WO2009098804A1 - 液晶表示装置の製造方法、及び、液晶表示装置 - Google Patents
液晶表示装置の製造方法、及び、液晶表示装置 Download PDFInfo
- Publication number
- WO2009098804A1 WO2009098804A1 PCT/JP2008/069789 JP2008069789W WO2009098804A1 WO 2009098804 A1 WO2009098804 A1 WO 2009098804A1 JP 2008069789 W JP2008069789 W JP 2008069789W WO 2009098804 A1 WO2009098804 A1 WO 2009098804A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- birefringent layer
- polarizer
- crystal display
- display device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/04—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
- B29C55/06—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/04—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
- B29C55/08—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/16—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
- B32B37/20—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
- B32B37/203—One or more of the layers being plastic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0012—Mechanical treatment, e.g. roughening, deforming, stretching
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
- B29C65/481—Non-reactive adhesives, e.g. physically hardening adhesives
- B29C65/4825—Pressure sensitive adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/52—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/45—Joining of substantially the whole surface of the articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/733—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
- B29C66/7338—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being polarising
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/737—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
- B29C66/7371—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable
- B29C66/73711—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable oriented
- B29C66/73712—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable oriented mono-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/83—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
- B29C66/834—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
- B29C66/8341—Roller, cylinder or drum types; Band or belt types; Ball types
- B29C66/83411—Roller, cylinder or drum types
- B29C66/83413—Roller, cylinder or drum types cooperating rollers, cylinders or drums
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0018—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
- B29K2995/0031—Refractive
- B29K2995/0032—Birefringent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0018—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
- B29K2995/0034—Polarising
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/0012—Mechanical treatment, e.g. roughening, deforming, stretching
- B32B2038/0028—Stretching, elongating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
- B32B2457/202—LCD, i.e. liquid crystal displays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/12—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
- G02F1/133634—Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
- G02F1/133637—Birefringent elements, e.g. for optical compensation characterised by the wavelength dispersion
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/02—Number of plates being 2
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/12—Biaxial compensators
Definitions
- the present invention relates to a method for manufacturing a liquid crystal display device and a liquid crystal display device. More specifically, the present invention relates to a method for manufacturing a liquid crystal display device having a birefringent layer between a pair of polarizers arranged in crossed Nicols, and a liquid crystal display device.
- TFT-LCDs TFT-type liquid crystal display devices
- a TFT-LCD will be described as an example.
- the present invention is not limited to a TFT-LCD, and can be applied to a simple matrix LCD, a plasma address LCD, and the like.
- the liquid crystal is sandwiched between a pair of substrates each having an electrode formed thereon, and can be applied to all LCDs that perform display by applying a voltage between the electrodes.
- the most widely used method in TFT-LCDs is a so-called TN mode in which liquid crystals having positive dielectric anisotropy are horizontally aligned between substrates facing each other.
- the TN mode liquid crystal display device is characterized in that the alignment direction of liquid crystal molecules adjacent to one substrate is twisted by 90 ° with respect to the alignment direction of liquid crystal molecules adjacent to the other substrate.
- an inexpensive manufacturing technique is established and industrially mature, but there is room for improvement in that it is difficult to achieve a high contrast ratio.
- a so-called VA mode liquid crystal display device in which liquid crystals having negative dielectric anisotropy are vertically aligned between mutually opposing substrates.
- a VA mode liquid crystal display device when no voltage is applied, liquid crystal molecules are aligned in a direction substantially perpendicular to the substrate surface, so that the liquid crystal cell exhibits almost no birefringence or optical rotation, and light is not It passes through the liquid crystal cell with almost no change in the polarization state. Therefore, by arranging a pair of polarizers above and below the liquid crystal cell so that their absorption axes are orthogonal to each other, a substantially complete black display state can be realized when no voltage is applied.
- the VA mode liquid crystal display device has room for improvement in that it is difficult to increase the viewing angle.
- the liquid crystal cell when no voltage is applied, the liquid crystal cell exhibits almost no birefringence in the front direction, and the pair of polarizers are also completely orthogonal, so that a substantially complete black display state is realized.
- the liquid crystal cell In the direction, the liquid crystal cell exhibits birefringence and apparently has a phase difference.
- the geometrical relative relationship between the pair of polarizers is apparently not orthogonal, so light leaks and the contrast ratio decreases. This is because the viewing angle becomes narrow.
- the VA mode liquid crystal display device is provided with a retardation film for the purpose of canceling an excessive retardation in the oblique direction of the liquid crystal cell and maintaining the orthogonality of the crossed Nicols polarizer in the oblique direction. There are many cases.
- a polarizer is disposed on both sides of a vertically aligned liquid crystal cell, and an uniaxial retardation film having an in-plane optical axis between the polarizer and the liquid crystal cell and an extraordinary refractive index> ordinary refractive index ( A so-called positive A plate), an uniaxial retardation film having an optical axis outside the plane (in the film normal direction) and an extraordinary refractive index ⁇ ordinary refractive index (so-called negative C plate), or a biaxial retardation film.
- a technique for enlarging the viewing angle by disposing at least one of these is disclosed (for example, see Patent Documents 1 to 3).
- a technique for arranging a positive A plate and a positive C plate for example, see Patent Document 4
- a technique for arranging a negative A plate and a negative C plate for example, Patent Document 5
- in-plane retardation 250 to 300 nm
- biaxial retardation plate having birefringence characteristics of Nz 0.1 to 0.4
- in-plane retardation 250 to 300 nm
- Nz 0.6 to 1.1
- a horizontal electric field is applied to a horizontal alignment liquid crystal cell having a liquid crystal sandwiched between two upper and lower substrates subjected to parallel alignment treatment on the surface, and the liquid crystal molecules are applied to the substrate.
- a so-called IPS mode liquid crystal display device is disclosed that performs display by rotating in a substantially parallel plane.
- display is performed by changing the angle between the major axis direction of the liquid crystal molecules and the absorption axis of the polarizer while the liquid crystal molecules are always substantially parallel to the substrate. The change in birefringence of the liquid crystal cell is small and the viewing angle is wide.
- a pair of polarizers are arranged orthogonally (crossed Nicols) in order to increase the contrast ratio. Since the geometrical relations of the children are not apparently orthogonal, there is room for improvement in that the contrast ratio decreases due to light leakage during black display. Therefore, in order to improve such a decrease in contrast ratio, it has been studied to provide a retardation film even in an IPS mode liquid crystal display device. For example, an in-plane retardation is provided between a polarizer and a liquid crystal cell.
- a negative uniaxial A plate (optical axis) is provided between an observation surface side polarizer (absorption axis 90 °) and a back side polarizer (absorption axis 0 °). 0 °) and a positive uniaxial A plate (optical axis 90 °) are disclosed (for example, see Non-Patent Document 1).
- a laminated polarizing film in which the slow axis of the uniaxial optical film and the slow axis of the negative optical film are both substantially parallel to the absorption axis of the polarizing film (hereinafter referred to as “first laminated polarizing film”).
- Second laminated polarized light a laminated polarizing film in which the slow axis of the negative substantially uniaxial optical film and the slow axis of the positive optical film are substantially parallel to the absorption axis of the polarizing film (hereinafter referred to as “second laminated polarized light”). Film " That.) It has been disclosed (e.g., see Patent Documents 8 and 9.). US Pat. No. 6,141,075 US Pat. No. 6,661,488 US Pat. No.
- a polarizer is obtained by adsorbing and orienting an anisotropic material such as an iodine complex having dichroism on a polyvinyl alcohol (PVA) film, and thus has low mechanical strength, moist heat resistance, and the like. Therefore, a polarizer is normally manufactured in the state bonded so that both sides might be sandwiched with protective films, such as a triacetyl cellulose (TAC) film.
- a protective film such as a TAC film has an extra phase difference (a negative C plate having an out-of-plane retardation of about 30 to 80 nm), from the viewpoint of improving the accuracy of optical compensation, the viewpoint of cost reduction. Therefore, it is originally desirable to omit this protective film.
- Patent Documents 1 to 7 and Non-Patent Document 1 even when it is known that a birefringent layer (retardation film) is bonded to a polarizer, as shown in FIG. Since such a protective film cannot be omitted, there is room for improvement in that not only the accuracy of optical compensation cannot be increased, but also a high cost burden is required.
- a protective film having a small retardation referred to as “zero retardation protective film”, “non-oriented protective film”, etc.
- the use of is also being considered.
- the manufacturing method of the zero phase difference protective film 24 is generally complicated, there is room for improvement in terms of promoting an increase in cost.
- the viewing angle of the IPS mode liquid crystal display device can be increased, and in the case of the first laminated polarizing film, positive substantially uniaxiality is obtained.
- An optical film, a negative optical film, and a polarizing film (polarizer) can be bonded together in a roll-to-roll manner.
- a negative substantially uniaxial optical film and a positive optical Since a film and a polarizing film (polarizer) can be bonded together in a roll-to-roll manner, some protective films can be omitted.
- both the positive optical film and the negative optical film are arranged on one side with respect to the liquid crystal cell. Since the protective film can be omitted on the side where the positive optical film and the negative optical film are disposed, the protective film cannot be reduced at all on the other side. There was room.
- Non-Patent Document 7 Although the phase difference
- the present invention has been made in view of the above-described present situation, and can be manufactured at low cost and easily, and a liquid crystal display device manufacturing method capable of realizing a high contrast ratio in a wide viewing angle range, and liquid crystal
- the object is to provide a display device.
- the present inventor has made various studies on a method of manufacturing a liquid crystal display device that can be manufactured at low cost and easily and can achieve a high contrast ratio in a wide viewing angle range.
- the first polarizer is manufactured by longitudinally stretching the anti-film, and the first type is obtained by transversely stretching the original film for the first kind of birefringent layer composed of a material having positive intrinsic birefringence.
- a second polarizer is produced by longitudinal stretching, and a second birefringence is produced by transversely stretching an original film for a second birefringent layer composed of a material having negative intrinsic birefringence.
- the first-type birefringent layer 21 and the second-type birefringent layer 22 are used as protective films for the first polarizer 11 and the second polarizer 12, respectively.
- the polarizing plate in which the layer 21, the first polarizer 11 and the TAC film (protective film) 10 are bonded together in this order by the adhesive 5, the second birefringent layer 22, the second polarizer 12 and the TAC film By using the polarizing plate in which the protective film 10 is bonded together with the adhesive 5 in this order, the number of protective films can be reduced, and as a result, cost reduction and performance improvement can be realized. However.
- the Nz coefficient of a 1st birefringent layer and a 2nd birefringent layer can each be adjusted appropriately with the simple method of extending
- the axial relationship with the polarizer and the axial relationship between the second birefringent layer and the second polarizer can also be adjusted appropriately.
- the first polarization also in the oblique direction while maintaining the orthogonality between the first polarizer and the second polarizer in the front direction.
- the inventors have found that the orthogonality between the polarizer and the second polarizer can be maintained, and that a high contrast ratio can be realized in a wide viewing angle range, and that the above problem can be solved brilliantly. Has reached
- the absorption axis of the first polarizer, the first type birefringent layer, the liquid crystal cell, the second type birefringent layer, and the absorption axis of the first polarizer is orthogonal.
- the manufacturing method manufactures the first polarizer by longitudinally stretching the original film for the first polarizer, and the first type
- the first type birefringent layer is produced by transversely stretching the original film for the birefringent layer, and the first polarizer and the first type birefringent layer are roll-to-roll.
- the first polarizer is manufactured by longitudinally stretching the first film to be bonded and the original film for the second polarizer.
- the second-type birefringent layer is produced by transversely stretching a second-type birefringent layer raw film, and the second polarizer and the second-type birefringent layer are rolled to each other.
- -It is a manufacturing method of the liquid crystal display device containing at least one of the 2nd process bonded together with a roll. The present invention is described in detail below.
- the manufacturing method of the liquid crystal display device of the present invention includes the first polarizer, the first type birefringent layer, the liquid crystal cell, the second type birefringent layer, and the absorption axis of the first polarizer.
- a liquid crystal display device having a second polarizer with the absorption axes orthogonal to each other in this order is manufactured.
- the liquid crystal display device when the first birefringent layer functions as a protective film for the first polarizer and the second birefringent layer functions as a protective film for the second polarizer, And the number of protective films such as TAC films can be reduced as compared with a mode in which both of the birefringent layers of the second and second types are disposed only on the first or second polarizer side with respect to the liquid crystal cell. .
- a laminated structure such as the liquid crystal display device of the present invention cannot be employed in a liquid crystal display device such as an IPS mode that performs black display by aligning liquid crystal molecules in a liquid crystal cell in parallel to the substrate surface.
- the liquid crystal display device preferably performs black display by aligning liquid crystal molecules in the liquid crystal cell perpendicularly to the substrate surface.
- the liquid crystal display mode for performing black display by aligning liquid crystal molecules in the liquid crystal cell perpendicularly to the substrate surface include a TN mode, an ECB mode, a VA mode, and an OCB mode.
- the “polarizer” is an element having a function of changing natural light into linearly polarized light. Any of the first and second polarizers may be a polarizer (a polarizer on the back surface side) or an analyzer (a polarizer on the observation surface side).
- a liquid crystal cell usually has a pair of substrates and a liquid crystal layer sandwiched between the pair of substrates.
- the first polarizer and the second polarizer are arranged so that their absorption axes are orthogonal to each other (crossed Nicols arrangement), and the liquid crystal cell does not exhibit birefringence in the front direction when no voltage is applied. Therefore, the liquid crystal display device of the present invention can realize a substantially complete black display state in the front direction when no voltage is applied.
- an angle between two axes or directions is orthogonal (orthogonal), and the angle formed by both axes or directions is preferably exactly 90 °, but is not necessarily exactly 90 °. There is no need, and both axes or both directions may be substantially orthogonal.
- the effects of the present invention are sufficiently obtained.
- two axes or directions are parallel (parallel), and the angle formed by both axes or directions is preferably strictly 0 °, but is strictly strictly 0 °. It is not necessary that both axes or both directions be substantially parallel. Specifically, if it is within the range of 0 ° to ⁇ 1 °, the effects of the present invention are sufficiently obtained.
- the “birefringent layer” refers to a layer having optical anisotropy, and is synonymous with a retardation film, a retardation plate, an optically anisotropic layer, a birefringent medium, and the like.
- the first type birefringent layer is composed of a material having positive intrinsic birefringence
- the second type birefringent layer is composed of a material having negative intrinsic birefringence
- the manufacturing method includes the above
- the first polarizer is produced by longitudinally stretching the original film for the first polarizer
- the first type of film is formed by transversely stretching the original film for the first birefringent layer.
- the second polarizer is produced by longitudinally stretching the above
- the second birefringent layer is produced by transversely stretching the original film for the second type of birefringent layer
- the polarizer and the birefringent layer are cut to a desired size by continuous bonding with a roll-to-roll process, and then single-wafer bonding using an adhesive (each cut to the desired size). Manufacturing cost can be reduced compared to the case where the polarizer and the birefringent layer are bonded together one by one using an adhesive.
- the number of protective films can be reduced. Cost reduction and performance improvement can be realized.
- the first polarizer and the second polarizer in the oblique direction are maintained while maintaining the orthogonality between the first polarizer and the second polarizer in the front direction. Since the orthogonality between the two polarizers can be maintained, a high contrast ratio can be realized in a wide viewing angle range. This will be specifically described below.
- a so-called O-type polarizer in which an anisotropic material such as an iodine complex having dichroism is adsorbed and oriented on a polyvinyl alcohol (PVA) film.
- the stretching direction of the original film for the first polarizer and the second polarizer is the absorption axis direction of the first polarizer and the second polarizer.
- the stretching direction of the original film for the first type birefringent layer is This is the in-plane slow axis direction of a kind of birefringent layer.
- the stretching direction of the original film for the second type birefringent layer is the second type.
- the direction is perpendicular to the in-plane slow axis of the birefringent layer (in-plane fast axis direction).
- the stretching direction of the first polarizer original film and the stretching direction of the first kind of birefringent layer original film are orthogonal to each other, and the second polarizer original film Since the stretching direction of the film is perpendicular to the stretching direction of the original film for the second type birefringent layer, in the liquid crystal display device manufactured by the above manufacturing method, the absorption axis of the first polarizer and the first type
- the in-plane slow axis of the birefringent layer is orthogonal, and the absorption axis of the second polarizer and the in-plane slow axis of the second birefringent layer are parallel.
- the film thickness direction can be freely shrunk with stretching in the roll width direction during stretching, while the roll flow direction is constrained by a roller for winding the film, so that free shrinkage is hindered.
- the same effect as that obtained by stretching in the roll flow direction as well as in the roll width direction (longitudinal and transverse biaxial stretching) can be obtained. Therefore, the first-type birefringent layer manufactured by transversely stretching an original film made of a material having positive intrinsic birefringence satisfies Nz> 1 with nx >> ny> nz as a result.
- the second type birefringent layer produced by transversely stretching an original film made of a material having a negative intrinsic birefringence results in nx ⁇ ny ⁇ nz and Nz ⁇ 0. Often fulfills. Therefore, according to the liquid crystal display device manufactured by the manufacturing method of the present invention, the Nz coefficient of the first type birefringent layer, the axial relationship between the first type birefringent layer and the first polarizer, the second type Since the Nz coefficient of the birefringent layer and the axial relationship between the second birefringent layer and the second polarizer are appropriately adjusted, the first polarizer and the second polarized light in the front direction are adjusted.
- the orthogonality between the first polarizer and the second polarizer can be maintained even in the oblique direction, and as a result, a high contrast ratio can be realized in a wide viewing angle range. Can do.
- a polarizer first polarizer, second polarizer
- a birefringent layer first-type birefringent layer, second-type birefringent layer
- first-type birefringent layer second-type birefringent layer
- the original film for polarizer is laterally stretched, dichroism such as iodine complex is obtained. There is a possibility that the degree of orientation of the substance is lowered and a high degree of polarization cannot be obtained. Therefore, in the present invention, the original film for the polarizer is not horizontally stretched and the original film for the birefringent layer is longitudinally stretched, but the original film for the polarizer is longitudinally stretched to obtain the birefringent layer. The film is stretched laterally to achieve a roll-to-roll bonding of the polarizer and the birefringent layer.
- the “raw film” is a film before stretching (unstretched film).
- Longitudinal stretching refers to stretching the raw film in the roll flow direction.
- Longteral stretching refers to stretching the original film in a direction perpendicular to the roll flow direction (roll width direction).
- the method for producing a liquid crystal display device according to the present invention may or may not include other steps as a component as long as at least one of the first step and the second step is included as a component.
- the method for producing a liquid crystal display device of the present invention preferably includes both the first step and the second step. Note that the order and timing of performing the first step and the second step are not particularly limited, and the first step and the second step may be performed in parallel, After performing the step, the second step may be performed, or after performing the second step, the first step may be performed.
- the first type birefringent layer preferably satisfies 1.1 ⁇ Nz (550) ⁇ 2, and the in-plane slow axis forms an angle of 90 ° with respect to the absorption axis of the first polarizer. .
- a high contrast ratio can be realized in a wide viewing angle range (viewing angle compensation is performed) without reducing the contrast ratio in the front direction.
- the liquid crystal display device of such a form is easily manufactured by using the said manufacturing method.
- the first birefringent layer satisfies 1.1 ⁇ Nz (550) ⁇ 2
- the in-plane slow axis is orthogonal to the absorption axis of the first polarizer (substantially orthogonal). You may).
- Nz ( ⁇ ) represents the Nz coefficient at the wavelength ⁇ nm.
- the first type birefringent layer satisfies 1.2 ⁇ Nz (550) ⁇ 1.6.
- the measurement wavelength of the main refractive index and the phase difference is 550 nm in this specification.
- the second birefringent layer satisfies ⁇ 1 ⁇ Nz (550) ⁇ ⁇ 0.1, and the in-plane slow axis forms an angle of 0 ° with respect to the absorption axis of the second polarizer. Is preferred. According to this, a high contrast ratio can be realized in a wide viewing angle range (viewing angle compensation is performed) without reducing the contrast ratio in the front direction. Moreover, the liquid crystal display device of such a form is easily manufactured by using the said manufacturing method.
- the second birefringent layer satisfies ⁇ 1 ⁇ Nz (550) ⁇ ⁇ 0.1, and the in-plane slow axis is parallel to the absorption axis of the second polarizer (substantially). May be parallel). More preferably, the second type birefringent layer satisfies ⁇ 0.6 ⁇ Nz (550) ⁇ ⁇ 0.2.
- the present invention also provides a first polarizer, a first birefringent layer, a liquid crystal cell, a second birefringent layer, and a first polarizer whose absorption axis is orthogonal to the absorption axis of the first polarizer.
- a liquid crystal display device having two polarizers in this order, wherein the first type birefringent layer satisfies 1.1 ⁇ Nz (550) ⁇ 2 and an in-plane slow axis is the first polarizer.
- the birefringent layer of the second type satisfies -1 ⁇ Nz (550) ⁇ ⁇ 0.1, and the in-plane slow axis is parallel to the absorption axis of the second polarizer.
- liquid crystal display device It is also a liquid crystal display device. According to such a liquid crystal display device, it is possible to realize a high contrast ratio (perform viewing angle compensation) in a wide viewing angle range without reducing the contrast ratio in the front direction. Moreover, the manufacturing method of this liquid crystal display device is not specifically limited, For example, it can manufacture easily with the manufacturing method of the liquid crystal display device of this invention.
- the liquid crystal display device preferably performs black display by aligning liquid crystal molecules in the liquid crystal cell perpendicularly to the substrate surface.
- the liquid crystal display mode for performing black display by aligning liquid crystal molecules in the liquid crystal cell perpendicularly to the substrate surface include a TN mode, an ECB mode, a VA mode, and an OCB mode.
- the first birefringent layer preferably satisfies 1.2 ⁇ Nz (550) ⁇ 1.6.
- the second birefringent layer preferably satisfies ⁇ 0.6 ⁇ Nz (550) ⁇ ⁇ 0.2.
- the in-plane of the first type birefringent layer is used.
- the slow axis and the absorption axis of the first polarizer form an angle of 90 °
- the in-plane slow axis of the second birefringent layer and the absorption axis of the second polarizer are 0.
- the in-plane slow axis of the first type birefringent layer and the absorption axis of the first polarizer may be slightly deviated from 90 °.
- the inner slow axis and the absorption axis of the second polarizer may form an angle slightly deviated from 0 °.
- the reason is as follows. In order not to reduce the contrast ratio in the front direction, (1) it is necessary that the birefringent layer does not function in the front direction, and in order to perform viewing angle compensation, (2) the birefringent layer is inclined. It needs to function effectively.
- the axial relationship between the birefringent layer and the polarizer is as follows: (a) When observed from the front direction, the optical axis of the polarizer and the optical axis of the birefringent layer Are parallel (FIG.
- the optical axis of the polarizer and the optical axis of the birefringent layer are orthogonal (FIG. 13 (a)). ) It is necessary to satisfy one of the relationships.
- the “optical axis” is different from the optical axis in the strict sense referred to in the field of crystal optics, and is defined according to the following definition. That is, the “optical axis” means a main axis corresponding to the main refractive index having the maximum absolute value of the difference from the average value among the three main refractive indexes of the birefringent layer.
- the “optical axis” of the birefringent layer is not two but one.
- the “optical axis” of the biaxial birefringent layer corresponds to a conventionally defined optical axis when it is optically approximated to a uniaxial birefringent layer.
- the effective transmission axis of the polarizer when observed from the oblique direction, and the birefringence with respect to the incident light from the oblique direction If the vibration direction of the two natural vibration modes of the layer (vibration direction of the potential displacement vector D) is parallel, the birefringent layer substantially does not contribute at all in the oblique direction. That is, in order for the birefringent layer to function effectively in the oblique direction, the effective transmission axis of the polarizer when observed from the oblique direction and the vibration direction of the intrinsic polarization mode of the birefringent layer are parallel or orthogonal.
- O-type polarizer in which an anisotropic material such as an iodine complex having dichroism is adsorbed and oriented on a PVA film.
- An O-type polarizer absorbs light oscillating in a specific direction (defined as an absorption axis) in the element plane, oscillates in a direction (defined as a transmission axis) orthogonal to the absorption axis in the element plane, and A polarizer that transmits light that vibrates in the normal direction of the element.
- the O-type polarizer is a polarizer having one absorption axis and two transmission axes, and the optical axis of the O-type polarizer faces the absorption axis.
- the optical axis of the first type birefringent layer is oriented in a direction parallel to the in-plane slow axis.
- the in-plane slow axis of the first type birefringent layer and the absorption axis of the first polarizer need to be basically at an angle of 90 °, but the contrast in the front direction is required. As long as the viewing angle can be compensated without reducing the ratio, the angle may be slightly shifted from 90 °. Specifically, if it is within the range of 90 ° to ⁇ 1 °, the effects of the present invention are sufficiently obtained.
- the optical axis of the second birefringent layer is oriented in a direction parallel to the in-plane fast axis. Therefore, the in-plane slow axis of the second birefringent layer and the absorption axis of the second polarizer need to be basically at an angle of 0 °, but the contrast in the front direction is required. As long as the viewing angle can be compensated without reducing the ratio, the angle may slightly deviate from 0 °. Specifically, if it is within the range of 0 ° to ⁇ 1 °, the effects of the present invention are sufficiently obtained.
- the present invention has an absorption axis relative to the absorption axis of the first polarizer, the first type birefringent layer, the liquid crystal cell, the second type birefringent layer, and the first polarizer.
- An angle of 90 ° (substantially 90 °) with respect to the absorption axis of the polarizer, and the second birefringent layer satisfies ⁇ 1 ⁇ Nz (550) ⁇ ⁇ 0.1, and is in-plane It is also a liquid crystal display device in which the slow axis forms an angle of 0 ° (substantially 0 °) with respect to the absorption axis of the second polarizer.
- the liquid crystal display device of the present invention includes the first polarizer, the second polarizer, the liquid crystal cell, the first type birefringent layer, and the second type birefringent layer as components, other These members may or may not be included as a component, and are not particularly limited.
- the method of manufacturing the liquid crystal display device of these preferable forms is not particularly limited, but can be easily manufactured by the method of manufacturing a liquid crystal display device of the present invention. That is, the method for manufacturing a liquid crystal display device of the present invention is suitable for manufacturing the liquid crystal display device of the present invention.
- the first type birefringent layer is preferably made of a material having positive intrinsic birefringence.
- the liquid crystal display device of the present invention can be easily manufactured using the method for manufacturing a liquid crystal display device of the present invention, and thus the performance and productivity of the liquid crystal display device of the present invention can be improved. .
- the second birefringent layer is preferably made of a material having negative intrinsic birefringence.
- At least one of the first birefringent layer and the second birefringent layer preferably satisfies
- ⁇ 100 nm is more preferably satisfied. It is more preferable that both of the first type birefringent layer and the second type birefringent layer satisfy
- the preferred form of the liquid crystal display device can be classified as follows from the difference in the biaxiality of the first and second birefringent layers.
- the biaxial parameter ⁇ Nz1 of the first birefringent layer is defined as
- the biaxial parameter ⁇ Nz2 of the second birefringent layer is defined as
- the first type birefringent layer satisfies 1.1 ⁇ Nz (550) ⁇ 2
- the second type birefringent layer satisfies ⁇ 1 ⁇ Nz (550) ⁇ ⁇ 0.1.
- the liquid crystal display device satisfies 0.1 ⁇ ⁇ Nz1 ⁇ 1 and 0.1 ⁇ ⁇ Nz2 ⁇ 1.
- required for the first and second birefringent layers can be made substantially equal to each other and reduced.
- At least one of the birefringent layers can be a film satisfying
- the form (2) is a form in which the biaxial parameter of the first type birefringent layer is relatively small and the biaxial parameter of the second type birefringent layer is relatively large.
- required for the second type birefringent layer can be reduced as compared with the mode (1).
- for ⁇ Nz1 and ⁇ Nz2 is the optimal
- the form (3) is a form in which the biaxial parameter of the first type birefringent layer is relatively large and the biaxial parameter of the second type birefringent layer is relatively small.
- required for the first type birefringent layer can be reduced as compared with the form (1).
- for each ⁇ Nz1 and ⁇ Nz2 is the optimal
- At least one of the first type birefringent layer and the second type birefringent layer preferably satisfies
- Rxy ( ⁇ ) ⁇
- the “in-plane slow axis of the birefringent layer” refers to the direction of the dielectric main axis (x-axis direction) corresponding to the main refractive index nx.
- ⁇ ′ the wavelength dispersion of the first birefringent layer
- ⁇ ′ the wavelength dispersion of the second birefringent layer
- ⁇ ′ it is more preferable that ⁇ ′ ⁇ 1 and 1 ⁇ ⁇ ′. According to this, the effectiveness of a pair of birefringent layers (first and second birefringent layers) arranged between a pair of polarizers (first and second polarizers) arranged in crossed Nicols.
- both the first and second birefringent layers satisfy
- the liquid crystal display device performs black display by aligning liquid crystal molecules in the liquid crystal cell perpendicularly to the substrate surface, and Rxy is provided between the first polarizer and the second polarizer. It is preferable to have a third birefringent layer that satisfies ⁇ 10 nm and Rxz ⁇ 100 nm. As a result, an extra phase difference that the liquid crystal cell has in an oblique direction during black display can be canceled, so that coloring during black display can be further reduced and a higher contrast ratio can be realized in a wide viewing angle range. be able to.
- the third birefringent layer satisfies 0 nm ⁇ Rxy ⁇ 10 nm and 100 nm ⁇ Rxz ⁇ 400 nm.
- the third birefringent layer is preferably disposed adjacent to the liquid crystal cell.
- adjacent arrangement means that no birefringent medium is provided between the liquid crystal cell and the third type birefringent layer.
- the third type birefringent layer and the liquid crystal cell A form in which an isotropic film is disposed between the two is also included.
- a liquid crystal display device of the present invention According to the method for manufacturing a liquid crystal display device of the present invention, it can be manufactured at low cost and easily, and a high contrast ratio can be realized in a wide viewing angle range.
- the birefringent layer used in the present invention is not particularly limited in terms of materials and other optical performances.
- a thin plate made of an inorganic material, a stretched polymer film, or a liquid crystal molecule with fixed orientation Any of these can be used.
- a method for producing the birefringent layer will be described later. Hereinafter, more specific description will be given for each type of birefringent layer.
- first birefringent layer As the first type of birefringent layer, a conventional layer such as a stretched polymer film having a positive intrinsic birefringence can be appropriately used.
- the polymer film material having a positive intrinsic birefringence include polycarbonate, polysulfone, polyethersulfone, polyethylene terephthalate, polyethylene, polyvinyl alcohol, norbornene, triacetylcellulose, and diacylcellulose.
- Second birefringent layer For the second birefringent layer, a polymer film having a negative intrinsic birefringence is stretched, a resin film having a positive intrinsic birefringence is stretched under the action of the shrinkage force of a heat-shrinkable film, etc. Conventional ones can be used as appropriate, but from the viewpoint of simplifying the production method, one obtained by stretching a polymer film having a negative intrinsic birefringence is preferable.
- polystyrene examples include polystyrene, polyvinyl naphthalene, polyvinyl biphenyl, polyvinyl pyridine, polymethyl methacrylate, polymethyl acrylate, an N-substituted maleimide copolymer, and a polycarbonate having a fluorene skeleton.
- the third birefringent layer is made by stretching a polymer film having a positive intrinsic birefringence, applying a liquid crystalline compound such as chiral nematic liquid crystal or discotic liquid crystal, and non-liquid crystal compounds including polyimide and polyamide. Conventional ones such as those coated with can be used as appropriate.
- polarizer As the polarizer, a conventional one can be used as appropriate, and examples thereof include a material obtained by adsorbing and orienting an anisotropic material such as an iodine complex having dichroism on a polyvinyl alcohol (PVA) film.
- PVA polyvinyl alcohol
- Liquid crystal cell Conventional liquid crystal cells can be used as appropriate. Examples of such a liquid crystal display panel include TN mode, ECB mode, VA mode, OCB mode, and IPS mode liquid crystal cells.
- the VA mode includes an MVA mode, a PVA mode, a BVA mode, a Reverse TN mode, and the like.
- nx, ny, nz and Nz are calculated by measuring the phase difference from the normal direction of the birefringent layer and each oblique direction inclined by ⁇ 50 ° to 50 ° from the normal direction, and calculating by a known refractive index ellipsoidal curve fitting. did.
- the tilt direction was set to be perpendicular to the in-plane slow axis.
- the birefringent layer having an actual average refractive index different from 1.5 was also converted assuming an average refractive index of 1.5.
- FIG. 1 is a perspective view schematically showing the configuration of the liquid crystal display device according to the first embodiment.
- the liquid crystal display device according to the first embodiment of the present invention includes a TAC film 10a, a first polarizer 11a, and a first type birefringent layer made of a material having positive intrinsic birefringence. 21a, the third birefringent layer 23a, the VA mode liquid crystal cell 50a, the second birefringent layer 22a made of a material having negative intrinsic birefringence, the second polarizer 12a, and the TAC film 20a.
- the VA mode liquid crystal cell 50a includes a rear substrate 1a and an observation surface substrate 2a facing each other, and a liquid crystal layer sandwiched between both substrates 1a and 2a and including liquid crystal molecules 3a.
- the liquid crystal molecules 3a are aligned so that the major axis L is substantially perpendicular to the substrates 1a and 2a when no voltage is applied.
- the TAC film on the outside of the polarizer does not affect the performance of the liquid crystal display device as long as it is transparent.
- the description of the optical characteristics is omitted.
- the axis of each birefringent layer is defined by the azimuth angle of the in-plane slow axis, and the axis of each polarizer is defined by the absorption axis.
- the material name and intrinsic birefringence (birefringence) ⁇ n of each birefringent layer are indicated using the following abbreviations.
- PMMA Polymethyl methacrylate (Intrinsic birefringence ⁇ n: Negative) NB: Norbornene (Intrinsic birefringence ⁇ n: Positive) TAC: triacetyl cellulose (inherent birefringence ⁇ n: varies depending on the degree of acetylation, but is generally positive) Z: isotropic film (intrinsic birefringence ⁇ n: positive) G: Reverse dispersible resin film (intrinsic birefringence ⁇ n: positive) PC: Polycarbonate (Intrinsic birefringence ⁇ n: Positive) NM: N-substituted maleimide copolymer (intrinsic birefringence ⁇ n: negative) ChLC: Cholesteric liquid crystal (birefringence ⁇ n: negative)
- ⁇ , ⁇ , ⁇ ′ and ⁇ ′ are represented by the following formulas (1) to (4).
- ⁇
- ⁇
- (2) ⁇ ′ ( ⁇ 1 + ⁇ 2) / 2 (3)
- ⁇ ′ ( ⁇ 1 + ⁇ 2) / 2 (4) ⁇ 1 and ⁇ 2 are ⁇ of the first birefringent layer and the second birefringent layer, respectively, and ⁇ 1 and ⁇ 2 are the first birefringent layer and the second birefringent layer, respectively. It is ⁇ of the layer.
- Example 1 A method for manufacturing the liquid crystal display device of Example 1 will be described below.
- roll-shaped TAC films 10a and 20a, a roll-shaped first-type birefringent layer 21a, a roll-shaped second-type birefringent layer 22a, and a roll-shaped third A seed birefringent layer 23a is produced.
- the roll-shaped TAC films 10a and 20a and the roll-shaped third birefringent layer 23a are manufactured using a melt casting method (casting method) or the like. As shown in FIG.
- the roll-type first birefringent layer 21a is a first birefringent layer made of a material having positive intrinsic birefringence in the phase difference function adding unit 71. It is manufactured by laterally stretching (stretching in the roll width direction) the original film 71a for use and winding it into a roll.
- the roll type second birefringent layer 22a is a second type birefringent layer made of a material having negative intrinsic birefringence in the phase difference function adding unit 72. It is manufactured by transversely stretching the original film 72a for use (stretching in the roll width direction) and winding it into a roll.
- the first polarized light in which the adhesive is applied to the first type birefringent layer 21a in the adhesive application unit 76 and the TAC film is bonded in the bonding processing unit 75b.
- the child 90 and the first type birefringent layer 21a are continuously bonded with a roll-to-roll via an adhesive, and wound into a roll (a roll-shaped member 91 is manufactured).
- the first-type birefringent layer 21a and the third-type birefringent layer 23a bonded to the first polarizer 11a and the like are continuously bonded by a roll-to-roll through an adhesive.
- the first polarizing plate 80a thus obtained is dried and then wound up into a roll.
- the second polarizer 12 a is manufactured by longitudinally stretching the second polarizer original film 77 a in the polarization function adding section 77, and the adhesive application section 78.
- the adhesive is applied to the TAC film 20a, and the second polarizer 12a and the TAC film 20a are continuously bonded to each other by the roll-to-roll through the adhesive in the bonding processing section 75c, and wound into a roll shape.
- FIG. 2 (f) the second polarized light obtained by applying an adhesive to the second birefringent layer 22a in the adhesive application unit 79 and bonding the TAC film in the bonding processing unit 75d.
- the child 92 and the second birefringent layer 22a are continuously bonded to each other by a roll-to-roll through an adhesive.
- the second polarizing plate 81a thus obtained is dried and then wound up into a roll.
- the release films (PET film, etc.) are peeled off from the first and second polarizing plates 80a and 81a, respectively, and affixed to the VA mode liquid crystal cell 50a via the adhesive therein. . Thereby, the liquid crystal display device of Example 1 is completed.
- Examples 2 to 5 The liquid crystal display devices of Examples 2 to 5 according to the present invention are the same as those of Example 2 except that the values (same values) of ⁇ Nz1 and ⁇ Nz2 are changed to 0.1, 0.2, 0.6, and 1.0. 1 is a liquid crystal display device almost the same as 1.
- Table 4 shows optical properties and axis settings of various birefringent films, polarizers, and liquid crystal cells of this example.
- Example 6 The liquid crystal display device of Example 6 according to the present invention is almost the same as the liquid crystal display device of Example 1 except that the material of the second birefringent layer is changed.
- the optical properties and axis settings of various birefringent films, polarizers, and liquid crystal cells of this example are as shown in Table 5.
- Example 7 The liquid crystal display device of Example 7 according to the present invention is a liquid crystal display device almost the same as that of Example 1 except that the material of the first type birefringent layer is changed to a material exhibiting reverse wavelength dispersion. is there.
- Table 6 shows optical characteristics and axis settings of various birefringent films, polarizers, and liquid crystal cells of this example.
- Table 7 shows optical characteristics and axis settings of various birefringent films, polarizers, and liquid crystal cells of this example.
- Table 8 shows optical characteristics and axis settings of various birefringent films, polarizers, and liquid crystal cells of this example.
- Example 10 In the liquid crystal display device of Example 10 according to the present invention, ⁇ Nz1 of the first type birefringent layer is made larger than that of Example 9.
- the optical characteristics and axis settings of various birefringent films, polarizers, and liquid crystal cells of this example are as shown in Table 9.
- Example 11 The liquid crystal display device of Example 11 according to the present invention is a liquid crystal display device almost the same as that of Example 10 except that the material of the first type birefringent layer is changed to a material exhibiting reverse wavelength dispersion. is there.
- Table 10 shows optical characteristics and axis settings of various birefringent films, polarizers, and liquid crystal cells of this example.
- Example 12 The liquid crystal display device of Example 12 according to the present invention is almost the same as that of Example 1 except that the material of the second birefringent layer is changed to a material having positive intrinsic birefringence. It is.
- Table 11 shows optical characteristics and axis settings of various birefringent films, polarizers, and liquid crystal cells of this example.
- Example 13 The liquid crystal display device of Example 13 according to the present invention is a liquid crystal display device almost the same as that of Example 12 except that the material of the first birefringent layer is changed to a material exhibiting reverse wavelength dispersion. is there.
- Table 12 shows the optical characteristics and axis settings of various birefringent films, polarizers, and liquid crystal cells of this example.
- Example 14 The liquid crystal display device of Example 14 according to the present invention is a liquid crystal display device almost the same as that of Example 12 except that the material of the second birefringent layer is changed to a material exhibiting reverse wavelength dispersion. is there.
- Table 13 shows optical characteristics and axis settings of various birefringent films, polarizers, and liquid crystal cells of this example.
- Example 15 The liquid crystal display device of Example 15 according to the present invention is almost the same as Example 12 except that the materials of the first and second birefringent layers are changed to materials exhibiting reverse wavelength dispersion. It is a liquid crystal display device.
- Table 14 shows optical characteristics and axis settings of various birefringent films, polarizers, and liquid crystal cells of this example.
- FIG. 3 is a perspective view schematically showing the configuration of the liquid crystal display device of Comparative Example 1.
- the liquid crystal display device of Comparative Example 1 includes a TAC film 10b, a first polarizer 11b, a TAC film 20b, a VA mode liquid crystal cell 50b, a TAC film 30b, a second polarizer 12b, and a TAC film.
- This is a VA mode liquid crystal display device 200b obtained by stacking 40b in this order.
- Table 15 shows optical characteristics and axis settings of various birefringent films, polarizers, and liquid crystal cells of this comparative example.
- FIG. 4 is a perspective view schematically showing the configuration of the liquid crystal display device of Comparative Example 2.
- the liquid crystal display device of Comparative Example 2 includes a TAC film 10c, a first polarizer 11c, a biaxial retardation film 60c, a VA mode liquid crystal cell 50c, a TAC film 20c, and a second polarizer.
- This is a VA mode liquid crystal display device 200c obtained by laminating 12c and the TAC film 30c in this order.
- Table 15 shows optical characteristics and axis settings of various birefringent films, polarizers, and liquid crystal cells of this comparative example.
- FIG. 5 is a perspective view schematically showing the configuration of the liquid crystal display device of Comparative Example 3.
- the liquid crystal display device of Comparative Example 3 includes a TAC film 10d, a first polarizer 11d, a first biaxial retardation film 60d, a VA mode liquid crystal cell 50d, and a second biaxial property.
- This is a VA mode liquid crystal display device 200d obtained by laminating a retardation film 61d, a second polarizer 12d, and a TAC film 20d in this order.
- Table 15 shows optical characteristics and axis settings of various birefringent films, polarizers, and liquid crystal cells of this comparative example.
- FIG. 6 is a perspective view schematically showing the configuration of the liquid crystal display device of Reference Example 1.
- the liquid crystal display device of Reference Example 1 includes a TAC film 10e, a first polarizer 11e, a negative C plate 23e, a VA mode liquid crystal cell 50e, a positive A plate 21e, a second polarizer 12e, This is a VA mode liquid crystal display device 200e obtained by laminating the TAC film 20e in this order.
- the optical properties and axis settings of various birefringent films, polarizers, and liquid crystal cells of this reference example are as shown in Table 16.
- FIG. 7 is a perspective view schematically showing the configuration of the liquid crystal display device of Reference Example 2.
- the liquid crystal display device of Reference Example 2 includes a TAC film 10f, a first polarizer 11f, a negative C plate 23f, a VA mode liquid crystal cell 50f, a positive C plate 25f, a positive A plate 21f, a second VA mode liquid crystal display device 200f obtained by laminating the polarizer 12f and the TAC film 20f in this order.
- Table 16 shows optical characteristics and axis settings of various birefringent films, polarizers, and liquid crystal cells of this reference example.
- FIG. 8 is a perspective view schematically showing the configuration of the liquid crystal display device of Reference Example 3.
- the liquid crystal display device of Reference Example 3 includes a TAC film 10g, a first polarizer 11g, a negative C plate 23g, a VA mode liquid crystal cell 50g, and three biaxial retardation films 60g to 62g.
- VA mode liquid crystal display device 200g obtained by laminating the second polarizer 12g and the TAC film 20g in this order.
- Table 16 shows optical characteristics and axis settings of various birefringent films, polarizers, and liquid crystal cells of this reference example.
- the contrast viewing angle and chromaticity viewing angle of the liquid crystal display device of each example were measured, and CR (45, 60) and ⁇ E (45, 60) were arranged in Tables 4 to 16.
- the CR (45, 60) of the liquid crystal display devices of Examples 1 to 15 of the present invention is equal to or greater than that of Comparative Examples 1 to 3, and the visual field evaluation also has a contrast viewing angle equal to or greater than that of Comparative Examples 1 to 3. Had.
- ⁇ E (45, 60) of the liquid crystal display device of Example 1 of the present invention is smaller than that of Comparative Examples 2 and 3 in which CR (45, 60) is comparable, and the viewing angle is also changed in visual evaluation.
- the chromaticity change feeling was small, and the chromaticity viewing angle was better than those of Comparative Examples 1 to 3.
- ⁇ E (45, 60) of the liquid crystal display devices of Reference Examples 1 to 3 was smaller than that of the liquid crystal display device of Example 1 of the present invention and had a good chromaticity viewing angle. Any one of a difficult positive C plate, a biaxial retardation film controlled to Nz ⁇ 0.5, and a reverse wavelength dispersion retardation film having
- the first type birefringent layer is made of a material having positive intrinsic birefringence
- the second type birefringent layer exhibits negative intrinsic birefringence.
- the first polarizer and the first type of birefringent layer, and the second polarizer and the second type of birefringent layer can be bonded together in a roll-to-roll manner. Therefore, it was possible to reduce the number of protective films such as a TAC film, and as a result, it was possible to improve performance and improve productivity.
- FIG. 1 is a perspective view schematically showing a configuration of a liquid crystal display device of Example 1.
- FIG. 6 is a schematic diagram illustrating a part of the manufacturing process of the liquid crystal display device of Example 1.
- FIG. (A) is a step of producing a first type birefringent layer by transversely stretching a first type birefringent layer original film, and (b) is a first polarizer original film.
- the first polarizer is manufactured by longitudinally stretching the first polarizer, and the first polarizer and the TAC film are bonded together in a roll-to-roll manner.
- C is the first polarized light in which the TAC film is bonded.
- the step of laminating with a roll, (f) is a second polarizer with a TAC film and a second birefringence.
- FIG. 2 It is a perspective view which shows typically the structure of the liquid crystal display device of the comparative example 2. It is a perspective view which shows typically the structure of the liquid crystal display device of the comparative example 3.
- FIG. It is a perspective view which shows typically the structure of the liquid crystal display device of the reference example 1.
- FIG. It is a perspective view which shows typically the structure of the liquid crystal display device of the reference example 2.
- FIG. It is a perspective view which shows typically the structure of the liquid crystal display device of the reference example 3.
- FIG. 1 It is a perspective view which shows the form with which the optical axis of a polarizer and the optical axis of a birefringent layer are parallel.
- (A) is when observed from the front direction
- (b) is when observed from an oblique direction.
- A) is when observed from the front direction
- (b) is when observed from an oblique direction.
- FIG. 10 is a diagram illustrating a relationship between ⁇ Nz1 and ⁇ Nz2 and an optimal
- when ⁇ Nz1 0 and 0 ⁇ Nz2.
- (1) represents the first type birefringent layer
- ( ⁇ ) represents the second type birefringent layer.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Abstract
Description
以下に本発明を詳述する。
本発明に用いられる複屈折層としては、材料やその他の光学的性能について特に限定されず、例えば、無機材料から構成される薄板、ポリマーフィルムを延伸したもの、液晶性分子の配向を固定したもの等、いずれのものも用いることができる。複屈折層の製造方法については後述する。以下、複屈折層の種類別にさらに具体的に説明する。
第一種の複屈折層には、固有複屈折が正のポリマーフィルムを延伸加工したもの等、従来のものを適宜用いることができる。固有複屈折が正のポリマーフィルム材料としては、例えば、ポリカーボネート、ポリサルフォン、ポリエーテルサルフォン、ポリエチレンテレフタレート、ポリエチレン、ポリビニルアルコール、ノルボルネン、トリアセチルセルロース、ジアチルセルロース等が挙げられる。
第二種の複屈折層には、固有複屈折が負のポリマーフィルムを延伸加工したもの、固有複屈折が正の樹脂フィルムを熱収縮性フィルムの収縮力の作用下で延伸加工したもの等、従来のものが適宜用いることができるが、製造方法の簡便化の観点からは、固有複屈折が負のポリマーフィルムを延伸加工したものが好ましい。固有複屈折が負のポリマーフィルム材料としては、例えば、ポリスチレン、ポリビニルナフタレン、ポリビニルビフェニル、ポリビニルピリジン、ポリメチルメタクリレート、ポリメチルアクリレート、N置換マレイミド共重合体、フルオレン骨格を有するポリカーボネート等が挙げられる。
第三種の複屈折層には、固有複屈折が正のポリマーフィルムを延伸加工したもの、カイラルネマチック液晶、ディスコチック液晶等の液晶性化合物を塗布したもの、ポリイミドやポリアミド等を含む非液晶化合物を塗布したもの等、従来のものを適宜用いることができる。
偏光子には、従来のものが適宜用いることができ、例えば、ポリビニルアルコール(PVA)フィルムに2色性を有するヨウ素錯体等の異方性材料を吸着配向させたもの等が挙げられる。
(液晶セル)
液晶セルには、従来のものが適宜用いることができる。このような液晶表示パネルとしては、例えば、TNモード、ECBモード、VAモード、OCBモード、IPSモードの液晶セルが挙げられる。VAモードには、MVAモード、PVAモード、BVAモード、ReverseTNモード等が含まれる。
分光エリプソメータ(商品名:M-220、日本分光社製)を用いて測定した。Rxy(550)は位相差フィルムの法線方向から実測した。Rxz(550)は位相差フィルムの法線方向、法線方向から40°傾斜した斜め方向、-40°傾斜した斜め方向の各方向から位相差を測定し、公知の屈折率楕円体式のカーブフィッティングにより算出した。傾斜方位は面内遅相軸と直交する方位とした。
デュアル・リターダー・ローテート方式のポーラリメータ(Axometrics社製、商品名:Axo-scan)を用いて測定した。nx、ny、nz及びNzは、複屈折層の法線方向、法線方向から-50°~50°傾斜した各斜め方向から位相差を測定し、公知の屈折率楕円体式のカーブフィッティングにより算出した。傾斜方位は面内遅相軸と直交する方位とした。また、nx、ny、nz及びNzは、カーブフィッティングの計算条件として与える平均屈折率=(nx+ny+nz)/3に依存するが、各複屈折層の平均屈折率を1.5に統一して計算した。実際の平均屈折率が1.5と異なる複屈折層についても平均屈折率1.5を想定して換算した。
視野角測定装置(ELDIM社製、商品名:EZContrast160)を用いて測定した。光源にはシャープ社製液晶テレビ(商品名:LC37-GH1)搭載のバックライトを用いた。方位45°、極60°の斜め方向における白表示と黒表示の輝度を測定し、その比をCR(45、60)とした。
図1は、実施例1の液晶表示装置の構成を模式的に示す斜視図である。
本発明に係る実施例1の液晶表示装置は、図1に示すように、TACフィルム10a、第一の偏光子11a、正の固有複屈折を持つ材料で構成された第一種の複屈折層21a、第三種の複屈折層23a、VAモード液晶セル50a、負の固有複屈折を持つ材料で構成された第二種の複屈折層22a、第二の偏光子12a、TACフィルム20aをこの順に積層して得られたVAモードの液晶表示装置100aである。本実施例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表4に示すとおりである。VAモード液晶セル50aは、対向する背面側基板1a及び観察面側基板2aと、両基板1a、2aに狭持され、液晶分子3aを含む液晶層とを有する。液晶分子3aは、電圧無印加時に長軸Lが両基板1a、2aに対して略垂直に向くように配向する。
PMMA:ポリメチルメタクリレート(固有複屈折Δn:負)
NB:ノルボルネン(固有複屈折Δn:正)
TAC:トリアセチルセルロース(固有複屈折Δn:アセチル化度によって異なるが、一般には正)
Z:等方性フィルム(固有複屈折Δn:正)
G:逆分散性樹脂フィルム(固有複屈折Δn:正)
PC:ポリカーボネート(固有複屈折Δn:正)
NM:N置換マレイミド共重合体(固有複屈折Δn:負)
ChLC:コレステリック液晶(複屈折Δn:負)
α=|Rxy(450)|/|Rxy(550)| (1)
β=|Rxy(650)|/|Rxy(550)| (2)
α’=(α1+α2)/2 (3)
β’=(β1+β2)/2 (4)
なお、α1、α2はそれぞれ、第一種の複屈折層、第二種の複屈折層のαのことであり、β1、β2はそれぞれ、第一種の複屈折層、第二種の複屈折層のβのことである。
(1)ロール状部材の製造
まず、ロール状のTACフィルム10a、20a、ロール状の第一種の複屈折層21a、ロール状の第二種の複屈折層22a、及び、ロール状の第三種の複屈折層23aを製造する。
具体的には、ロール状のTACフィルム10a、20a、及び、ロール状の第三種の複屈折層23aは、溶融流延法(キャスト法)等を用いて製造される。
ロール状の第一種の複屈折層21aは、図2(a)に示すように、位相差機能付加部71において、正の固有複屈折を持つ材料で構成される第一種の複屈折層用の原反フィルム71aを横延伸(ロール幅方向に延伸)し、ロール状に巻き取ることで製造される。
ロール状の第二種の複屈折層22aは、図2(d)に示すように、位相差機能付加部72において、負の固有複屈折を持つ材料で構成される第二種の複屈折層用の原反フィルム72aを横延伸(ロール幅方向に延伸)し、ロール状に巻き取ることで製造される。
図2(b)に示すように、偏光機能付加部73において第一の偏光子用の原反フィルム73aを縦延伸(ロール流れ方向に延伸)することで、第一の偏光子11aを製造し、接着剤塗布部74においてTACフィルム10aに接着剤を塗布し、貼り合わせ処理部75aにおいて第一の偏光子11aとTACフィルム10aとを接着剤を介してロール・ツー・ロールで連続的に貼り合わせ、ロール状に巻き取る(ロール状部材90を製造する)。次に、図2(c)に示すように、接着剤塗布部76において第一種の複屈折層21aに接着剤を塗布し、貼り合わせ処理部75bにおいてTACフィルムが貼り合わされた第一の偏光子90と第一種の複屈折層21aとを接着剤を介してロール・ツー・ロールで連続的に貼り合わせ、ロール状に巻き取る(ロール状部材91を製造する)。同様に、第一の偏光子11a等に貼り合わされた第一種の複屈折層21aと第三種の複屈折層23aとを接着剤を介してロール・ツー・ロールで連続的に貼り合わせる。これにより得られた第一の偏光板80aは、乾燥した後、ロール状に巻き取られる。
第一及び第二の偏光板80a、81aからそれぞれ離型フィルム(PETフィルム等)を剥がし、その中にある粘着剤を介してVAモード液晶セル50aに貼り付ける。
これにより、実施例1の液晶表示装置は完成する。
本発明に係る実施例2~5の液晶表示装置は、ΔNz1及びΔNz2の値(同値)を0.1、0.2、0.6、1.0に変更したことを除いては、実施例1とほとんど同様の液晶表示装置である。本実施例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表4に示すとおりである。
本発明に係る実施例6の液晶表示装置は、第二種の複屈折層の材料を変更したことを除いては、実施例1とほとんど同様の液晶表示装置である。本実施例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表5に示すとおりである。
本発明に係る実施例7の液晶表示装置は、第一種の複屈折層の材料を逆波長分散性を示す材料に変更したことを除いては、実施例1とほとんど同様の液晶表示装置である。本実施例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表6に示すとおりである。
本発明に係る実施例8の液晶表示装置は、ΔNz1<ΔNz2(ΔNz1=0.1、ΔNz2=0.3)に変更したことを除いては、実施例1とほとんど同様の液晶表示装置である。本実施例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表7に示すとおりである。
本発明に係る実施例9の液晶表示装置は、ΔNz1>ΔNz2(ΔNz1=0.3、ΔNz2=0.1)に変更したことを除いては、実施例1とほとんど同様の液晶表示装置である。本実施例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表8に示すとおりである。
本発明に係る実施例10の液晶表示装置は、第一種の複屈折層のΔNz1を実施例9よりも大きくしたものである。本実施例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表9に示すとおりである。
本発明に係る実施例11の液晶表示装置は、第一種の複屈折層の材料を逆波長分散性を示す材料に変更したことを除いては、実施例10とほとんど同様の液晶表示装置である。本実施例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表10に示すとおりである。
本発明に係る実施例12の液晶表示装置は、第二種の複屈折層の材料を正の固有複屈折を持つ材料に変更したことを除いては、実施例1とほとんど同様の液晶表示装置である。本実施例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表11に示すとおりである。
本発明に係る実施例13の液晶表示装置は、第一種の複屈折層の材料を逆波長分散性を示す材料に変更したことを除いては、実施例12とほとんど同様の液晶表示装置である。本実施例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表12に示すとおりである。
本発明に係る実施例14の液晶表示装置は、第二種の複屈折層の材料を逆波長分散性を示す材料に変更したことを除いては、実施例12とほとんど同様の液晶表示装置である。本実施例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表13に示すとおりである。
本発明に係る実施例15の液晶表示装置は、第一種及び第二種の複屈折層の材料を逆波長分散性を示す材料に変更したことを除いては、実施例12とほとんど同様の液晶表示装置である。本実施例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表14に示すとおりである。
図3は、比較例1の液晶表示装置の構成を模式的に示す斜視図である。
比較例1の液晶表示装置は、図3に示すように、TACフィルム10b、第一の偏光子11b、TACフィルム20b、VAモード液晶セル50b、TACフィルム30b、第二の偏光子12b、TACフィルム40bをこの順に積層して得られたVAモードの液晶表示装置200bである。本比較例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表15に示すとおりである。
図4は、比較例2の液晶表示装置の構成を模式的に示す斜視図である。
比較例2の液晶表示装置は、図4に示すように、TACフィルム10c、第一の偏光子11c、2軸性位相差フィルム60c、VAモード液晶セル50c、TACフィルム20c、第二の偏光子12c、TACフィルム30cをこの順に積層して得られたVAモードの液晶表示装置200cである。本比較例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表15に示すとおりである。
図5は、比較例3の液晶表示装置の構成を模式的に示す斜視図である。
比較例3の液晶表示装置は、図5に示すように、TACフィルム10d、第一の偏光子11d、第一の2軸性位相差フィルム60d、VAモード液晶セル50d、第二の2軸性位相差フィルム61d、第二の偏光子12d、TACフィルム20dをこの順に積層して得られたVAモードの液晶表示装置200dである。本比較例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表15に示すとおりである。
図6は、参考例1の液晶表示装置の構成を模式的に示す斜視図である。
参考例1の液晶表示装置は、図6に示すように、TACフィルム10e、第一の偏光子11e、ネガティブCプレート23e、VAモード液晶セル50e、ポジティブAプレート21e、第二の偏光子12e、TACフィルム20eをこの順に積層して得られたVAモードの液晶表示装置200eである。本参考例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表16に示すとおりである
図7は、参考例2の液晶表示装置の構成を模式的に示す斜視図である。
参考例2の液晶表示装置は、図7に示すように、TACフィルム10f、第一の偏光子11f、ネガティブCプレート23f、VAモード液晶セル50f、ポジティブCプレート25f、ポジティブAプレート21f、第二の偏光子12f、TACフィルム20fをこの順に積層して得られたVAモードの液晶表示装置200fである。本参考例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表16に示すとおりである。
図8は、参考例3の液晶表示装置の構成を模式的に示す斜視図である。
参考例3の液晶表示装置は、図8に示すように、TACフィルム10g、第一の偏光子11g、ネガティブCプレート23g、VAモード液晶セル50g、3枚の2軸性位相差フィルム60g~62g、第二の偏光子12g、TACフィルム20gをこの順に積層して得られたVAモードの液晶表示装置200gである。本参考例の各種複屈折フィルム、偏光子、液晶セルの光学特性及び軸設定については表16に示すとおりである。
各例の液晶表示装置のコントラスト視野角及び色度視野角を測定し、CR(45、60)及びΔE(45、60)を表4~16に整理した。
本発明の実施例1~15の液晶表示装置のCR(45、60)は、比較例1~3のそれと同等以上であり、目視評価においても比較例1~3と同等以上のコントラスト視野角を有していた。また、本発明の実施例1の液晶表示装置のΔE(45、60)は、CR(45、60)が同程度の比較例2及び3のそれよりも小さく、目視評価においても視角を変化させたときの色度変化感が小さく、比較例1~3よりも良好な色度視野角を有していた。
2a~2g:観察面側基板
3a~3g:液晶分子
5:接着剤
7:粘着剤
8:偏光子
9:複屈折層
10、10a~10g、20a~20g、30b、30c、40b:TACフィルム(保護フィルム)
11、11a~11g:第一の偏光子
12、12a~12g:第二の偏光子
21、21a~21f:第一種の複屈折層
22、22a:第二種の複屈折層
23a~23g:第三種の複屈折層
24:等方性フィルム(ゼロ位相差保護フィルム)
25f:ポジティブCプレート
50a~50g:VAモード液晶セル
60c~60g、61d、61g、62g:2軸性位相差フィルム
71、72:位相差機能付加部
71a:第一種の複屈折層用の原反フィルム
72a:第二種の複屈折層用の原反フィルム
73、77:偏光機能付加部
73a:第一の偏光子用の原反フィルム
74、76、78、79:接着剤塗布部
75a~75d:貼り合わせ処理部
77a:第二の偏光子用の原反フィルム
80a:第一の偏光板
81a:第二の偏光板
90:TACフィルムが貼り合わされた第一の偏光子
91:TACフィルム及び第一種の複屈折層が貼り合わされた第一の偏光子
92:TACフィルムが貼り合わされた第二の偏光子
100a、200b~200g:VAモード液晶表示装置
a:偏光子の吸収軸
a(o):偏光子の吸収軸(偏光子の光学軸)
e1(o):固有モード(複屈折層の光学軸)
e2:固有モード
L:液晶分子の長軸
s:遅相軸
t:偏光子の透過軸
Claims (15)
- 第一の偏光子、第一種の複屈折層、液晶セル、第二種の複屈折層、及び、該第一の偏光子の吸収軸に対して吸収軸が直交する第二の偏光子をこの順に有する液晶表示装置を製造する方法であって、
該第一種の複屈折層は、正の固有複屈折を持つ材料で構成され、
該第二種の複屈折層は、負の固有複屈折を持つ材料で構成され、
該製造方法は、該第一の偏光子用の原反フィルムを縦延伸することで該第一の偏光子を製造し、該第一種の複屈折層用の原反フィルムを横延伸することで該第一種の複屈折層を製造し、該第一の偏光子と該第一種の複屈折層とをロール・ツー・ロールで貼り合わせる第一の工程、及び、
該第二の偏光子用の原反フィルムを縦延伸することで該第二の偏光子を製造し、該第二種の複屈折層用の原反フィルムを横延伸することで該第二種の複屈折層を製造し、該第二の偏光子と該第二種の複屈折層とをロール・ツー・ロールで貼り合わせる第二の工程の少なくとも一方を含むことを特徴とする液晶表示装置の製造方法。 - 前記第一種の複屈折層は、1.1≦Nz(550)≦2を満たし、面内遅相軸が前記第一の偏光子の吸収軸に対して90°の角度をなし、
前記第二種の複屈折層は、-1≦Nz(550)≦-0.1を満たし、面内遅相軸が前記第二の偏光子の吸収軸に対して0°の角度をなすことを特徴とする請求項1記載の液晶表示装置の製造方法。 - 第一の偏光子、第一種の複屈折層、液晶セル、第二種の複屈折層、及び、該第一の偏光子の吸収軸に対して吸収軸が直交する第二の偏光子をこの順に有する液晶表示装置であって、
該第一種の複屈折層は、1.1≦Nz(550)≦2を満たし、面内遅相軸が該第一の偏光子の吸収軸に直交し、
該第二種の複屈折層は、-1≦Nz(550)≦-0.1を満たし、面内遅相軸が該第二の偏光子の吸収軸と平行であることを特徴とする液晶表示装置。 - 前記第一種の複屈折層は、正の固有複屈折を持つ材料で構成されることを特徴とする請求項3記載の液晶表示装置。
- 前記第二種の複屈折層は、負の固有複屈折を持つ材料で構成されることを特徴とする請求項3又は4記載の液晶表示装置。
- 前記液晶表示装置は、前記第一種の複屈折層のNz(550)と前記第二種の複屈折層のNz(550)との相加平均をNz’(550)と定義するとき、0≦Nz’(550)≦1を満たすことを特徴とする請求項3~5のいずれかに記載の液晶表示装置。
- 前記液晶表示装置は、0.3≦Nz’(550)≦0.7を満たすことを特徴とする請求項6記載の液晶表示装置。
- 前記第一種の複屈折層及び前記第二種の複屈折層の少なくとも一方は、|Rxy(550)|≦130nmを満たすことを特徴とする請求項3~7のいずれかに記載の液晶表示装置。
- 前記液晶表示装置は、前記第一種の複屈折層の二軸性パラメータΔNz1を|Nz(550)-1|と定義し、前記第二種の複屈折層の二軸性パラメータΔNz2を|Nz(550)|と定義するとき、ΔNz1=ΔNz2を満たすことを特徴とする請求項8記載の液晶表示装置。
- 前記液晶表示装置は、前記第一種の複屈折層の二軸性パラメータΔNz1を|Nz(550)-1|と定義し、前記第二種の複屈折層の二軸性パラメータΔNz2を|Nz(550)|と定義するとき、ΔNz1<ΔNz2を満たすことを特徴とする請求項8記載の液晶表示装置。
- 前記液晶表示装置は、前記第一種の複屈折層の二軸性パラメータΔNz1を|Nz(550)-1|と定義し、前記第二種の複屈折層の二軸性パラメータΔNz2を|Nz(550)|と定義するとき、ΔNz1>ΔNz2を満たすことを特徴とする請求項8記載の液晶表示装置。
- 前記第一種の複屈折層及び前記第二種の複屈折層の少なくとも一方は、|Rxy(450)|≦|Rxy(550)|≦|Rxy(650)|を満たすことを特徴とする請求項3~11のいずれかに記載の液晶表示装置。
- 前記液晶表示装置は、前記第一種の複屈折層の波長分散性α=Rxy(450)/Rxy(550)と前記第二種の複屈折層の波長分散性α=Rxy(450)/Rxy(550)との相加平均をα’と定義し、前記第一種の複屈折層の波長分散性β=Rxy(650)/Rxy(550)と前記第二種の複屈折層の波長分散性β=Rxy(650)/Rxy(550)との相加平均をβ’と定義するとき、α’≦1かつ1≦β’を満たすことを特徴とする請求項3~12のいずれかに記載の液晶表示装置。
- 前記液晶表示装置は、前記液晶セル中の液晶分子を基板面に垂直に配向させることで黒表示を行うものであり、前記第一の偏光子と前記第二の偏光子との間に、Rxy≦10nmかつRxz≧100nmを満たす第三種の複屈折層を有することを特徴とする請求項3~13のいずれかに記載の液晶表示装置。
- 前記第三種の複屈折層は、前記液晶セルと隣接配置されていることを特徴とする請求項14記載の液晶表示装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08872220.2A EP2239625A4 (en) | 2008-02-07 | 2008-10-30 | PROCESS FOR PREPARING A LIQUID CRYSTAL DISPLAY AND LIQUID CRYSTAL DISPLAY |
BRPI0822272-0A BRPI0822272A2 (pt) | 2008-02-07 | 2008-10-30 | Método para produzir dispositivo de display de cristal líquido, e dispositivo de display de cristal líquido |
JP2009552383A JP5000729B2 (ja) | 2008-02-07 | 2008-10-30 | 液晶表示装置の製造方法、及び、液晶表示装置 |
CN2008801185563A CN101884005B (zh) | 2008-02-07 | 2008-10-30 | 液晶显示装置的制造方法和液晶显示装置 |
US12/863,154 US20110051062A1 (en) | 2008-02-07 | 2008-10-30 | Method for producing liquid crystal display device, and liquid crystal display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-027998 | 2008-02-07 | ||
JP2008027998 | 2008-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009098804A1 true WO2009098804A1 (ja) | 2009-08-13 |
Family
ID=40951889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/069789 WO2009098804A1 (ja) | 2008-02-07 | 2008-10-30 | 液晶表示装置の製造方法、及び、液晶表示装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20110051062A1 (ja) |
EP (1) | EP2239625A4 (ja) |
JP (1) | JP5000729B2 (ja) |
CN (1) | CN101884005B (ja) |
BR (1) | BRPI0822272A2 (ja) |
WO (1) | WO2009098804A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011213052A (ja) * | 2010-04-01 | 2011-10-27 | Oji Paper Co Ltd | 表面微細凹凸体およびその製造方法 |
JP2012145766A (ja) * | 2011-01-12 | 2012-08-02 | Sumitomo Chemical Co Ltd | 偏光性積層フィルムおよび偏光板の製造方法 |
KR20140087610A (ko) * | 2012-12-31 | 2014-07-09 | 엘지디스플레이 주식회사 | 편광판과 그 제조 방법 및 이를 포함하는 액정표시장치 |
JP2014182283A (ja) * | 2013-03-19 | 2014-09-29 | Nippon Zeon Co Ltd | 複層フィルム及びその製造方法、位相差フィルム積層体の製造方法、位相差フィルム、偏光板並びにips液晶パネル |
JP2018205362A (ja) * | 2017-05-30 | 2018-12-27 | 大日本印刷株式会社 | 偏光板補償フィルム、液晶パネル |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101253048B1 (ko) * | 2008-12-31 | 2013-04-12 | 엘지디스플레이 주식회사 | 광시야각 액정표시소자 |
JP5905761B2 (ja) | 2011-05-20 | 2016-04-20 | 日東電工株式会社 | 光学表示パネルの連続製造方法および光学表示パネルの連続製造システム |
JP5945143B2 (ja) * | 2011-05-20 | 2016-07-05 | 日東電工株式会社 | 光学フィルムロールセットおよび光学フィルムロールセットの製造方法。 |
KR101521226B1 (ko) * | 2011-12-02 | 2015-06-17 | 삼성전자 주식회사 | 광학 보상 필름 |
KR101525998B1 (ko) * | 2011-12-12 | 2015-06-04 | 제일모직주식회사 | 유기발광소자용 편광판 및 이를 포함하는 유기발광소자 표시 장치 |
US8836898B2 (en) * | 2012-11-06 | 2014-09-16 | Shenzhen China Star Optoelectronics Technology Co., Ltd | Compensation system for liquid crystal panels and liquid crystal display |
CN102944954B (zh) * | 2012-11-21 | 2015-11-25 | 深圳市华星光电技术有限公司 | 用于液晶面板的补偿系统及液晶显示装置 |
CN103558710B (zh) | 2013-11-11 | 2016-04-13 | 京东方科技集团股份有限公司 | Tft液晶显示面板 |
CN105856794B (zh) * | 2016-04-18 | 2018-06-22 | 开思茂电子科技(苏州)有限公司 | Oca风力送料装置 |
CN115629437A (zh) * | 2017-05-31 | 2023-01-20 | 日本瑞翁株式会社 | 相位差膜及制造方法 |
WO2018221274A1 (ja) * | 2017-05-31 | 2018-12-06 | 日本ゼオン株式会社 | 位相差フィルム及び製造方法 |
EP3637159B1 (en) * | 2017-05-31 | 2024-01-10 | Zeon Corporation | Retardation film and production method |
US12114523B2 (en) * | 2018-03-30 | 2024-10-08 | Zeon Corporation | Optical anisotropic layered body, polarizing plate, and image display device |
KR102739542B1 (ko) * | 2020-10-12 | 2024-12-05 | 삼성에스디아이 주식회사 | 광학표시장치용 모듈 및 이를 포함하는 광학표시장치 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11305217A (ja) | 1998-04-16 | 1999-11-05 | Internatl Business Mach Corp <Ibm> | 液晶表示装置 |
US6141075A (en) | 1996-02-28 | 2000-10-31 | Fujitsu Limited | Liquid crystal display device operating in a vertically aligned mode |
JP2001350022A (ja) | 2000-04-07 | 2001-12-21 | Tatsuo Uchida | 広視野角偏光板 |
US6661488B1 (en) | 1997-06-12 | 2003-12-09 | Fujitsu Limited | Vertically-alligned (VA) liquid crystal display device |
JP2005309110A (ja) * | 2004-04-22 | 2005-11-04 | Sumitomo Chemical Co Ltd | 液晶表示装置 |
JP2005326818A (ja) * | 2004-04-16 | 2005-11-24 | Sharp Corp | 円偏光板及び液晶表示装置 |
WO2006001448A1 (ja) | 2004-06-29 | 2006-01-05 | Sharp Kabushiki Kaisha | 位相差フィルム、偏光フィルム、液晶表示装置、及び、位相差フィルムの設計方法 |
JP2006514754A (ja) | 2003-01-28 | 2006-05-11 | エルジー・ケム・リミテッド | ネガティブ補償フィルムを有する垂直配向液晶表示装置 |
US7057689B2 (en) | 1997-08-29 | 2006-06-06 | Sharp Kabushiki Kaisha | Liquid crystal display with at least one phase compensation element |
WO2006118234A1 (ja) * | 2005-04-28 | 2006-11-09 | Zeon Corporation | 光学異方体および液晶表示装置 |
JP2007232874A (ja) | 2006-02-28 | 2007-09-13 | Teijin Ltd | 積層偏光フィルム、位相差フィルム、および液晶表示装置 |
JP2007232873A (ja) | 2006-02-28 | 2007-09-13 | Teijin Ltd | 積層偏光フィルム、位相差フィルム、および液晶表示装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6292242B1 (en) * | 1993-12-15 | 2001-09-18 | Ois Optical Imaging Systems, Inc. | Normally white twisted nematic LCD with positive uniaxial and negative biaxial retarders |
JP2000098385A (ja) * | 1998-09-25 | 2000-04-07 | Alps Electric Co Ltd | 反射型液晶表示装置 |
JP2004199045A (ja) * | 2002-12-04 | 2004-07-15 | Sharp Corp | 光学フィルム及びそれを用いた液晶表示装置 |
JP4882375B2 (ja) * | 2003-11-21 | 2012-02-22 | 日本ゼオン株式会社 | 液晶表示装置 |
JP4383903B2 (ja) * | 2004-01-23 | 2009-12-16 | 株式会社 日立ディスプレイズ | 偏光板及びそれを用いた液晶表示装置 |
US7400371B2 (en) * | 2004-02-03 | 2008-07-15 | Sumitomo Chemical Company, Limited | Liquid crystal display having particular retardation plate |
JP4618675B2 (ja) * | 2005-02-08 | 2011-01-26 | 日東電工株式会社 | 位相差フィルム、偏光素子、液晶パネルおよび液晶表示装置 |
JP2006267625A (ja) * | 2005-03-24 | 2006-10-05 | Nitto Denko Corp | 液晶パネル、液晶テレビおよび液晶表示装置 |
EP1724632A1 (en) * | 2005-05-20 | 2006-11-22 | Nemoptic | A single-polarizer reflective bistable twisted nematic (BTN) liquid crystal display device |
US20100062361A1 (en) * | 2005-06-08 | 2010-03-11 | Koji Iwase | Liquid developing agent and process for producing the same |
KR101354361B1 (ko) * | 2006-02-28 | 2014-01-22 | 데이진 가부시키가이샤 | 적층 편광 필름, 위상차 필름, 및 액정 표시 장치 |
JP2008020670A (ja) * | 2006-07-13 | 2008-01-31 | Nitto Denko Corp | 液晶パネル及び液晶表示装置 |
JP5131510B2 (ja) * | 2006-07-18 | 2013-01-30 | Nltテクノロジー株式会社 | 液晶表示装置、及び端末装置 |
JP2008197638A (ja) * | 2007-01-18 | 2008-08-28 | Fujifilm Corp | 偏光板及び液晶表示装置 |
-
2008
- 2008-10-30 US US12/863,154 patent/US20110051062A1/en not_active Abandoned
- 2008-10-30 EP EP08872220.2A patent/EP2239625A4/en not_active Withdrawn
- 2008-10-30 WO PCT/JP2008/069789 patent/WO2009098804A1/ja active Application Filing
- 2008-10-30 BR BRPI0822272-0A patent/BRPI0822272A2/pt not_active IP Right Cessation
- 2008-10-30 JP JP2009552383A patent/JP5000729B2/ja not_active Expired - Fee Related
- 2008-10-30 CN CN2008801185563A patent/CN101884005B/zh not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6141075A (en) | 1996-02-28 | 2000-10-31 | Fujitsu Limited | Liquid crystal display device operating in a vertically aligned mode |
US6661488B1 (en) | 1997-06-12 | 2003-12-09 | Fujitsu Limited | Vertically-alligned (VA) liquid crystal display device |
US7057689B2 (en) | 1997-08-29 | 2006-06-06 | Sharp Kabushiki Kaisha | Liquid crystal display with at least one phase compensation element |
JPH11305217A (ja) | 1998-04-16 | 1999-11-05 | Internatl Business Mach Corp <Ibm> | 液晶表示装置 |
JP2001350022A (ja) | 2000-04-07 | 2001-12-21 | Tatsuo Uchida | 広視野角偏光板 |
JP2006514754A (ja) | 2003-01-28 | 2006-05-11 | エルジー・ケム・リミテッド | ネガティブ補償フィルムを有する垂直配向液晶表示装置 |
JP2005326818A (ja) * | 2004-04-16 | 2005-11-24 | Sharp Corp | 円偏光板及び液晶表示装置 |
JP2005309110A (ja) * | 2004-04-22 | 2005-11-04 | Sumitomo Chemical Co Ltd | 液晶表示装置 |
WO2006001448A1 (ja) | 2004-06-29 | 2006-01-05 | Sharp Kabushiki Kaisha | 位相差フィルム、偏光フィルム、液晶表示装置、及び、位相差フィルムの設計方法 |
WO2006118234A1 (ja) * | 2005-04-28 | 2006-11-09 | Zeon Corporation | 光学異方体および液晶表示装置 |
JP2007232874A (ja) | 2006-02-28 | 2007-09-13 | Teijin Ltd | 積層偏光フィルム、位相差フィルム、および液晶表示装置 |
JP2007232873A (ja) | 2006-02-28 | 2007-09-13 | Teijin Ltd | 積層偏光フィルム、位相差フィルム、および液晶表示装置 |
Non-Patent Citations (2)
Title |
---|
See also references of EP2239625A4 * |
XINZHU ET AL.: "Super Wide View In-plane Switching LCD with Positive and Negative Uniaxial A-Films Compensation", SID 05 DIGEST, pages 1164 - 1167 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011213052A (ja) * | 2010-04-01 | 2011-10-27 | Oji Paper Co Ltd | 表面微細凹凸体およびその製造方法 |
JP2012145766A (ja) * | 2011-01-12 | 2012-08-02 | Sumitomo Chemical Co Ltd | 偏光性積層フィルムおよび偏光板の製造方法 |
KR20140087610A (ko) * | 2012-12-31 | 2014-07-09 | 엘지디스플레이 주식회사 | 편광판과 그 제조 방법 및 이를 포함하는 액정표시장치 |
KR102078021B1 (ko) * | 2012-12-31 | 2020-02-17 | 엘지디스플레이 주식회사 | 편광판과 그 제조 방법 및 이를 포함하는 액정표시장치 |
JP2014182283A (ja) * | 2013-03-19 | 2014-09-29 | Nippon Zeon Co Ltd | 複層フィルム及びその製造方法、位相差フィルム積層体の製造方法、位相差フィルム、偏光板並びにips液晶パネル |
JP2018205362A (ja) * | 2017-05-30 | 2018-12-27 | 大日本印刷株式会社 | 偏光板補償フィルム、液晶パネル |
Also Published As
Publication number | Publication date |
---|---|
CN101884005A (zh) | 2010-11-10 |
EP2239625A1 (en) | 2010-10-13 |
CN101884005B (zh) | 2012-01-11 |
JPWO2009098804A1 (ja) | 2011-05-26 |
JP5000729B2 (ja) | 2012-08-15 |
US20110051062A1 (en) | 2011-03-03 |
BRPI0822272A2 (pt) | 2015-06-23 |
EP2239625A4 (en) | 2014-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5000729B2 (ja) | 液晶表示装置の製造方法、及び、液晶表示装置 | |
JP5265614B2 (ja) | 円偏光板 | |
EP2487536B1 (en) | Liquid-crystal display device | |
JP4475507B2 (ja) | 積層位相差層の製造方法 | |
US8179508B2 (en) | Liquid crystal display device having first and second polarizers and first and second birefringent layers | |
JP5508427B2 (ja) | 液晶表示装置 | |
WO2012133137A1 (ja) | 液晶表示装置 | |
WO2018151295A1 (ja) | 液晶表示装置 | |
JP2007225648A (ja) | 広視野角複合偏光板及び液晶表示装置 | |
JP2005309386A (ja) | Ipsモード液晶表示装置 | |
JP4307181B2 (ja) | 光学異方性層、それを用いた位相差板、楕円偏光板及び液晶表示装置 | |
JP2004309598A (ja) | 位相差板、楕円偏光板および液晶表示装置 | |
JP2004309596A (ja) | 楕円偏光板および液晶表示装置 | |
KR20100060091A (ko) | 상판 편광판 및 이를 포함하는 면상 스위칭 모드 액정표시장치 | |
KR20100060092A (ko) | 상판 편광판 및 이를 포함하는 면상 스위칭 모드 액정표시장치 | |
JP2005062671A (ja) | 光学異方性層、それを用いた位相差板、楕円偏光板及び液晶表示装置 | |
WO2012133155A1 (ja) | 液晶表示装置 | |
KR20100064522A (ko) | 상판 편광판 및 이를 포함하는 면상 스위칭 모드 액정표시장치 | |
KR20090101871A (ko) | 음의 굴절률 특성을 갖는 이축성 위상차필름과 네거티브 c-플레이트 특성의 편광자 보호필름이 구비된 면상 스위칭액정표시장치 | |
KR20100071458A (ko) | 하판 편광판 및 이를 포함하는 면상 스위칭 모드 액정표시장치 | |
KR20100071457A (ko) | 하판 편광판 및 이를 포함하는 면상 스위칭 모드 액정표시장치 | |
KR20100071254A (ko) | 하판 편광판 및 이를 포함하는 면상 스위칭 모드 액정표시장치 | |
JP2009075549A (ja) | 液晶表示装置 | |
JP2007334194A (ja) | 半透過型液晶表示装置 | |
JP2005062669A (ja) | 光学異方性層、それを用いた位相差板、楕円偏光板及び液晶表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880118556.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08872220 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009552383 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3359/DELNP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008872220 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: PI0822272 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100806 |