[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009081712A1 - 無線通信装置および無線通信方法 - Google Patents

無線通信装置および無線通信方法 Download PDF

Info

Publication number
WO2009081712A1
WO2009081712A1 PCT/JP2008/072131 JP2008072131W WO2009081712A1 WO 2009081712 A1 WO2009081712 A1 WO 2009081712A1 JP 2008072131 W JP2008072131 W JP 2008072131W WO 2009081712 A1 WO2009081712 A1 WO 2009081712A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel coefficient
reception
transmission
coefficient
calculated
Prior art date
Application number
PCT/JP2008/072131
Other languages
English (en)
French (fr)
Inventor
Chiharu Yamazaki
Shigeru Kimura
Fangwei Tong
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to US12/810,500 priority Critical patent/US20110009064A1/en
Priority to CN2008801229082A priority patent/CN101911530A/zh
Priority to JP2009547014A priority patent/JP4918597B2/ja
Publication of WO2009081712A1 publication Critical patent/WO2009081712A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0222Estimation of channel variability, e.g. coherence bandwidth, coherence time, fading frequency

Definitions

  • the present invention relates to a wireless communication apparatus having a plurality of antennas, and a wireless communication method for controlling wireless communication between a wireless communication apparatus having a plurality of antennas and a counter wireless communication apparatus.
  • the adaptive control of the array weight at the time of transmission which has been implemented in a wireless communication apparatus that includes a plurality of antennas and uses different frequency bands for transmission and reception, such as linear extrapolation based on the fluctuation of the channel coefficient at the time of reception
  • a method for example, Patent Document 1 that calculates an array weight by estimating a channel coefficient at the time of transmission by extrapolation processing.
  • adaptive control of the array weight in the transmission frequency band which is implemented in a wireless communication apparatus that includes a plurality of antennas and uses different frequency bands for transmission and reception, includes the frequency direction of the channel coefficient in the reception frequency band.
  • the fluctuation condition of the channel coefficient at the time of reception and the channel coefficient in the reception frequency band May cause a large error between the estimated transmission channel coefficient and the actual transmission channel coefficient.
  • the reception channel coefficient (absolute value) changes from the point p21 to the point p22 in FIG.
  • the actual transmission channel coefficient (absolute value) becomes point p24 in FIG. 10 when it is estimated (calculated) to be point p23 in FIG. 10, it corresponds to the difference between point p23 and point p24.
  • a large estimation error as shown in the figure occurs.
  • a first object is to provide a technique (a radio communication apparatus and a radio communication method) that improves the calculation accuracy of a transmission channel coefficient at the time of transmission by performing correction.
  • the present invention relates to a transmission frequency based on a correction coefficient that takes into account fluctuations in the reception channel coefficient in the reception frequency band when calculating the transmission channel coefficient in the transmission frequency band from the reception channel coefficient in the reception frequency band.
  • a second object of the present invention is to provide a technique (a radio communication apparatus and a radio communication method) that improves the calculation accuracy of the transmission channel coefficient in the transmission frequency band by correcting the transmission channel coefficient in the band.
  • a wireless communication device is a wireless communication device including a plurality of antennas, and calculates reception channel coefficients at the time of reception in each of the plurality of antennas. Based on the variation of the reception channel coefficient calculation unit and the reception channel coefficient at the time of reception calculated by the reception channel coefficient calculation unit, the transmission channel coefficient at the time of transmission in each of the plurality of antennas is extrapolated A transmission channel coefficient calculation unit to be calculated, and a correction unit that corrects the transmission channel coefficient at the time of transmission calculated by the transmission channel coefficient calculation unit based on the correction coefficient based on the fluctuation of the reception channel coefficient at the time of reception And.
  • the correction coefficient is transmitted at the time of transmission calculated by the transmission channel coefficient calculation unit as the variation in the absolute value of the reception channel coefficient at the time of reception increases. It is a correction coefficient that greatly reduces the absolute value of the propagation path coefficient.
  • the correction coefficient is a transmission calculated by the transmission propagation path coefficient calculation unit in the same direction as a phase variation direction of the reception propagation path coefficient at the time of reception. It is a correction coefficient that corrects the phase of the transmission channel coefficient at the time.
  • the correction unit further calculates the transmission channel coefficient calculation unit based on the reception channel coefficient at reception calculated by the reception channel coefficient calculation unit. The transmission channel coefficient at the time of transmission is corrected.
  • the transmission coefficient coefficient calculation unit increases as the correction coefficient has a larger absolute value of the reception channel coefficient at the time of reception calculated by the reception channel coefficient calculation unit. Is a correction coefficient that greatly reduces the absolute value of the transmission propagation path coefficient calculated at the time of transmission.
  • a further embodiment of the wireless communication apparatus includes: a reception channel coefficient storage unit that stores a plurality of reception channel coefficients at the time of reception calculated by the reception channel coefficient calculation unit; and the reception channel coefficient storage
  • a reception channel coefficient distribution calculation unit that calculates a distribution of reception channel coefficients based on a plurality of reception channel coefficients at the time of reception stored in a reception unit, and a reception channel calculated by the reception channel coefficient distribution calculation unit
  • a correction coefficient calculation unit for calculating a correction coefficient for correcting the transmission channel coefficient at the time of transmission calculated by the transmission channel coefficient calculation unit based on the distribution of the coefficient, the correction unit,
  • the transmission channel coefficient at the time of transmission calculated by the transmission channel coefficient calculation unit is corrected based on the correction coefficient calculated by the correction coefficient calculation unit.
  • the correction coefficient calculation unit calculates a transmission time calculated by the transmission channel coefficient calculation unit as the absolute value variation of the reception channel coefficient during the reception increases. A correction coefficient that greatly reduces the absolute value of the transmission channel coefficient is calculated.
  • the correction coefficient calculation unit calculates the transmission channel coefficient calculation unit in the same direction as the direction of the phase variation of the reception channel coefficient at the time of reception. A correction coefficient that corrects the phase of the transmission channel coefficient at the time of transmission is calculated.
  • the correction coefficient calculation unit increases the transmission channel coefficient as the absolute value of the reception channel coefficient at the time of reception calculated by the reception channel coefficient calculation unit increases. A correction coefficient that greatly reduces the absolute value of the transmission channel coefficient at the time of transmission calculated by the calculation unit is calculated.
  • a wireless communication device is a wireless communication device including a plurality of antennas, and a reception channel coefficient in a reception frequency band in each of the plurality of antennas. Based on the received propagation channel coefficient calculation unit to be calculated and the variation of the reception propagation channel coefficient in the reception frequency band calculated by the reception propagation channel coefficient calculation unit, the transmission propagation in the transmission frequency band in each of the plurality of antennas A transmission channel coefficient calculation unit that calculates a path coefficient by extrapolation, and a transmission frequency band calculated by the transmission channel coefficient calculation unit based on a correction coefficient based on a variation of the reception channel coefficient in the reception frequency band. And a correction unit that corrects the transmission channel coefficient.
  • the transmission channel coefficient calculation unit calculates the correction coefficient as the variation in the frequency direction of the absolute value of the reception channel coefficient in the reception frequency band increases. It is a correction coefficient that greatly reduces the absolute value of the transmission channel coefficient in the transmitted frequency band.
  • the correction coefficient is calculated in the same direction as the direction of fluctuation in the frequency direction of the phase of the reception channel coefficient in the reception frequency band. It is a correction coefficient that corrects the phase of the transmission channel coefficient in the transmission frequency band calculated by the unit.
  • the correction unit further includes the transmission propagation channel coefficient calculation unit based on the reception propagation channel coefficient in the reception frequency band calculated by the reception propagation channel coefficient calculation unit.
  • the transmission channel coefficient in the transmission frequency band calculated by is corrected.
  • the correction coefficient is larger as the absolute value of the reception channel coefficient in the reception frequency band calculated by the reception channel coefficient calculation unit is larger. It is a correction coefficient that greatly reduces the absolute value of the transmission channel coefficient in the transmission frequency band calculated by the calculation unit.
  • a further embodiment of the wireless communication apparatus includes: a reception channel coefficient storage unit that stores a plurality of reception channel coefficients in the reception frequency band calculated by the reception channel coefficient calculation unit; and the reception channel A reception channel coefficient distribution calculating unit that calculates a distribution in the frequency direction of the reception channel coefficient based on a plurality of reception channel coefficients in the reception frequency band stored in the coefficient storage unit; and the reception channel coefficient distribution calculation Correction coefficient calculation unit for calculating a correction coefficient for correcting the transmission channel coefficient in the transmission frequency band calculated by the transmission channel coefficient calculation unit based on the distribution in the frequency direction of the reception channel coefficient calculated by the unit The correction unit corrects the transmission channel coefficient in the transmission frequency band calculated by the transmission channel coefficient calculation unit based on the correction coefficient calculated by the correction coefficient calculation unit.
  • the correction coefficient calculation unit increases the transmission channel coefficient calculation unit as the variation in the frequency direction of the absolute value of the reception channel coefficient in the reception frequency band increases.
  • the correction coefficient is calculated such that the absolute value of the transmission channel coefficient in the transmission frequency band calculated by is greatly reduced.
  • the correction coefficient calculation unit is configured to transmit the transmission channel coefficient in the same direction as the direction of fluctuation in the frequency direction of the phase of the reception channel coefficient in the reception frequency band.
  • a correction coefficient that corrects the phase of the transmission channel coefficient in the transmission frequency band calculated by the calculation unit is calculated.
  • the correction coefficient calculation unit increases the transmission propagation as the absolute value of the reception channel coefficient in the reception frequency band calculated by the reception channel coefficient calculation unit increases. A correction coefficient that greatly reduces the absolute value of the transmission channel coefficient in the transmission frequency band calculated by the path coefficient calculation unit is calculated.
  • a further embodiment of the wireless communication apparatus according to the present invention is characterized in that it is used for a system in which a transmission frequency band and a reception frequency band are different.
  • a wireless communication method is a wireless communication method for controlling wireless communication between a wireless communication device having a plurality of antennas and an opposing wireless communication device, Based on the reception channel coefficient calculation step for calculating the reception channel coefficient at the time of reception in each of the plurality of antennas, and the fluctuation of the reception channel coefficient at the time of reception calculated in the reception channel coefficient calculation step, Based on a transmission channel coefficient calculation step for extrapolating a transmission channel coefficient at the time of transmission in each of the plurality of antennas, and a correction coefficient based on fluctuations in the reception channel coefficient at the time of reception, the transmission channel A correction step of correcting the transmission channel coefficient at the time of transmission calculated by the coefficient calculation unit.
  • a wireless communication method is a wireless communication method for controlling wireless communication between a wireless communication device having a plurality of antennas and an opposing wireless communication device, In each of a plurality of antennas, a reception channel coefficient calculation step for calculating a reception channel coefficient in the reception frequency band, and a variation in the reception channel coefficient in the reception frequency band calculated in the reception channel coefficient calculation step.
  • a transmission channel coefficient calculating step for extrapolating a transmission channel coefficient in the transmission frequency band in each of the plurality of antennas, and a correction coefficient based on fluctuations in the reception channel coefficient in the reception frequency band
  • the transmission unit at the time of transmission calculated by the transmission channel coefficient calculation unit based on the correction coefficient based on the variation of the reception channel coefficient at the time of reception stored in the correction coefficient storage unit Correct the coefficient. For this reason, it becomes possible to reduce the calculation error (estimation error) of the transmission channel coefficient. Therefore, it is possible to provide a technique (wireless communication apparatus and wireless communication method) that improves the calculation accuracy of the transmission channel coefficient at the time of transmission.
  • the correction unit uses the transmission frequency band calculated by the transmission channel coefficient calculation unit based on the correction coefficient based on the variation of the reception channel coefficient in the reception frequency band stored in the correction coefficient storage unit. The transmission channel coefficient is corrected. For this reason, it becomes possible to reduce the calculation error (estimation error) of the transmission channel coefficient. Therefore, it is possible to provide a technique (wireless communication apparatus and wireless communication method) that improves the calculation accuracy of the transmission channel coefficient in the transmission frequency band.
  • the absolute value error of the transmission channel coefficient and the absolute value fluctuation amount of the reception channel coefficient at the time of reception are described in order to explain the correction coefficient used to correct the transmission channel coefficient at the time of transmission. It is a figure which shows the relationship.
  • the absolute value error of the transmission channel coefficient and the absolute value fluctuation amount of the reception channel coefficient at the time of reception for explaining the correction coefficient used to correct the transmission channel coefficient at the time of transmission. It is a figure which shows the relationship. It is a figure which shows the relationship between an offset component and the absolute value of the reception propagation path coefficient at the time of reception for demonstrating the correction coefficient used for correction
  • (A), (b) is the phase error of the transmission channel coefficient and the reception at the time of reception for explaining the correction coefficient used for correcting the transmission channel coefficient at the time of transmission in the wireless communication apparatus of the third embodiment. It is a figure which shows the relationship with the amount of phase fluctuations of a propagation path coefficient. It is a block diagram which shows schematic structure of the radio
  • the absolute value error of the transmission channel coefficient and the absolute value of the reception channel coefficient in the reception frequency band for explaining the correction coefficient used for correcting the transmission channel coefficient in the transmission frequency band in the wireless communication apparatus of the fifth embodiment It is a figure which shows the relationship with a value fluctuation amount.
  • FIG. It is a block diagram which shows schematic structure of the radio
  • (A) and (b) are respectively the phase error of the transmission channel coefficient and the reception frequency for explaining the correction coefficient used for correcting the transmission channel coefficient in the transmission frequency band in the radio communication apparatus of the seventh embodiment. It is a figure which shows the relationship with the phase variation
  • FIG. 1 is a block diagram showing a schematic configuration of a wireless communication apparatus according to a first embodiment to which a wireless communication method of the present invention is applied.
  • the wireless communication device 100 of the present embodiment is a wireless communication device (hereinafter also referred to as a base station) provided with a plurality of antennas (not shown).
  • the wireless communication device 100 includes receiving units 110-1, 110-2,..., 110-n that receive wireless signals transmitted from a not-shown counter wireless communication device (hereinafter also referred to as a terminal) via a plurality of antennas.
  • Received channel coefficient fluctuation calculating section 130-1 that calculates fluctuations in reception channel coefficients at the time of reception calculated by 120-n (including fluctuations in absolute values of received channel coefficients and fluctuations in phase of received channel coefficients) , 130-2, ..., 130- , And 130-n calculated by the received propagation channel coefficient fluctuation calculation units 130-1, 130-2,..., 130-n Transmission channel coefficient calculation units 140-1, 140-2 for calculating (estimating) transmission channel coefficients (transmission channel coefficients at the time of transmission in each of the plurality of antennas) by extrapolation (eg, linear extrapolation), .., 140-n and a correction coefficient for storing a correction coefficient for correcting the transmission channel coefficient at the time of transmission calculated by the transmission channel coefficient calculation units 140-1, 140-2,.
  • extrapolation eg, linear extrapolation
  • the correction coefficient storage unit 150-1 receives a reception coefficient as a correction coefficient for correcting the transmission channel coefficient at the time of transmission calculated by the transmission channel coefficient calculation units 140-1, 140-2,. Stores correction coefficients based on fluctuations in reception channel coefficients at the time of reception, calculated by the channel coefficient fluctuation calculation units 130-1, 130-2,..., 130-n.
  • the variation in the absolute value of the reception channel coefficient at the time of reception (the variation of the absolute value including a plus sign and a minus sign) is used as the variation in the reception channel coefficient at the time of reception.
  • the correction coefficient “the larger the change in the absolute value of the reception channel coefficient at the time of reception, the more the transmission channel coefficient calculation units 140-1, 140-2,.
  • the transmission propagation channel coefficient correction units 170-11, 170-12,..., 170-1n change the reception propagation channel coefficient at the time of reception stored in the correction coefficient storage unit 150-1 (in this case, at the time of reception) Based on the correction coefficient based on the variation of the absolute value of the reception channel coefficient), the transmission channel coefficient at the time of transmission calculated by the transmission channel coefficient calculation units 140-1, 140-2,. To do.
  • the reception channel coefficient at the time of reception between the wireless communication device (base station) 100 and the opposite wireless communication device (terminal) is affected by fading, It fluctuates greatly with progress.
  • the variation of the reception channel coefficient at the time of reception is sufficiently small, the transmission channel coefficient at the time of transmission estimated using linear extrapolation from the variation of the reception channel coefficient at the time of reception is It agrees well with the channel coefficient.
  • the influence of fading becomes significant, the transmission channel coefficient at the time of transmission calculated (estimated) by linear extrapolation greatly deviates from the transmission channel coefficient at the time of original transmission, resulting in a large calculation error (estimation error). Occurs.
  • the horizontal axis indicates the amount of fluctuation of the absolute value component of the reception channel coefficient at the time of reception
  • the vertical axis indicates the absolute value component of the transmission channel coefficient at the time of transmission calculated (estimated) by the linear extrapolation described above.
  • the absolute value component of the transmission channel coefficient at the time of original transmission and the elliptical portion indicates the distribution of the absolute value error of the transmission channel coefficient.
  • the inclination (differential coefficient) of the approximate straight line A is stored in advance in the correction coefficient storage unit 150-1 as a correction coefficient, and the reception channel coefficient fluctuation calculation units 130-1, 130-2,.
  • the calculated transmission channel coefficient correction unit 170-11, 170-12,..., 170-1n for correction of the transmission channel coefficient together with the variation in the absolute value of the received channel coefficient at the time of reception, It is possible to calculate (estimate) the transmission channel coefficient with high accuracy.
  • the following formula (1) is used for this correction.
  • the absolute value of the transmission channel coefficient at the time of transmission calculated (estimated) by extrapolation (for example, linear extrapolation) based on the variation of the reception channel coefficient at the time of reception is received.
  • the correction coefficient shown in FIG. 2 based on the fluctuation of the reception channel coefficient at the time, it is possible to reduce the calculation error (estimation error) of the transmission channel coefficient.
  • the transmission propagation path coefficient at the time of transmission can be reduced since the calculation error (estimation error) of the transmission propagation path coefficient can be kept small even in an environment where the propagation path coefficient fluctuation due to high-speed movement or the like of the opposite wireless communication apparatus (terminal) is large.
  • the coefficient calculation accuracy (estimation accuracy) can be improved. Therefore, it is possible to obtain a good communication quality by suppressing the deterioration of the communication quality due to the propagation path coefficient fluctuation due to the high-speed movement of the opposite radio communication apparatus (terminal).
  • FIG. 3 is a block diagram showing a schematic configuration of a wireless communication apparatus according to the second embodiment to which the wireless communication method of the present invention is applied.
  • the wireless communication apparatus 100 according to the present embodiment replaces the correction coefficient storage unit 150-1 with a correction coefficient storage unit 150-2 and also transmits a transmission channel coefficient correction unit 170- with respect to the wireless communication apparatus 100 according to the first embodiment. 11, 170-12,..., 170-1 n are changed to transmission channel coefficient correction units 170-21, 170-22,.
  • the configuration is the same as that of the wireless communication apparatus 100 according to the embodiment.
  • the correction coefficient storage unit 150-2 receives a reception coefficient as a correction coefficient for correcting the transmission channel coefficient at the time of transmission calculated by the transmission channel coefficient calculation units 140-1, 140-2, ..., 140-n. Changes in reception channel coefficients at the time of reception calculated by propagation path coefficient fluctuation calculation units 130-1, 130-2,..., 130-n, and reception channel coefficient calculation units 120-1, 120-2,. , 120-n, the correction coefficient based on the reception propagation path coefficient at the time of reception is stored.
  • the variation in the absolute value of the reception channel coefficient at the time of reception (the variation of the absolute value including a plus sign and a minus sign) is used as the variation in the reception channel coefficient at the time of reception.
  • the correction coefficient “the larger the change in the absolute value of the reception channel coefficient at the time of reception, the more the transmission channel coefficient calculation units 140-1, 140-2,. "Correction coefficient that greatly reduces the absolute value of the calculated transmission channel coefficient at the time of transmission” and "Reception at the time of reception calculated by the reception channel coefficient calculation units 120-1, 120-2, ..., 120-n" As the absolute value of the propagation path coefficient is larger, the absolute value of the transmission propagation path coefficient at the time of transmission calculated by the transmission propagation path coefficient calculation units 140-1, 140-2,.
  • the lower error distribution shows the absolute value error distribution of the transmission channel coefficient at the time of transmission when the absolute value of the reception channel coefficient at the time of reception is small
  • the upper error distribution is The distribution of the absolute value error of the transmission channel coefficient at the time of transmission when the absolute value of the reception channel coefficient at the time of reception is large is shown.
  • the transmission channel coefficient correction units 170-21, 170-22,..., 170-2n are stored in the correction coefficient storage unit 150, and fluctuations in reception channel coefficients at the time of reception and reception channel coefficients at the time of reception. Based on the correction coefficient based on, the transmission channel coefficient at the time of transmission calculated by the transmission channel coefficient calculation units 140-1, 140-2,..., 140-n is corrected.
  • the reception channel coefficient at the time of reception between the wireless communication device (base station) 100 and the opposite wireless communication device (terminal) is affected by fading, It fluctuates greatly with progress.
  • the variation of the reception channel coefficient at the time of reception is sufficiently small, the transmission channel coefficient at the time of transmission estimated using linear extrapolation from the variation of the reception channel coefficient at the time of reception is It agrees well with the channel coefficient.
  • the influence of fading becomes significant, the transmission channel coefficient at the time of transmission calculated (estimated) by linear extrapolation greatly deviates from the transmission channel coefficient at the time of original transmission, resulting in a large calculation error (estimation error). Occurs.
  • the horizontal axis indicates the amount of fluctuation of the absolute value component of the reception channel coefficient at the time of reception
  • the vertical axis indicates the absolute value component of the transmission channel coefficient at the time of transmission calculated (estimated) by the linear extrapolation described above.
  • the absolute value component of the transmission channel coefficient at the time of original transmission, and the two elliptical parts are transmissions when the absolute value of the reception channel coefficient at the time of reception is small and large, respectively.
  • the distribution of the absolute value error of the channel coefficient is shown.
  • the inclinations (differential coefficients) of the approximate straight line B, the approximate straight line C, and the approximate straight line D are stored in advance in the correction coefficient storage unit 150-2 as correction coefficients, and the reception channel coefficient fluctuation calculation units 130-1 and 130-2 are stored. ,..., 130-n calculated absolute values of reception channel coefficients at the time of reception, and reception channel coefficients calculation units 120-1, 120-2,.
  • the transmission propagation path coefficient correction unit 170-21, 170-22,... ) Becomes possible.
  • the following formula (2) is used for this correction.
  • the absolute value of the transmission channel coefficient at the time of transmission calculated (estimated) by extrapolation (for example, linear extrapolation) based on the fluctuation of the reception channel coefficient at the time of reception is received.
  • the calculation error (estimation error) of the transmission channel coefficient is reduced by performing correction using the correction coefficient shown in FIGS. 4 and 5 based on the fluctuation of the reception channel coefficient at the time and the reception channel coefficient at the time of reception. Is possible. For this reason, the transmission propagation path coefficient at the time of transmission can be reduced since the calculation error (estimation error) of the transmission propagation path coefficient can be kept small even in an environment where the propagation path coefficient fluctuation due to high-speed movement or the like of the opposite wireless communication apparatus (terminal) is large.
  • the coefficient calculation accuracy (estimation accuracy) can be improved. Therefore, it is possible to obtain a good communication quality by suppressing the deterioration of the communication quality due to the propagation path coefficient fluctuation due to the high-speed movement of the opposite radio communication apparatus (terminal).
  • FIG. 6 is a block diagram showing a schematic configuration of a wireless communication apparatus according to a third embodiment to which the wireless communication method of the present invention is applied.
  • the wireless communication apparatus 100 according to the present embodiment replaces the correction coefficient storage unit 150-1 with a correction coefficient storage unit 150-3 and also transmits a transmission channel coefficient correction unit 170- with respect to the wireless communication apparatus 100 according to the first embodiment. 11, 170-12,..., 170-1n are replaced with transmission channel coefficient correction units 170-31, 170-32,..., 170-3n.
  • the configuration is the same as that of the wireless communication apparatus 100 according to the embodiment.
  • the correction coefficient storage unit 150-3 receives a reception coefficient as a correction coefficient for correcting the transmission channel coefficient at the time of transmission calculated by the transmission channel coefficient calculation units 140-1, 140-2,. Stores correction coefficients based on fluctuations in reception channel coefficients at the time of reception, calculated by the channel coefficient fluctuation calculation units 130-1, 130-2,..., 130-n.
  • the phase variation of the reception channel coefficient at the time of reception (phase variation including a plus sign and a minus sign) is used as the variation of the reception channel coefficient at the time of reception.
  • the correction coefficient is “transmission channel coefficient calculation units 140-1, 140-2,..., 140 ⁇ in the same direction as the phase variation of the reception channel coefficient at the time of reception.
  • the transmission channel coefficient correction units 170-31, 170-32,..., 170-3n change the reception channel coefficient during reception stored in the correction coefficient storage unit 150-3 (in this case, the reception frequency band).
  • the transmission channel coefficient at the time of transmission calculated by the transmission channel coefficient calculation units 140-1, 140-2,..., 140-n based on the correction coefficient based on the phase variation of the reception channel coefficient at to correct.
  • the reception channel coefficient at the time of reception between the wireless communication device (base station) 100 and the opposite wireless communication device (terminal) is affected by fading, It fluctuates greatly with progress.
  • the variation of the reception channel coefficient at the time of reception is sufficiently small, the transmission channel coefficient at the time of transmission estimated using linear extrapolation from the variation of the reception channel coefficient at the time of reception is It agrees well with the channel coefficient.
  • the influence of fading becomes significant, the transmission channel coefficient at the time of transmission calculated (estimated) by linear extrapolation greatly deviates from the transmission channel coefficient at the time of original transmission, resulting in a large calculation error (estimation error). Occurs.
  • 7A and 7B the horizontal axis represents the amount of fluctuation of the phase component of the reception channel coefficient at the time of reception, and the vertical axis represents the transmission propagation at the time of transmission calculated (estimated) by the above-described linear extrapolation.
  • An error between the phase component of the path coefficient and the phase component of the transmission channel coefficient at the time of original transmission is shown.
  • FIG. 7A shows a case where the phase fluctuation of the reception channel coefficient is increased, and an elliptical portion shows a distribution of phase errors of the transmission channel coefficient.
  • FIG. 7B shows a case where the phase variation of the reception channel coefficient is reduced, and the two elliptical portions are the transmission channel coefficients when the phase error is positive and when the phase error is negative, respectively.
  • the distribution of phase error is shown.
  • an approximate straight line E shown in FIG. 7A is obtained.
  • the inclination (differential coefficient) of the approximate straight line E is stored in advance in the correction coefficient storage unit 150-3 as a correction coefficient, and the reception channel coefficient fluctuation calculation units 130-1, 130-2,.
  • the transmission channel coefficient correction units 170-31, 170-32,..., 170-3n together with the calculated variation of the reception channel coefficient at the time of reception are used for correction of the transmission channel coefficient, thereby transmitting at the time of transmission. It is possible to calculate (estimate) the channel coefficient with high accuracy.
  • the following formula (3) is used for this correction.
  • the approximate straight line F and An approximate straight line G is obtained.
  • the inclination (differential coefficient) of the approximate straight line F and the approximate straight line G is stored in advance in the correction coefficient storage unit 150-3 as a correction coefficient, and the reception propagation channel coefficient fluctuation calculation units 130-1, 130-2,.
  • the transmission channel coefficient correction units 170-31, 170-32,..., 170-3n together with the variation of the phase of the reception channel coefficient at the time of reception calculated by 130-n, It is possible to calculate (estimate) the transmission channel coefficient at the time of transmission with high accuracy.
  • the following equations (4) and (5) are used for this correction.
  • the transmission channel coefficient calculation error (estimation error).
  • the transmission propagation path coefficient at the time of transmission can be reduced since the calculation error (estimation error) of the transmission propagation path coefficient can be kept small even in an environment where the propagation path coefficient fluctuation due to high-speed movement or the like of the opposite wireless communication apparatus (terminal) is large.
  • the coefficient calculation accuracy (estimation accuracy) can be improved. Therefore, it is possible to obtain a good communication quality by suppressing the deterioration of the communication quality due to the propagation path coefficient fluctuation due to the high-speed movement of the opposite radio communication apparatus (terminal).
  • FIG. 8 is a block diagram showing a schematic configuration of a wireless communication apparatus according to a fourth embodiment to which the wireless communication method of the present invention is applied.
  • the wireless communication apparatus 100 according to the present embodiment adds a reception channel coefficient storage unit 160, a reception channel coefficient distribution calculation unit 161, and a correction coefficient calculation unit 162 to the wireless communication apparatus 100 according to the first embodiment.
  • the correction coefficient storage unit 150-1 is replaced with the correction coefficient storage unit 150-4, and the transmission channel coefficient correction units 170-11, 170-12,..., 170-1n are replaced with the transmission channel coefficient correction unit 170-41. , 170-42,..., 170-4n, and the correction coefficient storage unit 150-4 is modified to store the correction coefficient calculated by the correction coefficient calculation unit 162.
  • the portion is configured in the same manner as the wireless communication device 100 of the first embodiment.
  • the correction coefficient is stored in advance in the correction coefficient storage unit in that the wireless communication apparatus itself calculates the correction coefficient at the timing of performing correction based on the distribution of the reception channel coefficient calculated from the reception channel coefficient. This is different from the first to third embodiments described above.
  • the reception channel coefficient storage unit 160 is configured to receive reception channel coefficients (a plurality of reception propagation channels at the time of reception) calculated by the reception channel coefficient calculation units 120-1, 120-2,. Coefficient).
  • the reception channel coefficient distribution calculation unit 161 calculates a distribution of reception channel coefficients based on a plurality of reception channel coefficients at the time of reception stored in the reception channel coefficient storage unit 160.
  • the correction coefficient calculation unit 162 determines whether the transmission channel coefficient calculation units 140-1, 140-2,. A correction coefficient for correcting the calculated transmission channel coefficient at the time of transmission is calculated.
  • the correction coefficient calculation unit 162 indicates that the transmission channel coefficient calculation units 140-1 and 140 are larger as the variation in the absolute value of the reception channel coefficient at the time of reception (the variation in the absolute value including a plus sign and a minus sign) is larger.
  • the transmission channel coefficient correction units 170-41, 170-42,..., 170-4n use the correction coefficients calculated based on the distribution of the reception channel coefficients stored in the correction coefficient storage unit 150-4. Based on this, the transmission channel coefficient at the time of transmission calculated by the transmission channel coefficient calculation units 140-1, 140-2,..., 140-n is corrected.
  • the correction coefficient calculation unit for the transmission channel coefficient at the time of transmission calculated (estimated) by extrapolation (for example, linear extrapolation) based on the variation of the reception channel coefficient at the time of reception.
  • extrapolation for example, linear extrapolation
  • the correction coefficient calculation unit for the transmission channel coefficient at the time of transmission calculated (estimated) by extrapolation (for example, linear extrapolation) based on the variation of the reception channel coefficient at the time of reception.
  • the extrapolation used when the transmission channel coefficient calculation units 140-1, 140-2,..., 140-n calculate the transmission channel coefficients is not limited to “linear extrapolation”. Other extrapolation methods may be used.
  • FIG. 11 is a block diagram showing a schematic configuration of a wireless communication apparatus according to a fifth embodiment to which the wireless communication method of the present invention is applied.
  • the wireless communication device 100 of the present embodiment is a wireless communication device (hereinafter also referred to as a base station) provided with a plurality of antennas (not shown).
  • the wireless communication device 100 includes receiving units 110-1, 110-2,..., 110-n that receive wireless signals transmitted from a not-shown counter wireless communication device (hereinafter also referred to as a terminal) via a plurality of antennas.
  • reception channel coefficients in each of the plurality of antennas in the reception frequency band between the opposite wireless communication apparatuses based on the signals received by the reception units 110-1, 110-2,. , 120-n and reception channel coefficient calculation units 120-1, 120-2 for calculating reception channel coefficient in the reception frequency band), 120-n, and 120-n. ,..., 120-n calculated fluctuations in the reception channel coefficient in the reception frequency band (including fluctuations in the frequency direction of the absolute value of the reception channel coefficient and fluctuations in the frequency direction of the phase of the reception channel coefficient).
  • Received channel coefficient to be calculated Reception propagation in the reception frequency band calculated by the dynamic calculation units 130-1, 130-2,..., 130-n and the received propagation channel coefficient fluctuation calculation units 130-1, 130-2,.
  • Extrapolating for example, linearly) the transmission channel coefficient in the transmission frequency band (transmission channel coefficient in the transmission frequency band in each of the plurality of antennas) with the opposite wireless communication apparatus based on the variation in the path coefficient.
  • the radio communication apparatus (base station) of the present invention and the radio communication method of the present invention can be suitably used for a system in which a transmission frequency band and a reception frequency band are different (for example, an FDD system; a frequency division bidirectional system).
  • the present invention is not limited to the above system and can be used for other systems.
  • the correction coefficient storage unit 150-1 serves as a correction coefficient for correcting the transmission channel coefficient in the transmission frequency band calculated by the transmission channel coefficient calculation units 140-1, 140-2, ..., 140-n.
  • the correction coefficient based on the fluctuation of the reception channel coefficient in the reception frequency band calculated by the reception channel coefficient fluctuation calculation units 130-1, 130-2,..., 130-n is stored.
  • the fluctuation of the reception channel coefficient in the reception frequency band is a fluctuation in the frequency direction of the absolute value of the reception channel coefficient in the reception frequency band (the frequency of the absolute value including a plus sign and a minus sign).
  • the correction coefficient “the larger the fluctuation in the frequency direction of the absolute value of the reception channel coefficient in the reception frequency band, the larger the variation in the frequency direction, the transmission channel coefficient calculation units 140-1, 140-2,. , 140-n, the slope (differential coefficient) of the approximate straight line A shown in FIG. 2 corresponding to the “correction coefficient that greatly reduces the absolute value of the transmission channel coefficient in the transmission frequency band” is used.
  • the transmission channel coefficient correction units 170-11, 170-12,..., 170-1n change the reception channel coefficient in the reception frequency band stored in the correction coefficient storage unit 150-1 (in this case, reception The transmission frequency calculated by the transmission channel coefficient calculation units 140-1, 140-2,..., 140-n based on the correction coefficient based on the variation in the frequency direction of the absolute value of the reception channel coefficient in the frequency band)
  • the transmission channel coefficient in the band is corrected.
  • the reception channel coefficient in the reception frequency band between the wireless communication device (base station) 100 and the opposite wireless communication device (terminal) is affected by frequency selective fading. In response, it fluctuates greatly in the frequency direction.
  • the transmission channel coefficient in the transmission frequency band estimated using linear extrapolation from the variation of the reception channel coefficient in the reception frequency band is It matches well with the propagation path coefficient in the original transmission frequency band.
  • the influence of frequency selective fading becomes significant, the transmission channel coefficient in the transmission frequency band calculated (estimated) by linear extrapolation greatly deviates from the transmission channel coefficient in the original transmission frequency band, A large calculation error (estimation error) occurs.
  • the horizontal axis represents the amount of fluctuation of the absolute value component of the reception channel coefficient in the reception frequency band
  • the vertical axis represents the transmission channel coefficient in the transmission frequency band calculated (estimated) by the linear extrapolation described above.
  • the absolute value component of the transmission channel coefficient in the original transmission frequency band, and the elliptical portion indicates the distribution of the absolute value error of the transmission channel coefficient.
  • the inclination (differential coefficient) of the approximate straight line A is stored in advance in the correction coefficient storage unit 150-1 as a correction coefficient, and the reception channel coefficient fluctuation calculation units 130-1, 130-2,.
  • the transmission channel coefficient correction units 170-11, 170-12,..., 170-1n and the transmission channel coefficient correction unit 170-11n are used for correction of the transmission channel coefficient together with the variation of the absolute value of the reception channel coefficient in the calculated reception frequency band. It is possible to calculate (estimate) the transmission channel coefficient in the frequency band with high accuracy.
  • the following formula (6) is used for this correction.
  • the correction error (estimation error) of the transmission channel coefficient can be reduced by performing correction using the correction coefficient shown in FIG. 2 based on the variation of the reception channel coefficient in the reception frequency band.
  • the calculation accuracy (estimation accuracy) of the transmission channel coefficient in the transmission frequency band is improved because the calculation error (estimation error) of the transmission channel coefficient can be kept small even in an environment where the frequency selective fading is present. Can be made. Therefore, it is possible to obtain good communication quality by suppressing the deterioration of the quality of adaptive control of transmission channel coefficients in the transmission frequency band due to frequency selective fading.
  • FIG. 13 is a block diagram showing a schematic configuration of a wireless communication apparatus according to the sixth embodiment to which the wireless communication method of the present invention is applied.
  • the wireless communication apparatus 100 according to the present embodiment replaces the correction coefficient storage unit 150-1 with the correction coefficient storage unit 150-2 and transmits the transmission channel coefficient correction unit 170- with respect to the wireless communication apparatus 100 according to the fifth embodiment. 11, 170-12,..., 170-1 n are changed to transmission channel coefficient correction units 170-21, 170-22,.
  • the configuration is the same as that of the wireless communication apparatus 100 of the fifth embodiment.
  • the correction coefficient storage unit 150-2 serves as a correction coefficient for correcting the transmission channel coefficient in the transmission frequency band calculated by the transmission channel coefficient calculation units 140-1, 140-2, ..., 140-n.
  • Reception channel coefficient fluctuation calculating sections 130-1, 130-2,..., 130-n, fluctuations of reception channel coefficients in the reception frequency band, and reception channel coefficient calculation sections 120-1, 120- 2,..., 120-n stores a correction coefficient based on the reception channel coefficient in the reception frequency band.
  • the fluctuation of the reception channel coefficient in the reception frequency band is the fluctuation in the frequency direction of the absolute value of the reception channel coefficient in the reception frequency band (the frequency of the absolute value including the plus sign and the minus sign).
  • a correction coefficient that greatly reduces the absolute value of the transmission channel coefficient in the transmission frequency band ”and“ reception channel coefficient calculation units 120-1, 120-2,..., 120-n The larger the absolute value of the reception channel coefficient in the reception frequency band calculated by is, the transmission propagation in the transmission frequency band calculated by the transmission channel coefficient calculation units 140-1, 140-2,.
  • the approximate straight line B and the approximate straight line C shown in FIG. 14 and the inclination (differential coefficient) of the approximate straight line D shown in FIG. 15 corresponding to the “correction coefficient that greatly reduces the absolute value of the road coefficient” are used.
  • the lower error distribution shows the absolute value error distribution of the transmission channel coefficient in the transmission frequency band when the absolute value of the reception channel coefficient in the reception frequency band is small.
  • the error distribution indicates the distribution of absolute value errors of the transmission channel coefficient in the transmission frequency band when the absolute value of the reception channel coefficient in the reception frequency band is large.
  • the transmission channel coefficient correction units 170-21, 170-22,..., 170-2n are stored in the correction coefficient storage unit 150, and fluctuations in the reception channel coefficient in the reception frequency band and in the reception frequency band. Based on the correction coefficient based on the reception channel coefficient, the transmission channel coefficient in the transmission frequency band calculated by the transmission channel coefficient calculation units 140-1, 140-2,..., 140-n is corrected.
  • the reception channel coefficient in the reception frequency band between the wireless communication device (base station) 100 and the opposite wireless communication device (terminal) is affected by frequency selective fading. In response, it fluctuates greatly in the frequency direction.
  • the transmission channel coefficient in the transmission frequency band estimated using linear extrapolation from the variation of the reception channel coefficient in the reception frequency band is It matches well with the propagation path coefficient in the original transmission frequency band.
  • the influence of frequency selective fading becomes significant, the transmission channel coefficient in the transmission frequency band calculated (estimated) by linear extrapolation greatly deviates from the transmission channel coefficient in the original transmission frequency band, A large calculation error (estimation error) occurs.
  • the horizontal axis indicates the amount of fluctuation of the absolute value component of the reception channel coefficient in the reception frequency band
  • the vertical axis indicates the transmission channel coefficient in the transmission frequency band calculated (estimated) by the linear extrapolation described above.
  • the absolute value component of the transmission channel coefficient in the original transmission frequency band, and the two oval parts are respectively the absolute values of the reception channel coefficient in the reception frequency band.
  • the distribution of the absolute value error of the transmission channel coefficient when it is small and large is shown. Assuming that there is a linear relationship between the error and the absolute value fluctuation amount of the reception channel coefficient in the reception frequency band as shown in FIG.
  • the correction error of the transmission channel coefficient is corrected by using the correction coefficient shown in FIG. 14 and FIG. 15 based on the variation of the reception channel coefficient in the reception frequency band and the reception channel coefficient in the reception frequency band. (Estimation error) can be reduced. For this reason, the calculation accuracy (estimation accuracy) of the transmission channel coefficient in the transmission frequency band is improved because the calculation error (estimation error) of the transmission channel coefficient can be kept small even in an environment where the frequency selective fading is present. Can be made. Therefore, it is possible to obtain good communication quality by suppressing the deterioration of the quality of adaptive control of transmission channel coefficients in the transmission frequency band due to frequency selective fading.
  • FIG. 16 is a block diagram showing a schematic configuration of a wireless communication apparatus according to a seventh embodiment to which the wireless communication method of the present invention is applied.
  • the wireless communication apparatus 100 according to the present embodiment replaces the correction coefficient storage unit 150-1 with a correction coefficient storage unit 150-3 and also transmits a transmission channel coefficient correction unit 170- with respect to the wireless communication apparatus 100 according to the first embodiment. 11, 170-12,..., 170-1n are replaced with transmission channel coefficient correction units 170-31, 170-32,..., 170-3n.
  • the configuration is the same as that of the wireless communication apparatus 100 of the fifth embodiment.
  • the correction coefficient storage unit 150-3 is a correction coefficient for correcting the transmission channel coefficient in the transmission frequency band calculated by the transmission channel coefficient calculation units 140-1, 140-2,.
  • the correction coefficient based on the fluctuation of the reception channel coefficient in the reception frequency band calculated by the reception channel coefficient fluctuation calculation units 130-1, 130-2,..., 130-n is stored.
  • the fluctuation of the reception channel coefficient in the reception frequency band is a fluctuation in the frequency direction of the phase of the reception channel coefficient in the reception frequency band (the frequency is corrected to the direction from the reception frequency band to the transmission frequency band. And the direction from the transmission frequency band to the reception frequency band is negative).
  • the slope (differential coefficient) of the approximate straight line G is used.
  • the transmission channel coefficient correction units 170-31, 170-32,..., 170-3n change the reception channel coefficient in the reception frequency band stored in the correction coefficient storage unit 150-3 (in this case, reception The transmission frequency band calculated by the transmission channel coefficient calculation units 140-1, 140-2,..., 140-n based on the correction coefficient based on the frequency direction variation of the phase of the reception channel coefficient in the frequency band The transmission channel coefficient at is corrected.
  • the reception channel coefficient in the reception frequency band between the wireless communication device (base station) 100 and the opposite wireless communication device (terminal) is affected by frequency selective fading. In response, it fluctuates greatly in the frequency direction.
  • the transmission channel coefficient in the transmission frequency band estimated using linear extrapolation from the variation of the reception channel coefficient in the reception frequency band is It matches well with the propagation path coefficient in the original transmission frequency band.
  • the influence of frequency selective fading becomes significant, the transmission channel coefficient in the transmission frequency band calculated (estimated) by linear extrapolation greatly deviates from the transmission channel coefficient in the original transmission frequency band, A large calculation error (estimation error) occurs.
  • FIGS. 17 (a) and 17 (b) The relationship between the calculation error (estimation error) of the transmission channel coefficient and the reception channel coefficient in the reception frequency band will be described based on FIGS. 17 (a) and 17 (b).
  • the horizontal axis indicates the amount of fluctuation of the phase component of the reception channel coefficient in the reception frequency band
  • the vertical axis indicates the transmission frequency band calculated (estimated) by the linear extrapolation described above.
  • 2 shows an error between the phase component of the transmission channel coefficient in FIG. 2 and the phase component of the transmission channel coefficient in the original transmission frequency band.
  • FIG. 17A shows a case where the phase fluctuation of the reception channel coefficient is increased, and an elliptical portion shows a phase error distribution of the transmission channel coefficient.
  • FIG. 17A shows a case where the phase fluctuation of the reception channel coefficient is increased
  • an elliptical portion shows a phase error distribution of the transmission channel coefficient.
  • FIG. 17B shows a case where the phase fluctuation of the reception channel coefficient is reduced, and the two elliptical portions indicate the transmission channel coefficient when the phase error is positive and when the phase error is negative, respectively.
  • the distribution of phase error is shown.
  • an approximate straight line E shown in FIG. can get.
  • the inclination (differential coefficient) of the approximate straight line E is stored in advance in the correction coefficient storage unit 150-3 as a correction coefficient, and the reception channel coefficient fluctuation calculation units 130-1, 130-2,.
  • an approximate straight line shown in FIG. F and approximate straight line G are obtained.
  • the inclination (differential coefficient) of the approximate straight line F and the approximate straight line G is stored in advance in the correction coefficient storage unit 150-3 as a correction coefficient, and the reception propagation channel coefficient fluctuation calculation units 130-1, 130-2,. 130-n is used for correction of the transmission channel coefficient by the transmission channel coefficient correction units 170-31, 170-32,..., 170-3n together with the variation of the phase of the reception channel coefficient in the reception frequency band calculated by 130-n.
  • the following equations (9) and (10) are used for this correction.
  • the seventh embodiment with respect to the phase of the transmission channel coefficient in the transmission frequency band calculated (estimated) by extrapolation (for example, linear extrapolation) based on the variation of the reception channel coefficient in the reception frequency band.
  • the calculation error (estimation error) of the transmission channel coefficient is reduced. It becomes possible to do.
  • the calculation accuracy (estimation accuracy) of the transmission channel coefficient in the transmission frequency band is improved because the calculation error (estimation error) of the transmission channel coefficient can be kept small even in an environment where the frequency selective fading is present. Can be made. Therefore, it is possible to obtain good communication quality by suppressing the deterioration of the quality of adaptive control of transmission channel coefficients in the transmission frequency band due to frequency selective fading.
  • FIG. 18 is a block diagram showing a schematic configuration of a wireless communication apparatus according to an eighth embodiment to which the wireless communication method of the present invention is applied.
  • the wireless communication apparatus 100 of this embodiment adds a reception propagation channel coefficient storage unit 160, a reception propagation channel coefficient distribution calculation unit 161, and a correction coefficient calculation unit 162 to the wireless communication device 100 of the fifth embodiment.
  • the correction coefficient storage unit 150-1 is replaced with the correction coefficient storage unit 150-4, and the transmission channel coefficient correction units 170-11, 170-12,..., 170-1n are replaced with the transmission channel coefficient correction unit 170-41. , 170-42,..., 170-4n, and the correction coefficient storage unit 150-4 is modified to store the correction coefficient calculated by the correction coefficient calculation unit 162.
  • the portion is configured in the same manner as the wireless communication device 100 of the fifth embodiment.
  • This embodiment corrects the correction coefficient storage unit in advance in that the wireless communication device itself calculates a correction coefficient at the timing of correction based on the distribution in the frequency direction of the reception channel coefficient calculated from the reception channel coefficient. This is different from the fifth to seventh embodiments in which the coefficient is stored.
  • the reception channel coefficient storage unit 160 includes reception channel coefficients in the reception frequency band calculated by the reception channel coefficient calculation units 120-1, 120-2,. (Received propagation path coefficient).
  • the reception channel coefficient distribution calculation unit 161 calculates the distribution of the reception channel coefficients in the frequency direction based on a plurality of reception channel coefficients in the reception frequency band stored in the reception channel coefficient storage unit 160.
  • the correction coefficient calculation unit 162 transmits the transmission channel coefficient calculation units 140-1, 140-2,..., 140 based on the distribution in the frequency direction of the reception channel coefficient calculated by the reception channel coefficient distribution calculation unit 161.
  • a correction coefficient for correcting the transmission channel coefficient in the transmission frequency band calculated by ⁇ n is calculated.
  • the correction coefficient calculation unit 162 refers to “the fluctuation in the frequency direction of the absolute value of the reception channel coefficient in the reception frequency band (the fluctuation in the frequency direction of the absolute value including the plus sign and the minus sign. This means that the absolute value fluctuation includes plus and minus signs, and the frequency in this case is positive in the direction from the reception frequency band to the transmission frequency band).
  • a correction coefficient corresponding to at least one of the “correction coefficients to be decreased” is calculated.
  • the transmission channel coefficient correction units 170-41, 170-42,..., 170-4n are calculated based on the distribution in the frequency direction of the reception channel coefficients stored in the correction coefficient storage unit 150-4. Based on the correction coefficient, the transmission channel coefficient in the transmission frequency band calculated by the transmission channel coefficient calculation units 140-1, 140-2,..., 140-n is corrected.
  • the transmission channel coefficient in the transmission frequency band calculated (estimated) by extrapolation for example, linear extrapolation
  • the correction coefficient calculation unit 162 By correcting using the correction coefficient based on the distribution in the frequency direction of the reception channel coefficient calculated by the correction coefficient calculation unit 162, it is possible to reduce the calculation error (estimation error) of the transmission channel coefficient. For this reason, the calculation accuracy (estimation accuracy) of the transmission channel coefficient in the transmission frequency band is improved because the calculation error (estimation error) of the transmission channel coefficient can be kept small even in an environment where the frequency selective fading is present. Can be made. Therefore, it is possible to obtain good communication quality by suppressing the deterioration of the quality of adaptive control of transmission channel coefficients in the transmission frequency band due to frequency selective fading.
  • the extrapolation used when the transmission channel coefficient calculation units 140-1, 140-2,..., 140-n calculate the transmission channel coefficients is not limited to “linear extrapolation”. Other extrapolation methods may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本発明の無線通信装置100は、受信伝搬路係数算出部120-1,・・が算出した受信伝搬路係数の変動を算出する受信伝搬路係数変動算出部130-1,・・と、受信伝搬路係数の変動に基づいて送信時の送信伝搬路係数を外挿により算出する送信伝搬路係数算出部140-1,・・と、前記送信時の送信伝搬路係数を補正するための、前記受信時の受信伝搬路係数の変動に基づく補正係数を記憶する補正係数記憶部150-1と、補正係数記憶部150-1に記憶された補正係数に基づいて、送信伝搬路係数算出部140-1,・・が算出した送信時の送信伝搬路係数を補正する補正部170-11,・・と、を備える。

Description

無線通信装置および無線通信方法 関連出願へのクロスリファレンス
 本願は、日本国特許出願第2007-334692号(2007年12月26日出願)および日本国特許出願第2007-334696号(2007年12月26日出願)の優先権の利益を主張し、これらの全内容を参照により本願明細書に取り込むものとする。
 本発明は、複数のアンテナを備えた無線通信装置、および、複数のアンテナを備えた無線通信装置と対向無線通信装置との間の無線通信を制御する無線通信方法に関するものである。
 従来、複数のアンテナを備え、送受信で異なる周波数帯を用いる無線通信装置において実施されている、送信時のアレーウェイトの適応制御としては、受信時の伝搬路係数の変動に基づいて線形外挿等の外挿処理により送信時の伝搬路係数を推定してアレーウェイトを算出する方式(例えば特許文献1)がある。また、従来、複数のアンテナを備え、送受信で異なる周波数帯を用いる無線通信装置において実施されている、送信周波数帯でのアレーウェイトの適応制御としては、受信周波数帯での伝搬路係数の周波数方向の変動に基づいて線形外挿等の外挿処理により送信周波数帯での伝搬路係数を推定してアレーウェイトを算出する方式(例えば特許文献1)がある。具体的には、受信伝搬路係数(絶対値)が図9の点p11から点p12に変化した場合、この受信伝搬路係数の変化に基づいて送信伝搬路係数(絶対値)が図9の点p13になると推定(算出)する。
特許第3644594号公報
 しかし、上記従来技術において、外挿処理によって送信時の伝搬路係数や送信周波数帯での伝搬路係数が推定される場合、受信時の伝搬路係数や受信周波数帯での伝搬路係数の変動状況によって、推定された送信伝搬路係数と実際の送信伝搬路係数との間で大きな誤差が生じることがある。例えば、図10に示すように、受信伝搬路係数(絶対値)が図10の点p21から点p22に変化した場合、この受信伝搬路係数の変化に基づいて送信伝搬路係数(絶対値)が図10の点p23になると推定(算出)したときに、実際の送信時伝搬路係数(絶対値)が図10の点p24となった場合には、点p23と点p24との差分に応じた図示のような大きな推定誤差が生じてしまう。
 本発明は、受信時の受信伝搬路係数から送信時の送信伝搬路係数を算出する際に、受信時の受信伝搬路係数の変動を考慮した補正係数に基づいて送信時の送信伝搬路係数を補正することにより、送信時の送信伝搬路係数の算出精度を向上させる技術(無線通信装置および無線通信方法)を提供することを第1の目的とする。
 本発明は、受信周波数帯での受信伝搬路係数から送信周波数帯での送信伝搬路係数を算出する際に、受信周波数帯での受信伝搬路係数の変動を考慮した補正係数に基づいて送信周波数帯での送信伝搬路係数を補正することにより、送信周波数帯での送信伝搬路係数の算出精度を向上させる技術(無線通信装置および無線通信方法)を提供することを第2の目的とする。
 上記第1の目的を達成するため、本発明に係る無線通信装置は、複数のアンテナを備えた無線通信装置であって、前記複数のアンテナの各々における、受信時の受信伝搬路係数を算出する受信伝搬路係数算出部と、該受信伝搬路係数算出部が算出した受信時の受信伝搬路係数の変動に基づいて、前記複数のアンテナの各々における、送信時の送信伝搬路係数を外挿により算出する送信伝搬路係数算出部と、前記受信時の受信伝搬路係数の変動に基づく補正係数に基づいて、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数を補正する補正部と、を備えることを特徴とする。
 前記本発明に係る無線通信装置の一実施態様は、前記補正係数は、前記受信時の受信伝搬路係数の絶対値の変動が大きいほど、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数の絶対値を大きく減少させるような補正係数であることを特徴とする。
 前記本発明に係る無線通信装置の別の実施態様は、前記補正係数は、前記受信時の受信伝搬路係数の位相の変動の方向と同一方向に、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数の位相を補正するような補正係数であることを特徴とする。
 前記本発明に係る無線通信装置のさらなる実施態様は、前記補正部はさらに、前記受信伝搬路係数算出部が算出した受信時の受信伝搬路係数に基づいて、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数を補正することを特徴とする。
 前記本発明に係る無線通信装置のさらなる実施態様は、前記補正係数は、前記受信伝搬路係数算出部が算出した受信時の受信伝搬路係数の絶対値が大きいほど、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数の絶対値を大きく減少させるような補正係数であることを特徴とする。
 前記本発明に係る無線通信装置のさらなる実施態様は、前記受信伝搬路係数算出部が算出した前記受信時の受信伝搬路係数を複数記憶する受信伝搬路係数記憶部と、該受信伝搬路係数記憶部に記憶された前記受信時の複数の受信伝搬路係数に基づいて受信伝搬路係数の分布を算出する受信伝搬路係数分布算出部と、該受信伝搬路係数分布算出部が算出した受信伝搬路係数の分布に基づいて、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数を補正するための補正係数を算出する補正係数算出部と、をさらに備え、前記補正部は、前記補正係数算出部が算出した補正係数に基づいて、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数を補正することを特徴とする。
 前記本発明に係る無線通信装置のさらなる実施態様は、前記補正係数算出部は、前記受信時の受信伝搬路係数の絶対値の変動が大きいほど、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数の絶対値を大きく減少させるような補正係数を算出することを特徴とする。
 前記本発明に係る無線通信装置のさらなる実施態様は、前記補正係数算出部は、前記受信時の受信伝搬路係数の位相の変動の方向と同一方向に、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数の位相を補正するような補正係数を算出することを特徴とする。
 前記本発明に係る無線通信装置のさらなる実施態様は、前記補正係数算出部は、前記受信伝搬路係数算出部が算出した受信時の受信伝搬路係数の絶対値が大きいほど、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数の絶対値を大きく減少させるような補正係数を算出することを特徴とする。
 上記第2の目的を達成するため、本発明に係る無線通信装置は、複数のアンテナを備えた無線通信装置であって、前記複数のアンテナの各々における、受信周波数帯での受信伝搬路係数を算出する受信伝搬路係数算出部と、該受信伝搬路係数算出部が算出した受信周波数帯での受信伝搬路係数の変動に基づいて、前記複数のアンテナの各々における、送信周波数帯での送信伝搬路係数を外挿により算出する送信伝搬路係数算出部と、前記受信周波数帯での受信伝搬路係数の変動に基づく補正係数に基づいて、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数を補正する補正部と、を備えることを特徴とする。
 前記本発明に係る無線通信装置の一実施態様は、前記補正係数は、前記受信周波数帯での受信伝搬路係数の絶対値の周波数方向の変動が大きいほど、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数の絶対値を大きく減少させるような補正係数であることを特徴とする。
 前記本発明に係る無線通信装置の別の実施態様は、前記補正係数は、前記受信周波数帯での受信伝搬路係数の位相の周波数方向の変動の方向と同一方向に、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数の位相を補正するような補正係数であることを特徴とする。
 前記本発明に係る無線通信装置のさらなる実施態様は、前記補正部はさらに、前記受信伝搬路係数算出部が算出した受信周波数帯での受信伝搬路係数に基づいて、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数を補正することを特徴とする。
 前記本発明に係る無線通信装置のさらなる実施態様は、前記補正係数は、前記受信伝搬路係数算出部が算出した受信周波数帯での受信伝搬路係数の絶対値が大きいほど、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数の絶対値を大きく減少させるような補正係数であることを特徴とする。
 前記本発明に係る無線通信装置のさらなる実施態様は、前記受信伝搬路係数算出部が算出した前記受信周波数帯での受信伝搬路係数を複数記憶する受信伝搬路係数記憶部と、該受信伝搬路係数記憶部に記憶された前記受信周波数帯での複数の受信伝搬路係数に基づいて受信伝搬路係数の周波数方向の分布を算出する受信伝搬路係数分布算出部と、該受信伝搬路係数分布算出部が算出した受信伝搬路係数の周波数方向の分布に基づいて、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数を補正するための補正係数を算出する補正係数算出部と、をさらに備え、前記補正部は、前記補正係数算出部が算出した補正係数に基づいて、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数を補正することを特徴とする。
 前記本発明に係る無線通信装置のさらなる実施態様は、前記補正係数算出部は、前記受信周波数帯での受信伝搬路係数の絶対値の周波数方向の変動が大きいほど、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数の絶対値を大きく減少させるような補正係数を算出することを特徴とする。
 前記本発明に係る無線通信装置のさらなる実施態様は、前記補正係数算出部は、前記受信周波数帯での受信伝搬路係数の位相の周波数方向の変動の方向と同一方向に、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数の位相を補正するような補正係数を算出することを特徴とする。
 前記本発明に係る無線通信装置のさらなる実施態様は、前記補正係数算出部は、前記受信伝搬路係数算出部が算出した受信周波数帯での受信伝搬路係数の絶対値が大きいほど、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数の絶対値を大きく減少させるような補正係数を算出することを特徴とする。
 前記本発明に係る無線通信装置のさらなる実施態様は、送信周波数帯と受信周波数帯とが異なるシステムに用いることを特徴とする。
 上記第1の目的を達成するため、本発明に係る無線通信方法は、複数のアンテナを備えた無線通信装置と対向無線通信装置との間の無線通信を制御する無線通信方法であって、前記複数のアンテナの各々における、受信時の受信伝搬路係数を算出する受信伝搬路係数算出ステップと、該受信伝搬路係数算出ステップにおいて算出された受信時の受信伝搬路係数の変動に基づいて、前記複数のアンテナの各々における、送信時の送信伝搬路係数を外挿により算出する送信伝搬路係数算出ステップと、前記受信時の受信伝搬路係数の変動に基づく補正係数に基づいて、前記送信伝搬路係数算出部において算出された送信時の送信伝搬路係数を補正する補正ステップと、を含むことを特徴とする。
 上記第2の目的を達成するため、本発明に係る無線通信方法は、複数のアンテナを備えた無線通信装置と対向無線通信装置との間の無線通信を制御する無線通信方法であって、前記複数のアンテナの各々における、受信周波数帯での受信伝搬路係数を算出する受信伝搬路係数算出ステップと、該受信伝搬路係数算出ステップにおいて算出された受信周波数帯での受信伝搬路係数の変動に基づいて、前記複数のアンテナの各々における、送信周波数帯での送信伝搬路係数を外挿により算出する送信伝搬路係数算出ステップと、前記受信周波数帯での受信伝搬路係数の変動に基づく補正係数に基づいて、前記送信伝搬路係数算出ステップにおいて算出された送信周波数帯での送信伝搬路係数を補正する補正ステップと、を含むことを特徴とする。
 本発明によれば、補正部が、補正係数記憶部に記憶された受信時の受信伝搬路係数の変動に基づく補正係数に基づいて、送信伝搬路係数算出部が算出した送信時の送信伝搬路係数を補正する。このため、前記送信伝搬路係数の算出誤差(推定誤差)を低減することが可能になる。したがって、送信時の送信伝搬路係数の算出精度を向上させる技術(無線通信装置および無線通信方法)を提供することができる。
 本発明によれば、補正部が、補正係数記憶部に記憶された受信周波数帯での受信伝搬路係数の変動に基づく補正係数に基づいて、送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数を補正する。このため、前記送信伝搬路係数の算出誤差(推定誤差)を低減することが可能になる。したがって、送信周波数帯での送信伝搬路係数の算出精度を向上させる技術(無線通信装置および無線通信方法)を提供することができる。
本発明の無線通信方法を適用する第1実施形態の無線通信装置の概略構成を示すブロック図である。 第1実施形態の無線通信装置において送信時の送信伝搬路係数の補正に用いる補正係数を説明するための、送信伝搬路係数の絶対値誤差と受信時の受信伝搬路係数の絶対値変動量との関係を示す図である。 本発明の無線通信方法を適用する第2実施形態の無線通信装置の概略構成を示すブロック図である。 第2実施形態の無線通信装置において送信時の送信伝搬路係数の補正に用いる補正係数を説明するための、送信伝搬路係数の絶対値誤差と受信時の受信伝搬路係数の絶対値変動量との関係を示す図である。 第2実施形態の無線通信装置において送信時の送信伝搬路係数の補正に用いる補正係数を説明するための、オフセット成分と受信時の受信伝搬路係数の絶対値との関係を示す図である。 本発明の無線通信方法を適用する第3実施形態の無線通信装置の概略構成を示すブロック図である。 (a),(b)はそれぞれ、第3実施形態の無線通信装置において送信時の送信伝搬路係数の補正に用いる補正係数を説明するための、送信伝搬路係数の位相誤差と受信時の受信伝搬路係数の位相変動量との関係を示す図である。 本発明の無線通信方法を適用する第4実施形態の無線通信装置の概略構成を示すブロック図である。 外挿処理によって送信伝搬路係数を推定する従来技術を説明するための図である。 外挿処理によって送信伝搬路係数を推定する従来技術の大きな推定誤差を説明するための図である。 本発明の無線通信方法を適用する第5実施形態の無線通信装置の概略構成を示すブロック図である。 第5実施形態の無線通信装置において送信周波数帯での送信伝搬路係数の補正に用いる補正係数を説明するための、送信伝搬路係数の絶対値誤差と受信周波数帯での受信伝搬路係数の絶対値変動量との関係を示す図である。 本発明の無線通信方法を適用する第6実施形態の無線通信装置の概略構成を示すブロック図である。 第6実施形態の無線通信装置において送信周波数帯での送信伝搬路係数の補正に用いる補正係数を説明するための、送信伝搬路係数の絶対値誤差と受信周波数帯での受信伝搬路係数の絶対値変動量との関係を示す図である。 第6実施形態の無線通信装置において送信周波数帯での送信伝搬路係数の補正に用いる補正係数を説明するための、オフセット成分と受信周波数帯での受信伝搬路係数の絶対値との関係を示す図である。 本発明の無線通信方法を適用する第7実施形態の無線通信装置の概略構成を示すブロック図である。 (a),(b)はそれぞれ、第7実施形態の無線通信装置において送信周波数帯での送信伝搬路係数の補正に用いる補正係数を説明するための、送信伝搬路係数の位相誤差と受信周波数帯での受信伝搬路係数の位相変動量との関係を示す図である。 本発明の無線通信方法を適用する第8実施形態の無線通信装置の概略構成を示すブロック図である。
以下、本発明を実施するための最良の形態を図面に基づき詳細に説明する。
[第1実施形態]
 図1は本発明の無線通信方法を適用する第1実施形態の無線通信装置の概略構成を示すブロック図である。本実施形態の無線通信装置100は、複数のアンテナ(図示せず)を備えた無線通信装置(以下、基地局ともいう)である。無線通信装置100は、図示しない対向無線通信装置(以下、端末ともいう)から送信された無線信号を複数のアンテナ経由で受信する受信部110-1,110-2,・・,110-nと、受信部110-1,110-2,・・,110-nで受信された信号に基づいて対向無線通信装置との間の、受信時の受信伝搬路係数(前記複数のアンテナの各々における、受信時の受信伝搬路係数)を算出する受信伝搬路係数算出部120-1,120-2,・・,120-nと、受信伝搬路係数算出部120-1,120-2,・・,120-nが算出した受信時の受信伝搬路係数の変動(受信伝搬路係数の絶対値の変動および受信伝搬路係数の位相の変動を含む)を算出する受信伝搬路係数変動算出部130-1,130-2,・・,130-nと、受信伝搬路係数変動算出部130-1,130-2,・・,130-nが算出した受信時の受信伝搬路係数の変動に基づいて対向無線通信装置との間の、送信時の送信伝搬路係数(前記複数のアンテナの各々における、送信時の送信伝搬路係数)を外挿(例えば線形外挿)により算出(推定)する送信伝搬路係数算出部140-1,140-2,・・,140-nと、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数を補正するための補正係数を記憶する補正係数記憶部150-1と、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数を補正する送信伝搬路係数補正部170-11,170-12,・・,170-1nと、送信伝搬路係数補正部170-11,170-12,・・,170-1nが補正した送信伝搬路係数に基づいてウエイトを算出するウエイト算出部180と、送信伝搬路係数補正部170-11,170-12,・・,170-1nが補正した送信伝搬路係数とウエイト算出部180が算出したウエイトとに基づく無線信号を前記複数のアンテナ経由で送信する送信部190-1,190-2,・・,190-nとを具備して成る。
 上記補正係数記憶部150-1は、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数を補正するための補正係数として、受信伝搬路係数変動算出部130-1,130-2,・・,130-nが算出した受信時の受信伝搬路係数の変動に基づく補正係数を記憶する。
 本実施形態では、上記受信時の受信伝搬路係数の変動として、受信時の受信伝搬路係数の絶対値の変動(プラスの符号およびマイナスの符号を含む絶対値の変動)を用いる。また、本実施形態では、上記補正係数として、「受信時の受信伝搬路係数の絶対値の変動が大きいほど、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数の絶対値を大きく減少させるような補正係数」に対応する、図2に示す近似直線Aの傾き(微分係数)を用いている。
 上記送信伝搬路係数補正部170-11,170-12,・・,170-1nは、補正係数記憶部150-1に記憶された受信時の受信伝搬路係数の変動(この場合、受信時の受信伝搬路係数の絶対値の変動)に基づく補正係数に基づいて、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数を補正する。
 次に、第1実施形態における送信伝搬路係数の補正の作用について説明する。
 都市部等の散乱体の多い環境においては、無線通信装置(基地局)100と対向無線通信装置(端末)との間の受信時の受信伝搬路係数は、フェージングの影響を受けて、時間の経過とともに大きく変動する。この受信時の受信伝搬路係数の変動が十分小さい場合には、受信時の受信伝搬路係数の変動から線形外挿を用いて推定される送信時の送信伝搬路係数は、本来の送信時の伝搬路係数とよく一致する。しかし、フェージングの影響が顕著になると、線形外挿により算出(推定)される送信時の送信伝搬路係数は、本来の送信時の送信伝搬路係数から大きく外れて、大きな算出誤差(推定誤差)が生じる。
 送信伝搬路係数の算出誤差(推定誤差)と受信時の受信伝搬路係数との関係を図2に基づいて説明する。図2において、横軸は受信時の受信伝搬路係数の絶対値成分の変動量を示し、縦軸は上述した線形外挿により算出(推定)される送信時の送信伝搬路係数の絶対値成分と本来の送信時の送信伝搬路係数の絶対値成分との間の誤差を示し、楕円形の部分は送信伝搬路係数の絶対値誤差の分布を示す。図2に示すように上記誤差と受信時の受信伝搬路係数の絶対値変動量との間に線形的な関係が存在すると仮定すると、図2に示す近似直線Aが得られる。
 この近似直線Aの傾き(微分係数)を補正係数として予め補正係数記憶部150-1に記憶しておき、受信伝搬路係数変動算出部130-1,130-2,・・,130-nが算出した受信時の受信伝搬路係数の絶対値の変動と共に送信伝搬路係数補正部170-11,170-12,・・,170-1nによる送信伝搬路係数の補正に用いることにより、送信時の送信伝搬路係数の精度の高い算出(推定)が可能になる。この補正には、以下の式(1)を用いる。
Figure JPOXMLDOC01-appb-M000001
 第1実施形態によれば、受信時の受信伝搬路係数の変動に基づいて外挿(例えば線形外挿)により算出(推定)された送信時の送信伝搬路係数の絶対値に対して、受信時の受信伝搬路係数の変動に基づく図2に示す補正係数を用いて補正することにより、送信伝搬路係数の算出誤差(推定誤差)を低減することが可能になる。このため、前記対向無線通信装置(端末)の高速移動等による伝搬路係数変動が大きいような環境下でも、送信伝搬路係数の算出誤差(推定誤差)が小さく抑えられるので送信時の送信伝搬路係数の算出精度(推定精度)を向上させることができる。したがって、対向無線通信装置(端末)の高速移動等による伝搬路係数変動に起因する通信品質の劣化を抑圧して良好な通信品質を得ることが可能になる。
[第2実施形態]
 図3は本発明の無線通信方法を適用する第2実施形態の無線通信装置の概略構成を示すブロック図である。本実施形態の無線通信装置100は、上記第1実施形態の無線通信装置100に対し、補正係数記憶部150-1を補正係数記憶部150-2に置き換えるとともに、送信伝搬路係数補正部170-11,170-12,・・,170-1nを送信伝搬路係数補正部170-21,170-22,・・,170-2nに置き換える変更を加えたものであり、それ以外の部分は上記第1実施形態の無線通信装置100と同様に構成されている。
 上記補正係数記憶部150-2は、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数を補正するための補正係数として、受信伝搬路係数変動算出部130-1,130-2,・・,130-nが算出した受信時の受信伝搬路係数の変動と、受信伝搬路係数算出部120-1,120-2,・・,120-nが算出した受信時の受信伝搬路係数とに基づく補正係数を記憶する。
 本実施形態では、上記受信時の受信伝搬路係数の変動として、受信時の受信伝搬路係数の絶対値の変動(プラスの符号およびマイナスの符号を含む絶対値の変動)を用いる。また、本実施形態では、上記補正係数として、「受信時の受信伝搬路係数の絶対値の変動が大きいほど、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数の絶対値を大きく減少させるような補正係数」および「受信伝搬路係数算出部120-1,120-2,・・,120-nが算出した受信時の受信伝搬路係数の絶対値が大きいほど、前記送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数の絶対値を大きく減少させるような補正係数」に対応する、図4に示す近似直線Bおよび近似直線C、ならびに、図5に示す近似直線Dの傾き(微分係数)を用いている。図4において、下側の誤差の分布は、受信時の受信伝搬路係数の絶対値が小さい場合の送信時の送信伝搬路係数の絶対値誤差の分布を示しており、上側の誤差の分布は、受信時の受信伝搬路係数の絶対値が大きい場合の送信時の送信伝搬路係数の絶対値誤差の分布を示している。
 上記送信伝搬路係数補正部170-21,170-22,・・,170-2nは、補正係数記憶部150に記憶された、受信時の受信伝搬路係数の変動および受信時の受信伝搬路係数に基づく補正係数に基づいて、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数を補正する。
 次に、第2実施形態における送信伝搬路係数の補正の作用について説明する。
 都市部等の散乱体の多い環境においては、無線通信装置(基地局)100と対向無線通信装置(端末)との間の受信時の受信伝搬路係数は、フェージングの影響を受けて、時間の経過とともに大きく変動する。この受信時の受信伝搬路係数の変動が十分小さい場合には、受信時の受信伝搬路係数の変動から線形外挿を用いて推定される送信時の送信伝搬路係数は、本来の送信時の伝搬路係数とよく一致する。しかし、フェージングの影響が顕著になると、線形外挿により算出(推定)される送信時の送信伝搬路係数は、本来の送信時の送信伝搬路係数から大きく外れて、大きな算出誤差(推定誤差)が生じる。
 送信伝搬路係数の算出誤差(推定誤差)と受信時の受信伝搬路係数との関係を図4に基づいて説明する。図4において、横軸は受信時の受信伝搬路係数の絶対値成分の変動量を示し、縦軸は上述した線形外挿により算出(推定)される送信時の送信伝搬路係数の絶対値成分と本来の送信時の送信伝搬路係数の絶対値成分との間の誤差を示し、2つの楕円形の部分はそれぞれ、受信時の受信伝搬路係数の絶対値が小さい場合および大きい場合の、送信伝搬路係数の絶対値誤差の分布を示す。図4に示すように上記誤差と受信時の受信伝搬路係数の絶対値変動量との間に線形的な関係が存在すると仮定すると、図4に示す近似直線Bおよび近似直線Cが得られる。
 これら近似直線Bおよび近似直線Cのオフセット成分(原点を通る近似直線からの移動量である図4中のaおよびb)と受信時の受信伝搬路係数の絶対値との間の関係は、図5に示すようになる。図5に示すように受信時の受信伝搬路係数の絶対値と上記オフセット成分との間に線形的な関係が存在すると仮定すると、図5に示す近似直線Dが得られる。 これら近似直線B、近似直線Cおよび近似直線Dの傾き(微分係数)を補正係数として予め補正係数記憶部150-2に記憶しておき、受信伝搬路係数変動算出部130-1,130-2,・・,130-nが算出した受信時の受信伝搬路係数の絶対値の変動および受信伝搬路係数算出部120-1,120-2,・・,120-nが算出した受信時の受信伝搬路係数と共に送信伝搬路係数補正部170-21,170-22,・・,170-2nによる送信伝搬路係数の補正に用いることにより、送信時の送信伝搬路係数の精度の高い算出(推定)が可能になる。この補正には、以下の式(2)を用いる。
Figure JPOXMLDOC01-appb-M000002
 第2実施形態によれば、受信時の受信伝搬路係数の変動に基づいて外挿(例えば線形外挿)により算出(推定)された送信時の送信伝搬路係数の絶対値に対して、受信時の受信伝搬路係数の変動および受信時の受信伝搬路係数に基づく図4および図5に示す補正係数を用いて補正することにより、送信伝搬路係数の算出誤差(推定誤差)を低減することが可能になる。このため、前記対向無線通信装置(端末)の高速移動等による伝搬路係数変動が大きいような環境下でも、送信伝搬路係数の算出誤差(推定誤差)が小さく抑えられるので送信時の送信伝搬路係数の算出精度(推定精度)を向上させることができる。したがって、対向無線通信装置(端末)の高速移動等による伝搬路係数変動に起因する通信品質の劣化を抑圧して良好な通信品質を得ることが可能になる。
[第3実施形態]
 図6は本発明の無線通信方法を適用する第3実施形態の無線通信装置の概略構成を示すブロック図である。本実施形態の無線通信装置100は、上記第1実施形態の無線通信装置100に対し、補正係数記憶部150-1を補正係数記憶部150-3に置き換えるとともに、送信伝搬路係数補正部170-11,170-12,・・,170-1nを送信伝搬路係数補正部170-31,170-32,・・,170-3nに置き換える変更を加えたものであり、それ以外の部分は上記第1実施形態の無線通信装置100と同様に構成されている。
 上記補正係数記憶部150-3は、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数を補正するための補正係数として、受信伝搬路係数変動算出部130-1,130-2,・・,130-nが算出した受信時の受信伝搬路係数の変動に基づく補正係数を記憶する。
 本実施形態では、上記受信時の受信伝搬路係数の変動として、受信時の受信伝搬路係数の位相の変動(プラスの符号およびマイナスの符号を含む位相の変動)を用いる。また、本実施形態では、上記補正係数として、「受信時の受信伝搬路係数の位相の変動の方向と同一方向に、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数の位相を補正するような補正係数」に対応する、図7(a),(b)に示す近似直線E、近似直線Fおよび近似直線Gの傾き(微分係数)を用いている。
 上記送信伝搬路係数補正部170-31,170-32,・・,170-3nは、補正係数記憶部150-3に記憶された受信時の受信伝搬路係数の変動(この場合、受信周波数帯での受信伝搬路係数の位相の変動)に基づく補正係数に基づいて、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数を補正する。
 次に、第3実施形態における送信伝搬路係数の補正の作用について説明する。
都市部等の散乱体の多い環境においては、無線通信装置(基地局)100と対向無線通信装置(端末)との間の受信時の受信伝搬路係数は、フェージングの影響を受けて、時間の経過とともに大きく変動する。この受信時の受信伝搬路係数の変動が十分小さい場合には、受信時の受信伝搬路係数の変動から線形外挿を用いて推定される送信時の送信伝搬路係数は、本来の送信時の伝搬路係数とよく一致する。しかし、フェージングの影響が顕著になると、線形外挿により算出(推定)される送信時の送信伝搬路係数は、本来の送信時の送信伝搬路係数から大きく外れて、大きな算出誤差(推定誤差)が生じる。
 送信伝搬路係数の算出誤差(推定誤差)と受信時の受信伝搬路係数との関係を図7(a),(b)に基づいて説明する。図7(a),(b)において、横軸は受信時の受信伝搬路係数の位相成分の変動量を示し、縦軸は上述した線形外挿により算出(推定)される送信時の送信伝搬路係数の位相成分と本来の送信時の送信伝搬路係数の位相成分との間の誤差を示す。また、図7(a)は、上記受信伝搬路係数の位相変動が増加の場合を示し、楕円形の部分は送信伝搬路係数の位相誤差の分布を示す。また、図7(b)は、上記受信伝搬路係数の位相変動が減少の場合を示し、2つの楕円形の部分はそれぞれ、位相誤差が正の場合および負の場合の、送信伝搬路係数の位相誤差の分布を示す。図7(a)に示すように上記誤差と受信時の受信伝搬路係数の位相変動量との間に線形的な関係が存在すると仮定すると、図7(a)に示す近似直線Eが得られる。
 この近似直線Eの傾き(微分係数)を補正係数として予め補正係数記憶部150-3に記憶しておき、受信伝搬路係数変動算出部130-1,130-2,・・,130-nが算出した受信時の受信伝搬路係数の位相の変動と共に送信伝搬路係数補正部170-31,170-32,・・,170-3nによる送信伝搬路係数の補正に用いることにより、送信時の送信伝搬路係数の精度の高い算出(推定)が可能になる。この補正には、以下の式(3)を用いる。
Figure JPOXMLDOC01-appb-M000003
 また、図7(b)に示すように上記誤差と受信時の受信伝搬路係数の位相変動量との間に線形的な関係が存在すると仮定すると、図7(b)に示す近似直線Fおよび近似直線Gが得られる。
 これら近似直線Fおよび近似直線Gの傾き(微分係数)を補正係数として予め補正係数記憶部150-3に記憶しておき、受信伝搬路係数変動算出部130-1,130-2,・・,130-nが算出した受信時の受信伝搬路係数の位相の変動と共に送信伝搬路係数補正部170-31,170-32,・・,170-3nによる送信伝搬路係数の補正に用いることにより、送信時の送信伝搬路係数の精度の高い算出(推定)が可能になる。この補正には、以下の式(4),(5)を用いる。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 第3実施形態によれば、受信時の受信伝搬路係数の変動に基づいて外挿(例えば線形外挿)により算出(推定)された送信時の送信伝搬路係数の位相に対して、受信時の受信伝搬路係数の変動に基づく図7(a),(b)に示す補正係数を用いて補正することにより、送信伝搬路係数の算出誤差(推定誤差)を低減することが可能になる。このため、前記対向無線通信装置(端末)の高速移動等による伝搬路係数変動が大きいような環境下でも、送信伝搬路係数の算出誤差(推定誤差)が小さく抑えられるので送信時の送信伝搬路係数の算出精度(推定精度)を向上させることができる。したがって、対向無線通信装置(端末)の高速移動等による伝搬路係数変動に起因する通信品質の劣化を抑圧して良好な通信品質を得ることが可能になる。
[第4実施形態]
 図8は本発明の無線通信方法を適用する第4実施形態の無線通信装置の概略構成を示すブロック図である。本実施形態の無線通信装置100は、上記第1実施形態の無線通信装置100に対し、受信伝搬路係数記憶部160と、受信伝搬路係数分布算出部161と、補正係数算出部162とを追加し、補正係数記憶部150-1を補正係数記憶部150-4に置き換え、送信伝搬路係数補正部170-11,170-12,・・,170-1nを送信伝搬路係数補正部170-41,170-42,・・,170-4nに置き換えるとともに、 補正係数記憶部150-4に補正係数算出部162が算出した補正係数を記憶するようにする変更を加えたものであり、それ以外の部分は上記第1実施形態の無線通信装置100と同様に構成されている。本実施形態は、受信伝搬路係数から算出した受信伝搬路係数の分布に基づいて、補正を行うタイミングにおける補正係数を無線通信装置自体が算出する点で、予め補正係数記憶部に補正係数を記憶しておく上記第1実施形態~第3実施形態と相違している。
 上記受信伝搬路係数記憶部160は、受信伝搬路係数算出部120-1,120-2,・・,120-nがそれぞれ算出した受信時の受信伝搬路係数(複数の受信時の受信伝搬路係数)を記憶する。
 上記受信伝搬路係数分布算出部161は、受信伝搬路係数記憶部160に記憶された受信時の複数の受信伝搬路係数に基づいて受信伝搬路係数の分布を算出する。
 上記補正係数算出部162は、受信伝搬路係数分布算出部161が算出した受信伝搬路係数の分布に基づいて、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数を補正するための補正係数を算出する。補正係数算出部162は、「受信時の受信伝搬路係数の絶対値の変動(プラスの符号およびマイナスの符号を含む絶対値の変動)が大きいほど、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数の絶対値を大きく減少させるような補正係数」、「受信時の受信伝搬路係数の位相の変動(プラスおよびマイナスの符号を含む位相の変動)の方向と同一方向に、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数の位相を補正するような補正係数」、「受信伝搬路係数算出部が算出した受信時の受信伝搬路係数の絶対値が大きいほど、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数の絶対値を大きく減少させるような補正係数」の少なくとも1つに対応する補正係数を算出する。
 上記送信伝搬路係数補正部170-41,170-42,・・,170-4nは、補正係数記憶部150-4に記憶された、受信伝搬路係数の分布に基づいて算出された補正係数に基づいて、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信時の送信伝搬路係数を補正する。
 第4実施形態によれば、受信時の受信伝搬路係数の変動に基づいて外挿(例えば線形外挿)により算出(推定)された送信時の送信伝搬路係数に対して、補正係数算出部162が算出した、受信時の受信伝搬路係数の分布に基づく補正係数を用いて補正することにより、送信伝搬路係数の算出誤差(推定誤差)を低減することが可能になる。このため、前記対向無線通信装置(端末)の高速移動等による伝搬路係数変動が大きいような環境下でも、送信伝搬路係数の算出誤差(推定誤差)が小さく抑えられるので送信時の送信伝搬路係数の算出精度(推定精度)を向上させることができる。したがって、対向無線通信装置(端末)の高速移動等による伝搬路係数変動に起因する通信品質の劣化を抑圧して良好な通信品質を得ることが可能になる。
 なお、上記送信伝搬路係数算出部140-1,140-2,・・,140-nが送信伝搬路係数を算出する際に用いる外挿は「線形外挿」に限定されるものではなく、他の外挿方法を用いてもよい。
[第5実施形態]
 図11は本発明の無線通信方法を適用する第5実施形態の無線通信装置の概略構成を示すブロック図である。本実施形態の無線通信装置100は、複数のアンテナ(図示せず)を備えた無線通信装置(以下、基地局ともいう)である。無線通信装置100は、図示しない対向無線通信装置(以下、端末ともいう)から送信された無線信号を複数のアンテナ経由で受信する受信部110-1,110-2,・・,110-nと、受信部110-1,110-2,・・,110-nで受信された信号に基づいて対向無線通信装置との間の、受信周波数帯での受信伝搬路係数(前記複数のアンテナの各々における、受信周波数帯での受信伝搬路係数)を算出する受信伝搬路係数算出部120-1,120-2,・・,120-nと、受信伝搬路係数算出部120-1,120-2,・・,120-nが算出した受信周波数帯での受信伝搬路係数の変動(受信伝搬路係数の絶対値の周波数方向の変動および受信伝搬路係数の位相の周波数方向の変動を含む)を算出する受信伝搬路係数変動算出部130-1,130-2,・・,130-nと、受信伝搬路係数変動算出部130-1,130-2,・・,130-nが算出した受信周波数帯での受信伝搬路係数の変動に基づいて対向無線通信装置との間の、送信周波数帯での送信伝搬路係数(前記複数のアンテナの各々における、送信周波数帯での送信伝搬路係数)を外挿(例えば線形外挿)により算出(推定)する送信伝搬路係数算出部140-1,140-2,・・,140-nと、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数を補正するための補正係数を記憶する補正係数記憶部150-1と、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数を補正する送信伝搬路係数補正部170-11,170-12,・・,170-1nと、送信伝搬路係数補正部170-11,170-12,・・,170-1nが補正した送信伝搬路係数に基づいてウエイトを算出するウエイト算出部180と、送信伝搬路係数補正部170-11,170-12,・・,170-1nが補正した送信伝搬路係数とウエイト算出部180が算出したウエイトとに基づく無線信号を前記複数のアンテナ経由で送信する送信部190-1,190-2,・・,190-nとを具備して成る。
 なお、本発明の無線通信装置(基地局)および本発明の無線通信方法は、送信周波数帯と受信周波数帯とが異なるシステム(例えばFDDシステム;周波数分割双方向システム)に好適に用いることができるが、上記システムに限定されるものではなく、他のシステムにも用いることが可能である。
 上記補正係数記憶部150-1は、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数を補正するための補正係数として、受信伝搬路係数変動算出部130-1,130-2,・・,130-nが算出した受信周波数帯での受信伝搬路係数の変動に基づく補正係数を記憶する。
 本実施形態では、上記受信周波数帯での受信伝搬路係数の変動として、受信周波数帯での受信伝搬路係数の絶対値の周波数方向の変動(プラスの符号およびマイナスの符号を含む絶対値の周波数方向の変動のことをいい、これは、絶対値変動がプラス、マイナスの符号を含むことを意味し、さらにこの場合の周波数は受信周波数帯から送信周波数帯へ向かう向きを正とする。)を用いる。また、本実施形態では、上記補正係数として、「受信周波数帯での受信伝搬路係数の絶対値の周波数方向の変動が大きいほど、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数の絶対値を大きく減少させるような補正係数」に対応する、図2に示す近似直線Aの傾き(微分係数)を用いている。
 上記送信伝搬路係数補正部170-11,170-12,・・,170-1nは、補正係数記憶部150-1に記憶された受信周波数帯での受信伝搬路係数の変動(この場合、受信周波数帯での受信伝搬路係数の絶対値の周波数方向の変動)に基づく補正係数に基づいて、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数を補正する。
 次に、第5実施形態における送信伝搬路係数の補正の作用について説明する。
 都市部等の散乱体の多い環境においては、無線通信装置(基地局)100と対向無線通信装置(端末)との間の受信周波数帯での受信伝搬路係数は、周波数選択性フェージングの影響を受けて、周波数方向に大きく変動する。この受信周波数帯での受信伝搬路係数の変動が十分小さい場合には、受信周波数帯での受信伝搬路係数の変動から線形外挿を用いて推定される送信周波数帯での送信伝搬路係数は、本来の送信周波数帯での伝搬路係数とよく一致する。しかし、周波数選択性フェージングの影響が顕著になると、線形外挿により算出(推定)される送信周波数帯での送信伝搬路係数は、本来の送信周波数帯での送信伝搬路係数から大きく外れて、大きな算出誤差(推定誤差)が生じる。
 送信伝搬路係数の算出誤差(推定誤差)と受信周波数帯での受信伝搬路係数との関係を図12に基づいて説明する。図12において、横軸は受信周波数帯での受信伝搬路係数の絶対値成分の変動量を示し、縦軸は上述した線形外挿により算出(推定)される送信周波数帯での送信伝搬路係数の絶対値成分と本来の送信周波数帯での送信伝搬路係数の絶対値成分との間の誤差を示し、楕円形の部分は送信伝搬路係数の絶対値誤差の分布を示す。図12に示すように上記誤差と受信周波数帯での受信伝搬路係数の絶対値変動量との間に線形的な関係が存在すると仮定すると、図12に示す近似直線Aが得られる。
 この近似直線Aの傾き(微分係数)を補正係数として予め補正係数記憶部150-1に記憶しておき、受信伝搬路係数変動算出部130-1,130-2,・・,130-nが算出した受信周波数帯での受信伝搬路係数の絶対値の変動と共に送信伝搬路係数補正部170-11,170-12,・・,170-1nによる送信伝搬路係数の補正に用いることにより、送信周波数帯での送信伝搬路係数の精度の高い算出(推定)が可能になる。この補正には、以下の式(6)を用いる。
Figure JPOXMLDOC01-appb-M000006
 第5実施形態によれば、受信周波数帯での受信伝搬路係数の変動に基づいて外挿(例えば線形外挿)により算出(推定)された送信周波数帯での送信伝搬路係数の絶対値に対して、受信周波数帯での受信伝搬路係数の変動に基づく図2に示す補正係数を用いて補正することにより、送信伝搬路係数の算出誤差(推定誤差)を低減することが可能になる。このため、前記周波数選択性フェージングがあるような環境下でも、送信伝搬路係数の算出誤差(推定誤差)が小さく抑えられるので送信周波数帯での送信伝搬路係数の算出精度(推定精度)を向上させることができる。したがって、周波数選択性フェージングに起因する送信周波数帯での送信伝搬路係数の適応制御の品質の劣化を抑圧して良好な通信品質を得ることが可能になる。
[第6実施形態]
 図13は本発明の無線通信方法を適用する第6実施形態の無線通信装置の概略構成を示すブロック図である。本実施形態の無線通信装置100は、上記第5実施形態の無線通信装置100に対し、補正係数記憶部150-1を補正係数記憶部150-2に置き換えるとともに、送信伝搬路係数補正部170-11,170-12,・・,170-1nを送信伝搬路係数補正部170-21,170-22,・・,170-2nに置き換える変更を加えたものであり、それ以外の部分は上記第5実施形態の無線通信装置100と同様に構成されている。
 上記補正係数記憶部150-2は、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数を補正するための補正係数として、受信伝搬路係数変動算出部130-1,130-2,・・,130-nが算出した受信周波数帯での受信伝搬路係数の変動と、受信伝搬路係数算出部120-1,120-2,・・,120-nが算出した受信周波数帯での受信伝搬路係数とに基づく補正係数を記憶する。
 本実施形態では、上記受信周波数帯での受信伝搬路係数の変動として、受信周波数帯での受信伝搬路係数の絶対値の周波数方向の変動(プラスの符号およびマイナスの符号を含む絶対値の周波数方向の変動のことをいい、これは、絶対値変動がプラス、マイナスの符号を含むことを意味し、さらにこの場合の周波数は受信周波数帯から送信周波数帯へ向かう向きを正とする。)を用いる。また、本実施形態では、上記補正係数として、「受信周波数帯での受信伝搬路係数の絶対値の周波数方向の変動が大きいほど、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数の絶対値を大きく減少させるような補正係数」および「受信伝搬路係数算出部120-1,120-2,・・,120-nが算出した受信周波数帯での受信伝搬路係数の絶対値が大きいほど、前記送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数の絶対値を大きく減少させるような補正係数」に対応する、図14に示す近似直線Bおよび近似直線C、ならびに、図15に示す近似直線Dの傾き(微分係数)を用いている。図14において、下側の誤差の分布は、受信周波数帯での受信伝搬路係数の絶対値が小さい場合の送信周波数帯での送信伝搬路係数の絶対値誤差の分布を示しており、上側の誤差の分布は、受信周波数帯での受信伝搬路係数の絶対値が大きい場合の送信周波数帯での送信伝搬路係数の絶対値誤差の分布を示している。
 上記送信伝搬路係数補正部170-21,170-22,・・,170-2nは、補正係数記憶部150に記憶された、受信周波数帯での受信伝搬路係数の変動および受信周波数帯での受信伝搬路係数に基づく補正係数に基づいて、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数を補正する。
 次に、第6実施形態における送信伝搬路係数の補正の作用について説明する。
 都市部等の散乱体の多い環境においては、無線通信装置(基地局)100と対向無線通信装置(端末)との間の受信周波数帯での受信伝搬路係数は、周波数選択性フェージングの影響を受けて、周波数方向に大きく変動する。この受信周波数帯での受信伝搬路係数の変動が十分小さい場合には、受信周波数帯での受信伝搬路係数の変動から線形外挿を用いて推定される送信周波数帯での送信伝搬路係数は、本来の送信周波数帯での伝搬路係数とよく一致する。しかし、周波数選択性フェージングの影響が顕著になると、線形外挿により算出(推定)される送信周波数帯での送信伝搬路係数は、本来の送信周波数帯での送信伝搬路係数から大きく外れて、大きな算出誤差(推定誤差)が生じる。
 送信伝搬路係数の算出誤差(推定誤差)と受信周波数帯での受信伝搬路係数との関係を図14に基づいて説明する。図14において、横軸は受信周波数帯での受信伝搬路係数の絶対値成分の変動量を示し、縦軸は上述した線形外挿により算出(推定)される送信周波数帯での送信伝搬路係数の絶対値成分と本来の送信周波数帯での送信伝搬路係数の絶対値成分との間の誤差を示し、2つの楕円形の部分はそれぞれ、受信周波数帯での受信伝搬路係数の絶対値が小さい場合および大きい場合の、送信伝搬路係数の絶対値誤差の分布を示す。図14に示すように上記誤差と受信周波数帯での受信伝搬路係数の絶対値変動量との間に線形的な関係が存在すると仮定すると、図14に示す近似直線Bおよび近似直線Cが得られる。
 これら近似直線Bおよび近似直線Cのオフセット成分(原点を通る近似直線からの移動量である図14のaおよびb)と受信周波数帯での受信伝搬路係数の絶対値との間の関係は、図15に示すようになる。図15に示すように受信周波数帯での受信伝搬路係数の絶対値と上記オフセット成分との間に線形的な関係が存在すると仮定すると、図15に示す近似直線Dが得られる。
 これら近似直線B、近似直線Cおよび近似直線Dの傾き(微分係数)を補正係数として予め補正係数記憶部150-2に記憶しておき、受信伝搬路係数変動算出部130-1,130-2,・・,130-nが算出した受信周波数帯での受信伝搬路係数の絶対値の変動および受信伝搬路係数算出部120-1,120-2,・・,120-nが算出した受信周波数帯での受信伝搬路係数と共に送信伝搬路係数補正部170-21,170-22,・・,170-2nによる送信伝搬路係数の補正に用いることにより、送信周波数帯での送信伝搬路係数の精度の高い算出(推定)が可能になる。この補正には、以下の式(7)を用いる。
Figure JPOXMLDOC01-appb-M000007
 第6実施形態によれば、受信周波数帯での受信伝搬路係数の変動に基づいて外挿(例えば線形外挿)により算出(推定)された送信周波数帯での送信伝搬路係数の絶対値に対して、受信周波数帯での受信伝搬路係数の変動および受信周波数帯での受信伝搬路係数に基づく図14および図15に示す補正係数を用いて補正することにより、送信伝搬路係数の算出誤差(推定誤差)を低減することが可能になる。このため、前記周波数選択性フェージングがあるような環境下でも、送信伝搬路係数の算出誤差(推定誤差)が小さく抑えられるので送信周波数帯での送信伝搬路係数の算出精度(推定精度)を向上させることができる。したがって、周波数選択性フェージングに起因する送信周波数帯での送信伝搬路係数の適応制御の品質の劣化を抑圧して良好な通信品質を得ることが可能になる。
[第7実施形態]
 図16は本発明の無線通信方法を適用する第7実施形態の無線通信装置の概略構成を示すブロック図である。本実施形態の無線通信装置100は、上記第1実施形態の無線通信装置100に対し、補正係数記憶部150-1を補正係数記憶部150-3に置き換えるとともに、送信伝搬路係数補正部170-11,170-12,・・,170-1nを送信伝搬路係数補正部170-31,170-32,・・,170-3nに置き換える変更を加えたものであり、それ以外の部分は上記第5実施形態の無線通信装置100と同様に構成されている。
 上記補正係数記憶部150-3は、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数を補正するための補正係数として、受信伝搬路係数変動算出部130-1,130-2,・・,130-nが算出した受信周波数帯での受信伝搬路係数の変動に基づく補正係数を記憶する。
 本実施形態では、上記受信周波数帯での受信伝搬路係数の変動として、受信周波数帯での受信伝搬路係数の位相の周波数方向の変動(周波数は受信周波数帯から送信周波数帯へ向かう向きを正とし、送信周波数帯から受信周波数帯へ向かう向きを負とする)を用いる。また、本実施形態では、上記補正係数として、「受信周波数帯での受信伝搬路係数の位相の周波数方向の変動の方向と同一方向に、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数の位相を補正するような補正係数」に対応する、図17(a),(b)に示す近似直線E、近似直線Fおよび近似直線Gの傾き(微分係数)を用いている。
 上記送信伝搬路係数補正部170-31,170-32,・・,170-3nは、補正係数記憶部150-3に記憶された受信周波数帯での受信伝搬路係数の変動(この場合、受信周波数帯での受信伝搬路係数の位相の周波数方向の変動)に基づく補正係数に基づいて、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数を補正する。
 次に、第7実施形態における送信伝搬路係数の補正の作用について説明する。
 都市部等の散乱体の多い環境においては、無線通信装置(基地局)100と対向無線通信装置(端末)との間の受信周波数帯での受信伝搬路係数は、周波数選択性フェージングの影響を受けて、周波数方向に大きく変動する。この受信周波数帯での受信伝搬路係数の変動が十分小さい場合には、受信周波数帯での受信伝搬路係数の変動から線形外挿を用いて推定される送信周波数帯での送信伝搬路係数は、本来の送信周波数帯での伝搬路係数とよく一致する。しかし、周波数選択性フェージングの影響が顕著になると、線形外挿により算出(推定)される送信周波数帯での送信伝搬路係数は、本来の送信周波数帯での送信伝搬路係数から大きく外れて、大きな算出誤差(推定誤差)が生じる。
 送信伝搬路係数の算出誤差(推定誤差)と受信周波数帯での受信伝搬路係数との関係を図17(a),(b)に基づいて説明する。図17(a),(b)において、横軸は受信周波数帯での受信伝搬路係数の位相成分の変動量を示し、縦軸は上述した線形外挿により算出(推定)される送信周波数帯での送信伝搬路係数の位相成分と本来の送信周波数帯での送信伝搬路係数の位相成分との間の誤差を示す。また、図17(a)は、上記受信伝搬路係数の位相変動が増加の場合を示し、楕円形の部分は送信伝搬路係数の位相誤差の分布を示す。また、図17(b)は、上記受信伝搬路係数の位相変動が減少の場合を示し、2つの楕円形の部分はそれぞれ、位相誤差が正の場合および負の場合の、送信伝搬路係数の位相誤差の分布を示す。図17(a)に示すように上記誤差と受信周波数帯での受信伝搬路係数の位相変動量との間に線形的な関係が存在すると仮定すると、図17(a)に示す近似直線Eが得られる。
 この近似直線Eの傾き(微分係数)を補正係数として予め補正係数記憶部150-3に記憶しておき、受信伝搬路係数変動算出部130-1,130-2,・・,130-nが算出した受信周波数帯での受信伝搬路係数の位相の変動と共に送信伝搬路係数補正部170-31,170-32,・・,170-3nによる送信伝搬路係数の補正に用いることにより、送信周波数帯での送信伝搬路係数の精度の高い算出(推定)が可能になる。この補正には、以下の式(8)を用いる。
Figure JPOXMLDOC01-appb-M000008
 また、図17(b)に示すように上記誤差と受信周波数帯での受信伝搬路係数の位相変動量との間に線形的な関係が存在すると仮定すると、図17(b)に示す近似直線Fおよび近似直線Gが得られる。
 これら近似直線Fおよび近似直線Gの傾き(微分係数)を補正係数として予め補正係数記憶部150-3に記憶しておき、受信伝搬路係数変動算出部130-1,130-2,・・,130-nが算出した受信周波数帯での受信伝搬路係数の位相の変動と共に送信伝搬路係数補正部170-31,170-32,・・,170-3nによる送信伝搬路係数の補正に用いることにより、送信周波数帯での送信伝搬路係数の精度の高い算出(推定)が可能になる。この補正には、以下の式(9),(10)を用いる。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 第7実施形態によれば、受信周波数帯での受信伝搬路係数の変動に基づいて外挿(例えば線形外挿)により算出(推定)された送信周波数帯での送信伝搬路係数の位相に対して、受信周波数帯での受信伝搬路係数の変動に基づく図17(a),(b)に示す補正係数を用いて補正を行うことにより、送信伝搬路係数の算出誤差(推定誤差)を低減することが可能になる。このため、前記周波数選択性フェージングがあるような環境下でも、送信伝搬路係数の算出誤差(推定誤差)が小さく抑えられるので送信周波数帯での送信伝搬路係数の算出精度(推定精度)を向上させることができる。したがって、周波数選択性フェージングに起因する送信周波数帯での送信伝搬路係数の適応制御の品質の劣化を抑圧して良好な通信品質を得ることが可能になる。
[第8実施形態]
 図18は本発明の無線通信方法を適用する第8実施形態の無線通信装置の概略構成を示すブロック図である。本実施形態の無線通信装置100は、上記第5実施形態の無線通信装置100に対し、受信伝搬路係数記憶部160と、受信伝搬路係数分布算出部161と、補正係数算出部162とを追加し、補正係数記憶部150-1を補正係数記憶部150-4に置き換え、送信伝搬路係数補正部170-11,170-12,・・,170-1nを送信伝搬路係数補正部170-41,170-42,・・,170-4nに置き換えるとともに、補正係数記憶部150-4に補正係数算出部162が算出した補正係数を記憶するようにする変更を加えたものであり、それ以外の部分は上記第5実施形態の無線通信装置100と同様に構成されている。本実施形態は、受信伝搬路係数から算出した受信伝搬路係数の周波数方向の分布に基づいて、補正を行うタイミングにおける補正係数を無線通信装置自体が算出する点で、予め補正係数記憶部に補正係数を記憶しておく上記第5実施形態~第7実施形態と相違している。
 上記受信伝搬路係数記憶部160は、受信伝搬路係数算出部120-1,120-2,・・,120-nがそれぞれ算出した受信周波数帯での受信伝搬路係数(受信周波数帯での複数の受信伝搬路係数)を記憶する。
 上記受信伝搬路係数分布算出部161は、受信伝搬路係数記憶部160に記憶された受信周波数帯での複数の受信伝搬路係数に基づいて受信伝搬路係数の周波数方向の分布を算出する。
 上記補正係数算出部162は、受信伝搬路係数分布算出部161が算出した受信伝搬路係数の周波数方向の分布に基づいて、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数を補正するための補正係数を算出する。補正係数算出部162は、「受信周波数帯での受信伝搬路係数の絶対値の周波数方向の変動(プラスの符号およびマイナスの符号を含む絶対値の周波数方向の変動のことをいい、これは、絶対値変動がプラス、マイナスの符号を含むことを意味し、さらにこの場合の周波数は受信周波数帯から送信周波数帯へ向かう向きを正とする。)が大きいほど、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数の絶対値を大きく減少させるような補正係数」、「受信周波数帯での受信伝搬路係数の位相の周波数方向の変動(周波数は受信周波数帯から送信周波数帯へ向かう向きを正とし、送信周波数帯から受信周波数帯へ向かう向きを負とする)の方向と同一方向に、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数の位相を補正するような補正係数」、「受信伝搬路係数算出部が算出した受信周波数帯での受信伝搬路係数の絶対値が大きいほど、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数の絶対値を大きく減少させるような補正係数」の少なくとも1つに対応する補正係数を算出する。
 上記送信伝搬路係数補正部170-41,170-42,・・,170-4nは、補正係数記憶部150-4に記憶された、受信伝搬路係数の周波数方向の分布に基づいて算出された補正係数に基づいて、送信伝搬路係数算出部140-1,140-2,・・,140-nが算出した送信周波数帯での送信伝搬路係数を補正する。
 第8実施形態によれば、受信周波数帯での受信伝搬路係数の変動に基づいて外挿(例えば線形外挿)により算出(推定)された送信周波数帯での送信伝搬路係数に対して、補正係数算出部162が算出した、受信伝搬路係数の周波数方向の分布に基づく補正係数を用いて補正することにより、送信伝搬路係数の算出誤差(推定誤差)を低減することが可能になる。このため、前記周波数選択性フェージングがあるような環境下でも、送信伝搬路係数の算出誤差(推定誤差)が小さく抑えられるので送信周波数帯での送信伝搬路係数の算出精度(推定精度)を向上させることができる。したがって、周波数選択性フェージングに起因する送信周波数帯での送信伝搬路係数の適応制御の品質の劣化を抑圧して良好な通信品質を得ることが可能になる。
 なお、上記送信伝搬路係数算出部140-1,140-2,・・,140-nが送信伝搬路係数を算出する際に用いる外挿は「線形外挿」に限定されるものではなく、他の外挿方法を用いてもよい。

Claims (21)

  1.  複数のアンテナを備えた無線通信装置であって、
     前記複数のアンテナの各々における、受信時の受信伝搬路係数を算出する受信伝搬路係数算出部と、
     該受信伝搬路係数算出部が算出した受信時の受信伝搬路係数の変動に基づいて、前記複数のアンテナの各々における、送信時の送信伝搬路係数を外挿により算出する送信伝搬路係数算出部と、
     前記受信時の受信伝搬路係数の変動に基づく補正係数に基づいて、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数を補正する補正部と、を備えることを特徴とする無線通信装置。
  2.  前記補正係数は、前記受信時の受信伝搬路係数の絶対値の変動が大きいほど、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数の絶対値を大きく減少させるような補正係数であることを特徴とする請求項1記載の無線通信装置。
  3.  前記補正係数は、前記受信時の受信伝搬路係数の位相の変動の方向と同一方向に、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数の位相を補正するような補正係数であることを特徴とする請求項1記載の無線通信装置。
  4.  前記補正部はさらに、前記受信伝搬路係数算出部が算出した受信時の受信伝搬路係数に基づいて、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数を補正することを特徴とする請求項1記載の無線通信装置。
  5.  前記補正係数は、前記受信伝搬路係数算出部が算出した受信時の受信伝搬路係数の絶対値が大きいほど、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数の絶対値を大きく減少させるような補正係数であることを特徴とする請求項1記載の無線通信装置。
  6.  前記受信伝搬路係数算出部が算出した前記受信時の受信伝搬路係数を複数記憶する受信伝搬路係数記憶部と、該受信伝搬路係数記憶部に記憶された前記受信時の複数の受信伝搬路係数に基づいて受信伝搬路係数の分布を算出する受信伝搬路係数分布算出部と、該受信伝搬路係数分布算出部が算出した受信伝搬路係数の分布に基づいて、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数を補正するための補正係数を算出する補正係数算出部と、をさらに備え、
     前記補正部は、前記補正係数算出部が算出した補正係数に基づいて、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数を補正することを特徴とする請求項1記載の無線通信装置。
  7.  前記補正係数算出部は、前記受信時の受信伝搬路係数の絶対値の変動が大きいほど、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数の絶対値を大きく減少させるような補正係数を算出することを特徴とする請求項6記載の無線通信装置。
  8.  前記補正係数算出部は、前記受信時の受信伝搬路係数の位相の変動の方向と同一方向に、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数の位相を補正するような補正係数を算出することを特徴とする請求項6記載の無線通信装置。
  9.  前記補正係数算出部は、前記受信伝搬路係数算出部が算出した受信時の受信伝搬路係数の絶対値が大きいほど、前記送信伝搬路係数算出部が算出した送信時の送信伝搬路係数の絶対値を大きく減少させるような補正係数を算出することを特徴とする請求項6記載の無線通信装置。
  10.  複数のアンテナを備えた無線通信装置であって、
     前記複数のアンテナの各々における、受信周波数帯での受信伝搬路係数を算出する受信伝搬路係数算出部と、
     該受信伝搬路係数算出部が算出した受信周波数帯での受信伝搬路係数の変動に基づいて、前記複数のアンテナの各々における、送信周波数帯での送信伝搬路係数を外挿により算出する送信伝搬路係数算出部と、
     前記受信周波数帯での受信伝搬路係数の変動に基づく補正係数に基づいて、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数を補正する補正部と、を備えることを特徴とする無線通信装置。
  11.  前記補正係数は、前記受信周波数帯での受信伝搬路係数の絶対値の周波数方向の変動が大きいほど、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数の絶対値を大きく減少させるような補正係数であることを特徴とする請求項10記載の無線通信装置。
  12.  前記補正係数は、前記受信周波数帯での受信伝搬路係数の位相の周波数方向の変動の方向と同一方向に、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数の位相を補正するような補正係数であることを特徴とする請求項10記載の無線通信装置。
  13.  前記補正部はさらに、前記受信伝搬路係数算出部が算出した受信周波数帯での受信伝搬路係数に基づいて、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数を補正することを特徴とする請求項10記載の無線通信装置。
  14.  前記補正係数は、前記受信伝搬路係数算出部が算出した受信周波数帯での受信伝搬路係数の絶対値が大きいほど、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数の絶対値を大きく減少させるような補正係数であることを特徴とする請求項10記載の無線通信装置。
  15.  前記受信伝搬路係数算出部が算出した前記受信周波数帯での受信伝搬路係数を複数記憶する受信伝搬路係数記憶部と、該受信伝搬路係数記憶部に記憶された前記受信周波数帯での複数の受信伝搬路係数に基づいて受信伝搬路係数の周波数方向の分布を算出する受信伝搬路係数分布算出部と、該受信伝搬路係数分布算出部が算出した受信伝搬路係数の周波数方向の分布に基づいて、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数を補正するための補正係数を算出する補正係数算出部と、をさらに備え、
     前記補正部は、前記補正係数算出部が算出した補正係数に基づいて、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数を補正することを特徴とする請求項10記載の無線通信装置。
  16.  前記補正係数算出部は、前記受信周波数帯での受信伝搬路係数の絶対値の周波数方向の変動が大きいほど、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数の絶対値を大きく減少させるような補正係数を算出することを特徴とする請求項15記載の無線通信装置。
  17.  前記補正係数算出部は、前記受信周波数帯での受信伝搬路係数の位相の周波数方向の変動の方向と同一方向に、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数の位相を補正するような補正係数を算出することを特徴とする請求項15記載の無線通信装置。
  18.  前記補正係数算出部は、前記受信伝搬路係数算出部が算出した受信周波数帯での受信伝搬路係数の絶対値が大きいほど、前記送信伝搬路係数算出部が算出した送信周波数帯での送信伝搬路係数の絶対値を大きく減少させるような補正係数を算出することを特徴とする請求項15記載の無線通信装置。
  19.  送信周波数帯と受信周波数帯とが異なるシステムに用いることを特徴とする請求項10記載の無線通信装置。
  20.  複数のアンテナを備えた無線通信装置と対向無線通信装置との間の無線通信を制御する無線通信方法であって、
     前記複数のアンテナの各々における、受信時の受信伝搬路係数を算出する受信伝搬路係数算出ステップと、
     該受信伝搬路係数算出ステップにおいて算出された受信時の受信伝搬路係数の変動に基づいて、前記複数のアンテナの各々における、送信時の送信伝搬路係数を外挿により算出する送信伝搬路係数算出ステップと、
     前記受信時の受信伝搬路係数の変動に基づく補正係数に基づいて、前記送信伝搬路係数算出部において算出された送信時の送信伝搬路係数を補正する補正ステップと、を含むことを特徴とする無線通信方法。
  21.  複数のアンテナを備えた無線通信装置と対向無線通信装置との間の無線通信を制御する無線通信方法であって、
     前記複数のアンテナの各々における、受信周波数帯での受信伝搬路係数を算出する受信伝搬路係数算出ステップと、
     該受信伝搬路係数算出ステップにおいて算出された受信周波数帯での受信伝搬路係数の変動に基づいて、前記複数のアンテナの各々における、送信周波数帯での送信伝搬路係数を外挿により算出する送信伝搬路係数算出ステップと、
     前記受信周波数帯での受信伝搬路係数の変動に基づく補正係数に基づいて、前記送信伝搬路係数算出ステップにおいて算出された送信周波数帯での送信伝搬路係数を補正する補正ステップと、を含むことを特徴とする無線通信方法。
PCT/JP2008/072131 2007-12-26 2008-12-05 無線通信装置および無線通信方法 WO2009081712A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/810,500 US20110009064A1 (en) 2007-12-26 2008-12-05 Wireless communication apparatus and wireless communication method
CN2008801229082A CN101911530A (zh) 2007-12-26 2008-12-05 无线通信装置和无线通信方法
JP2009547014A JP4918597B2 (ja) 2007-12-26 2008-12-05 無線通信装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-334692 2007-12-26
JP2007-334696 2007-12-26
JP2007334692 2007-12-26
JP2007334696 2007-12-26

Publications (1)

Publication Number Publication Date
WO2009081712A1 true WO2009081712A1 (ja) 2009-07-02

Family

ID=40801023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072131 WO2009081712A1 (ja) 2007-12-26 2008-12-05 無線通信装置および無線通信方法

Country Status (4)

Country Link
US (1) US20110009064A1 (ja)
JP (1) JP4918597B2 (ja)
CN (1) CN101911530A (ja)
WO (1) WO2009081712A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101809890A (zh) * 2007-09-25 2010-08-18 京瓷株式会社 无线通信装置和无线通信方法
WO2009069459A1 (ja) * 2007-11-29 2009-06-04 Kyocera Corporation 無線通信装置および無線通信方法
WO2009069458A1 (ja) * 2007-11-29 2009-06-04 Kyocera Corporation 無線通信装置および無線通信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043995A (ja) * 2000-07-27 2002-02-08 Sanyo Electric Co Ltd 無線装置
JP2003032167A (ja) * 2001-07-12 2003-01-31 Sanyo Electric Co Ltd 無線基地システムおよび送信指向性制御方法
JP3644594B2 (ja) * 1999-06-23 2005-04-27 国立大学法人 北海道大学 無線装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3464606B2 (ja) * 1998-03-31 2003-11-10 松下電器産業株式会社 無線通信装置及び無線通信方法
US7310304B2 (en) * 2001-04-24 2007-12-18 Bae Systems Information And Electronic Systems Integration Inc. Estimating channel parameters in multi-input, multi-output (MIMO) systems
JP2003152607A (ja) * 2001-11-08 2003-05-23 Ntt Docomo Inc 通信方法、通信システム、送信機及び受信機
JP4010225B2 (ja) * 2002-10-30 2007-11-21 日本電気株式会社 アレーアンテナ送受信装置
JP4068500B2 (ja) * 2003-05-14 2008-03-26 日本無線株式会社 アレイアンテナ通信装置
JP4175220B2 (ja) * 2003-09-08 2008-11-05 株式会社豊田中央研究所 マルチキャリア復調方法及びマルチキャリア復調装置
JP4286629B2 (ja) * 2003-10-17 2009-07-01 富士通コンポーネント株式会社 ポインティングデバイス及び受信ユニット
JP4375577B2 (ja) * 2005-01-11 2009-12-02 シャープ株式会社 適応変調制御装置および無線通信装置
US8000224B2 (en) * 2006-06-07 2011-08-16 Sharp Kabushiki Kaisha Receiver and frequency information estimating method
CN101809890A (zh) * 2007-09-25 2010-08-18 京瓷株式会社 无线通信装置和无线通信方法
WO2009069459A1 (ja) * 2007-11-29 2009-06-04 Kyocera Corporation 無線通信装置および無線通信方法
WO2009069458A1 (ja) * 2007-11-29 2009-06-04 Kyocera Corporation 無線通信装置および無線通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3644594B2 (ja) * 1999-06-23 2005-04-27 国立大学法人 北海道大学 無線装置
JP2002043995A (ja) * 2000-07-27 2002-02-08 Sanyo Electric Co Ltd 無線装置
JP2003032167A (ja) * 2001-07-12 2003-01-31 Sanyo Electric Co Ltd 無線基地システムおよび送信指向性制御方法

Also Published As

Publication number Publication date
US20110009064A1 (en) 2011-01-13
JP4918597B2 (ja) 2012-04-18
JPWO2009081712A1 (ja) 2011-05-06
CN101911530A (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
JP5126224B2 (ja) 無線通信装置および無線通信方法
US6343206B1 (en) Transmission power control apparatus and radio communication apparatus
WO2004066523A1 (ja) 適応制御装置
JP4918597B2 (ja) 無線通信装置
US8565334B2 (en) Radio communication system, terminal apparatus, base station apparatus, and radio communication method for radio communication system
US8009096B2 (en) Method, system and apparatus for determining antenna weighting for transmit diversity
US8767579B2 (en) Method of PCI and CQI estimation in CDMA systems
US8527008B2 (en) Wireless communication apparatus and wireless communication method
US8208859B2 (en) Radio communication device and radio communication method
JP4773567B2 (ja) 無線通信装置および無線通信方法
US20110117952A1 (en) System and Method for Resuming Power Control after Interruption
JP4773566B2 (ja) 無線通信装置および無線通信方法
US9386533B2 (en) Signal transmission method and apparatus of multi-antenna base station
JP5085252B2 (ja) 無線通信装置および無線通信方法
Cheung et al. Link analysis for space communication links using ARQ protocol
JP2005159849A (ja) 無線通信システム、基地局装置及び情報交換方法
JP5085257B2 (ja) 無線通信装置および無線通信方法
JP2699725B2 (ja) 複数トランスポンダの送信電力制御方法
CN115988407A (zh) 一种高通量卫星通信系统中卫星终端开环功率控制方法
JP2010028581A (ja) 無線通信システム、無線受信装置および方法
JP2007180875A (ja) 無線通信装置
JP2007235975A (ja) 無線通信装置
JP2006074605A (ja) アンテナベリフィケーション装置およびアンテナベリフィケーション方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122908.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863658

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009547014

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12810500

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08863658

Country of ref document: EP

Kind code of ref document: A1