[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009087746A1 - 表示装置、電子装置及び駆動方法 - Google Patents

表示装置、電子装置及び駆動方法 Download PDF

Info

Publication number
WO2009087746A1
WO2009087746A1 PCT/JP2008/004022 JP2008004022W WO2009087746A1 WO 2009087746 A1 WO2009087746 A1 WO 2009087746A1 JP 2008004022 W JP2008004022 W JP 2008004022W WO 2009087746 A1 WO2009087746 A1 WO 2009087746A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
voltage
current
data line
light emitting
Prior art date
Application number
PCT/JP2008/004022
Other languages
English (en)
French (fr)
Inventor
Rie Odawara
Shinya Ono
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to JP2009548819A priority Critical patent/JP5254998B2/ja
Priority to CN200880121799.2A priority patent/CN101903933B/zh
Publication of WO2009087746A1 publication Critical patent/WO2009087746A1/ja
Priority to US12/823,234 priority patent/US8164546B2/en
Priority to US13/424,854 priority patent/US8355016B2/en
Priority to US13/706,595 priority patent/US8791939B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • G09G3/3241Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0814Several active elements per pixel in active matrix panels used for selection purposes, e.g. logical AND for partial update
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays

Definitions

  • the present invention relates to a display device, an electronic device and a method of driving the same, and more particularly to a display device, an electronic device and a method of driving the same using current-driven light emitting elements.
  • An image display apparatus (organic EL display) using an organic EL element (OLED: Organic Light Emitting Diode) is known as an image display apparatus using a current drive type light emitting element.
  • OLED Organic Light Emitting Diode
  • the organic EL display is attracting attention as a candidate for the next-generation FPD (Flat Panal Display) because it has the advantages of excellent viewing angle characteristics and low power consumption.
  • organic EL elements constituting pixels are usually arranged in a matrix.
  • An organic EL element is provided at the intersection of a plurality of row electrodes (scanning lines) and a plurality of column electrodes (data lines), and a voltage corresponding to a data signal is applied between the selected row electrodes and the plurality of column electrodes.
  • What drives an organic EL element is called a passive matrix type organic EL display.
  • a thin film transistor (TFT: Thin Film Transistor) is provided at the intersection of a plurality of scanning lines and a plurality of data lines, the gate of the driving transistor is connected to this TFT, and this TFT is turned on through the selected scanning line.
  • a data signal is input to a driving transistor from which the organic EL element is driven by the driving transistor is called an active matrix organic EL display.
  • the passive matrix type organic EL display in which the organic EL elements connected to it emit light only while the row electrodes (scanning lines) are selected, the next scanning (selection) is performed in the active matrix type organic EL display. Since it is possible to cause the organic EL element to emit light, the decrease in luminance of the display is not caused even if the duty ratio is increased. Therefore, since it can drive with a low voltage, power consumption can be reduced. However, in the active matrix organic EL display, even if the same data signal is applied, the luminance of the organic EL element is different in each pixel and uneven luminance occurs due to the dispersion of the characteristics of the driving transistor and the organic EL element. There is a drawback of that.
  • non-uniformity of characteristics As a method of compensating for unevenness in brightness due to variation or deterioration of characteristics of driving transistor or organic EL element (hereinafter collectively referred to as non-uniformity of characteristics) in conventional organic EL display, compensation by complicated pixel circuit, feedback by representative pixel Typical examples are compensation and feedback compensation based on the sum of currents flowing to all pixels.
  • a diode-connected transistor is connected to a conventional voltage-driven pixel circuit consisting of two transistors, By measuring the current flowing through the test line connected to the diode-connected transistor in the state of the substrate for the light emitting panel before forming the EL, the relationship between the data voltage and the current flowing through the drive transistor is detected. , Pixel inspection and pixel characteristic extraction are performed.
  • the diode-connected transistor can be made to pass a current as a reverse bias using a test line, so that a normal voltage write operation can be performed.
  • the characteristics detected in the state of the array can be used for correction control of the applied voltage to the data line when using the organic EL light emitting panel. JP, 2006-139079, A
  • the drive current flowing to the pixel is very minute, and it is difficult to measure the minute current accurately.
  • the method of not detecting the organic EL characteristic can not compensate for the unevenness in the luminance of the pixel.
  • the conventional method does not have means for accurately compensating for the temporal change of the characteristics of the drive transistor and the organic EL element even in the operation after the completion of the light emitting panel.
  • the initial characteristics have variations, but the subsequent characteristics are stable.
  • amorphous silicon which is advantageous for increasing the area of the light emitting panel, is used as the material of the drive transistor, the change with time of the characteristic parameter is large.
  • the life characteristics of the organic EL element also depend on the integration time of the drive current. Therefore, it is important to accurately compensate for the change of the characteristic parameter due to the change with time of the drive transistor and the organic EL element.
  • a display device, an electronic device, and a simple pixel circuit that can accurately detect the characteristics of the transistor of each pixel and the element of the organic EL by voltage measurement. It is a first object to provide methods of driving them. Another object of the present invention is to provide a display device, an electronic device, and a method of driving the same, which can correct the luminance unevenness caused by the nonuniformity of the characteristics of the drive active element and the light emitting element by using the detection result.
  • a display device is a display device including an active matrix light emitting panel having a plurality of pixel portions and a plurality of data lines for determining light emission of the plurality of pixel portions. And each of the plurality of pixel units includes a first transistor for converting a signal voltage supplied from any one of the plurality of data lines into a signal current, and the data line and the first transistor.
  • a first switch element inserted between the gate and switching on / off of the data line and the gate of the first transistor; an anode from a first terminal which is one of a source and a drain of the first transistor; And a light emitting element configured to emit light by the signal current input to one of the cathodes, wherein the display device includes a first inspection input from the data line.
  • First circuit path forming means for forming a circuit path to flow a current between the source and the drain of the first transistor; and a voltage corresponding to the gate voltage of the first transistor generated by the first inspection current is the data
  • a second circuit path forming means for forming a circuit path to be generated on a line, and a voltage corresponding to a gate voltage of the first transistor generated by the first inspection current is formed by the second circuit path forming means
  • voltage detection means for detecting the data line via a circuit path.
  • the characteristic information on the variation of the first transistor which is the driving transistor can be obtained independently.
  • the test current flows through the drive transistor and the voltage of the data line at that time is measured, high-accuracy measurement is realized as compared with the conventional measurement method in which the voltage is input to detect a minute current.
  • the acquired characteristic information to correct the data voltage in the normal operation, it is possible to improve the luminance unevenness due to the characteristic dispersion of the drive transistor.
  • the first circuit path forming means forms a circuit path so that a second inspection current input from the data line flows to the light emitting element, and the second circuit path forming means includes the second inspection current.
  • a circuit path is generated to generate the voltage of one of the anode and the cathode of the light emitting element generated by the data line on the data line, and the voltage detection means includes the anode of the light emitting element generated by the second inspection current.
  • One of the voltages of the cathode is detected by the data line via the circuit path formed by the second circuit path forming means.
  • the data voltage for obtaining a desired luminance can be more appropriately controlled by detecting the characteristics of both of the organic EL element and the drive transistor. Therefore, by using the highly accurate correction data voltage, which can not be derived only by the characteristic detection of the drive transistor, for the correction of the data voltage in the normal operation, it is possible to improve the luminance unevenness due to the characteristic variation of the drive transistor or the light emitting element.
  • the display device further includes a scan line transmitting a control signal and a first control line
  • the first transistor has a second terminal, which is the other of the source and the drain, connected to a first power supply, and a gate
  • the light emitting element, the other of the anode and the cathode being connected to the second power supply, and the first switch element having the gate being the drive transistor
  • the first switching transistor is connected to the scanning line, one of the source and the drain is connected to the data line, and the other of the source and the drain is connected to the gate of the first transistor, and the first circuit path forming means is And a test current generation circuit for supplying the first test current to the data line, wherein the first circuit path forming means and the second circuit path forming means Is connected to the first control line, one of the source and the drain is connected to the data line, and the other of the source and the drain is connected to the connection point between the first terminal and one of the anode and the cathode of the light emitting element. It may have one second
  • test current can flow from the data line to the drive transistor with a simple circuit configuration of two switching transistors, and the gate voltage of the drive transistor can be detected by the data line.
  • the first circuit path forming means includes a test current generation circuit for supplying the first test current to the data line, and the test current generation circuit includes both the first switching transistor and the second switching transistor.
  • the first test current may be supplied to the first transistor by synchronously changing the bias voltage value of the first power supply and the bias voltage value of the second power supply.
  • a forward bias or reverse bias voltage is arbitrarily applied to the drive transistor, so that the inspection current path flowing through the drive transistor can be controlled.
  • the inspection current generation circuit may supply a second inspection current flowing through the light emitting element to the data line.
  • inspection current can flow from the data line to the drive transistor or the light emitting element with a simple circuit configuration of two switching transistors, and detection of the gate voltage of the drive transistor or the voltage of the light emitting element by the data line it can.
  • the inspection current generation circuit changes the bias voltage value of the first power supply and the bias voltage value of the second power supply in synchronization with each other when the second switching transistor is in the on state.
  • the second inspection current may be supplied to the light emitting element.
  • the forward bias or the reverse bias voltage is arbitrarily applied to the drive transistor and the light emitting element, so that the inspection current path flowing through the drive transistor and the light emitting element can be controlled.
  • each of the plurality of pixel units may further include a third switch element inserted between the second terminal and the first power supply to switch the presence or absence of the supply of the second inspection current.
  • each of the plurality of pixel units is further inserted between a connection point of the other of the source and the drain of the second switching transistor and one of the anode and the cathode of the light emitting element and the first terminal. It may have a 3rd switch element which changes the existence of supply of the 2nd above-mentioned inspection current.
  • each of the plurality of pixel units is further inserted between the other of the source and the drain of the second switching transistor and one of the anode and the cathode of the light emitting element, and the presence or absence of the supply of the first inspection current And a second switch element that switches the
  • the inspection current path of the drive transistor and the light emitting element can be controlled by turning on and off the inserted switch element.
  • the inspection current generation circuit is connected between one or more current generation sources for generating the inspection current, the one or more current generation sources, and the plurality of data lines, and among the plurality of data lines It is preferable that a selected data line and a multiplexer that conducts one of the one or more current generation sources be provided, wherein the number of the current generation sources is smaller than the number of the plurality of data lines.
  • the display device further includes a scan line transmitting a control signal and a first control line
  • the first transistor has a second terminal, which is the other of the source and the drain, connected to a first power supply, and a gate
  • the light emitting element, the other of the anode and the cathode being connected to the second power supply, and the first switch element having the gate being the drive transistor
  • the first switching transistor is connected to the scanning line, one of the source and the drain is connected to the data line, and the other of the source and the drain is connected to the gate of the first transistor, and the first circuit path forming means is And a test current generation circuit for supplying the first test current to the data line, wherein the first circuit path forming means and the second circuit path forming means Is connected to the first control line, one of the source and the drain is connected to the other of the source and the drain of the first switching transistor, and the other of the source and the drain is the first terminal and the anode of the light emitting element
  • a second switching transistor may be provided connected
  • test current can flow from the data line to the drive transistor with a simple circuit configuration of two switching transistors, and the gate voltage of the drive transistor can be detected by the data line.
  • the display device further includes a scanning line transmitting a control signal, and the first transistor has a second terminal, which is the other of the source and the drain, connected to the first power supply, and a potential difference between the gate and the source.
  • a driving transistor for outputting a corresponding current to the first terminal wherein the other terminal of the anode and the cathode of the light emitting element is connected to the second power source, and the gate of the first switch element is connected to the scanning line
  • a first switching transistor in which one of the source and the drain is connected to the data line, and the other of the source and the drain is connected to the gate of the first transistor, and the first circuit path forming unit is the first switching transistor
  • a test current generation circuit for supplying a test current to the data line, wherein each of the plurality of pixel units further includes a gate of the first transistor.
  • a voltage corresponding to the signal voltage may comprise a voltage converter for outputting the gate of the first transistor.
  • the first circuit path forming means, the second circuit path forming means, also in the circuit in which the voltage conversion unit is inserted between the gate of the drive transistor and the first switching transistor The test current can flow from the data line to the drive transistor by the circuit path forming means and the voltage detection means, and the gate voltage of the drive transistor can be detected by the data line.
  • the display device further includes a second control line for transmitting a control signal, and each of the plurality of pixel units has a gate connected to the second control line, and one of a source and a drain is the first transistor.
  • a second transistor may be connected to the gate, and the other of the source and the drain is connected to the first terminal.
  • the inspection current can be supplied from the data line to the drive transistor by the first circuit path formation unit, the second circuit path formation unit, and the voltage detection unit.
  • the gate voltage of the drive transistor can be detected by the data line.
  • the voltage detection means may include at least one voltage detector for measuring, at the data line, a gate voltage of the first transistor generated by flowing the first inspection current, the one or more voltage detectors, and A multiplexer connected between the plurality of data lines and electrically connecting a selected one of the plurality of data lines and one of the one or more voltage detectors, the number of voltage detectors being: Preferably, the number is smaller than the number of the plurality of data lines.
  • the voltage detector may measure, at the data line, a voltage of one of the anode and the cathode of the light emitting element generated by flowing the second inspection current.
  • the multiplexer is formed on the light emitting panel.
  • a display device is a display device including an active matrix light emitting panel having a plurality of pixel portions and a plurality of data lines for determining light emission of the plurality of pixel portions, Each of the pixel units is inserted between a first transistor for converting a signal voltage supplied from any one of the plurality of data lines into a signal current, and the data line and the gate of the first transistor.
  • a light emitting element for emitting light by the signal current, and a second inspection current inputted from the data line is supplied to the light emitting element.
  • First circuit path forming means for forming the first circuit path, and second circuit path forming means for forming the circuit path to generate the voltage of one of the anode and the cathode of the light emitting element generated by the second inspection current on the data line;
  • Voltage detection means for detecting the voltage of one of the anode and the cathode of the light emitting element generated by the second inspection current through the data line through the path formed by the second circuit path forming means. It is characterized by
  • variation in a light emitting element can be acquired independently.
  • the inspection current flows through the light emitting element and the voltage of the data line at that time is measured, highly accurate measurement can be realized as compared with the conventional measurement method type in which the voltage is input and the minute current is detected.
  • the acquired characteristic information to correct the data voltage at the time of normal operation, it is possible to improve the luminance unevenness due to the characteristic dispersion of the light emitting element.
  • An electronic device is an electronic device provided with an active matrix type light emitting panel substrate having a plurality of pixel portions capable of forming a light emitting element and a plurality of data lines, Each of the pixel units is provided between a first transistor for converting the signal voltage supplied from any one of the plurality of data lines into a signal current, and the data line and the gate of the first transistor.
  • a first switch element inserted and switching between conduction and non-conduction between the data line and the gate of the first transistor, and a test current input from the data line flows between the source and drain of the first transistor Means for forming a circuit path, and a voltage corresponding to the gate voltage of the first transistor generated by the inspection current
  • a second circuit path forming means for forming a circuit path to be generated on the data line; and a voltage detection means for detecting a voltage corresponding to the gate voltage of the first transistor generated by the inspection current on the data line. It is characterized by having.
  • the inspection current flows through the drive transistor and the voltage of the data line at that time is measured, highly accurate measurement can be realized as compared with the conventional measurement method type in which the voltage is input and the minute current is detected. Furthermore, by using the acquired characteristic information to correct the data voltage in the normal operation, it is possible to improve the luminance unevenness due to the characteristic dispersion of the drive transistor.
  • the present invention can not only be realized as a display device or an electronic device provided with such characteristic means, but also a display device or an electronic device having the characteristic means included in the display device or the electronic device as steps.
  • the characteristics of the drive transistor of each pixel and the organic EL element can be separated and measured with high accuracy by voltage measurement with a simple pixel circuit configuration and high detection accuracy. Therefore, it is possible to correct the luminance unevenness caused by the non-uniformity of the characteristics of the drive active element and the light emitting element.
  • FIG. 1 is a block diagram showing an electrical configuration of a display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a circuit configuration of one pixel portion included in the display portion and a connection with a peripheral circuit thereof.
  • FIG. 3 is an operation flowchart of the control circuit of the display device according to the first embodiment of the present invention in the case of detecting the characteristics of the drive transistor or the organic EL element.
  • FIG. 4 is a timing chart showing the supply timing of the inspection current when detecting the drive transistor characteristic or the organic EL element characteristic.
  • FIG. 5 is an operation flowchart of the control circuit in the normal operation.
  • FIG. 6 is a diagram showing a connection relationship between data lines and a test current generation circuit.
  • FIG. 1 is a block diagram showing an electrical configuration of a display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a circuit configuration of one pixel portion included in the display portion and a connection with a peripheral circuit thereof
  • FIG. 7 is a diagram showing a connection relationship between data lines and a test current generation circuit.
  • FIG. 8 is a diagram showing a connection relationship between data lines and a test current generation circuit.
  • FIG. 9 is a diagram showing a connection relationship between data lines and a voltage detection circuit.
  • FIG. 10 is a diagram showing the connection between the data line and the voltage detection circuit.
  • FIG. 11 is a diagram showing a connection relationship between data lines and a voltage detection circuit.
  • FIG. 12 is a circuit configuration diagram of a pixel unit provided in a display device showing a first modified example of the first embodiment of the present invention.
  • FIG. 13 is a circuit configuration diagram of a pixel unit provided in a display device showing a second modified example of the first embodiment of the present invention.
  • FIG. 14 is a circuit configuration diagram of a pixel unit provided in a display device showing a third modification of the first embodiment of the present invention.
  • FIG. 15 is a circuit configuration diagram of a pixel unit included in a display device according to Embodiment 2 of the present invention.
  • FIG. 16 is an operation flowchart of the control circuit of the display device according to the second embodiment of the present invention in the case of detecting the characteristics of the drive transistor or the organic EL element.
  • FIG. 17 is a timing chart showing the supply timing of the inspection current at the time of detecting the drive transistor characteristic.
  • FIG. 18 is a timing chart showing the supply timing of the inspection current at the time of detecting the organic EL element characteristic.
  • FIG. 19 is a block diagram showing an electrical configuration of an electronic device according to Embodiment 3 of the present invention.
  • FIG. 20 is a diagram showing the circuit configuration of one pixel portion of the pixel array portion and the connection with the peripheral circuits.
  • FIG. 21 is an external view of a thin flat TV incorporating the display device of the present invention.
  • the display device in this embodiment includes an active matrix light emitting panel having a plurality of pixel portions, and the pixel portion outputs a signal current corresponding to the signal voltage supplied from the selected data line.
  • a first switch element for turning on and off the supply of the signal voltage to the first transistor, a light emitting element for outputting an optical signal by the input of the signal current, and a short circuit between the selected data line and the second terminal of the first transistor And a second switch element connected to enable the state.
  • the display device further includes an inspection current generation circuit that supplies an inspection current to the first transistor or the light emitting element, and a voltage detection circuit that measures a voltage generated by the inspection current with a selected data line.
  • FIG. 1 is a block diagram showing an electrical configuration of a display device according to Embodiment 1 of the present invention.
  • the display device 1 in the figure includes a display unit 10, a scanning line drive circuit 20, a data line drive circuit 30, an inspection current generation circuit 40, a voltage detection circuit 50, a multiplexer 60, a control circuit 70, and a memory. And 80.
  • the display unit 10 includes a plurality of pixel units 100.
  • FIG. 2 is a diagram showing a circuit configuration of one pixel portion included in the display portion and a connection with a peripheral circuit thereof.
  • the pixel unit 100 in the same figure controls the organic EL element 110, the drive transistor 120, the switching transistor 130, the inspection transistor 140, the storage capacitor 150, the common electrode 115, the power supply line 125, the scanning line 21 and A line 22 and a data line 31 are provided.
  • the peripheral circuit further includes a scanning line drive circuit 20, a data line drive circuit 30, a test current generation circuit 40, a voltage detection circuit 50, and a multiplexer 60.
  • the scanning line driving circuit 20 is connected to the scanning line 21 and the control line 22 which is a first control line, and has a function of controlling conduction / non-conduction of the switching transistor 130 and the inspection transistor 140 of the pixel unit 100.
  • the data line drive circuit 30 is connected to the data line 31 and has a function of outputting a signal voltage and determining a signal current flowing to the drive transistor 120. Further, the data line drive circuit 30 has a switch which can open or short the connection with the data line 31.
  • the inspection current generation circuit 40 is connected to the data line 31, has a function of outputting an inspection current for detecting the characteristics of the drive transistor 120 and the organic EL element 110, and is a component of the first circuit path forming means It is.
  • the voltage detection circuit 50 is connected to the data line 31 via the multiplexer 60, and has a function of detecting the voltage of the data line 31 while the inspection current generation circuit 40 is outputting the inspection current. It is a component of 2 circuit path formation means.
  • the multiplexer 60 has a function of switching the data line 31 connected to the voltage detection circuit 50.
  • the control circuit 70 has a function of controlling the scanning line drive circuit 20, the data line drive circuit 30, the inspection current generation circuit 40, the multiplexer 60, the voltage detection circuit 50, and the memory 80.
  • the voltage value detected by the voltage detection circuit 50 is converted to a digital value, and is characteristic parameterized by calculation.
  • the data is written to the memory 80 by the control circuit 70.
  • the control circuit 70 reads the characteristic parameter written in the memory 80, corrects the video signal data input from the outside based on the characteristic parameter, and outputs the corrected data to the data line drive circuit 30.
  • the drive transistor 120 functions as a first transistor, the gate of the drive transistor 120 is connected to the data line 31 via the switching transistor 130, and one of the source and the drain, which is the first terminal, is one of the organic EL elements 110. The other of the second terminal, the source and the drain, is connected to the power supply line 125.
  • the switching transistor 130 functions as a first switching transistor, and the gate of the switching transistor 130 is connected to the scanning line 21.
  • the inspection transistor 140 functions as a second transistor and is a component of a first circuit path forming unit that forms an inspection current path.
  • the inspection transistor 140 doubles as a component of a second circuit path forming unit that forms a voltage path for measuring the anode voltage of the organic EL element 110 with the data line 31.
  • the gate of the inspection transistor 140 is connected to the control line 22, the source is connected to the anode which is one terminal of the organic EL element 110, and the drain is connected to the data line 31.
  • the storage capacitor 150 is connected between the power supply line 125 and the gate terminal of the drive transistor 120.
  • the organic EL element 110 functions as a light emitting element, and the cathode which is the other terminal of the organic EL element 110 is connected to the common electrode 115.
  • the power supply lines 125 are all connected to the same power supply.
  • the common electrode 115 is also connected to the power supply.
  • FIG. 3 is an operation flowchart of the control circuit of the display device according to the first embodiment of the present invention in the case of detecting the characteristics of the drive transistor or the organic EL element.
  • connection between the data line drive circuit 30 and the data line 31 is turned off, and the connection between the test current generation circuit 40 and the data line 31 is turned on (S10).
  • This connection is realized, for example, by turning off the switch between data line drive circuit 30 and data line 31 and turning on the switch between test current generation circuit 40 and data line 31.
  • FIG. 4 is a timing chart showing the supply timing of the inspection current when detecting the drive transistor characteristic or the organic EL element characteristic.
  • the horizontal axis represents time.
  • a waveform diagram of a voltage generated on the scanning line 21, a waveform diagram of a voltage generated on the control line 22, and a waveform diagram of the inspection current 41 are shown in order from the top.
  • the voltage levels of the scanning line 21 and the control line 22 are set to HIGH to turn on the switching transistor 130 and the inspection transistor 140, respectively (S11). Note that the switching transistor 130 may be off at the time of detection of the organic EL element characteristic.
  • test current 41 is supplied from the test current generating circuit 40 in the direction of the arrow in FIG. 2 (S12).
  • step S12 at the time of detecting characteristic of the driving transistor 120, since the common electrode 115, the variable voltage V B, such as the reverse bias is applied to the organic EL element 110 is applied by the second power source connected to the common electrode 115 The current does not flow to the organic EL element 110. Therefore, the inspection current 41 flows into the power supply line 125 via the data line 31, the inspection transistor 140, and the drive transistor 120 as the first inspection current. At this time, since the switching transistor 130 is in the on state, the gate terminal of the driving transistor 120 is connected to the data line 31. Therefore, the voltage of the data line 31 becomes substantially equal to the gate voltage of the drive transistor 120 when the test current 41 flows through the drive transistor 120.
  • step S12 when the characteristic of the organic EL element 110 is detected, the gate voltage of the drive transistor 120 is not supplied to the drive transistor 120 by the first power supply connected to the power supply line 125.
  • a variable voltage V A equal to or higher than that is applied, and the inspection current 41 is applied as the second inspection current via the data line 31, the inspection transistor 140, and the organic EL element 110 to the common electrode 115.
  • the inspection transistor 140 since the inspection transistor 140 is in the on state, the anode terminal of the organic EL element 110 is connected to the data line 31. Therefore, the voltage of the data line 31 becomes substantially equal to the anode voltage of the organic EL element 110 when the inspection current 41 flows to the organic EL element 110.
  • the inspection current 41 is supplied, and the voltage appearing on the data line 31 is detected by the voltage detection circuit 50 (S13). Thereby, the gate voltage of the drive transistor 120 or the anode voltage of the organic EL element 110 can be known with respect to the magnitude of the inspection current 41.
  • step S13 since the gate terminal and the drain terminal of the drive transistor 120 are connected via the switching transistor 130 and the inspection transistor 140, the drive transistor 120 is detected. Is operating in the saturation region. Further, the source voltage of the drive transistor 120 is a voltage applied to the power supply line 125.
  • the detected voltage is V det
  • the power supply voltage applied to the source terminal of the drive transistor 120 is V dd
  • the test current is I test , the following Expression 1 is established.
  • is a characteristic parameter related to the channel region, oxide film capacitance, and mobility of the drive transistor 120
  • Vth is a threshold voltage of the drive transistor 120 and related to the mobility.
  • Equation 1 when the magnitude of two different test current I 1 and I 2 to flow to the detected voltage, respectively V det1, V det2, you can make a simultaneous equations as follows.
  • characteristic parameters such as the mobility and the threshold value of the drive transistor 120 can be calculated.
  • the initial current of the organic EL element 110 obtained in advance Calculate the amount of deviation between the voltage characteristics and (I EL , V EL ) acquired this time.
  • control circuit 70 converts the voltage values V det1 and V det2 detected by the voltage detection circuit 50 or V EL into digital values, and using these and Equations 2 to 4 or the initial current-voltage characteristics.
  • the calculated characteristic parameter is stored in the memory 80 (S14).
  • step S15 does not have to be after step S14, and may be performed in parallel with step S14, or may be performed after step S13 and before step S14.
  • the voltage of the data line is measured by the series of operation steps described above, and the detection result is evaluated to find not only the pixel defect of the pixel portion but also the variation of the drive transistor and the organic EL element or the variation over time You can obtain information on the subject independently.
  • the acquired characteristic parameter is stored in the memory and used for correction of data voltage in the normal operation to be described later, thereby improving the luminance unevenness due to the characteristic variation of the driving transistor or the organic EL element or the temporal variation.
  • FIG. 5 is an operation flowchart of the control circuit in the normal operation.
  • connection between the data line drive circuit 30 and the data line 31 is made conductive, and the connection between the test current generation circuit 40 and the data line 31 is made nonconductive (S20).
  • This connection can be realized, for example, by making the output current of the test current generating circuit 40 zero.
  • the connection may be released by turning off the switch provided between the test current generating circuit 40 and the data line 31.
  • step S21 the inspection transistor 140 is turned off (S21). Note that this step S21 may be performed before step S20. Further, at the time of normal operation, the inspection transistor 140 is always in the off state, but the output voltage of the data line drive circuit 30 can be applied directly to the organic EL element 110 by turning the inspection transistor 140 on. It may be used for black insertion at the time of driving.
  • the signal voltage corrected by the characteristic parameter read from the memory 80 is output from the data line drive circuit 30, and the image display is performed by writing in the pixel unit 100 (S22).
  • the signal voltage is corrected based on the characteristic parameter obtained at the time of characteristic detection by the characteristic detection operation of the drive transistor and the organic EL element, and the normal operation.
  • the unevenness is improved.
  • the voltage detection circuit 50 and the test current generation circuit 40 are connected to both sides of the data line 31 with the pixel portion interposed, the voltage detection circuit 50 and the test current generation circuit 40
  • the pixel portion may be connected to the same side of the data line 31.
  • the voltage detection circuit 50 and the test current generation circuit 40 be connected to both sides of the data line 31 with the pixel portion interposed therebetween. If it is desired to accelerate the detection time by increasing the inspection current, the configuration connected to both sides of the data line 31 is very effective.
  • test current generation circuit 40 may be built in the data driver IC together with the data line drive circuit 30, or may be separate from the data driver IC.
  • the inspection current generation circuit 40 may have the same number of current generation sources 42 as the number of data lines 31 as in the connection relationship between the data lines and the inspection current generation circuit shown in FIG.
  • inspection current generation circuit 40 has a smaller number of multiplexers 43 for switching data lines 31 than the number of data lines 31 as in the connection relationship between the data lines and the inspection current generation circuit shown in FIG. It may have the
  • the multiplexer 43 when the multiplexer 43 for switching the data line 31 and the current generation source 42 smaller than the data line 31 are provided, the multiplexer 43 emits light as in the connection relationship between the data line and the test current generation circuit shown in FIG. It may be formed on the panel 5.
  • the voltage detection circuit 50 may be incorporated in the data driver IC together with the data line drive circuit 30, or may be separate from the data driver IC.
  • the voltage detection circuit 50 may have the same number of voltage detectors 51 as the number of data lines 31 as in the connection relationship between the data lines and the voltage detection circuit shown in FIG.
  • voltage detection circuit 50 has multiplexer 52 for switching data line 31 and voltage detector 51 smaller than the number of data lines 31 as in the connection relationship between the data line and the voltage detection circuit shown in FIG. It may be one.
  • the multiplexer 52 when the multiplexer 52 for switching the data line 31 and the voltage detector 51 less than the data line 31 are provided, the multiplexer 52 is a light emitting panel as in the connection relationship between the data line and the voltage detection circuit shown in FIG. It may be formed on 5.
  • FIG. 12 is a circuit configuration diagram of a pixel unit provided in a display device showing a first modified example of the first embodiment of the present invention.
  • the pixel unit 200 in the same figure controls the organic EL element 210, the drive transistor 220, the switching transistor 230, the inspection transistor 240, the storage capacitor 150, the common electrode 115, the power supply line 125, the scanning line 21 and A line 22 and a data line 31 are provided.
  • step S11 described in FIG. 3 in order to turn on the switching transistor 230 and the inspection transistor 240, the voltages of the scanning line 21 and the control line 22 are switched from the HIGH level to the LOW level.
  • the switching transistor 230 may be off at the time of detection of the organic EL element characteristic.
  • step S12 described in FIG. 3 the inspection current 44 is in the opposite direction to the inspection current 41 described in FIG.
  • step S13 the gate voltage of the drive transistor 220 or the cathode voltage of the organic EL element 210 can be known with respect to the magnitude of the inspection current 44.
  • FIG. 13 is a circuit configuration diagram of a pixel unit provided in a display device showing a second modified example of the first embodiment of the present invention.
  • the pixel unit 300 in the figure includes an organic EL element 110, a drive transistor 120, a switching transistor 130, an EL switching transistor 310, an inspection transistor 140, a storage capacitor 150, a common electrode 115, and a power supply line 125.
  • a scanning line 21, control lines 22 and 23, and a data line 31 are provided.
  • the pixel unit 300 described in the same figure has a point that the EL switching transistor 310 is inserted in the anode terminal of the organic EL element 110, and The only difference is that the control line 23 for controlling on / off is connected to the gate of the EL switching transistor 310 as a circuit configuration.
  • the EL switching transistor 310 functions as a second switch element, and controls the presence or absence of the supply of the inspection current to the organic EL element 110.
  • step S12 described in FIG. 3 by applying a reverse bias voltage to the organic EL element 110, the inspection current does not flow in the organic EL element 110, and the inspection current 41 is controlled to flow in the drive transistor 120. It was On the other hand, in the present embodiment, by setting the EL switching transistor 310 connected to the anode of the organic EL element 110 to the OFF state via the control line 23, no current flows in the organic EL element 110. The test current 41 is controlled to flow through the transistor 120.
  • FIG. 14 is a circuit configuration diagram of a pixel unit provided in a display device showing a third modification of the first embodiment of the present invention.
  • the pixel unit 400 in the same figure includes the organic EL element 110, the drive transistor 120, the switching transistors 130 and 410, the inspection transistor 140, the storage capacitor 150, the common electrode 115, the power supply line 125, and the scanning line 21. , Control lines 22 and 24, and a data line 31.
  • the pixel unit 400 described in the same figure is that the switching transistor 410 is inserted between the second terminal of the drive transistor 120 and the power supply line 125. Also, the circuit configuration is different only in that a control line 24 for controlling on / off of the switching transistor 410 is connected to the gate of the switching transistor 410.
  • the switching transistor 410 functions as a third switch element, and controls the presence or absence of the supply of the test current to the drive transistor 120.
  • step S12 described in FIG. 3 a voltage equal to or higher than the gate voltage of the drive transistor 120 is applied to the power supply line 125, so that no test current flows in the drive transistor 120, and the organic EL element 110 is generated. It is controlled so that the inspection current 41 flows.
  • the switching transistor 410 connected to the second terminal of the driving transistor 120 is turned off via the control line 24, so that no current flows in the driving transistor 120, and the organic EL The inspection current 41 is controlled to flow in the element 110.
  • the switching transistor 410 added in the present embodiment may be inserted into the first terminal of the driving transistor 120 (point P in FIG. 14).
  • the voltage of the data line is measured, and the detection result is evaluated, so that only the pixel defect of the pixel portion is found.
  • information on variations in drive transistors and organic EL elements can be obtained independently.
  • the acquired characteristic parameter is stored in the memory and used for correcting the data voltage in the normal operation described later, thereby improving the luminance unevenness due to the characteristic dispersion of the drive transistor and the organic EL element.
  • the display device in this embodiment includes an active matrix light emitting panel having a plurality of pixel portions, and the pixel portion outputs a signal current corresponding to the signal voltage supplied from the selected data line.
  • a first switch element for turning on and off the supply of the signal voltage to the first transistor, a light emitting element for outputting an optical signal by input of the signal current, and a voltage connected between the first transistor and the first switch element.
  • the converter, the selected data line and the gate terminal of the first transistor are shorted or in a conductive state having a constant potential difference, and the selected data line and the second terminal of the first transistor are shorted.
  • one or more second switch elements connected to enable the state.
  • the electronic device further includes an inspection current generation circuit which supplies an inspection current to the first transistor or the light emitting element, and a voltage detection circuit which measures a voltage generated by the inspection current with a selected data line.
  • an inspection current generation circuit which supplies an inspection current to the first transistor or the light emitting element
  • a voltage detection circuit which measures a voltage generated by the inspection current with a selected data line.
  • FIG. 15 is a circuit configuration diagram of a pixel unit included in a display device according to Embodiment 2 of the present invention.
  • the pixel unit 500 in the figure includes an organic EL element 110, a drive transistor 220, a switching transistor 230, an EL switching transistor 520, an inspection transistor 240, a threshold compensation transistor 510, a storage capacitor 150, and a threshold compensation capacitor 530.
  • a common electrode 115, a power supply line 125, a scanning line 21, control lines 22, 25 and 26, and a data line 31 are provided.
  • the pixel unit 500 in the same figure is provided with a threshold compensation transistor 510 and a control line 25 which is a second control line for controlling the operation thereof.
  • the EL switching transistor 520 and the control line 26 for controlling the operation thereof are added to the anode terminal of the organic EL element 110, and the threshold compensation capacitance 530 is added between the switching transistor 230 and the gate terminal of the drive transistor 220.
  • the difference is that all the various transistors are p-channel transistors. The same points as the pixel unit 100 described in FIG. 2 will not be described, and only different points will be described below.
  • One of the source and the drain of the threshold compensation transistor 510 is connected to one of the source and the drain which is the first terminal of the drive transistor 220, and the other of the source and the drain is connected to the gate of the drive transistor 220.
  • the pixel unit 100 controls the current supply to the organic EL element 110 by a basic circuit of two transistors and one capacitor, that is, the drive transistor 120, the switching transistor 130, and the storage capacitor 150
  • the pixel unit 500 Has a function of compensating for the fluctuation of the threshold voltage Vth of the drive transistor by adding the threshold compensation transistor 510 and the threshold compensation capacitance 530 functioning as a voltage conversion unit to the above basic circuit.
  • the drive transistor 220 does not cause fluctuation of the output signal current due to fluctuation of the threshold voltage Vth.
  • the EL switching transistor 520 has the same function as the EL switching transistor 310 in the pixel unit 300 described in FIG. 13, and controls the presence or absence of the supply of the inspection current 41 to the organic EL element 110.
  • FIG. 16 is an operation flowchart of the control circuit of the display device according to the second embodiment of the present invention in the case of detecting the characteristics of the drive transistor or the organic EL element.
  • the configuration and connection of peripheral circuits of the pixel unit 500 are the same as those of the peripheral circuits described in FIG.
  • connection between the data line drive circuit 30 and the data line 31 is turned off, and the connection between the test current generation circuit 40 and the data line 31 is turned on (S30).
  • This connection is realized, for example, by turning off the switch between data line drive circuit 30 and data line 31 and turning on the switch between test current generation circuit 40 and data line 31.
  • step S31 the operation when the drive transistor 220 characteristic detection is selected in step S31 will be described.
  • FIG. 17 is a timing chart showing the supply timing of the inspection current at the time of detecting the drive transistor characteristic.
  • the horizontal axis represents time. Further, in the vertical direction, the voltage of the scanning line 21, the voltage of the control line 25, the voltage of the control line 22, the voltage of the control line 26, and the inspection current are shown sequentially from the top.
  • the voltage levels of the control line 25 and the control line 22 are set to LOW, and the threshold compensation transistor 510 and the inspection transistor 240 are turned on (S32).
  • step S31 the operation when the organic EL element 110 characteristic detection is selected in step S31 will be described.
  • FIG. 18 is a timing chart showing the supply timing of the inspection current at the time of detecting the organic EL element characteristic.
  • the horizontal axis represents time. Further, in the vertical direction, the voltage of the scanning line 21, the voltage of the control line 25, the voltage of the control line 22, the voltage of the control line 26, and the inspection current are shown sequentially from the top.
  • the voltage levels of the control line 22 and the control line 26 are set to LOW, and the inspection transistor 240 and the EL switching transistor 520 are turned on (S33).
  • the inspection current generation circuit 40 causes the inspection current 45 to flow in the direction of the arrow in FIG. Alternatively, at the time of organic EL element characteristic detection, the inspection current generation circuit 40 supplies the inspection current 46 in the direction of the arrow in FIG. 15 (S34).
  • the inspection current 45 at the time of drive transistor characteristic detection flows into the power supply line 125 via the data line 31, the inspection transistor 240, and the drive transistor 220.
  • the gate terminal of the drive transistor 220 is connected to the data line 31 by the threshold compensation transistor 510 and the inspection transistor 240, and the voltage of the data line 31 is determined when the inspection current 45 flows in the drive transistor 220. It becomes almost equal to the gate voltage of the drive transistor 220.
  • the drive transistor 220 since the gate terminal and the drain terminal of the drive transistor 220 are connected via the threshold compensation transistor 510, the drive transistor 220 operates in the saturation region.
  • the source voltage of the drive transistor 220 is a voltage applied to the power supply line 125.
  • the detected voltage is V det
  • the power supply voltage applied to the source terminal of the driving transistor 220 is V dd
  • the test current is I test , the above-mentioned equation 1 is established.
  • a voltage equal to or less than the gate potential of the drive transistor 220 is applied to the power supply line 125, and therefore the inspection current 46 does not flow to the drive transistor 220 when detecting the organic EL element characteristics.
  • the inspection current 46 flows into the common electrode 115 via the data line 31, the inspection transistor 240, the EL switching transistor 520, and the organic EL element 110.
  • the voltage of the data line 31 is determined when the inspection current 46 flows in the organic EL element 110. It becomes almost equal to the anode voltage of the organic EL element 110.
  • test current 45 or 46 is supplied between t2 and t3 in FIG. 17 or 18, and the voltage appearing on the data line 31 is detected by the voltage detection circuit 50 (S35).
  • the gate voltage of the drive transistor 220 or the anode voltage of the organic EL element 110 can be known with respect to the magnitude of the inspection current.
  • the initial current-voltage characteristic of the organic EL element 110 acquired in advance and the current acquired (I EL , V EL ) can be calculated.
  • the voltage values V det (or V det1 and V det2 ) or V EL detected by the voltage detection circuit 50 are converted into digital values, and these are converted to Equations 2 to 5, or the initial current
  • the characteristic parameter calculated using the voltage characteristic is stored in the memory 80 (S36).
  • step S37 does not have to be after step S36, and may be performed in parallel with step S36 or may be performed after step S35 and before step S36.
  • the voltage of the data line is measured even in the pixel portion to which the transistor for compensating the threshold voltage of the drive transistor and the capacitance are added, and the detection result is evaluated. Not only defects can be found, but information on variations in the drive transistor and the organic EL element and changes over time can be obtained independently.
  • the acquired characteristic parameter is stored in the memory and used for correction of data voltage in the normal operation to be described later, thereby improving the luminance unevenness due to the characteristic variation of the driving transistor or the organic EL element or the temporal variation.
  • connection between the data line drive circuit 30 and the data line 31 is made conductive, and the connection between the test current generation circuit 40 and the data line 31 is made nonconductive (S20).
  • step S21 the inspection transistor 240 is turned off (S21). Note that this step S21 may be performed before step S20. In the normal operation, the inspection transistor 240 is always in the off state, but the output voltage of the data line drive circuit 30 is directly applied to the organic EL element 110 by turning on the inspection transistor 240 and the EL switching transistor 520. It may be used for black insertion at the time of driving.
  • the signal voltage corrected by the characteristic parameter read from the memory 80 is output from the data line drive circuit 30, and the image display is executed by writing in the pixel section 500 (S22).
  • the characteristic detection operation of the drive transistor and the organic EL element In the normal operation, the signal voltage is corrected based on the characteristic parameter obtained at the time of the characteristic detection, so that the luminance unevenness due to the characteristic variation of the drive transistor or the organic EL element or the temporal change is improved.
  • the threshold compensation capacitance 530 may be a voltage conversion circuit that converts the signal voltage from the data line into a voltage corresponding to the signal voltage and outputs the voltage to the gate of the drive transistor 220.
  • the threshold compensation capacitance 530 is a voltage conversion circuit
  • one of the source and the drain of the threshold compensation transistor 510 is not connected to one of the source and the drain which is the first terminal of the drive transistor 220. It may be connected to
  • the threshold compensation capacitance 530 is a voltage conversion circuit
  • one of the source and the drain of the threshold compensation transistor 510 is not connected to one of the source and the drain, which is the first terminal of the drive transistor 220. It may be connected to a connection point between the voltage conversion circuit and the voltage conversion circuit.
  • threshold compensation capacitance 530 is a voltage conversion circuit
  • one of the source and the drain of the inspection transistor 240 is not connected to the data line 31, but is connected to a connection point between the switching transistor 230 and the voltage conversion circuit. May be
  • the threshold compensation capacitance 530 is a voltage conversion circuit
  • one of the source and the drain of the inspection transistor 240 is not connected to the data line 31, but is connected to a connection point between the switching transistor 230 and the voltage conversion circuit.
  • one of the source and the drain of the threshold compensation transistor 510 may not be connected to one of the source and the drain, which is the first terminal of the driving transistor 220, and may be connected to the data line 31.
  • threshold compensation capacitance 530 is a voltage conversion circuit
  • one of the source and the drain of the inspection transistor 240 is not connected to the data line 31, but is connected to a connection point between the switching transistor 230 and the voltage conversion circuit.
  • one of the source and the drain of threshold compensation transistor 510 is not connected to one of the source and the drain, which is the first terminal of drive transistor 220, but is connected to the connection point between switching transistor 230 and the voltage conversion circuit. May be
  • the threshold compensation capacitance 530 is a voltage conversion circuit
  • the other of the source and the drain of the inspection transistor 240 is not connected to one of the source and the drain which is the first terminal of the drive transistor 220. It may be connected to the gate.
  • the operation of detecting the characteristics of either the drive transistor or the organic EL element in each pixel portion has been described.
  • the circuit configurations and operations shown in the first and second embodiments are used.
  • the characteristics of both the drive transistor of each pixel portion and the organic EL element may be detected.
  • the characteristic detection of both the drive transistor and the organic EL element is performed when the gate voltage of the drive transistor 120 and the second current flow when the first inspection current flows. It is realized by detecting the anode voltage of the element 110.
  • the effect of detecting the characteristics of both the drive transistor and the organic EL element in each pixel portion will be described.
  • the emission luminance is easily affected not only by the deterioration of the drive transistor but also by the deterioration of the organic EL element. The reason will be described below.
  • the gate voltage to the source terminal of the drive transistor determines the current flowing to the organic EL element. If an organic EL element, not a constant voltage power supply line, is connected to the source terminal, the source voltage fluctuates due to the characteristics of the organic EL element. In the organic EL element, the voltage when the same current flows is increased due to deterioration with time. That is, there is a tendency to increase resistance. Therefore, for example, in the pixel unit 100 described in the first embodiment, the source voltage of the drive transistor 120 is increased due to the increase in resistance of the organic EL element. Therefore, even if the same data voltage is applied to the gate terminal of the drive transistor 120, the current flowing is reduced.
  • the source voltage reflecting the characteristic of the organic EL element can be known, so that an appropriate correction data voltage can be derived.
  • the characteristics of both the drive transistor and the organic EL element can be detected only by adding one inspection transistor 140 to the basic pixel circuit, and the above-mentioned high-accuracy correction data voltage It is possible to derive
  • the electronic device includes an active matrix panel substrate having a plurality of pixel portions before the light emitting element is formed, and the pixel portion corresponds to the signal voltage supplied from the selected data line. It is possible that the first transistor that outputs the signal current, the first switch element that turns on / off the supply of the signal voltage to the first transistor, and the shorted state between the selected data line and the second terminal of the first transistor And a second switch element connected as follows. Further, the electronic device further includes an inspection current generation circuit for causing an inspection current to flow through the first transistor, and a voltage detection circuit for measuring a voltage generated by the inspection current using a selected data line.
  • the characteristics of the drive transistor disposed in each pixel can be measured with high accuracy, so that it is possible to correct the luminance unevenness caused by the nonuniformity of the drive transistor characteristic in the light emitting panel after the light emitting element is formed.
  • FIG. 19 is a block diagram showing an electrical configuration of an electronic device according to Embodiment 3 of the present invention.
  • the electronic device 2 in the figure includes a scanning line drive circuit 20, an inspection current generation circuit 40, a voltage detection circuit 50, a multiplexer 60, a control circuit 70, a memory 80, and a pixel array unit 90.
  • the electronic device shown in FIG. 19 is an intermediate stage in the formation process of the display device having the light emitting panel described in FIG.
  • the pixel array unit 90 is disposed instead of the display unit in comparison with the display device according to the first embodiment described in FIG.
  • the configuration is different in that the drive circuit 30 is not disposed.
  • the pixel array unit includes a plurality of pixel units.
  • FIG. 20 is a diagram showing the circuit configuration of one pixel portion of the pixel array portion and the connection with the peripheral circuits.
  • the pixel portion 600 in the same figure includes a drive transistor 120, a switching transistor 130, an inspection transistor 140, a storage capacitor 150, a power supply line 125, a scanning line 21, a control line 22, and a data line 31.
  • the peripheral circuit further includes a scanning line drive circuit 20, a test current generation circuit 40, a voltage detection circuit 50, and a multiplexer 60.
  • the pixel section 600 described in FIG. 20 differs from the pixel section 100 described in FIG. 2 only in that the organic EL element 110 is not disposed.
  • the pixel unit 600 is of a process before the organic EL element 110 is formed, and the pixel unit 100 is generated by forming the organic EL element 110 in the pixel unit 600.
  • the same thing as the component described in FIG.1 and FIG.2 abbreviate
  • the test current generation circuit 40 is connected to the data line 31 and outputs a test current 47 for detecting the characteristics of the drive transistor 120.
  • the voltage detection circuit 50 is connected to the data line 31 via the multiplexer 60, and detects the voltage of the data line 31 while the test current generation circuit 40 outputs the test current 47.
  • the control circuit 70 controls the scanning line drive circuit 20, the test current generation circuit 40, the multiplexer 60, the voltage detection circuit 50, and the memory 80, and the voltage value detected by the voltage detection circuit 50 is converted into a digital value.
  • the characteristic parameter obtained by the calculation is written in the memory 80.
  • the gate of the drive transistor 120 is connected to the data line 31 via the switching transistor 130, and one of the source and the drain, which is the first terminal, is connected later to the anode of the organic EL element to be formed later.
  • the other of the source and the drain is connected to the power supply line 125.
  • the gate of the inspection transistor 140 is connected to the control line 22, the source is connected to the anode of the organic EL element to be formed later, and the drain is connected to the data line 31.
  • This driving method can detect the characteristics of the driving transistor 120 before the light emitting element is formed.
  • the present driving method can also be described with reference to the operation flowchart shown in FIG. 3 and a timing chart showing the supply timing of the inspection current described in FIG.
  • connection between the test current generation circuit 40 and the data line 31 is set to the conductive state (S10).
  • the voltage levels of the scanning line 21 and the control line 22 are set to HIGH to turn on the switching transistor 130 and the inspection transistor 140, respectively (S11).
  • the inspection current 47 is supplied from the inspection current generation circuit 40 in the direction of the arrow in FIG. 20 (S12).
  • step S12 the inspection current 47 flows into the power supply line 125 via the data line 31, the inspection transistor 140, and the drive transistor 120. At this time, the voltage of the data line 31 becomes substantially equal to the gate voltage of the drive transistor 120 when the test current 47 flows through the drive transistor 120.
  • the inspection current 47 is supplied, and the voltage appearing on the data line 31 is detected by the voltage detection circuit 50 (S13). Thereby, the gate voltage of the drive transistor 120 with respect to the magnitude of the inspection current 47 can be known.
  • the characteristic parameter calculated by converting the voltage value detected by the voltage detection circuit 50 into a digital value is stored in the memory 80 (S14).
  • the characteristic parameter calculation method at this time is calculated using Equations 2 to 4 as in the first embodiment.
  • step S15 does not have to be after step S14, and may be performed in parallel with step S14, or may be performed after step S13 and before step S14.
  • the voltage of the data line is measured by the series of operation steps described above, and the detection result is evaluated, so that not only the pixel defect of the pixel portion is found but also information on the variation of the drive transistor can be obtained.
  • the voltage detection circuit 50 and the test current generation circuit 40 are connected to both sides of the data line 31 with the pixel portion interposed therebetween. However, the voltage detection circuit 50 and the test current generation circuit 40 The pixel portion may be connected to the same side of the data line 31.
  • the inspection current generation circuit 40 may have the same number of current generation sources as the number of data lines 31.
  • test current generating circuit 40 may have a multiplexer for switching the data lines 31 and a current generation source smaller than the number of the data lines 31.
  • the multiplexer may be formed on the panel substrate.
  • the voltage detection circuit 50 may have the same number of voltage detectors as the number of data lines 31.
  • the voltage detection circuit 50 may have a multiplexer for switching the data lines 31 and a voltage detector having a smaller number than the number of the data lines 31.
  • the multiplexer may be formed on the panel substrate.
  • the first pixel unit including the driving transistor, the switching transistor, and the light emitting element and the first data line input to the data line for applying the data voltage to the pixel unit are First circuit path forming means for forming a circuit path so that a test current flows between the source and drain of the drive transistor or a second test current input from the data line flows to the light emitting element; Circuit path forming means for forming a circuit path to generate a voltage corresponding to the gate voltage of the drive transistor generated by the voltage or one of the anode and the cathode of the light emitting element generated by the second inspection current in the data line And a voltage corresponding to the gate voltage of the drive transistor generated by the first test current, or generated by the second test current
  • the inspection current flows to the drive transistor and the light emitting element, and the voltage of the data line at that time is measured, high-accuracy measurement is realized compared to the conventional measurement method in which the voltage is input and the minute current is detected. Be done. Furthermore, by using the acquired characteristic information to correct the data voltage at the time of normal operation, it is possible to improve the luminance unevenness due to the characteristic dispersion of the drive transistor and the light emitting element.
  • the electronic device includes a driving transistor and a switching transistor, and an inspection current input from a data line to a pixel portion before forming a light emitting element and a data line for applying a data voltage to the pixel portion.
  • First circuit path forming means for forming a circuit path so that the current flows between the source and the drain of the drive transistor, and the circuit path for generating a voltage corresponding to the gate voltage of the drive transistor generated by the first inspection current Drive by providing a second circuit path forming means for forming a second circuit path, and a voltage detection means for detecting a voltage corresponding to the gate voltage of the drive transistor generated by the inspection current by Characteristic information on transistor variations can be obtained.
  • the inspection current flows through the drive transistor and the voltage of the data line at that time is measured, highly accurate measurement can be realized as compared with the conventional measurement method type in which the voltage is input and the minute current is detected. Furthermore, by using the acquired characteristic information to correct the data voltage in the normal operation, it is possible to improve the luminance unevenness due to the characteristic dispersion of the drive transistor.
  • the electronic device according to the present invention is not limited to the above embodiment.
  • the other embodiments realized by combining arbitrary components in the first to third embodiments and the variations thereof, and the first to third embodiments and the variations thereof are within the scope of the present invention.
  • the present invention also includes modifications obtained by applying various modifications as conceived by a vendor, and various devices incorporating the electronic device according to the present invention.
  • a pixel showing a third modification of the first embodiment of the present invention shown in FIG. 13 By inserting the switching transistor 410 included in the portion 400, the test current 41 path of the pixel portion 300 in the second modification of the first embodiment can be controlled by turning on and off the EL switching transistor 310 and the switching transistor 410. .
  • the circuit configuration in which the organic EL element 110 is removed from the circuit configuration of each pixel unit described in the first embodiment and its modification and the second embodiment, that is, before the organic EL element 110 is formed The electronic device provided with the panel substrate having the respective pixel portions exhibits the same effect by being applied in the same manner as the electronic device shown in the third embodiment of the present invention described in FIG.
  • a transistor having each function of a drive transistor, a switching transistor, a test transistor, and an EL switching transistor is an FET (Field Effect Transistor) having a gate, a source and a drain.
  • FET Field Effect Transistor
  • bipolar transistors having a base, a collector and an emitter may be applied. Also in this case, the object of the present invention is achieved and the same effect can be obtained.
  • the display device according to the present invention is incorporated in a thin flat TV as described in FIG.
  • the display device according to the present invention realizes a thin flat TV provided with a display in which uneven brightness is suppressed.
  • the present invention is particularly useful for an organic EL flat panel display incorporating a display device, and is most suitable for use as a display device of a display that requires uniform image quality and a method of driving the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明のアクティブマトリクス型の表示装置の有する画素部(100)は、駆動トランジスタ(120)と、スイッチングトランジスタ(130)と、有機EL素子(110)とを備え、データ線(31)からの検査電流(41)を駆動トランジスタ(120)に流し、又は、有機EL素子(110)に流すように回路パスを形成する第1回路パス形成手段と、その際発生した駆動トランジスタ(120)のゲート電圧又は有機EL素子(110)の電圧をデータ線(31)に発生させるよう回路パスを形成する第2回路パス形成手段と、発生した駆動トランジスタ(120)のゲート電圧又は有機EL素子(110)の電圧を、第2回路パス形成手段によりデータ線(31)にて検出する電圧検出手段とを備える。

Description

表示装置、電子装置及び駆動方法
 本発明は表示装置、電子装置及びそれらの駆動方法に関し、特に電流駆動型の発光素子を用いた表示装置、電子装置及びそれらの駆動方法に関する。
 電流駆動型の発光素子を用いた画像表示装置として、有機EL素子(OLED:Organic Light Emitting Diode)を用いた画像表示装置(有機ELディスプレイ)が知られている。この有機ELディスプレイは、視野角特性が良好で、消費電力が少ないという利点を有するため、次世代のFPD(Flat Panal Display)候補として注目されている。
 有機ELディスプレイでは、通常、画素を構成する有機EL素子がマトリクス状に配置される。複数の行電極(走査線)と複数の列電極(データ線)との交点に有機EL素子を設け、選択した行電極と複数の列電極との間にデータ信号に相当する電圧を印加するようにして有機EL素子を駆動するものをパッシブマトリクス型の有機ELディスプレイと呼ぶ。
 一方、複数の走査線と複数のデータ線との交点に薄膜トランジスタ(TFT:Thin Film Transistor)を設け、このTFTにドライビングトランジスタのゲートを接続し、選択した走査線を通じてこのTFTをオンさせてデータ線からデータ信号をドライビングトランジスタに入力し、そのドライビングトランジスタによって有機EL素子を駆動するものをアクティブマトリクス型の有機ELディスプレイと呼ぶ。
 各行電極(走査線)を選択している期間のみ、それに接続された有機EL素子が発光するパッシブマトリクス型の有機ELディスプレイとは異なり、アクティブマトリクス型の有機ELディスプレイでは、次の走査(選択)まで有機EL素子を発光させることが可能であるため、デューティ比が上がってもディスプレイの輝度減少を招くようなことはない。従って、低電圧で駆動できるので、低消費電力化が可能となる。しかしながら、アクティブマトリクス型の有機ELディスプレイでは、ドライビングトランジスタや有機EL素子の特性のばらつきに起因して、同じデータ信号を与えても、各画素において有機EL素子の輝度が異なり、輝度むらが発生するという欠点がある。
 従来の有機ELディスプレイにおける、ドライビングトランジスタや有機EL素子の特性のばらつきや劣化(以下、特性の不均一と総称する)による輝度ムラの補償方法としては、複雑な画素回路による補償、代表画素によるフィードバック補償、また、全画素に流れる電流の合計によるフィードバック補償などが代表的である。
 しかし、複雑な画素回路は歩留まりを下げてしまう。また、代表画素によるフィードバックや、全画素に流れる電流の合計によるフィードバックでは、画素ごとの特性の不均一を補償できない。
 上記理由により、簡単な画素回路で、画素ごとに特性の不均一を検出する方法がいくつか提案されている。
 例えば、特許文献1に開示された発光パネル用基板、発光パネル用基板の検査方法及び発光パネルでは、従来の2つのトランジスタからなる電圧駆動画素回路に、ダイオード接続のトランジスタを接続し、それをELに見立てることによって、EL形成前の発光パネル用基板の状態において、そのダイオード接続のトランジスタに接続されたテスト線に流れる電流を測定し、データ電圧と駆動トランジスタを流れる電流との関係を検出して、画素検査及び画素特性抽出がなされている。また、そのEL形成後もダイオード接続のトランジスタはテスト線を用いて逆バイアスとして電流を流さないようにできるため、通常の電圧書き込み動作が行える。また、アレイの状態で検出された特性は、有機EL発光パネルを使用する際のデータ線への印加電圧の補正制御に利用することができる。
特開2006-139079号公報
 しかしながら、画素に流れる駆動電流は非常に微小であり、微小電流の測定を精度よく行うことは困難である。また、初期の特性ばらつきや劣化による特性変化は、トランジスタにのみ起こるものではなく、有機EL素子にも起こるものなので、有機EL特性を検出しない方法では、画素の輝度の不均一を補償できない。
 さらに、従来の方法では、発光パネル完成後の動作においても、駆動トランジスタ及び有機EL素子の特性の経時変化を精度よく補償する手段を有しない。一般に、駆動トランジスタは、その材料として低温ポリシリコンが用いられる場合は、初期特性にばらつきはあるものの、その後の特性は安定している。これに対し、発光パネルの大面積化に有利なアモルファスシリコンが駆動トランジスタの材料として用いられる場合は、特性パラメータの経時変化が大きい。また、一般に、有機EL素子の寿命特性は駆動電流の積算時間にも依存する。従って、駆動トランジスタおよび有機EL素子の経時変化による特性パラメータの変化を精度よく補償することは重要である。
 上述したように、従来技術では、トランジスタの特性を検出する際、電流測定を用いるので、特性の検出精度が悪いという課題、そして、有機EL素子形成後のパネルにおいて、有機EL素子の特性を検出する手段をもたないという課題を有する。
 上記課題に鑑み、本発明は、単純な画素回路でありながら、電圧測定により、各画素のトランジスタと有機ELの素子の特性を切り分けて精度よく検出することを可能とする表示装置、電子装置及びそれらの駆動方法を提供することを第1の目的とする。また、その検出結果を用いることにより駆動能動素子や発光素子の特性の不均一に起因する輝度ムラを補正できる表示装置、電子装置及びそれらの駆動方法を提供することを目的とする。
 上記目的を達成するために、本発明に係る表示装置は、複数の画素部と、当該複数の画素部の発光を決定する複数のデータ線とを有するアクティブマトリクス型の発光パネルを備える表示装置であって、前記複数の画素部のそれぞれは、前記複数のデータ線のうちいずれかのデータ線から供給された信号電圧を信号電流に変換する第1トランジスタと、前記データ線と前記第1トランジスタのゲートとの間に挿入され、前記データ線と前記第1トランジスタのゲートとの導通及び非導通を切り換える第1スイッチ素子と、前記第1トランジスタのソース及びドレインの一方である第1端子からアノード及びカソードの一方に入力される前記信号電流により発光する発光素子とを備え、前記表示装置は、前記データ線から入力される第1検査電流を前記第1トランジスタのソース-ドレイン間に流すように回路パスを形成する第1回路パス形成手段と、前記第1検査電流により発生した前記第1トランジスタのゲート電圧に対応した電圧を前記データ線に発生させるよう回路パスを形成する第2回路パス形成手段と、前記第1検査電流により発生した前記第1トランジスタのゲート電圧に対応した電圧を、前記第2回路パス形成手段により形成された回路パスを介して前記データ線にて検出する電圧検出手段とを備えることを特徴とする。
 これにより、駆動トランジスタである第1トランジスタのばらつきに関する特性情報を独立に取得することができる。また、検査電流が駆動トランジスタ流れ、その時のデータ線の電圧が測定されるので、電圧を入力して微小電流を検出するという従来の測定方法型に比べ、高精度な測定が実現される。さらに、取得した特性情報を通常動作時のデータ電圧の補正に用いることで、駆動トランジスタの特性ばらつきによる輝度ムラを改善することができる。
 また、前記第1回路パス形成手段は、前記データ線から入力される第2検査電流を前記発光素子に流すように回路パスを形成し、前記第2回路パス形成手段は、前記第2検査電流により発生した前記発光素子の前記アノード及びカソードの一方の電圧を前記データ線に発生させるよう回路パスを形成し、前記電圧検出手段は、前記第2検査電流により発生した前記発光素子の前記アノード及びカソードの一方の電圧を、前記第2回路パス形成手段により形成された回路パスを介して前記データ線にて検出することを特徴とする。
 これにより、駆動トランジスタである第1トランジスタや発光素子のばらつきに関する特性情報を独立に取得することができる。また、有機EL素子及び駆動トランジスタの双方が経時劣化する場合、当該双方の特性を検出することにより、所望の輝度を得るためのデータ電圧をより適切に制御できる。よって、駆動トランジスタの特性検出のみでは導出できない、高精度な補正データ電圧を通常動作時のデータ電圧の補正に用いることで、駆動トランジスタや発光素子の特性ばらつきによる輝度ムラを改善することができる。
 また、前記表示装置は、さらに、制御信号を伝達する走査線と第1制御線とを備え、前記第1トランジスタは、ソース及びドレインの他方である第2端子が第1電源に接続され、ゲートとソースとの電位差に対応する電流を前記第1端子に出力する駆動トランジスタであり、前記発光素子は、アノード及びカソードの他方が第2電源に接続され、前記第1スイッチ素子は、ゲートが前記走査線に接続され、ソース及びドレインの一方が前記データ線に接続され、ソース及びドレインの他方が前記第1トランジスタのゲートに接続された第1スイッチングトランジスタであり、前記第1回路パス形成手段は、前記第1検査電流を前記データ線に供給する検査電流発生回路を備え、前記第1回路パス形成手段及び前記第2回路パス形成手段は、ゲートが前記第1制御線に接続され、ソース及びドレインの一方が前記データ線に接続され、ソース及びドレインの他方が前記第1端子と前記発光素子のアノード及びカソードの一方との接続点に接続された1つの第2スイッチングトランジスタを備えてもよい。
 これにより、2つのスイッチングトランジスタという簡単な回路構成で、データ線から駆動トランジスタに検査電流を流すことができ、データ線にて駆動トランジスタのゲート電圧を検出することができる。
 また、前記第1回路パス形成手段は、前記第1検査電流を前記データ線に供給する検査電流発生回路を備え、前記検査電流発生回路は、前記第1スイッチングトランジスタ及び前記第2スイッチングトランジスタが共にオン状態である時に、前記第1電源のバイアス電圧値と、前記第2電源のバイアス電圧値とが同期して変化することにより、前記第1トランジスタへ前記第1検査電流を流してもよい。
 これにより、駆動トランジスタに順バイアス又は逆バイアス電圧が任意に印加されるので、駆動トランジスタを流れる検査電流パスを制御できる。
 また、前記検査電流発生回路は、前記発光素子に流す第2検査電流を前記データ線に供給してもよい。
 これにより、2つのスイッチングトランジスタという簡単な回路構成で、データ線から駆動トランジスタ又は発光素子に検査電流を流すことができ、データ線にて駆動トランジスタのゲート電圧又は発光素子の電圧を検出することができる。
 また、前記検査電流発生回路は、前記第2スイッチングトランジスタがオン状態である時に、前記第1電源のバイアス電圧値と、前記第2電源のバイアス電圧値とが同期して変化することにより、前記発光素子に前記第2検査電流を流してもよい。
 これにより、駆動トランジスタ及び発光素子に順バイアス又は逆バイアス電圧が任意に印加されるので、駆動トランジスタ及び発光素子を流れる検査電流パスを制御できる。
 また、前記複数の画素部のそれぞれは、さらに、前記第2端子と第1電源との間に挿入され、前記第2検査電流の供給の有無を切り換える第3スイッチ素子を備えてもよい。
 あるいは、前記複数の画素部のそれぞれは、さらに、前記第2スイッチングトランジスタのソース及びドレインの他方と前記発光素子のアノード及びカソードの一方との接続点と前記第1端子との間に挿入され、前記第2検査電流の供給の有無を切り換える第3スイッチ素子を備えてもよい。
 さらに、前記複数の画素部のそれぞれは、さらに、前記第2スイッチングトランジスタのソース及びドレインの他方と前記発光素子のアノード及びカソードの一方との間に挿入され、前記第1検査電流の供給の有無を切り換える第2スイッチ素子を備えてもよい。
 これらにより、挿入されたスイッチ素子がオンオフすることにより、駆動トランジスタ及び発光素子の検査電流パスを制御できる。
 また、前記検査電流発生回路は、前記検査電流を生成する1以上の電流発生源と、前記1以上の電流発生源と前記複数のデータ線との間に接続され、前記複数のデータ線のうち選択されたデータ線と前記1以上の電流発生源の1つとを導通させるマルチプレクサとを備え、前記電流発生源の数は、前記複数のデータ線の本数よりも少ないことが好ましい。
 これにより、駆動トランジスタ特性や受光素子特性の測定時に必要な電流発生源の数量が削減されるので、表示装置の省面積化や部品点数の削減につながる。
 また、前記表示装置は、さらに、制御信号を伝達する走査線と第1制御線とを備え、前記第1トランジスタは、ソース及びドレインの他方である第2端子が第1電源に接続され、ゲートとソースとの電位差に対応する電流を前記第1端子に出力する駆動トランジスタであり、前記発光素子は、アノード及びカソードの他方が第2電源に接続され、前記第1スイッチ素子は、ゲートが前記走査線に接続され、ソース及びドレインの一方が前記データ線に接続され、ソース及びドレインの他方が前記第1トランジスタのゲートに接続された第1スイッチングトランジスタであり、前記第1回路パス形成手段は、前記第1検査電流を前記データ線に供給する検査電流発生回路を備え、前記第1回路パス形成手段及び前記第2回路パス形成手段は、ゲートが前記第1制御線に接続され、ソース及びドレインの一方が前記第1スイッチングトランジスタのソース及びドレインの他方に接続され、ソース及びドレインの他方が前記第1端子と前記発光素子のアノード及びカソードの一方との接続点に接続された第2スイッチングトランジスタを備えてもよい。
 これにより、2つのスイッチングトランジスタという簡単な回路構成で、データ線から駆動トランジスタに検査電流を流すことができ、データ線にて駆動トランジスタのゲート電圧を検出することができる。
 また、前記表示装置は、さらに、制御信号を伝達する走査線を備え、前記第1トランジスタは、ソース及びドレインの他方である第2端子が第1電源に接続され、ゲートとソースとの電位差に対応する電流を前記第1端子に出力する駆動トランジスタであり、前記発光素子は、アノード及びカソードの他方の端子が第2電源に接続され、前記第1スイッチ素子は、ゲートが前記走査線に接続され、ソース及びドレインの一方が前記データ線に接続され、ソース及びドレインの他方が前記第1トランジスタのゲートに接続された第1スイッチングトランジスタであり、前記第1回路パス形成手段は、前記第1検査電流を前記データ線に供給する検査電流発生回路を備え、前記複数の画素部のそれぞれは、さらに、前記第1トランジスタのゲートと前記第1スイッチングトランジスタのソース及びドレインの他方との間に挿入され、前記信号電圧に対応する電圧を前記第1トランジスタのゲートに出力する電圧変換部を備えてもよい。
 これにより、表示装置の通常動作時における基本回路構成に加えて、駆動トランジスタのゲートと第1スイッチングトランジスタとの間に電圧変換部が挿入された回路においても、第1回路パス形成手段、第2回路パス形成手段、及び電圧検出手段により、データ線から駆動トランジスタに検査電流を流すことができ、データ線にて駆動トランジスタのゲート電圧を検出することができる。
 また、前記表示装置は、制御信号を伝達する第2制御線を備え、前記複数の画素部のそれぞれは、ゲートが前記第2制御線に接続され、ソース及びドレインの一方が前記第1トランジスタのゲートに接続され、ソース及びドレインの他方が前記第1端子に接続された第2トランジスタを備えてもよい。
 これにより、駆動トランジスタの閾値電圧が補償された回路においても、第1回路パス形成手段、第2回路パス形成手段、及び電圧検出手段により、データ線から駆動トランジスタに検査電流を流すことができ、データ線にて駆動トランジスタのゲート電圧を検出することができる。
 また、前記電圧検出手段は、前記第1検査電流を流すことにより発生した前記第1トランジスタのゲート電圧を前記データ線において測定する1以上の電圧検出器と、前記1以上の電圧検出器と前記複数のデータ線との間に接続され、前記複数のデータ線のうち選択されたデータ線と前記1以上の電圧検出器の1つとを導通させるマルチプレクサとを備え、前記電圧検出器の数は、前記複数のデータ線の本数よりも少ないことが好ましい。
 これにより、駆動トランジスタ特性の測定時に必要な電圧検出器の数量が削減されるので、表示装置の省面積化や部品点数の削減につながる。
 また、前記電圧検出器は、前記第2検査電流を流すことにより発生した前記発光素子のアノード及びカソードの一方の電圧を前記データ線において測定してもよい。
 これにより、駆動トランジスタ特性や受光素子特性の測定時に必要な電圧検出器の数量が削減されるので、表示装置の省面積化や部品点数の削減につながる。
 また、前記マルチプレクサは、前記発光パネル上に形成されていることが好ましい。
 これにより、発光パネル以外の領域が縮小されるので、発光表示領域の比率の高い表示装置が実現される。
 また、本発明に係る表示装置は、複数の画素部と、当該複数の画素部の発光を決定する複数のデータ線とを有するアクティブマトリクス型の発光パネルを備える表示装置であって、前記複数の画素部のそれぞれは、前記複数のデータ線のうちいずれかのデータ線から供給された信号電圧を信号電流に変換する第1トランジスタと、前記データ線と前記第1トランジスタのゲートとの間に挿入され、前記データ線と前記第1トランジスタのゲートとの導通及び非導通を切り換える第1スイッチ素子と、前記第1トランジスタのソース及びドレインの一方である第1端子からアノード及びカソードの一方に入力される前記信号電流により発光する発光素子とを備え、前記データ線から入力される第2検査電流を前記発光素子に流すように回路パスを形成する第1回路パス形成手段と、前記第2検査電流により発生した前記発光素子のアノード及びカソードの一方の電圧を前記データ線に発生させるよう回路パスを形成する第2回路パス形成手段と、前記第2検査電流により発生した前記発光素子のアノード及びカソードの一方の電圧を、前記第2回路パス形成手段により形成されたパスを介して前記データ線にて検出する電圧検出手段とを備えることを特徴とする。
 これにより、発光素子のばらつきに関する特性情報を独立に取得することができる。また、検査電流が発光素子を流れ、その時のデータ線の電圧が測定されるので、電圧を入力して微小電流を検出するという従来の測定方法型に比べ、高精度な測定が実現される。さらに、取得した特性情報を通常動作時のデータ電圧の補正に用いることで、発光素子の特性ばらつきによる輝度ムラを改善することができる。
 また、本発明に係る電子装置は、発光素子を形成することが可能な複数の画素部と複数のデータ線とを有するアクティブマトリクス型の発光用パネル基板を備える電子装置であって、前記複数の画素部のそれぞれは、前記複数のデータ線のうちいずれかのデータ線から供給された前記信号電圧を信号電流に変換する第1トランジスタと、前記データ線と前記第1トランジスタのゲートとの間に挿入され、前記データ線と前記第1トランジスタのゲートとの導通及び非導通を切り換える第1スイッチ素子とを備え、前記データ線から入力される検査電流を前記第1トランジスタのソース-ドレイン間に流すように回路パスを形成する第1回路パス形成手段と、前記検査電流により発生した前記第1トランジスタのゲート電圧に対応した電圧を前記データ線に発生させるよう回路パスを形成する第2回路パス形成手段と、前記検査電流により発生した前記第1トランジスタのゲート電圧に対応した電圧を前記データ線にて検出する電圧検出手段とを備えることを特徴とする。
 これにより、発光素子が形成される前の状態において、駆動トランジスタである第1トランジスタのばらつきに関する特性情報を取得することができる。また、検査電流が駆動トランジスタに流れ、その時のデータ線の電圧が測定されるので、電圧を入力して微小電流を検出するという従来の測定方法型に比べ、高精度な測定が実現される。さらに、取得した特性情報を通常動作時のデータ電圧の補正に用いることで、駆動トランジスタの特性ばらつきによる輝度ムラを改善することができる。
 また、本発明は、このような特徴的な手段を備える表示装置又は電子装置として実現することができるだけでなく、表示装置又は電子装置に含まれる特徴的な手段をステップとする表示装置又は電子装置の駆動方法として実現することができる。
 本発明の表示装置、電子装置及びそれらの駆動方法によれば、単純な画素回路構成でしかも検出精度の高い電圧測定により、各画素の駆動トランジスタと有機EL素子の特性を切り分けて高精度測定できるので、駆動能動素子や発光素子の特性の不均一に起因する輝度ムラを補正できるという効果を奏する。
図1は、本発明の実施の形態1に係る表示装置の電気的な構成を示すブロック図である。 図2は、表示部の有する一画素部の回路構成及びその周辺回路との接続を示す図である。 図3は、本発明の実施の形態1に係る表示装置の有する制御回路の、駆動トランジスタ又は有機EL素子の特性を検出する場合の動作フローチャートである。 図4は、駆動トランジスタ特性又は有機EL素子特性を検出する場合の検査電流の供給タイミングを示すタイミングチャートである。 図5は、通常動作時における制御回路の動作フローチャートである。 図6は、データ線と検査電流発生回路との接続関係を示す図である。 図7は、データ線と検査電流発生回路との接続関係を示す図である。 図8は、データ線と検査電流発生回路との接続関係を示す図である。 図9は、データ線と電圧検出回路との接続関係を示す図である。 図10は、データ線と電圧検出回路との接続関係を示す図である。 図11は、データ線と電圧検出回路との接続関係を示す図である。 図12は、本発明の実施の形態1の第1の変形例を示す表示装置の備える画素部の回路構成図である。 図13は、本発明の実施の形態1の第2の変形例を示す表示装置の備える画素部の回路構成図である。 図14は、本発明の実施の形態1の第3の変形例を示す表示装置の備える画素部の回路構成図である。 図15は、本発明の実施の形態2に係る表示装置の有する画素部の回路構成図である。 図16は、本発明の実施の形態2に係る表示装置の有する制御回路の、駆動トランジスタ又は有機EL素子の特性を検出する場合の動作フローチャートである。 図17は、駆動トランジスタ特性検出時の検査電流の供給タイミングを示すタイミングチャートである。 図18は、有機EL素子特性検出時の検査電流の供給タイミングを示すタイミングチャートである。 図19は、本発明の実施の形態3に係る電子装置の電気的な構成を示すブロック図である。 図20は、画素アレイ部の有する一画素部の回路構成及びその周辺回路との接続を示す図である。 図21は、本発明の表示装置を内蔵した薄型フラットTVの外観図である。
符号の説明
 1  表示装置
 2  電子装置
 5  発光パネル
 10  表示部
 20  走査線駆動回路
 21  走査線
 22、23、24、25、26  制御線
 30  データ線駆動回路
 31  データ線
 40  検査電流発生回路
 41、44、45、46、47  検査電流
 42  電流発生源
 43、52、60  マルチプレクサ
 50  電圧検出回路
 51  電圧検出器
 70  制御回路
 80  メモリ
 90  画素アレイ部
 100、200、300、400、500、600  画素部
 110、210  有機EL素子
 115  共通電極
 120、220  駆動トランジスタ
 125  電源線
 130、230、410  スイッチングトランジスタ
 140、240  検査トランジスタ
 150  保持容量
 310、520  ELスイッチングトランジスタ
 510  閾値補償トランジスタ
 530  閾値補償容量
 (実施の形態1)
 本実施の形態における表示装置は、複数の画素部を有するアクティブマトリクス型の発光パネルを備え、画素部は、選択されたデータ線から供給された信号電圧に対応した信号電流を出力する第1トランジスタと、第1トランジスタへの信号電圧の供給をオンオフする第1スイッチ素子と、信号電流の入力により光信号を出力する発光素子と、選択されたデータ線と第1トランジスタの第2端子とが短絡状態であることを可能とするように接続された第2スイッチ素子とを備える。また、本表示装置は、さらに、第1トランジスタ又は発光素子に検査電流を流す検査電流発生回路と、当該検査電流により発生した電圧を選択されたデータ線にて測定する電圧検出回路とを備える。これにより、各画素に配置された駆動トランジスタと発光素子の特性を独立に高精度測定できるので、駆動トランジスタや発光素子の特性の不均一に起因する輝度ムラを補正できる。
 図1は、本発明の実施の形態1に係る表示装置の電気的な構成を示すブロック図である。同図における表示装置1は、表示部10と、走査線駆動回路20と、データ線駆動回路30と、検査電流発生回路40と、電圧検出回路50と、マルチプレクサ60と、制御回路70と、メモリ80とを備える。
 表示部10は、複数の画素部100を備える。
 図2は、表示部の有する一画素部の回路構成及びその周辺回路との接続を示す図である。同図における画素部100は、有機EL素子110と、駆動トランジスタ120と、スイッチングトランジスタ130と、検査トランジスタ140と、保持容量150と、共通電極115と、電源線125と、走査線21と、制御線22と、データ線31とを備える。また、周辺回路は、走査線駆動回路20と、データ線駆動回路30と、検査電流発生回路40と、電圧検出回路50と、マルチプレクサ60とを備える。
 まず、図1に記載された構成要素について、その機能を説明する。
 走査線駆動回路20は、走査線21、第1制御線である制御線22に接続されており、画素部100のスイッチングトランジスタ130及び検査トランジスタ140の導通・非導通を制御する機能を有する。
 データ線駆動回路30は、データ線31に接続されており、信号電圧を出力して、駆動トランジスタ120に流れる信号電流を決定する機能を有する。また、データ線駆動回路30は、データ線31との接続を開放したり、ショートしたりすることが可能なスイッチを有する。
 検査電流発生回路40は、データ線31に接続されており、駆動トランジスタ120や有機EL素子110の特性を検出するための検査電流を出力する機能を有し、第1回路パス形成手段の構成要素である。
 電圧検出回路50は、マルチプレクサ60を介してデータ線31に接続されており、検査電流発生回路40が検査電流を出力している間に、データ線31の電圧を検出する機能を有し、第2回路パス形成手段の構成要素である。
 マルチプレクサ60は、電圧検出回路50に接続されるデータ線31の切り替えを行う機能を有する。
 制御回路70は、走査線駆動回路20、データ線駆動回路30、検査電流発生回路40、マルチプレクサ60、電圧検出回路50、及びメモリ80の制御を行う機能を有する。電圧検出回路50により検出された電圧値は、デジタル値に変換され、演算により特性パラメータ化される。そして、制御回路70によりメモリ80に書き込まれる。また、制御回路70は、メモリ80に書き込まれた特性パラメータを読み出し、外部から入力された映像信号データを、その特性パラメータに基づいて補正して、データ線駆動回路30へと出力する。
 次に、画素部100の内部回路構成について、図2を用いて説明する。
 駆動トランジスタ120は、第1トランジスタとして機能し、駆動トランジスタ120のゲートは、スイッチングトランジスタ130を介してデータ線31に接続され、第1端子であるソース及びドレインの一方が有機EL素子110の一方の端子であるアノードに接続され、第2端子であるソース及びドレインの他方が、電源線125に接続されている。
 また、スイッチングトランジスタ130は、第1スイッチングトランジスタとして機能し、スイッチングトランジスタ130のゲートは、走査線21に接続されている。
 検査トランジスタ140は、第2トランジスタとして機能し、検査電流パスを形成する第1回路パス形成手段の構成要素である。また、検査トランジスタ140は、有機EL素子110のアノード電圧をデータ線31にて測定する電圧パスを形成する第2回路パス形成手段の構成要素を兼用している。検査用トランジスタ140のゲートは、制御線22に接続され、ソースは、有機EL素子110の一方の端子であるアノードに接続され、ドレインは、データ線31に接続されている。
 保持容量150は、電源線125と駆動トランジスタ120のゲート端子との間に接続されている。
 有機EL素子110は、発光素子として機能し、有機EL素子110の他方の端子であるカソードは、共通電極115に接続されている。
 なお、図1、図2には記載されていないが、電源線125はすべて同じ電源に接続されている。また、共通電極115も電源に接続されている。
 次に、本発明の実施の形態1にかかる表示装置の駆動方法について説明をする。本駆動方法により、駆動トランジスタ120の特性の検出、有機EL素子110の特性の検出が可能である。
 図3は、本発明の実施の形態1に係る表示装置の有する制御回路の、駆動トランジスタ又は有機EL素子の特性を検出する場合の動作フローチャートである。
 最初に、データ線駆動回路30とデータ線31との接続を非導通状態とし、検査電流発生回路40とデータ線31との接続を導通状態に設定する(S10)。この接続は、例えば、データ線駆動回路30とデータ線31との間のスイッチをオフすること、及び検査電流発生回路40とデータ線31との間のスイッチをオンすることにより実現される。
 図4は、駆動トランジスタ特性又は有機EL素子特性を検出する場合の検査電流の供給タイミングを示すタイミングチャートである。同図において、横軸は時間を表している。また縦方向には、上から順に、走査線21に発生する電圧の波形図、制御線22に発生する電圧の波形図、及び検査電流41の波形図が示されている。
 次に、図4のt1において、走査線21及び制御線22の電圧のレベルをHIGHにして、それぞれ、スイッチングトランジスタ130及び検査トランジスタ140をオンにする(S11)。なお、有機EL素子特性の検出時には、スイッチングトランジスタ130はオフであってもよい。
 次に、図4のt2において、検査電流発生回路40から図2中の矢印の向きに検査電流41を流す(S12)。
 ステップS12において、駆動トランジスタ120の特性検出時においては、共通電極115には、共通電極115に接続された第2電源により有機EL素子110に逆バイアスがかかるような可変電圧VBが加えられるため、有機EL素子110には電流は流れない。よって、この検査電流41は、第1検査電流として、データ線31、検査トランジスタ140、及び駆動トランジスタ120を経由して、電源線125に流れこむ。その際、スイッチングトランジスタ130がオン状態であるので、駆動トランジスタ120のゲート端子はデータ線31に接続されている。よって、データ線31の電圧は、駆動トランジスタ120に検査電流41が流れた際の駆動トランジスタ120のゲート電圧とほぼ等しくなる。
 一方、ステップS12において、有機EL素子110の特性検出時には、電源線125には、電源線125に接続された第1電源により、駆動トランジスタ120に電流が流れないように、駆動トランジスタ120のゲート電圧と同程度かそれ以上の可変電圧VAが印加されており、この検査電流41は、第2検査電流として、データ線31、検査トランジスタ140、及び有機EL素子110を経由して、共通電極115に流れこむ。その際、検査トランジスタ140がオン状態であるので、有機EL素子110のアノード端子はデータ線31に接続されている。よって、データ線31の電圧は、有機EL素子110に検査電流41が流れた際の有機EL素子110のアノード電圧とほぼ等しくなる。
 次に、図4のt2からt3の間において、検査電流41を供給し、データ線31に現れた電圧を電圧検出回路50で検出する(S13)。これにより、検査電流41の大きさに対する、駆動トランジスタ120のゲート電圧、又は有機EL素子110のアノード電圧を知ることができる。
 ここで、駆動トランジスタ120の特性を検出する場合には、上記ステップS13において、駆動トランジスタ120のゲート端子とドレイン端子は、スイッチングトランジスタ130及び検査トランジスタ140を介して接続されているため、駆動トランジスタ120は飽和領域で動作している。また、駆動トランジスタ120のソース電圧は電源線125に印加された電圧である。ここで、検出された電圧をVdet、駆動トランジスタ120のソース端子に印加された電源電圧をVdd、及び検査電流をItestとすると、以下の式1が成り立つ。
Figure JPOXMLDOC01-appb-M000001
 ここで、βは、駆動トランジスタ120のチャネル領域、酸化膜容量、及び移動度に関する特性パラメータであり、Vthは、駆動トランジスタ120の閾値電圧であり移動度に関係する。
 式1により、大きさの異なる2種類の検査電流I1及びI2を流して検出された電圧をそれぞれVdet1、Vdet2とすると、以下のような連立方程式を立てることができる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 Vgs1=Vdet1-Vdd、Vgs2=Vdet2-Vddとおき、この連立方程式を解くと、βとVthはそれぞれ以下のようになる。
Figure JPOXMLDOC01-appb-M000004
 このようにして、検査電流41を流し、その時のデータ線31の電圧を測定することにより、駆動トランジスタ120の移動度や閾値といった特性パラメータを算出することができる。
 一方、有機EL素子110の特性を検出する場合には、検査電流41をIEL、発生した有機EL素子110のアノード電圧をVELとすると、予め取得されている有機EL素子110の初期の電流-電圧特性と、今回取得された(IEL、VEL)とのズレ量を算出する。
 次に、制御回路70は、電圧検出回路50により検出された電圧値Vdet1及びVdet2、またはVELをデジタル値に変換し、それらと式2ないし式4又は初期電流-電圧特性を用いて算出した特性パラメータをメモリ80に格納する(S14)。
 次に、図4のt3において、検査電流41の供給を停止する(S15)。
 なお、ステップS15は、ステップS14の後である必要はなく、ステップS14と並行して実行されてもよく、または、ステップS13の後であってステップS14の前に実行されてもよい。
 上述した一連の動作ステップにより、データ線の電圧が測定され、その検出結果が評価されることにより、画素部の画素欠陥が発見されるだけでなく、駆動トランジスタや有機EL素子のばらつきや経時変動に関する情報が独立に取得できる。取得された特性パラメータがメモリに保存され、後述する通常動作時のデータ電圧の補正に用いられることで、駆動トランジスタや有機EL素子の特性ばらつきや経時変動による輝度ムラが改善される。
 次に、本発明の実施の形態1にかかる表示装置の通常動作時における駆動方法について説明する。
 図5は、通常動作時における制御回路の動作フローチャートである。
 最初に、データ線駆動回路30とデータ線31との接続を導通状態とし、検査電流発生回路40とデータ線31との接続を非導通状態に設定する(S20)。この接続は、例えば、検査電流発生回路40の出力電流をゼロにすることで実現できる。また、検査電流発生回路40とデータ線31との間に設けられたスイッチをオフすることで、接続を開放してもよい。
 次に、検査トランジスタ140を、オフ状態にする(S21)。なお、本ステップS21は、ステップS20の前に実行されていてもよい。また、通常動作時では、検査トランジスタ140は常にオフ状態であるが、検査トランジスタ140をオン状態とすることで、データ線駆動回路30の出力電圧を直接有機EL素子110に印加することができるため、駆動時の黒挿入に使ってもよい。
 最後に、メモリ80から読み出された特性パラメータにより補正された信号電圧をデータ線駆動回路30から出力し、画素部100へ書き込むことにより画像表示を実行する(S22)。
 以上、駆動トランジスタ及び有機EL素子の特性検出動作、及び通常動作により、特性検出時に得られた特性パラメータに基づき信号電圧が補正されるので、駆動トランジスタや有機EL素子の特性ばらつきや経時変動による輝度ムラが改善される。
 なお、図2において、電圧検出回路50と検査電流発生回路40とは、データ線31の両側に、画素部を挟んで接続されているが、電圧検出回路50と検査電流発生回路40とが、画素部に対してデータ線31の同じ側に接続されていてもよい。大きな検査電流を流してデータ線31の電圧が測定される場合、電圧検出回路50が、検査電流発生回路40と同じ側にあると、データ線31の配線抵抗による電圧降下により検出精度が低下する可能性がある。その場合は、電圧検出回路50と検査電流発生回路40とは、データ線31の両側に、画素部を挟んで接続されているのが好ましい。検査電流を大きくすることにより、検出時間を早めたい場合、データ線31の両側に接続する構成は非常に有効である。
 また、検査電流発生回路40は、データ線駆動回路30とともにデータドライバICに内蔵されていてもよいし、データドライバICとは別にあってもよい。
 また、検査電流発生回路40は、図6に示されるデータ線と検査電流発生回路との接続関係のように、データ線31の本数と同数の電流発生源42を有するものであってもよい。
 また、検査電流発生回路40は、図7に示されるデータ線と検査電流発生回路との接続関係のように、データ線31の切り替えを行うマルチプレクサ43とデータ線31の本数より少ない電流発生源42を有するものであってもよい。
 また、データ線31の切り替えを行うマルチプレクサ43とデータ線31より少ない電流発生源42をもつ場合、マルチプレクサ43は、図8に示されるデータ線と検査電流発生回路との接続関係のように、発光パネル5上に形成されていてもよい。
 さらに、電圧検出回路50は、データ線駆動回路30とともにデータドライバICに内蔵されていてもよいし、データドライバICとは別にあってもよい。
 また、電圧検出回路50は、図9に示されるデータ線と電圧検出回路との接続関係のように、データ線31の本数と同数の電圧検出器51を有するものであってもよい。
 また、電圧検出回路50は、図10に示されるデータ線と電圧検出回路との接続関係のように、データ線31の切り替えを行うマルチプレクサ52とデータ線31の本数より少ない電圧検出器51をもつものであってもよい。
 また、データ線31の切り替えを行うマルチプレクサ52とデータ線31より少ない電圧検出器51をもつ場合、マルチプレクサ52は、図11に示されるデータ線と電圧検出回路との接続関係のように、発光パネル5上に形成されていてもよい。
 図12は、本発明の実施の形態1の第1の変形例を示す表示装置の備える画素部の回路構成図である。同図における画素部200は、有機EL素子210と、駆動トランジスタ220と、スイッチングトランジスタ230と、検査トランジスタ240と、保持容量150と、共通電極115と、電源線125と、走査線21と、制御線22と、データ線31とを備える。
 同図に記載された画素部200は、図2に記載された画素部100と比較して、トランジスタがすべてpチャネルであり、駆動トランジスタ220と接続される有機EL素子210の端子はカソードである点のみが回路構成として異なる。以下、画素部200を有する表示装置の駆動方法について、図3に記載された画素部100を有する表示装置の駆動方法と異なる点のみ説明する。
 図3に記載されたステップS11では、スイッチングトランジスタ230及び検査トランジスタ240をオン状態にするために、走査線21及び制御線22の電圧をHIGHレベルからLOWレベルに切り換える。なお、有機EL素子特性の検出時には、スイッチングトランジスタ230はオフであってもよい。
 また、図3に記載されたステップS12では、検査電流44は、図2に記載された検査電流41と逆向きになる。
 これにより、ステップS13では、検査電流44の大きさに対する、駆動トランジスタ220のゲート電圧、又は有機EL素子210のカソード電圧を知ることができる。
 図13は、本発明の実施の形態1の第2の変形例を示す表示装置の備える画素部の回路構成図である。同図における画素部300は、有機EL素子110と、駆動トランジスタ120と、スイッチングトランジスタ130と、ELスイッチングトランジスタ310と、検査トランジスタ140と、保持容量150と、共通電極115と、電源線125と、走査線21と、制御線22及び23と、データ線31とを備える。
 同図に記載された画素部300は、図2に記載された画素部100と比較して、有機EL素子110のアノード端子にELスイッチングトランジスタ310が挿入されている点、及びELスイッチングトランジスタ310のオンオフを制御するための制御線23がELスイッチングトランジスタ310のゲートに接続されている点のみが回路構成として異なる。
 ELスイッチングトランジスタ310は、第2スイッチ素子として機能し、有機EL素子110への検査電流の供給の有無を制御する。
 以下、画素部300を有する表示装置の駆動方法について、図3に記載された画素部100を有する表示装置の駆動方法と異なる点のみ説明する。
 図3に記載されたステップS12では、有機EL素子110に逆バイアス電圧が印加されることにより、有機EL素子110には検査電流が流れず、駆動トランジスタ120に検査電流41が流れるように制御されていた。これに対して、本実施例では、有機EL素子110のアノードに接続されたELスイッチングトランジスタ310を、制御線23を介してオフ状態とすることで、有機EL素子110に電流が流れず、駆動トランジスタ120に検査電流41が流れるように制御されている。
 図14は、本発明の実施の形態1の第3の変形例を示す表示装置の備える画素部の回路構成図である。同図における画素部400は、有機EL素子110と、駆動トランジスタ120と、スイッチングトランジスタ130及び410と、検査トランジスタ140と、保持容量150と、共通電極115と、電源線125と、走査線21と、制御線22及び24と、データ線31とを備える。
 同図に記載された画素部400は、図2に記載された画素部100と比較して、駆動トランジスタ120の第2端子と電源線125との間にスイッチングトランジスタ410が挿入されている点、及びスイッチングトランジスタ410のオンオフを制御するための制御線24がスイッチングトランジスタ410のゲートに接続されている点のみが回路構成として異なる。
 スイッチングトランジスタ410は、第3スイッチ素子として機能し、駆動トランジスタ120への検査電流の供給の有無を制御する。
 以下、画素部400を有する表示装置の駆動方法について、図3に記載された画素部100を有する表示装置の駆動方法と異なる点のみ説明する。
 図3に記載されたステップS12では、電源線125に駆動トランジスタ120のゲート電圧と同程度かそれ以上の電圧が印加されることにより、駆動トランジスタ120には検査電流が流れず、有機EL素子110に検査電流41が流れるように制御されていた。これに対して、本実施例では、駆動トランジスタ120の第2端子に接続されたスイッチングトランジスタ410を、制御線24を介してオフ状態とすることで、駆動トランジスタ120に電流が流れず、有機EL素子110に検査電流41が流れるように制御されている。
 なお、本実施例にて追加されたスイッチングトランジスタ410は、駆動トランジスタ120の第1端子に挿入(図14中の点P)されていてもよい。
 上述した本発明の実施の形態1における第1~第3の変形例においても、データ線の電圧が測定され、その検出結果が評価されることにより、画素部の画素欠陥が発見されるだけでなく、駆動トランジスタや有機EL素子のばらつきに関する情報が独立に取得できる。取得された特性パラメータがメモリに保存され、後述する通常動作時のデータ電圧の補正に用いられることで、駆動トランジスタや有機EL素子の特性ばらつきによる輝度ムラが改善される。
 (実施の形態2)
 本実施の形態における表示装置は、複数の画素部を有するアクティブマトリクス型の発光パネルを備え、画素部は、選択されたデータ線から供給された信号電圧に対応した信号電流を出力する第1トランジスタと、第1トランジスタへの信号電圧の供給をオンオフする第1スイッチ素子と、信号電流の入力により光信号を出力する発光素子と、第1トランジスタと第1スイッチ素子との間に接続された電圧変換部と、選択されたデータ線と第1トランジスタのゲート端子とが短絡状態または一定の電位差を有する導通状態であること、及び、選択されたデータ線と第1トランジスタの第2端子とが短絡状態であること、を可能とするように接続された1以上の第2スイッチ素子とを備える。また、電子装置は、さらに、第1トランジスタ又は発光素子に検査電流を流す検査電流発生回路と、当該検査電流により発生した電圧を、選択されたデータ線にて測定する電圧検出回路とを備える。これにより、第1トランジスタの閾値(Vth)変動が補償された回路においても、各画素に配置された駆動トランジスタと発光素子の特性を独立に高精度測定できるので、駆動トランジスタや発光素子の特性の不均一に起因する輝度ムラを補正できる。
 図15は、本発明の実施の形態2に係る表示装置の有する画素部の回路構成図である。同図における画素部500は、有機EL素子110と、駆動トランジスタ220と、スイッチングトランジスタ230とELスイッチングトランジスタ520と、検査トランジスタ240と、閾値補償トランジスタ510と、保持容量150と、閾値補償容量530と、共通電極115と、電源線125と、走査線21と、制御線22、25、及び26と、データ線31とを備える。同図における画素部500は、実施の形態1に係る表示装置の備える画素部100と比較して、閾値補償トランジスタ510及びその動作を制御する第2制御線である制御線25が付加されていること、有機EL素子110のアノード端子にELスイッチングトランジスタ520及びその動作を制御する制御線26が付加されていること、スイッチングトランジスタ230と駆動トランジスタ220のゲート端子との間に閾値補償容量530が付加されていること、及び各種トランジスタは全てpチャネルのトランジスタであることが異なる。図2に記載された画素部100と同じ点は説明を省略し、以下、異なる点について説明する。
 閾値補償トランジスタ510は、ソース及びドレインの一方が駆動トランジスタ220の第1端子であるソース及びドレインの一方に接続され、ソース及びドレインの他方が駆動トランジスタ220のゲートに接続されている。
 画素部100が、駆動トランジスタ120、スイッチングトランジスタ130、及び保持容量150という、2つのトランジスタ及び1つの容量という基本回路で有機EL素子110への電流供給を制御しているのに対し、画素部500は、上記基本回路に、閾値補償トランジスタ510及び電圧変換部として機能する閾値補償容量530が付加されることにより、駆動トランジスタの閾値電圧Vthの変動を補償する機能を有する。これにより、駆動トランジスタ220は、閾値電圧Vthの変動による出力信号電流の変動を生じない。
 ELスイッチングトランジスタ520は、図13に記載された画素部300におけるELスイッチングトランジスタ310と同様の機能を有し、検査電流41の有機EL素子110への供給の有無を制御する。
 図16は、本発明の実施の形態2に係る表示装置の有する制御回路の、駆動トランジスタ又は有機EL素子の特性を検出する場合の動作フローチャートである。ここで、画素部500の周辺回路の構成及び接続は図2に記載された周辺回路と同様である。
 最初に、データ線駆動回路30とデータ線31との接続を非導通状態とし、検査電流発生回路40とデータ線31との接続を導通状態に設定する(S30)。この接続は、例えば、データ線駆動回路30とデータ線31との間のスイッチをオフすること、及び検査電流発生回路40とデータ線31との間のスイッチをオンすることにより実現される。
 次に、駆動トランジスタ220特性を検出する場合と有機EL素子110特性を検出する場合とを選択する(S31)。
 次に、ステップS31で駆動トランジスタ220特性検出を選択した場合の動作について説明する。
 図17は、駆動トランジスタ特性検出時の検査電流の供給タイミングを示すタイミングチャートである。同図において、横軸は時間を表している。また縦方向には、上から順に、走査線21の電圧、制御線25の電圧、制御線22の電圧、制御線26の電圧、及び検査電流を表している。
 図17の時刻t1において、制御線25及び制御線22の電圧のレベルをLOWにして、それぞれ、閾値補償トランジスタ510及び検査トランジスタ240をオンにする(S32)。
 次に、ステップS31で有機EL素子110特性検出を選択した場合の動作について説明する。
 図18は、有機EL素子特性検出時の検査電流の供給タイミングを示すタイミングチャートである。同図において、横軸は時間を表している。また縦方向には、上から順に、走査線21の電圧、制御線25の電圧、制御線22の電圧、制御線26の電圧、及び検査電流を表している。
 図18の時刻t1において、制御線22及び制御線26の電圧のレベルをLOWにして、それぞれ、検査トランジスタ240及びELスイッチングトランジスタ520をオンにする(S33)。
 以降のステップについては、駆動トランジスタ特性検出時及び有機EL素子特性検出時における動作を共通ステップとして説明する。
 図17又は図18の時刻t2において、駆動トランジスタ特性検出時には検査電流発生回路40から図15中の矢印の向きに検査電流45を流す。あるいは、有機EL素子特性検出時には検査電流発生回路40から図15中の矢印の向きに検査電流46を流す(S34)。
 駆動トランジスタ特性検出時の検査電流45は、データ線31、検査トランジスタ240、駆動トランジスタ220を経由して、電源線125に流れこむ。その際、閾値補償トランジスタ510及び検査トランジスタ240により、駆動トランジスタ220のゲート端子がデータ線31に接続されることになり、データ線31の電圧は、駆動トランジスタ220に検査電流45が流れた際の駆動トランジスタ220のゲート電圧とほぼ等しくなる。
 ここで、駆動トランジスタ220のゲート端子とドレイン端子は、閾値補償トランジスタ510を介して接続されているため、駆動トランジスタ220は飽和領域で動作している。また、駆動トランジスタ220のソース電圧は電源線125に印加された電圧である。ここで、検出された電圧をVdet、駆動トランジスタ220のソース端子に印加された電源電圧をVdd、及び検査電流をItestとすると、前述した式1が成り立つ。
 ここで、実施の形態1と同様に、大きさの異なる2種類の検査電流I1及びI2を流して、連立方程式を解くことにより、式4よりβとVthが求まる。あるいは、本実施の形態2における画素部500は、通常動作時に駆動トランジスタ220の閾値電圧Vthの変動が補償されるので、画素間の特性ばらつきを補正する場合には、初期値Vthを定数として扱うことができる。よって、Vthの初期値を求めた後は、以下のように、1種類の検査電流I_testにより、変数βのみを求めてもよい。
 式2において、Vgs=Vdet-Vddとおき、この方程式を解くと、βは以下のようになる。
Figure JPOXMLDOC01-appb-M000005
 よって、検査電流45供給時のデータ線31の電圧が測定されることにより、駆動トランジスタ220の移動度などに関する特性パラメータβを算出することができる。
 一方、有機EL素子特性検出時の検査電流46は、駆動トランジスタ220のゲート電位と同程度かそれ以下の電圧が電源線125に印加されているため、駆動トランジスタ220には流れない。検査電流46は、データ線31、検査トランジスタ240、ELスイッチングトランジスタ520、有機EL素子110を経由して、共通電極115に流れこむ。その際、検査トランジスタ240及びELスイッチングトランジスタ520により、有機EL素子110のアノードがデータ線31に接続されているため、データ線31の電圧は、有機EL素子110に検査電流46が流れた際の有機EL素子110のアノード電圧とほぼ等しくなる。
 次に、図17又は図18のt2からt3の間において、検査電流45又は46を供給し、データ線31に現れた電圧を電圧検出回路50で検出する(S35)。これにより、検査電流の大きさに対する、駆動トランジスタ220のゲート電圧、又は有機EL素子110のアノード電圧を知ることができる。
 ここで、検査電流46をIEL、発生した有機EL素子110のアノード電圧をVELとすると、予め取得されている有機EL素子110の初期の電流-電圧特性と、今回取得された(IEL、VEL)とのズレ量を算出することができる。
 次に、上述したように、電圧検出回路50により検出された電圧値Vdet(またはVdet1及びVdet2)、又はVELをデジタル値に変換し、それらと式2ないし式5、又は初期電流-電圧特性を用いて算出した特性パラメータをメモリ80に格納する(S36)。
 次に、図17又は図18のt3において、検査電流の供給を停止する(S37)。
 なお、ステップS37は、ステップS36の後である必要はなく、ステップS36と並行して実行されてもよく、または、ステップS35の後であってステップS36の前に実行されてもよい。
 上述した一連の動作ステップにより、駆動トランジスタの閾値電圧を補償するトランジスタや容量が付加された画素部においても、データ線の電圧が測定され、その検出結果が評価されることにより、画素部の画素欠陥が発見されるだけでなく、駆動トランジスタや有機EL素子のばらつきや経時変動に関する情報が独立に取得できる。取得された特性パラメータがメモリに保存され、後述する通常動作時のデータ電圧の補正に用いられることで、駆動トランジスタや有機EL素子の特性ばらつきや経時変動による輝度ムラが改善される。
 次に、本発明の実施の形態2にかかる表示装置の通常動作時における駆動方法について説明する。本実施の形態における通常動作時の制御回路の動作フローチャートは、図5に記載された通常動作時における制御回路の動作フローチャートと同様である。よって、図5を用いてその動作を説明する。
 最初に、データ線駆動回路30とデータ線31との接続を導通状態とし、検査電流発生回路40とデータ線31との接続を非導通状態に設定する(S20)。
 次に、検査トランジスタ240を、オフ状態にする(S21)。なお、本ステップS21は、ステップS20の前に実行されていてもよい。また、通常動作時では、検査トランジスタ240は常にオフ状態であるが、検査トランジスタ240及びELスイッチングトランジスタ520をオン状態とすることで、データ線駆動回路30の出力電圧を直接有機EL素子110に印加することができるため、駆動時の黒挿入に使ってもよい。
 最後に、メモリ80から読み出された特性パラメータにより補正された信号電圧をデータ線駆動回路30から出力し、画素部500へ書き込むことにより画像表示を実行する(S22)。
 以上のように、本発明の実施の形態2に係る駆動トランジスタの閾値電圧を補償するトランジスタや容量が付加された画素部を有する表示装置においても、駆動トランジスタ及び有機EL素子の特性検出動作、及び通常動作により、特性検出時に得られた特性パラメータに基づき信号電圧が補正されるので、駆動トランジスタや有機EL素子の特性ばらつきや経時変動による輝度ムラが改善される。
 なお、閾値補償容量530は、データ線からの信号電圧を、その信号電圧に対応する電圧に変換して駆動トランジスタ220のゲートに出力する電圧変換回路であってもよい。
 また、閾値補償容量530が電圧変換回路である場合、閾値補償トランジスタ510のソース及びドレインの一方は、駆動トランジスタ220の第1端子であるソース及びドレインの一方に接続されておらず、データ線31に接続されていてもよい。
 また、閾値補償容量530が電圧変換回路である場合、閾値補償トランジスタ510のソース及びドレインの一方は、駆動トランジスタ220の第1端子であるソース及びドレインの一方に接続されておらず、スイッチングトランジスタ230と電圧変換回路との接続点に接続されていてもよい。
 また、閾値補償容量530が電圧変換回路である場合、検査トランジスタ240のソース及びドレインの一方は、データ線31に接続されておらず、スイッチングトランジスタ230と電圧変換回路との接続点に接続されていてもよい。
 また、閾値補償容量530が電圧変換回路である場合、検査トランジスタ240のソース及びドレインの一方は、データ線31に接続されておらず、スイッチングトランジスタ230と電圧変換回路との接続点に接続され、かつ、閾値補償トランジスタ510のソース及びドレインの一方は、駆動トランジスタ220の第1端子であるソース及びドレインの一方に接続されておらず、データ線31に接続されていてもよい。
 また、閾値補償容量530が電圧変換回路である場合、検査トランジスタ240のソース及びドレインの一方は、データ線31に接続されておらず、スイッチングトランジスタ230と電圧変換回路との接続点に接続され、かつ、閾値補償トランジスタ510のソース及びドレインの一方は、駆動トランジスタ220の第1端子であるソース及びドレインの一方に接続されておらず、スイッチングトランジスタ230と電圧変換回路との接続点に接続されていてもよい。
 また、閾値補償容量530が電圧変換回路である場合、検査トランジスタ240のソース及びドレインの他方は、駆動トランジスタ220の第1端子であるソース及びドレインの一方に接続されておらず、駆動トランジスタ220のゲートに接続されていてもよい。
 なお、実施の形態1及び2において、各画素部における駆動トランジスタ及び有機EL素子のいずれかの特性を検出する動作について説明したが、実施の形態1及び2で示された回路構成及び動作により、各画素部の有する駆動トランジスタ及び有機EL素子の両方の特性を検出してもよい。具体的には、駆動トランジスタ及び有機EL素子の両方の特性検出は、実施の形態1においては第1検査電流が流れた際の駆動トランジスタ120のゲート電圧と第2電流が流れた際の有機EL素子の110のアノード電圧を検出することで実現される。以下、各画素部における駆動トランジスタ及び有機EL素子の両方の特性を検出する効果について説明する。
 駆動トランジスタのソース端子に有機EL素子が接続されている画素回路構成の場合、発光輝度は、駆動トランジスタの劣化だけでなく、有機EL素子の劣化による影響をも受けやすい。以下、この理由を説明する。
 駆動トランジスタにおける、ソース端子に対するゲート電圧によって、有機EL素子に流れる電流が決まる。そのソース端子に、定電圧の電源線ではなく有機EL素子が接続されると、有機EL素子の特性によりソース電圧が変動する。有機EL素子は、経時劣化により、同じ電流を流したときの電圧が増加していく。つまり、高抵抗化していく傾向がある。そのため、例えば、実施の形態1に記載された画素部100では、有機EL素子の高抵抗化により、駆動トランジスタ120のソース電圧が上昇する。よって、同じデータ電圧を、駆動トランジスタ120のゲート端子に印加しても、流れる電流が減少してしまう。
 よって、駆動トランジスタの劣化のみを検出し、所望の電流を流すためのゲート電圧を求めたとしても、有機EL素子の劣化によりソース電圧がどのように変化しているかわからないため、所望の電流を流すための適切な補正データ電圧を導出することができない。
 ここで、有機EL素子の特性も同時に検出しておくと、有機EL素子の特性を反映したソース電圧が分かるため、適切な補正データ電圧を導出することができる。
 よって、有機EL素子及び駆動トランジスタの双方が経時劣化する場合、当該双方の特性を検出することにより、所望の輝度を得るためのデータ電圧をより適切に制御できる。
 また、ここでは、劣化についてのみ述べたが、出荷前などの初期段階においても、同様の理由により、有機EL素子と駆動トランジスタの双方の特性を検出することは有効である。これにより、駆動トランジスタの特性検出のみでは導出できない、適切なデータ電圧を製品出荷前に把握することができる。
 本発明によれば、画素部100のように、基本画素回路に一つの検査トランジスタ140を追加するのみで、駆動トランジスタ及び有機EL素子の双方の特性検出ができ、上述した高精度な補正データ電圧を導出することが可能となる。
 (実施の形態3)
 本実施の形態における電子装置は、発光素子の形成される前の複数の画素部を有するアクティブマトリクス型のパネル基板を備え、画素部は、選択されたデータ線から供給された信号電圧に対応した信号電流を出力する第1トランジスタと、第1トランジスタへの信号電圧の供給をオンオフする第1スイッチ素子と、選択されたデータ線と第1トランジスタの第2端子とが短絡状態であることを可能とするように接続された第2スイッチ素子とを備える。また、電子装置は、さらに、第1トランジスタに検査電流を流す検査電流発生回路と、当該検査電流により発生した電圧を選択されたデータ線にて測定する電圧検出回路とを備える。これにより、各画素に配置された駆動トランジスタの特性を高精度測定できるので、発光素子が形成された後の発光パネルにおける駆動トランジスタ特性の不均一に起因する輝度ムラを補正できる。
 図19は、本発明の実施の形態3に係る電子装置の電気的な構成を示すブロック図である。同図における電子装置2は、走査線駆動回路20と、検査電流発生回路40と、電圧検出回路50と、マルチプレクサ60と、制御回路70と、メモリ80と、画素アレイ部90とを備える。
 図19に記載された電子装置は、図1に記載された発光パネルを有する表示装置の形成課程における途中段階のものである。同図に記載された実施の形態3に係る電子装置は、図1に記載された実施の形態1に係る表示装置と比較して、表示部の代わりに画素アレイ部90が配置され、データ線駆動回路30が配置されていない点が、構成として異なる。
 画素アレイ部は、複数の画素部を備える。
 図20は、画素アレイ部の有する一画素部の回路構成及びその周辺回路との接続を示す図である。同図における画素部600は、駆動トランジスタ120と、スイッチングトランジスタ130と、検査トランジスタ140と、保持容量150と、電源線125と、走査線21と、制御線22と、データ線31とを備える。また、周辺回路は、走査線駆動回路20と、検査電流発生回路40と、電圧検出回路50と、マルチプレクサ60とを備える。
 図20に記載された画素部600は、図2に記載された画素部100と比較して、有機EL素子110が配置されていない点のみが回路構成として異なる。画素部600は、有機EL素子110が形成される前の課程のものであり、画素部600に有機EL素子110が形成されることにより、画素部100が生成される。図19及び図20に記載された構成要素について、図1及び図2に記載された構成要素と同じものは説明を省略し、以下、異なる点のみを説明する。
 検査電流発生回路40は、データ線31に接続されており、駆動トランジスタ120の特性を検出するための検査電流47を出力する。
 電圧検出回路50は、マルチプレクサ60を介してデータ線31に接続されており、検査電流発生回路40が検査電流47を出力している間に、データ線31の電圧を検出する。
 制御回路70は、走査線駆動回路20、検査電流発生回路40、マルチプレクサ60、電圧検出回路50、メモリ80の制御を行い、電圧検出回路50により検出された電圧値は、デジタル値に変換され、演算により得られた特性パラメータをメモリ80に書き込む。
 次に、画素部600の回路構成について説明する。
 駆動トランジスタ120のゲートは、スイッチングトランジスタ130を介してデータ線31に接続され、第1端子であるソース及びドレインの一方が、後に形成される有機EL素子のアノードに後に接続され、第2端子であるソース及びドレインの他方が、電源線125に接続されている。
 検査トランジスタ140のゲートは制御線22に接続され、ソースは後に形成される有機EL素子のアノードに後に接続され、ドレインはデータ線31に接続されている。
 次に、本発明の実施の形態3にかかる電子装置の駆動方法について説明をする。本駆動方法により、発光素子が形成される前の駆動トランジスタ120の特性の検出が可能である。
 本駆動方法においても、図3に記載された動作フローチャート、及び図4に記載された検査電流の供給タイミングを示すタイミングチャートにより説明できる。
 最初に、検査電流発生回路40とデータ線31との接続を導通状態に設定する(S10)。
 次に、図4のt1において、走査線21及び制御線22の電圧のレベルをHIGHにして、それぞれ、スイッチングトランジスタ130及び検査トランジスタ140をオンにする(S11)。
 次に、図4のt2において、検査電流発生回路40から図20中の矢印の向きに検査電流47を流す(S12)。
 ステップS12において、検査電流47は、データ線31、検査トランジスタ140、及び駆動トランジスタ120を経由して、電源線125に流れこむ。その際、データ線31の電圧は、駆動トランジスタ120に検査電流47が流れた際の駆動トランジスタ120のゲート電圧とほぼ等しくなる。
 次に、図4のt2からt3の間において、検査電流47を供給し、データ線31に現れた電圧を電圧検出回路50で検出する(S13)。これにより、検査電流47の大きさに対する駆動トランジスタ120のゲート電圧を知ることができる。
 次に、電圧検出回路50により検出された電圧値をデジタル値に変換して算出した特性パラメータをメモリ80に格納する(S14)。このときの特性パラメータの算出方法については、実施の形態1と同様に、式2~式4を用いることにより算出される。
 最後に、図4のt3において、検査電流47の供給を停止する(S15)。
 なお、ステップS15は、ステップS14の後である必要はなく、ステップS14と並行して実行されてもよく、または、ステップS13の後であってステップS14の前に実行されてもよい。
 上述した一連の動作ステップにより、データ線の電圧が測定され、その検出結果が評価されることにより、画素部の画素欠陥が発見されるだけでなく、駆動トランジスタのばらつきに関する情報が取得できる。取得された特性パラメータがメモリに保存され、発光素子形成後の発光パネルの通常動作時のデータ電圧の補正に用いられることで、駆動トランジスタの特性ばらつきによる輝度ムラが改善される。
 なお、図20において、電圧検出回路50と検査電流発生回路40とは、データ線31の両側に、画素部を挟んで接続されているが、電圧検出回路50と検査電流発生回路40とが、画素部に対してデータ線31の同じ側に接続されていてもよい。
 また、検査電流発生回路40は、データ線31の本数と同数の電流発生源を有するものであってもよい。
 また、検査電流発生回路40は、データ線31の切り替えを行うマルチプレクサとデータ線31の本数より少ない電流発生源を有するものであってもよい。
 また、データ線31の切り替えを行うマルチプレクサとデータ線31より少ない電流発生源をもつ場合、当該マルチプレクサは、パネル用基板上に形成されていてもよい。
 また、電圧検出回路50は、データ線31の本数と同数の電圧検出器を有するものであってもよい。
 また、電圧検出回路50は、データ線31の切り替えを行うマルチプレクサとデータ線31の本数より少ない電圧検出器をもつものであってもよい。
 また、データ線31の切り替えを行うマルチプレクサとデータ線31より少ない電圧検出器をもつ場合、当該マルチプレクサは、パネル用基板上に形成されていてもよい。
 以上のように、本発明に係る表示装置は、駆動トランジスタとスイッチングトランジスタ及び発光素子からなる従来の画素部およびその画素部にデータ電圧を与えるデータ線に対して、データ線から入力される第1検査電流を駆動トランジスタのソース-ドレイン間に流し、又は、前記データ線から入力される第2検査電流を発光素子に流すように回路パスを形成する第1回路パス形成手段と、第1検査電流により発生した駆動トランジスタのゲート電圧に対応した電圧、又は、第2検査電流により発生した発光素子のアノード及びカソードの一方の電圧をデータ線に発生させるよう回路パスを形成する第2回路パス形成手段と、第1検査電流により発生した駆動トランジスタのゲート電圧に対応した電圧、又は、第2検査電流により発生した発光素子のアノード及びカソードの一方の電圧を、第2回路パス形成手段によりデータ線にて検出する電圧検出手段とを備えることにより、駆動トランジスタや発光素子のばらつきに関する特性情報を独立に取得することができる。また、検査電流が駆動トランジスタや発光素子に流れ、その時のデータ線の電圧が測定されるので、電圧を入力して微小電流を検出するという従来の測定方法型に比べ、高精度な測定が実現される。さらに、取得した特性情報を通常動作時のデータ電圧の補正に用いることで、駆動トランジスタや発光素子の特性ばらつきによる輝度ムラを改善することができる。
 また本発明に係る電子装置は、駆動トランジスタとスイッチングトランジスタからなり、発光素子が形成される前の画素部およびその画素部にデータ電圧を与えるデータ線に対して、データ線から入力される検査電流を駆動トランジスタのソース-ドレイン間に流すように回路パスを形成する第1回路パス形成手段と、第1検査電流により発生した駆動トランジスタのゲート電圧に対応した電圧をデータ線に発生させるよう回路パスを形成する第2回路パス形成手段と、検査電流により発生した駆動トランジスタのゲート電圧に対応した電圧を、第2回路パス形成手段によりデータ線にて検出する電圧検出手段とを備えることにより、駆動トランジスタのばらつきに関する特性情報を取得することができる。また、検査電流が駆動トランジスタに流れ、その時のデータ線の電圧が測定されるので、電圧を入力して微小電流を検出するという従来の測定方法型に比べ、高精度な測定が実現される。さらに、取得した特性情報を通常動作時のデータ電圧の補正に用いることで、駆動トランジスタの特性ばらつきによる輝度ムラを改善することができる。
 なお、本発明に係る電子装置は、上記実施の形態に限定されるものではない。実施の形態1ないし3及びその変形例における任意の構成要素を組み合わせて実現される別の実施形態や、実施の形態1ないし3及びその変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る電子装置を内蔵した各種機器も本発明に含まれる。
 例えば、図13に記載された本発明の実施の形態1の第2の変形例を示す画素部300に、図14に記載された本発明の実施の形態1の第3の変形例を示す画素部400の備えるスイッチングトランジスタ410を挿入することにより、実施の形態1の第2の変形例における画素部300の検査電流41パスを、ELスイッチングトランジスタ310及びスイッチングトランジスタ410のオンオフにより制御することができる。
 また、例えば、実施の形態1とその変形例及び実施の形態2に記載された各画素部の回路構成から有機EL素子110を削除した回路構成、つまり有機EL素子110が形成される前段階の各画素部を有するパネル用基板を備えた電子装置は、図19に記載された本発明の実施の形態3に示された電子装置と同様に適用されることにより、同様の効果を奏する。
 また、本発明に係る実施の形態では、駆動トランジスタ、スイッチングトランジスタ、検査トランジスタ、及びELスイッチングトランジスタの各機能を有するトランジスタは、ゲート、ソース及びドレインを有するFET(Field Effect Transistor)であることを前提として説明してきたが、これらのトランジスタには、ベース、コレクタ及びエミッタを有するバイポーラトランジスタが適用されてもよい。この場合にも、本発明の目的が達成され同様の効果を奏する。
 また、例えば、本発明に係る表示装置は、図21に記載されたような薄型フラットTVに内蔵される。本発明に係る表示装置により、輝度ムラが抑制されたディスプレイを備えた薄型フラットTVが実現される。
 本発明は、特に表示装置を内蔵する有機ELフラットパネルディスプレイに有用であり、画質の均一性が要求されるディスプレイの表示装置およびその駆動方法として用いるのに最適である。

Claims (28)

  1.  複数の画素部と、当該複数の画素部の発光を決定する複数のデータ線とを有するアクティブマトリクス型の発光パネルを備える表示装置であって、
     前記複数の画素部のそれぞれは、
     前記複数のデータ線のうちいずれかのデータ線から供給された信号電圧を信号電流に変換する第1トランジスタと、
     前記データ線と前記第1トランジスタのゲートとの間に挿入され、前記データ線と前記第1トランジスタのゲートとの導通及び非導通を切り換える第1スイッチ素子と、
     前記第1トランジスタのソース及びドレインの一方である第1端子からアノード及びカソードの一方に入力される前記信号電流により発光する発光素子とを備え、
     前記表示装置は、
     前記データ線から入力される第1検査電流を前記第1トランジスタのソース-ドレイン間に流すように回路パスを形成する第1回路パス形成手段と、
     前記第1検査電流により発生した前記第1トランジスタのゲート電圧に対応した電圧を前記データ線に発生させるよう回路パスを形成する第2回路パス形成手段と、
     前記第1検査電流により発生した前記第1トランジスタのゲート電圧に対応した電圧を、前記第2回路パス形成手段により形成された回路パスを介して前記データ線にて検出する電圧検出手段とを備える
     ことを特徴とする表示装置。
  2.  前記第1回路パス形成手段は、前記データ線から入力される第2検査電流を前記発光素子に流すように回路パスを形成し、
     前記第2回路パス形成手段は、前記第2検査電流により発生した前記発光素子の前記アノード及びカソードの一方の電圧を前記データ線に発生させるよう回路パスを形成し、
     前記電圧検出手段は、前記第2検査電流により発生した前記発光素子の前記アノード及びカソードの一方の電圧を、前記第2回路パス形成手段により形成された回路パスを介して前記データ線にて検出する
     ことを特徴とする請求項1記載の表示装置。
  3.  前記表示装置は、さらに、
     制御信号を伝達する走査線と第1制御線とを備え、
     前記第1トランジスタは、ソース及びドレインの他方である第2端子が第1電源に接続され、ゲートとソースとの電位差に対応する電流を前記第1端子に出力する駆動トランジスタであり、
     前記発光素子は、アノード及びカソードの他方が第2電源に接続され、
     前記第1スイッチ素子は、ゲートが前記走査線に接続され、ソース及びドレインの一方が前記データ線に接続され、ソース及びドレインの他方が前記第1トランジスタのゲートに接続された第1スイッチングトランジスタであり、
     前記第1回路パス形成手段は、
     前記第1検査電流を前記データ線に供給する検査電流発生回路を備え、
     前記第1回路パス形成手段及び前記第2回路パス形成手段は、
     ゲートが前記第1制御線に接続され、ソース及びドレインの一方が前記データ線に接続され、ソース及びドレインの他方が前記第1端子と前記発光素子のアノード及びカソードの一方との接続点に接続された1つの第2スイッチングトランジスタを備える
     ことを特徴とする請求項1記載の表示装置。
  4.  前記第1回路パス形成手段は、
     前記第1検査電流を前記データ線に供給する検査電流発生回路を備え、
     前記検査電流発生回路は、前記第1スイッチングトランジスタ及び前記第2スイッチングトランジスタが共にオン状態である時に、前記第1電源のバイアス電圧値と、前記第2電源のバイアス電圧値とが同期して変化することにより、前記第1トランジスタへ前記第1検査電流を流す
     ことを特徴とする請求項3記載の表示装置。
  5.  前記検査電流発生回路は、前記発光素子に流す第2検査電流を前記データ線に供給する
     ことを特徴とする請求項3記載の表示装置。
  6.  前記検査電流発生回路は、前記第2スイッチングトランジスタがオン状態である時に、前記第1電源のバイアス電圧値と、前記第2電源のバイアス電圧値とが同期して変化することにより、前記発光素子に前記第2検査電流を流す
     ことを特徴とする請求項5記載の表示装置。
  7.  前記複数の画素部のそれぞれは、さらに、
     前記第2端子と第1電源との間に挿入され、前記第2検査電流の供給の有無を切り換える第3スイッチ素子を備える
     ことを特徴とする請求項5記載の表示装置。
  8.  前記複数の画素部のそれぞれは、さらに、
     前記第2スイッチングトランジスタのソース及びドレインの他方と前記発光素子のアノード及びカソードの一方との接続点と前記第1端子との間に挿入され、前記第2検査電流の供給の有無を切り換える第3スイッチ素子を備える
     ことを特徴とする請求項5記載の表示装置。
  9.  前記複数の画素部のそれぞれは、さらに、
     前記第2スイッチングトランジスタのソース及びドレインの他方と前記発光素子のアノード及びカソードの一方との間に挿入され、前記第1検査電流の供給の有無を切り換える第2スイッチ素子を備える
     ことを特徴とする請求項3記載の表示装置。
  10.  前記検査電流発生回路は、
     前記検査電流を生成する1以上の電流発生源と、
     前記1以上の電流発生源と前記複数のデータ線との間に接続され、前記複数のデータ線のうち選択されたデータ線と前記1以上の電流発生源の1つとを導通させるマルチプレクサとを備え、
     前記電流発生源の数は、前記複数のデータ線の本数よりも少ない
     ことを特徴とする請求項3記載の表示装置。
  11.  前記表示装置は、さらに、
     制御信号を伝達する走査線と第1制御線とを備え、
     前記第1トランジスタは、ソース及びドレインの他方である第2端子が第1電源に接続され、ゲートとソースとの電位差に対応する電流を前記第1端子に出力する駆動トランジスタであり、
     前記発光素子は、アノード及びカソードの他方が第2電源に接続され、
     前記第1スイッチ素子は、ゲートが前記走査線に接続され、ソース及びドレインの一方が前記データ線に接続され、ソース及びドレインの他方が前記第1トランジスタのゲートに接続された第1スイッチングトランジスタであり、
     前記第1回路パス形成手段は、
     前記第1検査電流を前記データ線に供給する検査電流発生回路を備え、
     前記第1回路パス形成手段及び前記第2回路パス形成手段は、
     ゲートが前記第1制御線に接続され、ソース及びドレインの一方が前記第1スイッチングトランジスタのソース及びドレインの他方に接続され、ソース及びドレインの他方が前記第1端子と前記発光素子のアノード及びカソードの一方との接続点に接続された第2スイッチングトランジスタを備える
     ことを特徴とする請求項1記載の表示装置。
  12.  前記表示装置は、さらに、
     制御信号を伝達する走査線を備え、
     前記第1トランジスタは、ソース及びドレインの他方である第2端子が第1電源に接続され、ゲートとソースとの電位差に対応する電流を前記第1端子に出力する駆動トランジスタであり、
     前記発光素子は、アノード及びカソードの他方の端子が第2電源に接続され、
     前記第1スイッチ素子は、ゲートが前記走査線に接続され、ソース及びドレインの一方が前記データ線に接続され、ソース及びドレインの他方が前記第1トランジスタのゲートに接続された第1スイッチングトランジスタであり、
     前記第1回路パス形成手段は、
     前記第1検査電流を前記データ線に供給する検査電流発生回路を備え、
     前記複数の画素部のそれぞれは、さらに、
     前記第1トランジスタのゲートと前記第1スイッチングトランジスタのソース及びドレインの他方との間に挿入され、前記信号電圧に対応する電圧を前記第1トランジスタのゲートに出力する電圧変換部を備える
     ことを特徴とする請求項1記載の表示装置。
  13.  前記表示装置は、
     制御信号を伝達する第2制御線を備え、
     前記複数の画素部のそれぞれは、
     ゲートが前記第2制御線に接続され、ソース及びドレインの一方が前記第1トランジスタのゲートに接続され、ソース及びドレインの他方が前記第1端子に接続された第2トランジスタを備える
     ことを特徴とする請求項12記載の表示装置。
  14.  前記電圧検出手段は、
     前記第1検査電流を流すことにより発生した前記第1トランジスタのゲート電圧を前記データ線において測定する1以上の電圧検出器と、
     前記1以上の電圧検出器と前記複数のデータ線との間に接続され、前記複数のデータ線のうち選択されたデータ線と前記1以上の電圧検出器の1つとを導通させるマルチプレクサとを備え、
     前記電圧検出器の数は、前記複数のデータ線の本数よりも少ない
     ことを特徴とする請求項1記載の表示装置。
  15.  前記電圧検出器は、前記第2検査電流を流すことにより発生した前記発光素子のアノード及びカソードの一方の電圧を前記データ線において測定する
     ことを特徴とする請求項14記載の表示装置。
  16.  前記マルチプレクサは、前記発光パネル上に形成されている
     ことを特徴とする請求項14記載の表示装置。
  17.  複数の画素部と、当該複数の画素部の発光を決定する複数のデータ線とを有するアクティブマトリクス型の発光パネルを備える表示装置であって、
     前記複数の画素部のそれぞれは、
     前記複数のデータ線のうちいずれかのデータ線から供給された信号電圧を信号電流に変換する第1トランジスタと、
     前記データ線と前記第1トランジスタのゲートとの間に挿入され、前記データ線と前記第1トランジスタのゲートとの導通及び非導通を切り換える第1スイッチ素子と、
     前記第1トランジスタのソース及びドレインの一方である第1端子からアノード及びカソードの一方に入力される前記信号電流により発光する発光素子とを備え、
     前記データ線から入力される第2検査電流を前記発光素子に流すように回路パスを形成する第1回路パス形成手段と、
     前記第2検査電流により発生した前記発光素子のアノード及びカソードの一方の電圧を前記データ線に発生させるよう回路パスを形成する第2回路パス形成手段と、
     前記第2検査電流により発生した前記発光素子のアノード及びカソードの一方の電圧を、前記第2回路パス形成手段により形成されたパスを介して前記データ線にて検出する電圧検出手段とを備える
     ことを特徴とする表示装置。
  18.  発光素子を形成することが可能な複数の画素部と複数のデータ線とを有するアクティブマトリクス型の発光用パネル基板を備える電子装置であって、
     前記複数の画素部のそれぞれは、
     前記複数のデータ線のうちいずれかのデータ線から供給された前記信号電圧を信号電流に変換する第1トランジスタと、
     前記データ線と前記第1トランジスタのゲートとの間に挿入され、前記データ線と前記第1トランジスタのゲートとの導通及び非導通を切り換える第1スイッチ素子とを備え、
     前記データ線から入力される検査電流を前記第1トランジスタのソース-ドレイン間に流すように回路パスを形成する第1回路パス形成手段と、
     前記検査電流により発生した前記第1トランジスタのゲート電圧に対応した電圧を前記データ線に発生させるよう回路パスを形成する第2回路パス形成手段と、
     前記検査電流により発生した前記第1トランジスタのゲート電圧に対応した電圧を前記データ線にて検出する電圧検出手段とを備える
     ことを特徴とする電子装置。
  19.  複数の画素部の発光を決定する複数のデータ線のうちいずれかのデータ線から供給された信号電圧を信号電流に変換する第1トランジスタと、前記データ線と前記第1トランジスタのゲートとの間に挿入され前記データ線と前記第1トランジスタのゲートとの導通及び非導通を切り換える第1スイッチ素子と、前記第1トランジスタのソース及びドレインの一方である第1端子からアノード及びカソードの一方に入力される前記信号電流により発光する発光素子とを備える画素部を複数有するアクティブマトリクス型の発光パネルを備える表示装置の駆動方法であって、
     前記信号電圧を前記データ線に供給するデータ駆動回路と前記データ線との接続を非導通状態にし、前記第1トランジスタに第1検査電流を供給する検査電流発生回路と前記データ線との接続を導通状態にする電流源接続ステップと、
     前記電流源接続ステップの後、前記検査電流発生回路から前記データ線を介して入力される第1検査電流を前記第1トランジスタのソース-ドレイン間に流す電流供給ステップと、
     前記第1検査電流を流すことにより発生した前記第1トランジスタのゲート電圧に対応した電圧を、前記データ線に接続された電圧検出回路により検出する電圧検出ステップとを含む
     ことを特徴とする表示装置の駆動方法。
  20.  前記電圧検出ステップの後、
     前記電圧検出ステップで検出された前記第1トランジスタのゲート電圧から算出された前記第1トランジスタの現在の特性パラメータをメモリに格納するパラメータ格納ステップと、
     前記電圧検出ステップの後、前記検査電流発生回路と前記データ線との接続を非導通状態にし、前記データ駆動回路と前記データ線との接続を導通状態にする電圧源接続ステップと、
     前記電圧源接続ステップの後、前記メモリから読み出された前記現在の特性パラメータにより、補正された信号を前記データ駆動回路に出力し、当該データ駆動回路により当該補正された信号電圧を前記画素部に供給する補正電圧供給ステップとを含む
     ことを特徴とする請求項19記載の表示装置の駆動方法。
  21.  前記電流供給ステップでは、
     前記第1スイッチ素子をオン状態にする電流導通ステップと、
     前記電流導通ステップの後、前記第1トランジスタのソース及びドレインの他方を順バイアス状態に設定し、かつ、前記発光素子のアノード及びカソードの他方を逆バイアス状態に設定することにより、前記第1トランジスタに前記第1検査電流を流し前記発光素子に前記第1検査を流さない第1トランジスタ電流供給ステップとを含む
     ことを特徴とする請求項19記載の表示装置の駆動方法。
  22.  前記電流供給ステップでは、
     前記第1スイッチ素子をオン状態にする電流導通ステップと、
     前記第1トランジスタのソース又はドレインに接続された第1トランジスタスイッチ素子をオン状態にし、前記発光素子のアノード及びカソードの一方に接続された発光素子スイッチ素子をオフ状態にすることにより、前記第1トランジスタに前記第1検査電流を流し前記発光素子に前記第1検査電流を流さない第1トランジスタ電流供給ステップとを含む
     ことを特徴とする請求項19記載の表示装置の駆動方法。
  23.  前記電流源接続ステップでは、
     前記信号電圧を前記データ線に供給するデータ駆動回路と前記データ線との接続を非導通状態にし、前記発光素子に第2検査電流を供給する前記検査電流発生回路と前記データ線との接続を導通状態にし、
     前記電流供給ステップでは、
     前記電流源接続ステップの後、前記検査電流発生回路から前記データ線を介して入力される第2検査電流を前記発光素子に流し、
     前記電圧検出ステップでは、
     前記第2検査電流を流すことにより発生した前記発光素子のアノード及びカソードの一方の電圧を、前記データ線に接続された電圧検出回路により検出する
     ことを特徴とする請求項19記載の表示装置の駆動方法。
  24.  前記電圧検出ステップの後、
     前記電圧検出ステップで検出された前記発光素子のアノード及びカソードの一方の電圧から算出された前記発光素子の現在の特性パラメータをメモリに格納するパラメータ格納ステップと、
     前記電圧検出ステップの後、前記検査電流発生回路と前記データ線との接続を非導通状態にし、前記データ駆動回路と前記データ線との接続を導通状態にする電圧源接続ステップと、
     前記電圧源接続ステップの後、前記メモリから読み出された前記現在の特性パラメータにより、補正された信号を前記データ駆動回路に出力し、当該データ駆動回路により当該補正された信号電圧を前記画素部に供給する補正電圧供給ステップとを含む
     ことを特徴とする請求項23記載の表示装置の駆動方法。
  25.  前記電流供給ステップでは、
     前記第1トランジスタのアノード及びカソードの他方を逆バイアス状態に設定し、かつ、前記発光素子のアノード及びカソードの他方を順バイアス状態に設定することにより、前記発光素子に第2検査電流を流し前記第1トランジスタに前記第2検査電流を流さない発光素子電流供給ステップとを含む
     ことを特徴とする請求項23記載の表示装置の駆動方法。
  26.  前記電流供給ステップでは、
     前記発光素子のアノード及びカソードの一方に接続された発光素子スイッチ素子をオン状態にし、かつ、前記第1トランジスタのソース又はドレインに接続された第1トランジスタスイッチ素子をオフ状態にすることにより、前記発光素子に前記第2検査電流を流し前記第1トランジスタに前記第2検査電流を流さない発光素子電流供給ステップとを含む
     ことを特徴とする請求項23記載の表示装置の駆動方法。
  27.  複数の画素部の発光を決定する複数のデータ線のうちいずれかのデータ線から供給された信号電圧を信号電流に変換する第1トランジスタと、前記データ線と前記第1トランジスタのゲートとの間に挿入され前記データ線と前記第1トランジスタのゲートとの導通及び非導通を切り換える第1スイッチ素子と、前記第1トランジスタのソース及びドレインの一方である第1端子からアノード及びカソードの一方に入力される前記信号電流により発光する発光素子とを備える画素部を複数有するアクティブマトリクス型の発光パネルを備える表示装置の駆動方法であって、
     前記信号電圧を前記データ線に供給するデータ駆動回路と前記データ線との接続を非導通状態にし、前記発光素子に第2検査電流を供給する検査電流発生回路と前記データ線との接続を導通状態にする電流源接続ステップと、
     前記電流源接続ステップの後、前記検査電流発生回路から前記データ線を介して入力される第2検査電流を前記発光素子に流す電流供給ステップと、
     前記第2検査電流を流すことにより発生した前記発光素子のアノード及びカソードの一方の電圧を、前記データ線に接続された電圧検出回路により検出する電圧検出ステップとを含む
     ことを特徴とする表示装置の駆動方法。
  28.  複数のデータ線のうちいずれかのデータ線から供給された信号電圧を信号電流に変換する第1トランジスタと、前記データ線と前記第1トランジスタのゲートとの間に挿入され前記データ線と前記第1トランジスタのゲートとの導通及び非導通を切り換える第1スイッチ素子とを備え、発光素子を形成することが可能な画素部を複数有するアクティブマトリクス型の発光用パネル基板を備える電子装置の駆動方法であって、
     前記検査電流発生回路から前記データ線を介して入力される検査電流を前記第1トランジスタのソース-ドレイン間に流す電流供給ステップと、
     前記検査電流を流すことにより発生した前記第1トランジスタのゲート電圧に対応した電圧を前記データ線に接続された電圧検出回路により検出する電圧検出ステップとを含む
     ことを特徴とする電子装置の駆動方法。
PCT/JP2008/004022 2008-01-07 2008-12-26 表示装置、電子装置及び駆動方法 WO2009087746A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009548819A JP5254998B2 (ja) 2008-01-07 2008-12-26 表示装置及び駆動方法
CN200880121799.2A CN101903933B (zh) 2008-01-07 2008-12-26 显示装置、电子装置及驱动方法
US12/823,234 US8164546B2 (en) 2008-01-07 2010-06-25 Display device, electronic device, and driving method
US13/424,854 US8355016B2 (en) 2008-01-07 2012-03-20 Display device, electronic device, and driving method
US13/706,595 US8791939B2 (en) 2008-01-07 2012-12-06 Display device, electronic device, and driving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-000779 2008-01-07
JP2008000779 2008-01-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/823,234 Continuation US8164546B2 (en) 2008-01-07 2010-06-25 Display device, electronic device, and driving method

Publications (1)

Publication Number Publication Date
WO2009087746A1 true WO2009087746A1 (ja) 2009-07-16

Family

ID=40852871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/004022 WO2009087746A1 (ja) 2008-01-07 2008-12-26 表示装置、電子装置及び駆動方法

Country Status (4)

Country Link
US (3) US8164546B2 (ja)
JP (2) JP5254998B2 (ja)
CN (1) CN101903933B (ja)
WO (1) WO2009087746A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301037A (ja) * 2008-06-11 2009-12-24 Samsung Mobile Display Co Ltd 有機電界発光表示装置及びその駆動方法
CN102034429A (zh) * 2009-09-30 2011-04-27 卡西欧计算机株式会社 发光装置及其驱动控制方法、以及电子设备
JP2011102879A (ja) * 2009-11-10 2011-05-26 Global Oled Technology Llc 画素回路、表示装置および検査方法
JP2011237754A (ja) * 2010-05-11 2011-11-24 Samsung Mobile Display Co Ltd 有機発光表示装置及びその駆動方法
JP2012507746A (ja) * 2008-10-29 2012-03-29 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー 効率変動を補償するエレクトロルミネッセントディスプレイ
CN102549641A (zh) * 2009-09-30 2012-07-04 全球Oled科技有限责任公司 针对电致发光显示器的缺陷发射体检测
WO2014141958A1 (ja) * 2013-03-14 2014-09-18 シャープ株式会社 表示装置およびその駆動方法
WO2015093100A1 (ja) * 2013-12-19 2015-06-25 シャープ株式会社 表示装置およびその駆動方法
JP2016028300A (ja) * 2010-02-19 2016-02-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置及びその駆動方法
JP2019526816A (ja) * 2016-08-12 2019-09-19 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 補償画素回路、表示パネル、表示装置、補償及び駆動方法
JP2020519910A (ja) * 2017-05-12 2020-07-02 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 画素駆動回路およびその補償方法、表示パネル、ならびに表示装置
WO2023017362A1 (ja) * 2021-08-12 2023-02-16 株式会社半導体エネルギー研究所 表示装置の補正方法
JP2023537438A (ja) * 2021-07-15 2023-09-01 集創北方(珠海)科技有限公司 検出方法及び検出装置

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087746A1 (ja) * 2008-01-07 2009-07-16 Panasonic Corporation 表示装置、電子装置及び駆動方法
JP2009198691A (ja) * 2008-02-20 2009-09-03 Eastman Kodak Co 有機el表示モジュールおよびその製造方法
CN101842829B (zh) 2008-10-07 2013-03-06 松下电器产业株式会社 图像显示装置以及其控制方法
WO2011030370A1 (ja) 2009-09-08 2011-03-17 パナソニック株式会社 表示パネル装置及びその制御方法
KR101291433B1 (ko) 2010-09-06 2013-07-30 파나소닉 주식회사 표시 장치 및 그 구동 방법
KR101809300B1 (ko) 2010-09-06 2018-01-18 가부시키가이샤 제이올레드 표시 장치 및 그 구동 방법
CN102456592A (zh) * 2010-10-15 2012-05-16 北京京东方光电科技有限公司 测试阵列基板上薄膜晶体管特性的方法和装置
JP5675601B2 (ja) 2010-11-10 2015-02-25 パナソニック株式会社 有機el表示パネル及びその駆動方法
CN102654973B (zh) * 2011-08-15 2014-11-19 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板
KR102000041B1 (ko) * 2011-12-29 2019-07-16 엘지디스플레이 주식회사 발광표시장치 및 그 구동방법
KR101881084B1 (ko) * 2012-04-25 2018-08-20 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치 검사 방법
KR102023183B1 (ko) * 2012-11-20 2019-09-20 삼성디스플레이 주식회사 화소, 이를 포함하는 표시장치 및 그 구동 방법
JP2015043041A (ja) * 2013-08-26 2015-03-05 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 電気光学装置
US9495910B2 (en) 2013-11-22 2016-11-15 Global Oled Technology Llc Pixel circuit, driving method, display device, and inspection method
KR102704745B1 (ko) 2013-12-27 2024-09-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치
JP2016009165A (ja) * 2014-06-26 2016-01-18 ローム株式会社 電気光学装置、電気光学装置の特性測定方法、及び半導体チップ
KR102342627B1 (ko) * 2014-09-26 2021-12-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 매트릭스 장치와 그 특성의 측정 방법, 구동 방법
KR102263574B1 (ko) * 2014-10-01 2021-06-11 삼성디스플레이 주식회사 표시 장치
KR102317451B1 (ko) * 2015-06-19 2021-10-28 삼성디스플레이 주식회사 구동 전압 결정 장치 및 구동 전압 결정 방법
CN108701435A (zh) * 2016-06-20 2018-10-23 索尼公司 显示设备和电子设备
KR102692938B1 (ko) * 2016-06-30 2024-08-09 엘지디스플레이 주식회사 캘리브레이션 장치와 방법, 그를 포함한 유기발광 표시장치
CN106935193A (zh) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 Oled驱动补偿电路、oled显示面板及其驱动方法
CN107591126A (zh) * 2017-10-26 2018-01-16 京东方科技集团股份有限公司 一种像素电路的控制方法及其控制电路、显示装置
CN108182895B (zh) * 2017-12-12 2020-06-30 武汉华星光电技术有限公司 一种用于检测显示面板中像素电位的电路及方法、显示面板
CN108257540A (zh) * 2018-01-26 2018-07-06 鄂尔多斯市源盛光电有限责任公司 显示基板、显示基板的测试方法和显示装置
CN108766360B (zh) * 2018-05-23 2020-04-10 京东方科技集团股份有限公司 显示面板的驱动方法和显示装置
CN208173203U (zh) * 2018-05-29 2018-11-30 北京京东方技术开发有限公司 显示面板及显示装置
CN108962106B (zh) * 2018-07-13 2022-02-22 京东方科技集团股份有限公司 一种像素检测电路、显示基板及像素检测方法
TWI676979B (zh) * 2018-11-20 2019-11-11 友達光電股份有限公司 顯示面板及顯示面板的檢測方法
CN109686313B (zh) * 2019-01-10 2021-06-18 昆山国显光电有限公司 一种像素电路、显示面板及像素电路的驱动方法
JP7345268B2 (ja) 2019-04-18 2023-09-15 Tianma Japan株式会社 表示装置及びその制御方法
CN110517641B (zh) * 2019-08-30 2021-05-14 京东方科技集团股份有限公司 像素电路、参数检测方法、显示面板和显示装置
CN111028778B (zh) * 2019-12-31 2021-04-23 厦门天马微电子有限公司 显示亮度补偿方法和系统
CN111128063B (zh) * 2020-01-20 2021-03-23 云谷(固安)科技有限公司 显示面板的测试电路、方法及显示面板
CN111128072A (zh) * 2020-02-22 2020-05-08 禹创半导体(广州)有限公司 一种利用低电压晶体管的微型micro LED显示装置
JP2022019449A (ja) * 2020-07-17 2022-01-27 株式会社ジャパンディスプレイ アレイ基板の検査方法、表示装置及び検査治具
JP2023088444A (ja) * 2021-12-15 2023-06-27 セイコーエプソン株式会社 電気光学装置、電子機器および電気光学装置の駆動方法
CN114530133B (zh) * 2022-03-04 2023-07-25 广州华星光电半导体显示技术有限公司 显示面板及显示终端

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047721A (ja) * 2005-08-10 2007-02-22 Samsung Sdi Co Ltd データ駆動回路とこれを利用した発光表示装置及びその駆動方法
WO2007037269A1 (ja) * 2005-09-27 2007-04-05 Casio Computer Co., Ltd. 表示装置及び表示装置の駆動方法
JP2007206139A (ja) * 2006-01-31 2007-08-16 Seiko Epson Corp 単位回路の駆動方法、発光装置およびその駆動方法、データ線駆動回路、および電子機器
JP2007536585A (ja) * 2004-05-06 2007-12-13 トムソン ライセンシング 発光ディスプレイのための回路および制御方法
JP2007322133A (ja) * 2006-05-30 2007-12-13 Seiko Epson Corp 駆動トランジスタの特性測定方法、電気光学装置、および電子機器
JP2008102404A (ja) * 2006-10-20 2008-05-01 Hitachi Displays Ltd 表示装置
JP2008139861A (ja) * 2006-11-10 2008-06-19 Toshiba Matsushita Display Technology Co Ltd 有機発光素子を用いたアクティブマトリクス型表示装置、および有機発光素子を用いたアクティブマトリクス型表示装置の駆動方法
JP2008224864A (ja) * 2007-03-09 2008-09-25 Hitachi Displays Ltd 画像表示装置
JP2008224863A (ja) * 2007-03-09 2008-09-25 Hitachi Displays Ltd 画像表示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951687B2 (ja) * 2001-08-02 2007-08-01 セイコーエプソン株式会社 単位回路の制御に使用されるデータ線の駆動
JP3833100B2 (ja) 2001-11-08 2006-10-11 キヤノン株式会社 アクティブマトリックス型ディスプレイ
JP4266682B2 (ja) 2002-03-29 2009-05-20 セイコーエプソン株式会社 電子装置、電子装置の駆動方法、電気光学装置及び電子機器
US6806497B2 (en) * 2002-03-29 2004-10-19 Seiko Epson Corporation Electronic device, method for driving the electronic device, electro-optical device, and electronic equipment
JP4369112B2 (ja) * 2002-12-09 2009-11-18 株式会社半導体エネルギー研究所 半導体装置及び電子機器
JP2005265937A (ja) 2004-03-16 2005-09-29 Fuji Electric Holdings Co Ltd 画像表示装置
TW200620207A (en) * 2004-07-05 2006-06-16 Sony Corp Pixel circuit, display device, driving method of pixel circuit, and driving method of display device
JP4831392B2 (ja) 2004-07-05 2011-12-07 ソニー株式会社 画素回路及び表示装置
JP2006139079A (ja) * 2004-11-12 2006-06-01 Eastman Kodak Co 発光パネル用基板、発光パネル用基板の検査方法及び発光パネル
KR100604066B1 (ko) 2004-12-24 2006-07-24 삼성에스디아이 주식회사 화소 및 이를 이용한 발광 표시장치
US8659511B2 (en) * 2005-08-10 2014-02-25 Samsung Display Co., Ltd. Data driver, organic light emitting display device using the same, and method of driving the organic light emitting display device
JP2007293328A (ja) * 2006-03-31 2007-11-08 Canon Inc アクティブマトリクス装置
JP5010949B2 (ja) 2007-03-07 2012-08-29 株式会社ジャパンディスプレイイースト 有機el表示装置
KR100873707B1 (ko) 2007-07-27 2008-12-12 삼성모바일디스플레이주식회사 유기전계발광 표시장치 및 그의 구동방법
WO2009087746A1 (ja) * 2008-01-07 2009-07-16 Panasonic Corporation 表示装置、電子装置及び駆動方法
JP4972209B2 (ja) * 2008-07-04 2012-07-11 パナソニック株式会社 表示装置及びその制御方法
KR101091256B1 (ko) * 2009-11-19 2011-12-07 파나소닉 주식회사 표시 패널 장치, 표시 장치 및 그 제어 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536585A (ja) * 2004-05-06 2007-12-13 トムソン ライセンシング 発光ディスプレイのための回路および制御方法
JP2007047721A (ja) * 2005-08-10 2007-02-22 Samsung Sdi Co Ltd データ駆動回路とこれを利用した発光表示装置及びその駆動方法
WO2007037269A1 (ja) * 2005-09-27 2007-04-05 Casio Computer Co., Ltd. 表示装置及び表示装置の駆動方法
JP2007206139A (ja) * 2006-01-31 2007-08-16 Seiko Epson Corp 単位回路の駆動方法、発光装置およびその駆動方法、データ線駆動回路、および電子機器
JP2007322133A (ja) * 2006-05-30 2007-12-13 Seiko Epson Corp 駆動トランジスタの特性測定方法、電気光学装置、および電子機器
JP2008102404A (ja) * 2006-10-20 2008-05-01 Hitachi Displays Ltd 表示装置
JP2008139861A (ja) * 2006-11-10 2008-06-19 Toshiba Matsushita Display Technology Co Ltd 有機発光素子を用いたアクティブマトリクス型表示装置、および有機発光素子を用いたアクティブマトリクス型表示装置の駆動方法
JP2008224864A (ja) * 2007-03-09 2008-09-25 Hitachi Displays Ltd 画像表示装置
JP2008224863A (ja) * 2007-03-09 2008-09-25 Hitachi Displays Ltd 画像表示装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301037A (ja) * 2008-06-11 2009-12-24 Samsung Mobile Display Co Ltd 有機電界発光表示装置及びその駆動方法
US8405582B2 (en) 2008-06-11 2013-03-26 Samsung Display Co., Ltd. Organic light emitting display and driving method thereof
JP2012507746A (ja) * 2008-10-29 2012-03-29 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー 効率変動を補償するエレクトロルミネッセントディスプレイ
CN102034429A (zh) * 2009-09-30 2011-04-27 卡西欧计算机株式会社 发光装置及其驱动控制方法、以及电子设备
CN102034429B (zh) * 2009-09-30 2013-06-19 卡西欧计算机株式会社 发光装置及其驱动控制方法、以及电子设备
CN102549641A (zh) * 2009-09-30 2012-07-04 全球Oled科技有限责任公司 针对电致发光显示器的缺陷发射体检测
JP2011095720A (ja) * 2009-09-30 2011-05-12 Casio Computer Co Ltd 発光装置及びその駆動制御方法、並びに電子機器
JP2013506873A (ja) * 2009-09-30 2013-02-28 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー エレクトロルミネッセントディスプレイのための欠陥のあるエミッター検出
JP2011102879A (ja) * 2009-11-10 2011-05-26 Global Oled Technology Llc 画素回路、表示装置および検査方法
US8754882B2 (en) 2009-11-10 2014-06-17 Global Oled Technology Llc Pixel circuit, display device, and inspection method
US9569991B2 (en) 2009-11-10 2017-02-14 Global Oled Technology Llc Pixel circuit, display device, and inspection method
JP2016028300A (ja) * 2010-02-19 2016-02-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置及びその駆動方法
JP2011237754A (ja) * 2010-05-11 2011-11-24 Samsung Mobile Display Co Ltd 有機発光表示装置及びその駆動方法
US9711092B2 (en) 2013-03-14 2017-07-18 Sharp Kabushiki Kaisha Display device and method for driving same
WO2014141958A1 (ja) * 2013-03-14 2014-09-18 シャープ株式会社 表示装置およびその駆動方法
JPWO2014141958A1 (ja) * 2013-03-14 2017-02-16 シャープ株式会社 表示装置およびその駆動方法
US9881552B2 (en) 2013-03-14 2018-01-30 Sharp Kabushiki Kaisha Display device and method for driving same
WO2015093100A1 (ja) * 2013-12-19 2015-06-25 シャープ株式会社 表示装置およびその駆動方法
US9824618B2 (en) 2013-12-19 2017-11-21 Sharp Kabushiki Kaisha Display device and method for driving same
JPWO2015093100A1 (ja) * 2013-12-19 2017-03-16 シャープ株式会社 表示装置およびその駆動方法
JP2019526816A (ja) * 2016-08-12 2019-09-19 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 補償画素回路、表示パネル、表示装置、補償及び駆動方法
JP2020519910A (ja) * 2017-05-12 2020-07-02 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 画素駆動回路およびその補償方法、表示パネル、ならびに表示装置
US11011118B2 (en) 2017-05-12 2021-05-18 Boe Technology Group Co., Ltd. Pixel-driving circuit and a compensation method thereof, a display panel, and a display apparatus
JP7092665B2 (ja) 2017-05-12 2022-06-28 京東方科技集團股▲ふん▼有限公司 画素駆動回路およびその補償方法、表示パネル、ならびに表示装置
JP2023537438A (ja) * 2021-07-15 2023-09-01 集創北方(珠海)科技有限公司 検出方法及び検出装置
WO2023017362A1 (ja) * 2021-08-12 2023-02-16 株式会社半導体エネルギー研究所 表示装置の補正方法

Also Published As

Publication number Publication date
US8355016B2 (en) 2013-01-15
US8164546B2 (en) 2012-04-24
JP5738910B2 (ja) 2015-06-24
CN101903933B (zh) 2013-03-27
US8791939B2 (en) 2014-07-29
JPWO2009087746A1 (ja) 2011-05-26
CN101903933A (zh) 2010-12-01
US20130093651A1 (en) 2013-04-18
JP5254998B2 (ja) 2013-08-07
US20100259527A1 (en) 2010-10-14
JP2013148908A (ja) 2013-08-01
US20120176362A1 (en) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5738910B2 (ja) 表示装置、電子装置及び駆動方法
JP5010030B2 (ja) 表示装置及びその制御方法
US11074863B2 (en) Pixel circuits for AMOLED displays
JP5343073B2 (ja) 表示装置、表示装置の製造方法および制御方法
CN107452342B (zh) 显示系统、控制系统、显示面板的分析方法和测试系统
KR101537829B1 (ko) 표시 장치 및 그 제어 방법
KR101156826B1 (ko) 화소 구동 장치, 발광 장치 및 그 구동 제어 방법과 전자기기
JP5342111B2 (ja) 有機el表示装置
JP5073547B2 (ja) 表示駆動回路と表示駆動方法
US20110074762A1 (en) Light-emitting apparatus and drive control method thereof as well as electronic device
US8605066B2 (en) Display apparatus including display pixels and light detection units, method for controlling light detection operation
JP2012513040A (ja) 経年変化が補償されるデジタル駆動エレクトロルミネッセントディスプレイ
CN109637444B (zh) 一种显示装置及其驱动方法
KR20090087796A (ko) 능동 유기 발광 다이오드 디스플레이
KR20150064481A (ko) 표시장치의 휘도 편차 보상장치 및 보상방법
JP2009300285A (ja) 温度検知方法及び有機el表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880121799.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009548819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08869875

Country of ref document: EP

Kind code of ref document: A1