[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009098747A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2009098747A1
WO2009098747A1 PCT/JP2008/003975 JP2008003975W WO2009098747A1 WO 2009098747 A1 WO2009098747 A1 WO 2009098747A1 JP 2008003975 W JP2008003975 W JP 2008003975W WO 2009098747 A1 WO2009098747 A1 WO 2009098747A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
liquid crystal
branch portions
display device
electrode
Prior art date
Application number
PCT/JP2008/003975
Other languages
English (en)
French (fr)
Inventor
Yoshito Hashimoto
Hiroyuki Ohgami
Masakazu Shibasaki
Masumi Kubo
Yuichi Iyama
Masayuki Soga
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US12/866,095 priority Critical patent/US8345199B2/en
Priority to EP08872256A priority patent/EP2246733B1/en
Priority to JP2009552338A priority patent/JPWO2009098747A1/ja
Priority to CN2008801262146A priority patent/CN101939696B/zh
Publication of WO2009098747A1 publication Critical patent/WO2009098747A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having a plurality of alignment division regions in a pixel.
  • a liquid crystal display device using a lateral electric field mode IPS (In-Plane-Switching) mode or FFS (Fringe Field Switching) mode and a vertical alignment mode VA ( A liquid crystal display device using a vertical alignment mode has been developed. Since the VA mode is more mass-productive than the horizontal electric field mode, it is widely used for TV applications and mobile applications.
  • a VA mode liquid crystal display device is formed on a MVA (Multidomain Vertical Alignment) mode liquid crystal display device in which a plurality of domains having different alignment directions of liquid crystals are formed in one pixel, and an electrode at the center of the pixel.
  • the liquid crystal display device is roughly classified into a CPA (Continuous Pinwheel Alignment) mode liquid crystal display device in which the alignment direction of the liquid crystal is continuously changed around the rivets and the like.
  • the alignment regulating means extending in two directions orthogonal to each other, the polarization axis (transmission axis) of the pair of polarizing plates arranged in crossed Nicols in one pixel.
  • the polarization axis transmission axis
  • four liquid crystal domains having an azimuth angle of 45 degrees representing the liquid crystal domain are formed.
  • the azimuth angle of 0 degree is the direction of the polarization axis of one polarizing plate and the counterclockwise direction is a positive azimuth direction
  • the director angles of these four liquid crystal domains are 45 degrees, 135 degrees, 225 degrees, and 315 degrees. It becomes.
  • a configuration in which four domains are formed in one pixel is referred to as a four-divided alignment structure or simply a 4D structure.
  • the MVA mode liquid crystal display device is not suitable for small pixels (for example, short sides of less than 100 ⁇ m, particularly less than 60 ⁇ m).
  • the slit width needs to be about 10 ⁇ m or more in order to obtain a sufficient orientation regulating force, and if the slit width is narrower than this, A sufficient alignment regulating force cannot be obtained.
  • slits shaped slits
  • slits extending in directions different from each other by 90 degrees when viewed from the normal direction of the substrate are formed in one counter pixel, and these slits are formed.
  • slits in the pixel electrode that are arranged with a certain distance from each other and extend in parallel with these slits. That is, it is necessary to dispose a plurality of slits each having a width of about 10 ⁇ m extending in the 45 ° -225 ° direction and the 135 ° -315 ° direction on both the counter electrode and the pixel electrode in one pixel.
  • the slit as described above when the slit as described above is applied to a pixel having a short side of less than 100 ⁇ m, the area occupied by the slit increases with respect to the pixel area, and the area that cannot be contributed to the display also increases. To drop. Further, in a high-definition small-sized liquid crystal display device such as a 2.4-inch VGA for a mobile phone, the pixel pitch (row direction ⁇ vertical direction) is, for example, 25.5 ⁇ m ⁇ 76.5 ⁇ m. Even the slits described above can no longer be formed.
  • a rivet made of resin or the like is formed at the pixel central portion of the counter electrode, and the alignment of the liquid crystal is regulated by this rivet and an oblique electric field generated at the edge portion of the pixel electrode.
  • a quarter-wave plate (quarter-wave plate) is disposed between each of the two polarizing plates and the liquid crystal layer, and is high by using omnidirectional radial tilt alignment domains and circularly polarized light. Transmittance (luminance) is obtained.
  • the CPA mode using a quarter wavelength plate has high transmittance, it has a problem that the contrast ratio is low and the viewing angle is narrow compared to the MVA mode.
  • the display particularly, low gradation (low luminance) display
  • the so-called “white float” becomes prominent.
  • liquid crystal display devices as disclosed in Patent Document 1, Patent Document 2, and Patent Document 3 have been proposed.
  • many fine slits extending in the 45 ° -225 ° direction and 135 ° -315 ° direction are put in the pixel electrode (referred to as fishbone type pixel electrodes).
  • fishbone type pixel electrodes By aligning the liquid crystals in parallel, a four-part alignment structure is realized.
  • the liquid crystal display device using the fishbone pixel electrode wide slits and rivets are not formed in the pixel, and linearly polarized light is used without using a quarter-wave plate, so that the transmittance and contrast ratio are high.
  • display with a wide viewing angle can be realized.
  • an alignment maintaining layer for providing an appropriate pretilt angle to the liquid crystal in a state where no voltage is applied to the liquid crystal is disposed on the surface of the upper and lower substrates on the liquid crystal layer side.
  • the alignment maintaining layer is formed by polymerizing the monomer contained in the liquid crystal layer while applying a voltage to the liquid crystal.
  • the pixel electrode of the liquid crystal display device described in the above patent document has a plurality of linear electrode portions (also referred to as branch portions or line portions) extending in the 45 ° -225 ° direction and the 135 ° -315 ° direction.
  • linear electrode portions also referred to as branch portions or line portions
  • a plurality of slits also referred to as linear space portions
  • the conventional liquid crystal display device having a linear electrode portion has the following problems.
  • FIG. 13 is a plan view schematically showing the configuration of one pixel in the liquid crystal display device described in Patent Document 1.
  • FIG. 14 shows the electric field distribution in the BB ′ cross section of the pixel shown in FIG. 13
  • FIG. 15 shows the luminance distribution of the pixel shown in FIG. 13
  • FIG. 16 shows the alignment state of the liquid crystal in the pixel shown in FIG. FIG.
  • the pixel 210 of the liquid crystal display device 200 of Patent Document 1 is surrounded by the scanning line 22 and the signal line 23, and the pixel 210 is switched near the intersection of the scanning line 22 and the signal line 23.
  • a TFT (Thin Film Transistor) 35 is provided.
  • an auxiliary capacitance line 24 extending in parallel with the scanning line 22 is formed at the center of the pixel 210.
  • the pixel electrode 230 disposed in the pixel 210 includes a plurality of line portions having two kinds of widths (a wide line portion 230a and a narrow line) extending in the 45 ° -225 ° direction and the 135 ° -315 ° direction. Part 230b).
  • the line portions of the upper right region (the right region above the auxiliary capacitance line 24) 210a and the lower left region (the left region below the auxiliary capacitance line 24) 210c of the pixel 210 are all in the 45 ° -225 ° direction.
  • the line portions of the upper left region (the left region above the auxiliary capacitance line 24) 210b and the lower right region (the right region below the auxiliary capacitance line 24) 210d are all in the direction of 135 degrees to 315 degrees.
  • the plurality of line portions 230a are arranged so as to be sandwiched between the plurality of line portions 230b. Therefore, each of these four regions 210a, 210b, 210c, and 210d includes two boundaries between the wide line portion 230a and the narrow line portion 230b.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a liquid crystal display device having high transmittance and high display quality with excellent gradation and viewing angle characteristics.
  • a liquid crystal display device is a vertical alignment type liquid crystal display device having a plurality of pixels, a pair of polarizing plates having transmission axes orthogonal to each other, a first electrode, and a first electrode facing the first electrode.
  • Two electrodes and a liquid crystal layer disposed between the first electrode and the second electrode, and each of the plurality of pixels is a straight line parallel or perpendicular to the direction of the transmission axis of the pair of polarizing plates
  • a plurality of first branches extending in a first direction in each of the first region and the second region; and A plurality of second branch portions extending in a second direction different from the one direction, each of the plurality of first branch portions in the first region having a first width, and the plurality of the second branch portions in the second region.
  • Each of the first branch portions of the first branch portion is different from the first width. Having a second width.
  • each of the plurality of second branch portions in the first region has the first width
  • each of the plurality of second branch portions in the second region has the second width.
  • any two adjacent ones of the plurality of first branch portions in the first region are arranged at a first interval, and the plurality of first branches in the second region are arranged. Any two adjacent ones of the sections are arranged with a second interval different from the first interval.
  • any two adjacent ones of the plurality of second branch portions in the first region are arranged with the first interval, and the plurality of second portions in the second region.
  • Arbitrary two adjacent ones of the branches are arranged with the second interval.
  • the first region and the second region correspond to one region and the other region of the pixels partitioned by a gate bus line or a CS line, respectively.
  • the first region and the second region respectively correspond to one region and the other region of the pixels separated by a line parallel to the source bus line.
  • the first direction and the second direction are orthogonal to each other, and the direction of the transmission axis of the pair of polarizing plates and the first direction are 45 degrees, 135 degrees, 225 degrees, or 315 degrees. Is different.
  • liquid crystal domains having different alignment directions of liquid crystal molecules are formed in each of the first region and the second region.
  • each of the plurality of pixels has a third region separated from the first region or the second region by a straight line parallel or perpendicular to the direction of the transmission axis of the pair of polarizing plates
  • the first electrode includes the plurality of first branch portions and the plurality of second branch portions in the third region, and the plurality of first branch portions and the plurality of second portions in the third region.
  • Each of the branch portions has a third width different from the first width or the second width.
  • the tilt angle of the liquid crystal molecules in the first region when no voltage is applied to the liquid crystal layer is different from the tilt angle of the liquid crystal molecules in the second region.
  • Another liquid crystal display device is a vertical alignment type liquid crystal display device having a plurality of pixels, a pair of polarizing plates having transmission axes orthogonal to each other, a first electrode, and facing the first electrode. And a liquid crystal layer disposed between the first electrode and the second electrode, wherein each of the plurality of pixels is parallel or perpendicular to a transmission axis direction of the pair of polarizing plates.
  • a plurality of first branches extending in the first direction in each of the first region and the second region, the first region and the second region being separated from each other by a straight line;
  • a plurality of second branch portions extending in a second direction different from the first direction, and any two adjacent ones of the plurality of first branch portions in the first region are spaced apart from each other by a first interval.
  • any two adjacent ones of the plurality of second branch portions in the first region are arranged with the first interval, and the plurality of second portions in the second region.
  • Arbitrary two adjacent ones of the branches are arranged with the second interval.
  • each of the plurality of pixels has a third region separated from the first region or the second region by a straight line parallel or perpendicular to the direction of the transmission axis of the pair of polarizing plates,
  • the first electrode includes the plurality of first branch portions and the plurality of second branch portions in the third region, and is adjacent to any one of the plurality of first branch portions in the third region.
  • two adjacent ones of the plurality of second branch portions in the third region are arranged with a third interval different from the first interval or the second interval.
  • the tilt angle of the liquid crystal molecules in the first region when no voltage is applied to the liquid crystal layer is different from the tilt angle of the liquid crystal molecules in the second region.
  • Another liquid crystal display device is a vertical alignment type liquid crystal display device having a plurality of pixels, a pair of polarizing plates having transmission axes orthogonal to each other, a first electrode, and facing the first electrode. And a liquid crystal layer disposed between the first electrode and the second electrode, wherein each of the plurality of pixels is parallel or perpendicular to a transmission axis direction of the pair of polarizing plates.
  • Each of the plurality of regions includes a plurality of first branch portions extending in a first direction, and a second portion different from the first direction.
  • a plurality of second branches extending in a direction, each of the plurality of first branches in one of the plurality of regions has a first width, and the other in the other of the plurality of regions.
  • Each of the plurality of first branch portions is different from the first width. It has a width.
  • each of the plurality of second branch portions in one of the plurality of regions has the first width, and the plurality of second branch portions in the other one of the plurality of regions. Each has the second width.
  • Another liquid crystal display device is a vertical alignment type liquid crystal display device having a plurality of pixels, a pair of polarizing plates having transmission axes orthogonal to each other, a first electrode, and facing the first electrode. And a liquid crystal layer disposed between the first electrode and the second electrode, wherein each of the plurality of pixels is parallel or perpendicular to a transmission axis direction of the pair of polarizing plates.
  • Each of the plurality of regions includes a plurality of first branch portions extending in a first direction, and a second portion different from the first direction.
  • a plurality of second branch portions extending in a direction, and any two adjacent ones of the plurality of first branch portions in one of the plurality of regions are arranged at a first interval, The plurality of first branch portions in the other one of the plurality of regions. Two arbitrary adjacent Chino, but is spaced a second interval different from the first distance.
  • any two adjacent ones of the plurality of second branch portions in one of the plurality of regions are arranged with the first interval therebetween, and the other regions of the plurality of regions Arbitrary adjacent two of the plurality of second branch portions in one are arranged with the second interval therebetween.
  • the fishbone electrode has a plurality of regions having different branch widths or intervals, and these regions are separated by a straight line parallel or perpendicular to the transmission axis direction of the polarizing plate. Therefore, branches having different widths are not adjacent to each other in the liquid crystal domain. Therefore, according to the liquid crystal display device of the present invention, high-quality display with high luminance and excellent gradation or viewing angle characteristics is possible.
  • FIG. 2 is a schematic cross-sectional view of the liquid crystal display device according to Embodiment 1 taken along the line A-A ′ in FIG. 1.
  • 3 is a plan view schematically showing the shape of a pixel electrode of the liquid crystal display device of Embodiment 1.
  • FIG. 3 is a graph showing VT characteristics by pixels of the liquid crystal display device of Embodiment 1.
  • FIG. 4 is a graph for explaining viewing angle characteristics of pixels of the liquid crystal display device of Embodiment 1.
  • 3 is a diagram illustrating a state of white display by pixels of the liquid crystal display device of Embodiment 1.
  • FIG. 1 is a plan view schematically showing a configuration of one pixel in a liquid crystal display device described in Patent Document 1.
  • FIG. 1 is a plan view schematically showing a configuration of one pixel in a liquid crystal display device described in Patent Document 1.
  • FIG. 14 is a diagram showing an electric field distribution in the B-B ′ cross section of the pixel shown in FIG. 13. It is a figure showing the luminance distribution of the pixel shown in FIG. It is a figure showing the orientation state of the liquid crystal in the pixel shown in FIG.
  • FIG. 1 is a plan view schematically showing the structure of one pixel in the liquid crystal display device 100 of Embodiment 1 according to the present invention.
  • FIG. 2 is along the line AA ′ in FIG. It is a typical sectional view.
  • the liquid crystal display device 100 is a vertical alignment type liquid crystal display device that has a plurality of pixels 10 having the configuration shown in FIG. 1 and performs display in a normally black mode by the pixels 10 arranged in a matrix. Further, as shown in FIG. 2, the liquid crystal display device 100 includes a TFT substrate 20 that is an active matrix substrate, a counter substrate 40 that is a color filter substrate, and a liquid crystal layer 50 provided between these substrates. ing.
  • the liquid crystal layer 50 includes nematic liquid crystal having negative dielectric anisotropy ( ⁇ ⁇ 0).
  • a polarizing plate 60 a is provided outside the TFT substrate 20 (opposite the liquid crystal layer 50), and a polarizing plate 60 b is provided outside the counter substrate 40.
  • the polarizing plates 60a and 60b are arranged in crossed Nicols, and one light transmission axis thereof extends in the horizontal direction in FIG. 1, and the other light transmission axis extends in the vertical direction.
  • the azimuth direction from the left side to the right side in FIG. 1 is defined as the azimuth direction of 0 °, and the azimuth angle is set counterclockwise with reference to this.
  • the TFT substrate 20 includes a glass substrate (transparent substrate) 21, scanning lines (gate bus lines) 22 and signal lines (data bus lines) 23 formed on the glass substrate 21. And an auxiliary capacitance line (Cs line) 24, an insulating layer 25 formed on these wirings, and a pixel electrode 30 and an alignment film 26 formed on the insulating layer 25.
  • a glass substrate transparent substrate
  • scanning lines gate bus lines
  • signal lines data bus lines
  • Each pixel 10 is surrounded by two adjacent scanning lines 22 and two adjacent signal lines 23, and a TFT 35 for switching a display voltage to the pixel electrode 30 is arranged for each pixel 10.
  • the gate electrode and the source electrode of the TFT 35 are electrically connected to the scanning line 22 and the signal line 23, respectively, and the drain electrode is electrically connected to the pixel electrode 30.
  • An auxiliary capacitance electrode 36 electrically connected to the auxiliary capacitance line 24 is formed under the pixel electrode 30 in the center of the pixel 10.
  • the counter substrate 40 includes a transparent substrate 41, a CF (color filter) layer 42 disposed on the transparent substrate 41 (on the surface on the liquid crystal layer 50 side), and a common electrode 43 formed on the CF layer 42. And an alignment film 44 formed on the common electrode 43.
  • Both the alignment film 26 of the TFT substrate 20 and the alignment film 44 of the counter substrate 40 are composed of an alignment layer and an alignment maintaining layer.
  • the alignment layer is a vertical alignment film applied on the substrate
  • the alignment maintaining layer is a state in which a voltage is applied to the liquid crystal layer 50 after forming a liquid crystal cell with a photopolymerizable monomer previously mixed in a liquid crystal material. It is formed by photopolymerization with.
  • a voltage is applied to the liquid crystal layer 50 by the pixel electrode 30 and the common electrode 43, the liquid crystal molecules are aligned by an oblique electric field generated according to the shape of the pixel electrode 30, and light is irradiated in that state to irradiate the monomer. Is polymerized.
  • Alignment can be maintained (stored) in the liquid crystal molecules even after the voltage is removed (a state where no voltage is applied) by the alignment maintaining layer formed in this way.
  • the alignment films 26 and 44 are formed so as to give a pretilt angle of 2 ° to the liquid crystal in the entire pixel 10.
  • the technique for forming such an alignment film is called a polymer aligned alignment (PSA) technique, and details thereof are described in Patent Documents 2 and 3. This specification uses these patent documents, and detailed description of the alignment maintaining layer is omitted here.
  • the pixel 10 includes a first region 31 above a virtual boundary line 37 passing through the center of the auxiliary capacitance line 24 and a second region 32 below the boundary line 37. .
  • the pixel 10 includes the first region 31 and the second region 32 that are separated from each other by a straight line (boundary line 37) that is parallel or perpendicular to the direction of the transmission axis of the pair of polarizing plates 60a and 60b.
  • the first region 31 and the second region 32 may be defined as regions separated from each other by the storage capacitor line 24, and a pixel configuration in which both regions are separated by the scanning line 22 or the signal line 23 may be adopted.
  • FIG. 3 is a plan view showing the shape of the pixel electrode 30.
  • the pixel electrode 30 includes trunk portions 30a and 30a ′ extending in the direction of azimuth angle 0 ° -180 °, trunk portions 30b and 30b ′ extending in the direction of azimuth angle 90 ° -270 °, and azimuth angle 45 °.
  • a plurality of branch portions 30c and 30c ′ (first branch portion) extending in the ⁇ 225 ° direction (first direction) and a plurality of branch portions 30d and 30d ′ extending in the azimuth angle 135 ° to 315 ° direction (second direction). (Second branch).
  • the pixel electrode 30 in the first region 31 includes trunk portions 30a and 30b extending perpendicularly to each other through the vicinity of the center of the first region 31, and a plurality of branch portions 30c and a plurality of branch portions extending branched from the trunk portion 30a or 30b. 30d.
  • the upper right part also referred to as domain
  • the upper left part, the lower left part, and the lower right part of the figure are respectively designated as the first part 31a
  • the first portion 31a has a branch portion 30c in the direction of 45 ° from the trunk portion 30a or 30b
  • the second portion 31b has a branch portion in the direction of 135 ° from the trunk portion 30a or 30b.
  • the branch portion 30d extends in the 225 ° direction from the trunk portion 30a or 30b in the third portion 31c
  • the branch portion 30d extends in the 315 ° direction from the trunk portion 30a or 30b in the fourth portion 31d.
  • the widths (first widths) L1 of the branch part 30c and the branch part 30d are all the same. Further, the distance between any two branch portions 30c adjacent in each of the first portion 31a and the third portion 31c, and any two branch portions 30d adjacent in each of the second portion 31b and the fourth portion 31d. The distances S1 between are all the same.
  • the pixel electrode 30 in the second region 32 includes trunk portions 30a ′ and 30b ′ extending orthogonally to each other through the vicinity of the center of the second region 32, and a plurality of branch portions 30c ′ extending branched from the trunk portion 30a ′ or 30b ′. And a plurality of branch portions 30d ′.
  • the upper right portion, the upper left portion, the lower left portion, and the lower right portion of the drawing are respectively represented as a first portion 32a and a second portion.
  • the first portion 32a has a branch portion 30c ′ in the direction of 45 ° from the trunk portion 30a ′ or 30b ′
  • the second portion 32b has a trunk portion 30a ′ or 30b ′ to 135 °.
  • the branch part 30c 'and the branch part 30d' all have the same width (second width) L2 different from the width L1. Further, the distance between any two branch portions 30c ′ adjacent to each other in each of the first portion 32a and the third portion 32c, and any two branch portions adjacent to each other in each of the second portion 32b and the fourth portion 32d. The distances S2 between 30d ′ are all the same. The distance S2 is different from the distance S1.
  • the branch widths L1 and L2 mean the width in the direction perpendicular to the extending direction of the branch parts, and the distances S1 and S2 between the two branch parts are formed between two adjacent branch parts. It means the width in the direction perpendicular to the direction in which the branch part of the gap (slit part) extends.
  • the widths L1 and L2 may be referred to as line widths L1 and L2, respectively, and the distances S1 and S2 may be referred to as slit widths S1 and S2, respectively.
  • the values of the width L1 and the distance S1 are, for example, 1.5 ⁇ m and 3.0 ⁇ m, respectively, and the values of the width L2 and the distance S2 are, for example, 2.5 ⁇ m and 2.5 ⁇ m, respectively. Although it is not necessary to limit the widths L1 and L2 and the distances S1 and S2 to these values, it is desirable to set these values to values of 5.0 ⁇ m or less.
  • a multi-domain having a 4D structure is formed in each of the first region 31 and the second region 32 by the pixel electrode 30 and the alignment films 26 and 44 having the above-described shape.
  • the pretilt orientation of the liquid crystal molecules in each domain has an orientation parallel to the branches 30c, 30d, 30c ′, or 30d ′ in each domain. Show.
  • the liquid crystal molecules in each domain are oriented in the direction parallel to the branches 30c, 30d, 30c ′, or 30d ′ in the domain (director direction of the domain) and parallel to the substrate surface. Oriented to At this time, since the orientation azimuth coincides with the pretilt azimuth, orientation in an accurate azimuth with an extremely fast response speed is realized.
  • the liquid crystal display device 100 includes the pixel electrode 30 having the above-described shape, the domain formed by the branch portions 30c and 30d of the first region 31 and the branch portions 30c ′ and 30d ′ of the second region.
  • the boundary formed with the domain is formed on the boundary line 37 (or the auxiliary capacitance line 24), and there is no region where the wide branch part and the narrow branch part are adjacent to each other in each domain.
  • FIG. 4 is a diagram showing the voltage dependency (referred to as VT characteristics) of the transmittance obtained from the first region 31 and the second region 32 when the display surface is viewed from the front (polar angle 0 ° direction). .
  • Lines a and b in the figure indicate VT characteristics in the first region 31 and the second region 32, respectively.
  • the width of the branch portion or the interval between the two branch portions is different, so that there is a difference in the liquid crystal alignment regulating force in these two regions. Therefore, different VT characteristics as shown in FIG. 4 are obtained from the two regions.
  • the VT characteristic of the entire display surface is a characteristic obtained by averaging these two VT characteristics.
  • the VT characteristic obtained from a pixel electrode having a specific shape is different from an ideal characteristic, problems such as white floating or dark sinking may appear in the display.
  • the liquid crystal display device of Embodiment 1 two different VT characteristics can be obtained from one pixel, and a characteristic obtained by averaging the two VT characteristics can be obtained on the entire display surface. Therefore, ideal brightness and gradation characteristics can be obtained by appropriately setting the widths L1 and L2 and the distances S1 and S2 according to the size, shape, or application of the liquid crystal display device.
  • FIG. 5 is a diagram for explaining the viewing angle characteristics of the liquid crystal display device 100 according to the present embodiment.
  • a line m in FIG. 5 indicates the transmittance (front transmittance) when the display surface of the liquid crystal display device 100 having the pixels 10 is viewed from the front, and the display surface viewed from the azimuth angle 45 ° direction and the polar angle 60 ° direction.
  • the relationship hereinafter simply referred to as viewing angle characteristics
  • the transmittance oblique transmittance
  • the line m represents the viewing angle characteristic obtained by averaging the viewing angle characteristics obtained from each of the first region 31 and the second region 32.
  • a line n represents a viewing angle characteristic obtained from the first region 31 (the pixel electrode does not have two types of line widths or slit widths). Note that a line l in FIG. 5 is a reference line indicating that the front transmittance and the oblique transmittance are the same.
  • FIG. 6 is a diagram showing a white display state in the first area 31 and the second area 32.
  • the conventional liquid crystal display device there are two regions (eight in a pixel) in which each of the four domains is adjacent to the wide branch portion and the narrow branch portion.
  • the eight domains in the pixel 10 include a region where a wide branch portion and a narrow branch portion are adjacent to each other. do not do. Therefore, according to the first embodiment, abnormal alignment of the liquid crystal hardly occurs, and a display with high luminance in which generation of a dark portion is suppressed as shown in FIG. 6 is possible.
  • the shape of the pixel electrode 30 of Embodiment 1 may be the shape of the counter electrode in one pixel, and the same effect as described above can be obtained.
  • the liquid crystal display device of the second embodiment is obtained by replacing the pixel electrode 30 of the liquid crystal display device of the first embodiment with another fishbone-shaped pixel electrode, and the other configuration is the same as that of the first embodiment. . Therefore, only the pixel electrode will be described below.
  • FIG. 7 is a plan view schematically showing one of the plurality of pixel electrodes 70 arranged in the liquid crystal display device 101 of the second embodiment.
  • the pixel electrode 70 includes trunk portions 70a, 70a ′ and 70a ′′ extending in the direction of azimuth angle 0 ° -180 °, and trunk portions 70b, 70b ′ extending in the direction of azimuth angle 90 ° -270 °, and 70b ′′, a plurality of branches 70c, 70c ′ and 70c ′′ (first branch) extending in the azimuth 45 ° -225 ° direction (first direction), and the azimuth 135 ° -315 ° direction (second A plurality of branch portions 70d, 70d ′ and 70d ′′ (second branch portion) extending in the direction).
  • the pixel according to the second embodiment includes a first region 71, a first region 71, and a first region 71, which are separated from each other by two virtual boundary lines 77 a and 77 b that extend parallel to the scanning line (parallel or perpendicular to the direction of the transmission axis of the pair of polarizing plates).
  • the boundary line 77a partitions the first region 71 and the second region 72 from each other, and the boundary line 77b partitions the second region 72 and the third region 73 from each other.
  • the pixel electrode 70 in the first region 71 includes trunk portions 70a and 70b extending perpendicularly to each other through the vicinity of the center of the first region 71, and a plurality of branch portions 70c and a plurality of branch portions extending branched from the trunk portion 70a or 70b. 70d.
  • the upper right portion also referred to as a domain
  • the upper left portion, the lower left portion, and the lower right portion of the figure are respectively referred to as the first portion 71a and the first portion 71a.
  • the first portion 71a has a branch portion 70c in the 45 ° direction from the trunk portion 70a or 70b
  • the second portion 71b has the branch portion 70c in the 135 ° direction from the trunk portion 70a or 70b.
  • the branch portion 70d extends in the 225 ° direction from the trunk portion 70a or 70b in the third portion 71c
  • the branch portion 70d extends in the 315 ° direction from the trunk portion 70a or 70b in the fourth portion 71d.
  • the branch portions 70c and 70d have the same width (first line width). Further, the distance between any two branch portions 70c adjacent in each of the first portion 71a and the third portion 71c, and any two branch portions 70d adjacent in each of the second portion 71b and the fourth portion 71d. The distance between them (the first slit width) is the same.
  • the pixel electrodes in the second region 72 include trunk portions 70a ′ and 70b ′ that extend orthogonally to each other through the vicinity of the center of the second region 72, and a plurality of branch portions 70c ′ that extend from the trunk portions 70a ′ or 70b ′. It consists of a plurality of branch portions 70d '.
  • the upper right portion, the upper left portion, the lower left portion, and the lower right portion of the drawing are respectively referred to as the first portion 72a and the second portion.
  • the first portion 72a has a branch portion 70c ′ in the direction of 45 ° from the trunk portion 70a ′ or 70b ′
  • the second portion 72b has a branch portion 70c ′ or 70b ′ to 135d.
  • the branch part 70c 'and the branch part 70d' all have the same width (second line width) different from the first line width. Further, the distance between any two branch portions 70c ′ adjacent to each other in each of the first portion 72a and the third portion 72c, and any two branch portions adjacent to each other in each of the second portion 72b and the fourth portion 72d. All the distances (second slit widths) between 70d 'are the same. The second slit width is different from the first slit width.
  • the pixel electrodes in the third region 73 include trunk portions 70a ′′ and 70b ′′ extending perpendicularly to each other through the vicinity of the center of the third region 73, and a plurality of branch portions 70c ′′ extending from the trunk portions 70a ′′ or 70b ′′. It consists of a plurality of branch portions 70d ′′.
  • the upper right portion, the upper left portion, the lower left portion, and the lower right portion of the drawing are respectively represented as a first portion 73a and a second portion.
  • the first portion 73a has a branch portion 70c ′′ in the 45 ° direction from the trunk portion 70a ′′ or 70b ′′
  • the second portion 73b has a trunk portion 70a ′′ or 70b ′′.
  • the branch portion 70d ′′ extends in the direction of °
  • the branch portion 70c ′′ extends from the trunk portion 70a ′′ or 70b ′′ to the 225 ° direction in the third portion 73c
  • the branch portion 70d extends in the direction of 315 ° from the trunk portion 70a ′′ or 70b ′′ in the fourth portion 73d. "Is extended respectively.
  • the branch part 70c "and the branch part 70d" all have the same width (third line width) different from the first line width or the second line width. Further, the distance between any two branch portions 70c ′′ adjacent in each of the first portion 73a and the third portion 73c, and any two branch portions adjacent in each of the second portion 73b and the fourth portion 73d. The distance between 70d ′′ (the third slit width) is the same. The third slit width is different from the first slit width or the second slit width.
  • the first line width, the second line width, and the third line width are, for example, 1.5 ⁇ m, 2.5 ⁇ m, and 2.0 ⁇ m, respectively, and the first slit width, the second slit width, and The third slit width is, for example, 4.0 ⁇ m, 3.5 ⁇ m, and 2.5 ⁇ m, respectively. Although it is not necessary to limit the line width and the slit width to these values, it is desirable to set these values to values of 5.0 ⁇ m or less.
  • a multi-domain having a 4D structure is formed in each of the first region 71, the second region 72, and the third region 73 by the pixel electrode 70 having the above-described shape and the alignment film.
  • the pretilt orientation of the liquid crystal molecules in each domain shows an orientation parallel to the branches in each domain.
  • the liquid crystal molecules in each domain are oriented in a polar angle direction that is parallel to the branches in the domain (director direction of the domain) and approaches parallel to the substrate surface.
  • the orientation azimuth coincides with the pretilt azimuth, orientation in an accurate azimuth with an extremely fast response speed is realized.
  • the liquid crystal display device 101 includes the pixel electrode 70 having the above-described shape, the domain formed by the branch portions 70c and 70d of the first region 71 and the branch portions 70c ′ and 70d of the second region 72 are used.
  • the boundary between the domain formed by ' is formed on the boundary line 77a, and is formed by the domain formed by the branches 70c' and 70d 'of the second region 72 and the branches 70c "and 70d" of the third region 73.
  • the boundary with the domain to be formed is formed on the boundary line 77b. Therefore, there is no region where branches having different widths are adjacent to each other in each domain.
  • FIG. 8 shows voltage dependency (VT characteristics) of transmittance obtained from the first region 71, the second region 72, and the third region 73 when the display surface is viewed from the front (polar angle 0 ° direction).
  • FIG. Lines a, b, and c in FIG. 8 indicate VT characteristics in the first region 71, the second region 72, and the third region 73, respectively.
  • the width of the branch portion or the interval between the two branch portions is different, so that there is a difference in the liquid crystal alignment regulating force in these three regions. Therefore, different VT characteristics as shown in FIG. 8 are obtained from the three regions.
  • the VT characteristic of the entire display surface is a characteristic obtained by averaging these three VT characteristics.
  • the liquid crystal display device of the second embodiment three different VT characteristics can be obtained from one pixel, and a characteristic obtained by averaging the three VT characteristics can be obtained on the entire display surface. Accordingly, it is possible to obtain ideal luminance and gradation characteristics by appropriately setting the line width and slit width in each region according to the size, shape, or application of the liquid crystal display device.
  • FIG. 9 is a diagram for explaining the viewing angle characteristics of the liquid crystal display device 101 according to the second embodiment.
  • a line m in FIG. 9 represents the viewing angle characteristic of the liquid crystal display device 101 of the present embodiment having the pixel electrode 70. That is, the line m represents the viewing angle characteristic obtained by averaging the viewing angle characteristics obtained from the first area 71, the second area 72, and the third area 73, respectively.
  • the line n indicates the average viewing angle characteristics of two of the first area 71, the second area 72, and the third area 73 (for example, the average viewing angle characteristics of the first area 71 and the third area 73).
  • the line o represents the viewing angle characteristic of one of the first region 71, the second region 72, and the third region 73 (for example, the first region 71).
  • a line l in FIG. 9 is a reference line indicating that the front transmittance and the oblique transmittance are the same.
  • a viewing angle characteristic superior to that of a liquid crystal display device using a pixel electrode having a single line width and slit width can be obtained.
  • a viewing angle characteristic superior to a liquid crystal display device using a pixel electrode having a line width and a slit width can be obtained.
  • the shape of the pixel electrode 70 of Embodiment 2 may be the shape of the counter electrode in one pixel, and the same effect as described above can be obtained.
  • Embodiment 3 a liquid crystal display device according to Embodiment 3 of the present invention will be described.
  • the liquid crystal display device of the third embodiment is obtained by changing the pretilt angle of the liquid crystal obtained by the alignment films 26 and 44 of the liquid crystal display device of the first embodiment to other angles, and other configurations are the same as those of the first embodiment. Is the same. In the following, description will be made with a focus on differences from the first embodiment.
  • FIG. 10 is a plan view schematically showing the configuration of the pixel 10 ′ in the liquid crystal display device 102 according to the third embodiment.
  • the pixel 10 ′ includes a first region 31 ′ and a second region 32 ′ separated from each other by a boundary line 37, and has the pixel electrode 30 having the shape described in the first embodiment.
  • the tilt angle of the liquid crystal molecules in the first region 31 ′ when no voltage is applied to the liquid crystal layer is different from the tilt angle of the liquid crystal molecules in the second region 32 ′.
  • the alignment films 26 and 44 in the first region 31 ′ are formed so as to give a pretilt angle of 2 ° to the liquid crystal, and the alignment films 26 and 44 in the second region 32 ′ give a pretilt angle of 5 ° to the liquid crystal. Is formed.
  • FIG. 11 is a diagram showing the VT characteristics of the first region 31 ′ and the second region 32 ′ when the display surface is viewed from the front (polar angle 0 ° direction).
  • Lines a and c in the figure indicate VT characteristics of the first region 31 ′ and the second region 32 ′, respectively, and a line b indicates VT characteristics of the second region 32 of the first embodiment.
  • the VT characteristics in both regions are the same, but from the VT characteristics indicated by the lines c and b, the second It can be seen that the transmittance in the region 32 ′ is higher than the transmittance in the second region 32 of the first embodiment.
  • the first region 31 ′ and the second region 32 ′ are different in pretilt angle, so that the luminance difference between the two regions is larger than that in the first embodiment.
  • FIG. 12 is a diagram for explaining the viewing angle characteristics of the liquid crystal display device 102 according to the present embodiment.
  • a line o in FIG. 12 represents the viewing angle characteristic of the pixel 10 ′ of the third embodiment. That is, the line o represents the average viewing angle characteristic obtained from each of the first region 31 'and the second region 32' described above.
  • the line m represents the viewing angle characteristic of the pixel 10 of the first embodiment, that is, the viewing angle characteristic of the pixel having the pixel electrode 30 but not causing a different pretilt angle
  • the line n represents the first region 31 ′.
  • a viewing angle characteristic in one of the second regions 32 ′ here, the first region 31 ′.
  • a line l in FIG. 12 is a reference line indicating that the front transmittance and the oblique transmittance are the same.
  • the same pixel as in the first embodiment is used, and a plurality of pretilt angles are generated in the pixel, so that a liquid crystal display device using a pixel electrode having a single line width and slit width can be obtained.
  • a viewing angle characteristic better than that of the liquid crystal display device according to the first embodiment in which all the pretilt angles in the pixels are the same can be obtained.
  • the pretilt angle is changed according to the difference in the line width or slit width of the pixel electrode 30, display with higher luminance and better viewing angle characteristics than in the first embodiment is possible. . Further, from the comparison between the first and third embodiments, by changing the pretilt angle in accordance with the difference in the line width or slit width of the pixel electrode 30, the viewing angle characteristics of the entire display surface are improved and the luminance in the entire display surface is increased. It can be seen that can be adjusted to a wider range.
  • the present invention is used for a liquid crystal display device having a relatively small pixel pitch, such as a liquid crystal display device for a cellular phone.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

 輝度が高く視野角特性の良い高画質の液晶表示装置を提供する。  本発明による液晶表示装置は、一対の偏光板と、第1電極と、第1電極に対向する第2電極と、第1電極と第2電極との間に配置された液晶層と、を備え、複数の画素のそれぞれが、一対の偏光板の透過軸の方向に平行または垂直な直線によって互いに区分された第1領域および第2領域を有し、第1電極が、第1領域および第2領域のそれぞれにおいて、第1方向に延びる複数の第1枝部と、第1方向とは異なる第2方向に延びる複数の第2枝部とを備え、第1領域における複数の第1枝部のそれぞれが第1の幅を有し、第2領域における複数の第1枝部のそれぞれが第1の幅とは異なる第2の幅を有する。

Description

液晶表示装置
 本発明は、液晶表示装置に関し、特に、画素内に複数の配向分割領域を有する液晶表示装置に関する。
 現在、広視野角特性を有する液晶表示装置として、横電界モードであるIPS(In-Plane-Switching)モードあるいはFFS(Fringe Field Switching)モードを利用した液晶表示装置、および垂直配向モードであるVA(Vertical Alignment)モードを利用した液晶表示装置が開発されている。VAモードは横電界モードよりも量産性に優れることから、TV用途やモバイル用途に広く利用されている。
 VAモードの液晶表示装置は、1つの画素の中に液晶の配向方向が互いに異なる複数のドメインが形成されるMVA(Multidomain Vertical Alignment)モードの液晶表示装置と、画素の中心部の電極上に形成されたリベット等を中心として液晶の配向方向を連続的に異ならせるCPA(Continuous Pinwheel Alignment)モードの液晶表示装置に大別される。
 MVAモードの液晶表示装置では、互いに直交する2つの方向に延びる配向規制手段を配置することにより、1つの画素内に、クロスニコルに配置された一対の偏光板の偏光軸(透過軸)に対して、液晶ドメインを代表するディレクタの方位角が45度をなす4つの液晶ドメインが形成される。方位角の0度を一方の偏光板の偏光軸の方向とし、反時計回りを正の方位とすると、この4つの液晶ドメインのディレクタの方位角は、45度、135度、225度、315度となる。このように、1つの画素に4つのドメインを形成する構成を4分割配向構造または単に4D構造という。4つのドメインそれぞれにおける配向方向と偏光板の偏光軸とが45°をなすことにより液晶領域によるリタデーションの変化を最も効率的に利用することができる。
 MVAモードの液晶表示装置は、小さい画素(例えば、短辺が100μm未満、特に60μm未満)に不向きである。例えば、配向規制手段としてスリット(またはリブ)を利用する場合、十分な配向規制力を得るためにはスリットの幅は10μm程度以上であることが必要であり、これよりもスリットの幅を狭くすると、十分な配向規制力が得られない。4つのドメインを形成するためには、1つの画素の中に、基板法線方向から見たときに互いに90度異なる方向に延びるスリット(くの字スリット)を対向電極に形成し、これらのスリットに対して一定の間隔をあけて配置され、これらのスリットと平行に延びるスリットを画素電極に形成する必要がある。すなわち、1つの画素の中の対向電極および画素電極の両方に、45度-225度方向および135度-315度方向に延びる約10μm幅のスリットをそれぞれ複数本配置する必要がある。
 しかし、上述したようなスリットを短辺が100μm未満の画素に適用すると、画素面積に対してスリットの占める面積が大きくなり、表示に寄与できない部分の面積も増えるため、透過率(輝度)が極端に低下する。さらに高精細な小型の液晶表示装置、例えば携帯電話用の2.4型VGAでは、画素のピッチ(行方向×縦方向)は例えば25.5μm×76.5μmであり、このように小さい画素では、もはや上述のスリットを形成することすらできない。
 一方、CPAモードの液晶表示装置では、対向電極の画素中央部に樹脂等によるリベットを形成して、このリベットと画素電極のエッジ部に生じる斜め電界とによって液晶の配向を規制する。2つの偏光板と液晶層との間には、それぞれ1/4波長板(4分の1波長板)が配置され、全方位的な放射状傾斜配向ドメインと円偏光とを利用することによって、高い透過率(輝度)が得られる。
 1/4波長板を利用するCPAモードは、透過率は高いものの、MVAモードに比べると、コントラスト比が低く、視野角も狭いという問題がある。すなわち、1/4波長板を用いると、斜め視角において、正面(表示面法線方向(視角0度))から観察したときよりも表示(特に低階調(輝度の低い)表示)が明るく見えるという、いわゆる「白浮き」が顕著となる。
 このようなMVAモード及びCPAモードによる液晶表示装置の問題を解決するために、特許文献1、特許文献2、及び特許文献3に開示されるような液晶表示装置が提案されている。これらの特許文献の液晶表示装置では、画素電極に45度-225度方向および135度-315度方向に延びる多くの微細なスリットを入れ(フィッシュボーン型画素電極と呼ぶ)、これらのスリットに対して平行に液晶を配向させることにより4分割配向構造が実現される。このフィッシュボーン型画素電極を用いた液晶表示装置では、画素中に広いスリットやリベットが形成されず、1/4波長板を用いることなく直線偏光を用いているので、透過率及びコントラスト比が高く、且つ視野角の広い表示を実現することができる。
 なお、これらの特許文献の液晶表示装置には、上下基板の液晶層側の面に、液晶に電圧を印加しない状態において液晶に適切なプレチルト角を与えるための配向維持層が配置されているが、この配向維持層は、液晶層に含まれたモノマーを、液晶に電圧を印加しながら重合させることによって形成される。
特開2003-255305号公報 特開2003-149647号公報 特開2006-330638号公報
 上記の特許文献に記載された液晶表示装置の画素電極は、45度-225度方向および135度-315度方向に延びる複数の線状電極部(枝部あるいはライン部とも呼ぶ)を有しているが、線状電極部の形状や大きさ、あるいは線状電極部に平行に延びる複数のスリット(線状スペース部とも呼ぶ)の形状や大きさによっては、液晶の配向異常や液晶配向方向が不安定になるという現象を引き起こし、表示面における透過率のばらつき、表示むら、あるいは階調異常を発生させるという問題があった。
 また、線状電極部を有する従来の液晶表示装置には次のような問題もあった。
 図13は、特許文献1に記載された液晶表示装置における1つの画素の構成を模式的に表した平面図である。また、図14は図13に示した画素のB-B’断面における電界分布を、図15は図13に示した画素の輝度分布を、図16は図13に示した画素における液晶の配向状態を、それぞれ表した図である。
 図13に示すように、特許文献1の液晶表示装置200の画素210は、走査線22及び信号線23に囲まれており、走査線22と信号線23との交点付近には画素210のスイッチングを行うTFT(Thin Film Transistor)35が設けられている。また、画素210の中央部には走査線22と平行に延びる補助容量線24が形成されている。
 画素210の中に配置されている画素電極230は、45度-225度方向および135度-315度方向に延びる2種類の幅の複数のライン部(幅の広いライン部230a及び幅の狭いライン部230b)を有している。画素210の右上領域(補助容量線24よりも上の部分の右側の領域)210a及び左下領域(補助容量線24よりも下の左側の領域)210cのライン部は全て45度-225度方向に延びており、左上領域(補助容量線24よりも上の左側の領域)210b及び右下領域(補助容量線24よりも下の右側の領域)210dのライン部は全て135度-315度方向に延びており、それぞれの領域において、複数のライン部230aが複数のライン部230bに挟まれるように配置されている。従って、これら4つの領域210a、210b、210c、及び210dのそれぞれには幅の広いライン部230aと幅の狭いライン部230bとの境界が2箇所含まれることになる。
 本願発明者の検討により、図14に示すように、広い幅のライン部230aが形成された領域Aと狭い幅のライン部230bが形成された領域Bとの境界付近では、液晶層への電圧印加に応じて発生する等電位面が不安定となり、そのような境界が多数存在すると、図15に示すように白表示時の境界付近における輝度分布に大きな暗部(図中の楕円内の部分)が生じることがわかった。これは、図16に示すように、液晶の配向方向が、境界付近における等電位面の不安定さに起因して、所望の方向(ライン部の延びる方向に平行な方向)からずれるために発生するものと考えられる。
 本発明は上記課題を解決するためになされたものであり、その目的は、高い透過率を有すると共に、階調及び視野角特性の優れた表示品質の高い液晶表示装置を提供することにある。
 本発明による液晶表示装置は、複数の画素を有する垂直配向型の液晶表示装置であって、互いに直交する透過軸を有する一対の偏光板と、第1電極と、前記第1電極に対向する第2電極と、前記第1電極と前記第2電極との間に配置された液晶層とを備え、前記複数の画素のそれぞれが、前記一対の偏光板の透過軸の方向に平行または垂直な直線によって互いに区分された第1領域および第2領域を有し、前記第1電極が、前記第1領域および前記第2領域のそれぞれにおいて、第1方向に延びる複数の第1枝部と、前記第1方向とは異なる第2方向に延びる複数の第2枝部とを備え、前記第1領域における前記複数の第1枝部のそれぞれが第1の幅を有し、前記第2領域における前記複数の第1枝部のそれぞれが前記第1の幅とは異なる第2の幅を有する。
 ある実施形態では、前記第1領域における前記複数の第2枝部のそれぞれが前記第1の幅を有し、前記第2領域における前記複数の第2枝部のそれぞれが前記第2の幅を有する。
 ある実施形態では、前記第1領域における前記複数の第1枝部のうちの任意の隣り合う2つが、第1の間隔を空けて配置されており、前記第2領域における前記複数の第1枝部のうちの任意の隣り合う2つが、前記第1の間隔とは異なる第2の間隔を空けて配置されている。
 ある実施形態では、前記第1領域における前記複数の第2枝部のうちの任意の隣り合う2つが、前記第1の間隔を空けて配置されており、前記第2領域における前記複数の第2枝部のうちの任意の隣り合う2つが、前記第2の間隔を空けて配置されている。
 ある実施形態では、前記第1領域および前記第2領域が、それぞれ、ゲートバスラインまたはCSラインによって区切られた画素の一方の領域および他方の領域に相当する。
 ある実施形態では、前記第1領域および前記第2領域が、それぞれ、ソースバスラインに平行な線によって区切られた画素の一方の領域および他方の領域に相当する。
 ある実施形態では、前記第1方向と前記第2方向が直交しており、前記一対の偏光板の透過軸の方向と前記第1方向とが、45度、135度、225度、又は315度異なっている。
 ある実施形態では、前記液晶層に電圧が印加されたとき、前記第1領域および前記第2領域のそれぞれにおいて、液晶分子の配向方向が互いに異なる4つの液晶ドメインが形成される。
 ある実施形態では、前記複数の画素のそれぞれが、前記一対の偏光板の透過軸の方向に平行または垂直な直線によって前記第1領域または前記第2領域と区分された第3領域を有し、前記第1電極が前記第3領域の中に、前記複数の第1枝部と前記複数の第2枝部とを備え、前記第3領域における前記複数の第1枝部および前記複数の第2枝部のそれぞれが、前記第1の幅または前記第2の幅と異なる第3の幅を有する。
 ある実施形態では、前記液晶層に電圧が印加されていない場合の前記第1領域における液晶分子の傾斜角度が前記第2領域における液晶分子の傾斜角度と異なる。
 本発明による他の液晶表示装置は、複数の画素を有する垂直配向型の液晶表示装置であって、互いに直交する透過軸を有する一対の偏光板と、第1電極と、前記第1電極に対向する第2電極と、前記第1電極と前記第2電極との間に配置された液晶層とを備え、前記複数の画素のそれぞれが、前記一対の偏光板の透過軸の方向に平行または垂直な直線によって互いに区分された第1領域および第2領域を有し、前記第1電極が、前記第1領域および前記第2領域のそれぞれにおいて、第1方向に延びる複数の第1枝部と、前記第1方向とは異なる第2方向に延びる複数の第2枝部とを備え、前記第1領域における前記複数の第1枝部のうちの任意の隣り合う2つが、第1の間隔を空けて配置されており、前記第2領域における前記複数の第1枝部のうちの任意の隣り合う2つが、前記第1の間隔とは異なる第2の間隔を空けて配置されている。
 ある実施形態では、前記第1領域における前記複数の第2枝部のうちの任意の隣り合う2つが、前記第1の間隔を空けて配置されており、前記第2領域における前記複数の第2枝部のうちの任意の隣り合う2つが、前記第2の間隔を空けて配置されている。
 ある実施形態では、前記複数の画素のそれぞれが、前記一対の偏光板の透過軸の方向に平行または垂直な直線によって前記第1領域または前記第2領域と区分された第3領域を有し、前記第1電極が前記第3領域の中に、前記複数の第1枝部と前記複数の第2枝部とを備え、前記第3領域における前記複数の第1枝部のうちの任意の隣り合う2つ、及び前記第3領域における前記複数の第2枝部のうちの任意の隣り合う2つが、前記第1の間隔または前記第2の間隔と異なる第3の間隔を空けて配置されている。
 ある実施形態では、前記液晶層に電圧が印加されていない場合の前記第1領域における液晶分子の傾斜角度が前記第2領域における液晶分子の傾斜角度と異なる。
 本発明による他の液晶表示装置は、複数の画素を有する垂直配向型の液晶表示装置であって、互いに直交する透過軸を有する一対の偏光板と、第1電極と、前記第1電極に対向する第2電極と、前記第1電極と前記第2電極との間に配置された液晶層とを備え、前記複数の画素のそれぞれが、前記一対の偏光板の透過軸の方向に平行または垂直な直線によって互いに区分された複数の領域を有し、前記第1電極が、前記複数の領域のそれぞれにおいて、第1方向に延びる複数の第1枝部と、前記第1方向とは異なる第2方向に延びる複数の第2枝部とを備え、前記複数の領域の1つにおける前記複数の第1枝部のそれぞれが第1の幅を有し、前記複数の領域の他の1つにおける前記複数の第1枝部のそれぞれが前記第1の幅とは異なる第2の幅を有する。
 ある実施形態では、前記複数の領域の1つにおける前記複数の第2枝部のそれぞれが前記第1の幅を有し、前記複数の領域の他の1つにおける前記複数の第2枝部のそれぞれが前記第2の幅を有する。
 本発明による他の液晶表示装置は、複数の画素を有する垂直配向型の液晶表示装置であって、互いに直交する透過軸を有する一対の偏光板と、第1電極と、前記第1電極に対向する第2電極と、前記第1電極と前記第2電極との間に配置された液晶層とを備え、前記複数の画素のそれぞれが、前記一対の偏光板の透過軸の方向に平行または垂直な直線によって互いに区分された複数の領域を有し、前記第1電極が、前記複数の領域のそれぞれにおいて、第1方向に延びる複数の第1枝部と、前記第1方向とは異なる第2方向に延びる複数の第2枝部とを備え、前記複数の領域の1つにおける前記複数の第1枝部のうちの任意の隣り合う2つが、第1の間隔を空けて配置されており、前記複数の領域の他の1つにおける前記複数の第1枝部のうちの任意の隣り合う2つが、前記第1の間隔とは異なる第2の間隔を空けて配置されている。
 ある実施形態では、前記複数の領域の1つにおける前記複数の第2枝部のうちの任意の隣り合う2つが、前記第1の間隔を空けて配置されており、前記複数の領域の他の1つにおける前記複数の第2枝部のうちの任意の隣り合う2つが、前記第2の間隔を空けて配置されている。
 本発明の液晶表示装置では、フィッシュボーン型電極の枝部の幅あるいは間隔が異なる複数の領域を有し、それら複数の領域が偏光板の透過軸の方向に平行または垂直な直線を境として区切られているため、液晶ドメインの中で幅の異なる枝部が隣り合うことがない。よって、本発明の液晶表示装置によれば、輝度が高く且つ階調あるいは視野角特性に優れた高品質の表示が可能となる。
本発明による実施形態1の液晶表示装置における1つの画素の構造を模式的に示す平面図である。 実施形態1の液晶表示装置の図1におけるA-A’線に沿った模式的な断面図である。 実施形態1の液晶表示装置の画素電極の形状を模式的に示す平面図である。 実施形態1の液晶表示装置の画素によるVT特性を表したグラフである。 実施形態1の液晶表示装置の画素による視野角特性を説明するためのグラフである。 実施形態1の液晶表示装置の画素による白表示の状態を表した図である。 本発明による実施形態2の液晶表示装置における1つの画素の構造を模式的に示した平面図である。 実施形態2の液晶表示装置の画素によるVT特性を表したグラフである。 実施形態2の液晶表示装置の画素による視野角特性を説明するためのグラフである。 本発明による実施形態3の液晶表示装置における1つの画素の構造を模式的に示した平面図である。 実施形態3の液晶表示装置の画素によるVT特性を表したグラフである。 実施形態3の液晶表示装置の画素による視野角特性を説明するためのグラフである。 特許文献1に記載された液晶表示装置における1つの画素の構成を模式的に表した平面図である。 図13に示した画素のB-B’断面における電界分布を表した図である。 図13に示した画素の輝度分布を表した図である。 図13に示した画素における液晶の配向状態を表した図である。
符号の説明
 10  画素
 20  TFT基板
 21  ガラス基板
 22  走査線
 23  信号線
 24  補助容量線
 25  絶縁層
 26  配向膜
 30  画素電極
 30a、30a’、30b、30b’  幹部
 30c、30c’、30d、30d’  枝部
 31、31’  第1領域
 32、32’  第2領域
 35  TFT
 36  補助容量電極
 37  境界線
 40  対向基板
 41  透明基板
 42  CF層
 43  共通電極
 44  配向膜
 50  液晶層
 60a、60b  偏光板
 70  画素電極
 70a、70a’70a”、70b、70b’、70b”  幹部
 70c、70c’、70c”、70d、70d’、70d”、  枝部
 71  第1領域
 72  第2領域
 73  第3領域
 77a、77b  境界線
 100、101、102  液晶表示装置
 以下、図面を参照して、本発明による実施形態の液晶表示装置の構成を説明するが、本発明は以下に説明する実施形態に限定されるものではない。
 (実施形態1)
 図1は、本発明による実施形態1の液晶表示装置100における1つの画素の構造を模式的に示す平面図であり、図2は、液晶表示装置100の図1におけるA-A’線に沿った模式的な断面図である。
 液晶表示装置100は、図1に示す構成の画素10を複数有し、マトリックス状に配置された画素10によってノーマリブラックモードで表示を行う垂直配向型の液晶表示装置である。また、液晶表示装置100は、図2に示すように、アクティブマトリクス基板であるTFT基板20と、カラーフィルタ基板である対向基板40と、これらの基板の間に設けられた液晶層50とを備えている。液晶層50は、負の誘電率異方性(Δε<0)を有するネマティック液晶を含んでいる。
 TFT基板20の外側(液晶層50の反対側)には偏光板60aが、対向基板40の外側には偏光板60bがそれぞれ設けられている。偏光板60aと60bとはクロスニコルに配置されており、その一方の光透過軸は図1の左右方向に、他方の光透過軸は上下方向にそれぞれ延びている。なお、以下の説明では、図1の左側から右側に向かう方位を方位0°とし、これを基準として反時計回りに方位角を設定している。
 図1及び図2に示すように、TFT基板20は、ガラス基板(透明基板)21と、ガラス基板21の上に形成された走査線(ゲートバスライン)22、信号線(データバスライン)23、及び補助容量線(Csライン)24と、これらの配線の上に形成された絶縁層25と、絶縁層25の上に形成された画素電極30及び配向膜26とを備えている。
 各画素10は、隣り合う2つの走査線22と隣り合う2つの信号線23によって囲まれており、画素10毎に、画素電極30への表示電圧をスイッチングするためのTFT35が配置されている。TFT35のゲート電極及びソース電極は、それぞれ走査線22及び信号線23に電気的に接続されており、ドレイン電極は画素電極30に電気的に接続されている。画素10の中央部の画素電極30の下には、補助容量線24に電気的に接続された補助容量電極36が形成されている。
 対向基板40は、透明基板41と、透明基板41の上(液晶層50側の面上)に配置されたCF(カラーフィルタ)層42と、CF層42の上に形成された共通電極43と、共通電極43の上に形成された配向膜44とを備えている。
 TFT基板20の配向膜26及び対向基板40の配向膜44は、どちらも配向層および配向維持層からなる。配向層は基板上に塗布された垂直配向膜であり、配向維持層は液晶材料に予め混合しておいた光重合性モノマーを、液晶セルを形成した後、液晶層50に電圧を印加した状態で光重合することによって形成される。モノマーの重合時には、画素電極30と共通電極43とによって液晶層50に電圧が印加され、画素電極30の形状に応じて生じる斜め電界によって液晶分子を配向させ、その状態で光を照射してモノマーが重合される。
 このようにして形成された配向維持層により、電圧を取り去った後(電圧を印加しない状態)でも液晶分子に配向(プレチルト方位)を維持(記憶)させることができる。本実施形態では、配向膜26及び44は画素10全体において液晶に2°のプレチルト角を与えるように形成されている。このような配向膜の形成技術は、ポリマー配向支持(PSA:Polymer Sustained Alignment)技術と呼ばれるが、その詳細は特許文献2及び3に記載されている。本明細書は、これらの特許文献を援用するものとし、ここでは配向維持層についての詳しい説明を省略する。
 なお、図1に示すように、画素10は、補助容量線24の中心を通る仮想的な境界線37よりも上の第1領域31、及び境界線37よりも下の第2領域32からなる。言い換えれば、画素10は、一対の偏光板60a及び60bの透過軸の方向に平行または垂直な直線(境界線37)によって互いに区分された第1領域31及び第2領域32からなる。第1領域31及び第2領域32を、補助容量線24によって互いに区切られた領域と定義することもでき、両領域が走査線22あるいは信号線23によって区切られる画素構成を採用してもよい。
 次に、図3を参照して画素電極30の形状を説明する。
 図3は、画素電極30の形状を表した平面図である。図3に示すように、画素電極30は、方位角0°-180°方向に延びる幹部30a及び30a’と、方位角90°-270°方向に延びる幹部30b及び30b’と、方位角45°-225°方向(第1方向)に延びる複数の枝部30c及び30c’(第1枝部)と、方位角135°-315°方向(第2方向)に延びる複数の枝部30d及び30d’(第2枝部)とを有している。
 第1領域31における画素電極30は、第1領域31の中央付近を通って互いに直交して延びる幹部30a及び30bと、幹部30a又は30bから枝分かれして延びる複数の枝部30c及び複数の枝部30dとからなる。幹部30aと幹部30bとによって区切られる第1領域31の部分のうち、図の右上の部分(ドメインとも呼ぶ)、左上の部分、左下の部分、及び右下の部分をそれぞれ第1部分31a、第2部分31b、第3部分31c、及び第4部分31dとすると、第1部分31aでは幹部30a又は30bから45°方向に枝部30cが、第2部分31bでは幹部30a又は30bから135°方向に枝部30dが、第3部分31cでは幹部30a又は30bから225°方向に枝部30cが、第4部分31dでは幹部30a又は30bから315°方向に枝部30dが、それぞれ延びている。
 枝部30c及び枝部30dの幅(第1の幅)L1は全て同じである。また、第1部分31a及び第3部分31cのそれぞれにおいて隣接する任意の2つの枝部30cの間の距離、及び第2部分31b及び第4部分31dのそれぞれにおいて隣接する任意の2つの枝部30dの間の距離S1は全て同じである。
 第2領域32における画素電極30は、第2領域32の中央付近を通って互いに直交して延びる幹部30a’及び30b’と、幹部30a’又は30b’から枝分かれして延びる複数の枝部30c’及び複数の枝部30d’とからなる。幹部30a’と幹部30b’とによって区切られた第2領域32の部分のうち、図の右上の部分、左上の部分、左下の部分、及び右下の部分をそれぞれ第1部分32a、第2部分32b、第3部分32c、及び第4部分32dとすると、第1部分32aでは幹部30a’又は30b’から45°方向に枝部30c’が、第2部分32bでは幹部30a’又は30b’から135°方向に枝部30d’が、第3部分32cでは幹部30a’又は30b’から225°方向に枝部30c’が、第4部分32dでは幹部30a’又は30b’から315°方向に枝部30d’が、それぞれ延びている。
 枝部30c’及び枝部30d’は全て、幅L1とは異なる同一の幅(第2の幅)L2を有する。また、第1部分32a及び第3部分32cのそれぞれにおいて隣接する任意の2つの枝部30c’の間の距離、及び第2部分32b及び第4部分32dのそれぞれにおいて隣接する任意の2つの枝部30d’の間の距離S2は全て同じである。距離S2は距離S1とは異なっている。
 なお、枝部の幅L1及びL2とは枝部の延びる方向に垂直な方向の幅を意味し、2つの枝部の間の距離S1及びS2とは、隣り合う2つの枝部の間に形成される間隙(スリット部)の枝部が延びる方向に垂直な方向の幅を意味する。幅L1及びL2をそれぞれライン幅L1及びL2と呼ぶこともあり、距離S1及びS2をそれぞれスリット幅S1及びS2と呼ぶこともある。幅L1及び距離S1の値はそれぞれ例えば1.5μm及び3.0μmであり、幅L2及び距離S2の値はそれぞれ例えば2.5μm及び2.5μmである。幅L1及びL2と距離S1及びS2をこれらの値に限定する必要はないが、これらの値はいずれも5.0μm以下の値に設定することが望ましい。
 上述の形状を有する画素電極30と配向膜26及び44とにより、第1領域31及び第2領域32のそれぞれの中に4D構造のマルチドメインが形成される。電圧が印加されない場合、配向膜26及び44に記憶された方位に応じて、各ドメインにおける液晶分子のプレチルト方位は、各ドメインにおける枝部30c、30d、30c’、又は30d’に平行な方位を示す。電圧が印加されたとき、各ドメインの液晶分子はドメイン内における枝部30c、30d、30c’、又は30d’に平行な方位(ドメインのディレクタ方位)であって基板面に平行に近づく極角方向に配向する。このとき、配向の方位がプレチルトの方位と一致しているため、極めて応答速度の速い正確な方位への配向が実現される。
 実施形態1の液晶表示装置100は上述した形状の画素電極30を有しているので、第1領域31の枝部30c及び30dによって形成されるドメインと第2領域の枝部30c’及び30d’によって形成されるドメインとの境界は境界線37(あるいは補助容量線24)上に形成され、各ドメインの中には幅の広い枝部と幅の狭い枝部とが隣接する領域が存在しない。
 図4は、表示面を正面(極角0°方向)から見た場合に第1領域31及び第2領域32から得られる透過率の電圧依存性(VT特性と呼ぶ)を表した図である。図中の線a及びbは、それぞれ第1領域31及び第2領域32におけるVT特性を示している。
 第1領域31及び第2領域32では枝部の幅あるいは2つの枝部の間隔が異なるため、これら2つの領域における液晶配向規制力には差が生じる。よって、2つの領域からは図4に示されるような異なるVT特性が得られる。なお、表示面全体のVT特性はこれら2つのVT特性を平均した特性を示す。
 一般に、特定の形状の画素電極から得られるVT特性は理想的な特性とは異なるため、表示に白浮きや黒沈みといった不具合が現れ得る。実施形態1の液晶表示装置によれば、1つの画素から異なる2つのVT特性を得ることができ、表示面全体では2つのVT特性を平均化した特性が得られる。したがって、液晶表示装置のサイズ、形状、あるいは用途に応じて幅L1及びL2と距離S1及びS2を適切に設定することにより、理想的な輝度及び階調特性を得ることが可能となる。
 図5は、本実施形態による液晶表示装置100の視野角特性を説明するための図である。図5における線mは、画素10を有する液晶表示装置100の表示面を正面から見た場合の透過率(正面透過率)と、表示面を方位角45°方向、極角60°方向から見た場合の透過率(斜め透過率)との関係(以下、単に視野角特性と呼ぶ)を表している。つまり、線mは、第1領域31及び第2領域32のそれぞれから得られる視野角特性を平均した視野角特性を表している。また線nは、第1領域31(画素電極が2種類のライン幅又はスリット幅を有さない)から得られる視野角特性を表している。なお、図5における線lは、正面透過率と斜め透過率が同じであることを示す基準線である。
 図5から、本実施形態のように2つのライン幅又はスリット幅を有する画素電極部分を2つの領域に分けて配置することにより、単一のライン幅及びスリット幅を有する画素電極を用いた場合に比べて、正面透過率と斜め透過率との差が小さくなること、すなわち視野角特性が向上することがわかる。
 図6は、第1領域31及び第2領域32における白表示の状態を表した図である。図15に示したように、従来の液晶表示装置では、幅の広い枝部と幅の狭い枝部とが隣接する領域が4つのドメインのそれぞれにおいて2つ(画素の中には8つ)存在するために液晶の異常配向が発生し、白表示時に画素の中央付近に比較的大きな暗部が現れ、透過率及び輝度の低下を招いていた。これに対し、実施形態1では画素電極30が上述の形状を有しているので、画素10における8つのドメインの中には幅の広い枝部と幅の狭い枝部とが隣接する領域が存在しない。従って、実施形態1によれば、液晶の異常配向が発生しにくく、図6に示すように暗部の発生が抑えられた輝度の高い表示が可能となる。
 このように、実施形態1の液晶表示装置によれば、階調特性及び視野角特性が優れ、且つ輝度の高い高品質の表示が可能となる。なお、実施形態1の画素電極30の形状を1つの画素における対向電極の形状としてもよく、それによっても上述したものと同様の効果を得ることができる。
 (実施形態2)
 以下、本発明による実施形態2の液晶表示装置を説明する。実施形態2の液晶表示装置は、実施形態1の液晶表示装置の画素電極30を他のフィッシュボーン形状の画素電極に置き換えたものであり、それ以外の構成は実施形態1のものと同じである。よって以下、画素電極についてのみ説明を行うものとする。
 図7は、実施形態2の液晶表示装置101に配置された複数の画素電極70のうちの1つを模式的に示す平面図である。
 図7に示すように、画素電極70は、方位角0°-180°方向に延びる幹部70a、70a’、及び70a”と、方位角90°-270°方向に延びる幹部70b、70b’、及び70b”と、方位角45°-225°方向(第1方向)に延びる複数の枝部70c、70c’、及び70c”(第1枝部)と、方位角135°-315°方向(第2方向)に延びる複数の枝部70d、70d’、及び70d”(第2枝部)とを有している。
 実施形態2の画素は、走査線に平行に(一対の偏光板の透過軸の方向に平行または垂直に)延びる2つの仮想的な境界線77a及び77bによって互いに区分された第1領域71、第2領域72、及び第3領域73を有する。境界線77aは第1領域71と第2領域72とを互いに区分し、境界線77bは第2領域72と第3領域73とを互いに区分している。
 第1領域71における画素電極70は、第1領域71の中央付近を通って互いに直交して延びる幹部70a及び70bと、幹部70a又は70bから枝分かれして延びる複数の枝部70c及び複数の枝部70dとからなる。幹部70aと幹部70bとによって区切られる第1領域71の部分のうち、図の右上の部分(ドメインとも呼ぶ)、左上の部分、左下の部分、及び右下の部分をそれぞれ第1部分71a、第2部分71b、第3部分71c、及び第4部分71dとすると、第1部分71aでは幹部70a又は70bから45°方向に枝部70cが、第2部分71bでは幹部70a又は70bから135°方向に枝部70dが、第3部分71cでは幹部70a又は70bから225°方向に枝部70cが、第4部分71dでは幹部70a又は70bから315°方向に枝部70dが、それぞれ延びている。
 枝部70c及び70dの幅(第1のライン幅)は全て同じである。また、第1部分71a及び第3部分71cのそれぞれにおいて隣接する任意の2つの枝部70cの間の距離、及び第2部分71b及び第4部分71dのそれぞれにおいて隣接する任意の2つの枝部70dの間の距離(第1のスリット幅)は全て同じである。
 第2領域72における画素電極は、第2領域72の中央付近を通って互いに直交して延びる幹部70a’及び70b’と、幹部70a’又は70b’から枝分かれして延びる複数の枝部70c’及び複数の枝部70d’とからなる。幹部70a’と幹部70b’とによって区切られた第2領域72の部分のうち、図の右上の部分、左上の部分、左下の部分、及び右下の部分をそれぞれ第1部分72a、第2部分72b、第3部分72c、及び第4部分72dとすると、第1部分72aでは幹部70a’又は70b’から45°方向に枝部70c’が、第2部分72bでは幹部70a’又は70b’から135°方向に枝部70d’が、第3部分72cでは幹部70a’又は70b’から225°方向に枝部70c’が、第4部分72dでは幹部70a’又は70b’から315°方向に枝部70d’が、それぞれ延びている。
 枝部70c’及び枝部70d’は全て、第1のライン幅とは異なる同一の幅(第2のライン幅)を有する。また、第1部分72a及び第3部分72cのそれぞれにおいて隣接する任意の2つの枝部70c’の間の距離、及び第2部分72b及び第4部分72dのそれぞれにおいて隣接する任意の2つの枝部70d’の間の距離(第2のスリット幅)は全て同じである。第2のスリット幅は第1のスリット幅とは異なっている。
 第3領域73における画素電極は、第3領域73の中央付近を通って互いに直交して延びる幹部70a”及び70b”と、幹部70a”又は70b”から枝分かれして延びる複数の枝部70c”及び複数の枝部70d”とからなる。幹部70a”と幹部70b”とによって区切られた第3領域73の部分のうち、図の右上の部分、左上の部分、左下の部分、及び右下の部分をそれぞれ第1部分73a、第2部分73b、第3部分73c、及び第4部分73dとすると、第1部分73aでは幹部70a”又は70b”から45°方向に枝部70c”が、第2部分73bでは幹部70a”又は70b”から135°方向に枝部70d”が、第3部分73cでは幹部70a”又は70b”から225°方向に枝部70c”が、第4部分73dでは幹部70a”又は70b”から315°方向に枝部70d”が、それぞれ延びている。
 枝部70c”及び枝部70d”は全て、第1のライン幅あるいは第2のライン幅とは異なる同一の幅(第3のライン幅)を有する。また、第1部分73a及び第3部分73cのそれぞれにおいて隣接する任意の2つの枝部70c”の間の距離、及び第2部分73b及び第4部分73dのそれぞれにおいて隣接する任意の2つの枝部70d”の間の距離(第3のスリット幅)は全て同じである。第3のスリット幅は、第1のスリット幅あるいは第2のスリット幅と異なっている。
 第1のライン幅、第2のライン幅、及び第3のライン幅は、それぞれ例えば1.5μm、2.5μm、及び2.0μmであり、第1のスリット幅、第2のスリット幅、及び第3のスリット幅は、それぞれ例えば4.0μm、3.5μm、及び2.5μmである。ライン幅及びスリット幅をこれらの値に限定する必要はないが、これらの値はいずれも5.0μm以下の値に設定することが望ましい。
 上述の形状を有する画素電極70と配向膜とにより、第1領域71、第2領域72、及び第3領域73のそれぞれの中に4D構造のマルチドメインが形成される。電圧が印加されない場合、配向膜に記憶された方位に応じて、各ドメインにおける液晶分子のプレチルト方位は、各ドメインにおける枝部に平行な方位を示す。電圧が印加されたとき、各ドメインの液晶分子はドメイン内における枝部に平行な方位(ドメインのディレクタ方位)であって基板面に平行に近づく極角方向に配向する。このとき、配向の方位がプレチルトの方位と一致しているため、極めて応答速度の速い正確な方位への配向が実現される。
 実施形態2の液晶表示装置101は上述した形状の画素電極70を有しているので、第1領域71の枝部70c及び70dによって形成されるドメインと第2領域72の枝部70c’及び70d’によって形成されるドメインとの境界は境界線77a上に形成され、第2領域72の枝部70c’及び70d’によって形成されるドメインと第3領域73の枝部70c”及び70d”によって形成されるドメインとの境界は境界線77b上に形成される。よって、各ドメインの中には異なる幅の枝部が隣接する領域が存在しない。
 図8は、表示面を正面(極角0°方向)から見た場合に第1領域71、第2領域72、及び第3領域73から得られる透過率の電圧依存性(VT特性)を表した図である。図8の線a、b、及びcは、それぞれ第1領域71、第2領域72、及び第3領域73におけるVT特性を示している。
 第1領域71、第2領域72、及び第3領域73では枝部の幅あるいは2つの枝部の間隔が異なるため、これら3つの領域における液晶配向規制力には差が生じる。よって、3つの領域からは図8に示されるような異なるVT特性が得られる。なお、表示面全体のVT特性はこれら3つのVT特性を平均した特性を示す。
 実施形態2の液晶表示装置によれば、1つの画素から異なる3つのVT特性を得ることができ、表示面全体では3つのVT特性を平均化した特性が得られる。したがって、液晶表示装置のサイズ、形状、あるいは用途に応じて各領域におけるライン幅及びスリット幅を適切に設定することにより、理想的な輝度及び階調特性を得ることが可能となる。
 図9は、実施形態2による液晶表示装置101の視野角特性を説明するための図である。図9における線mは、画素電極70を有する本実施形態の液晶表示装置101の視野角特性を表している。つまり、線mは、第1領域71、第2領域72、及び第3領域73それぞれから得られる視野角特性を平均した視野角特性を表している。一方線nは、第1領域71、第2領域72、及び第3領域73のうちの2つの領域の視野角特性の平均(例えば、第1領域71と第3領域73の視野角特性の平均)を表しており、線oは、第1領域71、第2領域72、及び第3領域73のいずれか1つ(例えば第1領域71)の視野角特性を表している。なお、図9における線lは、正面透過率と斜め透過率が同じであることを示す基準線である。
 図9からわかるように、本実施形態の液晶表示装置によれば、単一のライン幅及びスリット幅を有する画素電極を用いた液晶表示装置よりも優れた視野角特性が得られ、さらに2つのライン幅及びスリット幅を有する画素電極を用いた液晶表示装置よりも優れた視野角特性が得られる。
 また、第1領域71、第2領域72、及び第3領域73において形成されるドメインの中には幅の広い枝部と幅の狭い枝部とが隣接する領域が存在しない。従って、実施形態2によれば液晶の異常配向が発生しにくく、実施形態1と同様、暗部の発生が抑えられた輝度の高い表示が可能となる。
 このように、実施形態2の液晶表示装置によれば、階調特性及び視野角特性が優れ、且つ輝度の高い高品質の表示が可能となる。なお、実施形態2の画素電極70の形状を1つの画素における対向電極の形状としてもよく、それによっても上述したものと同様の効果を得ることができる。
 (実施形態3)
 以下、本発明による実施形態3の液晶表示装置を説明する。実施形態3の液晶表示装置は、実施形態1の液晶表示装置の配向膜26及び44によって得られる液晶のプレチルト角を他の角度に変えたものであり、それ以外の構成は実施形態1のものと同じである。以下、実施形態1と異なる部分を中心に説明を行う。
 図10は、実施形態3の液晶表示装置102における画素10’の構成を模式的に示す平面図である。画素10’は境界線37によって互いに区切られた第1領域31’及び第2領域32’からなり、実施形態1で説明した形状の画素電極30を有している。本実施形態では、液晶層に電圧が印加されていない場合の第1領域31’における液晶分子の傾斜角度が第2領域32’における液晶分子の傾斜角度とは異なる。第1領域31’における配向膜26及び44は液晶に2°のプレチルト角を与えるように形成されており、第2領域32’における配向膜26及び44は液晶に5°のプレチルト角を与えるように形成されている。
 図11は、表示面を正面(極角0°方向)から見た場合の第1領域31’及び第2領域32’のVT特性を表した図である。図中の線a及びcは、それぞれ第1領域31’及び第2領域32’のVT特性を示しており、線bは実施形態1の第2領域32のVT特性を示している。
 第1領域31’におけるプレチルト角は実施形態1の第1領域31におけるプレチルト角と同じであるので両領域のVT特性は同じであるが、線c及び線bによって示されるVT特性から、第2領域32’における透過率は実施形態1の第2領域32における透過率よりも高いことがわかる。また実施形態3においては、第1領域31’と第2領域32’のプレチルト角が異なっているため、両領域間の輝度の差が実施形態1よりも大きくなっている。
 図12は、本実施形態による液晶表示装置102の視野角特性を説明するための図である。図12における線oは、実施形態3の画素10’の視野角特性を表している。つまり、線oは上述した第1領域31’及び第2領域32’のそれぞれから得られる視野角特性の平均を表している。一方、線mは、実施形態1の画素10の視野角特性、つまり、画素電極30を有するが異なるプレチルト角を生じさせない画素の視野角特性を表しており、線nは、第1領域31’及び第2領域32’のいずれか一方(ここでは第1領域31’とする)における視野角特性を表している。なお、図12における線lは、正面透過率と斜め透過率が同じであることを示す基準線である。
 図12からわかるように、実施形態1と同じ画素を用いると共に、画素内に複数のプレチルト角を生じさせることにより、単一のライン幅及びスリット幅を有する画素電極を用いた液晶表示装置よりも良好な、また画素内のプレチルト角を全て同じとした実施形態1の液晶表示装置よりも良好な視野角特性を得ることができる。
 このように、実施形態3では画素電極30のライン幅又はスリット幅の違いに応じてプレチルト角を変えているため、実施形態1よりも輝度が高く且つ視野角特性が優れた表示が可能となる。また、実施形態1と3との比較から、画素電極30のライン幅又はスリット幅の違いに応じてプレチルト角を変えることにより、表示面全体の視野角特性を向上させると共に、表示面全体において輝度をより幅広い値に調整することが可能となることがわかる。
 本発明は、携帯電話用の液晶表示装置など比較的画素ピッチの小さい液晶表示装置に用いられる。

Claims (18)

  1.  複数の画素を有する垂直配向型の液晶表示装置であって、
     互いに直交する透過軸を有する一対の偏光板と、
     第1電極と、
     前記第1電極に対向する第2電極と、
     前記第1電極と前記第2電極との間に配置された液晶層と、を備え、
     前記複数の画素のそれぞれが、前記一対の偏光板の透過軸の方向に平行または垂直な直線によって互いに区分された第1領域および第2領域を有し、
     前記第1電極が、前記第1領域および前記第2領域のそれぞれにおいて、第1方向に延びる複数の第1枝部と、前記第1方向とは異なる第2方向に延びる複数の第2枝部とを備え、
     前記第1領域における前記複数の第1枝部のそれぞれが第1の幅を有し、
     前記第2領域における前記複数の第1枝部のそれぞれが前記第1の幅とは異なる第2の幅を有する、液晶表示装置。
  2.  前記第1領域における前記複数の第2枝部のそれぞれが前記第1の幅を有し、
     前記第2領域における前記複数の第2枝部のそれぞれが前記第2の幅を有する、請求項1に記載の液晶表示装置。
  3.  前記第1領域における前記複数の第1枝部のうちの任意の隣り合う2つが、第1の間隔を空けて配置されており、
     前記第2領域における前記複数の第1枝部のうちの任意の隣り合う2つが、前記第1の間隔とは異なる第2の間隔を空けて配置されている、請求項1または2に記載の液晶表示装置。
  4.  前記第1領域における前記複数の第2枝部のうちの任意の隣り合う2つが、前記第1の間隔を空けて配置されており、
     前記第2領域における前記複数の第2枝部のうちの任意の隣り合う2つが、前記第2の間隔を空けて配置されている、請求項3に記載の液晶表示装置。
  5.  前記第1領域および前記第2領域が、それぞれ、ゲートバスラインまたはCSラインによって区切られた画素の一方の領域および他方の領域に相当する、請求項1から4のいずれか1項に記載の液晶表示装置。
  6.  前記第1領域および前記第2領域が、それぞれ、ソースバスラインに平行な線によって区切られた画素の一方の領域および他方の領域に相当する、請求項1から4のいずれか1項に記載の液晶表示装置。
  7.  前記第1方向と前記第2方向が直交しており、
     前記一対の偏光板の透過軸の方向と前記第1方向とが、45度、135度、225度、又は315度異なっている、請求項1から6のいずれか1項に記載の液晶表示装置。
  8.  前記液晶層に電圧が印加されたとき、前記第1領域および前記第2領域のそれぞれにおいて、液晶分子の配向方向が互いに異なる4つの液晶ドメインが形成される、請求項1から7のいずれか1項に記載の液晶表示装置。
  9.  前記複数の画素のそれぞれが、前記一対の偏光板の透過軸の方向に平行または垂直な直線によって前記第1領域または前記第2領域と区分された第3領域を有し、
     前記第1電極が前記第3領域の中に、前記複数の第1枝部と前記複数の第2枝部とを備え、
     前記第3領域における前記複数の第1枝部および前記複数の第2枝部のそれぞれが、前記第1の幅または前記第2の幅と異なる第3の幅を有する、請求項1から8のいずれか1項に記載の液晶表示装置。
  10.  前記液晶層に電圧が印加されていない場合の前記第1領域における液晶分子の傾斜角度が前記第2領域における液晶分子の傾斜角度と異なる、請求項1から9のいずれか1項に記載の液晶表示装置。
  11.  複数の画素を有する垂直配向型の液晶表示装置であって、
     互いに直交する透過軸を有する一対の偏光板と、
     第1電極と、
     前記第1電極に対向する第2電極と、
     前記第1電極と前記第2電極との間に配置された液晶層と、を備え、
     前記複数の画素のそれぞれが、前記一対の偏光板の透過軸の方向に平行または垂直な直線によって互いに区分された第1領域および第2領域を有し、
     前記第1電極が、前記第1領域および前記第2領域のそれぞれにおいて、第1方向に延びる複数の第1枝部と、前記第1方向とは異なる第2方向に延びる複数の第2枝部とを備え、
     前記第1領域における前記複数の第1枝部のうちの任意の隣り合う2つが、第1の間隔を空けて配置されており、
     前記第2領域における前記複数の第1枝部のうちの任意の隣り合う2つが、前記第1の間隔とは異なる第2の間隔を空けて配置されている、液晶表示装置。
  12.  前記第1領域における前記複数の第2枝部のうちの任意の隣り合う2つが、前記第1の間隔を空けて配置されており、
     前記第2領域における前記複数の第2枝部のうちの任意の隣り合う2つが、前記第2の間隔を空けて配置されている、請求項11に記載の液晶表示装置。
  13.  前記複数の画素のそれぞれが、前記一対の偏光板の透過軸の方向に平行または垂直な直線によって前記第1領域または前記第2領域と区分された第3領域を有し、
     前記第1電極が前記第3領域の中に、前記複数の第1枝部と前記複数の第2枝部とを備え、
     前記第3領域における前記複数の第1枝部のうちの任意の隣り合う2つ、及び前記第3領域における前記複数の第2枝部のうちの任意の隣り合う2つが、前記第1の間隔または前記第2の間隔と異なる第3の間隔を空けて配置されている、請求項11または12に記載の液晶表示装置。
  14.  前記液晶層に電圧が印加されていない場合の前記第1領域における液晶分子の傾斜角度が前記第2領域における液晶分子の傾斜角度と異なる、請求項11から13のいずれか1項に記載の液晶表示装置。
  15.  複数の画素を有する垂直配向型の液晶表示装置であって、
     互いに直交する透過軸を有する一対の偏光板と、
     第1電極と、
     前記第1電極に対向する第2電極と、
     前記第1電極と前記第2電極との間に配置された液晶層と、を備え、
     前記複数の画素のそれぞれが、前記一対の偏光板の透過軸の方向に平行または垂直な直線によって互いに区分された複数の領域を有し、
     前記第1電極が、前記複数の領域のそれぞれにおいて、第1方向に延びる複数の第1枝部と、前記第1方向とは異なる第2方向に延びる複数の第2枝部とを備え、
     前記複数の領域の1つにおける前記複数の第1枝部のそれぞれが第1の幅を有し、
     前記複数の領域の他の1つにおける前記複数の第1枝部のそれぞれが前記第1の幅とは異なる第2の幅を有する、液晶表示装置。
  16.  前記複数の領域の1つにおける前記複数の第2枝部のそれぞれが前記第1の幅を有し、
     前記複数の領域の他の1つにおける前記複数の第2枝部のそれぞれが前記第2の幅を有する、請求項15に記載の液晶表示装置。
  17.  複数の画素を有する垂直配向型の液晶表示装置であって、
     互いに直交する透過軸を有する一対の偏光板と、
     第1電極と、
     前記第1電極に対向する第2電極と、
     前記第1電極と前記第2電極との間に配置された液晶層と、を備え、
     前記複数の画素のそれぞれが、前記一対の偏光板の透過軸の方向に平行または垂直な直線によって互いに区分された複数の領域を有し、
     前記第1電極が、前記複数の領域のそれぞれにおいて、第1方向に延びる複数の第1枝部と、前記第1方向とは異なる第2方向に延びる複数の第2枝部とを備え、
     前記複数の領域の1つにおける前記複数の第1枝部のうちの任意の隣り合う2つが、第1の間隔を空けて配置されており、
     前記複数の領域の他の1つにおける前記複数の第1枝部のうちの任意の隣り合う2つが、前記第1の間隔とは異なる第2の間隔を空けて配置されている、液晶表示装置。
  18.  前記複数の領域の1つにおける前記複数の第2枝部のうちの任意の隣り合う2つが、前記第1の間隔を空けて配置されており、
     前記複数の領域の他の1つにおける前記複数の第2枝部のうちの任意の隣り合う2つが、前記第2の間隔を空けて配置されている、請求項17に記載の液晶表示装置。
PCT/JP2008/003975 2008-02-04 2008-12-25 液晶表示装置 WO2009098747A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/866,095 US8345199B2 (en) 2008-02-04 2008-12-25 Liquid crystal display device
EP08872256A EP2246733B1 (en) 2008-02-04 2008-12-25 Liquid crystal display device
JP2009552338A JPWO2009098747A1 (ja) 2008-02-04 2008-12-25 液晶表示装置
CN2008801262146A CN101939696B (zh) 2008-02-04 2008-12-25 液晶显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-024200 2008-02-04
JP2008024200 2008-02-04

Publications (1)

Publication Number Publication Date
WO2009098747A1 true WO2009098747A1 (ja) 2009-08-13

Family

ID=40951835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003975 WO2009098747A1 (ja) 2008-02-04 2008-12-25 液晶表示装置

Country Status (5)

Country Link
US (1) US8345199B2 (ja)
EP (1) EP2246733B1 (ja)
JP (1) JPWO2009098747A1 (ja)
CN (1) CN101939696B (ja)
WO (1) WO2009098747A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2375279A3 (en) * 2010-04-02 2011-12-28 Samsung Electronics Co., Ltd. Liquid crystal display panel
CN102667595A (zh) * 2009-11-13 2012-09-12 夏普株式会社 液晶显示装置
CN105842938A (zh) * 2010-04-02 2016-08-10 三星显示有限公司 液晶显示面板
JP2018506739A (ja) * 2015-01-21 2018-03-08 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. 液晶表示パネル及び装置
TWI683161B (zh) * 2018-08-07 2020-01-21 友達光電股份有限公司 畫素結構

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8421972B2 (en) * 2007-12-28 2013-04-16 Sharp Kabushiki Kaisha Liquid crystal display device
JPWO2010116565A1 (ja) * 2009-04-08 2012-10-18 シャープ株式会社 液晶表示装置、液晶表示装置の製造方法、光重合体膜形成用組成物、及び、液晶層形成用組成物
TWI485495B (zh) 2011-01-26 2015-05-21 Innolux Corp 液晶顯示裝置
CN102305983A (zh) * 2011-08-29 2012-01-04 深圳市华星光电技术有限公司 液晶显示面板及其应用的显示装置
US20130050629A1 (en) * 2011-08-29 2013-02-28 Shenzhen China Star Optoelectronics Technology Co., Ltd. Liquid crystal display panel and display apparatus using the same
CN103513472A (zh) * 2012-06-26 2014-01-15 群康科技(深圳)有限公司 基板、具有其的显示装置及其制造方法
CN102768443B (zh) * 2012-07-09 2015-06-17 深圳市华星光电技术有限公司 液晶显示面板及其应用的显示装置
US8830431B2 (en) * 2012-07-16 2014-09-09 Shenzhen China Star Optoelectronics Technology Co., Ltd Pixel electrode and LCD device
US10712596B2 (en) * 2013-08-02 2020-07-14 Samsung Display Co., Ltd. Liquid crystal display
CN103454816B (zh) * 2013-08-09 2016-03-30 深圳市华星光电技术有限公司 一种液晶显示面板
KR102078810B1 (ko) 2013-08-14 2020-02-20 삼성디스플레이 주식회사 액정 표시 장치
CN103792741B (zh) 2014-01-23 2016-06-22 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
TWI566020B (zh) * 2014-07-08 2017-01-11 群創光電股份有限公司 顯示面板與顯示裝置
KR102241382B1 (ko) 2014-07-29 2021-04-16 삼성디스플레이 주식회사 액정 표시 장치
TWI541578B (zh) 2014-08-08 2016-07-11 群創光電股份有限公司 顯示面板
CN104483785B (zh) * 2014-12-30 2017-07-04 厦门天马微电子有限公司 一种显示面板及显示装置
TWI564641B (zh) * 2015-05-22 2017-01-01 友達光電股份有限公司 畫素結構及具有此畫素結構的畫素陣列
KR102401608B1 (ko) * 2015-06-23 2022-05-25 삼성디스플레이 주식회사 액정 표시 장치
KR102334876B1 (ko) 2015-06-24 2021-12-03 삼성디스플레이 주식회사 액정 표시 장치
CN106444174B (zh) * 2016-08-30 2019-12-31 深圳市华星光电技术有限公司 一种像素电极
CN108447871B (zh) 2018-03-13 2020-12-25 深圳市华星光电半导体显示技术有限公司 像素单元及其制作方法、显示装置
CN110068944B (zh) * 2019-05-08 2020-07-14 浙江晶鲸科技有限公司 基于液晶光阀的防窥显示系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149647A (ja) 2001-08-31 2003-05-21 Fujitsu Display Technologies Corp 液晶表示装置及びその製造方法
JP2003255305A (ja) 2002-02-27 2003-09-10 Fujitsu Display Technologies Corp 液晶表示装置及びその駆動方法
JP2003315800A (ja) * 2002-04-26 2003-11-06 Toshiba Corp カラー液晶表示装置
JP2003315776A (ja) * 2002-04-19 2003-11-06 Toshiba Corp 液晶表示装置
JP2004004460A (ja) * 2002-04-15 2004-01-08 Fujitsu Display Technologies Corp 液晶表示装置用基板及びそれを備えた液晶表示装置
JP2004077699A (ja) * 2002-08-14 2004-03-11 Toshiba Corp 液晶表示装置
JP2006189610A (ja) * 2005-01-06 2006-07-20 Sharp Corp 液晶表示装置
JP2006330638A (ja) 2005-05-30 2006-12-07 Sharp Corp 液晶表示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3299190B2 (ja) * 1998-07-15 2002-07-08 インターナショナル・ビジネス・マシーンズ・コーポレーション 液晶表示装置
JP3877129B2 (ja) 2000-09-27 2007-02-07 シャープ株式会社 液晶表示装置
US6952252B2 (en) 2001-10-02 2005-10-04 Fujitsu Display Technologies Corporation Substrate for liquid crystal display and liquid crystal display utilizing the same
TWI225959B (en) 2002-04-19 2005-01-01 Toshiba Corp Liquid crystal display
JP4127623B2 (ja) 2002-05-10 2008-07-30 東芝松下ディスプレイテクノロジー株式会社 液晶表示装置
JP4675677B2 (ja) * 2005-05-26 2011-04-27 シャープ株式会社 液晶表示装置
KR101170911B1 (ko) * 2005-06-30 2012-08-03 엘지디스플레이 주식회사 광시야각과 협시야각의 모드전환이 가능한 액정표시장치 및그 제조방법
US8421972B2 (en) 2007-12-28 2013-04-16 Sharp Kabushiki Kaisha Liquid crystal display device
US8040480B2 (en) * 2008-03-04 2011-10-18 Stanley Electric Co., Ltd. Liquid crystal display apparatus
US20130003004A1 (en) * 2010-01-22 2013-01-03 Masahiro Shimizu Liquid crystal panel and liquid crystal display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149647A (ja) 2001-08-31 2003-05-21 Fujitsu Display Technologies Corp 液晶表示装置及びその製造方法
JP2003255305A (ja) 2002-02-27 2003-09-10 Fujitsu Display Technologies Corp 液晶表示装置及びその駆動方法
JP2004004460A (ja) * 2002-04-15 2004-01-08 Fujitsu Display Technologies Corp 液晶表示装置用基板及びそれを備えた液晶表示装置
JP2003315776A (ja) * 2002-04-19 2003-11-06 Toshiba Corp 液晶表示装置
JP2003315800A (ja) * 2002-04-26 2003-11-06 Toshiba Corp カラー液晶表示装置
JP2004077699A (ja) * 2002-08-14 2004-03-11 Toshiba Corp 液晶表示装置
JP2006189610A (ja) * 2005-01-06 2006-07-20 Sharp Corp 液晶表示装置
JP2006330638A (ja) 2005-05-30 2006-12-07 Sharp Corp 液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2246733A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102667595A (zh) * 2009-11-13 2012-09-12 夏普株式会社 液晶显示装置
EP2500768A4 (en) * 2009-11-13 2013-09-04 Sharp Kk LIQUID CRYSTAL DISPLAY DEVICE
CN102667595B (zh) * 2009-11-13 2014-10-08 夏普株式会社 液晶显示装置
EP2375279A3 (en) * 2010-04-02 2011-12-28 Samsung Electronics Co., Ltd. Liquid crystal display panel
CN105842938A (zh) * 2010-04-02 2016-08-10 三星显示有限公司 液晶显示面板
JP2018506739A (ja) * 2015-01-21 2018-03-08 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. 液晶表示パネル及び装置
TWI683161B (zh) * 2018-08-07 2020-01-21 友達光電股份有限公司 畫素結構

Also Published As

Publication number Publication date
JPWO2009098747A1 (ja) 2011-05-26
EP2246733A1 (en) 2010-11-03
CN101939696A (zh) 2011-01-05
US8345199B2 (en) 2013-01-01
EP2246733A4 (en) 2011-08-03
EP2246733B1 (en) 2012-10-03
CN101939696B (zh) 2013-05-08
US20110025970A1 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
WO2009098747A1 (ja) 液晶表示装置
JP5134011B2 (ja) 液晶表示装置
US20110310335A1 (en) Liquid crystal display device
US6750934B2 (en) Active-matrix liquid crystal display
JP5192046B2 (ja) 液晶表示装置
JP2009151204A (ja) 液晶表示装置
JP2010128211A (ja) 液晶表示装置
US9575364B2 (en) Liquid crystal display
JP5421988B2 (ja) 液晶表示装置
WO2009093432A1 (ja) 液晶表示装置
JP2001324718A (ja) マルチドメイン広視角液晶ディスプレイの構造
WO2010119659A1 (ja) 液晶表示装置
JP2011085738A (ja) 液晶表示装置
WO2010150645A1 (ja) 液晶表示装置
WO2010122800A1 (ja) 液晶表示装置
WO2018138888A1 (ja) 液晶表示装置
JP2003043488A (ja) 液晶表示装置
US8958037B2 (en) Liquid crystal display element comprising at least two insulating layers having different dielectric constants and at least two pixel regions which differ in shapes of equipotential lines
JP4245473B2 (ja) 液晶表示装置
US11448921B1 (en) Liquid crystal display device comprising a vertical alignment-type liquid crystal layer and a plurality of pixels each including a first, second, third, and fourth liquid crystal domain
JP2010039303A (ja) 液晶表示装置
JP2010181838A (ja) 液晶表示装置
JP4349961B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880126214.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009552338

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12866095

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008872256

Country of ref document: EP