックの符号化ビットパターンは上記のとおり制御チャネルにより送信されるリダンダンシーバージョンを用いて受信側装置によって識別され、送信側装置から送信された誤り訂正情報データを前回受信時の受信データと合成して再度誤り訂正復号処理を行なう。これにより、受信側装置は前回受信誤りとなったトランスポートブロックについてその受信誤りが除去できた場合は、送信側装置にACKを送信し、それでも受信誤りが除去できなかった場合は、再度送信側装置にNACKを送信して、次の誤り訂正情報データを送信側装置に要求する。送信側装置と受信側装置は、各トランスポートブロックの受信誤りを除去できるまで、前記の動作を予め決められた最大再送回数だけ繰り返す。
 上記の技術では、上位レイヤから与えられたトランスポートブロック再送を行なう際に問題が生じる場合がある。この問題は具体的に2つ以上のトランスポートブロックを送信しており、トランスポートブロック(これをAとする)の送信には失敗したが、残り(これをBとする)が成功した場合で、かつ再送のタイミングにおいて送信する新たに発生したトランスポートブロックが発生しない場合に生じる。HARQによる制御に基づいてトランスポートブロックAの再送が行なわれるが、トランスポートブロックBを送信したストリームを用いて送信するデータがないため、これをどのように取り扱うか定義する必要がある。
 この問題に対し、非特許文献3では、多重化信号グループ1とそれに対応した符号語を利用するトランスポートブロックの送信がない場合には何もデータを送らない(これをNULLと呼ぶ)ことを提案している。具体的に、下りリンクデータの送信とともに制御チャネルで送信されるトランスポートブロックの大きさを示す指標(トランスポートブロックサイズ、TBS:Transport Block Size)を0として送信すると、NULLが送信されたとして受信機は処理を行なう。これを図32Dに示したE-UTRAにおけるランク4の送信を一例にとって説明すると、図36に示すように、1回目の送信にて多重化信号グループ1とそれに対応した符号語1を用いて、第1のトランスポートブロックに対応したHARQ送信信号系列1を送信し、多重化信号グループ2とそれに対応した符号語を用いて、第2のトランスポートブロックに対応したHARQ送信信号系列2を送信する。第2のトランスポートブロックについてのみ誤りが生じると、第2回目の送信においては、第1のトランスポートブロックを送信した符号語1およびそれに対応するストリームでは何も送信せず、第2のトランスポートブロックのみを第1回目の送信と同様に再送する。
 さらに非特許文献4では、上記の問題を解決するために、同一のビット数を送信可能な新たなランクの形態を定義して、受信誤りが発生した1つのトランスポートブロックのみを送信することを提案している。これを図32Dに示したE-UTRAのランク4の送信を一例にとって説明すると、図37に示すように、1回目の送信にて多重化信号グループ1とそれに対応する符号語1を用いて第1のトランスポートブロックに対応するHARQ送信信号系列1を送信し、多重化信号グループ2とそれに対応する符号語2を用いて第2のトランスポートブロックに対応するHARQ送信信号系列2を送信する。第1のトランスポートブロックについてのみ誤りが生じると、1つのHARQ送信信号系列を2つのストリームで送信できる送信マッピングを利用して、第2のトランスポートブロックに対応するHARQ送信信号系列を再送する。これにより、第2のトランスポートブロックのみを1回目の送信と同じ帯域を用いて再送することが可能となる。
特許庁ホームページ"資料室" "その他参考情報" "標準技術集""16年度 MIMO(Multi Input Multi Output)関連技術""1-1-1-1 MIMOシステムモデル"[http://www.jpo.go.jp/shiryou/s_sonota/hyoujun_gijutsu/mimo/1-1-1.pdf] 特許庁ホームページ"資料室" "その他参考情報" "標準技術集""16年度 MIMO(Multi Input Multi Output)関連技術""2-4-2-1 Hybrid-ARQ"[http://www.jpo.go.jp/shiryou/s_sonota/hyoujun_gijutsu/mimo/2-4-2.pdf] "Efficient support of retransmission using codeword DTX", 3GPP TSG RAN WG1 #51, R1-074743, 2007年11月 "Extending Codeword to Layer Mapping for Efficient Support of Retransmissions",3GPP TSG RAN WG1 #51, R1-074845, 2007年11月
 しかしながら、前記非特許文献3および4に記載されている従来技術では、前記のように一方のトランスポートブロックの再送が行なわれ、他方のトランスポートブロックの送信が行なわれていない状況では、利用されていない符号語に対応するストリームで何も送られないことになる。つまり、通信路が持つ容量を最大限に利用した多重化を行なっていないため通信効率が低下してしまうという問題点がある。従来技術では、図33Aおよび図33Bに示した通り特定のトランスポートブロックのHARQ再送に使用するストリームが固定されており、利用可能かつ使用されていないストリームを有効に活用することができない。
 さらに、E-UTRAに限定すれば非特許文献2の方法では、ランク2に対応する信号送信方式が2通りの表現が存在することになり、これを受信機で識別するためには、送信機から識別のための情報を送信する必要があり、帯域の限られた無線通信において、制御情報が増大することは好ましくない。
 本発明は、このような事情に鑑みてなされたものであり、何も送信するべきトランスポートブロックがないストリームを有効に利用し、柔軟なトランスポートブロックの再送を可能とすることにより、MIMO通信方式時におけるHARQ再送の通信効率および誤り率特性を最大限に向上させる技術を提供することを目的とする。
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の送信機は、MACレイヤにより物理レイヤに対して渡される信号系列であるトランスポートブロックから生成され、HARQによる送信単位に一致するHARQ送信信号系列を送信する送信機であって、同一のトランスポートブロックに基づいて、複数のHARQ送信信号系列を生成し、生成した複数のHARQ送信信号系列を同時に送信することを特徴としている。
 このように、同一のトランスポートブロックに基づいて、複数のHARQ送信信号系列を生成するので、例えば、MIMO通信時におけるHARQ再送の通信効率を最大限に利用し、符号化ゲインを最大化することで、通信品質を向上させることができる。
 (2)また、本発明の送信機は、前記複数のHARQ送信信号系列のそれぞれは、異なるリダンダンシーバージョンに対応していることを特徴としている。
 このように、複数のHARQ送信信号系列のそれぞれは、異なるリダンダンシーバージョンに対応していることから、HARQの特性を向上させることが可能となる。
 (3)また、本発明の送信機は、複数のアンテナを備え、MIMO通信方式により複数の信号系列を空間多重して送信すると共に、HARQに基づきトランスポートブロックの再送を行なう送信機であって、HARQに基づいた、トランスポートブロックの個数よりも多数のHARQ送信信号系列を生成する選択・振分部と、前記複数のアンテナを用いて、前記HARQ送信信号系列をMIMO通信方式で多重して再送する送信部と、を備えることを特徴としている。
 このように、HARQに基づいた、トランスポートブロックの個数よりも多数のHARQ送信信号系列を生成するので、例えば、MIMO通信時におけるHARQ再送の通信効率を最大限に利用し、符号化ゲインを最大化することで、通信品質を向上させることができる。
 (4)また、本発明の送信機において、前記選択・振分部は、送信先の通信装置から、いずれかの送信信号系列の受信に失敗し、それ以外の送信信号系列の受信に成功した旨の通知があり、再送する系列とは異なる新たなトランスポートブロックが無い場合において、受信に失敗したとされるトランスポートブロックから生成するHARQ送信信号系列を、受信に成功したとされるトランスポートブロックから生成されたHARQ送信信号系列が利用した多重リソースを利用して送信することを特徴としている。
 このように、送信先の通信装置から、いずれかの送信信号系列の受信に失敗し、それ以外の送信信号系列の受信に成功した旨の通知があり、再送する系列とは異なる新たなトランスポートブロックが無い場合において、受信に失敗したとされるトランスポートブロックから生成するHARQ送信信号系列を、受信に成功したとされるトランスポートブロックから生成されたHARQ送信信号系列が利用した多重リソースを利用して送信するので、従来方式では利用できないストリームも利用した再送を行なうことができる。その結果、物理的リソースの空きを有効に活用した効率的な再送を実現することができる。
 (5)また、本発明の送信機において、前記選択・振分部は、送信先の通信装置から、いずれかの送信信号系列の受信に失敗し、それ以外の送信信号系列の受信に成功した旨の通知があり、再送する系列とは異なる新たなトランスポートブロックが無い場合において、受信に失敗したとされるトランスポートブロックから生成されるHARQ送信信号系列を、受信に成功したとされるトランスポートブロックに対応するHARQ送信信号系列が利用した多重リソースを含むすべての多重リソースを利用して送信することを特徴としている。
 このように、送信先の通信装置から、いずれかの送信信号系列の受信に失敗し、それ以外の送信信号系列の受信に成功した旨の通知があり、再送する系列とは異なる新たなトランスポートブロックが無い場合において、受信に失敗したとされるトランスポートブロックから生成されるHARQ送信信号系列を、受信に成功したとされるトランスポートブロックに対応するHARQ送信信号系列が利用した多重リソースを含むすべての多重リソースを利用して送信するので、従来方式では利用できないストリームも利用した再送を行なうことができる。その結果、物理的リソースの空きを有効に活用した効率的な再送を実現することができる。
 (6)また、本発明の受信機は、MACレイヤにより物理レイヤに対して渡される信号系列であるトランスポートブロックから生成され、HARQによる送信単位に一致するHARQ送信信号系列を受信する受信機であって、受信したHARQ送信信号系列に基づいて、そのHARQ送信信号系列の個数よりも少数のトランスポートブロックを復元することを特徴としている。
 このように、受信したHARQ送信信号系列に基づいて、そのHARQ送信信号系列の個数よりも少数のトランスポートブロックを復元するので、例えば、MIMO通信時におけるHARQ再送の通信効率を最大限に利用し、符号化ゲインを最大化し、通信品質を向上させることができる。
 (7)また、本発明の受信機は、複数のアンテナを備え、MIMO通信方式で空間多重された複数のHARQ送信信号系列を受信すると共に、HARQに基づいて再送されるHARQ送信信号系列を受信する受信機であって、前記複数のアンテナを用いて、MIMO通信方式で再送された複数のHARQ送信信号系列を受信する受信部と、受信したHARQ送信信号系列を、すでに受信したHARQ送信信号系列のうちトランスポートブロックが同一のものを復号する処理部へ切り替える切替部と、を備えることを特徴としている。
 このように、受信したHARQ送信信号系列を、すでに受信したHARQ送信信号系列のうちトランスポートブロックが同一のものを復号する処理部へ切り替えるので、受信したHARQ送信信号系列に基づいて、そのHARQ送信信号系列の個数よりも少数のトランスポートブロックを復元することができ、MIMO通信時におけるHARQ再送の通信効率を最大限に利用し、符号化ゲインを最大化し、通信品質を向上させることができる。
 (8)また、本発明の受信機は、複数のアンテナを備え、MIMO通信方式で空間多重された複数のHARQ送信信号系列を受信すると共に、HARQに基づいて再送されるHARQ送信信号系列を受信する受信機であって、前記複数のアンテナを用いて、MIMO通信方式で再送された複数のHARQ送信信号系列を受信する受信部と、受信した複数のHARQ送信信号系列のうち、同一のトランスポートブロックに対応するものについては、それらを合成し、すでに受信したHARQ送信信号系列のうちトランスポートブロックが同一のものを復号する処理部へ切り替える切替部と、を備えることを特徴としている。
 このように、受信した複数のHARQ送信信号系列のうち、同一のトランスポートブロックに対応するものについては、それらを合成し、すでに受信したHARQ送信信号系列のうちトランスポートブロックが同一のものを復号する処理部へ切り替えるので、受信したHARQ送信信号系列に基づいて、そのHARQ送信信号系列の個数よりも少数のトランスポートブロックを復元することができ、MIMO通信時におけるHARQ再送の通信効率を最大限に利用し、符号化ゲインを最大化し、通信品質を向上させることができる。
 (9)また、本発明の受信機において、前記切替部は、送信元の通信装置によって指定された送信ビットパターンに基づいて、各HARQ送信信号系列が対応する送信信号系列を判断することを特徴としている。
 このように、送信元の通信装置によって指定された送信ビットパターンに基づいて、各HARQ送信信号系列が対応する送信信号系列を判断するので、例えば、プロセスナンバーにより、送信信号系列が識別できない場合にも、どの送信信号系列について再送されたデータであるのか識別することができる。その結果、この識別のための余分な制御ビットを削減することができる。
 (10)また、本発明の受信機において、前記切替部は、送信元の通信装置によって指定された送信信号系列の大きさに基づいて、各HARQ送信信号系列が対応する送信信号系列を判断することを特徴としている。
 このように、送信元の通信装置によって指定された送信信号系列の大きさに基づいて、各HARQ送信信号系列が対応する送信信号系列を判断するので、例えば、プロセスナンバーにより、送信信号系列が識別できない場合にも、どの送信信号系列について再送されたデータであるのか識別することができる。その結果、この識別のための余分な制御ビットを削減することができる。
 (11)また、本発明の受信機において、送信元の通信装置から送信された送信信号系列の個数に対応したACK/NACKを返送することを特徴としている。
 このように、送信元の通信装置から送信された送信信号系列の個数に対応したACK/NACKを返送するので、必要な個数のACK/NACKのみを送信することができる。その結果、通信効率を向上させることが可能となる。
 (12)また、本発明の基地局装置は、上記のいずれかに記載の送信機を備えることを特徴としている。
 この基地局装置によれば、送信信号系列の個数よりも多数のHARQに対応したHARQ送信信号系列を生成するので、例えば、MIMO通信時におけるHARQ再送の通信効率を最大限に利用し、符号化ゲインを最大化することで、通信品質を向上させることができる。
 (13)また、本発明の移動局装置は、上記のいずれかに記載の受信機を備えることを特徴としている。
 この移動局装置によれば、受信した複数のHARQに対応したHARQ送信信号系列に基づいて、前記HARQ送信信号系列の個数よりも少数の上位レイヤで処理される送信信号系列を復元するので、例えば、MIMO通信時におけるHARQ再送の通信効率を最大限に利用し、符号化ゲインを最大化することで、通信品質を向上させることができる。
 (14)また、本発明の無線通信システムは、上記の基地局装置と、上記の移動局装置と、から構成されることを特徴としている。
 この無線通信システムによれば、送信信号系列の個数よりも多数のHARQに対応したHARQ送信信号系列を生成するので、例えば、MIMO通信時におけるHARQ再送の通信効率を最大限に利用し、符号化ゲインを最大化することで、通信品質を向上させることができる。
 本発明によれば、MIMO通信時におけるHARQ再送の通信効率を最大限に利用し、符号化ゲインを最大化することで、通信品質を向上させることができる。
本発明の概念を示す図である。 本発明の概念を示す図である。 第1の実施形態に係る基地局装置が備える送信機の一構成例を示すブロック図である。 第1の実施形態に係る移動局装置が備える受信機の一構成例を示すブロック図である。 HARQの再送プロセスを示すシーケンスチャートである。 送信機の動作例を示す図である。 受信機の動作例を示す図である。 送信機の動作例を示す図である。 受信機の動作例を示す図である。 第2の実施形態に係る基地局装置が備える送信機の一構成例を示すブロック図である。 第2の実施形態に係る移動局装置が備える受信機の一構成例を示すブロック図である。 HARQの再送プロセスを示すシーケンスチャートである。 送信機の動作例を示す図である。 受信機の動作例を示す図である。 レートマッチング部に設けられている送信データ系列を保持するサーキュラーバッファと、リダンダンシーバージョンのデータがバッファから読みだされている様子を示す図である。 レートマッチング部に設けられている送信データ系列を保持するサーキュラーバッファと、リダンダンシーバージョンのデータがバッファから読みだされている様子を示す図である。 送信機の動作例を示す図である。 受信機の動作例を示す図である。 レートマッチング部に設けられている送信データ系列を保持するサーキュラーバッファと、リダンダンシーバージョンのデータがバッファから読みだされている様子を示す図である。 レートマッチング部に設けられている送信データ系列を保持するサーキュラーバッファと、リダンダンシーバージョンのデータがバッファから読みだされている様子を示す図である。 HARQの再送プロセスを示すシーケンスチャートである。 送信機の動作例を示す図である。 受信機の動作例を示す図である。 送信機の動作例を示す図である。 受信機の動作例を示す図である。 レートマッチング部に設けられている送信データ系列を保持するサーキュラーバッファと、リダンダンシーバージョンのデータがバッファから読みだされている様子を示す図である。 レートマッチング部に設けられている送信データ系列を保持するサーキュラーバッファと、リダンダンシーバージョンのデータがバッファから読みだされている様子を示す図である。 HARQの再送プロセスを示すシーケンスチャートである。 HARQの再送プロセスを示すシーケンスチャートである。 第6の実施形態に係る基地局装置が備える送信機の一構成例を示すブロック図である。 第6の実施形態に係る移動局装置が備える受信機の一構成例を示すブロック図である。 HARQの再送プロセスを示すシーケンスチャートである。 基地局装置のMACレイヤにおいて、第1の符号化系列・HARQ送信信号系列および第2の符号化系列・HARQ送信信号系列両方にトランスポートブロック2を配備した再送処理を実施する様子を示す図である。 受信機において、制御チャネルで送信されたプロセスナンバーにより、どのトランスポートブロックが送信されたかを判断する様子を示す図である。 バッファに蓄えられる誤り訂正ビット(パリティビット)を付与した送信信号系列を示す図である。 ランク1の送信信号系列とストリームの対応関係を示す図である。 ランク2の送信信号系列とストリームの対応関係を示す図である。 ランク3の送信信号系列とストリームの対応関係を示す図である。 ランク4の送信信号系列とストリームの対応関係を示す図である。 MIMO通信技術とHARQ通信技術を組み合わせて、複数のトランスポートブロックを複数のHARQ送信信号系列に対応させ、このHARQ送信信号系列を空間多重して送信・受信する概念を示す図である。 MIMO通信技術とHARQ通信技術を組み合わせて、複数のトランスポートブロックを複数のHARQ送信信号系列に対応させ、このHARQ送信信号系列を空間多重して送信・受信する概念を示す図である。 従来のMIMO通信技術とHARQ通信技術を組み合わせた場合の送信側装置の構成の一例を示す図である。 従来のMIMO通信技術とHARQ通信技術を組み合わせた場合の受信側装置の構成の一例を示す図である。 E-UTRAにおけるランク4の送信の一例を示す図である。 E-UTRAのランク4の送信の一例を示す図である。
符号の説明
101 符号化部
102 レートマッチング部
103 選択・振分部
104 スクランブル部
105 変調マッピング部
106 送信層マッピング部
107 スケジューラ部
201 受信層逆マッピング部
202 逆変調マッピング部
203 逆スクランブル部
204 切替部
205 レートデマッチング部
206 誤り訂正復号化部
601 シリアル/パラレル(S/P)変換部
602 パラレル/シリアル(P/S)変換部
1001 サーキュラーバッファ
1002 システマティックビット
1003 パリティビット
 図1Aおよび図1Bは、本発明の概念を示す図である。送信機は、1つのトランスポートブロックから複数のHARQ送信信号系列を生成し、生成した複数のHARQ送信信号系列を多重して送信する。受信機は、複数のHARQ送信信号系列から1つのトランスポートブロックを復元する。送信機において、何も送信するべきトランスポートブロックがない場合、再送すべきトランスポートブロックを、空いているHARQ送信信号系列・ストリームを利用して、効率的に再送を行なう。また、HARQ送信信号系列を複数の多重化信号グループに対応させる処理については論理的に対応するものであって、この処理の過程でスクランブルなどのそれぞれの信号系列に対して行なわれる処理を含むこと、若しくは含まないことも本発明の範囲に含まれる。ここでは、1つのトランスポートブロックを複数のHARQ送信信号系列に対応させる送信機の具体的な動作と、複数のHARQ送信信号系列を1つのトランスポートブロックに対応させる具体的な受信機の動作について例を挙げて説明する。
 (第1の実施形態)
 まず、本発明の第1の実施形態に係る無線通信システムについて説明する。この無線通信システムは、基地局装置と移動局装置とから構成されている。図2は、本実施形態に係る基地局装置が備える送信機の一構成例を示すブロック図であり、図3は、本実施形態に係る移動局装置が備える受信機の一構成例を示すブロック図である。図2に示すように、送信機10は、符号化部101、レートマッチング部102、選択・振分部103、スクランブル部104、変調マッピング部105、送信層マッピング部106、スケジューラ部107を備えている。また、図3に示すように、受信機20は、受信層逆マッピング部201、逆変調マッピング部202、逆スクランブル部203、切替部204、レートデマッチング部205、誤り訂正復号化部206、制御部207を備えている。本実施形態では、基地局装置から移動局装置に下り信号を送信することを例にとって、基地局装置での送信処理および移動局装置での受信処理について説明を行なう。本実施例において、ひとつのトランスポートブロックに対応した複数のHARQ送信信号系列を生成する送信機の処理は、選択・振分部103で行なわれ、上記で説明したHARQ送信信号系列はスクランブル部104に入力される信号以降に相当する。この逆に相当する受信機の処理は切替部204で行なわれる。
 送信機10にはN個のトランスポートブロックが上位レイヤから提供される。符号化部101は、これを入力として、誤り訂正や誤り検出のためのパリティビットを付加して出力する。レートマッチング部102はこれを入力とし、送信帯域に合わせたビットの選定と集約を行ない、符号化系列を出力する。HARQを用いた再送制御は、トランスポートブロックごとに実施される。また、これに必要な制御情報は、別の制御情報伝送チャネルを用いて受信側に通知される。この直列に連結された符号化部101およびレートマッチング部102は、物理的または論理的にN個並列に具備される。
 選択・振分部103は、MACレイヤにより制御されるスケジューラ部107の制御信号に従い、このN個のレートマッチング部102からの出力信号を入力とし、これを選択してN個の出力端への振り分けを行なって出力する。選択・振分部103ではN個のHARQ送信信号系列が出力されるが、1つのレートマッチング部102からの出力が、0若しくは複数のHARQ送信信号系列に対応してもよい。
 スクランブル部104は、選択・振分部103の一つの出力信号、つまりHARQ送信信号系列を入力し、これをスクランブルして変調マッピング部105へ出力する。スクランブルの処理については、あらかじめ決められた系列との排他的論理和をとることなどにより実現される。変調マッピング部105は、スクランブル部104からの入力ビット列に対してシンボル化・複素数表現など変調方式に応じた処理を行ない、これをシンボル列として出力する。この直列に連結されたスクランブル部104および変調マッピング部105は、選択・振分部103に対して物理的または論理的にN個並列に具備される。送信層マッピング部106は、変調マッピング部105からN個の入力信号系列をMIMOにて通信可能なストリーム数(これをM個とする)へと変換して出力する。
 スケジューラ部107は、下りリンクのスケジューリング、上りリンクのスケジューリング、制御データ作成、制御データ受信機能を備えて構成されている。また、スケジューリング情報を制御情報に含めて受信機に通知する。受信したユーザデータおよび制御データを、処理するまたは上位層へ出力する。
 下りリンクのスケジューリングでは、移動局装置から通知されるチャネル状態情報や、下りリンクデータのACK/NACK情報、上位層からの通知される各ユーザのデータ情報等から、下りリンクの各チャネルにユーザデータや制御データをマッピングする為のスケジューリングを行なう。
 上りリンクのスケジューリングでは、上りリンクのチャネル推定結果と、移動局からのリソース割り当て要求とから、上りリンクの各チャネルにユーザデータをマッピングする為のスケジューリングを行なう。
 制御データ作成では、上りリンクの受信データの正誤のために、ACK/NACK信号を制御データとして作成する。また、上りリンクおよび下りリンクのスケジューリング情報を制御データとして作成する。スケジューリング部は、符号化部とレートマッチング部にHARQ再送信号系列数と符号後の制御を行なうように指示する。
 受信機20には、MIMO方式にて受信・復調されたストリーム数に対応した数(M個)のシンボル系列の信号が入力される。受信層逆マッピング部201では、送信層マッピング部106と逆の処理が行なわれ、入力されたストリームをHARQ送信信号系列に戻すための処理が行なわれ、送信機に対応したN個のHARQ送信信号系列が出力される。逆変調マッピング部は202、受信層逆マッピング部201から出力される1個のHARQ送信信号系列を入力し、変調マッピング部105の処理に対応してシンボルを復調しビット系列を出力する。逆スクランブル部203はスクランブル部104と逆の処理を行ない、このビット列を出力する。この直列に連結された逆変調マッピング部202および逆スクランブル部203は、受信層逆マッピング部201に対して物理的または論理的にN個並列に具備される。
 N個の逆スクランブル部203の出力は、切替部204に入力され、制御部207の制御によりHARQの処理単位ごと、つまり対応するトランスポートブロック単位に振り分けられ出力される。制御部207の動作は、下りリンク制御チャネルにより送信されたHARQ送信信号系列がどのトランスポートブロックに対応するかを示す情報をもとに決定される。この振り分けは、下りリンク信号と同時に送られた制御信号を元に行なわれる。ここで、この出力信号は送信機に対応した符号化系列である。同一のトランスポートブロックに対応した符号化系列が逆スクランブル部203から提供された場合には、これらを1つの信号としてまとめて出力する。切替部204の出力はそれぞれレートデマッチング部205へ入力され、再送を含め送信された信号を合成し、これを誤り訂正復号化部206へ出力する。誤り訂正復号化部206では誤り訂正・誤り検出処理を行ない、パリティビットを除去し送信されたトランスポートブロックに対応する信号系列を出力する。
 次に、図2に示した送信機および図3に示した受信機を用いて実施されるHARQの再送プロセスについて、図4に示すシーケンスチャートを用いて説明する。この例において、HARQ送信信号系列の数Mは「2」としている。図4には、本実施形態において基地局装置および移動局装置の通信における送信信号系列数(501)、第1のHARQ送信信号系列に対応する信号の流れ(502)、第2のHARQ送信信号系列に対応する信号の流れ(503)、具体的なシーケンスチャート(504)、および、各サブフレームにおける基地局装置と移動局装置の具体的な信号の流れ(S551a,S552a,S553a,S554a,S555a)が示されている。
 図4において、#Subframe1では、移動局装置は基地局装置から送信される信号を利用してチャネル情報を計算し、下り信号に適用するストリーム数の情報(ランク)を移動局装置から基地局装置にフィードバックする。ここでは、ストリーム数4を希望するため、ランク4を送信する(S551a)。
 #Subframe2では、基地局装置は移動局装置から通知されたランク情報を元にストリーム数を決定し、HARQ送信信号系列2つを利用した4ストリームを利用して、2つのトランスポートブロックに対応する下りリンクデータ送信し、移動局装置でこれを受信する(S552a)。ここで、信号系列を表す識別する情報(プロセスナンバー)と、レートマッチング部によって選択された送信信号ビット系列の選択パターン情報(リダンダンシーバージョン、RV)は下り制御チャネルにおいて同時に送信される。符号化系列1におけるプロセスナンバーおよびRVはそれぞれ1、0とし、符号化系列2におけるプロセスナンバーおよびRVは、それぞれ2、0とする。
 このときの送信機の動作例を図5に示し、受信機の動作例を図6に示す。送信機10において、選択・振分部103は、符号化系列1とHARQ送信信号系列1を対応させ、符号化系列2とHARQ送信信号系列2を対応させるように動作する。送信層マッピング部106は、変調マッピング部105により変調マッピングされたHARQ送信信号系列をシリアル・パラレル(S/P)変換部601により、2つのHARQ送信信号系列から4つのストリームを作成する。受信機において、受信層逆マッピング部201はパラレル/シリアル(P/S)変換部602により4つのストリームから2つのHARQ送信信号系列に対応される。切替部204では、制御部207からの制御信号を元にHARQ送信信号系列1を符号化系列1に、HARQ送信信号系列2を符号化系列2へとそれぞれ対応させ、レートデマッチング部205へ出力する。制御部207は、制御チャネルにより通知されたプロセスナンバーより対応する振り分け方法を判断する。
 #Subframe3では、#Subframe2において移動局装置で受信したHARQ再送信号系列に対し復号処理を行ない、その誤りの有無に応じてACK若しくはNACKが送信される(S553a)。ここでは、HARQ再送信号系列1については誤りが発生しなかったため、移動局装置は基地局装置に対してACKを送信する。HARQ再送信号系列2については誤りの発生が検出されたため、移動局装置は基地局装置に対してNACKを送信する。
 #Subframe4では、#Subframe3で移動局装置から送信されるACK/NACKに応じて、基地局装置が再送処理を行なう。このとき、すでに基地局装置におけるバッファは空であり上位レイヤから受け渡されるトランスポートブロックがなく、送信に失敗した系列のみ再送すればよい。基地局装置は#Subframe1において移動局装置から通知されたランク情報を元にストリーム数を決定し、HARQ送信信号系列2つを利用した4ストリームを利用して、1つのトランスポートブロックに対応する下りリンクデータ送信し、移動局装置でこれを受信する(S554a)。ここで、プロセスナンバーとリダンダンシーバージョンは下り制御チャネルにおいて同時に送信される。符号化系列1におけるプロセスナンバーおよびRVはそれぞれ2、0とし、符号化系列2におけるプロセスナンバーおよびRVはそれぞれ2、0とする。つまりHARQ送信信号系列1および2において#Subframe2においてHARQ送信信号系列2で送信した系列を並列に再送していることを表している。
 このときの送信機の動作例を図7に示し、受信機の動作例を図8に示す。送信機10において、選択・振分部103は、符号化系列2をHARQ送信信号系列1とHARQ送信信号系列2に対応させ、符号化系列1と各HARQ送信信号系列との対応は行なわない。受信機20において、切替部204では、制御チャネルにより通知されたプロセスナンバーより対応する振り分け方法を判断し、HARQ送信信号系列1およびHARQ送信信号系列2を符号化系列2に対応させ、これらの信号をレートデマッチング部205へ出力する。
 図4において、#Subframe5では、#Subframe4において移動局装置で受信したHARQ再送信号系列に対し復号処理を行ない、その誤りの有無に応じてACK若しくはNACKが送信される(S555a)。ここでは、1つの送信信号系列について、誤りが発生しなかったため、ACK/NACKの送信は1つのみでよい。ここでは、受信信号に誤りが検出されなかったため移動局装置は基地局装置に対してACKを送信する。
 以上説明したように、第1の実施形態によれば、新たに送信するトランスポートブロックのない状況で再送が発生した場合において、従来方式では利用できないストリームも利用した再送を行なうことができるので、物理的リソースの空きを有効に活用した効率的な再送を実現することができる。また、本発明において、選択・振分部103はスクランブル部104の前段に具備されたが、これは変調マッピング部105の前段に具備することも可能であり、また、送信層マッピング部106において選択・振分部103の動作を含む構成をとることも可能である。受信機における切替部204が具備される位置も送信機の選択・振分部103の位置に応じて変更される。
 (第2の実施形態)
 次に、本発明の第2の実施形態に係る無線通信システムについて説明する。この無線通信システムは、基地局装置と移動局装置とから構成されている。図9は、本実施形態に係る基地局装置が備える送信機の一構成例を示すブロック図であり、図10は、本実施形態に係る移動局装置が備える受信機の一構成例を示すブロック図である。図2に示した送信機および図3に示した受信機との違いはレートマッチング部102と、選択・振分部103、切替部204およびレートデマッチング部205である。本実施例において、ひとつのトランスポートブロックに対応した複数のHARQ送信信号系列を生成する送信機の処理は、選択・振分部103で行なわれ、上記で説明したHARQ送信信号系列はスクランブル部104以降の出力に相当する。この逆に相当する受信機の処理は切替部204で行なわれる。
 図9に示した送信機におけるレートマッチング部102は、誤り訂正や誤り検出のためのパリティビットが付加された情報ビットを入力とする。ここで、送信帯域に合わせたビットの選定と集約を行ない出力するが、出力されるビット系列はサポートされるリダンダンシーバージョンに対応したものとなる。ここでは4つのリダンダンシーバージョン(0、1、2および3)が対応し、上記のビット選定と集約において、出力する系列ごとに異なる系列を4系列作成し、これを出力する。このビット系列を識別するリダンダンシーバージョンは、その他の復号に必要な情報とともに別の制御情報伝送チャネルを用いて受信側に通知される。N個のレートマッチング部102の出力信号(合計L個)は選択・振分部103に入力され、選択・振分部103はスケジューラ部107の制御により入力信号のうち送信するものを選択し、N個の出力端へ振り分けを行なう。
 図10に示した受信機91における切替部204は、N個の逆スクランブル部203の出力信号であるHARQ送信信号系列を入力とし、HARQの処理単位、つまり、対応するトランスポートブロックごとに振り分けを行ないレートデマッチング部205へ出力する。このため、一つのレートデマッチング部205には、RVが同じ、若しくは異なる複数の符号語が同時に入力されることがあり、これらを合成して誤り訂正復号化部206へ出力する。
 次に、図9に示した送信機および図10に示した受信機を用いて実施されるHARQの再送プロセスについて、図11のシーケンスチャートを用いて説明する。
 #Subframe1では、移動局装置は基地局装置から送信される信号を利用してチャネル情報を計算し、下り信号に適用するストリーム数の情報(ランク)を移動局装置から基地局装置にフィードバックする。ここでは、ストリーム数4を希望するため、ランク4を送信する(S551b)。
 #Subframe2では、基地局装置は移動局装置から通知されたランク情報を元にストリーム数を決定し、HARQ送信信号系列2つを利用した4ストリームを利用して、2つのトランスポートブロックに対応する下りリンクデータ送信し、移動局装置でこれを受信する(S552b)。ここで、プロセスナンバーとリダンダンシーバージョンは下り制御チャネルにおいて同時に送信される。符号化系列1におけるプロセスナンバーおよびRVはそれぞれ1、0とし、符号化系列2におけるプロセスナンバーおよびRVはそれぞれ2、0とする。
 このときの詳細な送信機の動作例を図12に示し、受信機の動作例を図13に示す。また、図14Aおよび図14Bは、レートマッチング部102に設けられている送信データ系列を保持するサーキュラーバッファ1001と、リダンダンシーバージョン0のデータがバッファから読みだされている様子を示す図である。図12に示す送信機90において、レートマッチング部102は、パリティビットを付加した信号系列をサーキュラーバッファ1001に保持しており、リダンダンシーバージョンに応じた開始位置から、物理チャネルで送信可能な情報量に応じたビット数を読み出す。ここで、レートマッチング部102は4つのリダンダンシーバージョンに対応しており、それぞれに対応した4つの出力を行なう。
 選択・振分部103は、2つのレートマッチング部102から出力された合計8つの信号を入力とする。ここでは、符号化系列1におけるRV0の信号をHARQ送信信号系列1と対応させ、符号化系列2におけるRV0の信号をとHARQ送信信号系列2を対応させるように動作する。送信層マッピング部は、変調マッピング部105により変調マッピングされたHARQ送信信号系列をシリアル・パラレル(S/P)変換部601により、2つのHARQ送信信号系列から4つのストリームを作成する。受信機においては、受信層逆マッピング部201はパラレル/シリアル(P/S)変換部602により4つのストリームを2つのHARQ送信信号系列に対応させる。切替部204では、制御部207からの制御信号を元にHARQ送信信号系列1を符号化系列1のRV0に、HARQ送信信号系列2を符号化系列2のRV0へとそれぞれ対応させ、レートデマッチング部205へ出力する。制御部207は制御チャネルにより通知されたプロセスナンバーより対応する振り分け方法を判断する。
 #Subframe3では、#Subframe2において移動局装置で受信したHARQ再送信号系列に対し復号処理を行ない、その誤りの有無に応じてACK若しくはNACKが送信される(S553b)。ここでは、HARQ再送信号系列1については誤りが発生しなかったため、移動局装置は基地局装置に対してACKを送信する。HARQ再送信号系列2については誤りの発生が検出されたため、移動局装置は基地局装置に対してNACKを送信する。
 #Subframe4では、#Subframe3で移動局装置から送信されるACK/NACKに応じて、基地局装置が再送処理を行なう。このとき、すでに基地局装置におけるバッファは空であり上位レイヤから受け渡されるトランスポートブロックがなく、送信に失敗した系列のみ再送すればよい。基地局装置は#Subframe1において移動局装置から通知されたランク情報を元にストリーム数を決定し、2個のHARQ送信信号系列と4個のストリームを利用して、1つのトランスポートブロックに対応する下りリンクデータ送信し、移動局装置でこれを受信する(S554b)。ここで、プロセスナンバーとリダンダンシーバージョンの情報は下り制御チャネルにおいて同時に送信される。符号化系列1におけるプロセスナンバーおよびRVはそれぞれ2、1とし、符号化系列2におけるプロセスナンバーおよびRVはそれぞれ2、2とする。つまりHARQ送信信号系列1および2において#Subframe2において送信した符号化系列2に対応するトランスポートブロックを並列に再送していることを表している。
 このときの詳細な送信機の動作例を図15に示し、受信機の動作例を図16に示す。また、図17Aおよび図17Bは、レートマッチング部102に設けられている送信データ系列を保持するサーキュラーバッファ1001と、リダンダンシーバージョン0のデータがバッファから読みだされている様子を示す図である。送信機において、第1のレートマッチング部102は送信を成功しているためバッファは空となっている。このため、取り出されるデータはすべて空となる。第2のレートマッチング部102はパリティビットを付加した信号系列をサーキュラーバッファ1001に保持しており、リダンダンシーバージョンに応じた開始位置から物理チャネルの送信可能なビット数に応じてデータを読み出す。レートマッチング部102は4つのリダンダンシーバージョンに対応しており、それぞれに対応した4つの出力を行なう。選択・振分部103は2つのレートマッチング部102から出力された合計8つの信号を入力とする。ここでは、符号化系列2におけるRV1の信号をHARQ送信信号系列1と対応させ、符号化系列2におけるRV2の信号をHARQ送信信号系列2と対応させるように動作する。
 受信機91において、制御チャネルで送信されたプロセスナンバーにより、どのトランスポートブロックが送信されたかを判断する。ここでは、HARQ送信信号系列1と2ともにプロセスナンバーが2である信号を受信したため、これらが1つのトランスポートブロックであると判断できる。HARQ送信信号系列1を符号化系列2のRV1、HARQ送信信号系列2を符号化系列2のRV2とそれぞれ対応させ、レートデマッチング部205へ出力する。
 図11において、#Subframe5では、#Subframe4において移動局装置で受信したHARQ再送信号系列に対し復号処理を行ない、その誤りの有無に応じてACK若しくはNACKが送信される(S555b)。ここでは、1つの送信信号系列については誤りが発生しなかったため、ACK/NACKの送信は1つのみでよい。ここでは、受信信号に誤りが検出されなかったため移動局装置は基地局装置に対してACKを送信する。
 以上説明したように、第2の実施形態によれば、新たに送信するトランスポートブロックのない状況で再送が発生した場合において、従来方式では利用できないストリームも利用した再送を行なうことができるので、物理的リソースの空きを有効に活用した効率的な再送を実現することができる。さらに、本実施形態では、異なるストリームにおいて異なるリダンダンシーバージョンのデータを送信することができるため、より符号化ゲインの高い効率的な再送を実現することができる。
 (第3の実施形態)
 次に、本発明の第3の実施形態に係る無線通信システムについて説明する。この無線通信システムは、基地局装置と移動局装置とから構成されている。第2の実施形態との違いは、2つの符号が利用できるストリーム数が異なることであり、第1のHARQ送信信号系列は1ストリームを利用した送信が可能であり、第2のHARQ送信信号系列は2ストリームを利用した送信が可能であるランク3の通信を想定している。本実施形態における送信機は、第2の実施形態で図9に示した送信機と同じであり、また、本実施形態における受信機は、第2の実施形態で図10に示した受信機と同様である。本実施例において、ひとつのトランスポートブロックに対応した複数のHARQ送信信号系列を生成する送信機の処理は、選択・振分部103で行なわれ、上記で説明したHARQ送信信号系列はスクランブル部104以降の出力に相当する。この逆に相当する受信機の処理は切替部204で行なわれる。第3の実施形態において、図9に示した送信機と、図10に示した受信機とを用いて実施されるHARQの再送プロセスについて、図18のシーケンスチャートを用いて説明する。
 #Subframe1では、移動局装置は基地局装置から送信される信号を利用してチャネル情報を計算し、下り信号に適用するストリーム数の情報(ランク)を移動局装置から基地局装置にフィードバックする。ここでは、ストリーム数3を希望するため、ランク3を送信する(S551c)。
 #Subframe2では、基地局装置は移動局装置から通知されたランク情報を元にストリーム数を決定し、HARQ送信信号系列2つを利用した3ストリームを利用して、2つのトランスポートブロックに対応する下りリンクデータ送信し、移動局装置でこれを受信する(S552c)。ここで、プロセスナンバーとリダンダンシーバージョンは下り制御チャネルにおいて同時に送信される。符号化系列1におけるプロセスナンバーおよびRVはそれぞれ1、0とし、符号化系列2におけるプロセスナンバーおよびRVはそれぞれ2、0とする。
 このときの詳細な送信機の動作例を図19に示し、受信機の動作例を図20に示す。送信機90において、レートマッチング部102は、4つのリダンダンシーバージョンに対応しており、それぞれに対応した4つの出力を行なう。選択・振分部103は、2つのレートマッチング部102から出力された合計8つの信号を入力とする。ここでは、スケジューラ部107の制御により符号化系列1におけるRV0の信号をHARQ送信信号系列1と対応させ、符号化系列2におけるRV0の信号をHARQ送信信号系列2と対応させるように動作する。送信層マッピング部は、変調マッピング部105により変調マッピングされたHARQ送信信号系列について、HARQ送信信号系列2に対応する信号のみをシリアル・パラレル(S/P)変換部601により、3つのストリームを作成する。
 受信機91においては、受信層逆マッピング部201はパラレル/シリアル(P/S)変換部602により3つのストリームを2つのHARQ送信信号系列に対応させる。切替部204では、制御チャネルにより通知されたプロセスナンバーより対応する振り分け方法を判断し、HARQ送信信号系列1を符号化系列1のRV0に、HARQ送信信号系列2を符号化系列2のRV0へとそれぞれ対応させ、レートデマッチング部205へ出力する。
 図18は、HARQの再送プロセスを示すシーケンスチャートである。図18において、#Subframe3では、#Subframe2において移動局装置で受信したHARQ再送信号系列に対し復号処理を行ない、その誤りの有無に応じてACK若しくはNACKが送信される(S553c)。ここでは、HARQ再送信号系列1については誤りが発生しなかったため、移動局装置は基地局装置に対してACKを送信する。HARQ再送信号系列2については誤りの発生が検出されたため、移動局装置は基地局装置に対してNACKを送信する。
 #Subframe4では、#Subframe3で移動局装置から送信されるACK/NACKに応じて、基地局装置が再送処理を行なう。このとき、すでに基地局装置におけるバッファは空であり上位レイヤから受け渡されるトランスポートブロックがなく、送信に失敗した系列のみ再送すればよい。基地局装置は#Subframe1において移動局装置から通知されたランク情報を元にストリーム数を決定し、HARQ送信信号系列2つを利用した3ストリームを利用して1つのトランスポートブロックに対応する下りリンクデータ送信し、移動局装置でこれを受信する(S554c)。ここで、信号系列を表す識別する情報(プロセスナンバー)と、リダンダンシーバージョンの情報は下り制御チャネルにおいて同時に送信される。符号化系列1におけるプロセスナンバーおよびRVはそれぞれ2、1とし、符号化系列2におけるプロセスナンバーおよびRVはそれぞれ2、2とする。つまり符号化系列1および2において#Subframe2において送信した符号化系列2に対応するトランスポートブロックを並列に再送していることを表している。
 このときの詳細な送信機の動作例を図21に示し、受信機の動作例を図22に示す。また、図23Aおよび図23Bは、レートマッチング部102に設けられている送信データ系列を保持するサーキュラーバッファ1001と、リダンダンシーバージョン0のデータがバッファから読みだされている様子を示す図である。送信機90において、第1のレートマッチング部102は、送信を成功しているためバッファは空となっている。このため、取り出されるデータはすべて空となる。第2のレートマッチング部102は、パリティビットを付加した信号系列をサーキュラーバッファ1001に保持しており、スケジューラ部107の制御によりリダンダンシーバージョンに応じた開始位置から物理チャネルの送信可能なビット数に応じてデータを読み出す。
 レートマッチング部102は、4つのリダンダンシーバージョンに対応しており、それぞれに対応した4つの出力を行なう。選択・振分部103は、2つのレートマッチング部102から出力された合計8つの信号を入力とする。ここでは、符号化系列2におけるRV1の信号をHARQ送信信号系列1と対応させ、符号化系列2におけるRV2の信号をHARQ送信信号系列2と対応させるように動作する。ただし、HARQ送信信号系列1はHARQ送信信号系列2と比較して利用できるストリームが半分であるため、送信可能なビットが半減される。つまり、ここではレートマッチング部102から出力された系列の前半半分だけHARQ送信信号系列1として利用される。
 受信機91において、切替部204は、制御部207の制御信号を元にHARQ送信信号系列1を符号化系列2のRV1、HARQ送信信号系列2を符号化系列2のRV2とそれぞれ対応させ、レートデマッチング部205へ出力する。制御部207は制御チャネルにより通知されたプロセスナンバーより対応する振り分け方法を判断する。
 #Subframe5では、#Subframe4において移動局装置で受信したHARQ再送信号系列に対し復号処理を行ない、その誤りの有無に応じてACK若しくはNACKが送信される(S555c)。ここでは、1つの送信信号系列については誤りが発生しなかったため、ACK/NACKの送信は1つのみでよい。ここでは、受信信号に誤りが検出されなかったため移動局装置は基地局装置に対してACKを送信する。
 以上説明したように、第3の実施形態によれば、新たに送信するトランスポートブロックのない状況で再送が発生した場合において、従来方式では利用できないストリームも利用した再送を行なうことができ、物理的リソースの空きを有効に活用した効率的な再送を実現することができる。さらに、この実施形態では、異なるストリームにおいて異なるリダンダンシーバージョンのデータを送信することができ、さらに、HARQ送信信号系列を変えることにより送信可能なビットが減少した場合に再送が可能になることによる符号化ゲインの高い効率的な再送を実現することができる。
 (第4の実施形態)
 次に、本発明の第4の実施形態に係る無線通信システムについて説明する。この無線通信システムは、基地局装置と移動局装置とから構成されている。第1の実施形態との違いは、受信機において、トランスポートブロックを識別するための情報に、送信側から通知されるトランスポートブロックの大きさ(トランスポートブロックサイズ:TBS(Transport Block Size))を利用している点である。具体的にTBS=0と指定されている符号化系列については、他方のHARQ送信信号系列と同じトランスポートブロックに対応することとする。本実施例において、ひとつのトランスポートブロックに対応した複数のHARQ送信信号系列を生成する送信機の処理は、選択・振分部103で行なわれ、上記で説明したHARQ送信信号系列はスクランブル部104以降の出力に相当する。この逆に相当する受信機の処理は、切替部204で行なわれる。これを実施するための送信機および受信機の構成は、第2の実施形態と同様であり、それぞれ図9および図10で表わされる。
 第4の実施形態において、図9に示す送信機と、図10に示す受信機とを用いて実施されるHARQの再送プロセスについて、図24のシーケンスチャートを用いて説明する。図24において、#Subframe1では、移動局装置は基地局装置から送信される信号を利用してチャネル情報を計算し、下り信号に適用するストリーム数の情報(ランク)を移動局装置から基地局装置にフィードバックする。ここでは、ストリーム数4を希望するため、ランク4を送信する(S551d)。
 #Subframe2では、基地局装置は移動局装置から通知されたランク情報を元にストリーム数を決定し、HARQ送信信号系列2つを利用した4ストリームを利用して、2つのトランスポートブロックに対応する下りリンクデータ送信し、移動局装置でこれを受信する(S552d)。ここで、プロセスナンバー、リダンダンシーバージョン、トランスポートブロックサイズは下り制御チャネルにおいて同時に送信される。HARQ送信信号系列1におけるプロセスナンバーおよびRVおよびTBSはそれぞれ1、0、100とし、HARQ送信信号系列2におけるプロセスナンバーおよびRVはそれぞれ2、0、
100 とする。
 #Subframe3では、#Subframe2において移動局装置で受信したHARQ再送信号系列に対し復号処理を行ない、その誤りの有無に応じてACK若しくはNACKが送信される(S553d)。ここでは、HARQ再送信号系列1については誤りが発生しなかったため、移動局装置は基地局装置に対してACKを送信する。HARQ再送信号系列2については誤りの発生が検出されたため、移動局装置は基地局装置に対してNACKを送信する。
 #Subframe4では、#Subframe3で移動局装置から送信されるACK/NACKに応じて、基地局装置が再送処理を行なう。このとき、すでに基地局装置におけるバッファは空であり上位レイヤから受け渡されるトランスポートブロックがなく、送信に失敗した系列のみ再送すればよい。基地局装置は#Subframe1において移動局装置から通知されたランク情報を元にストリーム数を決定し、HARQ送信信号系列2つを利用した4ストリームを利用して、1つのトランスポートブロックに対応する下りリンクデータ送信し、移動局装置でこれを受信する(S554d)。ここで、プロセスナンバーとリダンダンシーバージョンおよびトランスポートブロックサイズの情報は下り制御チャネルにおいて同時に送信される。HARQ送信信号系列1におけるプロセスナンバーおよびRVおよびTBSは、それぞれ2、1、0とし、HARQ送信信号系列2におけるプロセスナンバーおよびRVはそれぞれ2、2、100とする。ここでHARQ送信信号系列1はTBS=0と指定されているが、この値は他方のHARQ送信信号系列と同じトランスポートブロックであることを示す。つまりこれは#Subframe2において送信した符号化系列2に対応するトランスポートブロックを並列に再送していることを表している。
 受信機91において、切替部204は制御部207の制御信号を元にHARQ送信信号系列1を符号化系列2のRV1、HARQ送信信号系列2を符号化系列2のRV2とそれぞれ対応させ、レートデマッチング部205へ出力する。制御部207は制御チャネルにより通知されたトランスポートブロックサイズにより対応する振り分け方法を判断する。
 #Subframe5では、#Subframe4において移動局装置で受信したHARQ再送信号系列に対し復号処理を行ない、その誤りの有無に応じてACK若しくはNACKが送信される(S555d)。ここでは、1つの送信信号系列については誤りが発生しなかったため、ACK/NACKの送信は1つのみでよい。ここでは、受信信号に誤りが検出されなかったため移動局装置は基地局装置に対してACKを送信する。
 以上説明したように、第4の実施形態によれば、新たに送信するトランスポートブロックのない状況で再送が発生した場合において、従来方式では利用できないストリームも利用した再送を行なうことができるので、物理的リソースの空きを有効に活用した効率的な再送を実現することができる。さらに、この実施形態では、プロセスナンバーにより、トランスポートブロックが識別できない場合にも、トランスポートブロックサイズを見れば、どのトランスポートブロックについて再送されたデータであるのか識別することができ、この識別のための余分な制御ビットを削減することができる。
 (第5の実施形態)
 次に、本発明の第5の実施形態に係る無線通信システムについて説明する。この無線通信システムは、基地局装置と移動局装置とから構成されている。第1の実施形態との違いは、受信機において、トランスポートブロックを識別するための情報に、送信側から通知されるリダンダンシーバージョンを利用している点である。具体的にRV=0と指定されている符号化系列については、他方のHARQ送信信号系列と同じトランスポートブロックに対応することとする。また、本実施例において、ひとつのトランスポートブロックに対応した複数のHARQ送信信号系列を生成する送信機の処理は、選択・振分部103で行なわれ、上記で説明したHARQ送信信号系列はスクランブル部104以降の出力に相当する。この逆に相当する受信機の処理は切替部204で行なわれる。これを実施するための送信機および受信機の構成は、第2の実施形態と同様であり、それぞれ図9および図10で表わされる。
 第5の実施形態において、図9に示す送信機と、図10に示す受信機とを用いて実施されるHARQの再送プロセスについて、図25のシーケンスチャートを用いて説明する。図25において、#Subframe1では、移動局装置は、基地局装置から送信される信号を利用してチャネル情報を計算し、下り信号に適用するストリーム数の情報(ランク)を移動局装置から基地局装置にフィードバックする。ここでは、ストリーム数4を希望するため、ランク4を送信する(S551e)。
 #Subframe2では、基地局装置は、移動局装置から通知されたランク情報を元にストリーム数を決定し、HARQ送信信号系列2つを利用した4ストリームを利用して、2つのトランスポートブロックに対応する下りリンクデータ送信し、移動局装置でこれを受信する(S552e)。ここで、プロセスナンバーおよびリダンダンシーバージョンは下り制御チャネルにおいて同時に送信される。HARQ送信信号系列1におけるプロセスナンバーおよびRVはそれぞれ2、1とし、HARQ送信信号系列2におけるプロセスナンバーおよびRVはそれぞれ2、1とする。
 #Subframe3では、#Subframe2において移動局装置で受信したHARQ再送信号系列に対し復号処理を行ない、その誤りの有無に応じてACK若しくはNACKが送信される(S553e)。ここでは、HARQ再送信号系列1については誤りが発生しなかったため、移動局装置は基地局装置に対してACKを送信する。HARQ再送信号系列2については誤りの発生が検出されたため、移動局装置は基地局装置に対してNACKを送信する。
 #Subframe4では、#Subframe3で移動局装置から送信されるACK/NACKに応じて、基地局装置が再送処理を行なう。このとき、すでに基地局装置におけるバッファは空であり上位レイヤから受け渡されるトランスポートブロックがなく、送信に失敗した系列のみ再送すればよい。基地局装置は、#Subframe1において移動局装置から通知されたランク情報を元にストリーム数を決定し、HARQ送信信号系列2つを利用した4ストリームを利用して、1つのトランスポートブロックに対応する下りリンクデータ送信し、移動局装置でこれを受信する(S554e)。
 ここで、プロセスナンバーと、リダンダンシーバージョンの情報は下り制御チャネルにおいて同時に送信される。HARQ送信信号系列1におけるプロセスナンバーおよびRVはそれぞれ2、0とし、HARQ送信信号系列2におけるプロセスナンバーおよびRVはそれぞれ2、2とする。ここでHARQ送信信号系列1はRV=0と指定されているが、この値は他方のHARQ送信信号系列と同じトランスポートブロックであることを示す。このときHARQ送信信号系列1のリダンダンシーバージョンはHARQ送信信号系列2におけるリダンダンシーバージョンからあらかじめ決められたルールで決定されるものとする。ここでは簡単のためHARQ送信信号系列2と同様のRV=2が利用されるものとする。つまりこれは、#Subframe2において送信した符号化系列2に対応するトランスポートブロックを並列に再送していることを表している。
 受信機91において、切替部204は制御部207の制御信号を元にHARQ送信信号系列1を符号化系列2のRV2、HARQ送信信号系列2を符号化系列2のRV2とそれぞれ対応させ、レートデマッチング部205へ出力する。制御部207は制御チャネルにより通知されたリダンダンシーバージョンにより対応する振り分け方法を判断する。
 #Subframe5では、#Subframe4において移動局装置で受信したHARQ再送信号系列に対し復号処理を行ない、その誤りの有無に応じてACK若しくはNACKが送信される(S555e)。ここでは、1つの送信信号系列については誤りが発生しなかったため、ACK/NACKの送信は1つのみでよい。ここでは、受信信号に誤りが検出されなかったため移動局装置は基地局装置に対してACKを送信する。
 以上説明したように、第5の実施形態によれば、新たに送信するトランスポートブロックのない状況で再送が発生した場合において、従来方式では利用できないストリームも利用した再送を行なうことができるため、物理的リソースの空きを有効に活用した効率的な再送を実現することができる。さらに、この実施形態では、プロセスナンバーにより、トランスポートブロックが識別できない場合にも、リダンダンシーバージョンを見れば、どのトランスポートブロックについて再送されたデータであるのか識別することができ、この識別のための余分な制御ビットを削減することができる。
 (第6の実施形態)
 次に、本発明の第6の実施形態に係る無線通信システムについて説明する。この無線通信システムは、基地局装置と移動局装置とから構成されている。図26は、本実施形態に係る基地局装置が備える送信機の一構成例を示すブロック図であり、図27は本実施形態に係る移動局装置が備える受信機の一構成例を示すブロック図である。図26に示された送信機と図9に示された送信機との違いは、図9における選択・振分部103を利用せず各ストリームで送信するトランスポートブロックの制御をMACレイヤで実施することである。本実施例において、ひとつのトランスポートブロックに対応した複数のHARQ送信信号系列を生成する送信機の処理は、トランスポートブロックを配置する段階においてすでに準備されることとなり、レートマッチング部102の出力以降の信号において、一つのトランスポートブロックに対応した複数のHARQ送信信号系列が得られることとなる。この逆に相当する受信機の処理は切替部204で行なわれる。図10に示した受信機における動作は、第2の実施形態と同様である。
 図26に示す送信機と、図27に示す受信機とを用いて実施されるHARQの再送プロセスについて、図28のシーケンスチャートを用いて説明する。図28において、#Subframe1では、移動局装置は基地局装置から送信される信号を利用してチャネル情報を計算し、下り信号に適用するストリーム数の情報(ランク)を移動局装置から基地局装置にフィードバックする。ここでは、ストリーム数4を希望するため、ランク4を送信する(S551f)。
 #Subframe2では、基地局装置は移動局装置から通知されたランク情報を元にストリーム数を決定し、HARQ送信信号系列2つを利用した4ストリームを利用して、2つのトランスポートブロックに対応する下りリンクデータ送信し、移動局装置でこれを受信する(S552f)。ここで、プロセスナンバーとリダンダンシーバージョンは下り制御チャネルにおいて同時に送信される。符号化系列1におけるプロセスナンバーおよびRVはそれぞれ1、0とし、符号化系列2におけるプロセスナンバーおよびRVはそれぞれ2、0とする(図26)。
 #Subframe3では、#Subframe2において移動局装置で受信したHARQ再送信号系列に対し復号処理を行ない、その誤りの有無に応じてACK若しくはNACKが送信される(S553f)。ここでは、HARQ再送信号系列1については誤りが発生しなかったため、移動局装置は基地局装置に対してACKを送信する。HARQ再送信号系列2については誤りの発生が検出されたため、移動局装置は基地局装置に対してNACKを送信する。
 #Subframe4では、#Subframe3で移動局装置から送信されるACK/NACKに応じて、基地局装置が再送処理を行なう。このとき、すでにトランスポートブロック1は送信が成功しているため、送信に失敗したトランスポートブロック2のみを送信する。基地局装置は、#Subframe1において移動局装置から通知されたランク情報を元にストリーム数を決定し、2個のHARQ送信信号系列と4個のストリームを利用して、トランスポートブロック2を再送する。ここで、図29に示すように、基地局装置のMACレイヤでは、第1の符号化系列・HARQ送信信号系列および第2の符号化系列・HARQ送信信号系列両方にトランスポートブロック2を配備した再送処理を実施する。レート移動局装置でこれを受信する(S554f)。ここで、プロセスナンバーとリダンダンシーバージョンの情報は下り制御チャネルにおいて同時に送信される。符号化系列1におけるプロセスナンバーおよびRVはそれぞれ2、1とし、符号化系列2におけるプロセスナンバーおよびRVはそれぞれ2、2とする。つまりHARQ送信信号系列1および2において#Subframe2において送信した符号化系列2に対応するトランスポートブロックを並列に再送していることを表している。
 図30に示すように、受信機93において、制御チャネルで送信されたプロセスナンバーにより、どのトランスポートブロックが送信されたかを判断する。ここでは、制御部207はHARQ送信信号系列1と2ともにプロセスナンバーが2である信号を受信したため、これらが1つのトランスポートブロックであると判断できる。制御部207はHARQ送信信号系列1を符号化系列2のRV1、HARQ送信信号系列2を符号化系列2のRV2とそれぞれ対応させる制御信号を切替部204へ出力し、この制御を行なった切替部204はレートデマッチング部205へ出力し、これらの受信信号を合成する。
 #Subframe5では、#Subframe4において移動局装置で受信したHARQ再送信号系列に対し復号処理を行ない、その誤りの有無に応じてACK若しくはNACKが送信される(S555f)。ここでは、1つの送信信号系列については誤りが発生しなかったため、ACK/NACKの送信は1つのみでよい。ここでは、受信信号に誤りが検出されなかったため、移動局装置は、基地局装置に対してACKを送信する。
 以上説明したように、第6の実施形態によれば、新たに送信するトランスポートブロックのない状況で再送が発生した場合において、従来方式では利用できないストリームも利用した再送を行なうことができるため、物理的リソースの空きを有効に活用した効率的な再送を実現することができる。さらに、この実施形態では、異なるストリームにおいて異なるリダンダンシーバージョンのデータを送信することができるため、より符号化ゲインの高い効率的な再送を実現することができる。
 また、本実施形態において、送信されたトランスポートブロックを識別するための情報に送信機から通知されたプロセス番号を利用したが、第4の実施形態、第5の実施形態に記載された手順の通り、リダンダンシーバージョンやトランスポートブロックサイズを利用してもよい。また、本実施形態において、ランク4に対応する再送プロセスの説明を行なったが、第3の実施形態の通り、ランク3の場合についても同様に実施することができる。
 また、本発明の各実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。

Claims (14)

  1.  MACレイヤにより物理レイヤに対して渡される信号系列であるトランスポートブロックから生成され、HARQによる送信単位に一致するHARQ送信信号系列を送信する送信機であって、
     同一のトランスポートブロックに基づいて、複数のHARQ送信信号系列を生成し、生成した複数のHARQ送信信号系列を同時に送信することを特徴とする送信機。
  2.  前記複数のHARQ送信信号系列のそれぞれは、異なるリダンダンシーバージョンに対応していることを特徴とする請求項1記載の送信機。
  3.  複数のアンテナを備え、MIMO通信方式により複数の信号系列を空間多重して送信すると共に、HARQに基づきトランスポートブロックの再送を行なう送信機であって、
     HARQに基づいた、トランスポートブロックの個数よりも多数のHARQ送信信号系列を生成する選択・振分部と、
     前記複数のアンテナを用いて、前記HARQ送信信号系列をMIMO通信方式で多重して再送する送信部と、を備えることを特徴とする送信機。
  4.  前記選択・振分部は、送信先の通信装置から、いずれかの送信信号系列の受信に失敗し、それ以外の送信信号系列の受信に成功した旨の通知があり、再送する系列とは異なる新たなトランスポートブロックが無い場合において、受信に失敗したとされるトランスポートブロックから生成するHARQ送信信号系列を、受信に成功したとされるトランスポートブロックから生成されたHARQ送信信号系列が利用した多重リソースを利用して送信することを特徴とする請求項3記載の送信機。
  5.  前記選択・振分部は、送信先の通信装置から、いずれかの送信信号系列の受信に失敗し、それ以外の送信信号系列の受信に成功した旨の通知があり、再送する系列とは異なる新たなトランスポートブロックが無い場合において、受信に失敗したとされるトランスポートブロックから生成されるHARQ送信信号系列を、受信に成功したとされるトランスポートブロックに対応するHARQ送信信号系列が利用した多重リソースを含むすべての多重リソースを利用して送信することを特徴とする請求項3記載の送信機。
  6.  MACレイヤにより物理レイヤに対して渡される信号系列であるトランスポートブロックから生成され、HARQによる送信単位に一致するHARQ送信信号系列を受信する受信機であって、
     受信したHARQ送信信号系列に基づいて、そのHARQ送信信号系列の個数よりも少数のトランスポートブロックを復元することを特徴とする受信機。
  7.  複数のアンテナを備え、MIMO通信方式で空間多重された複数のHARQ送信信号系列を受信すると共に、HARQに基づいて再送されるHARQ送信信号系列を受信する受信機であって、
     前記複数のアンテナを用いて、MIMO通信方式で再送された複数のHARQ送信信号系列を受信する受信部と、
     受信したHARQ送信信号系列を、すでに受信したHARQ送信信号系列のうちトランスポートブロックが同一のものを復号する処理部へ切り替える切替部と、を備えることを特徴とする受信機。
  8.  複数のアンテナを備え、MIMO通信方式で空間多重された複数のHARQ送信信号系列を受信すると共に、HARQに基づいて再送されるHARQ送信信号系列を受信する受信機であって、
     前記複数のアンテナを用いて、MIMO通信方式で再送された複数のHARQ送信信号系列を受信する受信部と、
     受信した複数のHARQ送信信号系列のうち、同一のトランスポートブロックに対応するものについては、それらを合成し、すでに受信したHARQ送信信号系列のうちトランスポートブロックが同一のものを復号する処理部へ切り替える切替部と、を備えることを特徴とする受信機。
  9.  前記切替部は、送信元の通信装置によって指定された送信ビットパターンに基づいて、各HARQ送信信号系列が対応する送信信号系列を判断することを特徴とする請求項7または請求項8記載の受信機。
  10.  前記切替部は、送信元の通信装置によって指定された送信信号系列の大きさに基づいて、各HARQ送信信号系列が対応する送信信号系列を判断することを特徴とする請求項7または請求項8記載の受信機。
  11.  送信元の通信装置から送信された送信信号系列の個数に対応したACK/NACKを返送することを特徴とする請求項6から請求項10のいずれかに記載の受信機。
  12.  請求項1から請求項5のいずれかに記載の送信機を備えることを特徴とする基地局装置。
  13.  請求項6から請求項11のいずれかに記載の受信機を備えることを特徴とする移動局装置。
  14.  請求項12記載の基地局装置と、請求項13記載の移動局装置と、から構成されることを特徴とする無線通信システム。
PCT/JP2009/051353 2008-02-04 2009-01-28 送信機、受信機、基地局装置、移動局装置および無線通信システム WO2009098981A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-024534 2008-02-04
JP2008024534 2008-02-04

Publications (1)

Publication Number Publication Date
WO2009098981A1 true WO2009098981A1 (ja) 2009-08-13

Family

ID=40952058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051353 WO2009098981A1 (ja) 2008-02-04 2009-01-28 送信機、受信機、基地局装置、移動局装置および無線通信システム

Country Status (1)

Country Link
WO (1) WO2009098981A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030785A1 (ja) * 2009-09-10 2011-03-17 京セラ株式会社 基地局装置及び基地局装置の通信制御方法
JP2013502816A (ja) * 2009-08-19 2013-01-24 パンテック カンパニー リミテッド 無線通信システムにおける情報転送方法及びその転送装置、その受信装置、受信方法
WO2018020942A1 (ja) * 2016-07-28 2018-02-01 シャープ株式会社 基地局装置、端末装置および通信方法
JP2018513586A (ja) * 2015-03-05 2018-05-24 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 復号マージンに基づく送信特性の構成
JP2019504544A (ja) * 2015-12-14 2019-02-14 ノキア ソリューションズ アンド ネットワークス オサケユキチュア データ再送信

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004376A1 (ja) * 2003-06-30 2005-01-13 Fujitsu Limited 多入力多出力伝送システム
WO2006030478A1 (ja) * 2004-09-13 2006-03-23 Matsushita Electric Industrial Co., Ltd. Mimo−ofdmシステムにおける自動再送要求制御システム及び再送信方法
WO2006039635A2 (en) * 2004-10-01 2006-04-13 Qualcomm Incorporated Multi-carrier incremental redundancy for packet-based wireless communications
WO2006057195A1 (ja) * 2004-11-25 2006-06-01 Matsushita Electric Industrial Co., Ltd. マルチアンテナ送信装置、マルチアンテナ受信装置及びデータ再送方法
WO2007088579A1 (ja) * 2006-01-31 2007-08-09 Mitsubishi Denki Kabushiki Kaisha 無線送信装置、無線受信装置および無線通信システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004376A1 (ja) * 2003-06-30 2005-01-13 Fujitsu Limited 多入力多出力伝送システム
WO2006030478A1 (ja) * 2004-09-13 2006-03-23 Matsushita Electric Industrial Co., Ltd. Mimo−ofdmシステムにおける自動再送要求制御システム及び再送信方法
WO2006039635A2 (en) * 2004-10-01 2006-04-13 Qualcomm Incorporated Multi-carrier incremental redundancy for packet-based wireless communications
WO2006057195A1 (ja) * 2004-11-25 2006-06-01 Matsushita Electric Industrial Co., Ltd. マルチアンテナ送信装置、マルチアンテナ受信装置及びデータ再送方法
WO2007088579A1 (ja) * 2006-01-31 2007-08-09 Mitsubishi Denki Kabushiki Kaisha 無線送信装置、無線受信装置および無線通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Efficient support of retransmission using codeword DTX and signaling", 3GPP TSG RAN WG1#51BIS R1-080263, January 2008 (2008-01-01), pages 1 - 3 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013502816A (ja) * 2009-08-19 2013-01-24 パンテック カンパニー リミテッド 無線通信システムにおける情報転送方法及びその転送装置、その受信装置、受信方法
WO2011030785A1 (ja) * 2009-09-10 2011-03-17 京セラ株式会社 基地局装置及び基地局装置の通信制御方法
JP2011061540A (ja) * 2009-09-10 2011-03-24 Kyocera Corp 基地局装置及び基地局装置の通信制御方法
CN102577492A (zh) * 2009-09-10 2012-07-11 京瓷株式会社 基站装置及基站装置的通信控制方法
US8824425B2 (en) 2009-09-10 2014-09-02 Kyocera Corporation Base station device and communication control method for base station device
JP2018513586A (ja) * 2015-03-05 2018-05-24 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 復号マージンに基づく送信特性の構成
US10506557B2 (en) 2015-03-05 2019-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Decoding margin based configuration of transmission properties
JP2019504544A (ja) * 2015-12-14 2019-02-14 ノキア ソリューションズ アンド ネットワークス オサケユキチュア データ再送信
WO2018020942A1 (ja) * 2016-07-28 2018-02-01 シャープ株式会社 基地局装置、端末装置および通信方法
RU2739589C2 (ru) * 2016-07-28 2020-12-28 Шарп Кабусики Кайся Устройство базовой станции, терминальное устройство и способ связи
US11038625B2 (en) 2016-07-28 2021-06-15 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, and communication method

Similar Documents

Publication Publication Date Title
JP6612408B2 (ja) Harqを実装するシステムにおけるコードワード対レイヤ・マッピング
EP2862306B1 (en) Mapping retransmissions responsive to bundled nack messages for multi-layer mimo transmission
US9461720B2 (en) Methods of receiving retransmissions including discontinuous transmission indicators in MIMO systems
EP2748961B1 (en) Methods of selecting mimo ranks and related devices
EP2770657A1 (en) Method and device for data stream transmission in a mimo system
JP6265387B2 (ja) バンドルされたnackメッセージに応答して再送をマッピングする方法及び関連する装置
KR20090017973A (ko) 다중입력 다중출력 시스템에서 코드워드를 전송하는 방법
WO2013141772A1 (en) Methods and devices relating to mimo communications
WO2009098981A1 (ja) 送信機、受信機、基地局装置、移動局装置および無線通信システム
JP2010093449A (ja) 送信装置、受信装置、通信方法および通信システム
CN110266431B (zh) 数据传输方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09708012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP