[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009093306A1 - 液体採取装置、測定装置並びにそれらを備えた液体採取測定システム - Google Patents

液体採取装置、測定装置並びにそれらを備えた液体採取測定システム Download PDF

Info

Publication number
WO2009093306A1
WO2009093306A1 PCT/JP2008/050803 JP2008050803W WO2009093306A1 WO 2009093306 A1 WO2009093306 A1 WO 2009093306A1 JP 2008050803 W JP2008050803 W JP 2008050803W WO 2009093306 A1 WO2009093306 A1 WO 2009093306A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
blood
groove
volume
information
Prior art date
Application number
PCT/JP2008/050803
Other languages
English (en)
French (fr)
Inventor
Keishi Kitamura
Takahiro Nishimoto
Yuichi Kimura
Chie Seki
Iwao Kanno
Original Assignee
Shimadzu Corporation
National Institute Of Radiological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation, National Institute Of Radiological Sciences filed Critical Shimadzu Corporation
Priority to JP2009550391A priority Critical patent/JP5066583B2/ja
Priority to CN200880125368.3A priority patent/CN101925821B/zh
Priority to US12/863,968 priority patent/US8358405B2/en
Priority to EP08703647.1A priority patent/EP2239585B1/en
Priority to PCT/JP2008/050803 priority patent/WO2009093306A1/ja
Publication of WO2009093306A1 publication Critical patent/WO2009093306A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/36Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with stationary measuring chambers having constant volume during measurement
    • G01F3/38Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with stationary measuring chambers having constant volume during measurement having only one measuring chamber
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/14503Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/15003Source of blood for venous or arterial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150229Pumps for assisting the blood sampling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150755Blood sample preparation for further analysis, e.g. by separating blood components or by mixing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150946Means for varying, regulating, indicating or limiting the speed or time of blood collection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150992Blood sampling from a fluid line external to a patient, such as a catheter line, combined with an infusion line; Blood sampling from indwelling needle sets, e.g. sealable ports, luer couplings or valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/153Devices specially adapted for taking samples of venous or arterial blood, e.g. with syringes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/155Devices specially adapted for continuous or multiple sampling, e.g. at predetermined intervals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/157Devices characterised by integrated means for measuring characteristics of blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F13/00Apparatus for measuring by volume and delivering fluids or fluent solid materials, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F13/00Apparatus for measuring by volume and delivering fluids or fluent solid materials, not provided for in the preceding groups
    • G01F13/006Apparatus for measuring by volume and delivering fluids or fluent solid materials, not provided for in the preceding groups measuring volume in function of time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/40Animals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters

Definitions

  • the present invention relates to a liquid collection device that separates and collects a liquid to be measured in time series, light emitted from the collected liquid or light generated from a fluorescent substance, or radiation contained in the liquid.
  • the present invention relates to a measuring apparatus for measuring and a liquid sampling measuring system including them.
  • a liquid collection device blood is collected, that is, a blood collection device that collects blood will be described as an example.
  • a measurement device radiation contained in the blood is counted, and counting information such as radiation count and radioactivity concentration is obtained.
  • the measurement apparatus will be described as an example.
  • These devices are used in quantitative analysis in nuclear medicine diagnosis (eg, PET (Positron Emission Tomography), SPECT (Single Photon Emission CT), etc.), especially in the arterial blood concentration of small animals (eg mice and rats). It is used for measurement.
  • nuclear medicine diagnosis eg, PET (Positron Emission Tomography), SPECT (Single Photon Emission CT), etc.
  • small animals eg mice and rats.
  • the following methods (a) to (c) are employed in the above-described quantitative analysis of small animals.
  • (b) Arterial channel ⁇ -ray detector A blood + radioactivity concentration is measured by installing a ⁇ + -ray detector in the arterial blood channel.
  • the ⁇ + line is detected with a plastic scintillator or PIN diode.
  • the diode has an elongated shape with a length of 30 [mm], and a tube containing blood along the long side direction is connected to increase the detectable area, thereby detecting the diode. Ensures efficiency.
  • FIG. 10 Microfluidic device method
  • a microchip (device) MC As shown in FIG.
  • the microchip MC is filled with one main flow path F M , selectable branch flow path F B , and heparin solution H used for flow path cleaning and blood discharge, or heparin solution H used the bypass F N for bleeding blood B are arranged.
  • To each of the previous branch flow paths F B are disposed a container, one of the branch flow paths F B, argon gas Gas pressure of gas supplied to the microchip MC, it is selected by the mechanism of the microchip MC It is comprised so that. Pouring the blood B in one of the branch flow paths F B has been selected.
  • Each flow path F M, F B is, are formed in those grooves in a predetermined size with respect to the microchip MC, knowing the groove length or groove area of the blood B was poured, the blood B It is a feature of the microchip MC that a minute volume is defined.
  • the blood B is fed into a predetermined receiving container (not shown) by the press-fitting of the heparin solution H in a state where the predetermined volume of blood B is filled in the flow path by the defined minute volume. Then, each flow path F M, the F B was washed with heparin solution H, ready for the next blood collection.
  • Non-Patent Document 2 L. Convert, GM Brassard, J. Cadorette, D. Rouleau, E. Croteau, M. Archambault, R. Fontaine, and R. Lecomte, “A microvolumetric ⁇ blood counter for pharmacokinetic PET studies in small animals,” IEEE Nuclear Sci , vol. 54, no. 1, 2007.
  • H. -M. Wu, G. Sui, C. -C. Lee, ML Prins, W. Ladno, H. -D. Lin, AS Yu, ME Phelps, and S. -C. Huang “In vivo quantitation of glucose metabolism in mice using small-animal PET and a microfluidic device, ”J Nucl Med, vol. 48, pp. 837-845, 2007.
  • Blood volume blood collection volume
  • the weight of the mouse is 30 [g].
  • the estimated total blood volume is 2250 [ ⁇ L].
  • the maximum allowable blood collection amount is 225 [ ⁇ L].
  • a blood amount exceeding a prescribed amount is once taken out, and the prescribed amount is sucked up from here. Therefore, the amount of bleeding increases. For this reason, the number of samplings (the number of blood sampling points) obtained within the allowable maximum blood sampling amount is reduced, and the quantitative analysis cannot be sufficiently performed.
  • the blood continues to flow into the tube at a constant flow rate (for example, 8 [ ⁇ L / min] or more under the condition that clogging does not occur due to blood clots). Is limited in measurement time and cannot perform long-term quantitative analysis.
  • a constant volume is realized by filling the entire flow path on the microchip with blood, and the entire flow path is washed with a heparin solution for each blood collection, thereby causing contamination between the number of blood collections. Suppress. Accordingly, the blood remaining in a portion other than the constant volume portion of the minute flow rate chip is wasted every time the blood is collected, so that the total amount of blood collected increases. In particular, blood remaining in a useless space such as a connecting portion to the chip is wasted every time the blood is collected, and thus the total blood collection amount is considered to increase with each blood collection.
  • the blood flow path is once filled with blood and washed with a heparin solution. Further, since the entire flow path on the chip (element) is filled with blood for each blood collection, it is necessary to wash the entire flow path with the heparin solution as described above before moving to the next blood collection. Therefore, the blood or heparin solution needs to be filled in the flow path in order for each blood collection, which may consume time and is not suitable for high-frequency blood collection.
  • radioactivity measurement may take time, but once the whole blood radiation is counted, the plasma is separated by centrifugation, and then If the radiation of plasma is counted, there is a risk that the radiation is already attenuated and the measurement cannot be performed sufficiently. Further, in the method of the above-described (c), the blood was poured into the branch flow paths F B to be quantitative analysis as shown in Figure 8 because not be plasmapheresis, it must be carried out again the plasma separation in a separate vessel.
  • the present invention has been made in view of such circumstances, and it is possible to accurately obtain information on light or radiation per unit volume by reducing the amount of collected liquid and ensuring the frequency of collection. It is an object of the present invention to provide a liquid collection device, a measurement device, and a liquid collection measurement system including them.
  • the present invention has the following configuration. That is, the liquid sampling device of the present invention is a liquid sampling device that separates and collects the liquid to be measured in time series, and (a) the flow path through which the liquid to be measured flows, and (b) the flow path And taking out means for separating and taking out the liquid to be measured in time series by inserting a gas or a liquid different from the liquid to be measured at a specified predetermined interval as a separator. It is characterized by having.
  • a flow path and (b) a take-out means are provided, provided in the middle of the flow path, and the gas or the liquid to be measured described above at a specified predetermined interval.
  • the takeout means separates and takes out the liquid to be measured in time series.
  • cleaning liquid heparin solution in the case of blood collection
  • the collection amount of the liquid can be suppressed to the minimum.
  • the operation of inserting the separator is excellent in high speed, it is possible to ensure repeated collection in a short time, that is, frequent collection. As a result, the amount of liquid collected can be reduced to ensure the frequency of collection.
  • the above-described flow path is preferably formed by groove processing with a predetermined dimension on a planar substrate. That is, since the groove is processed with a predetermined dimension, if the groove length or groove region of the liquid fed into the flow path is known, it is based on the cross-sectional area or depth of the groove processed with the predetermined dimension. Thus, the volume of the liquid fed into the flow path can be defined.
  • the optical measurement means described above measures the length information of the liquid while optically monitoring the liquid to be measured flowing through the flow path, and determines the separator interval based on the measurement result by the optical measurement means.
  • the volume of the liquid to be taken out by the taking-out means described above is controlled.
  • the flow rate of the liquid and thus the volume of the liquid can be controlled by the interval between the separators, and the amount of collected liquid can be minimized.
  • the above-described liquid sampling apparatus of the invention can also be applied to liquid centrifugation.
  • a flat plate and (e) a rotating means are provided, and the flat plate is formed so that the liquid to be measured can flow through the flow path, and a plurality of grooves formed in the radial direction are formed.
  • the rotating means rotates the flat plate.
  • the liquid can be centrifuged using the centrifugal force of the flat plate by the rotating means.
  • the liquid is blood, it is possible to perform plasma separation by separating the blood into plasma and blood cells by centrifuging the blood using the centrifugal force of the flat plate by the rotating means.
  • each part of the centrifuged liquid for example, plasma and blood cells when the liquid is blood
  • each part of the centrifuged liquid has a different light absorbance or radioactivity concentration, taking advantage of the different points, the plate is imaged, and the volume of each part is more accurately determined using the imaging results. You can ask for it.
  • an imaging unit (g) a groove length / groove region calculating unit, and (h) a volume calculating unit are provided, and the imaging unit images a flat plate.
  • plasma and blood cells appear as light and shade differences due to differences in absorbance or radioactivity concentration, and can be easily identified on the image.
  • the groove length or groove area of each part of the centrifuged liquid is determined as the groove length /
  • the groove area calculation means obtains it. Based on the groove length and cross-sectional area of each part of the liquid obtained by the groove length / groove area calculating means, or the groove area and groove depth of each part of the liquid obtained by the groove length / groove area calculating means. Based on the above, the volume calculation means obtains the volume of each part described above.
  • the volume of each part of the liquid can be obtained based on the cross-sectional area of the groove or the groove depth.
  • the volume of the liquid may decrease or increase, but the image information of the flat plate imaged by the imaging means Since the volume of each part of the liquid contained in the flat plate is obtained anew using (the difference in density of the image), the volume of each part can be obtained more accurately.
  • the liquid to be measured is blood.
  • the liquid collection device is a device for collecting blood (blood collection device).
  • the liquid to be measured is not limited to blood, but may be a liquid containing a fluorescent agent, a mixed liquid used in an analyzer, or the like.
  • the measuring device of the present invention is a measuring device for measuring light emitted from a luminescent or fluorescent substance contained in a liquid to be measured or radiation contained in the liquid to be measured, (A ) Detection means for simultaneously detecting the light or radiation two-dimensionally to obtain two-dimensional image information of the light or radiation; and (B) a flat plate containing the liquid and having a plurality of grooves with predetermined dimensions. Per unit volume based on the volume of the liquid obtained based on the image information of the plate and the information on the groove processed on the flat plate, and the two-dimensional image information of the light or radiation obtained by the detection means. And an information calculating means for obtaining information on light or radiation.
  • a detecting unit and (B) an information calculating unit containing liquid, and image information of a flat plate having a predetermined dimension and a plurality of grooves, and the flat plate Information on light or radiation per unit volume is calculated on the basis of the volume of the liquid obtained based on the groove information of the groove and the two-dimensional image information of light or radiation obtained by the detection means.
  • Means seek. That is, for the liquid that has already been transferred to the flat plate, the liquid volume determined based on the flat plate image information and the flat groove information on the flat plate has not increased or decreased since then, Information on light or radiation per unit volume is obtained based on the volume.
  • the detection means can detect the two-dimensional simultaneous detection, thereby reducing the influence of light fading and radiation attenuation.
  • an example of the liquid to be measured is blood
  • the detection means may detect the radiation contained in the blood.
  • the information calculation means can accurately obtain the radiation count information (for example, blood radioactivity concentration) per unit volume. it can.
  • a liquid containing a fluorescent agent may be used.
  • a fluorescent substance that is a fluorescent agent is included in the liquid, and the measuring device according to the present invention measures light emitted or light generated from the fluorescent substance.
  • the information of light per unit volume is accurately obtained.
  • “luminescence” includes luminescence and fluorescence.
  • the detection means separates and counts the radiation contained in the plasma and blood cells obtained by centrifuging the blood to separate the plasma, and counts each part of the plasma and blood cells. Based on the volume and the radiation count information of each part obtained by the detection means, the information calculation means obtains the count information of each part per unit volume.
  • the volume of each part of plasma and blood cells can be obtained in parallel, and the count information of each part per unit volume can be obtained in parallel (ie, simultaneously). This simultaneous calculation can extend the detection time (measurement time) by the detection means, and also has an effect that a low-concentration radiation dose can be measured with high statistical accuracy.
  • the liquid collection and measurement system of the present invention includes a liquid collection device for collecting a liquid to be measured, and light generated from a luminescent or fluorescent substance contained in the collected liquid or contained in the liquid.
  • a detection means for simultaneously detecting the light or radiation two-dimensionally to obtain two-dimensional image information of the light or radiation
  • B Image information of a flat plate that contains the liquid and has a plurality of grooves with a predetermined dimension, and a volume of the liquid that is obtained based on information on the grooved grooves of the flat plate, and the detection means
  • information calculation means for obtaining light or radiation information per unit volume based on the light or radiation two-dimensional image information obtained in step (1).
  • the liquid that has already been transferred to the flat plate was obtained based on the image information on the flat plate and the information on the groove processed on the flat plate.
  • the volume of the liquid does not increase or decrease thereafter, and information on light or radiation per unit volume is obtained based on the volume of the liquid. Therefore, the information on the light or the radiation per unit volume can be accurately obtained without increasing or decreasing the volume of the liquid using the image information of the flat plate.
  • the configuration of the liquid collection device provided in the system is not particularly limited as long as the liquid to be measured is collected, but is similar to the liquid collection device of the above-described invention. More preferably, (a) a flow path and (b) a take-out means are provided. That is, by inserting a gas or a liquid different from the liquid to be measured described above as a separator at a specified predetermined interval, the take-out means separates and takes out the liquid to be measured in time series.
  • Each measuring device provided in the system measures the light emitted from the luminescent or fluorescent material contained in the liquid or the radiation contained in the liquid to be measured for each liquid taken out by the taking-out means. To do.
  • the amount of liquid collected is reduced to ensure frequent sampling, and as described in the measuring apparatus of the present invention, the light per unit volume or Radiation information can be obtained accurately.
  • the above-described flow path is formed by groove processing with a predetermined dimension on a planar substrate. Is preferred. Further, (c) it is preferable to include an optical measuring means. Further, in order to apply to the centrifugal separation of the liquid, (d) a flat plate and (e) a rotating means may be provided.
  • the flat plate is the same as the flat plate containing the liquid (to be measured) and having a plurality of grooves with a predetermined dimension, and is formed so that the liquid to be measured can flow through the flow path. Further, a plurality of grooves formed in the radial direction are provided.
  • the liquid sampling apparatus of the present invention may include (f) an imaging means, (g) a groove length / groove area calculating means, and (h) a volume calculating means. Good.
  • the contrast of the image described in the liquid sampling apparatus corresponds to the image information of the flat plate in the liquid sampling measuring system of the present invention, and the cross-sectional area or groove depth of the groove described in the liquid sampling apparatus is the present invention. This corresponds to groove information in the liquid sampling measurement system.
  • an example of the liquid to be measured is blood
  • the detection means detects the radiation contained in the blood. Also good.
  • the detection means separates the radiation contained in the plasma and blood cells obtained by centrifuging the blood to separate the plasma as described in the measurement apparatus of the present invention.
  • the information calculation means may calculate the count information of each part per unit volume based on the volume of each part of plasma and blood cells and the radiation count information of each part obtained by the detection means. Good.
  • the take-out means is provided by inserting a gas or a liquid different from the liquid to be measured described above as a separator at a specified predetermined interval provided in the middle of the flow path.
  • the liquid to be measured can be separated and extracted in chronological order, and the amount of liquid collected can be reduced to ensure frequent sampling.
  • the volume of the liquid obtained based on the image information of the flat plate and the information of the grooved groove of the flat plate for the liquid already transferred to the flat plate. Since then, there is no increase or decrease such as a decrease, and information on light or radiation per unit volume is obtained based on the volume of the liquid. Therefore, the information on the light or the radiation per unit volume can be accurately obtained without increasing or decreasing the volume of the liquid using the image information of the flat plate.
  • (A), (b) is a schematic perspective view of the blood collection apparatus and measurement apparatus of the blood collection measurement system which concerns on an Example.
  • 1 is a block diagram of a blood collection device and a measurement device of a blood collection measurement system according to an embodiment. It is the flowchart which showed the flow of the process regarding a series of quantitative analysis which concerns on an Example. It is the figure which represented the output of the detector signal typically. It is the figure which represented typically the mode of the plasma and blood cell which were plasma-separated.
  • (A) is a schematic plan view of the groove
  • (b) is a schematic sectional drawing of the groove
  • FIG. 1 is a schematic perspective view of a blood collection device and a measurement device of the blood collection measurement system according to the embodiment
  • FIG. 2 is a block diagram of the blood collection device and the measurement device of the blood collection measurement system according to the embodiment.
  • blood will be described as an example of the liquid to be measured
  • a blood collection measurement system will be described as an example of the liquid collection measurement system
  • a blood collection device will be described as an example of the liquid collection device.
  • the blood collection measurement system includes a blood collection device 10 that collects blood to be measured in time series, and radiation (for example, ⁇ ) contained in the collected blood. And a measuring device 40 that measures a line, a ⁇ -ray, and the like).
  • blood after administration of a radiopharmaceutical into the body of a mouse is collected (ie, blood is collected), and the radiation contained in the blood is measured.
  • plasma separation is performed, and radiation contained in the plasma and blood cells separated from each other is measured.
  • Blood collection apparatus 10 corresponds to the liquid collection apparatus in the present invention
  • measurement apparatus 40 corresponds to the measurement apparatus in the present invention.
  • Blood collection apparatus 10 includes a microchip configured by stacking two glass substrates 11 and 12 vertically.
  • the upper glass substrate 11 is subjected to a T-shaped groove process with a predetermined dimension, and the main flow path 13 and the side path 14 are formed by the groove formed by the groove process. Then, the upper glass substrate 11 and the glass substrate 12 are bonded to each other with the surface on which the groove is formed being inward. That is, the main flow path 13 and the side path 14 refer to a pipe portion formed of the glass substrate 12 and a groove formed with a predetermined dimension on the planar glass substrate 11.
  • the glass substrate 11 corresponds to the substrate in the present invention
  • the main flow path 13 corresponds to the flow path in the present invention.
  • the material of the blood collection device 10 is not limited to glass, but may be any material that is optically transparent, such as acrylic, polycarbonate, COP (cycloolefin polymer).
  • the upper glass substrate 11 and the glass substrate 12 may be bonded to each other with the groove-formed surface outside.
  • a catheter 15 is disposed on the blood inlet side of the main flow path 13, and the main flow path 13 and the catheter 15 are connected via a connector 16.
  • a microchip made of glass substrates 11 and 12 is installed in the immediate vicinity of the mouse, and a catheter 15 used for blood introduction is connected by the connector 16 described above, thereby preventing unnecessary blood from flowing out. In this way, blood is continuously fed into the main channel 13 via the catheter 15.
  • a blood pipe 17 is disposed on the blood outlet side of the main flow path 13, and the main flow path 13 and the blood pipe 17 are connected via a connector 18.
  • a bubble pipe 19 is disposed on the inlet side of the side path 14, and the side path 14 and the bubble pipe 19 are connected via a connector 20.
  • the outlet side of the side path 14 is connected to the main channel 13 so as to be able to circulate, and bubbles are sent into the main channel 13 through the side path 14.
  • a light source 21 and a photodiode 22 are disposed across the main flow path 13.
  • the blood flowing through the main flow path 13 is irradiated with light from the light source 21, and the photodiode 22 detects light blocking by the blood, thereby measuring blood length information to be described later while optically monitoring (monitoring) the blood.
  • the light source 21 and the photodiode 22 correspond to the optical measuring means in this invention.
  • a dispenser 23 is connected to the downstream side of the blood pipe 17 described above.
  • a disc (also referred to as “CD well”) 24 for receiving and storing blood dropped from the dispenser 23 is provided.
  • a plurality of openings 25 for receiving the dropped blood are arranged radially on the center side of the disc 24.
  • the circular plate 24 is grooved, and a plurality of U-shaped grooves 26 are formed radially by the grooves.
  • Each U-shaped groove 26 is connected to the outer end of the above-described opening 25 on a one-to-one basis, and each U-shaped groove 26 is formed to extend in the radial direction of the disk 24. Yes.
  • the disc 24 is formed so that blood can flow through the main flow path 13.
  • the disc 24 corresponds to the flat plate in this invention.
  • the measuring device 40 includes a reading unit 41.
  • the reader 41 is provided with a cover for inserting the exposed imaging plate IP, and detects ⁇ + rays contained in the blood by reading the light excited from the imaging plate IP.
  • the reading unit 41 includes a laser light source 42 and a photomultiplier tube (photomultiplier tube) 43, and a laser is applied from the laser light source 42 to the imaging plate IP.
  • the photomultiplier tube 43 converts the light excited by the laser irradiation of the imaging plate IP into electrons and multiplies it, thereby detecting ⁇ + rays simultaneously two-dimensionally.
  • the imaging plate IP and the reading unit 41 correspond to detection means in the present invention.
  • the blood collection device 10 includes a pressure generator 30, a rotation drive unit 31, an imaging unit 32, an image processing unit 33, a groove, as shown in FIG. 2.
  • a long / groove region calculation unit 34 and a volume calculation unit 35 are provided.
  • the measuring device 40 includes an information calculating unit 44 in addition to the reading unit 41 described above.
  • the blood collection device 10 and the measurement device 40 share a controller 50, an input unit 51, an output unit 52, and a memory unit 53.
  • the pressure generator 30 corresponds to the taking-out means in the present invention
  • the rotation driving unit 31 corresponds to the rotating means in the present invention
  • the imaging unit 32 corresponds to the imaging means in the present invention
  • the groove length / groove area calculation is performed.
  • the unit 34 corresponds to the groove length / groove region calculating unit in the present invention
  • the volume calculating unit 35 corresponds to the volume calculating unit in the present invention
  • the information calculating unit 44 corresponds to the information calculating unit in the present invention.
  • the pressure generator 30 operates the pressure of a gas (for example, air or argon), sends the gas to the main flow path 13 through the side path 14, and inserts the gas as a bubble at a specified predetermined interval. Then, the blood of the measurement object is separated and extracted in time series. That is, the bubbles serve as a separator in the present invention.
  • a gas for example, air or argon
  • the liquid to be measured is not limited to the gas, and the liquid to be measured is less likely to be mixed with the liquid to be measured (blood in this embodiment) or there is no possibility.
  • a liquid other than that may be used as the separator.
  • a liquid that does not mix with blood such as mineral oil or fluorine oil, may be used as the separator.
  • the rotation drive unit 31 is configured by a motor, a turntable, etc., not shown, and rotates the turntable by rotating the motor to rotate the disk 24 placed on the turntable.
  • the liquid to be measured (blood in this embodiment) is centrifuged using the centrifugal force of the disk 24 by the rotation drive unit 31.
  • plasma separation is performed by centrifuging the blood to separate it into plasma and blood cells using the centrifugal force of the disc 24 by the rotation drive unit 31. become.
  • the imaging unit 32 images the disk 24.
  • a linear light source (not shown) having at least a length corresponding to the diameter of the disk 24 and a linear photodiode disposed opposite to the light source with the disk 24 interposed therebetween.
  • a flat head scanner composed of an array (that is, a line sensor) (not shown) is employed.
  • the disk 24 is imaged by scanning the disk 24 with a flat head scanner, and an image of the disk 24 is acquired.
  • the image processing unit 33 performs various processes on the image of the disk 24 obtained by the imaging unit 32. For example, lag correction or dynamic range conversion may be performed.
  • the groove length / groove region calculation unit 34 was centrifuged based on the difference in image density in the grooved U-shaped groove 26 (see FIG. 1) of the disk 24 imaged by the imaging unit 32. The groove length or groove area of each part of the liquid (blood in this embodiment) is obtained.
  • the groove length / groove region calculation unit 34 obtains the groove length or groove region of each part of plasma and blood cells separated from plasma.
  • the volume calculation unit 35 is based on the groove length of each part of the liquid (blood in this embodiment) obtained by the groove length / groove region calculation unit 34 and the cross-sectional area of the groove 26 (see FIG. 1), or the groove Based on the groove region of each part of the liquid (blood) and the depth of the groove 26 (see FIG. 1) obtained by the long / groove region calculation unit 34, the volume of each part is obtained.
  • the groove length / groove region calculation unit 34 calculates the groove length of each part of plasma and blood cells and the cross-sectional area of the groove 26, or the groove Based on the groove region of each part of plasma and blood cells and the depth of the groove 26 obtained by the long / groove region calculation unit 34, the volume calculation unit 35 obtains the volume of each part.
  • the information calculation unit 44 per unit volume based on the volume of the liquid (blood in this embodiment) obtained by the volume calculation unit 35 and the ⁇ + ray count information obtained by the imaging plate IP and the reading unit 41.
  • the counting information of ⁇ + rays is obtained.
  • the radiation count information is ⁇ + ray count (unit: [Bq])
  • the radiation count information per unit volume is ⁇ + ray blood radioactivity concentration (unit: [Bq / ⁇ L]).
  • the controller 50 comprehensively controls each part constituting the blood collection apparatus 10 and the measurement apparatus 40.
  • the controller 50 includes a central processing unit (CPU).
  • the input unit 51 inputs to the controller 50.
  • the input unit 51 sends data and commands input by the operator to the controller 50.
  • the input unit 51 includes a pointing device represented by a mouse, a keyboard, a joystick, a trackball, a touch panel, and the like.
  • the output unit 52 outputs various data sent via the controller 50.
  • the output unit 52 includes a display unit represented by a monitor, a printer, and the like.
  • the memory unit 53 writes and stores various data sent via the controller 50.
  • the memory unit 53 includes a storage medium represented by ROM (Read-only Memory), RAM (Random-Access Memory), and the like.
  • ROM Read-only Memory
  • RAM Random-Access Memory
  • the groove region, the volume of each part obtained by the volume calculation unit 35, the blood radioactivity concentration obtained by the information calculation unit 44, and the like are written and stored in the RAM, and read from the RAM as necessary.
  • the ROM stores a program for performing various quantitative analyzes in advance, and the controller 50 executes the program to perform quantitative analysis according to the program.
  • the image processing unit 33, the groove length / groove region calculation unit 34, the volume calculation unit 35, and the information calculation unit 44 are, for example, a program stored in a ROM of a storage medium represented by the memory unit 53 described above or the input unit 51. This is realized by the controller 50 executing a command input by a pointing device represented by the above.
  • FIG. 3 is a flowchart showing a flow of processing related to a series of quantitative analysis according to the embodiment
  • FIG. 4 is a diagram schematically showing an output of a detector signal
  • FIG. 5 is a diagram showing plasma separation.
  • FIG. 6 is a diagram schematically showing the state of plasma and blood cells
  • FIG. 6A is a schematic plan view of a disk groove
  • FIG. 6B is a schematic cross-sectional view of a disk groove.
  • FIG. 7 is a graph of blood radioactivity concentration.
  • Step S1 Feeding blood into the main flow path A catheter 15 (see FIG. 1) is inserted into the mouse artery, and the arterial blood spontaneously released by the mouse blood pressure is passed through the catheter 15 through the main flow path 13 (FIG. 1 and FIG. 1). 2), blood is continuously fed into the main channel 13.
  • an anticoagulant is introduced, or blood is fed after the anticoagulant is applied to the inner surface of the main channel 13 or the side channel 14 (see FIGS. 1 and 2) and coated.
  • Step S2 Separation Control of Separator
  • the separator is disposed opposite the light source 21 (see FIGS. 1 and 2) with the main flow path 13 in between. Since the light emitted from the light source 21 is incident on the photodiode 22 (see FIG. 1 and FIG. 2), the detector signal photoelectrically converted by the photodiode 22 becomes high level as shown in FIG. Output from the diode 22. Conversely, when blood is flowing through the main flow path 13, the light emitted from the light source 21 is blocked by the blood and blocked, so that no light enters the photodiode 22, as shown in FIG. The detector signal becomes a low level and is output from the photodiode 22.
  • the photodiode 22 detects the light shielding by the blood, so that the blood length information is measured while optically monitoring the blood, and the separator ( That is, in this embodiment, the controller 50 (see FIG. 2) controls the volume of blood to be taken out by the pressure generator 30 (see FIG. 2) by controlling the interval between bubbles.
  • the light source 21 and the photodiode 22 are linear optical systems (for example, the light source 21 is a linear light source disposed along the longitudinal direction of the main flow path 13 and a plurality of light sources.
  • the light source 21 is a linear light source disposed along the longitudinal direction of the main flow path 13 and a plurality of light sources.
  • each of the photodiodes 22 detects each distance (each of which is shown in FIG. 4).
  • the output of the detector signal for the element number associated with the photodiode 22) is obtained.
  • the interval between the detector signals that are at the low level is the length that the blood flows continuously, and the interval between the detector signals that are at the high level is the length of the separator between the blood and blood.
  • the volume of blood to be taken out can be obtained from the blood interval (that is, the separator length). That is, the volume of blood to be taken out can be obtained by multiplying the blood interval by the cross-sectional area of the main flow path 13.
  • the pressure adjustment to the pressure generator 30 or the side path 14 is performed in order to control the volume of blood to be taken out by the pressure generator 30 (see FIG. 2).
  • the controller 30 controls the timing of feeding gas into the main flow path 13 (see FIGS. 1 and 2) via (see FIGS. 1 and 2). And thereby, the interval between the separators (bubbles) is controlled to control the volume of blood to be taken out.
  • the interval between adjacent separators that is, the interval of blood to be taken out may be controlled.
  • the separator interval may be controlled as described above.
  • the blood space interval (length interval) or the separator space interval (length interval) is directly controlled.
  • the volume of blood to be taken out may be controlled, and when the blood flow rate is high or when blood is taken out continuously as described above, as described above, the separator time interval (separator The volume of blood to be taken out may be controlled by controlling the cycle of the feeding timing.
  • Step S3 Transfer to Disk A trace amount of blood taken out in step S2 is sent to the dispenser 23 (see FIGS. 1 and 2) via the blood pipe 17 (see FIGS. 1 and 2).
  • the dispenser 23 drops each of the micro blood taken out into an opening 25 (see FIG. 1) of a disc (CD well) 24 (see FIGS. 1 and 2).
  • the extracted trace blood is transferred to the disc 24.
  • the number more than the blood collection frequency is prepared, and it uses.
  • Step S4 Plasma Separation
  • the controller 50 controls the rotation drive unit 31 (see FIG. 2).
  • plasma separation is performed by rotating the disc 24 and separating it into plasma and blood cells.
  • the outer end of the opening 25 (see FIG. 1) is opened and connected to the groove 26 (see FIG. 1) on a one-to-one basis, thereby smoothly separating blood during plasma separation.
  • the groove 26 is U-shaped, the blood cells at the time of plasma separation are prevented from escaping out of the disk 24 by centrifugal force, and the bottom of the U-shape is separated after plasma separation as shown in FIG. Blood cell BH is allowed to settle.
  • symbol BP of FIG. 5 shows plasma.
  • Step S5 Imaging of disk
  • the imaging part 32 (refer FIG. 2) images the plasma and blood cell by which plasma separation was carried out for every disk 24 (refer FIG. 1 and FIG. 2).
  • the photodiode array of the flat head scanner acquires an optical image of the disk 24 separated into plasma and blood cells, and the optical image is obtained. Imaging is performed by obtaining an image of the disk 24.
  • the image processing unit 33 (see FIG. 2) performs various processes on the image of the disk 24.
  • the imaging unit 32 is not limited to an optical imaging unit, and for example, imaging may be performed by irradiating and detecting radiation.
  • Step S6 Calculation of groove length and groove area
  • a difference in absorbance appears on the image obtained by imaging plasma and blood cells. And can be easily identified.
  • the groove length / groove region calculation unit 34 obtains the groove length or groove region of each part of plasma and blood cells. By converting the number of one-dimensional pixels having a difference in density into a groove length and converting the two-dimensional number of pixels into a groove region, the groove length or groove region of each part of plasma and blood cells is obtained.
  • Step S7 Volume Calculation Based on the groove length of each part of plasma and blood cells and the cross-sectional area of the groove 26 (see FIG. 1) obtained by the groove length / groove region calculation unit 34 (see FIG. 2), Alternatively, the volume calculation unit 35 (see FIG. 2) obtains the volume of each part based on the groove region and the depth of the groove 26 of each part of plasma and blood cells obtained by the groove length / groove region calculation part 34.
  • the length in the longitudinal direction of the groove 26 (including the opening 25), that is, the groove length is x, and is rectangular as shown in the sectional view of FIG.
  • the depth of the groove 26 is d
  • the length of the groove 26 in the short direction that is, the groove width is L, as shown in FIGS. 6 (a) and 6 (b).
  • Step S8 Counting
  • the disc 24 (see FIGS. 1 and 2) that has been plasma-separated into plasma and blood cells is stored as a sample by opening a cassette (not shown) on the imaging plate IP (see FIG. 1). (See) and close the cassette.
  • the disk 24 is taken out from the cassette, and exposure is performed by irradiating the imaging plate IP with light. By this exposure, electrons are captured by lattice defects of the phosphor (not shown) of the imaging plate IP due to the ionizing ability of ⁇ + rays contained in the blood.
  • the exposed imaging plate IP is taken out from the cassette and inserted into the cover portion of the reading unit 41 (see FIGS. 1 and 2) of the measuring device 40 (see FIGS. 1 and 2).
  • the imaging plate IP (see FIG. 1) is irradiated with laser from the laser light source 42 (see FIGS. 1 and 2) of the reading unit 41 (see FIGS. 1 and 2).
  • the trapped electrons are excited to the conductor by this irradiation and recombine with holes, and are excited as light from the phosphor.
  • the photomultiplier tube 43 (see FIGS. 1 and 2) converts the light excited by the laser irradiation to the imaging plate IP into electrons and multiplies it, so that it is simultaneously detected as an electric pulse in two dimensions. And count. Note that after irradiating the imaging plate IP from the laser light source 42, the captured electrons are erased by irradiating the imaging plate IP with light from an erasing light source (not shown) for reuse.
  • Step S9 Calculation of Radioactivity Concentration in Blood Plasma volume V p , blood cell volume V h obtained by volume calculation unit 35 (see FIG. 2), ⁇ obtained by imaging plate IP and reading unit 41 + based on the count information of the line (see FIG. 2) information calculating unit 44 blood radioactivity concentration which is count information on beta + lines per unit volume is obtained.
  • FIG. 7 By rearranging the results of the blood radioactivity concentration by taking out time, a graph of the blood radioactivity concentration curve as shown in FIG. 7 is finally obtained.
  • the horizontal axis in FIG. 7 is the extraction time, that is, the acquisition time (indicated as “Acquisition time” in FIG. 7), and the vertical axis in FIG. 7 is the blood radioactivity concentration (indicated as “PET equivalent counts” in FIG. 7).
  • PET equivalent counts in FIG. 7
  • the volume of the blood taken out depends on the cross-sectional area of the groove 26 (see FIGS. 1 and 2) of the disk 24 (see FIGS. 1 and 2) and the imaging unit 32 (see FIG. 2).
  • the radiation counting accuracy (statistical accuracy) is determined by the exposure time to the imaging plate IP. In consideration of the attenuation of radiation and the required number of samplings, a plurality of disks 24 may be prepared and sequentially exposed with the imaging plate IP for imaging.
  • the blood collection device 10 includes (a) a flow path (main flow path 13 in the present embodiment) and (b) a take-out means (pressure generator 30 in the present embodiment). Is provided in the middle of the path 13) at a specified predetermined interval, such as gas (air or argon in the present embodiment) or a liquid (measuring target) different from the above-described liquid to be measured (blood in this embodiment).
  • a specified predetermined interval such as gas (air or argon in the present embodiment) or a liquid (measuring target) different from the above-described liquid to be measured (blood in this embodiment).
  • the liquid is blood, mineral oil, fluorine-based oil, or the like
  • the extraction means pressure generator 30
  • the liquid (blood) described above is continuously fed into the flow path (main flow path 13) and inserted with the separator made of gas or liquid, so that the liquid (blood) with a minute volume of, for example, about 1 [ ⁇ L] is obtained. Can be taken out.
  • the consumption of the liquid (blood) to be measured associated with the conventional cleaning liquid for each collection is suppressed, and the amount of collected liquid (blood collection in this embodiment) is minimized. Can be suppressed.
  • the work of inserting the separator is excellent in high speed, it is possible to ensure the frequent collection of a short time, that is, frequent collection (blood collection in this embodiment). As a result, the collection amount (blood collection amount) of the liquid can be reduced to ensure the frequency of collection (blood collection).
  • the main flow path 13 is preferably formed by grooving a flat glass substrate 11 with a predetermined dimension. That is, since the groove is processed with a predetermined dimension, if the groove length or the groove region of the liquid (blood in this embodiment) fed into the main channel 13 is known, the groove cut with the predetermined dimension is cut.
  • the volume of the liquid (blood) sent into the main flow path 13 can be defined based on the area or the depth of the groove.
  • the blood collection apparatus 10 preferably includes (c) optical measurement means (in this embodiment, the light source 21 and the photodiode 22).
  • the optical measuring means (the light source 21 and the photodiode 22) described above optically monitors the liquid to be measured (blood in this embodiment) flowing through the flow path (main flow path 13 in this embodiment).
  • the above-mentioned extraction means (in this embodiment, pressure generation)
  • the volume of the liquid (blood) to be removed is controlled by the vessel 30).
  • the flow rate of the liquid (blood), and hence the volume of the liquid (blood) can be controlled by the interval between the separators, and the amount of collected liquid (the amount of blood collected in this embodiment) can be minimized.
  • a flat plate (disk 24 in this embodiment) and (e) a rotating means (rotation drive unit 31 in this embodiment) are provided, and the flat plate (disk 24) has a flow path (this embodiment). Then, a plurality of grooves formed in the radial direction are formed so that the liquid to be measured can flow through the main flow path 13) (in this embodiment, the liquid can be distributed by interposing the dispenser 23).
  • the rotation means (rotation drive unit 31) rotates the flat plate (disk 24).
  • the liquid can be centrifuged using the centrifugal force of the flat plate (disk 24) by the rotating means (rotation drive unit 31).
  • the liquid is blood as in this embodiment, the blood is centrifuged to separate it into plasma and blood cells using the centrifugal force of the flat plate (disk 24) by the rotating means (rotation drive unit 31). It is possible to perform plasma separation.
  • each part of the centrifuged liquid (plasma and blood cells when the liquid is blood as in this embodiment) is present separately.
  • the flat plate (the disk 24 in this embodiment) is imaged.
  • the volume of each part is obtained more accurately using the imaging result.
  • imaging means imaging unit 32 in this embodiment
  • groove length / groove area calculation means groove length / groove area calculation 34 in this embodiment
  • volume calculation means volume calculation means.
  • the liquid is blood as in the present embodiment
  • plasma and blood cells appear as light and shade differences due to differences in absorbance or radioactivity concentration, and can be easily identified on the image.
  • Centrifugation is performed based on the difference in image density (that is, the difference in absorbance or radioactivity concentration) in the grooved groove 26 of the flat plate (the disk 24 in this embodiment) imaged by the imaging means (imaging unit 32).
  • the groove length / groove area calculating means (groove length / groove area calculating section 34) obtains the groove length or groove area of each part of the liquid (each part of plasma and blood cells in this embodiment).
  • the volume calculating means (volume calculating part 35). Finds the volume of each part (plasma and blood cell parts) described above.
  • the groove length or groove area of each part of liquid is obtained by the groove length / groove area calculating means (groove length / groove area calculating unit 34), the cross-sectional area of the groove 26 or the groove 26 Based on the depth, the volume of each part (plasma and each part of blood cells) can be determined.
  • the liquid (blood in this embodiment) defined by the flow path (main flow path 13 in this embodiment) upstream from the flat plate (disk 24 in this embodiment) is transferred to the flat plate (disk 24).
  • the image information (image of the image) of the flat plate (disk 24) imaged by the imaging means (imaging unit 32 in this embodiment) is considered. Since the volume of each part (each part of plasma and blood cells in the present embodiment) of the liquid contained in the flat plate (disk 24) is obtained anew using the density difference), each part (each part of plasma and blood cells) is determined. The volume can be determined even more accurately.
  • the liquid collection device is a device for collecting blood, that is, the blood collection device 10.
  • a detecting unit imaging plate IP and reading unit 41 in the present embodiment
  • an information calculating unit information calculating unit 44 in the present embodiment
  • the volume of the liquid (blood) obtained based on the information of the grooved groove 26 and the two-dimensional image information (in this embodiment) of light or radiation obtained by the detection means (imaging plate IP and reading unit 41).
  • the information calculation means obtains information on light or radiation per unit volume (in the present embodiment, blood radioactivity concentration) based on the radiation count information). That is, the liquid (blood) that has already been transferred to the flat plate (disk 24) is obtained based on the image information on the flat plate (disk 24) and the information on the grooved grooves 26 on the flat plate (disk 24). The volume of the liquid (blood) does not increase or decrease thereafter, and information on light or radiation per unit volume (blood radioactivity concentration) is obtained based on the volume of the liquid (blood). Therefore, by using the image information of the flat plate (disk 24), the volume of liquid (blood) is not increased or decreased, and the information on light or radiation per unit volume (blood radioactivity concentration) can be accurately obtained. Further, the detection means (imaging plate IP and reading unit 41) can detect the two-dimensional simultaneous detection, thereby reducing the influence of light fading and radiation attenuation.
  • the radiation counting information per unit volume (in the present embodiment, blood radioactivity concentration) is information.
  • the calculation means in this embodiment, the information calculation unit 35) can be obtained accurately.
  • the imaging plate IP and the reading unit 41 receive the radiation contained in the plasma and blood cells obtained by centrifuging the blood and separating the plasma into two-dimensional radiation information. And counting each part based on the volume of each part of the plasma and blood cells and the counting information of the radiation of each part obtained by the imaging plate IP and the reading part 41, respectively.
  • Information (in this embodiment, the blood radioactivity concentration) is obtained by the information calculating means (in this embodiment, the information calculating section 35).
  • the volume of each part of all plasma and blood cells on the disc 24 is obtained in parallel, and the count information (blood radioactivity concentration in this embodiment) per unit volume is obtained in parallel (that is, obtained simultaneously). It is possible.
  • the detection time (measurement time) by the imaging plate IP can be extended, and there is also an effect that a low-concentration radiation dose can be measured with high statistical accuracy.
  • the volume of the liquid (blood) obtained on the basis of the image information of the flat plate (disk 24 in this embodiment) and the information of the grooved groove 26 of the flat plate (disk 24) is There is no increase or decrease thereafter, and light or radiation information (in this embodiment, blood radioactivity concentration) per unit volume is obtained based on the volume of the liquid (blood). Therefore, by using the image information of the flat plate (disk 24), the volume of liquid (blood) is not increased or decreased, and the information on light or radiation per unit volume (blood radioactivity concentration) can be accurately obtained.
  • the blood collection measurement system includes (a) a flow path (main flow path 13 in the present embodiment), (b) extraction means (pressure generator 30 in the present embodiment), It has. That is, at a specified predetermined interval, a gas (air or argon in this embodiment) or a liquid other than the liquid to be measured (blood in this embodiment) described above (if the liquid to be measured is blood) By inserting mineral oil, fluorine-based oil, or the like) as a separator, the extraction means (pressure generator 30) separates and extracts the liquid (blood) to be measured in time series.
  • Each liquid (blood) taken out by the take-out means (pressure generator 30) is contained in the light (luminescence) contained in the liquid (blood) or the light generated from the fluorescent substance or in the liquid (blood) to be measured.
  • the measuring device 40 provided in the system measures the radiation (in this embodiment, only radiation) that is present. In this way, as described in the blood collection device 10 according to the present embodiment, the measurement amount 40 according to the present embodiment is ensured by reducing the amount of collected liquid (blood collection amount) to ensure the frequency of collection (blood collection). As described above, information on light or radiation per unit volume (in this embodiment, blood radioactivity concentration) can be accurately obtained.
  • the main flow path 13 described above is preferably formed by grooving a flat glass substrate 11 with a predetermined dimension.
  • optical measurement means in this embodiment, the light source 21 and the photodiode 22
  • the flat plate (disk 24) contains the liquid (blood) to be measured, and is the same as the flat plate having a predetermined dimension and a plurality of grooves, and the flow path (main flow path 13) is the same.
  • the liquid (blood) to be measured is formed so as to be able to flow, and a plurality of grooves formed in the radial direction are provided.
  • imaging means imaging section 32 in this embodiment
  • groove length / groove area calculating means In the present embodiment, groove length / groove region calculation 34
  • volume calculation means volume calculation unit 35 in the present embodiment
  • the contrast of the image described in the blood collection device 10 corresponds to image information of a flat plate (in the present embodiment, the disk 24) in the blood collection measurement system
  • the cross-sectional area or groove of the groove 26 described in the blood collection device 10 is the same.
  • the depth corresponds to the groove information in the blood collection measurement system.
  • the imaging plate IP and the reading unit 41 detects and counts.
  • the liquid to be measured is blood
  • the imaging plate IP and the reading unit 41 separately count the detected radiation, and count the volume of each part of plasma and blood cells, and the radiation count information of each part obtained by the imaging plate IP and the reading unit 41, respectively.
  • the information calculation means obtains the count information (blood radioactivity concentration in this embodiment) of each unit per unit volume.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the liquid collection measuring system (the blood collection measuring system in the embodiment) includes the liquid collection device (the blood collection device 10 in the embodiment) and the measurement device (the measurement device 40 in the embodiment).
  • the liquid collecting device alone or the measuring device alone may be used.
  • the liquid is not limited to blood as long as it is a liquid to be measured.
  • it may be a liquid containing a fluorescent agent or a mixed liquid used in an analyzer.
  • the liquid collection device includes (c) optical measurement means (the light source 21 and the photodiode 22 in the embodiment).
  • optical measurement means the light source 21 and the photodiode 22 in the embodiment.
  • the light source 21 and the photodiode 22 have been described as an example of the optical measurement means.
  • any means for measuring the liquid interval while optically monitoring the liquid to be measured can be used for the light source 21 and the photodiode 22.
  • the light source 21 and the photodiode 22 are so-called “transmission type sensors” that are arranged to face each other with the main flow channel 13 interposed therebetween as shown in FIG.
  • a so-called “reflective sensor” may be used in which light detection means typified by a photodiode is provided on the same side, and detection is performed using reflected light from blood.
  • the centrifugal separation in order to apply the centrifugal separation of the liquid (blood in the embodiment) in the liquid collection device (blood collection device 10 in the embodiment), (d) a flat plate (disk 24 in the embodiment) And (e) the rotation means (rotation drive unit 31).
  • the centrifugal separation when the centrifugal separation is not performed, it is not always necessary to provide the flat plate and the rotation means.
  • the dispenser 23 shown in FIG. the flat plate is not limited to the circular plate 24 but may be a square plate, a polygonal plate, or the like, but it is preferable that the center of rotation has a center of gravity considering rotation.
  • the liquid to be measured is formed to flow through the flow path (in the embodiment, the main flow path 13) for the flat plate (disk 24).
  • the substrate (the glass substrate 11 in the embodiment) is configured to be detachable, and the flat plate (disk 24) is configured so that the flow channel (main flow channel 13) and the flat groove 26 are fitted when attached. May be formed so that the liquid to be measured can flow through the flow path (main flow path 13 in the embodiment).
  • the imaging unit may be a radiation imaging unit including a radiation irradiation unit and a radiation detection unit.
  • the radioactivity concentration is different in each part of the centrifuged liquid, and the different points are used.
  • the liquid is blood, it appears as a difference in density on the image of plasma and blood cells due to the difference in radioactivity concentration, and can be easily identified on the image.
  • a liquid containing a fluorescent agent may be used as described in the modification (2).
  • a fluorescent substance that is a fluorescent agent is included in the liquid, and the measuring device measures light generated from the fluorescent substance with a CCD camera or the like. Therefore, the information of light per unit volume is accurately obtained.
  • a two-dimensional radiation sensor such as a scintillator array and a photomultiplier or a semiconductor detector
  • the light generated from the luminescent material may be measured in the same manner.
  • the liquid collection measurement system in the embodiment described above, (a) the flow path (main flow path 13 in the embodiment) and (b) the extraction means (pressure generator 30) are provided.
  • the configuration of the liquid collection device (blood collection device 10 in the embodiment) provided in the system is not particularly limited as long as the liquid to be measured is collected, and the flow collection device and the extraction unit are necessarily provided. There is no need. You may perform a quantitative analysis using the liquid extract

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

 採血装置10は、主流路13と圧力発生器30とを備え、主流路13の途中に設けられ、指定された所定の間隔で気体をセパレータとして挿入することで、圧力発生器30は測定対象の血液を時系列的に分離して取り出す。このように血液を主流路13に連続的に送り込みつつ、気体からなるセパレータで挿入することで、微小体積の血液を取り出すことが可能になる。そして、血液の消費を抑え、採血量を最小限に抑えることができる。また、セパレータを挿入する作業は高速性にも優れているので、短時間の繰り返し採取、すなわち採血の頻回性を確保することができる。

Description

液体採取装置、測定装置並びにそれらを備えた液体採取測定システム
 この発明は、測定対象の液体を時系列に分離して採取する液体採取装置、その採取された液体中に含まれている発光あるいは蛍光物質から発生した光あるいは液体中に含まれている放射線を測定する測定装置並びにそれらを備えた液体採取測定システムに関する。
 液体採取装置として、血液を採取する、すなわち採血する採血装置を例にとって説明するとともに、測定装置として、その血液に含まれている放射線を計数して、放射線の計数や放射能濃度といった計数情報を測定する装置を例に採って説明する。これらの装置は、核医学診断(例えば、PET(Positron Emission Tomography)、SPECT(Single Photon Emission CT)など)における定量解析で用いられ、特に小動物(例えばマウスやラットなど)の動脈血中の放射能濃度の測定に用いられている。従来、上述した小動物の定量解析では、以下のような(a)~(c)の方式が採用されている。
 (a)手採血
 マウス動脈に挿入したカテーテルの他端から、血圧によって自出された血液を適当な容器に受け取る。続いて、容器内の血液のうち一定体積を定量ピペットによって吸い上げ、吸い上げられた血液中の放射線を計数(すなわちカウント)して、全血中放射能濃度を測定する。この測定によって代謝物分析に供する。さらに、容器内に残った血液を遠心分離させて血漿を得て、同様に、定量ピペットによって採取して、血漿中放射能濃度を測定する。
 (b)動脈流路β線検出器
 動脈血流路にβ線検出器を設置することで、血中放射能濃度を測定する。β線をプラスチックシンチレータやPINダイオードで検出する。例えば、非特許文献1では、ダイオードは、長さが30[mm]の細長い形状を有し、長辺方向に沿って血液が入ったチューブを配管することで、検出可能面積を増加させ、検出効率を確保している。
 (c)微小流体素子方式
 マウス血圧にて自出された動脈血を、図8に示すようにマイクロチップ(素子)MC上に導く方式である。マイクロチップMCには、1本の主流路F、選択可能な支流路F、および流路洗浄や血液排出用に使用するヘパリン(heparin)溶液Hを流し込み、あるいは使用されたヘパリン溶液Hや血液Bを流し出すための側路Fを配設している。支流路Fの各々の先には容器を配設しており、支流路Fのいずれか1つが、マイクロチップMCに供給されるアルゴンガスGasのガス圧、マイクロチップMCのメカニズムによって選択されるように構成されている。支流路Fのいずれか1つが選択された状態で血液Bを流し込む。各々の流路F,Fが、マイクロチップMCに対して所定の寸法で溝加工したもので形成されており、流し込まれた血液Bの溝長あるいは溝領域がわかれば、その血液Bの微小体積が規定されるのがマイクロチップMCの特徴である。その規定された微小体積によって、予め定められた体積の血液Bが流路内に満ちた状況で、ヘパリン溶液Hの圧入によって所定の受け容器(図示省略)に血液Bを送り込む。その後、各流路F,Fをヘパリン溶液Hで洗浄し、次の採血に備える。受け容器内の血液Bを、生理食塩水とともに別容器に吸い上げ、ウェルカウンタによって血液B中の放射線を計数する(例えば、非特許文献2参照)。
L. Convert, G. M. Brassard, J. Cadorette, D. Rouleau, E. Croteau, M. Archambault, R. Fontaine, and R. Lecomte, "A microvolumetric β blood counter for pharmacokinetic PET studies in small animals," IEEE Nuclear Sci, vol. 54, no. 1, 2007. H. -M. Wu, G. Sui, C. -C. Lee, M. L. Prins, W. Ladno, H. -D. Lin, A. S. Yu, M. E. Phelps, and S. -C. Huang, "In vivo quantitation of glucose metabolism in mice using small-animal PET and a microfluidic device," J Nucl Med, vol. 48, pp. 837-845, 2007.
 しかしながら、上述した(a)~(c)の方式では、採血量や採血の頻回性という問題点やヘマトクリット値や単位体積当たりの計数情報である血中放射能濃度を正確に求めることができないという問題点がある。(c)の方式で血液の微小体積がたとえ規定されていても、別容器に移し替える間に放射能が減衰してしまい、後者の問題点のようにヘマトクリット値や単位体積当たりの計数情報である血中放射能濃度の統計精度が低下する恐れがある。また、前者の問題点について、以下に詳しく説明する。
 (I)血液量(採血量)
 マウスの体重を30[g]とする。また、概ねの体重の7.5%が血液であるので、想定される総血液量は2250[μL] となる。また、全血の10%程度までの損失(ロス)であれば、マウスの生理状況への影響を無視することができることから、許容最大採血量は225[μL]となる。上述した(a)の方式では、規定量以上の血液を一旦取り出し、ここから規定量を吸い上げる方式となることから、出血量が多くなる。そのため、許容最大採血量内で得られるサンプリング数(採血点数)が少なくなり、定量解析を十分に行うことができない。上述した(b)の方式では、一定流量(例えば凝血による閉塞が起こらないという条件で8[μL/min]以上)で上述したチューブ内に血液を流し続けるので、許容最大採血量を下回るためには測定時間が制限され、長時間の定量解析を行うことができない。上述した(c)の方式では、マイクロチップ上の流路全体に血液を充填することで定体積を実現し、採血毎に流路全体をヘパリン溶液で洗浄することで、採血回数間での汚染を抑制する。したがって、微小流量チップの定体積部以外の箇所に残存する血液については、採血毎に無駄になることから、総採血量は増加する。特に、チップへの接続部などの無駄なスペースに残った血液については、採血回数毎に無駄となることから、総採血量は採血毎に増加するものと思われる。
 (II)採血の頻回性
 マウスでは、一般に、放射性薬剤の投与直後の血中放射能変化がヒトよりも急峻であることを考慮すると、最速1秒毎の採血が必要となる。上述した(a)の方式では、上述したように、規定量以上の血液を一旦取り出し、ここから規定量を吸い上げる方式となることから、高頻度測定は手技的に困難である。また、導血に使用するカテーテルが極めて細く、かつ血液の粘性も考慮すると、カテーテル先端からサンプル保持のためのシリンジに向かっての血液の滴下にも、さほどの高速性を期待することはできない。以上より、(a)方式では高頻度採血は不可能である。上述した(c)の方式では、血液流路内を血液で一旦満たし、これをヘパリン溶液で洗い出す。また、チップ(素子)上の流路全体を、採血毎に血液で満たすことになるので、次の採血に移る前に、上述したように流路全体をヘパリン溶液で洗浄する必要がある。したがって、採血毎に血液もしくはヘパリン溶液が、流路に順に満たされる必要があり、時間を消費する可能性があり、高頻度採血には不適である。
 また、上述した採血量や採血の頻回性という前者の問題点の他に、血液を遠心分離させて血漿および血球を得る場合には、さらなる以下の問題点もある。
 (III)全血および血漿放射能測定
 PET定量解析では、全血および血漿中の放射能濃度の双方が必要となる。上述した(a)の方式では、全血が流れるチューブの放射線を計数するので、血漿中の放射能の測定は不可能である。予め、別のマウスで全血および血漿の放射能比を測定しておくか、あるいは測定中に数回にわたって採血を別途行い、ここから全血血漿比を取得する必要がある。また、マウス血液中の低放射能性により、放射能測定(放射線の計数)には時間を要すると考えられるが、一旦、全血の放射線を計数した後に、遠心分離により血漿を分離し、その後に血漿の放射線を計数すると、放射線が既に減衰し、測定が十分に行えないという危険性がある。また、上述した(c)の方式では、図8に示すように定量解析すべき支流路Fに流し込まれた血液は血漿分離できていないので、別容器で血漿分離を改めて行わなければならない。もし、支流路Fで血漿分離を行うとなると、マイクロチップ全体を回転させなければならないが、マイクロチップの構造が長辺に伸びているのと、主流路Fが形成されている構造上の問題により、マイクロチップ全体を回転させての遠心分離は困難である。
 この発明は、このような事情に鑑みてなされたものであって、液体の採取量を減らして採取の頻回性を確保して、単位体積当たりの光あるいは放射線の情報を正確に求めることができる液体採取装置、測定装置並びにそれらを備えた液体採取測定システムを提供することを目的とする。
 この発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、この発明の液体採取装置は、測定対象の液体を時系列に分離して採取する液体採取装置であって、(a)前記測定対象の液体が流れる流路と、(b)その流路の途中に設けられ、指定された所定の間隔で気体または前記測定対象の液体とは別の液体をセパレータとして挿入することで、前記測定対象の液体を時系列に分離して取り出す取り出し手段とを備えていることを特徴とするものである。
 この発明の液体採取装置によれば、(a)流路と(b)取り出し手段とを備え、流路の途中に設けられ、指定された所定の間隔で気体または上述した測定対象の液体とは別の液体をセパレータとして挿入することで、取り出し手段は測定対象の液体を時系列に分離して取り出す。このように上述した液体を流路に連続的に送り込みつつ、気体または液体からなるセパレータで挿入することで、例えば1[μL]程度の微小体積の液体を取り出すことが可能となる。そして、従来のような採取毎の洗浄液(採血の場合にはヘパリン溶液)に伴う測定対象の液体の消費を抑え、その液体の採取量を最小限に抑えることができる。また、セパレータを挿入する作業は高速性にも優れているので、短時間の繰り返し採取、すなわち採取の頻回性を確保することができる。その結果、液体の採取量を減らして採取の頻回性を確保することができる。
 上述したこの発明の液体採取装置において、上述した流路は、平面状の基板に対して所定の寸法で溝加工したもので形成されているのが好ましい。すなわち、所定の寸法で溝加工されていることから、流路に送り込まれた液体の溝長あるいは溝領域がわかれば、所定の寸法で溝加工された溝の断面積あるいは溝の深さに基づいて流路に送り込まれた液体の体積を規定することができる。
 上述したこれらの発明の液体採取装置において、(c)光学測定手段を備えるのが好ましい。具体的には、上述した光学測定手段は、流路を流れる測定対象の液体を光学的に監視しながら液体の長さ情報を測定し、その光学測定手段による測定結果に基づいてセパレータの間隔を制御することで上述した取り出し手段によって取り出されるべき液体の体積を制御する。このようにセパレータの間隔によって液体の流量、ひいては液体の体積を制御することができ、液体の採取量を最小限に抑えることができる。
 上述したこれらの発明の液体採取装置については、液体の遠心分離にも適用することができる。つまり、(d)平板と(e)回転手段とを備え、平板については、流路に対して測定対象の液体が流通可能に形成されて、かつ径方向に形成された複数本の溝加工が施されて構成されており、回転手段はその平板を回転させる。その回転手段による平板の遠心力を利用して、液体を遠心分離させることが可能である。なお、液体が血液の場合には、回転手段による平板の遠心力を利用して、血液を遠心分離させて血漿および血球に分離する血漿分離を行うことが可能である。
 このような遠心分離を行う場合において、遠心分離された液体の各部(例えば液体が血液の場合には血漿および血球)が分かれて存在することになる。遠心分離された液体の各部においては、光の吸光度あるいは放射能濃度が互いに異なるので、その異なる点を利用して、平板を撮像して、その撮像結果を用いて各部の体積をより一層に正確に求めればよい。具体的には、(f)撮像手段と(g)溝長・溝領域算出手段と(h)体積算出手段とを備え、撮像手段は平板を撮像する。特に、液体が血液の場合には、吸光度あるいは放射能濃度の相違によって血漿および血球が撮像された画像上で濃淡差となって現れ、画像上で容易に識別可能である。その撮像手段によって撮像された平板の溝加工された溝における画像の濃淡差(すなわち吸光度あるいは放射能濃度の相違)に基づいて、遠心分離された液体の各部の溝長あるいは溝領域を溝長・溝領域算出手段は求める。その溝長・溝領域算出手段で求められた液体の各部の溝長と溝の断面積とに基づいて、あるいは溝長・溝領域算出手段で求められた液体の各部の溝領域と溝の深さとに基づいて、体積算出手段は上述した各部の体積をそれぞれ求める。すなわち、溝長・溝領域算出手段で液体の各部の溝長あるいは溝領域が求まれば、溝の断面積あるいは溝の深さに基づいて各部の体積をそれぞれ求めることができる。なお、平板よりも上流側である流路で規定された液体を平板に移し変えることで、液体の体積が減少するなどのように増減が考えられるが、撮像手段によって撮像された平板の画像情報(画像の濃淡差)を利用して平板内に収容された液体の各部の体積を改めて求めているので、各部の体積をより一層に正確に求めることができる。
 上述したこれらの発明の液体採取装置において、測定対象の液体の一例は血液である。この場合には、液体採取装置は採血するための装置(採血装置)となる。なお、測定対象の液体であれば、血液に限定されずに、蛍光剤が含まれた液体や、分析装置に用いられる混合液などであってもよい。
 また、この発明の測定装置は、測定対象の液体中に含まれている発光あるいは蛍光物質から発生した光あるいは測定対象の液体中に含まれている放射線を測定する測定装置であって、(A)前記光あるいは放射線を2次元的に同時検出して光あるいは放射線の2次元画像情報を求める検出手段と、(B)前記液体を収容し、かつ所定の寸法で複数本の溝加工された平板の画像情報、およびその平板の溝加工された溝の情報に基づいて求められた液体の体積と、前記検出手段で求められた前記光あるいは放射線の2次元画像情報とに基づいて、単位体積当たりの光あるいは放射線の情報を求める情報算出手段とを備えることを特徴とするものである。
 この発明の測定装置によれば、(A)検出手段と(B)情報算出手段とを備え、液体を収容し、かつ所定の寸法で複数本の溝加工された平板の画像情報、およびその平板の溝加工された溝の情報に基づいて求められた液体の体積と、検出手段で求められた光あるいは放射線の2次元画像情報とに基づいて、単位体積当たりの光あるいは放射線の情報を情報算出手段は求める。すなわち、平板に既に移し変えられた液体について、平板の画像情報および平板の溝加工された溝の情報に基づいて求められた液体の体積は、それ以降減少するなどの増減がなく、その液体の体積に基づいて単位体積当たりの光あるいは放射線の情報を求めている。したがって、平板の画像情報を利用して、液体の体積の増減がなく単位体積当たりの光あるいは放射線の情報を正確に求めることができる。また、検出手段は、2次元的に同時検出することで、光の退光や放射線の減衰の影響を少なくすることができる。
 上述したこの発明の測定装置において、測定対象の液体の一例は血液であって、その血液に含まれている放射線を検出手段が検出してもよい。この場合には、血液の体積と検出手段で求められた放射線の計数情報とに基づいて、単位体積当たりの放射線の計数情報(例えば血中放射能濃度)を情報算出手段は正確に求めることができる。この発明の液体採取装置でも述べたように、蛍光剤が含まれた液体などであってもよい。例えば、蛍光剤が含まれた液体の場合には、液体中に蛍光剤である蛍光物質が含まれていることになり、この発明における測定装置では、発光あるいは蛍光物質から発生した光を測定して、単位体積当たりの光の情報を正確に求めることになる。本明細書中では、「発光」とは発光(luminescence)と蛍光(fluorescence)とを含むことに留意されたい。
 測定対象液体が血液の場合には、血液を遠心分離させて血漿分離された血漿および血球に含まれている放射線を検出手段はそれぞれ分離して検出することで計数し、血漿および血球の各部の体積と検出手段でそれぞれ求められた各部の放射線の計数情報とに基づいて、単位体積当たりの各部の計数情報を情報算出手段は求める。血漿および血球の各部の体積を並行して求めて、単位体積当たりの各部の計数情報を並行して求める(すなわち同時に求める)ことが可能である。この同時算出によって検出手段による検出時間(測定時間)を延ばすことができ、低濃度の放射線量を高い統計精度で測定することができるという効果をも奏する。
 さらに、この発明の液体採取測定システムは、測定対象の液体を採取する液体採取装置と、その採取された液体中に含まれている発光あるいは蛍光物質から発生した光あるいは前記液体中に含まれている放射線を測定する測定装置とを備えた液体採取測定システムであって、(A)前記光あるいは放射線を2次元的に同時検出して光あるいは放射線の2次元画像情報を求める検出手段と、(B)前記液体を収容し、かつ所定の寸法で複数本の溝加工された平板の画像情報、およびその平板の溝加工された溝の情報に基づいて求められた液体の体積と、前記検出手段で求められた前記光あるいは放射線の2次元画像情報とに基づいて、単位体積当たりの光あるいは放射線の情報を求める情報算出手段とを備えることを特徴とするものである。
 この発明の液体採取測定システムによれば、この発明の測定装置と同様に、平板に既に移し変えられた液体について、平板の画像情報および平板の溝加工された溝の情報に基づいて求められた液体の体積は、それ以降減少するなどの増減がなく、その液体の体積に基づいて単位体積当たりの光あるいは放射線の情報を求めている。したがって、平板の画像情報を利用して、液体の体積の増減がなく単位体積当たりの光あるいは放射線の情報を正確に求めることができる。
 上述したこの発明の液体採取測定システムにおいて、そのシステムに備えられる液体採取装置の構成については、測定対象の液体を採取するのであれば、特に限定されないが、上述した発明の液体採取装置と同様に、(a)流路と(b)取り出し手段とを備えるのがより好ましい。すなわち、指定された所定の間隔で気体または上述した測定対象の液体とは別の液体をセパレータとして挿入することで、取り出し手段は測定対象の液体を時系列に分離して取り出す。その取り出し手段で取り出された液体毎にその液体中に含まれている発光あるいは蛍光物質から発生した光あるいは測定対象の液体中に含まれている放射線を、そのシステムに備えられる測定装置はそれぞれ測定する。このように、この発明の液体採取装置でも述べたように、液体の採取量を減らして採取の頻回性を確保して、この発明の測定装置でも述べたように、単位体積当たりの光あるいは放射線の情報を正確に求めることができる。
 この発明の液体採取装置でも述べたように、上述したこれらの発明の液体採取測定システムにおいて、上述した流路は、平面状の基板に対して所定の寸法で溝加工したもので形成されているのが好ましい。また、(c)光学測定手段を備えるのが好ましい。また、液体の遠心分離にも適用するために、(d)平板と(e)回転手段とを備えてもよい。なお、平板は、(測定対象の)液体を収容し、かつ所定の寸法で複数本の溝加工された平板と同一であって、流路に対して測定対象の液体が流通可能に形成されて、かつ径方向に形成された複数本の溝加工が施されている。
 このような遠心分離を行う場合において、この発明の液体採取装置でも述べたように、(f)撮像手段と(g)溝長・溝領域算出手段と(h)体積算出手段とを備えてもよい。この場合、液体採取装置で述べた画像の濃淡差が、この発明の液体採取測定システムでは平板の画像情報に相当し、液体採取装置で述べた溝の断面積あるいは溝の深さが、この発明の液体採取測定システムでは溝の情報に相当する。
 この発明の測定装置でも述べたように、上述したこれらの発明の液体採取測定システムにおいて、測定対象の液体の一例は血液であって、その血液に含まれている放射線を検出手段が検出してもよい。また、測定対象の液体が血液の場合には、この発明における測定装置でも述べたように、血液を遠心分離させて血漿分離された血漿および血球に含まれている放射線を検出手段はそれぞれ分離して検出することで計数し、血漿および血球の各部の体積と検出手段でそれぞれ求められた各部の放射線の計数情報とに基づいて、単位体積当たりの各部の計数情報を情報算出手段は求めてもよい。
 この発明に係る液体採取装置によれば、流路の途中に設けられ、指定された所定の間隔で気体または上述した測定対象の液体とは別の液体をセパレータとして挿入することで、取り出し手段は測定対象の液体を時系列に分離して取り出し、液体の採取量を減らして採取の頻回性を確保することができる。
 また、この発明に係る測定装置および液体採取測定システムによれば、平板に既に移し変えられた液体について、平板の画像情報および平板の溝加工された溝の情報に基づいて求められた液体の体積は、それ以降減少するなどの増減がなく、その液体の体積に基づいて単位体積当たりの光あるいは放射線の情報を求めている。したがって、平板の画像情報を利用して、液体の体積の増減がなく単位体積当たりの光あるいは放射線の情報を正確に求めることができる。
(a)、(b)は、実施例に係る採血測定システムの採血装置および測定装置の概略斜視図である。 実施例に係る採血測定システムの採血装置および測定装置のブロック図である。 実施例に係る一連の定量解析に関する処理の流れを示したフローチャートである。 検出器信号の出力を模式的に表した図である。 血漿分離された血漿および血球の様子を模式的に表した図である。 (a)は円板の溝の概略平面図、(b)は円板の溝の概略断面図である。 血中放射能濃度曲線のグラフである。 従来の微小流体素子方式のときのマイクロチップの全体構成を示す平面図である。
符号の説明
 10 … 採血装置
 11 … ガラス基板
 13 … 主流路
 21 … 光源
 22 … フォトダイオード
 24 … 円板(CDウェル)
 26 … 溝
 30 … 圧力発生器
 31 … 回転駆動部
 32 … 撮像部
 34 … 溝長・溝領域算出部
 35 … 体積算出部
 40 … 測定装置
 41 … 読取部
 44 … 情報算出部
 IP … イメージングプレート
 以下、図面を参照してこの発明の実施例を説明する。図1は、実施例に係る採血測定システムの採血装置および測定装置の概略斜視図であり、図2は、実施例に係る採血測定システムの採血装置および測定装置のブロック図である。本実施例では、測定対象の液体として血液を例に採って説明するとともに、液体採取測定システムとして採血測定システムを例に採って説明し、液体採取装置として採血装置を例に採って説明する。
 本実施例に係る採血測定システムは、図1に示すように、測定対象の血液を時系列に分離して採取する採血装置10と、その採取された血液中に含まれている放射線(例えばβ線やγ線など)を測定する測定装置40とを備えている。本実施例では、マウスの体内への放射性薬剤の投与後の血液を採取(すなわち採血)して、血液中に含まれている放射線を測定する。また、血漿分離を行い、血漿分離された血漿および血球に含まれている放射線をそれぞれ測定する。採血装置10は、この発明における液体採取装置に相当し、測定装置40は、この発明における測定装置に相当する。
 採血装置10は、2枚のガラス基板11,12を上下に重ねて構成されたマイクロチップを備えている。上側のガラス基板11に対して所定の寸法でT字型の溝加工を施しており、その溝加工の溝によって主流路13および側路14をそれぞれ形成している。その上で、上側のガラス基板11とガラス基板12とを、溝を形成した面を内側にして貼り合せている。つまり、主流路13および側路14は、平面状のガラス基板11に対して所定の寸法で溝加工したもの、およびガラス基板12で構成された管路部分をいう。ガラス基板11は、この発明における基板に相当し、主流路13は、この発明における流路に相当する。ここで、採血装置10の素材はガラスに限定されず、アクリル、ポリカーボネート、COP(シクロオレフィンポリマー)など、光学的に透明なものであれば良い。なお、主流路13および側路14を管路ではなく、開放流路とする場合は、上側のガラス基板11とガラス基板12とを、溝を形成した面を外側にして貼り合せればよい。
 主流路13の血液入口側にはカテーテル15を配設しており、主流路13とカテーテル15とを、コネクタ16を介して接続している。ガラス基板11,12からなるマイクロチップをマウスの直近に設置して、導血に使用するカテーテル15を上述したコネクタ16で接続することで、無駄な血液の流出を防ぐ。このように、カテーテル15を介して主流路13に血液を連続的に送り込む。逆に、主流路13の血液出口側には血液用配管17を配設しており、主流路13と血液用配管17とを、コネクタ18を介して接続している。一方、側路14の入口側には気泡用配管19を配設しており、側路14と気泡用配管19とを、コネクタ20を介して接続している。なお、側路14の出口側には主流路13に流通可能に接続しており、側路14を通って主流路13に気泡を送り込む。
 なお、必要に応じて主流路13や側路14の流路にヘパリン溶液を流し込むことで、流路を洗浄する機能を設けてもよい。さらに、主流路13や側路14の流路での血液凝固の発生を防ぐために、抗凝固剤を実際に投入する、あるいは流路内面に抗凝固剤を塗布してコーティングする処理を施すのが好ましい。
 主流路13を挟んで光源21およびフォトダイオード22を配設している。主流路13を流れる血液に光源21から光を照射し、血液による遮光をフォトダイオード22が検知することで、その血液を光学的に監視(モニタ)しながら後述する血液の長さ情報を測定する。光源21およびフォトダイオード22は、この発明における光学測定手段に相当する。
 一方、上述した血液用配管17の下流側にはディスペンサ23を接続している。このディスペンサ23から滴下した血液を受け取って収容する円板(「CDウェル」とも呼ばれる)24を配設している。円板24の中央側には、滴下された血液を受け取る複数の開口部25を放射状に配設している。円板24に対しても、上述したガラス基板11と同様に、溝加工を施しており、その溝加工の溝によって複数本のU字型の溝26を放射状に形成している。各々のU字型の溝26は、上述した開口部25の外側一端に一対一でそれぞれ接続されており、各々のU字型の溝26は、円板24の径方向に延びて形成されている。このように、ディスペンサ23を介在させることで、主流路13に対して血液が流通可能に円板24が形成されることになる。円板24は、この発明における平板に相当する。
 一方、測定装置40は、読取部41を備えている。この読取部41には、露光後のイメージングプレートIPを挿入するためのカバー部を設けており、イメージングプレートIPから励起された光を読み取ることで血液中に含まれているβ線を検出する。具体的には、図1(b)に示すように、読取部41は、レーザ光源42とフォトマルチプライヤチューブ(光電子増倍管)43とを備えており、レーザ光源42からイメージングプレートIPにレーザを照射して、イメージングプレートIPへのレーザ照射によって励起された光をフォトマルチプライヤチューブ43が電子に変換して増倍させることで、β線を2次元的に同時に検出する。イメージングプレートIPおよび読取部41は、この発明における検出手段に相当する。
 続いて、採血装置10および測定装置40のブロック図について説明する。採血装置10は、上述したガラス基板11や主流路13や円板24などの他に、図2に示すように、圧力発生器30と回転駆動部31と撮像部32と画像処理部33と溝長・溝領域算出部34と体積算出部35とを備えている。測定装置40は、上述した読取部41の他に、情報算出部44を備えている。その他に、採血装置10および測定装置40は、コントローラ50と入力部51と出力部52とメモリ部53とを共有している。圧力発生器30は、この発明における取り出し手段に相当し、回転駆動部31は、この発明における回転手段に相当し、撮像部32は、この発明における撮像手段に相当し、溝長・溝領域算出部34は、この発明における溝長・溝領域算出手段に相当し、体積算出部35は、この発明における体積算出手段に相当し、情報算出部44は、この発明における情報算出手段に相当する。
 圧力発生器30は、気体(例えば空気やアルゴンなど)の圧力を操作して、側路14を通って主流路13に気体を送り込み、指定された所定の間隔でその気体を気泡として挿入することで、測定対象物の血液を時系列的に分離して取り出す。つまり、気泡は、この発明におけるセパレータとしての機能を果たす。なお、セパレータして気体を使用したが、気体に限定されずに、測定対象の液体(本実施例では血液)に対して混合する可能性が少ない、あるいは可能性がなければ、測定対象の液体とは別の液体をセパレータとして使用してもよい。本実施例のように測定対象の液体が血液の場合には、ミネラルオイルやフッ素系のオイルなどに代表されるように血液と相互に混ざり合わない液体をセパレータとして使用してもよい。
 回転駆動部31は、図示を省略するモータや回転台等で構成されており、モータの回転駆動によって回転台を回転させ、回転台に載置された円板24を回転させる。この回転駆動部31による円板24の遠心力を利用して、測定対象の液体(本実施例では血液)を遠心分離させる。本実施例のように測定対象の液体が血液の場合には、回転駆動部31による円板24の遠心力を利用して、血液を遠心分離させて血漿および血球に分離する血漿分離を行うことになる。
 撮像部32は、円板24を撮像する。本実施例では、撮像部32として、円板24の直径分の長さを少なくとも有する線状の光源(図示省略)と円板24を挟んで光源に対して対向配置された線状のフォトダイオードアレイ(すなわちラインセンサ)(図示省略)で構成されたフラットヘッドスキャナを採用する。フラットヘッドスキャナで円板24上を走査(スキャン)することで円板24を撮像して、円板24の画像を取得する。画像処理部33は、撮像部32で得られた円板24の画像に対して各種の処理を行う。例えば、ラグ補正やダイナミックレンジ変換等を行えばよい。
 溝長・溝領域算出部34は、撮像部32によって撮像された円板24の溝加工されたU字型の溝26(図1を参照)における画像の濃淡差に基づいて、遠心分離された液体(本実施例では血液)の各部の溝長あるいは溝領域を求める。本実施例のように測定対象の液体が血液の場合には、血漿分離された血漿および血球の各部の溝長あるいは溝領域を溝長・溝領域算出部34は求める。
 体積算出部35は、溝長・溝領域算出部34で求められた液体(本実施例では血液)の各部の溝長と溝26(図1を参照)の断面積とに基づいて、あるいは溝長・溝領域算出部34で求められた液体(血液)の各部の溝領域と溝26(図1を参照)の深さとに基づいて、各部の体積をそれぞれ求める。本実施例のように測定対象の液体が血液の場合には、溝長・溝領域算出部34で求められた血漿および血球の各部の溝長と溝26の断面積とに基づいて、あるいは溝長・溝領域算出部34で求められた血漿および血球の各部の溝領域と溝26の深さとに基づいて、体積算出部35は各部の体積をそれぞれ求める。
 情報算出部44は、体積算出部35で求められた液体(本実施例では血液)の体積と、イメージングプレートIPおよび読取部41で求められたβ線の計数情報に基づいて、単位体積当たりのβ線の計数情報を求める。本実施例では、放射線の計数情報は、β線の計数(単位は[Bq])であり、単位体積当たりの放射線の計数情報は、β線の血中放射能濃度(単位は[Bq/μL])である。
 コントローラ50は、採血装置10および測定装置40を構成する各部分を統括制御する。コントローラ50は、中央演算処理装置(CPU)などで構成されている。入力部51は、コントローラ50に入力する。例えば、入力部51は、オペレータが入力したデータや命令をコントローラ50に送り込む。入力部51は、マウスやキーボードやジョイスティックやトラックボールやタッチパネルなどに代表されるポインティングデバイスで構成されている。出力部52は、コントローラ50を介して送り込まれた各種のデータを出力する。出力部52はモニタなどに代表される表示部やプリンタなどで構成されている。
 メモリ部53は、コントローラ50を介して送り込まれた各種のデータを書き込んで記憶する。メモリ部53は、ROM(Read-only Memory)やRAM(Random-Access Memory)などに代表される記憶媒体で構成されている。本実施例では、フォトダイオード22で検知された血液の間隔や、画像処理部33で処理された各種のデータや、溝長・溝領域算出部34で求められた血漿および血球の各部の溝長あるいは溝領域や、体積算出部35でそれぞれ求められた各部の体積や、情報算出部44で求められた血中放射能濃度などについてはRAMに書き込んで記憶し、必要に応じてRAMから読み出す。ROMには、各種の定量解析を行うためのプログラム等を予め記憶しており、そのプログラムをコントローラ50が実行することでそのプログラムに応じた定量解析をそれぞれ行う。
 画像処理部33と溝長・溝領域算出部34と体積算出部35と情報算出部44とは、例えば上述したメモリ部53などに代表される記憶媒体のROMに記憶されたプログラムあるいは入力部51などに代表されるポインティングデバイスで入力された命令をコントローラ50が実行することで実現される。
 次に、一連の定量解析に関する処理について、図3~図7を参照して説明する。図3は、実施例に係る一連の定量解析に関する処理の流れを示したフローチャートであり、図4は、検出器信号の出力を模式的に表した図であり、図5は、血漿分離された血漿および血球の様子を模式的に表した図であり、図6(a)は、円板の溝の概略平面図であり、図6(b)は、円板の溝の概略断面図であり、図7は、血中放射能濃度のグラフである。
 (ステップS1)血液の主流路への送り込み
 マウス動脈にカテーテル15(図1を参照)を挿入して、マウス血圧にて自出された動脈血を、カテーテル15を介して主流路13(図1および図2を参照)に導くことで、主流路13に血液を連続的に送り込む。上述したように、抗凝固剤を投入、あるいは主流路13や側路14(図1および図2を参照)の流路内面に抗凝固剤を塗布してコーティング処理を施した後に血液を送り込む方が、流路での血液凝固の発生を防止するためにも好ましい。
 (ステップS2)セパレータの間隔制御
 主流路13(図1および図2を参照)を血液が流れていないときには、主流路13を挟んで光源21(図1および図2を参照)に対向配置されたフォトダイオード22(図1および図2を参照)に光源21から照射された光が入射されるので、図4に示すようにフォトダイオード22で光電変換された検出器信号がHighレベルとなってフォトダイオード22から出力される。逆に、主流路13を血液が流れているときには、光源21から照射された光がその血液によって遮られて遮光されるので、フォトダイオード22に光が入射されずに、図4に示すように検出器信号がLowレベルとなってフォトダイオード22から出力される。このように、血液による遮光をフォトダイオード22が検知することで、その血液を光学的に監視(モニタ)しながら血液の長さ情報を測定し、そのフォトダイオード22による測定結果に基づいてセパレータ(すなわち本実施例では気泡)の間隔を制御することで、圧力発生器30(図2を参照)によって取り出されるべき血液の体積をコントローラ50(図2を参照)は制御する。
 具体的には、光源21およびフォトダイオード22(図1および図2を参照)が、リニア光学系(例えば、光源21は主流路13の長手方向に沿って配設された線状の光源、複数のフォトダイオード22を同方向に沿って配設して構成された線状のフォトダイオードアレイ)の場合には、各々のフォトダイオード22でそれぞれ検知することで、図4に示すように距離(各々のフォトダイオード22を対応付けた素子番号)に対する検出器信号の出力が得られる。このとき、Lowレベルになっている検出器信号の間隔は、血液が連続的に流れている長さであり、Highレベルになっている検出器信号の間隔は、血液と血液の間のセパレータ長さである。主流路13は、所定の寸法で溝加工したもので形成されているので、この血液の間隔(すなわちセパレータ長さ)から、取り出されるべき血液の体積を求めることができる。すなわち、血液の間隔と主流路13の断面積とを乗算することで取り出されるべき血液の体積を求めることができる。
 このように求められた血液の長さ情報に基づいて、圧力発生器30(図2を参照)によって取り出されるべき血液の体積を制御すべく、圧力発生器30への圧力調整や、側路14(図1および図2を参照)を介した主流路13(図1および図2を参照)への気体の送り込みのタイミングをコントローラ30(図2を参照)は制御する。そして、それによってセパレータ(気泡)の間隔を制御して、取り出されるべき血液の体積を制御する。
 なお、送り込むセパレータが少ない(例えば2つのセパレータを送り込む)場合で、単発で血液を取り出すときには、隣接するセパレータ間の間隔、すなわち取り出すべき血液の間隔の方を制御してもよいし、送り込むセパレータが多い(例えば一定のタイミングでセパレータを送り続ける)場合で、血液を連続的に取り出すときには、上述したようにセパレータの間隔の方を制御してもよい。また、血液の流速が遅い場合や、上述したような単発で血液を取り出す場合には、血液の空間間隔(長さの間隔)あるいはセパレータの空間間隔(長さの間隔)を直接的に制御することで、取り出されるべき血液の体積を制御してもよいし、血液の流速が速い場合や、上述したような血液を連続的に取り出す場合には、上述したようにセパレータの時間間隔(セパレータの送り込みタイミングの周期)を制御することで、取り出されるべき血液の体積を制御してもよい。
 (ステップS3)円板へ移送
 ステップS2で取り出された微量血液を、血液用配管17(図1および図2を参照)を介してディスペンサ23(図1および図2を参照)に送り込む。ディスペンサ23は円板(CDウェル)24(図1および図2を参照)の開口部25(図1を参照)に、取り出された微量血液毎にそれぞれ滴下する。この滴下によって、取り出された微量血液が円板24に移送される。なお、円板24に形成された開口部25および溝26(図2を参照)については、採血回数(すなわち採血点数)分以上の本数を用意して、それを使用する。
 この滴下の際には、血液粘性や血液とそれが接する表面の濡れ性が大きい場合、採血血液の一部が主流路13(図1および図2を参照)側で残留される懸念があるので、主流路の内部表面およびディスペンサ23(図1および図2を参照)のノズル先端など、血液が接する表面を撥水処理することで血液全量の滴下を保証するようにするのが好ましい。また、円板24(図1および図2を参照)の開口部25(図1を参照)には親水処理することで、滴下された血液が全て円板24の溝26(図1を参照)内に全て吸い込まれるようにするのが好ましい。ただし、血液の体積については、撮像部32や溝長・溝領域算出部34や体積算出部35(いずれも図2を参照)によって求められて測定確定されるので、一部が残留することがあっても問題はない。
 (ステップS4)血漿分離
 ステップS3で円板24(図1および図2を参照)に血液を移送したら、コントローラ50(図2を参照)は回転駆動部31(図2を参照)を制御して、円板24を回転させて血漿および血球に分離する血漿分離を行う。上述したように、開口部25(図1を参照)の外側一端を開放して、溝26(図1を参照)に一対一で接続することで、血漿分離時の血液の分離を円滑に行う。また、溝26は、U字型となっているので、血漿分離時の血球が遠心力により円板24外へ脱出するのを防止し、図5に示すように、血漿分離後にU字の底部に血球BHが沈殿するようにする。図5の符号BPは血漿を示す。なお、開口部25については、血漿分離までの待機時間での凝血防止のために、待機に対して閉鎖するようにするのが好ましい。また、開口部25や溝26内部に、流路でも述べたように、凝血防止のために抗凝固剤を塗布したり、あるいは抗凝固剤を投入するのが好ましい。
 (ステップS5)円板の撮像
 撮像部32(図2を参照)は、血漿分離された血漿および血球を円板24(図1および図2を参照)ごとに撮像する。撮像部32として例えばフラットヘッドスキャナで円板24上を走査することで、フラットヘッドスキャナのフォトダイオードアレイが血漿および血球に血漿分離された円板24の光学像を取得して、その光学像を円板24の画像として取得することで撮像を行う。そして、画像処理部33(図2を参照)で円板24の画像に対して各種の処理を行う。なお、撮像部32としては光学的に撮像するものに限定されず、例えば放射線を照射して検出することで撮像を行ってもよい。
 (ステップS6)溝長・溝領域の算出
 上述したフラットヘッドスキャナの線状の光源を照射することで、吸光度の相違によって血漿および血球が撮像された画像上で濃淡差となって現れ、画像上で容易に識別可能である。その撮像部32(図2を参照)によって撮像された円板24(図1および図2を参照)の溝26(図1を参照)における画像の濃淡差(すなわち吸光度の相違)に基づいて、血漿および血球の各部の溝長あるいは溝領域を溝長・溝領域算出部34は求める。濃淡差のある1次元の画素数を溝長に変換して、2次元の画素数を溝領域に変換することで、血漿および血球の各部の溝長あるいは溝領域を求める。
 (ステップS7)体積の算出
 溝長・溝領域算出部34(図2を参照)で求められた血漿および血球の各部の溝長と溝26(図1を参照)の断面積とに基づいて、あるいは溝長・溝領域算出部34で求められた血漿および血球の各部の溝領域と溝26の深さとに基づいて、体積算出部35(図2を参照)は各部の体積をそれぞれ求める。
 図6(a)の平面図に示すように、(開口部25を含んだ)溝26の長手方向の長さ、すなわち溝長をxとし、図6(b)の断面図に示すように矩形断面の溝とした場合、溝26の深さをdとし、図6(a)および図6(b)に示すように、溝26の短手方向の長さ、すなわち溝幅をLとする。すると、溝長xがステップS6で求められているときには、溝26の断面積は、溝26の深さd×溝幅Lで表されるので、体積VはV=x×d×Lで求めることができる。逆に溝領域がステップS6で求められているときには、溝領域は、溝長x×溝幅Lで表され、溝の深さはdであるので、同様に、体積VはV=x×d×Lで求めることができる。血漿の体積をVとするとともに、血球の体積をVとする。
 (ステップS8)計数
 血漿および血球に血漿分離された円板24(図1および図2参照)ごとサンプルとして、図示を省略するカセッテを開いて収容して、その上にイメージングプレートIP(図1を参照)を収容して、カセッテを閉じる。一定時間後、カセッテから円板24を取り出し、とイメージングプレートIPに光を照射して露光を行う。この露光によって、血液中に含まれているβ線の電離能により、イメージングプレートIPの蛍光体(図示を省略)の格子欠陥に電子が捕獲される。露光後のイメージングプレートIPをカセッテから取り出して、測定装置40(図1および図2を参照)の読取部41(図1および図2を参照)のカバー部に挿入する。
 読取部41(図1および図2を参照)のレーザ光源42(図1および図2を参照)からイメージングプレートIP(図1を参照)にレーザを照射する。捕獲された電子がこの照射によって伝導体に励起され正孔と再結合し、蛍光体から光として励起される。このイメージングプレートIPへのレーザ照射によって励起された光をフォトマルチプライヤチューブ43(図1および図2を参照)が電子に変換して増倍させることで、電気パルスとして2次元的に同時に検出して計数する。なお、レーザ光源42からイメージングプレートIPへ照射した後には、再利用するために消去用光源(図示省略)から光をイメージングプレートIPへ照射することで、捕獲された電子を消去する。
 (ステップS9)血中放射能濃度の算出
 体積算出部35(図2を参照)で求められた血漿の体積V、血球の体積Vと、イメージングプレートIPと読取部41で求められたβ線の計数情報に基づいて、単位体積当たりのβ線の計数情報である血中放射能濃度を情報算出部44(図2を参照)は求める。
 撮像部32(図2を参照)によって撮像された円板24の画像と、イメージングプレートIPおよび読取部41で得られた計数情報であるβ線の分布像とを重ね合わせて、円板24の画像中の血漿とβ線の分布像中の血漿とを対応付けるとともに、円板24の画像中の血球とβ線の分布像中の血球とを対応付けることで、各部の計数を各部の体積で除算して、各部の血中放射能濃度をそれぞれ求める。血漿での計数をAとするとともに、血球での計数をAとすると、血漿での血中放射能濃度A/Vを求め、血球での血中放射能濃度A/Vを求める。この際、イメージングプレートIPと読取部41の出力値は、事前に既知の放射線量で校正しておく。
 この血中放射能濃度の結果を、取り出し時間で並べなおすことで、最終的に図7に示すような血中放射能濃度曲線のグラフが得られる。図7の横軸は取り出し時間、すなわち取得時間(図7では「Acquisition time」で表記)で、図7の縦軸は血中放射能濃度(図7では「PET equivalent counts」で表記)である。このように、取り出された血液の体積は、円板24(図1および図2を参照)の溝26(図1および図2を参照)の断面積と撮像部32(図2を参照)による撮像精度とによって決定され、放射線の計数精度(統計精度)はイメージングプレートIPへの露光時間によって決定される。放射線の減衰や必要なサンプリング数を考慮して、円板24を複数枚用意して、イメージングプレートIPで順次露光して撮像してもよい。
 本実施例に係る採血装置10によれば、(a)流路(本実施例では主流路13)と(b)取り出し手段(本実施例では圧力発生器30)とを備え、流路(主流路13)の途中に設けられ、指定された所定の間隔で気体(本実施例では空気やアルゴンなど)または上述した測定対象の液体(本実施例では血液)とは別の液体(測定対象の液体が血液の場合にはミネラルオイルやフッ素系のオイルなど)をセパレータとして挿入することで、取り出し手段(圧力発生器30)は測定対象の液体(血液)を時系列に分離して取り出す。このように上述した液体(血液)を流路(主流路13)に連続的に送り込みつつ、気体または液体からなるセパレータで挿入することで、例えば1[μL]程度の微小体積の液体(血液)を取り出すことが可能となる。そして、従来のような採取毎の洗浄液(採血の場合にはヘパリン溶液)に伴う測定対象の液体(血液)の消費を抑え、その液体の採取量(本実施例では採血量)を最小限に抑えることができる。また、セパレータを挿入する作業は高速性にも優れているので、短時間の繰り返し採取、すなわち採取(本実施例では採血)の頻回性を確保することができる。その結果、液体の採取量(採血量)を減らして採取(採血)の頻回性を確保することができる。
 本実施例では、主流路13は、好ましくは、平面状のガラス基板11に対して所定の寸法で溝加工したもので形成されている。すなわち、所定の寸法で溝加工されていることから、主流路13に送り込まれた液体(本実施例では血液)の溝長あるいは溝領域がわかれば、所定の寸法で溝加工された溝の断面積あるいは溝の深さに基づいて主流路13に送り込まれた液体(血液)の体積を規定することができる。
 本実施例では、採血装置10は、好ましくは、(c)光学測定手段(本実施例では光源21およびフォトダイオード22)を備えている。具体的には、上述した光学測定手段(光源21およびフォトダイオード22)は、流路(本実施例では主流路13)を流れる測定対象の液体(本実施例では血液)を光学的に監視しながら液体(血液)の長さ情報を測定し、その光学測定手段(光源21およびフォトダイオード22)による測定結果に基づいてセパレータの間隔を制御することで上述した取り出し手段(本実施例では圧力発生器30)によって取り出されるべき液体(血液)の体積を制御する。このようにセパレータの間隔によって液体(血液)の流量、ひいては液体(血液)の体積を制御することができ、液体の採取量(本実施例では採血量)を最小限に抑えることができる。
 本実施例では、液体の遠心分離に適用している。つまり、(d)平板(本実施例では円板24)と(e)回転手段(本実施例では回転駆動部31)とを備え、平板(円板24)については、流路(本実施例では主流路13)に対して測定対象の液体が流通可能に形成(本実施例ではディスペンサ23を介在させることで流通可能に形成)されて、かつ径方向に形成された複数本の溝加工が施されて構成されており、回転手段(回転駆動部31)はその平板(円板24)を回転させる。その回転手段(回転駆動部31)による平板(円板24)の遠心力を利用して、液体を遠心分離させることが可能である。なお、本実施例のように液体が血液の場合には、回転手段(回転駆動部31)による平板(円板24)の遠心力を利用して、血液を遠心分離させて血漿および血球に分離する血漿分離を行うことが可能である。
 このような遠心分離を行う場合において、遠心分離された液体の各部(本実施例のように液体が血液の場合には血漿および血球)が分かれて存在することになる。遠心分離された液体(血漿および血球)の各部においては、光の吸光度あるいは放射能濃度が互いに異なるので、その異なる点を利用して、平板(本実施例では円板24)を撮像して、その撮像結果を用いて各部の体積をより一層に正確に求めている。具体的には、(f)撮像手段(本実施例では撮像部32)と(g)溝長・溝領域算出手段(本実施例では溝長・溝領域算出34)と(h)体積算出手段(本実施例では体積算出部35)とを備え、撮像手段(撮像部32)は平板(本実施例では円板24)を撮像する。
 特に、本実施例のように液体が血液の場合には、吸光度あるいは放射能濃度の相違によって血漿および血球が撮像された画像上で濃淡差となって現れ、画像上で容易に識別可能である。その撮像手段(撮像部32)によって撮像された平板(本実施例では円板24)の溝加工された溝26における画像の濃淡差(すなわち吸光度あるいは放射能濃度の相違)に基づいて、遠心分離された液体の各部(本実施例では血漿および血球の各部)の溝長あるいは溝領域を溝長・溝領域算出手段(溝長・溝領域算出部34)は求める。その溝長・溝領域算出手段(溝長・溝領域算出部34)で求められた液体の各部(血漿および血球の各部)の溝長と溝26の断面積とに基づいて、あるいは溝長・溝領域算出手段(溝長・溝領域算出部34)で求められた液体の各部(血漿および血球の各部)の溝領域と溝26の深さとに基づいて、体積算出手段(体積算出部35)は上述した各部(血漿および血球の各部)の体積をそれぞれ求める。すなわち、溝長・溝領域算出手段(溝長・溝領域算出部34)で液体の各部(血漿および血球の各部)の溝長あるいは溝領域が求まれば、溝26の断面積あるいは溝26の深さに基づいて各部(血漿および血球の各部)の体積をそれぞれ求めることができる。
 なお、平板(本実施例では円板24)よりも上流側である流路(本実施例では主流路13)で規定された液体(本実施例では血液)を平板(円板24)に移し変えることで、液体(血液)の体積が減少するなどのように増減が考えられるが、撮像手段(本実施例では撮像部32)によって撮像された平板(円板24)の画像情報(画像の濃淡差)を利用して平板(円板24)内に収容された液体の各部(本実施例では血漿および血球の各部)の体積を改めて求めているので、各部(血漿および血球の各部)の体積をより一層に正確に求めることができる。
 本実施例では、測定対象の液体として血液を例に説明している。したがって、液体採取装置は採血するための装置、すなわち採血装置10となる。
 また、本実施例に係る測定装置40によれば、(A)検出手段(本実施例ではイメージングプレートIPと読取部41)と(B)情報算出手段(本実施例では情報算出部44)とを備え、液体(本実施例では血液)を収容し、かつ所定の寸法で複数本の溝加工された平板(本実施例では円板24)の画像情報、およびその平板(円板24)の溝加工された溝26の情報に基づいて求められた液体(血液)の体積と、検出手段(イメージングプレートIPと読取部41)で求められた光あるいは放射線の2次元画像情報(本実施例では放射線の計数情報)とに基づいて、単位体積当たりの光あるいは放射線の情報(本実施例では血中放射能濃度)を情報算出手段(情報算出部44)は求める。すなわち、平板(円板24)に既に移し変えられた液体(血液)について、平板(円板24)の画像情報および平板(円板24)の溝加工された溝26の情報に基づいて求められた液体(血液)の体積は、それ以降減少するなどの増減がなく、その液体(血液)の体積に基づいて単位体積当たりの光あるいは放射線の情報(血中放射能濃度)を求めている。したがって、平板(円板24)の画像情報を利用して、液体(血液)の体積の増減がなく単位体積当たりの光あるいは放射線の情報(血中放射能濃度)を正確に求めることができる。また、検出手段(イメージングプレートIPと読取部41)は、2次元的に同時検出することで、光の退光や放射線の減衰の影響を少なくすることができる。
 上述したように、測定対象の液体として血液を例に採って説明しており、その血液に含まれている放射線をイメージングプレートIPと読取部41が検出して計数している。この場合には、血液の体積とイメージングプレートIPと読取部41で求められた放射線の計数情報とに基づいて、単位体積当たりの放射線の計数情報(本実施例では血中放射能濃度)を情報算出手段(本実施例では情報算出部35)は正確に求めることができる。
 本実施例のように、測定対象の液体が血液の場合には、血液を遠心分離させて血漿分離された血漿および血球に含まれている放射線をイメージングプレートIPと読取部41は2次元放射線情報としてそれぞれ分離して検出することで計数し、血漿および血球の各部の体積とイメージングプレートIPと読取部41でそれぞれ求められた各部の放射線の計数情報とに基づいて、単位体積当たりの各部の計数情報(本実施例では血中放射能濃度)を情報算出手段(本実施例では情報算出部35)は求める。円板24上のすべての血漿および血球の各部の体積を並行して求めて、単位体積当たりの各部の計数情報(本実施例では血中放射能濃度)を並行して求める(すなわち同時に求める)ことが可能である。この同時算出によってイメージングプレートIPによる検出時間(測定時間)を延ばすことができ、低濃度の放射線量を高い統計精度で測定することができるという効果をも奏する。
 本実施例に係る採血装置10および測定装置40を備えた採血測定システムによれば、本実施例に係る測定装置40と同様に、平板(円板24)に既に移し変えられた液体(本実施例では血液)について、平板(本実施例では円板24)の画像情報および平板(円板24)の溝加工された溝26の情報に基づいて求められた液体(血液)の体積は、それ以降減少するなどの増減がなく、その液体(血液)の体積に基づいて単位体積当たりの光あるいは放射線の情報(本実施例では血中放射能濃度)を求めている。したがって、平板(円板24)の画像情報を利用して、液体(血液)の体積の増減がなく単位体積当たりの光あるいは放射線の情報(血中放射能濃度)を正確に求めることができる。
 本実施例では、採血装置10でも述べたように、採血測定システムは、(a)流路(本実施例では主流路13)と(b)取り出し手段(本実施例では圧力発生器30)とを備えている。すなわち、指定された所定の間隔で気体(本実施例では空気やアルゴンなど)または上述した測定対象の液体(本実施例では血液)とは別の液体(測定対象の液体が血液の場合にはミネラルオイルやフッ素系のオイルなど)をセパレータとして挿入することで、取り出し手段(圧力発生器30)は測定対象の液体(血液)を時系列に分離して取り出す。その取り出し手段(圧力発生器30)で取り出された液体(血液)毎にその液体(血液)中に含まれている発光あるいは蛍光物質から発生した光あるいは測定対象の液体(血液)中に含まれている放射線(本実施例では放射線のみ)を、そのシステムに備えられる測定装置40はそれぞれ測定する。このように、本実施例に係る採血装置10でも述べたように、液体の採取量(採血量)を減らして採取(採血)の頻回性を確保して、本実施例に係る測定装置40でも述べたように、単位体積当たりの光あるいは放射線の情報(本実施例では血中放射能濃度)を正確に求めることができる。
 本実施例に係る採血装置10でも述べたように、採血測定システムにおいて、上述した主流路13は、好ましくは、平面状のガラス基板11に対して所定の寸法で溝加工したもので形成されている。また、好ましくは、(c)光学測定手段(本実施例では光源21およびフォトダイオード22)を備えている。また、液体(本実施例では血液)の遠心分離にも適用するために、(d)平板(本実施例では円板24)と(e)回転手段(本実施例では回転駆動部31)とを備えている。なお、平板(円板24)は、測定対象の液体(血液)を収容し、かつ所定の寸法で複数本の溝加工された平板と同一であって、流路(主流路13)に対して測定対象の液体(血液)が流通可能に形成されて、かつ径方向に形成された複数本の溝加工が施されている。
 このような遠心分離を行う場合において、本実施例に係る採血装置10でも述べたように、(f)撮像手段(本実施例では撮像部32)と(g)溝長・溝領域算出手段(本実施例では溝長・溝領域算出34)と(h)体積算出手段(本実施例では体積算出部35)とを備えている。この場合、採血装置10で述べた画像の濃淡差が、採血測定システムでは平板(本実施例では円板24)の画像情報に相当し、採血装置10で述べた溝26の断面積あるいは溝の深さが、採血測定システムでは溝の情報に相当する。
 本実施例に係る測定装置40でも述べたように、採血測定システムにおいて、測定対象の液体として血液を例に採って説明しており、その血液に含まれている放射線をイメージングプレートIPおよび読取部41が検出して計数している。また、本実施例のように、測定対象の液体が血液の場合には、本実施例に係る測定装置40でも述べたように、血液を遠心分離させて血漿分離された血漿および血球に含まれている放射線をイメージングプレートIPおよび読取部41はそれぞれ分離して検出することで計数し、血漿および血球の各部の体積とイメージングプレートIPおよび読取部41でそれぞれ求められた各部の放射線の計数情報とに基づいて、単位体積当たりの各部の計数情報(本実施例では血中放射能濃度)を情報算出手段(本実施例では情報算出部35)は求める。
 この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
 (1)上述した実施例では、液体採取装置(実施例では採血装置10)および測定装置(実施例では測定装置40)を備えた液体採取測定システム(実施例では採血測定システム)であったが、液体採取装置単独または測定装置単独であってもよい。
 (2)上述した実施例では、液体採取装置(実施例では採血装置10)において、測定対象の液体として血液を例に採って説明したが、測定対象の液体であれば、血液に限定されずに、蛍光剤が含まれた液体や、分析装置に用いられる混合液などであってもよい。
 (3)上述した実施例では、液体採取装置(実施例では採血装置10)において、(c)光学測定手段(実施例では光源21およびフォトダイオード22)を備えたが、流速等が常に一定の場合には、必ずしも光学測定手段を備える必要はない。また、光学測定手段として光源21およびフォトダイオード22を例に採って説明したが、測定対象の液体を光学的に監視しながら液体の間隔を測定する手段であれば、光源21およびフォトダイオード22に限定されない。また、光源21およびフォトダイオード22は、図1に示すように主流路13を挟んで互いに対向配置される構成で、血液による遮光で検知する、いわゆる「透過型センサ」であったが、光源に対してフォトダイオードに代表される光検出手段を同じ側に配設し、血液による反射光で検知する、いわゆる「反射型センサ」であってもよい。
 (4)上述した実施例では、液体採取装置(実施例では採血装置10)において、液体(実施例では血液)の遠心分離に適用するために、(d)平板(実施例では円板24)と(e)回転手段(回転駆動部31)とを備えたが、遠心分離を行わない場合には、必ずしも平板と回転手段とを備える必要はない。取り出す毎に、図1に示すディスペンサ23から平板または平板以外の容器に収容してもよい。また、平板は円板24に限定されずに方形の板や多角形の板などであってもよいが、回転させることを考慮すれば回転中心が重心となっている形状であるのが好ましい。また、ディスペンサ23を介在させることで、平板(円板24)については、流路(実施例では主流路13)に対して測定対象の液体が流通可能に形成されていたが、平板に対して基板(実施例ではガラス基板11)を着脱自在に構成し、取り付けた際に流路(主流路13)と平板の溝26とが嵌合するように構成することで、平板(円板24)を、流路(実施例では主流路13)に対して測定対象の液体が流通可能に形成してもよい。
 (5)上述した実施例では、液体採取装置(実施例では採血装置10)で遠心分離を行う場合において、(f)撮像手段(実施例では撮像部32)と(g)溝長・溝領域算出手段(実施例では溝長・溝領域算出部34)と(h)体積算出手段(体積算出部35)とを備えたが、体積を求めずに、取り出された体積のみで定量解析を行う場合には、必ずしも撮像手段と溝長・溝領域算出手段と体積算出手段とを備える必要はない。また、撮像手段としてフラットヘッドスキャナのような光学撮像手段を例に採って説明したが、放射線照射手段および放射線検出手段で構成される放射線撮像手段であってもよい。放射線撮像手段の場合には、遠心分離された液体の各部においては、放射能濃度が互いに異なるので、その異なる点を利用する。特に、液体が血液の場合には、放射能濃度の相違によって血漿および血球が撮像された画像上で濃淡差となって現れ、画像上で容易に識別可能である。
 (6)上述した実施例では、測定装置(実施例では測定装置40)において、測定対象の液体として血液を例に採って説明しており、その血液に含まれている放射線をイメージングプレートIPおよび読取部41が検出して計数していたが、上述した変形例(2)でも述べたように、蛍光剤が含まれた液体などであってもよい。例えば、蛍光剤が含まれた液体の場合には、液体中に蛍光剤である蛍光物質が含まれていることになり、測定装置では、蛍光物質から発生した光をCCDカメラなどで測定して、単位体積当たりの光の情報を正確に求めることになる。また、イメージングプレートIPおよび読取部41のかわりに、2次元の放射線センサ(シンチレータアレイとフォトマルチプライヤ、あるいは半導体検出器など)を使用してもよい。発光物質から発生した光についても同様に測定すればよい。
 (7)上述した実施例では、液体採取測定システム(実施例では採血測定システム)において、(a)流路(実施例では主流路13)と(b)取り出し手段(圧力発生器30)とを備えたが、そのシステムに備えられる液体採取装置(実施例では採血装置10)の構成については、測定対象の液体を採取するのであれば、特に限定されず、必ずしも流路と取り出し手段とを備える必要はない。サンプル用の容器に採取された液体を用いて定量解析を行ってもよい。測定装置40についても同様である。

Claims (19)

  1. 測定対象の液体を時系列に分離して採取する液体採取装置であって、 (a)前記測定対象の液体が流れる流路と、(b)その流路の途中に設けられ、指定された所定の間隔で気体または前記測定対象の液体とは別の液体をセパレータとして挿入することで、前記測定対象の液体を時系列に分離して取り出す取り出し手段とを備えていることを特徴とする液体採取装置。
  2.  請求項1に記載の液体採取装置において、前記流路は、平面状の基板に対して所定の寸法で溝加工したもので形成されていることを特徴とする液体採取装置。
  3.  請求項1または請求項2に記載の液体採取装置において、(c)前記流路を流れる前記測定対象物の液体を光学的に監視しながら液体の長さ情報を測定する光学測定手段を備え、その光学測定手段による測定結果に基づいて前記セパレータの間隔を制御することで前記取り出し手段によって取り出されるべき液体の体積を制御することを特徴とする液体採取装置。
  4.  請求項1から請求項3のいずれかに記載の液体採取装置において、(d)前記流路に対して前記測定対象の液体が流通可能に形成されて、かつ径方向に形成された複数本の溝加工された平板と、(e)その平板を回転させる回転手段とを備え、その回転手段による前記平板の遠心力を利用して、前記液体を遠心分離させることを特徴とする液体採取装置。
  5.  請求項4に記載の液体採取装置において、(f)前記平板を撮像する撮像手段と、(g)その撮像手段によって撮像された平板の前記溝加工された溝における画像の濃淡差に基づいて、前記遠心分離された液体の各部の溝長あるいは溝領域を求める溝長・溝領域算出手段と、(h)その溝長・溝領域算出手段で求められた前記液体の各部の前記溝長と前記溝の断面積とに基づいて、あるいは前記溝長・溝領域算出手段で求められた前記液体の各部の前記溝領域と前記溝の深さとに基づいて、前記各部の体積をそれぞれ求める体積算出手段とを備えることを特徴とする液体採取装置。
  6.  請求項1から請求項5のいずれかに記載の液体採取装置において、前記測定対象の液体は血液であって、液体採取装置は採血するための装置であることを特徴とする液体採取装置。
  7.  請求項6に記載の液体採取装置において、(d)前記流路に対して前記測定対象の血液が流通可能に形成されて、かつ径方向に形成された複数本の溝加工された平板と、(e)その平板を回転させる回転手段を備え、その回転手段による前記平板の遠心力を利用して、前記血液を遠心分離させて血漿および血球に分離する血漿分離を行うことを特徴とする液体採取装置。
  8.  請求項7に記載の液体採取装置において、(f)前記平板を撮像する撮像手段と、(g)その撮像手段によって撮像された平板の前記溝加工された溝における画像の濃淡差に基づいて、前記血漿分離された血漿および血球の各部の溝長あるいは溝領域を求める溝長・溝領域算出手段と、(h)その溝長・溝領域算出手段で求められた前記血漿および血球の各部の前記溝長と前記溝の断面積とに基づいて、あるいは前記溝長・溝領域算出手段で求められた前記血漿および血球の各部の前記溝領域と前記溝の深さとに基づいて、前記各部の体積をそれぞれ求める体積算出手段とを備えることを特徴とする液体採取装置。
  9.  測定対象の液体中に含まれている発光あるいは蛍光物質から発生した光あるいは測定対象の液体中に含まれている放射線を測定する測定装置であって、(A)前記光あるいは放射線を2次元的に同時検出して光あるいは放射線の2次元画像情報を求める検出手段と、(B)前記液体を収容し、かつ所定の寸法で複数本の溝加工された平板の画像情報、およびその平板の溝加工された溝の情報に基づいて求められた液体の体積と、前記検出手段で求められた前記光あるいは放射線の2次元画像情報とに基づいて、単位体積当たりの光あるいは放射線の情報を求める情報算出手段とを備えることを特徴とする測定装置。
  10.  請求項9に記載の測定装置において、前記測定対象の液体は血液であって、その血液に含まれている放射線を前記検出手段は検出することで計数し、前記血液の体積と前記検出手段で求められた放射線の計数情報とに基づいて、単位体積当たりの放射線の計数情報を前記情報算出手段は求めることを特徴とする測定装置。
  11.  請求項10に記載の測定装置において、前記血液を遠心分離させて血漿分離された血漿および血球に含まれている放射線を前記検出手段はそれぞれ分離して検出することで計数し、前記血漿および血球の各部の体積と前記検出手段でそれぞれ求められた前記各部の放射線の計数情報とに基づいて、単位体積当たりの各部の計数情報を前記情報算出手段は求めることを特徴とする測定装置。
  12.  測定対象の液体を採取する液体採取装置と、その採取された液体中に含まれている発光あるいは蛍光物質から発生した光あるいは前記液体中に含まれている放射線を測定する測定装置とを備えた液体採取測定システムであって、(A)前記光あるいは放射線を2次元的に同時検出して光あるいは放射線の2次元画像情報を求める検出手段と、(B)前記液体を収容し、かつ所定の寸法で複数本の溝加工された平板の画像情報、およびその平板の溝加工された溝の情報に基づいて求められた液体の体積と、前記検出手段で求められた前記光あるいは放射線の2次元画像情報とに基づいて、単位体積当たりの光あるいは放射線の情報を求める情報算出手段とを備えることを特徴とする液体採取測定システム。
  13.  請求項12に記載の液体採取測定システムにおいて、前記液体採取装置は、(a)前記測定対象の液体が流れる流路と、(b)その流路の途中に設けられ、指定された所定の間隔で気体または前記測定対象の液体とは別の液体をセパレータとして挿入することで、前記測定対象の液体を時系列に分離して取り出す取り出し手段とを備え、その取り出し手段で取り出された液体毎にその液体中に含まれている発光あるいは蛍光物質から発生した光あるいは測定対象の液体中に含まれている放射線を前記測定装置はそれぞれ測定することを特徴とする液体採取測定システム。
  14.  請求項13に記載の液体採取測定システムにおいて、前記流路は、平面状の基板に対して所定の寸法で溝加工したもので形成されていることを特徴とする液体採取測定システム。
  15.  請求項13または請求項14に記載の液体採取測定システムにおいて、前記液体採取装置は、(c)前記流路を流れる前記測定対象の液体を光学的に監視しながら液体の長さ情報を測定する光学測定手段を備え、その光学測定手段による測定結果に基づいて前記セパレータの間隔を制御することで前記取り出し手段によって取り出されるべき液体の体積を制御することを特徴とする液体採取測定システム。
  16.  請求項13から請求項15のいずれかに記載の液体採取測定システムにおいて、前記液体採取装置は、(d)前記流路に対して前記測定対象の液体が流通可能に形成されて、かつ径方向に形成された複数本の溝加工された前記平板と、(e)その平板を回転させる回転手段とを備え、その回転手段による前記平板の遠心力を利用して、前記液体を遠心分離させることを特徴とする液体採取測定システム。
  17.  請求項16に記載の液体採取測定システムにおいて、前記液体採取装置は、(f)前記平板を撮像する撮像手段と、(g)その撮像手段によって撮像された平板の前記溝加工された溝における画像の濃淡差である前記平板の画像情報に基づいて、前記遠心分離された液体の各部の溝長あるいは溝領域を求める溝長・溝領域算出手段と、(h)その溝長・溝領域算出手段で求められた前記液体の各部の前記溝長と前記溝の断面積である前記溝の情報とに基づいて、あるいは前記溝長・溝領域算出手段で求められた前記液体の各部の前記溝領域と前記溝の深さである前記溝の情報とに基づいて、前記各部の体積をそれぞれ求める体積算出手段とを備え、その体積算出手段で求められた液体の体積と、前記検出手段で求められた前記光あるいは放射線の2次元画像情報とに基づいて、単位体積当たりの光あるいは放射線の情報を前記情報算出手段は求めることを特徴とする液体採取測定システム。
  18.  請求項12から請求項17のいずれかに記載の液体採取測定システムにおいて、前記測定対象の液体は血液であって、前記液体採取装置は採血するための装置であって、その血液に含まれている放射線を前記検出手段は検出することで計数し、前記血液の体積と前記検出手段で求められた放射線の計数情報とに基づいて、単位体積当たりの放射線の計数情報を前記情報算出手段は求めることを特徴とする液体採取測定システム。
  19.  請求項18に記載の液体採取測定システムにおいて、前記血液を遠心分離させて血漿分離された血漿および血球に含まれている放射線を前記検出手段はそれぞれ分離して検出することで計数し、前記血漿および血球の各部の体積と前記検出手段でそれぞれ求められた前記各部の放射線の計数情報とに基づいて、単位体積当たりの各部の計数情報を前記情報算出手段は求めることを特徴とする液体採取測定システム。
PCT/JP2008/050803 2008-01-22 2008-01-22 液体採取装置、測定装置並びにそれらを備えた液体採取測定システム WO2009093306A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009550391A JP5066583B2 (ja) 2008-01-22 2008-01-22 測定装置並びにそれらを備えた液体採取測定システム
CN200880125368.3A CN101925821B (zh) 2008-01-22 2008-01-22 测定装置及具有其的液体提取测定系统
US12/863,968 US8358405B2 (en) 2008-01-22 2008-01-22 Measuring apparatus, and liquid collecting and measuring system having the same
EP08703647.1A EP2239585B1 (en) 2008-01-22 2008-01-22 Liquid collecting and measuring system
PCT/JP2008/050803 WO2009093306A1 (ja) 2008-01-22 2008-01-22 液体採取装置、測定装置並びにそれらを備えた液体採取測定システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/050803 WO2009093306A1 (ja) 2008-01-22 2008-01-22 液体採取装置、測定装置並びにそれらを備えた液体採取測定システム

Publications (1)

Publication Number Publication Date
WO2009093306A1 true WO2009093306A1 (ja) 2009-07-30

Family

ID=40900824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/050803 WO2009093306A1 (ja) 2008-01-22 2008-01-22 液体採取装置、測定装置並びにそれらを備えた液体採取測定システム

Country Status (5)

Country Link
US (1) US8358405B2 (ja)
EP (1) EP2239585B1 (ja)
JP (1) JP5066583B2 (ja)
CN (1) CN101925821B (ja)
WO (1) WO2009093306A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075420A (ja) * 2009-09-30 2011-04-14 Shimadzu Corp 遠心分離装置
WO2011117952A1 (ja) * 2010-03-24 2011-09-29 株式会社島津製作所 測定システム
WO2011117953A1 (ja) * 2010-03-24 2011-09-29 株式会社島津製作所 測定システム
WO2013031240A1 (ja) * 2011-08-31 2013-03-07 株式会社島津製作所 液体滴下補助装置
JP2013061275A (ja) * 2011-09-14 2013-04-04 Shimadzu Corp 測定システムに用いられる表示装置
WO2013057762A1 (ja) 2011-10-19 2013-04-25 株式会社島津製作所 測定システムに用いられる表示装置、表示方法並びに表示プログラム
JP2013101029A (ja) * 2011-11-08 2013-05-23 Shimadzu Corp 測定システムに用いられる表示装置、表示方法並びに表示プログラム
WO2014021060A1 (ja) * 2012-08-03 2014-02-06 株式会社 日立ハイテクノロジーズ 分析システム及び分析方法
WO2014033797A1 (ja) * 2012-09-03 2014-03-06 株式会社島津製作所 液体滴下方法
JP2014530358A (ja) * 2011-09-25 2014-11-17 セラノス, インコーポレイテッド 多重分析のためのシステム及び方法
JP2015232581A (ja) * 2009-12-30 2015-12-24 ライフスキャン・インコーポレイテッドLifescan,Inc. 充填時間を使用してバイオセンサーの精度を改善するためのシステム、装置及び方法
US9726658B2 (en) 2014-04-25 2017-08-08 Shimadzu Corporation Display device, display method, and display program used in measurement system
JP2018049026A (ja) * 2014-10-14 2018-03-29 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company オープンセル発泡体を用いた血液サンプルの管理

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2657699T3 (en) 2007-10-02 2017-07-10 Theranos Inc Modular point-of-care devices and their applications
ES2895518T3 (es) 2011-01-21 2022-02-21 Labrador Diagnostics Llc Sistemas y métodos para la maximización del uso de muestras
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US8475739B2 (en) 2011-09-25 2013-07-02 Theranos, Inc. Systems and methods for fluid handling
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US20140170735A1 (en) 2011-09-25 2014-06-19 Elizabeth A. Holmes Systems and methods for multi-analysis
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US9810704B2 (en) 2013-02-18 2017-11-07 Theranos, Inc. Systems and methods for multi-analysis
US9460562B2 (en) 2015-01-09 2016-10-04 International Business Machines Corporation Providing volume indicators based on received images of containers
JP7024461B2 (ja) * 2018-02-01 2022-02-24 株式会社島津製作所 マイクロ流路内に保持された検体の前処理方法、その前処理方法を実行するための前処理装置及びその前処理装置を備えた分析システム
CN112119313B (zh) * 2018-07-23 2024-04-05 株式会社岛津制作所 微流体器件观察装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147013A (en) * 1980-04-17 1981-11-14 Kyoto Denshi Kogyo Kk Detecting method for flow rate of liquid
JPH01307608A (ja) * 1988-06-06 1989-12-12 Hitachi Ltd 流体量計測装置
JP2004109082A (ja) * 2002-09-20 2004-04-08 Japan Science & Technology Corp 血液分析装置及び血漿分離方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3679367A (en) * 1970-09-14 1972-07-25 Technicon Instr Apparatus for determining the pack volume of particulates in liquid mixtures
DE19542225B4 (de) * 1995-11-01 2011-05-26 L.U.M. Gmbh Verfahren und Vorrichtung zur Bestimmung von rheologischen und mechanischen Stoffkenngrößen
US6388740B1 (en) * 1999-06-22 2002-05-14 Robert A. Levine Method and apparatus for timing intermittent illumination of a sample tube positioned on a centrifuge platen and for calibrating a sample tube imaging system
JP2004294366A (ja) * 2003-03-28 2004-10-21 Seitai Kagaku Kenkyusho:Kk ラジオ液体クロマトグラフ
KR100552706B1 (ko) * 2004-03-12 2006-02-20 삼성전자주식회사 핵산 증폭 방법 및 장치
JP4170947B2 (ja) * 2004-04-09 2008-10-22 株式会社日立ハイテクノロジーズ 生体試料成分検出法及びその装置
WO2006005371A1 (en) * 2004-07-13 2006-01-19 Commissariat A L'energie Atomique Microfluidic device for performing a plurality of reactions and uses thereof
EP1865305A1 (en) * 2005-03-31 2007-12-12 Kabushiki Kaisha Toshiba Fluorescent measuring device, fluorescent measuring method, container for fluorescent measurement, and method for manufacturing the container for fluorescent measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147013A (en) * 1980-04-17 1981-11-14 Kyoto Denshi Kogyo Kk Detecting method for flow rate of liquid
JPH01307608A (ja) * 1988-06-06 1989-12-12 Hitachi Ltd 流体量計測装置
JP2004109082A (ja) * 2002-09-20 2004-04-08 Japan Science & Technology Corp 血液分析装置及び血漿分離方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H. _M. WU; G. SUI; C. _C. LEE; M. L. PRINS; W. LADNO; H. _D. LIN; A. S. YU; M. E. PHELPS; S. _C: HUANG: "ln vivo quantitation of glucose metabolism in mice using small-animal PET and a microfluidic device", J NUCF MED, vol. 48, 2007, pages 837 - 845, XP055063843, DOI: doi:10.2967/jnumed.106.038182
L. CONVERT; G. M. BRASSARD; J. CADORETTE; D. ROULEAU; E. CROTEAU; M. ARCHAMBAULT; R. FONTAINE; R. LECOMTE: "A microvolumetric ? blood counter for pharmacokinetic PET studies in small animals", IEEE NUCLEAR SCI, vol. 54, no. 1, 2007
See also references of EP2239585A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075420A (ja) * 2009-09-30 2011-04-14 Shimadzu Corp 遠心分離装置
JP2015232581A (ja) * 2009-12-30 2015-12-24 ライフスキャン・インコーポレイテッドLifescan,Inc. 充填時間を使用してバイオセンサーの精度を改善するためのシステム、装置及び方法
JP5298237B2 (ja) * 2010-03-24 2013-09-25 株式会社島津製作所 測定システム
WO2011117952A1 (ja) * 2010-03-24 2011-09-29 株式会社島津製作所 測定システム
WO2011117953A1 (ja) * 2010-03-24 2011-09-29 株式会社島津製作所 測定システム
EP2551664A1 (en) * 2010-03-24 2013-01-30 Shimadzu Corporation Measurement system
US9498154B2 (en) 2010-03-24 2016-11-22 Shimadzu Corporation Measuring system capable of separating liquid and determining boundary of separated liquid
EP2551664A4 (en) * 2010-03-24 2013-07-10 Shimadzu Corp MEASURING SYSTEM
WO2013031240A1 (ja) * 2011-08-31 2013-03-07 株式会社島津製作所 液体滴下補助装置
JP2013061275A (ja) * 2011-09-14 2013-04-04 Shimadzu Corp 測定システムに用いられる表示装置
JP2014530358A (ja) * 2011-09-25 2014-11-17 セラノス, インコーポレイテッド 多重分析のためのシステム及び方法
US20140253594A1 (en) * 2011-10-19 2014-09-11 Shimadzu Corporation Display apparatus, a display method and a display program for use in a measuring system
JPWO2013057762A1 (ja) * 2011-10-19 2015-04-02 株式会社島津製作所 測定システムに用いられる表示装置、表示方法並びに表示プログラム
WO2013057762A1 (ja) 2011-10-19 2013-04-25 株式会社島津製作所 測定システムに用いられる表示装置、表示方法並びに表示プログラム
JP2013101029A (ja) * 2011-11-08 2013-05-23 Shimadzu Corp 測定システムに用いられる表示装置、表示方法並びに表示プログラム
WO2014021060A1 (ja) * 2012-08-03 2014-02-06 株式会社 日立ハイテクノロジーズ 分析システム及び分析方法
WO2014033797A1 (ja) * 2012-09-03 2014-03-06 株式会社島津製作所 液体滴下方法
US9726658B2 (en) 2014-04-25 2017-08-08 Shimadzu Corporation Display device, display method, and display program used in measurement system
JP2018049026A (ja) * 2014-10-14 2018-03-29 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company オープンセル発泡体を用いた血液サンプルの管理
JP2021051083A (ja) * 2014-10-14 2021-04-01 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company オープンセル発泡体を用いた血液サンプルの管理
US11298061B2 (en) 2014-10-14 2022-04-12 Becton, Dickinson And Company Blood sample management using open cell foam
JP7203806B2 (ja) 2014-10-14 2023-01-13 ベクトン・ディキンソン・アンド・カンパニー オープンセル発泡体を用いた血液サンプルの管理

Also Published As

Publication number Publication date
CN101925821A (zh) 2010-12-22
US20100294950A1 (en) 2010-11-25
US8358405B2 (en) 2013-01-22
EP2239585B1 (en) 2016-11-30
EP2239585A1 (en) 2010-10-13
JPWO2009093306A1 (ja) 2011-05-26
CN101925821B (zh) 2014-09-24
EP2239585A4 (en) 2013-07-10
JP5066583B2 (ja) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5066583B2 (ja) 測定装置並びにそれらを備えた液体採取測定システム
JP5564489B2 (ja) 液体採取システムおよびその方法
JP5442849B2 (ja) 測定システム
US9404917B1 (en) Fluid sample analysis system
US5827746A (en) Method to determine the sedimentation of blood and relative device
WO2009094761A1 (en) Apparatus and method for urinalysis
JP5298237B2 (ja) 測定システム
JP2011075420A (ja) 遠心分離装置
JP5776782B2 (ja) 測定システムに用いられる表示装置、表示方法並びに表示プログラム
JP7520053B2 (ja) ライン体積較正システムと方法
JP6098315B2 (ja) 光または放射線測定用容器並びに測定システム
JP6218352B2 (ja) 測定システムに用いられる表示装置、表示方法並びに表示プログラム
JP5899829B2 (ja) 測定システムに用いられる表示装置、表示方法並びに表示プログラム
JP5724780B2 (ja) 測定システムに用いられる表示装置
CN118661100A (zh) 用于分析血液样本的方法和分析仪
JP2014211308A (ja) 液体滴下補助装置
JP2015152471A (ja) 液体採取装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880125368.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08703647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009550391

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12863968

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2008703647

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008703647

Country of ref document: EP