WO2009076826A1 - 确定直达光路的方法和服务器及建立直达光路的系统 - Google Patents
确定直达光路的方法和服务器及建立直达光路的系统 Download PDFInfo
- Publication number
- WO2009076826A1 WO2009076826A1 PCT/CN2008/073177 CN2008073177W WO2009076826A1 WO 2009076826 A1 WO2009076826 A1 WO 2009076826A1 CN 2008073177 W CN2008073177 W CN 2008073177W WO 2009076826 A1 WO2009076826 A1 WO 2009076826A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- path
- bandwidth
- optical path
- direct optical
- endpoints
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/12—Shortest path evaluation
- H04L45/125—Shortest path evaluation based on throughput or bandwidth
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0241—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0254—Optical medium access
- H04J14/0256—Optical medium access at the optical channel layer
- H04J14/0257—Wavelength assignment algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0254—Optical medium access
- H04J14/0256—Optical medium access at the optical channel layer
- H04J14/0258—Wavelength identification or labelling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0254—Optical medium access
- H04J14/0267—Optical signaling or routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0254—Optical medium access
- H04J14/0267—Optical signaling or routing
- H04J14/0269—Optical signaling or routing using tables for routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0254—Optical medium access
- H04J14/0267—Optical signaling or routing
- H04J14/0271—Impairment aware routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/12—Shortest path evaluation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/50—Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/62—Wavelength based
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/64—Routing or path finding of packets in data switching networks using an overlay routing layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/70—Routing based on monitoring results
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0278—WDM optical network architectures
- H04J14/0284—WDM mesh architectures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0064—Arbitration, scheduling or medium access control aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0073—Provisions for forwarding or routing, e.g. lookup tables
Definitions
- Embodiments of the present invention relate to the field of communications, and in particular, to a method and server for determining a direct optical path and a system for establishing a direct optical path. Background technique
- the traffic monitoring data obtained by the network traffic monitoring system is mainly used as data for network analysis by the network administrator.
- the network administrator makes decisions based on the data, through bandwidth setting, load balancing, and QoS (Quality of Service). Set to optimize the network.
- This kind of network optimization is actually a long-term network planning, and it is not the dynamic situation of dynamically adjusting the network topology and optimizing the network.
- the direct optical path between the two routers is usually obtained by pre-static configuration, that is, two routers are selected in advance as the two endpoints of the direct optical path.
- the state configuration gets a direct light path.
- the direct optical path refers to the path between the two routers on the optical transmission level. It can be seen that this static configuration method cannot dynamically adjust the network topology and optimize network resources. For example, two routers on a path, or nodes, sometimes have a large service bandwidth between the two nodes. Sometimes the service bandwidth between the two nodes is small.
- the current method of determining the direct optical path cannot dynamically determine the two endpoints that need to establish a direct optical path, and at the same time, cannot dynamically adjust the network topology.
- Embodiments of the present invention provide a method and server for determining a direct optical path for dynamically determining two endpoints that need to establish a direct optical path.
- Embodiments of the present invention also provide a system for establishing a direct optical path to dynamically adjust a network topology.
- a method for determining a direct optical path comprising:
- a server that determines a direct optical path comprising:
- a candidate node pair obtaining module configured to obtain a candidate node pair according to the monitored bandwidth occupied by each path and the router node experienced by each path, where the bandwidth between the candidate node pairs exceeds a preset bandwidth threshold;
- the endpoint determining module is configured to select, according to a preset routing policy, a pair of candidate nodes obtained by the candidate node pair obtaining module, and select one node pair as the two endpoints of the direct optical path.
- a system for establishing a direct optical path the system includes at least two nodes, and the system further includes:
- a server configured to obtain a candidate node pair according to the monitored bandwidth occupied by each path and the nodes experienced by each path, where the bandwidth between the candidate node pairs exceeds a preset bandwidth threshold; according to a preset routing policy, In the candidate node pair, a node pair is selected as two endpoints of the direct optical path, and the high-level path calculation unit is instructed to allocate an IP layer address to the two endpoints of the direct optical path; indicating that the two endpoints are configured according to the assigned IP address.
- Direct route notification
- a high-level path calculation unit configured to allocate an IP address to the two endpoints determined by the server, and trigger a node record of the path of the path where the direct optical path is located to modify the path of the node according to the direct route advertisement of the two endpoints;
- a low-level path calculation unit for calculating an optical layer path between the two endpoints determined by the server.
- the method and server for determining a direct optical path and the system for establishing a direct optical path obtained by the embodiments of the present invention obtain a threshold exceeding a predetermined bandwidth according to the monitored bandwidth occupied by each path and the router nodes experienced by each path.
- a pair of candidate nodes selects a pair of nodes from the pair of candidate nodes, and establishes a direct optical path of the optical layer between the two nodes, thereby dynamically determining two endpoints that need to establish a direct optical path according to the service bandwidth, thereby being dynamic
- the network topology is adjusted to effectively utilize the optical layer network resources, reduce the burden between the routers, and optimize the network resources.
- FIG. 1 is a schematic flowchart of a method for determining a direct optical path used in an embodiment of the present invention
- FIG. 2 is a schematic diagram of determining a direct optical path between two routers according to a first embodiment of the present invention
- FIG. 3 is a first embodiment of the present invention for determining a direct optical path.
- FIG. 4 is a schematic diagram of determining a direct optical path between two routers according to a second embodiment of the present invention
- FIG. 5 is a schematic diagram of determining a direct optical path between two routers according to a third embodiment of the present invention;
- FIG. An embodiment determines a schematic diagram of a direct optical path between two routers.
- FIG. 7 is a schematic structural diagram of a system for establishing a direct optical path for use in an embodiment of the present invention. detailed description
- FIG. 1 is a schematic flow chart of a method for determining a direct optical path used in an embodiment of the present invention. As shown in Figure 1, it includes:
- Step 101 According to the monitored bandwidth occupied by each path and the node record experienced by each path, at least one candidate node pair is obtained, and the bandwidth between the candidate node pairs exceeds a preset bandwidth threshold.
- the method for monitoring the occupied bandwidth includes: counting the traffic of the path within a set time, dividing the flow of the path by the set time, and obtaining the path within the set time. Occupied bandwidth.
- the method for obtaining the candidate node pair may be: calculating the bandwidth between any two nodes, where the bandwidth between the two nodes is equal to the sum of the bandwidths of all the paths passing through the two nodes, when the bandwidth between the two nodes exceeds the bandwidth threshold , that is, when the bandwidth threshold is greater than the bandwidth threshold, the two nodes are candidate node pairs.
- the method of obtaining a candidate node pair may also be: finding a path having at least two public nodes in each path. Adding the bandwidths of the found paths to obtain the bandwidth of the common node. When the bandwidth of the common node exceeds the bandwidth threshold, any two nodes in the common node are candidate node pairs.
- the public node refers to at least The node through which the two paths pass.
- Step 102 Select a node pair as the two endpoints of the direct optical path from the obtained candidate node pair according to the preset routing policy.
- routing policies there may be multiple routing policies.
- the routing policy is: The route to the optical path is the longest, the two endpoints of the direct optical path are determined, including: From the candidate node pair, the farthest distance is selected. A pair of nodes, as the two endpoints of the direct optical path.
- the routing policy is: When the path through which the direct optical path passes is the most, the two endpoints of the direct optical path are determined, including: From the candidate node pair, the node pair with the largest number of paths between the two nodes is selected as the direct optical path. Two endpoints. Of course, you can also use other The routing strategy selects the two endpoints of the direct optical path.
- FIG. 2 is a schematic diagram of determining a direct optical path between two routers according to a first embodiment of the present invention, as shown in FIG. 2, in a MPLS-TE (Multi-Protocol Label Switching-Traffic Engineering) layer. It includes three LSPs (label switch paths), which are represented as LSP1, LSP2, and LSP3. The dotted line indicates LSP1, the dotted line indicates LSP2, and the solid line indicates LSP3. Each LSP includes not only edge nodes for receiving IP layer data, but also PE1, PE2, PE3, and PE4, and intermediate nodes that transmit data at the MPLS layer, denoted as P1, P2, ... P6 .
- the node here is a router node.
- Each edge node monitors the bandwidth occupied by its own LSP and reports it to the server.
- the server is configured to obtain two nodes exceeding the bandwidth threshold according to the bandwidth occupied by the monitored path and the preset bandwidth threshold.
- the path is calculated to the PCE (Path Computation Element).
- the unit) is configured to establish a direct optical path in the optical layer.
- the PCE is divided into a PCE-Hi (Path Computation Element-High, a high-level path calculation unit) and a PCE-Lo (Path Computation Element-Low, a low-level path calculation unit).
- PCE-Hi is responsible for the path calculation of the MPLS layer
- PCE-Lo is responsible for the path calculation of the optical layer.
- server PCE-Hi
- PCE-Lo is responsible for the path calculation of the optical layer.
- FIG. 2 The flow chart of the method for determining the direct optical path in this embodiment is shown in FIG. 2 below. The specific steps are shown in FIG. 3:
- Step 301 The PE collects LSP traffic.
- the PE is responsible for receiving data packets from the IP layer, and mapping the data packets to corresponding LSPs for MPLS forwarding. Moreover, the traffic of the path is counted in the timing time.
- the specific method is: setting a timer on each PE, and accumulating the number of bytes of each data packet as the traffic of the path (traffic) during the timed period, and recording the maintenance in the maintenance In the LSP traffic statistics table. For example, the LSP traffic statistics table shown in Table 1 is maintained on PE2. LSP Out Out ERO amount (byte)
- LSP1 PE2->PE3 1 5 PE2, P1, P3, P5, PE3 4500M
- the table includes the LSP, the Out Interface output label (Out Label), the ERO (Explicit Route Object), and the flow table entry. Then, go to step 302.
- Step 302 The PE calculates the bandwidth flowing through the PE path according to the timing and the traffic, and reports the calculated path bandwidth to the server.
- the PE After the bandwidth actually occupied by the LSP is obtained, the PE sends the calculated bandwidth to the server, and clears the traffic statistics in the local table.
- Step 303 The server obtains the bandwidth occupied by each LSP according to the bandwidth reported by each PE.
- the server collects statistics on the bandwidth occupied by all LSPs.
- the historical data items are included in the LSP bandwidth statistics table as shown in Table 2 maintained by the server.
- the historical data items here are the bandwidth data corresponding to all LSPs in the historical time.
- the two historical data items in Table 2 are the bandwidth of the previous 1 minute and the average bandwidth of the previous 1 hour.
- the historical time in this embodiment is the monitoring period of the LSP occupied bandwidth, and the server determines whether a direct optical path needs to be established according to the statistical value of the previous monitoring period.
- LSP1 PE2->PE3 1 5 PE2, P1, P3, P5, PE3 600M 300M
- LSP2 PE2->PE4 2 6 PE2, P1, P3, P6, PE4 300M 600M
- LSP3 PE1->PE3 1 4 PE1, P1, P4, P6, P5, PE3 600M 500M Table 2
- Step 304 The server analyzes the bandwidth actually occupied by each LSP, and finds a node pair that exceeds a predetermined bandwidth threshold according to the ERO of each LSP.
- the process of searching for a node exceeding a predetermined bandwidth threshold may be performed based on the node pair, that is, according to the bandwidth of each path and the ERO of each path, first find out all the LSPs between the two nodes, and between the two nodes.
- the bandwidth is equal to the sum of the bandwidths of all paths passing through the two nodes.
- the bandwidth between PE2 and P1 in Table 2 is equal to the sum of the bandwidths of LSP1 and LSP2.
- the bandwidth between the two nodes is then compared to a predetermined bandwidth threshold.
- LSP1, LSP2, and LSP3 in Table 2 have only one common node and do not perform bandwidth superposition of LSPs.
- LSP1 and LSP3 there are three common nodes, namely P1, P5, and PE3.
- the bandwidth between any two of the three common nodes is equal to the sum of the bandwidths of LSP1 and LSP3, that is, in the first hour.
- the bandwidth of Pl, P5 and PE3 is (300M+500M) bit/s, and the bandwidth of P1, P5 and PE3 in the first 1 minute is (600M+600M)bit/s. If the predetermined bandwidth threshold is 1000 Mbit/s, the bandwidth between P1->P5, P5->PE3, and P1->PE3 exceeds the predetermined bandwidth threshold. Similarly, for the first hour of LSP2 and LSP3, the bandwidth between P1->P6 exceeds the predetermined bandwidth threshold.
- Step 305 The server selects a node pair that exceeds a preset bandwidth threshold according to a preset routing policy, and serves as two endpoints of the direct optical path.
- the routing policy is assumed to be: Select the two nodes that are farthest from each other as the two endpoints of the direct optical path.
- the bandwidth of P1, P5, and PE3 exceeds 1 minute before the server analyzes.
- Schedule the bandwidth threshold the server will choose the most The two far nodes, P1 and PE3, serve as the two endpoints of the direct optical path.
- a node pair of an important location is preferentially selected as an endpoint.
- the server determines the two endpoints that go directly to the optical path.
- Step 306 The server sends a request for establishing a direct optical path between the two endpoints to the PCE-Lo through the PCE-Hi.
- the server can also determine the number of direct optical paths that need to be established according to the bandwidth between the two endpoints and a preset optical path bandwidth.
- the sum of the bandwidths of multiple LSPs between two endpoints is 10G bit/s
- the preset optical path is 2.5G bit/s
- four optical paths need to be established between the two endpoints.
- Step 307 The PCE-Lo calculates the optical layer path according to the topology of the optical layer.
- the PCE-Lo can calculate the optical layer path according to the topology of the optical layer.
- the optical layer path can also be calculated according to the topology of the optical layer and considering the wavelength damage factor. After the optical layer path is calculated by the PCE-Lo, the optical layer node is triggered to establish a direct optical path.
- Step 308 PCE-Lo returns a response to establish a direct optical path to the server through PCE-Hi.
- the PCE-Lo calculates the optical layer path
- a suitable optical layer path is not calculated, a setup failure response is returned to the server, and the process ends. If the optimal optical layer path is calculated and the direct optical path is established, a successful response is returned to the server. After the server learns that the direct optical path is established in the optical layer, the path re-optimization and service switching are initiated, and step 309 is performed.
- Step 309 The server instructs the PCE-Hi to assign an IP interface address to the two endpoints of the MPLS layer.
- an IP interface address needs to be assigned to the two endpoints in the MPLS layer, and an address pool dedicated to the direct link is maintained in the PCE-Hi, for example, the address pool. Belong to the same network segment.
- the two endpoints of the direct link perform address negotiation according to the address pool, and select two addresses from the address.
- Step 310 The server indicates that both endpoints of the direct optical path are all in the MPLS layer.
- the router advertises the new direct link.
- the MPLS layer needs to perform route advertisement.
- an OSPF Open Shortest Path First
- the new direct link is advertised so that each node on the MPLS layer can learn the new direct link.
- the notification mode is: sending information carrying the network topology path, carrying the newly created direct link information in the information, and of course, other manners can also be used for route advertisement, because PCE-Hi At the MPLS layer, the route advertisement can thus be received. After the PCE-Hi receives the route advertisement, step 311 is performed.
- Step 311 The PCE-Hi triggers the node record that the first node on the LSP modifies the path according to the route advertisement, and establishes a new LSP.
- the PCE-Hi triggers the first node of the LSP where the two endpoints are located, or the first node that the LSP experiences, according to the newly established direct link, and re-records the node experienced by the new LSP.
- the ERO in the path message is modified, and the ERO contains two endpoints of the direct optical path.
- Each edge node ensures that the data stream smoothly transitions to the new LSP according to the principle of make-before-break. Take the data in Table 2 as an example.
- the bandwidth threshold is determined based on the bandwidth of the previous 1 minute.
- the nodes that LSP1 traverses are: PE2, PI, and PE3.
- the nodes that LSP3 traverses are: PE1, PI, and PE3.
- the bandwidth threshold is determined based on the bandwidth of the previous hour
- the optical path is established between P1 and P6.
- the nodes that LSP2 traverses are: PE2, P1, P6, and PE4, and the nodes that LSP3 traverses are: PE1, P1, and P6. , P5 and PE3. That is, each LSP data stream is transmitted from the newly created optical path.
- Step 312 Record the correspondence between the original LSP and the newly created direct optical path.
- the correspondence between the original LSP and the newly created direct optical path is recorded on the PCE-Hi.
- the PCE-Hi For example, when the traffic or bandwidth between the two endpoints of the direct optical path is detected by the PCE-Hi to fall to a certain threshold.
- the PCE-Lo can be driven again to release the direct optical path. In this case, the traffic needs to be smoothly transitioned to the original LSP, and then the PCE-Lo is notified to delete the corresponding direct optical path, and the assigned IP interface address is recovered.
- the method for establishing the adjacency relationship between the routers is not established by using the command configuration in the prior art, but dynamically modifying the adjacency relationship between the routers, thereby being able to be in the router and the light.
- the direct optical path of the optical layer is effectively utilized to implement data transmission between the routers.
- this implementation can also integrate the server, PCE-Hi and PCE-Lo into the PCE. As shown in Fig. 4, it has the MPLS layer and the topology of the optical layer, and can calculate the path of each layer. It is also possible to integrate the server in PCE-Hi, as shown in Figure 5 or integrate PCE-Hi and PCE-Lo as shown in Figure 6.
- FIG. 7 is a schematic structural diagram of a system for establishing a direct optical path in an embodiment of the present invention. As shown in FIG. 7, the system includes at least two nodes 740, and the system further includes:
- the server 710 obtains a candidate node pair according to the monitored bandwidth occupied by each path and the node record experienced by each path, and the bandwidth between the candidate node pairs exceeds a preset bandwidth threshold; according to a preset routing policy, the candidate node pair Medium, select a node pair as the two endpoints of the direct optical path;
- the high-level path calculation unit 720 allocates an IP address to the two endpoints determined by the server;
- the lower layer path calculation unit 730 calculates the optical layer path between the two endpoints determined by the server.
- Server 710 includes:
- the candidate node pair obtaining module 711 obtains a candidate node pair according to the monitored bandwidth occupied by each path and the node record experienced by each path, and the bandwidth between the candidate node pairs exceeds a preset bandwidth threshold;
- the endpoint determining module 712 determines two endpoints of the direct optical path from the candidate node pairs obtained by the candidate node pair obtaining module according to a preset routing policy.
- the server 710 is located in the same physical entity as the high-level path computing unit 720, or the low-level path computing unit 730 is located in the same physical entity as the high-level path computing unit 720, or the server 710 is located in the upper-layer path computing unit 720 and the lower-layer path computing unit 730. Within the same physical entity.
- the server 710 may further include: a path re-optimization initiation that initiates a path re-optimization process a module, the module instructing the path calculation unit to allocate an IP layer address to the two endpoints obtained by the endpoint determining module, indicating that the two endpoints obtained by the endpoint determining module are allocated according to
- the IP address is used for direct route advertisement.
- the server 710 may further include: a recording module and a release module that record a correspondence between the original path and the direct optical path.
- a recording module and a release module that record a correspondence between the original path and the direct optical path.
- the present invention can be implemented by hardware or by software plus a necessary general hardware platform.
- the technical solution of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Description
确定直达光路的方法和服务器及建立直达光路的系统 本申请要求于 2007年 11月 27 日提交中国专利局、 申请号为 200710187372.X, 发明名称为"确定直达光路的方法和服务器及建 立直达光路的系统"的中国专利申请的优先权, 其全部内容通过引 用结合在本申请中。
技术领域
本发明实施例涉及通信领域,特别涉及一种确定直达光路的方法 和服务器及建立直达光路的系统。 背景技术
随着宽带互联网的迅速发展, 网络规模不断扩张, 网络结构日渐 复杂, 网络业务日趋丰富, 网络流量高速增长。 电信运营商需要通过 可靠、有效的网络业务流量监测系统对网络以及网络所承载的各类业 务进行及时、 准确的流量和流向分析, 进而挖掘网络资源潜力, 控制 网络互联成本, 并为网络规划、 优化调整和业务发展提供基础依据。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问 题:
上述网络业务流量监测系统得到的流量监测数据,主要作为网络 管理员进行网络分析的数据, 由网络管理员根据这一数据进行决策, 通过带宽设置、 负载均衡和 QoS ( Quality of Service, 服务质量)设 定来进行网络优化。 这种网络优化实际上是一种长期的网络规划, 而 并非是 居流量情况动态地调整网络拓朴、 优化网络。
另一方面, 目前在路由器和光传输设备一起组网的网络中, 路由 器和光传输设备一起协调配合进行网络优化的技术还不成熟。 比如, 在路由器层面中,两个路由器之间的直达光路通常是由预先静态配置 得到的, 即预先选择出两个路由器作为直达光路的两个端点, 通过静
态配置得到直达光路。 这里, 直达光路指的是两个路由器之间在光传 输层面上的路径。可见,这种静态配置方法无法动态地调整网络拓朴、 优化网络资源。 比如, 在路径上的两个路由器, 或称为节点, 有时这 两节点间的业务带宽较大, 有时这两节点间的业务带宽较小, 如果没 有预先配置经过这两节点间的直达光路,那么当这两节点间的带宽过 大时, 会造成网络拥塞。 也就是说, 由于无法动态地确定出需要建立 直达光路的两个端点, 也就无法动态调整网络拓朴, 因而不能够很好 地使用光层网络资源, 会造成路由器层面的节点负担过大。
可见, 目前确定直达光路的方法, 无法动态地确定出需要建立直 达光路的两个端点, 同时, 无法动态地调整网络拓朴。
发明内容
本发明实施例提供一种确定直达光路的方法和服务器,用于动态 地确定出需要建立直达光路的两个端点。
本发明实施例还提供一种建立直达光路的系统,以实现动态地调 整网络拓朴。
为达到上述目的, 本发明实施例的技术方案具体是这样实现的: 一种确定直达光路的方法, 该方法包括:
根据监测到的各个路径占用的带宽及各路径经历的路由器节点, 得到候选节点对, 所述候选节点对间的带宽超过预先设置的带宽门 限; 根据预先设置的路由选择策略, 从所述候选节点对中, 选择出一 个节点对作为直达光路的两个端点。
一种确定直达光路的服务器, 该服务器包括:
候选节点对获取模块,用于根据监测到的各个路径占用的带宽及 各路径经历的路由器节点, 得到候选节点对, 所述候选节点对间的带 宽超过预先设置的带宽门限;
端点确定模块, 用于根据预先设置的路由选择策略, 从所述候选 节点对获取模块得到的候选节点对中,选择出一个节点对作为直达光 路的两个端点。
一种建立直达光路的系统, 所述系统包括至少两个节点, 所述系 统还包括:
服务器,用于根据监测到的各个路径占用的带宽及各路径经历的 节点, 得到候选节点对, 所述候选节点对间的带宽超过预先设置的带 宽门限; 根据预先设置的路由选择策略, 从所述候选节点对中, 选择 出一个节点对作为直达光路的两个端点,指示高层路径计算单元为所 述直达光路的两个端点分配 IP层地址; 指示所述两个端点根据分配 的 IP地址进行直达路由通告;
高层路径计算单元,用于为所述服务器确定出的两个端点分配 IP 地址, 根据所述两个端点的直达路由通告, 触发所述直达光路所在路 径的首节点修改路径经历的节点记录;
低层路径计算单元,用于在所述服务器确定出的两个端点之间计 算光层路径。
与现有技术相比,本发明实施例提供的确定直达光路的方法和服 务器以及建立直达光路的系统,根据监测到的各个路径占用的带宽及 各路径经历的路由器节点, 得到超过预定带宽门限的候选节点对, 从 候选节点对中选择出一个节点对,在这两节点之间建立光层的直达光 路,因而能够根据业务带宽来动态地确定出需要建立直达光路的两个 端点, 进而能够动态地调整网络拓朴, 从而能够有效利用光层网络资 源, 减少往来路由器之间的负担, 实现网络资源的优化。 附图说明
图 1为本发明实施例釆用的确定直达光路的方法流程示意图; 图 2为本发明第一个实施例确定两路由器间直达光路的示意图; 图 3为本发明第一个实施例确定直达光路的方法流程示意图; 图 4为本发明第二个实施例确定两路由器间直达光路的示意图; 图 5为本发明第三个实施例确定两路由器间直达光路的示意图; 图 6为本发明第四个实施例确定两路由器间直达光路的示意图; 图 7为本发明实施例中釆用的建立直达光路的系统结构示意图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白, 以下参照附 图并举实施例, 对本发明作进一步详细说明。
图 1为本发明实施例釆用的确定直达光路的方法流程示意图。如 图 1所示, 包括:
步骤 101 : 根据监测到的各个路径占用的带宽及各路径经历的节 点记录, 得到至少一个候选节点对, 这些候选节点对之间的带宽超过 预先设置的带宽门限。
本步骤中, 对每一条路径, 监测其占用的带宽的方法包括: 在设 定的时间内统计路径的流量, 将该路径的流量除以设定的时间, 得到 在设定的时间内该路径占用的带宽。
得到候选节点对的方法可以是:计算任意两节点间的带宽,这里, 两节点间的带宽等于经过该两个节点的所有路径的带宽之和 ,在这两 个节点间的带宽超过带宽门限时, 也就是大于带宽门限时, 则这两节 点为候选节点对。
得到候选节点对的方法也可以是:查找各路径中具有至少两个公 共节点的路径。 将查找出的路径的带宽相加, 得到经过公共节点的带 宽, 当经过公共节点的带宽超过带宽门限时, 则公共节点中的任两个 节点为候选节点对,这里,公共节点指的是至少两条路径经过的节点。
步骤 102: 根据预先设置的路由选择策略, 从得到的候选节点对 中, 选择出一个节点对作为直达光路的两个端点。
本步骤中,路由选择策略可以有多种,比如, 当路由选择策略为: 直达光路的路由最长时, 确定出直达光路的两个端点, 包括: 从候选 节点对中,选择出距离最远的一个节点对,作为直达光路的两个端点。 而当路由选择策略为: 直达光路所经过的路径最多时, 确定出直达光 路的两个端点, 包括: 从候选节点对中, 选择出两节点间路径数目最 多的一个节点对, 作为直达光路的两个端点。 当然, 也可以釆用其它
的路由选择策略, 选择出直达光路的两个端点。
图 2 为本发明第一个实施例中确定两路由器间直达光路的示意 图,如图 2所示,在 MPLS-TE ( Multi-Protocol Label Switching-Traffic Engineering, 带流量工程的多协议标签交换)层包括三条 LSP ( Label Switch Path, 标签交换路径), 分别表示为 LSP1、 LSP2和 LSP3 , 其 中, 虚线表示 LSP1 , 点划线表示 LSP2, 实线表示 LSP3。 每条 LSP 不仅包含了用于接收 IP层数据的边缘节点, 表示为 PE1、 PE2、 PE3 和 PE4 , 还包含了在 MPLS 层传输数据的中间节点, 表示为 Pl、 P2... ... P6。 这里的节点为路由器节点。
各边缘节点监测流经自身的 LSP 占用的带宽并向服务器上报。 服务器用于根据监测到的路径占用的带宽及预先设置的带宽门限 ,得 到路径上超过该带宽门限的两个节点,在得到超过预定带宽的两个节 点时, 向 PCE ( Path Computation Element, 路径计算单元)请求在光 层建立直达的光路,本实施例中, PCE分成 PCE-Hi( Path Computation Element-High, 高层路径计算单元) 和 PCE-Lo ( Path Computation Element-Low, 低层路径计算单元)两层, PCE-Hi负责 MPLS层的路 径计算, PCE-Lo则负责光层的路径计算。 本实施例中假设服务器、 PCE-Hi和 PCE-Lo是分设的。 下面结合图 2, 给出本实施例中确定直 达光路的方法流程示意图, 具体步骤如图 3所示:
步骤 301 : PE统计 LSP流量。
本实施例中, PE负责从 IP层接收数据包, 并将数据包映射到对 应的 LSP上进行 MPLS转发。 并且, 在定时时间内统计路径的流量, 具体的方法是: 在各个 PE上设置一个定时器, 在定时时间内, 累加 各个数据包的字节数作为路径的流量(traffic ), 将记录在维护的 LSP 流量统计表中。 比如, 在 PE2上维护了如表 1所示的 LSP流量统计 表。
LSP Out Out ERO 量 (byte)
Interface Label
LSP1 :PE2->PE3 1 5 PE2,P1,P3,P5,PE3 4500M
LSP2:PE2->PE4 2 6 PE2,P1,P3,P6,PE4 2250M 表 1
表中包括了 LSP、输出接口( Out Interface )输出标签( Out Label )、 ERO ( Explicit Route Object, 显式路径记录对象)和流量表项。 时, 执行步骤 302。
步骤 302: PE根据定时时间及流量计算流经该 PE路径的带宽, 并向服务器上报计算得到的路径带宽。
本实施例中,根据计算带宽的方法,将路径的流量除以定时时间, 得到在定时时间内该路径占用的带宽, 单位是位 /秒(bit/s )。 比如, 定时时间为 1分钟, 在定时时间内的流量为 4500M字节 (byte ), 则 计算得到的带宽为 ( 4500*8 ) /60=600M ( bit/s )„
在得到 LSP实际占用的带宽后, PE将计算得到的带宽上 给服 务器, 并且将本地表中的流量统计项清零。
步骤 303 : 服务器根据各 PE上报的带宽, 统计得到各 LSP占用 的带宽。
本实施例中, 服务器对所有 LSP 占用的带宽进行统计。 比如, 在服务器维护的如表 2所示的 LSP带宽统计表中包括了两个历史数 据项, 这里的历史数据项是在历史时间内所有 LSP对应的带宽数据。 表 2中的两个历史数据项分别为前 1分钟的带宽和前 1小时的平均带 宽。 本实施例中的历史时间为 LSP 占用带宽的监测周期, 服务器根 据前一个监测周期时间内的统计值, 来确定是否需要建立直达光路,
LSP Out Out ERO 前 1分 前 1小时 Interface Label 钟的 的平均带 带宽 宽 (bit/s) (bit/s)
LSP1 :PE2->PE3 1 5 PE2,P1,P3,P5,PE3 600M 300M
LSP2:PE2->PE4 2 6 PE2,P1,P3,P6,PE4 300M 600M
LSP3:PE1->PE3 1 4 PE1,P1,P4,P6,P5,PE3 600M 500M 表 2
步骤 304: 服务器分析各个 LSP 实际占用的带宽, 并根据各个 LSP的 ERO查找到超过预定带宽门限的节点对。
本实施例中, 查找超过预定带宽门限的节点过程, 可以基于节点 对进行查找, 即根据各路径的带宽及各路径的 ERO, 先找出经过两 个节点间的所有 LSP,该两节点间的带宽等于经过该两个节点的所有 路径的带宽之和。如在表 2中的 PE2和 P1间的带宽等于 LSP1和 LSP2 的带宽之和。 而后, 将两节点间的带宽与预定的带宽门限相比较。
当然也可以基于路径进行查找,即先选择出具有至少两个公共节 点的路径, 将选择出的路径的带宽相加, 得到经过公共节点的带宽。 比如, 表 2中的 LSP1、 LSP2和 LSP3 , 只有一个公共节点, 不进行 LSP的带宽叠加。 而对于 LSP1和 LSP3 , 有三个公共节点, 分别为 Pl、 P5 和 PE3 , 则经过这三个公共节点中任意两点间的带宽均等于 LSP1和 LSP3的带宽之和, 即在前 1小时, 经过 Pl、 P5和 PE3的带 宽为 (300M+500M ) bit/s, 而在前 1分钟经过 Pl、 P5和 PE3的带宽 为(600M+600M )bit/s。如果预定带宽门限为 1000M bit/s,则 P1->P5 , P5->PE3 和 P1->PE3 间的带宽均超过了预定带宽门限。 同理, 对于 LSP2和 LSP3在前 1小时, P1->P6间的带宽均超过了预定带宽门限。
步骤 305: 服务器根据预先设置的路由选择策略, 选择出超过预 先设置的带宽门限的一个节点对, 作为直达光路的两个端点。
本实施例中,假设釆用的路由选择策略为: 选择相离最远的两个 节点作为直达光路的两个端点, 根据这个策略, 在服务器分析出前 1 分钟经过 Pl、 P5和 PE3的带宽超过预定带宽门限, 服务器会选择最
远的两个节点, 也就是 P1和 PE3 , 作为直达光路的两个端点。 当然 也可以根据其它策略, 比如, 优先选择重要位置的节点对作为端点。 至此, 服务器确定出直达光路的两个端点。
步骤 306: 服务器通过 PCE-Hi向 PCE-Lo发送建立两个端点间 的直达光路的请求。
本实施例中,假设服务器还可以根据两个端点间的带宽及预先设 置的一条光路带宽, 确定出需要建立直达光路的数目。 比如, 两个端 点间多个 LSP的带宽之和为 10G bit/s,而预先设置的光路为 2.5G bit/s 则在该两个端点间需要建立四条光路。
步骤 307: PCE-Lo根据光层的拓朴计算光层路径。
本实施例中, PCE-Lo根据光层的拓朴可以计算得到光层路径, 为得到最优的光层路径,还可以根据光层的拓朴且考虑波长损伤的因 素来计算光层路径, 在 PCE-Lo计算得到光层路径后, 触发光层节点 建立直达光路。
步骤 308: PCE-Lo通过 PCE-Hi向服务器返回建立直达光路的响 应。
本实施例中, 在 PCE-Lo计算完光层路径后, 如果没有计算出一 条合适的光层路径, 则向服务器返回建立失败响应, 结束本流程。 如 果计算得到最优的光层路径, 并且建立起直达光路后, 向服务器返回 建立成功响应, 在服务器获知在光层建立直达光路后, 发起路径重优 化及业务切换的过程, 执行步骤 309。
步骤 309:服务器指示 PCE-Hi为 MPLS层的两个端点分配 IP接 口地址。
本实施例中, 为了在两个端点之间建立直达光路, 需要在 MPLS 层为这两个端点分配 IP接口地址,在 PCE-Hi维护一个专用于直达链 路的地址池, 比如, 这个地址池属于同一个网段。 在需要分配直达光 路两端点的 IP接口地址时, 直达链路的两个端点根据该地址池, 进 行地址协商, 从中选择出两个地址。
步骤 310: 服务器指示直达光路的两个端点向 MPLS层中的所有
路由器通告新建的直达链路。
当光层中的直达光路建立成功后,还需要在 MPLS层进行路由通 告, 本实施例中, 在两个直达光路的端点之间运行 OSPF ( Open Shortest Path First, 开放最短路径优先)协议, 将新建的直达链路进 行通告,使得 MPLS层上的各节点都能获知新建的直达链路。本实施 例中, 釆用的通告方式为: 发送携带网络拓朴路径的信息, 在该信息 中携带了新建的直达链路信息, 当然也可以釆用其它的方式进行路由 通告, 由于 PCE-Hi在 MPLS 层, 因而能够接收到该路由通告。 在 PCE-Hi接收到该路由通告后, 执行步骤 311。
步骤 311 : PCE-Hi根据路由通告, 触发 LSP上的首节点修改路 径所经历的节点记录, 建立新的 LSP。
本实施例中, PCE-Hi根据新建的直达链路, 触发两个端点所在 的 LSP的首节点, 或称 LSP经历的第一个节点, 对新 LSP所经历的 节点进行重新记录, 本实施例中修改了路径消息中的 ERO, 该 ERO 包含了直达光路的两个端点。
每个边缘节点根据先建后拆( make-before-break ) 的原则, 保证 数据流平滑过渡到新的 LSP上, 以表 2 中的数据为例, 当根据前 1 分钟的带宽进行带宽门限判定时,在 P1-PE3之间新建了光路,则 LSP1 历经的节点为: PE2、 PI和 PE3 , LSP3历经的节点为: PE1、 PI和 PE3。 当根据前 1小时的带宽进行带宽门限判定时, 由于在 P1-P6之 间新建了光路, LSP2历经的节点为: PE2、 Pl、 P6和 PE4, 而 LSP3 历经的节点为: PE1、 Pl、 P6、 P5和 PE3。 也就是说, 每个 LSP数 据流均从新建的光路中传送。
步骤 312: 记录原有的 LSP与新建直达光路的对应关系。
本实施例中,在 PCE-Hi上记录原有的 LSP与新建直达光路的对 应关系, 比如, 在 PCE-Hi监测到直达光路两个端点间的流量或带宽 下降到设置的某个门限时, 能够再次驱动 PCE-Lo将直达光路释放, 在这种情况下, 需要先让流量平滑过渡到原有的 LSP, 然后再通知 PCE-Lo删除对应的直达光路, 并回收分配的 IP接口地址。
本实施例中, 在路由器层面来讲, 路由器之间的邻接关系建立的 方法没有釆用现有技术中通过命令配置来建立 ,而是动态地修改路由 器之间的邻接关系,从而能够在路由器和光传输设备一起组网的网络 中, 有效利用光层的直达光路实现在路由器间的数据传输。
当然本实施还可以将服务器、 PCE-Hi和 PCE-Lo集成在 PCE中, 如图 4所示,使其拥有 MPLS层以及光层的拓朴, 能够计算各层的路 径。 也可以将服务器集成在 PCE-Hi中, 如图 5所示或者如图 6所示 将 PCE-Hi和 PCE-Lo集成在一起。
图 7为本发明实施例中釆用的建立直达光路的系统结构示意图, 如图 7所示, 该系统包括至少两个节点 740 , 系统还包括:
服务器 710, 根据监测到的各个路径占用的带宽及各路径经历的 节点记录, 得到候选节点对, 候选节点对间的带宽超过预先设置的带 宽门限; 根据预先设置的路由选择策略, 从候选节点对中, 选择出一 个节点对作为直达光路的两个端点;
高层路径计算单元 720, 为服务器确定出的两个端点分配 IP地 址;
低层路径计算单元 730, 在所述服务器确定出的两个端点之间计 算光层路径。
服务器 710包括:
候选节点对获取模块 711 , 根据监测到的各个路径占用的带宽及 各路径经历的节点记录, 得到候选节点对, 候选节点对间的带宽超过 预先设置的带宽门限;
端点确定模块 712, 根据预先设置的路由选择策略, 从所述候选 节点对获取模块得到的候选节点对中 , 确定出直达光路的两个端点。
服务器 710与高层路径计算单元 720位于同一个物理实体内、或 者低层路径计算单元 730与高层路径计算单元 720位于同一个物理实 体内、或者服务器 710与高层路径计算单元 720和低层路径计算单元 730位于同一个物理实体内。
服务器 710还可以包括:发起路径重优化过程的路径重优化发起
模块,该模块指示路径计算单元为所述端点确定模块得到的两个端点 分配 IP层地址, 指示所述端点确定模块得到的两个端点根据分配的
IP地址进行直达路由通告。
服务器 710还可以包括:记录原有路径与直达光路的对应关系的 记录模块和释放模块。 其中, 释放模块在直达光路的两个端点间的带 宽下降到预先设置的释放门限时, 根据记录单元中的对应关系, 指示 路径计算单元释放直达光路, 恢复原有路径。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明, 可以通过硬件实现, 也可以借助软件加必要的通用硬件平 台的方式来实现。基于这样的理解, 本发明的技术方案可以以软件产 品的形式体现出来, 该软件产品可以存储在一个非易失性存储介质 (可以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指令用以使 得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等) 执行本发明各个实施例所述的方法。
总之, 以上所述仅为本发明的较佳实施例而已, 并非用于限定本 发明的保护范围。 凡在本发明的精神和原则之内所作的任何修改、 等 同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1、 一种确定直达光路的方法, 其特征在于, 该方法包括: 根据 监测到的各个路径占用的带宽及各路径经历的路由器节点,得到候选 节点对, 所述候选节点对间的带宽超过预先设置的带宽门限; 根据预 先设置的路由选择策略, 从所述候选节点对中, 选择出一个节点对作 为直达光路的两个端点。
2、 根据权利要求 1所述的方法, 其特征在于, 在所述确定出直 达光路的两个端点之后, 进一步包括:
为所述直达光路的两个端点分配 IP层地址; 所述两个端点根据 分配的 IP地址进行直达路由通告; 根据所述直达路由通告, 触发所 述直达光路所在路径的首节点修改路径经历的节点记录。
3、 根据权利要求 2所述的方法, 其特征在于, 在所述触发所述 直达光路所在路径的首节点修改路径经历的节点记录之后,进一步包 括: 记录原有路径与所述直达光路的对应关系, 在所述直达光路的两 个端点间的带宽下降到预先设置的释放门限时, 根据所述对应关系, 释放所述直达光路, 恢复原有路径。
4、 根据权利要求 1或 2所述的方法, 其特征在于, 监测每一条 所述路径占用的带宽包括: 在设定的时间内统计每一条路径的流量, 将所述每一条路径的流量除以设定的时间 ,得到在所述设定的时间内 每一条路径占用的带宽。
5、 根据权利要求 1或 2所述的方法, 其特征在于, 所述得到候 选节点对的过程包括: 计算所述各路径中任意两节点间的带宽, 所述 两节点间的带宽等于经过该两个节点的所有路径的带宽之和,在所述 两节点间的带宽超过所述带宽门限时, 所述两节点为候选节点对, 或 者,
查找所述各路径中具有至少两个公共节点的路径,将查找出的路 径的带宽相加, 得到经过公共节点的带宽, 所述经过公共节点的带宽
超过所述带宽门限时, 所述公共节点中的任两个节点为候选节点对。
6、 根据权利要求 1所述的方法, 其特征在于, 从所述候选节点 对中, 选择出距离最远的一个节点对, 作为直达光路的两个端点或者 从所述候选节点对中 , 选择出两节点间路径数目最多的一个节点对 , 作为直达光路的两个端点。
7、 一种确定直达光路的服务器, 其特征在于, 该服务器包括: 候选节点对获取模块,用于根据监测到的各个路径占用的带宽及 各路径经历的路由器节点, 得到候选节点对, 所述候选节点对间的带 宽超过预先设置的带宽门限;
端点确定模块, 用于根据预先设置的路由选择策略, 从所述候选 节点对获取模块得到的候选节点对中,选择出一个节点对作为直达光 路的两个端点。
8、 根据权利要求 7所述的服务器, 所述服务器进一步包括: 路径重优化发起模块,用于指示路径计算单元为所述端点确定模 块得到的两个端点分配 IP层地址, 指示所述端点确定模块得到的两 个端点根据分配的 IP地址进行直达路由通告。
9、 根据权利要求 8所述的服务器, 所述服务器进一步包括: 记录模块, 用于记录原有路径与所述直达光路的对应关系; 释放模块,用于在所述直达光路的两个端点间的带宽下降到预先 设置的释放门限时, 根据所述记录模块中的对应关系, 指示路径计算 单元释放所述直达光路, 恢复原有路径。
10、 一种建立直达光路的系统, 其特征在于, 所述系统包括至少 两个节点, 所述系统还包括:
服务器,用于根据监测到的各个路径占用的带宽及各路径经历的 节点, 得到候选节点对, 所述候选节点对间的带宽超过预先设置的带 宽门限; 根据预先设置的路由选择策略, 从所述候选节点对中, 选择 出一个节点对作为直达光路的两个端点,指示高层路径计算单元为所 述直达光路的两个端点分配 IP层地址; 指示所述两个端点根据分配 的 IP地址进行直达路由通告;
高层路径计算单元,用于为所述服务器确定出的两个端点分配 IP 地址, 根据所述两个端点的直达路由通告, 触发所述直达光路所在路 径的首节点修改路径经历的节点记录;
低层路径计算单元,用于在所述服务器确定出的两个端点之间计 算光层路径。
11、 根据权利要求 10所述的系统, 其特征在于, 所述服务器包 括:
候选节点对获取模块,用于根据监测到的各个路径占用的带宽及 各路径经历的节点记录, 得到候选节点对, 所述候选节点对间的带宽 超过预先设置的带宽门限;
端点确定模块, 用于根据预先设置的路由选择策略, 从所述候选 节点对获取模块得到的候选节点对中 , 确定出直达光路的两个端点; 路径重优化发起模块,用于指示路径计算单元为所述端点确定模 块得到的两个端点分配 IP层地址, 指示所述端点确定模块得到的两 个端点根据分配的 IP地址进行直达路由通告。
12、 根据权利要求 10所述的系统, 其特征在于, 所述服务器与 所述高层路径计算单元位于同一个物理实体中、或者所述低层路径计 算单元与所述高层路径计算单元位于同一个物理实体中、或者所述服 务器与所述高层路径计算单元和所述低层路径计算单元位于同一个 物理实体中。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08863220A EP2157736B1 (en) | 2007-11-27 | 2008-11-24 | A method and server for determining the direct optical path and a system for establishing the direct optical path |
AT08863220T ATE554570T1 (de) | 2007-11-27 | 2008-11-24 | Verfahren und server zur bestimmung des direkten optischen pfades und ein system zum aufbau des direkten optischen pfades |
ES08863220T ES2383474T3 (es) | 2007-11-27 | 2008-11-24 | Un método y servidor para determinar la ruta óptica directa y un sistema para establecer la ruta óptica directa |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710187372.XA CN101447913B (zh) | 2007-11-27 | 2007-11-27 | 确定直达光路的方法和服务器及建立直达光路的系统 |
CN200710187372.X | 2007-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009076826A1 true WO2009076826A1 (zh) | 2009-06-25 |
Family
ID=40743331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/073177 WO2009076826A1 (zh) | 2007-11-27 | 2008-11-24 | 确定直达光路的方法和服务器及建立直达光路的系统 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2157736B1 (zh) |
CN (1) | CN101447913B (zh) |
AT (1) | ATE554570T1 (zh) |
ES (1) | ES2383474T3 (zh) |
WO (1) | WO2009076826A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9124509B2 (en) | 2009-12-30 | 2015-09-01 | Huawei Technologies Co., Ltd. | Method, apparatus, and system for controlling network traffic switching |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101969581B (zh) * | 2009-07-28 | 2013-12-04 | 华为技术有限公司 | 多层网络的流量切换方法、装置和系统 |
CN102868624B (zh) * | 2011-07-07 | 2015-10-07 | 株式会社日立制作所 | 光电复合型网络节点的控制装置、控制系统及控制方法 |
JP2015530767A (ja) * | 2012-09-28 | 2015-10-15 | 日本電気株式会社 | 通信システム、制御装置、制御方法及びプログラム |
CN102916900B (zh) * | 2012-10-09 | 2016-02-17 | 中国联合网络通信集团有限公司 | 业务流转发方法和装置 |
CN104618235B (zh) * | 2014-12-24 | 2018-06-19 | 北京华为数字技术有限公司 | 一种跨层建立不共路路径的方法及装置 |
CN104601429B (zh) * | 2014-12-29 | 2019-02-19 | 华为技术有限公司 | 网络控制方法及相关装置 |
CN106233680B (zh) * | 2015-03-09 | 2019-08-13 | 华为技术有限公司 | 一种路径选择方法、光网络控制器和光传送网络 |
CN106412628B (zh) | 2015-07-30 | 2020-07-24 | 华为技术有限公司 | 一种带宽调整方法及相关设备 |
CN105119818B (zh) * | 2015-08-18 | 2018-08-03 | 周雪勤 | 一种在密集波分网络中建立多通道聚合路由的方法和系统 |
CN108880894B (zh) * | 2018-06-28 | 2022-03-18 | 南方科技大学 | 一种网络带宽的规划方法、装置、设备和存储介质 |
CN111082952B (zh) * | 2018-10-18 | 2022-08-30 | 中国电信股份有限公司 | 网络优化方法、软件定义网络控制器和网络系统 |
CN109587718B (zh) * | 2018-12-19 | 2020-02-07 | 江山雷钧智能制造技术有限公司 | 一种基于移动终端定位的区域路由器控制系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005094333A (ja) * | 2003-09-17 | 2005-04-07 | Toshiba Corp | ネットワークシステム、ノード装置、およびネットワーク管理装置 |
CN1625869A (zh) * | 2002-05-17 | 2005-06-08 | 艾利森电话股份有限公司 | 分组交换多层通信网中的动态路由 |
CN1688133A (zh) * | 2005-04-11 | 2005-10-26 | 西安电子科技大学 | 传送网的资源利用优化方法 |
CN1691605A (zh) * | 2004-04-20 | 2005-11-02 | 富士通株式会社 | 用于管理网络流量的方法和系统 |
-
2007
- 2007-11-27 CN CN200710187372.XA patent/CN101447913B/zh not_active Expired - Fee Related
-
2008
- 2008-11-24 WO PCT/CN2008/073177 patent/WO2009076826A1/zh active Application Filing
- 2008-11-24 EP EP08863220A patent/EP2157736B1/en not_active Not-in-force
- 2008-11-24 AT AT08863220T patent/ATE554570T1/de active
- 2008-11-24 ES ES08863220T patent/ES2383474T3/es active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1625869A (zh) * | 2002-05-17 | 2005-06-08 | 艾利森电话股份有限公司 | 分组交换多层通信网中的动态路由 |
JP2005094333A (ja) * | 2003-09-17 | 2005-04-07 | Toshiba Corp | ネットワークシステム、ノード装置、およびネットワーク管理装置 |
CN1691605A (zh) * | 2004-04-20 | 2005-11-02 | 富士通株式会社 | 用于管理网络流量的方法和系统 |
CN1688133A (zh) * | 2005-04-11 | 2005-10-26 | 西安电子科技大学 | 传送网的资源利用优化方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9124509B2 (en) | 2009-12-30 | 2015-09-01 | Huawei Technologies Co., Ltd. | Method, apparatus, and system for controlling network traffic switching |
Also Published As
Publication number | Publication date |
---|---|
CN101447913A (zh) | 2009-06-03 |
ATE554570T1 (de) | 2012-05-15 |
EP2157736A1 (en) | 2010-02-24 |
EP2157736B1 (en) | 2012-04-18 |
CN101447913B (zh) | 2011-04-20 |
ES2383474T3 (es) | 2012-06-21 |
EP2157736A4 (en) | 2010-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009076826A1 (zh) | 确定直达光路的方法和服务器及建立直达光路的系统 | |
US6832249B2 (en) | Globally accessible computer network-based broadband communication system with user-controllable quality of information delivery and flow priority | |
US8780716B2 (en) | System and method for service assurance in IP networks | |
US7839780B2 (en) | Dynamic traffic rearrangement to enforce policy changes in MPLS networks | |
EP2549703B1 (en) | Reoptimization triggering by path computation elements | |
US7580359B2 (en) | Method and system for maximizing network capacity utilization in multiprotocol label switched networks by moving label switched paths | |
US20120320753A1 (en) | Dynamic reroute of network traffic | |
US20050160171A1 (en) | Traffic engineering and bandwidth management of bundled links | |
CN101159669A (zh) | 一种业务流量切换方法及装置 | |
EP2878106A1 (en) | System and method for switching traffic from sub-optimal primary p2mp to standby p2mp | |
WO2009092252A1 (zh) | 一种路由计算方法、系统及路径计算单元 | |
CN103493443B (zh) | 使用子路径维护单元(spme)用于多协议标签交换(mpls)共享网格保护 | |
CN103416028B (zh) | 用于在内部网关协议和/或内部网关协议‑流量工程中公告复合链路的系统和方法 | |
CN1731768A (zh) | 用于在无连接通信网络中转发业务的方法 | |
US9923773B2 (en) | Dynamic, broker-based virtual service platform (VSP) engagement for computer networks | |
Goulamghoss et al. | Analysis of traffic engineering and fast reroute on multiprotocol label switching | |
CN101677294B (zh) | 多层网络资源优化方法、系统及直达光路服务器 | |
US11502941B2 (en) | Techniques for routing data in a network | |
EP3785405B1 (en) | Resource reservation and maintenance for preferred path routes in a network | |
WO2018095438A1 (zh) | 等价多路径ecmp处理方法及装置 | |
WO2009071022A1 (fr) | Procédé et dispositif pour établir un tunnel d'ingénierie de flux | |
CN1889581B (zh) | 承载控制层设备间动态路由的实现方法 | |
Patil et al. | Optimizing MPLS Tunnel Creation Performance by Using SDN | |
Gous et al. | A Comparison of Approaches for Traffic Engineering in IP and MPLS Networks | |
Amin | Resource optimisation for robust IP networking provisioning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08863220 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008863220 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |