WO2009084522A1 - 脱水装置及び方法 - Google Patents
脱水装置及び方法 Download PDFInfo
- Publication number
- WO2009084522A1 WO2009084522A1 PCT/JP2008/073373 JP2008073373W WO2009084522A1 WO 2009084522 A1 WO2009084522 A1 WO 2009084522A1 JP 2008073373 W JP2008073373 W JP 2008073373W WO 2009084522 A1 WO2009084522 A1 WO 2009084522A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid
- water separation
- separation membrane
- treated
- temperature
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 205
- 239000012530 fluid Substances 0.000 claims abstract description 120
- 238000009835 boiling Methods 0.000 claims abstract description 54
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 6
- 239000012528 membrane Substances 0.000 claims description 219
- 238000000926 separation method Methods 0.000 claims description 171
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 136
- 230000018044 dehydration Effects 0.000 claims description 38
- 238000006297 dehydration reaction Methods 0.000 claims description 38
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 17
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 15
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 15
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 15
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- 239000007864 aqueous solution Substances 0.000 claims description 12
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 10
- 238000012806 monitoring device Methods 0.000 claims description 7
- -1 acetaldehyde, ketones Chemical class 0.000 claims description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 6
- 150000001299 aldehydes Chemical class 0.000 claims description 5
- 150000002148 esters Chemical class 0.000 claims description 5
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 5
- 150000001298 alcohols Chemical class 0.000 claims description 4
- 150000001735 carboxylic acids Chemical class 0.000 claims description 4
- 150000002170 ethers Chemical class 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 230000009467 reduction Effects 0.000 abstract 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 18
- 239000000758 substrate Substances 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 238000005373 pervaporation Methods 0.000 description 10
- 239000002994 raw material Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 6
- 230000003628 erosive effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 101100203596 Caenorhabditis elegans sol-1 gene Proteins 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 239000003377 acid catalyst Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000006210 lotion Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000007809 chemical reaction catalyst Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000005514 two-phase flow Effects 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/36—Pervaporation; Membrane distillation; Liquid permeation
- B01D61/362—Pervaporation
- B01D61/3621—Pervaporation comprising multiple pervaporation steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0048—Inorganic membrane manufacture by sol-gel transition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
- B01D71/027—Silicium oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/028—Molecular sieves
- B01D71/0281—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/38—Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
- B01D71/381—Polyvinylalcohol
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/58—Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
- B01D71/62—Polycondensates having nitrogen-containing heterocyclic rings in the main chain
- B01D71/64—Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/76—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/22—Cooling or heating elements
- B01D2313/221—Heat exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2317/00—Membrane module arrangements within a plant or an apparatus
- B01D2317/02—Elements in series
- B01D2317/022—Reject series
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2317/00—Membrane module arrangements within a plant or an apparatus
- B01D2317/02—Elements in series
- B01D2317/027—Christmas tree arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/12—Specific ratios of components used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
Definitions
- the present invention relates to a dehydration apparatus and method using a water separation membrane. More specifically, the present invention relates to a dehydrating apparatus and method for preventing damage to a water separation membrane when dehydrating a mixture (a fluid to be treated) of ethanol or propanol having an azeotropic composition with water and water. Furthermore, the dehydration apparatus and method of the present invention appropriately deal with a decrease in the permeation rate of water to be separated.
- Ethanol is attracting attention as a fuel source to replace petroleum fuel, and its market size is predicted to be 55 million kiloliters in 2010. However, in order to employ ethanol as a fuel, it must be dehydrated from crude ethanol obtained from bio raw materials such as corn and concentrated to at least 99.5 wt%.
- the pervaporation method is a method of separating a target component such as water in a gaseous state from a fluid to be treated using a membrane.
- a fluid to be processed such as crude ethanol 95% is supplied to the supply side 62 with its temperature raised by the heat exchanger 61.
- the other permeation side 63 of the water separation membrane is depressurized, and a chemical potential difference is generated between both surfaces of the water separation membrane 64. Due to this chemical potential difference, a target component such as water can be transmitted from the supply side 62 to the transmission side 63.
- the target component for example, water or the like can be separated from the fluid to be treated in a gaseous state.
- the target component for example, water or the like
- FIG. 6A (65) is a cooler that condenses the membrane permeate
- (66) is a vacuum pump.
- the temperature of the fluid to be treated is significantly lowered due to evaporation of the permeated component. Therefore, when a water separation membrane having a high water permeation rate is used, the temperature of the fluid to be treated on the supply side 62 is significantly lowered from the inlet side A to the outlet side B as shown in FIG. In general, the water permeation rate of the water separation membrane is greatly reduced by the temperature drop of the fluid to be treated.
- the temperature of the fluid to be treated further decreases in the second water separation membrane unit, so that the water separation after the second water separation membrane unit is performed.
- the water permeation rate of the membrane is significantly reduced.
- Patent Document 1 Japanese Patent Laid-Open No. 7-124444.
- Patent Document 1 discloses a pervaporation membrane separator in which at least one gas-liquid two-phase flow generator is provided in the upstream of the pervaporation membrane separator. This pervaporation membrane separator is composed of a plurality of membrane separators connected in series. Inside the pervaporation membrane separator, the first membrane separator to which the raw material is first supplied is provided. A heat exchanger for maintaining the raw material liquid temperature is arranged in the upstream.
- the boiling point of the fluid to be treated decreases in the water separation membrane unit.
- the decrease in the boiling point of the fluid to be treated may be due to a change in ethanol concentration, due to pressure loss, or the like.
- the present inventors have taken that the boiling point of the fluid to be treated decreases due to pressure loss.
- the present invention has been made in view of the above circumstances, and in a plant equipped with a plurality of water separation membrane units, water separation is achieved by setting the target temperature of the fluid to be treated lower as the water separation membrane unit goes downstream.
- An object of the present invention is to provide a dehydrating apparatus and method for preventing damage to a membrane unit.
- the present invention relates to a plant equipped with a plurality of water separation membrane units by using a heat exchanger to raise the temperature of the fluid to be treated to a temperature below the boiling point and close to the boiling point. It is an object of the present invention to provide a dehydration apparatus and method capable of maintaining the water permeation performance of a water separation membrane in a water separation membrane unit in a high state.
- the present invention provides at least two or more water separation membrane units connected in series with respect to the flow direction of the fluid to be treated, and installed in front of each water separation membrane unit.
- a dehydrating apparatus for separating water from a fluid to be treated comprising two or more heat exchangers that raise the temperature of the fluid to be treated to a temperature below the boiling point and close to the boiling point.
- the temperature below the boiling point of the fluid to be treated is less than the boiling point of the fluid to be treated in consideration of the occurrence of a distribution in the temperature and concentration of the fluid to be treated and the measurement error of the temperature of the fluid to be treated.
- the temperature is preferably 5 ° C. lower than the boiling point.
- the temperature lower than the boiling point of the fluid to be treated is in at least two water separation membrane units.
- the temperature is preferably 5 ° C. lower than the boiling point of the fluid to be treated at the outlet of the last water separation membrane unit.
- each water separation membrane unit has the same membrane area.
- each water separation membrane unit has a different membrane area, and the membrane area of each water separation membrane unit is along the flow direction of the fluid to be treated. It is preferable to increase.
- the fluid to be treated is generally an organic aqueous solution.
- Organic components of the organic aqueous solution include alcohols such as ethanol, propanol, isopropanol and glycol, carboxylic acids such as acetic acid, ethers such as dimethyl ether and diethyl ether, aldehydes such as acetaldehyde, ketones such as acetone and methyl ethyl ketone, and esters such as ethyl acetate. It is preferable that the organic component be one that is soluble in water.
- the dehydrating apparatus is provided with a thermometer for monitoring the temperature of the fluid to be treated as a monitoring apparatus, and the thermometer is installed in each water separation membrane unit.
- the dehydrating apparatus is another embodiment, and includes a concentration meter that monitors the concentration of the fluid to be treated as a monitoring device, and the concentration meter is installed in each water separation membrane unit.
- the dehydration method according to the present invention increases the temperature of at least two or more water separation membrane units connected in series with respect to the flow direction of the fluid to be treated and the fluid to be treated installed in front of each water separation membrane unit.
- the dehydration method according to the present invention takes into account that the temperature and concentration of the non-processed fluid are distributed and a measurement error occurs in the temperature of the non-processed fluid.
- the temperature is preferably 5 ° C. lower than the boiling point of the fluid.
- the temperature lower than the boiling point of the fluid to be treated is the last in at least two water separation membrane units.
- the temperature is preferably 5 ° C. lower than the boiling point of the fluid to be treated at the outlet of the water separation membrane unit.
- water separation membrane units each having the same membrane area as each water separation membrane unit it is preferable to use water separation membrane units each having the same membrane area as each water separation membrane unit.
- the dehydration method according to the present invention in another embodiment, has a different membrane area as each water separation membrane unit, and the membrane area of each water separation membrane unit is along the flow direction of the fluid to be treated. It is preferred to use increasing water separation membrane units.
- the fluid to be treated is generally an organic aqueous solution.
- Organic components of the organic aqueous solution include alcohols such as ethanol, propanol, isopropanol and glycol, carboxylic acids such as acetic acid, ethers such as dimethyl ether and diethyl ether, aldehydes such as acetaldehyde, ketones such as acetone and methyl ethyl ketone, and esters such as ethyl acetate. It is preferable that the organic component be one that is soluble in water.
- the dehydration method according to the present invention uses a thermometer that monitors the temperature of the fluid to be treated as a monitoring device, and a water separation membrane in which the thermometer is installed as each water separation membrane unit. Use units.
- the dehydration method according to the present invention uses a concentration meter that monitors the concentration of the fluid to be treated as a monitoring device, and a water separation membrane in which the concentration meter is installed as each water separation membrane unit. Use units.
- a dehydration apparatus and method capable of preventing a cavitation lotion generated in a water separation membrane unit due to a pressure loss of a fluid to be treated by appropriately adjusting a temperature of a heat exchanger.
- the temperature of the fluid to be treated is lower than the boiling point and raised to a temperature close to the boiling point. It is possible to provide a dehydration apparatus and method capable of maintaining the water permeation performance of the water separation membrane in a high state.
- FIG. 3 is a graph showing a change in temperature with respect to the film area in Example 1.
- A It is a conceptual diagram explaining the pervaporation method using a water separation membrane.
- B It is a graph which shows the temperature change of the water separation membrane in a cylindrical water separation membrane.
- FIG. 1 shows an embodiment of a dehydrating apparatus according to the present invention.
- FIG. 1 is a diagram showing an embodiment of a dehydrating apparatus according to the present invention.
- the dehydrating apparatus 100 includes, as main components, a water separation membrane unit (1, 2, 3), a heat exchanger (11, 21, 31), and a thermometer (12, 22, 32, 61, 62), a concentration meter (13, 23, 33), a pump 4, an inlet flow meter 5, a cooler 6, and an outlet flow meter 7.
- the membrane area of the water separation membrane unit 2 is set to be three times the membrane area of the water separation membrane unit 1. Further, the membrane area of the water separation membrane unit 3 is set to be 5 times the membrane area of the water separation membrane unit 1. That is, as shown in FIG. 1, the water separation membrane unit 1 includes one water separation membrane, the water separation membrane unit 2 includes three water separation membranes, and the water separation membrane unit 3 includes five water separation membranes. .
- Water separation membrane units 1 to 3 are units for separating the crude ethanol into absolute ethanol and water, for example, when the fluid to be treated is crude ethanol.
- a silica-based or zeolite-based inorganic water separation membrane having a pore diameter of 10 angstroms or less is suitable.
- an inorganic water separation membrane described in Japanese Patent No. 2808479 can be applied.
- the inorganic water separation membrane of Patent No. 2808479 is an acid-resistant composite water obtained by supporting silica gel obtained through hydrolysis of an alkoxysilane containing an ethoxy group or a methoxy group in the pores of an inorganic porous body. It is a separation membrane.
- the acid-resistant composite water separation membrane can be produced by a production method including the following steps 1 to 11.
- a ceramic base material such as alumina, silica, zirconia, and titania is generally used, which has a cylindrical shape and has a plurality of circular inner tubes in the longitudinal direction. Is preferred.
- an inorganic water separation membrane is formed so as to cover the inner wall of such an inner tube. This means that “silica gel obtained through hydrolysis of an alkoxysilane containing an ethoxy group or a methoxy group is carried in the pores of the inorganic porous body”.
- an organic membrane such as a polyvinyl alcohol membrane, a polyimide membrane, or a polyamide membrane can also be used.
- Step 1 In the preparation conditions of a plurality of types of silica sols produced by changing the mixing ratio of alkoxysilane, which is a raw material of silica sol, water and an acid catalyst, the raw material preparation ratios of silica sol to be supported are for silica sol 1 and silica sol A distinction is made between two types.
- Step 2 The weight ratio of water to alkoxysilane as a raw material for silica sol 1 is 0.5 to 2.0, and the weight ratio of acid catalyst to alkoxysilane is 0.01 to 0.1 as a reaction catalyst.
- Step 3 The weight ratio of water to alkoxysilane as a raw material for silica sol 2 is set to 2.0 to 50, and the weight ratio of acid catalyst to alkoxysilane is set to 0.01 to 0.5 as a reaction catalyst.
- Step 4 The silica sol 1 raw material is kept in a boiling state, and liquids of about 25 minutes, about 20 minutes, and about 15 minutes after the start of boiling are designated as liquids 1-A, 1-B, and 1-C, respectively.
- Step 5 Silica sol 2 is produced by stirring and mixing the raw material for silica gel 2 at room temperature for 30 to 90 minutes.
- Step 6 After the silica sol 1-A liquid is supported on the surface of the porous substrate, the porous substrate is baked in an electric furnace set at about 200 ° C.
- Step 7 After further supporting the silica sol 1-A liquid on the surface of the porous substrate supporting the silica sol 1-A liquid, the operation of the above step 6 is repeated 2 to 3 times.
- Step 8 Next, on the surface of the porous substrate carrying the silica sol 1-A solution, the same treatment as in the above step 6 to step 7 is performed using the silica sol 1-B solution.
- Step 9 Next, the same process as in Steps 6 to 7 is performed on the surface of the porous substrate carrying the silica sol 1-B solution using the silica sol 1-C solution.
- Step 10 Next, the silica sol 2 liquid is supported on the surface of the porous substrate on which the silica sols 1-A, 1-B and 1-C are supported, and the porous body is set to about 200 ° C. Firing in an electric furnace for 5-15 minutes, then firing the porous substrate in an electric furnace set at about 300 ° C. for 5-15 minutes, then setting the porous substrate at about 400 ° C. The porous substrate is fired for 5 to 15 minutes in an electric furnace, and then the porous substrate is fired for 5 to 15 minutes in an electric furnace set at about 500 ° C.
- Step 11 After further supporting the silica sol 2 liquid on the surface of the porous substrate supporting the silica sol 2 liquid, the operation of the above step 10 is repeated 2 to 3 times.
- an inorganic water separation membrane can be produced.
- such a material is used as a water separation membrane incorporated in the water separation membrane units 1 to 3, for example.
- the water separation membrane unit incorporates such a cylindrical water separation membrane in a container that can be decompressed.
- the fluid to be treated is introduced into the water separation membrane unit 1 through the inlet flow meter 5, the thermometer 12 and the heat exchanger 11 by the pump 4.
- the fluid to be treated flows through the inner pipe of the cylindrical water separation membrane, that is, the supply side.
- the temperature of the fluid to be processed is raised in advance by the heat exchanger 11.
- the temperature of the fluid to be treated is set to a temperature lower than the boiling point and close to the boiling point. This is because, when the temperature of the fluid to be treated exceeds the boiling point, cavitation occurs in the water separation membrane unit and the water separation membrane is damaged.
- the other permeation side of the water separation membrane is depressurized with respect to the supply side. Therefore, a chemical potential difference is generated on both surfaces of the water separation membrane (membrane main body), and the target component is separated from the treated fluid from the supply side to the permeation side.
- the target component evaporates, the temperature of the fluid to be processed decreases.
- the fluid to be treated is heated again by the heat exchanger 21 through the concentration meter 13 and the thermometer 22.
- the boiling point of the fluid to be treated is lowered due to the pressure loss in the water separation membrane unit 1. Therefore, the heat exchanger 21 raises the temperature of the fluid to be processed to a temperature lower than the temperature set by the heat exchanger 11.
- the fluid to be treated is introduced into the water separation membrane unit 2 and the target component is similarly separated.
- the fluid to be treated is heated again by the heat exchanger 31 through the concentration meter 23 and the thermometer 32. Since the boiling point of the fluid to be treated is further lowered in the water separation membrane unit 2, the heat exchanger 31 is set to a temperature lower than the temperature set by the heat exchanger 21. Subsequently, the fluid to be treated is introduced into the water separation membrane unit 3, and the target component is similarly separated from the fluid to be treated.
- the membrane area of the water separation membrane unit 2 is set to be three times the membrane area of the water separation membrane unit 1.
- the membrane area of the water separation membrane unit 3 is set to 5 times the membrane area of the water separation membrane unit 1.
- each separation membrane unit has a different membrane area, and the membrane area of each separation membrane unit increases along the flow direction of the fluid to be treated.
- each water separation membrane unit can have the same membrane area depending on conditions. Also in this embodiment, damage to the water separation membrane can be prevented by raising the temperature of the fluid to be treated to a temperature lower than the boiling point of the fluid to be treated and close to the boiling point. Furthermore, also in this embodiment, the permeability of the water separation membrane can be improved in the entire dehydrator.
- the fluid to be treated is an organic aqueous solution, preferably an alcohol such as ethanol, propanol, isopropanol or glycol, a carboxylic acid such as acetic acid, an ether such as dimethyl ether or diethyl ether, or an aldehyde such as acetaldehyde.
- an organic component selected from the group consisting of ketones such as acetone and methyl ethyl ketone, and esters such as ethyl acetate.
- crude ethanol is assumed as the fluid to be dehydrated.
- concentration of this crude ethanol aqueous solution an aqueous solution of about 90 to 95 wt% ethanol is assumed. That is, crude ethanol containing ethanol as an organic component is used as the fluid to be treated.
- the ethanol concentration of the final product fluid, ie, product ethanol (anhydrous ethanol) is 99.5 wt% to 99.8 wt%.
- Crude ethanol is pressurized by the pump 4 and introduced into the water separation membrane unit 1 through the inlet flow meter 5, the thermometer 12 and the heat exchanger 11.
- the temperature of the crude ethanol is raised by the heat exchanger 11 to 90 ° C.
- the temperature of the crude ethanol is set 5 ° C. lower than the boiling temperature of the crude ethanol. This is because when the crude ethanol exceeds its boiling point, cavitation erosion occurs in the water separation membrane unit and the water separation membrane is damaged.
- FIG. 2 the temperature change with respect to the film
- the change line a indicates the boiling point of the crude ethanol
- the change line b indicates the target set temperature
- the change line c indicates the temperature of the crude ethanol (processed fluid).
- the temperature of the crude ethanol (processed fluid) that has passed through the water separation membrane unit 1 drops to about 55 ° C. due to water evaporation.
- Crude ethanol (processed fluid) is heated again by the heat exchanger 21 through the concentration meter 13 and the thermometer 22.
- the boiling point of the crude ethanol is lowered to 92 ° C. due to the pressure loss in the water separation membrane unit 1. Therefore, in order to prevent the occurrence of cavitation lotion in the water separation membrane unit 2, the crude ethanol is set to 87 ° C. lower by 5 ° C. than its boiling temperature.
- the crude ethanol (fluid to be treated) is introduced into the water separation membrane unit 2 to separate the water.
- the temperature of crude ethanol is reduced to about 60 ° C.
- Crude ethanol (processed fluid) is heated again by the heat exchanger 31.
- the boiling point of the crude ethanol (fluid to be treated) is further lowered to 83 ° C. Therefore, the heat exchanger 31 raises the temperature of the crude ethanol to 78 ° C.
- crude ethanol (a fluid to be treated) is introduced into the water separation membrane unit 3 and its temperature is lowered to about 68 degrees.
- the dehydrating apparatus 100 can prevent the occurrence of cavitation erosion in the water separation membrane unit by appropriately adjusting the temperature of the heat exchanger, and damages the water separation membrane. The device can be operated without doing so.
- the heat exchangers 11, 21, and 31 raise the temperature of the crude ethanol to 70 ° C.
- This target set temperature is determined based on the boiling point of the crude ethanol at the outlet of the last unit of the plurality of water separation membrane units connected in series, here, the water separation membrane unit 3. That is, the temperature of the crude ethanol is raised from the boiling point of the crude ethanol at the outlet of the water separation membrane unit 3 to a temperature 5 ° C. lower.
- an aqueous solution of about 90 to 95 wt% of crude ethanol is assumed as a fluid to be dehydrated.
- the ethanol concentration of the final product fluid that is, product ethanol (anhydrous ethanol) is 99.5 wt% to 99.8 wt%.
- Crude ethanol is introduced into the water separation membrane unit 1 by the pump 4 through the inlet flow meter 5, the thermometer 12 and the heat exchanger 11.
- the crude ethanol is heated in advance by the heat exchanger 11 to 70 ° C.
- FIG. 3 the temperature change with respect to the membrane area in 2nd embodiment of the spin-drying
- the change line a shows the boiling point of the crude ethanol
- the change line b shows the target set temperature
- the change line c shows the temperature of the crude ethanol (processed fluid).
- Crude ethanol that has passed through the water separation membrane unit 1 has its temperature lowered to about 37 ° C. due to water evaporation.
- the crude ethanol is heated again by the heat exchanger 21 via the thermometer 12.
- the boiling point of the crude ethanol is lowered to 92 ° C. due to the pressure loss in the water separation membrane unit 1.
- the heat exchanger 21 sets crude ethanol to 70 ° C.
- the crude ethanol is introduced into the water separation membrane unit 2.
- the temperature of crude ethanol decreases to about 40 ° C. due to separation of water.
- the crude ethanol is heated again by the heat exchanger 31.
- the boiling point of the crude ethanol is further lowered to 83 ° C.
- the heat exchanger 31 heats the crude ethanol to 70 ° C.
- the crude ethanol is introduced into the water separation membrane unit 3 and the temperature is lowered to about 50 ° C.
- the second embodiment provides a dehydrating apparatus that can be operated more safely than the apparatus shown in the first embodiment.
- the water separation membrane unit 1 has one water separation membrane
- the water separation membrane unit 2 has three water separation membranes.
- the water separation membrane unit 3 having 5 water separation membranes was used.
- the number of water separation membranes included in each water separation membrane unit can be appropriately set according to the conditions of the first embodiment or the second embodiment. That is, the same number of water separation membranes may be included in each water separation membrane unit.
- each water separation membrane in Example 1 is shown.
- the water separation membrane units 1 to 3 are connected to each other, and a dehydration device (case a) that does not have a heat exchanger between the water separation membrane units, and a dehydration device in which the water separation membrane units 1 to 3 have the same membrane area
- Case b A dehydration apparatus (case c) in which the membrane area of the water separation membrane unit 2 is 3 times that of the water separation membrane unit 1 and the membrane area of the water separation membrane unit 3 is 5 times that of the water separation membrane unit 1 Ethanol 95 wt% was dehydrated.
- the dehydrator 100 shown in FIG. 1 is used.
- the total film area in each case is the same (100 m 2 ).
- FIG. 5 shows the temperature change with respect to the film area in Example 1.
- the temperature of the crude ethanol is lowered to 30 ° C. at a membrane area of 100 square meters.
- the membrane area is maintained at about 70 to 80 ° C. even at 100 square meters, and the configuration provided with a heat exchanger between each water separation membrane unit has better permeation performance of the water separation membrane. It could be kept higher.
- the minimum temperature of the case b is 40 ° C.
- the minimum temperature of the case c is 50 ° C.
- the case c maintains the temperature at a higher level. Recognize.
- the reached concentrations were 97.6%, 99.2%, and 99.5%, respectively.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
2 水分離膜ユニット
3 水分離膜ユニット
4 ポンプ
5 入口流量計
6 冷却器
7 出口流量計
11 熱交換機
12 温度計
13 濃度計
21 熱交換機
22 温度計
23 濃度計
31 熱交換機
32 温度計
33 濃度計
61 温度計
62 温度計
100 脱水装置
工程2: シリカゾル1用原料のアルコキシシランに対する水の重量比を0.5~2.0とし、かつ、反応触媒として、アルコキシシランに対する酸触媒の重量比を0.01~0.1とする。
工程3: シリカゾル2用原料のアルコキシシランに対する水の重量比を2.0~50とし、かつ、反応触媒として、アルコキシシランに対する酸触媒の重量比を0.01~0.5とする。
工程4: 上記シリカゾル1用原料を沸騰状態に保持し、沸騰開始後約25分、約20分及び約15分の液をそれぞれ、1-A、1-B及び1-C液とする。
工程5: 上記シリカゲル2用原料を常温で30分~90分間攪拌・混合してシリカゾル2を製造する。
工程6: 多孔質基材の表面上に上記シリカゾル1-A液を担持した後、該多孔質基材を約200℃に設定した電気炉内で5~15分間焼成し、次に該多孔質基材を約300℃に設定した電気炉内で5~15分間焼成し、次に該多孔質基材を約400℃に設定した電気炉内で5~15分間焼成し、次に該多孔質基材を約500℃に設定した電気炉内で5~15分間焼成する。
工程7: 該シリカゾル1-A液を担持した多孔質基材の表面に更にシリカゾル1-A液を担持した後、上記工程6の操作を2~3回繰り返す。
工程8: 次に該シリカゾル1-A液を担持した多孔質基材の表面上に更にシリカゾル1-B液を使用して上記工程6~工程7と同様の処理を行う。
工程9: 次に該シリカゾル1-B液を担持した多孔質基材の表面上にシリカゾル1-C液を使用して上記工程6~工程7と同様の処理を行う。
工程10: 次に上記シリカゾル1-A、1-B及び1-C液を担持してなる多孔質基材の表面上に上記シリカゾル2液を担持し、該多孔体を約200℃に設定した電気炉内で5~15分間焼成し、次に該多孔質基材を約300℃に設定した電気炉内で5分~15分間焼成し、次に該多孔質基材を約400℃に設定した電気炉内で5~15分間焼成し、次に該多孔質基材を約500℃に設定した電気炉内で5~15分間焼成する。
工程11: 該シリカゾル2液を担持した多孔質基材の表面に更にシリカゾル2液を担持した後、上記工程10の操作を2~3回繰り返す。
エタノール(被処理流体)の温度をそれぞれ示す。
以上のように、第一の実施形態に係る方法において、脱水装置100は、熱交換機の適切な温度調節によって、水分離膜ユニットにおいてキャビテーションエロージョンの発生を防止することができ、水分離膜を損傷することなく装置を運転することができる。
エタノール(被処理流体)の温度をそれぞれ示す。
Claims (18)
- 被処理流体から水を分離する脱水装置であって、
上記被処理流体の流れ方向に対し直列して接続された、少なくとも二以上の水分離膜ユニットと、
上記各水分離膜ユニットの前に設置され、上記被処理流体を沸点未満であり、かつ沸点に近い温度まで、上記被処理流体を昇温させる、二以上の熱交換器と
を備える、脱水装置。 - 上記被処理流体の沸点未満の温度が、上記被処理流体の沸点に対して5℃低い温度である請求項1に記載の脱水装置。
- 上記被処理流体の沸点より低い温度が、上記少なくとも二つ以上の水分離膜ユニットにおける最後の水分離膜ユニット出口の被処理流体の沸点に対して5℃低い温度である請求項1に記載の脱水装置。
- 上記各水分離膜ユニットは、それぞれ同一の膜面積を有している請求項1~3のいずれかに記載の脱水装置。
- 上記各水分離膜ユニットは、それぞれ異なった膜面積を有し、上記被処理流体の流れ方向に沿って各水分離膜ユニットの膜面積が増加する請求項1~3のいずれかに記載の脱水装置。
- 上記被処理流体が、有機水溶液である請求項1~5のいずれかに記載の脱水装置。
- 上記有機水溶液の有機成分が、エタノール、プロパノール、イソプロパノール、グリコール等のアルコール、酢酸等のカルボン酸、ジメチルエーテル、ジエチルエーテル等のエーテル、アセトアルデヒド等のアルデヒド、アセトン、メチルエチルケトン等のケトン、酢酸エチルエステル等のエステルからなる群から選択される一の有機成分であって、水に可溶なものである請求項6に記載の脱水装置。
- 上記被処理流体の温度を監視する温度計を監視装置として備え、各水分離膜ユニットに該温度計を設置し、水分離膜前流の熱交換器において被処理流体の昇温度合いをコントローラを利用してコントロールする、または監視員が設定する請求項1~7のいずれかに記載の脱水装置。
- 上記被処理流体の濃度を監視する濃度計を監視装置として備え、各水分離膜ユニットに該濃度計を設置し、水分離膜前流の熱交換器において被処理流体の昇温度合いをコントローラを利用してコントロールする、または監視員が設定する請求項1~8のいずれかに記載の脱水装置。
- 被処理流体の流れ方向に対し直列して接続された、少なくとも二以上の水分離膜ユニットと、上記各水分離膜ユニットの前に設置された上記被処理流体を昇温させる、二以上の熱交換機とを備える脱水装置を用いた被処理流体の脱水方法であって、
各熱交換機によって、上記被処理流体を沸点未満であり、かつ沸点に近い温度まで上記被処理流体を昇温させるステップと、
各水分離膜ユニットによって、上記被処理流体から水を分離するステップと
を含む、脱水方法。 - 上記被処理流体の沸点未満の温度が、上記被処理流体の沸点に対して5℃低い温度である請求項10に記載の脱水方法。
- 上記被処理流体の沸点より低い温度が、上記少なくとも二つ以上の水分離膜ユニットにおける最後の水分離膜ユニット出口の被処理流体の沸点に対して5℃低い温度である請求項10に記載の脱水方法。
- 上記各水分離膜ユニットとして、それぞれ同一の膜面積を有した水分離膜ユニットを用いる請求項10~12のいずれかに記載の脱水方法。
- 上記各水分離膜ユニットとして、それぞれ異なった膜面積を有し、上記被処理流体の流れ方向に沿って各水分離膜ユニットの膜面積が増加する水分離膜ユニットを用いる請求項10~12のいずれかに記載の脱水方法。
- 上記被処理流体が、有機水溶液である請求項10~14のいずれかに記載の脱水方法。
- 上記有機水溶液の有機成分が、エタノール、プロパノール、イソプロパノール、グリコール等のアルコール、酢酸等のカルボン酸、ジメチルエーテル、ジエチルエーテル等のエーテル、アセトアルデヒド等のアルデヒド、アセトン、メチルエチルケトン等のケトン、酢酸エチルエステル等のエステルからなる群から選択される一の有機成分であって、水に可溶なものである請求項15に記載の脱水方法。
- 上記被処理流体の温度を監視する温度計を監視装置として用い、各水分離膜ユニットとして該温度計が設置されている水分離膜ユニットを用い、水分離膜前流の熱交換器において被処理流体の昇温度合いをコントローラを利用してコントロールする、または監視員が設定する請求項10~16のいずれかに記載の脱水方法。
- 上記被処理流体の濃度を監視する濃度計を監視装置として用い、各水分離膜ユニットとして該濃度計が設置されている水分離膜ユニットを用い、水分離膜前流の熱交換器において被処理流体の昇温度合いをコントローラを利用してコントロールする、または監視員が設定する請求項10~17のいずれかに記載の脱水方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/665,854 US8721890B2 (en) | 2007-12-28 | 2008-12-24 | Dehydrating system and dehydrating method |
BRPI0814521-0A2A BRPI0814521A2 (pt) | 2007-12-28 | 2008-12-24 | Sistema de desidratação e método de desidratação |
EP08868848.6A EP2226114A4 (en) | 2007-12-28 | 2008-12-24 | DEHYDRATION SYSTEM AND METHOD |
CA2693391A CA2693391C (en) | 2007-12-28 | 2008-12-24 | Dehydrating system and dehydrating method for removing water from a fluid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007339131A JP5308022B2 (ja) | 2007-12-28 | 2007-12-28 | 脱水装置及び方法 |
JP2007-339131 | 2007-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009084522A1 true WO2009084522A1 (ja) | 2009-07-09 |
Family
ID=40824236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/073373 WO2009084522A1 (ja) | 2007-12-28 | 2008-12-24 | 脱水装置及び方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8721890B2 (ja) |
EP (1) | EP2226114A4 (ja) |
JP (1) | JP5308022B2 (ja) |
BR (1) | BRPI0814521A2 (ja) |
CA (1) | CA2693391C (ja) |
WO (1) | WO2009084522A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2012204526B2 (en) | 2011-01-03 | 2016-05-19 | California Institute Of Technology | High density epidural stimulation for facilitation of locomotion, posture, voluntary movement, and recovery of autonomic, sexual, vasomotor, and cognitive function after neurological injury |
MX341649B (es) | 2011-11-11 | 2016-08-29 | Neuroenabling Tech Inc | Dispositivo de neuromodulacion no invasivo para permitir la recuperacion de la funcion motora, sensorial, autonoma, sexual, vasomotor y cognitiva. |
EP3049148B1 (en) | 2013-09-27 | 2020-05-20 | The Regents Of The University Of California | Engaging the cervical spinal cord circuitry to re-enable volitional control of hand function in tetraplegic subjects |
JP5661957B1 (ja) * | 2014-01-22 | 2015-01-28 | オリジン電気株式会社 | カルボン酸ガス濃度の推定方法及び半田付け装置 |
US9981221B2 (en) * | 2015-03-30 | 2018-05-29 | Ube Industries, Ltd. | Gas separation system and enriched gas production method |
JP2019532812A (ja) * | 2016-10-28 | 2019-11-14 | セラヘリックス,インコーポレーテッド | フィルター流れ管理のためのシステムおよび方法 |
EP3695880B8 (en) | 2017-06-30 | 2021-08-18 | ONWARD Medical B.V. | System for neuromodulation |
WO2019110400A1 (en) | 2017-12-05 | 2019-06-13 | Ecole Polytechnique Federale De Lausanne (Epfl) | A system for planning and/or providing neuromodulation |
DE18205821T1 (de) | 2018-11-13 | 2020-12-24 | Gtx Medical B.V. | Steuerungssystem zur bewegungsrekonstruktion und/oder wiederherstellung für einen patienten |
EP3695878B1 (en) | 2019-02-12 | 2023-04-19 | ONWARD Medical N.V. | A system for neuromodulation |
EP3827871A1 (en) | 2019-11-27 | 2021-06-02 | ONWARD Medical B.V. | Neuromodulation system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5895523A (ja) * | 1981-11-30 | 1983-06-07 | Kuraray Co Ltd | 混合液体分離方法 |
JPS58128107A (ja) * | 1982-01-22 | 1983-07-30 | Showa Denko Kk | 液体混合物の分離又は濃縮方法 |
JPH0422423A (ja) * | 1990-05-16 | 1992-01-27 | Exxon Res & Eng Co | 各連続するリテンテート段階において次第に高い真空、高い温度またはその両方で運転される多段パーベーパレーション法 |
JPH07124444A (ja) | 1993-11-02 | 1995-05-16 | Hitachi Zosen Corp | Pv法膜分離における原料供給方法およびpv法膜分離装置 |
JP2808479B2 (ja) | 1990-07-02 | 1998-10-08 | 正司 浅枝 | 耐酸性複合分離膜の製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4264338A (en) * | 1977-11-02 | 1981-04-28 | Monsanto Company | Method for separating gases |
US4894163A (en) * | 1987-06-12 | 1990-01-16 | Kuraray Co., Ltd. | Separation of liquid mixtures |
DE3723193A1 (de) * | 1987-07-14 | 1989-01-26 | Metallgesellschaft Ag | Verfahren zur herstellung von alkoholaten |
US4962270A (en) * | 1989-02-27 | 1990-10-09 | Exxon Research And Engineering Company | Multi-stage pervaporation process run at progressively higher vacuum, higher temperature or both at each successive retentate stage |
US5266206A (en) * | 1989-05-31 | 1993-11-30 | Membrane Technology And Research, Inc. | Process for recovering organic components from liquid streams |
US5192445A (en) * | 1990-10-11 | 1993-03-09 | Texaco, Inc. | Membrane suitable for the dehydration of organic oxygenates |
KR950013568A (ko) | 1993-11-29 | 1995-06-15 | 미우라 아끼라 | 침투 기화법에 의한 혼합액체의 분리방법 및 침투 기화막 분리장치 |
US5464540A (en) * | 1993-12-09 | 1995-11-07 | Bend Research, Inc. | Pervaporation by countercurrent condensable sweep |
US5681433A (en) * | 1994-09-14 | 1997-10-28 | Bend Research, Inc. | Membrane dehydration of vaporous feeds by countercurrent condensable sweep |
ES2158419T3 (es) | 1996-10-14 | 2001-09-01 | Bayer Ag | Procedimiento de obtencion de esteres o de alcoholatos con separacion de agua. |
US6899743B2 (en) * | 2002-06-12 | 2005-05-31 | Membrane Technology And Research, Inc. | Separation of organic mixtures using gas separation or pervaporation and dephlegmation |
US20040000513A1 (en) * | 2002-06-27 | 2004-01-01 | Colling Craig W. | Apparatus using solid perm-selective membranes in multiple groups for simultaneous recovery of specified products from a fluid mixture |
US7838267B1 (en) * | 2006-10-27 | 2010-11-23 | Cms Technologies Holdings, Inc. | Increasing rate of enzyme catalyzed equilibrium reactions |
US8128826B2 (en) * | 2007-02-28 | 2012-03-06 | Parker Filtration Bv | Ethanol processing with vapour separation membranes |
US8496831B2 (en) * | 2007-08-30 | 2013-07-30 | Membrane Technology And Research, Inc. | Dehydration processes using membranes with hydrophobic coating |
-
2007
- 2007-12-28 JP JP2007339131A patent/JP5308022B2/ja not_active Expired - Fee Related
-
2008
- 2008-12-24 CA CA2693391A patent/CA2693391C/en not_active Expired - Fee Related
- 2008-12-24 US US12/665,854 patent/US8721890B2/en not_active Expired - Fee Related
- 2008-12-24 BR BRPI0814521-0A2A patent/BRPI0814521A2/pt not_active IP Right Cessation
- 2008-12-24 WO PCT/JP2008/073373 patent/WO2009084522A1/ja active Application Filing
- 2008-12-24 EP EP08868848.6A patent/EP2226114A4/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5895523A (ja) * | 1981-11-30 | 1983-06-07 | Kuraray Co Ltd | 混合液体分離方法 |
JPS58128107A (ja) * | 1982-01-22 | 1983-07-30 | Showa Denko Kk | 液体混合物の分離又は濃縮方法 |
JPH0422423A (ja) * | 1990-05-16 | 1992-01-27 | Exxon Res & Eng Co | 各連続するリテンテート段階において次第に高い真空、高い温度またはその両方で運転される多段パーベーパレーション法 |
JP2808479B2 (ja) | 1990-07-02 | 1998-10-08 | 正司 浅枝 | 耐酸性複合分離膜の製造方法 |
JPH07124444A (ja) | 1993-11-02 | 1995-05-16 | Hitachi Zosen Corp | Pv法膜分離における原料供給方法およびpv法膜分離装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2226114A4 |
Also Published As
Publication number | Publication date |
---|---|
JP2009160481A (ja) | 2009-07-23 |
EP2226114A4 (en) | 2013-12-04 |
US20100320148A1 (en) | 2010-12-23 |
JP5308022B2 (ja) | 2013-10-09 |
BRPI0814521A2 (pt) | 2015-02-03 |
CA2693391A1 (en) | 2009-07-09 |
US8721890B2 (en) | 2014-05-13 |
CA2693391C (en) | 2015-02-03 |
EP2226114A1 (en) | 2010-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5308022B2 (ja) | 脱水装置及び方法 | |
US8142662B2 (en) | Dehydrating system and method for control of spare membrane unit | |
US20110011725A1 (en) | Dehydrating system and dehydrating method | |
CA2675397C (en) | Dehydrating apparatus, dehydration system, and dehydration method | |
CA2699729C (en) | Dehydrator comprising multiple membrane separation units having different degrees of vacuum | |
US9149769B2 (en) | Dehydration system and dehydration method | |
JP5150785B2 (ja) | 純粋液体製造装置 | |
CA2662314C (en) | Membrane container | |
JP2016041419A (ja) | 分離方法及び分離装置 | |
JP5342134B2 (ja) | 脱水方法 | |
WO2013021966A1 (ja) | 脱水システム及び脱水方法 | |
WO2009113178A1 (ja) | 脱水システム及び脱水方法 | |
JP5591041B2 (ja) | 脱水装置に用いられる膜容器 | |
JP2016203078A (ja) | 脱水膜分離システムおよび脱水膜分離方法 | |
JP2008086972A (ja) | 脱水システム及び脱水方法 | |
EP2263783B1 (en) | Membrane system for the dehydration of solvents | |
JPH07124444A (ja) | Pv法膜分離における原料供給方法およびpv法膜分離装置 | |
JP6271405B2 (ja) | ゼオライト膜を用いた脱水方法 | |
JP2007203210A (ja) | 膜モジュール及び膜分離方法 | |
JP4950263B2 (ja) | 脱水装置の運転方法 | |
CA2665294C (en) | Dehydrating system | |
WO2021059137A1 (en) | Start-up procedure for rapid attainment of optimal steady-state performance in membrane separation | |
BRPI0901444A2 (pt) | sistema de desidratação |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08868848 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12665854 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008868848 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2693391 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: PI0814521 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100113 |