WO2009074707A1 - Grk2 antitumour therapy - Google Patents
Grk2 antitumour therapy Download PDFInfo
- Publication number
- WO2009074707A1 WO2009074707A1 PCT/ES2008/070231 ES2008070231W WO2009074707A1 WO 2009074707 A1 WO2009074707 A1 WO 2009074707A1 ES 2008070231 W ES2008070231 W ES 2008070231W WO 2009074707 A1 WO2009074707 A1 WO 2009074707A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- grk2
- sirna
- expression
- cells
- inhibiting
- Prior art date
Links
- 238000002560 therapeutic procedure Methods 0.000 title abstract description 4
- 230000000259 anti-tumor effect Effects 0.000 title abstract description 3
- 101150089236 Grk2 gene Proteins 0.000 title description 2
- 102100021738 Beta-adrenergic receptor kinase 1 Human genes 0.000 claims abstract description 130
- 101000751445 Homo sapiens Beta-adrenergic receptor kinase 1 Proteins 0.000 claims abstract description 130
- 108020004459 Small interfering RNA Proteins 0.000 claims abstract description 64
- 230000014509 gene expression Effects 0.000 claims abstract description 47
- 208000026310 Breast neoplasm Diseases 0.000 claims abstract description 17
- 206010006187 Breast cancer Diseases 0.000 claims abstract description 12
- 201000001441 melanoma Diseases 0.000 claims abstract description 9
- 206010018338 Glioma Diseases 0.000 claims abstract description 5
- 206010033128 Ovarian cancer Diseases 0.000 claims abstract description 5
- 206010061535 Ovarian neoplasm Diseases 0.000 claims abstract description 5
- 206010060862 Prostate cancer Diseases 0.000 claims abstract description 5
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims abstract description 5
- 208000024770 Thyroid neoplasm Diseases 0.000 claims abstract description 5
- 201000002510 thyroid cancer Diseases 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 21
- 230000002401 inhibitory effect Effects 0.000 claims description 20
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 17
- 108020004414 DNA Proteins 0.000 claims description 11
- 239000008194 pharmaceutical composition Substances 0.000 claims description 10
- 230000002068 genetic effect Effects 0.000 claims description 9
- 238000001727 in vivo Methods 0.000 claims description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 7
- 238000000338 in vitro Methods 0.000 claims description 6
- 102000040650 (ribonucleotides)n+m Human genes 0.000 claims description 3
- 201000010099 disease Diseases 0.000 claims description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 2
- 230000000711 cancerogenic effect Effects 0.000 claims 1
- 231100000315 carcinogenic Toxicity 0.000 claims 1
- 206010028980 Neoplasm Diseases 0.000 abstract description 55
- 239000003814 drug Substances 0.000 abstract 1
- 229940124597 therapeutic agent Drugs 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 81
- 239000004055 small Interfering RNA Substances 0.000 description 40
- 108091008611 Protein Kinase B Proteins 0.000 description 39
- 102100033810 RAC-alpha serine/threonine-protein kinase Human genes 0.000 description 34
- 238000013508 migration Methods 0.000 description 25
- 230000005012 migration Effects 0.000 description 23
- 230000000694 effects Effects 0.000 description 22
- 238000000034 method Methods 0.000 description 21
- 230000004044 response Effects 0.000 description 18
- 108090000623 proteins and genes Proteins 0.000 description 17
- 230000004913 activation Effects 0.000 description 15
- 235000018102 proteins Nutrition 0.000 description 15
- 102000004169 proteins and genes Human genes 0.000 description 15
- 125000003729 nucleotide group Chemical group 0.000 description 14
- 102000005962 receptors Human genes 0.000 description 14
- 108020003175 receptors Proteins 0.000 description 14
- 238000010276 construction Methods 0.000 description 13
- 239000002773 nucleotide Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 241000701161 unidentified adenovirus Species 0.000 description 13
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 12
- 108091000080 Phosphotransferase Proteins 0.000 description 12
- 230000009545 invasion Effects 0.000 description 12
- 102000020233 phosphotransferase Human genes 0.000 description 12
- 239000013598 vector Substances 0.000 description 12
- 108010067306 Fibronectins Proteins 0.000 description 11
- 102000016359 Fibronectins Human genes 0.000 description 11
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 11
- 230000033228 biological regulation Effects 0.000 description 11
- 201000011510 cancer Diseases 0.000 description 10
- 230000005764 inhibitory process Effects 0.000 description 9
- 210000004881 tumor cell Anatomy 0.000 description 9
- 230000012292 cell migration Effects 0.000 description 8
- 230000003399 chemotactic effect Effects 0.000 description 8
- 108010082117 matrigel Proteins 0.000 description 8
- 230000001617 migratory effect Effects 0.000 description 8
- 102000038030 PI3Ks Human genes 0.000 description 7
- 108091007960 PI3Ks Proteins 0.000 description 7
- 150000001413 amino acids Chemical group 0.000 description 7
- 210000000481 breast Anatomy 0.000 description 7
- 210000000069 breast epithelial cell Anatomy 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 108020004707 nucleic acids Proteins 0.000 description 7
- 102000039446 nucleic acids Human genes 0.000 description 7
- 150000007523 nucleic acids Chemical class 0.000 description 7
- 238000001890 transfection Methods 0.000 description 7
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 6
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 6
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 6
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 6
- 230000004663 cell proliferation Effects 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 210000002744 extracellular matrix Anatomy 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000035755 proliferation Effects 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000004083 survival effect Effects 0.000 description 6
- 108091023037 Aptamer Proteins 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 230000004899 motility Effects 0.000 description 5
- 230000002018 overexpression Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 230000004075 alteration Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000027455 binding Effects 0.000 description 4
- 201000008275 breast carcinoma Diseases 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 206010061309 Neoplasm progression Diseases 0.000 description 3
- 102400000058 Neuregulin-1 Human genes 0.000 description 3
- 108090000556 Neuregulin-1 Proteins 0.000 description 3
- 101710163270 Nuclease Proteins 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 210000002469 basement membrane Anatomy 0.000 description 3
- 108010080367 beta-Arrestins Proteins 0.000 description 3
- 102000000072 beta-Arrestins Human genes 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000007385 chemical modification Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 210000000981 epithelium Anatomy 0.000 description 3
- 239000003102 growth factor Substances 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 206010073095 invasive ductal breast carcinoma Diseases 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000002246 oncogenic effect Effects 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 230000026731 phosphorylation Effects 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 230000019491 signal transduction Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000005751 tumor progression Effects 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 101100297694 Arabidopsis thaliana PIP2-7 gene Proteins 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 108050002772 E3 ubiquitin-protein ligase Mdm2 Proteins 0.000 description 2
- 102000012199 E3 ubiquitin-protein ligase Mdm2 Human genes 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- 108010008959 G-Protein-Coupled Receptor Kinases Proteins 0.000 description 2
- 102000006575 G-Protein-Coupled Receptor Kinases Human genes 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 108091008103 RNA aptamers Proteins 0.000 description 2
- 101100456541 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) MEC3 gene Proteins 0.000 description 2
- 101100483663 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) UFD1 gene Proteins 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000009087 cell motility Effects 0.000 description 2
- 230000033077 cellular process Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 210000004292 cytoskeleton Anatomy 0.000 description 2
- 239000000412 dendrimer Substances 0.000 description 2
- 229920000736 dendritic polymer Polymers 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 102000006240 membrane receptors Human genes 0.000 description 2
- 108020004084 membrane receptors Proteins 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 231100000590 oncogenic Toxicity 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 108091033319 polynucleotide Chemical group 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Chemical group 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 235000004400 serine Nutrition 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 101150107888 AKT2 gene Proteins 0.000 description 1
- 102100039601 ARF GTPase-activating protein GIT1 Human genes 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 230000007730 Akt signaling Effects 0.000 description 1
- 101150051155 Akt3 gene Proteins 0.000 description 1
- 102100028989 C-X-C chemokine receptor type 2 Human genes 0.000 description 1
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 108050009340 Endothelin Proteins 0.000 description 1
- 102000002045 Endothelin Human genes 0.000 description 1
- 102000056372 ErbB-3 Receptor Human genes 0.000 description 1
- 102000044591 ErbB-4 Receptor Human genes 0.000 description 1
- 108010007457 Extracellular Signal-Regulated MAP Kinases Proteins 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 101000888659 Homo sapiens ARF GTPase-activating protein GIT1 Proteins 0.000 description 1
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 1
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 1
- 101000798015 Homo sapiens RAC-beta serine/threonine-protein kinase Proteins 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 1
- 108010018951 Interleukin-8B Receptors Proteins 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 238000007807 Matrigel invasion assay Methods 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 102100024193 Mitogen-activated protein kinase 1 Human genes 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- PJKKQFAEFWCNAQ-UHFFFAOYSA-N N(4)-methylcytosine Chemical class CNC=1C=CNC(=O)N=1 PJKKQFAEFWCNAQ-UHFFFAOYSA-N 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 101150038998 PLAUR gene Proteins 0.000 description 1
- 102000009516 Protein Serine-Threonine Kinases Human genes 0.000 description 1
- 108010009341 Protein Serine-Threonine Kinases Proteins 0.000 description 1
- 102100032315 RAC-beta serine/threonine-protein kinase Human genes 0.000 description 1
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 1
- 102000000574 RNA-Induced Silencing Complex Human genes 0.000 description 1
- 108010016790 RNA-Induced Silencing Complex Proteins 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 101710100968 Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 101710100969 Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 description 1
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- -1 S1 P Proteins 0.000 description 1
- 108060006706 SRC Proteins 0.000 description 1
- 102000001332 SRC Human genes 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 206010064390 Tumour invasion Diseases 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 108091005764 adaptor proteins Proteins 0.000 description 1
- 102000035181 adaptor proteins Human genes 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 101150045355 akt1 gene Proteins 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 230000006368 anti-apoptosis response Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000009400 cancer invasion Effects 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000036978 cell physiology Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000586 desensitisation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 230000002121 endocytic effect Effects 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- ZUBDGKVDJUIMQQ-UBFCDGJISA-N endothelin-1 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@H]2CSSC[C@@H](C(N[C@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@@H](CO)NC(=O)[C@H](N)CSSC1)C1=CNC=N1 ZUBDGKVDJUIMQQ-UBFCDGJISA-N 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000005734 heterodimerization reaction Methods 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 201000010893 malignant breast melanoma Diseases 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 238000010232 migration assay Methods 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 230000013152 negative regulation of cell migration Effects 0.000 description 1
- 230000035407 negative regulation of cell proliferation Effects 0.000 description 1
- 230000010309 neoplastic transformation Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 238000011580 nude mouse model Methods 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000001991 pathophysiological effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 150000002972 pentoses Chemical class 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 150000004713 phosphodiesters Chemical group 0.000 description 1
- 229940012957 plasmin Drugs 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002046 pro-migratory effect Effects 0.000 description 1
- 230000009696 proliferative response Effects 0.000 description 1
- 230000007725 proliferative signaling pathway Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 102000034285 signal transducing proteins Human genes 0.000 description 1
- 108091006024 signal transducing proteins Proteins 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000002924 silencing RNA Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007755 survival signaling Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 235000008521 threonine Nutrition 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 108091006106 transcriptional activators Proteins 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1137—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/11—Protein-serine/threonine kinases (2.7.11)
- C12Y207/11016—G-Protein-coupled receptor kinase (2.7.11.16)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/50—Physical structure
- C12N2310/53—Physical structure partially self-complementary or closed
- C12N2310/531—Stem-loop; Hairpin
Definitions
- the present invention belongs to the field of biology, molecular biology and biochemistry. It is directed to the regulation of the expression of GRK2 for the treatment of melanoma, breast cancer, ovarian cancer, prostate cancer, gliomas and thyroid cancer.
- G protein-coupled receptor kinases participate, together with arrests, in the processes of regulation of multiple G protein-coupled receptors (GPCRs) of great physiological and pharmacological relevance.
- GPCRs G protein-coupled receptors
- GRK1-GRK7 G protein-coupled receptors
- GRK1-GRK7 G protein-coupled receptors
- Fig. 1 ⁇ -arrestinas
- GRK proteins also have other non-GPCR membrane substrates, as well as cytosolic substrates that diversify the functional consequences of the activity of these kinases.
- numerous molecules have been identified with which the GRKs interact independently of the kinase activity (Pao, 2002; Ribas, 2007), which demonstrates the existence of scaffold or scaffolding functions for this family of proteins .
- chemokine receptors such as CXCR4 or CXCR2 play a central role in tumor metastasis. Tumor cells that overexpress these receptors are activated by chemokines released by stromal cells, macrophages and leukocytes infiltrated in the tumor, stimulating the motility and survival of cancer cells.
- GRK2 protein which is the most ubiquitous and best characterized isoform of the family of GRKs, is emerging as a key molecule in cell signaling with great pathophysiological potential in tumor contexts, since it would not only regulate the activity of different GPCRs involved in cancer, but also of cytosolic proteins involved in proliferative and survival signaling pathways (p38, Smads, among others), as well as non GPCRs membrane proteins with oncogenic potential (EGF receptor).
- GRK2 is able to modulate various proteins such as PI3K, ERK or GIT1 independently of phosphorylation, suggesting that it has properties of adapter protein or "scaffold" (Fig. 2).
- the present invention faces the problem of inhibiting the action of the GRK2, not only at the level of its serine-threonine kinase activity, but of its "scaffold" functions.
- the suppression of the expression of GRK2 in cancerous diseases in which this protein is overexpressed, and in which it is contributing or cooperating with AKT in the acquisition and maintenance of tumor characteristics, would be an appropriate therapy.
- the present invention provides a sequence of ribonucleotides or RNA that belongs to the so-called siRNA (small interfering RNA), small interfering RNA or silencing RNA, capable of inhibiting the genetic expression of the GRK2 protein (hereinafter siRNA of the invention), providing new effective techniques against cancer proliferation and cell migration.
- siRNA small interfering RNA
- silencing RNA capable of inhibiting the genetic expression of the GRK2 protein
- the solution provided by this invention is based on the fact that the inventors have observed that the inhibition of cell proliferation and migration in certain types of cancer is possible, through the use of a specific RNA sequence molecule that binds to the messenger RNA that encodes for the GRK2 protein preventing its translation and therefore inhibiting its expression.
- composition of the invention comprising a siRNA capable of inhibiting cell proliferation and migration based on the inhibition of Ia expression GRK2 protein, for use in those pathological contexts in which GRK2 is contributing or cooperating with AKT in the acquisition or maintenance of tumor characteristics.
- a preferred embodiment of the invention constitutes a composition of the invention comprising an RNA construct (RNA construct of the invention) that contains at least any one of the possible nucleotide sequences of siRNA capable of inhibiting the expression of GRK2, and notwithstanding that, in addition, any of the RNA sequences and constructions of the invention described above that are subject to modifications, preferably chemical, that lead to greater stability against the action of ribonucleases and thereby to be part of the present invention Greater efficiency Without these modifications, this involves the alteration of its mechanism of action, which is the specific binding to the RISC complex (RNA-induced silencing complex), activating it and manifesting a helicase activity that separates the two strands leaving only the antisense strand associated with the complex.
- RISC complex RNA-induced silencing complex
- RISC ribonucleoproteal complex binds to the target mRNA (GRK2 messenger RNA). If the complementarity is not perfect, RISC is associated with the messenger and the translation is attenuated. But if it is perfect, RISC acts as RNasa, cutting the messenger and being free to repeat the process.
- composition of the present invention is used in the treatment of those types of cancer, in which it has been observed that the protein
- GRK2 is cooperating with AKT, such as melanoma, breast cancer, ovarian cancer, prostate cancer, gliomas and thyroid cancer.
- AKT such as melanoma, breast cancer, ovarian cancer, prostate cancer, gliomas and thyroid cancer.
- the preparation of the siRNA sequence of the invention or of the RNA construction of the invention would be evident to one skilled in the art, and could be carried out by chemical synthesis, which also allows the incorporation of chemical modifications both in the different nucleotides of the product such as the incorporation of other chemical compounds at any of the ends. On the other hand, the synthesis could also be carried out enzymatically using any of the available RNA polymerases. Enzymatic synthesis also allows some chemical modification of inhibitor products or RNAs.
- the design of the nucleotide sequence of the siRNA of the invention would also be evident to one skilled in the art. Thus, it could be done through a random design in which 19-21 bases of the target mRNA are selected without taking into account the sequence or positional information it has in the transcript.
- Another non-limiting alternative of the present invention would be the conventional design using simple parameters developed by the pioneers of the technique (Calipel, A. et al., 2003) completed with a BLAST nucleotide analysis.
- Another possibility could be a rational design, in which a computer procedure is used to identify the optimal siRNA targets in an mRNA. The target sequences are analyzed in groups of 19 nucleotides at the same time and those with the best characteristics are identified based on an algorithm that incorporates a large number of thermodynamic and sequence parameters.
- a second aspect of the invention constitutes a composition (hereinafter the second composition of the invention) comprising a genetic construction of DNA, hereinafter genetic construction of DNA of the invention, which would direct the in vitro or intracellular transcription of Ia siRNA sequence or RNA construct of the invention, and comprising at least one of the following types of sequences: a) DNA nucleotide sequence, preferably double stranded, comprising, at least, the sequence encoding the siRNA of the invention or the RNA construct of the invention for in vitro transcription, or, b) DNA nucleotide sequence, preferably double stranded, corresponding to a gene expression system or vector comprising the sequence coding for the RNA sequence of the invention operably linked with at least one promoter that directs the transcription of said nucleotide sequence of interest, and with other sequences necessary or appropriate for the transcription and its adequate regulation in time and place, for example, start and end signals, cutoff sites, polyadenylation signal, origin of replication, transcriptional activators (enhancers),
- GRK2 for use in those pathological contexts in which the GRK2 is contributing to the acquisition or maintenance nimiento of tumor characteristics in cooperation with the signaling pathway dependent on PI3K and Akt.
- Multiple of these expression systems or vectors can be obtained by conventional methods known to those skilled in the art (Sambrook et al., 1989) and are part of the present invention.
- compositions of the present invention allow the transfection of the siRNA of the invention into a cell, in vivo or in vitro.
- the transfection could be carried out, but not limited to, direct transfection or vectors that facilitate the access of the siRNA inside the cell.
- vectors are, without limitation, retroviruses, lentiviruses, adenoviruses, adeno-associated viruses, Herpes simplex viruses, non-viral DNA plasmids, cationic liposomes and molecular conjugates.
- the siRNAs of the present invention can be conjugated with release peptides or other compounds to favor the transport of these siRNAs. inside the cell.
- these proteins are those known in the state of the art, which have properties that favor cell penetration. As examples, and not limited to these, those described in the patent application US 20040204377 are included.
- the transfer to the siRNA tumor cells of the invention could be performed by fusing SIRR-GRK2 constructs to RNA-aptamers.
- SIRR-GRK2 constructs to RNA-aptamers.
- aptamers are susceptible to degradation by nucleases in the intracellular medium.
- modifications in the chemical structure can be presented that provide them with a remarkable resistance to degradation.
- the modifications that involve the 2 'position have been particularly used since it is known that the -OH radical in this carbon is indispensable in the reaction mechanism of the nucleases.
- compositions of the present invention are pharmaceutical compositions, which comprise a therapeutically effective amount of the siRNA sequence of the invention and / or RNA construction of the invention and / or genetic DNA constructs of the invention, together with, optionally, one or more pharmaceutically acceptable adjuvants and / or vehicles.
- siRNA small interfering RNA or small interfering RNA
- siRNA Ia small interfering RNA or small interfering RNA
- SEQ ID NO: 2 nucleotide sequence capable of inhibiting the expression of
- GRK2 in tumor cells, which prevents these malignant cells from developing tumors in vivo (see example 6).
- SEQ ID NO: 4 represents the sequences that flank the 5 ' and 3 ' region respectively of SEQ ID NO: 2 to create the hairpin in the structure that will be expressed with the adenovirus.
- Fig. 3 shows the most likely secondary structure that this siRNA construct would adopt.
- GRK2 in the context of the present invention, a nucleotide or polynucleotide sequence is defined, which constitutes the coding sequence of the GRK2 protein, and which would comprise various variants from: a) nucleic acid molecules that encode a polypeptide comprising the amino acid sequence of SEQ ID NO: 1, b) nucleic acid molecules whose complementary chain hybridizes with the polynucleotide sequence of a), c) nucleic acid molecules whose sequence differs a) and / or b) due to the degeneracy of the genetic code, d) nucleic acid molecules that encode a polypeptide comprising the amino acid sequence with a homology of 99%, 98%, 95%, 90%, or 80 % with SEQ ID NO: 1.
- polypeptide encoded by said nucleic acids possesses the catalytic activity, the scaffold activity and the structural characteristics of GRK2.
- homology refers to the similarity between two structures due to a common evolutionary ancestry, and more specifically, to the similarity between two or more amino acid sequences.
- nucleotide sequences of the GRK2 gene are related in terms of their evolution, and since the function of this depends on the amino acid sequence to which it is transcribed, it can be expected that the overall homology of the genomes at the amino acid level, in different groups of populations and / or individuals, and in different animals, and more specifically at the level of the amino acid sequence that is included in SEQ ID NO: 1, is 80% or greater, and more preferably 90% or greater and more preferably 95, 98 or 99% or greater.
- the correspondence between the amino acid sequence of SEQ ID NO: 1 and the sequence belonging to another individual or organism can be determined by methods known in the art.
- AKT means those proteins with kinase activity that phosphorylate various substrates in serines and threonines and are activated by their translocation to the plasma membrane and their binding to the PIP3 phospholipid.
- These proteins of which there are several isoforms (Akt1 or PKB ⁇ , Akt2 or PKB ⁇ and Akt3 or PKBy), are regulated by numerous growth factors and play a key role in cell survival, proliferation and cell migration.
- “chemical modifications” refers to the introduction of chemically modified nucleotides in the RNA sequence of the invention, for example, and without being limited thereto, S groups replacing O in the phosphodiester chain, or the inclusion of 5 methylcytosines, which allow increasing The efficiency of the same (confer greater resistance against degradation, favor its entry into the cells, etc.), as well as any modification in the pentose or in the nitrogenous base.
- Other modifications of the siRNA that can increase the stability are those described in Bolcato-Bellemin et al. 2007 in which short sequences of protruding and complementary poly-dA and poly-dT sequences are introduced at the ends of the siRNA thus favoring the aggregation and formation of concatamers.
- transfection refers to the introduction or transfer of an exogenous nucleic acid molecule into a eukaryotic cell, including, but not limited to, a ribonucleic or deoxyribonucleic acid molecule (by example,
- aptamers means nucleic acid molecules that are capable of binding to another molecule of particular interest with great affinity and specificity (Tuerk and GoId, 1990; Ellington and Szostak, 1990).
- this target molecule of particular interest would be a specific tumor antigen or an indicative marker that the cell has acquired tumor characteristics.
- An aptamer is typically obtained by in vitro selection of the binding to a target molecule. However, in vivo selection is also possible. It is typically between 10 and 300 nucleotides in length. More commonly, an aptamer must be between 30 and 100 nucleotides in length.
- dendrimers means highly branched polymers with a well-defined architecture, capable of releasing other compounds to the cell.
- the expression “therapeutically effective amount” refers to the amount of the siRNA sequence of the invention or to the amount of an RNA or DNA gene construct that allows its calculated intracellular expression to produce the desired effect. and, in general, will be determined, among other causes, by the characteristics of said sequences and constructions and the therapeutic effect to be achieved.
- the pharmaceutically acceptable adjuvants and vehicles that can be used in said compositions are the vehicles known to those skilled in the art.
- the pharmaceutical composition provided by this invention may be provided by any route of administration, for which said composition will be formulated in the pharmaceutical form suitable to the route of administration chosen.
- the administration of the composition provided by this invention is carried out subcutaneously, other routes being possible, such as, for example, intraperitoneal, parenteral, etc.
- the word "comprises” and its variants are not intended to exclude other technical characteristics, additives, components or steps.
- the word "comprises” and its variants are not intended to exclude other technical characteristics, additives, components or steps.
- other objects, advantages and characteristics of the invention will emerge partly from the description and partly from the practice of the invention.
- the following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
- FIG. 1 Regulation of G-protein coupled receptors (GPCRs) by GRKs and ⁇ -arrestin proteins. Homologous desensitization begins with the phosphorylation of the receptor activated by the GRKs and concludes with the recruitment of the ⁇ -arrestins that functionally decouple the receptor from the G proteins. Likewise, the ⁇ -arrests interact directly with the endocytic machinery necessary to lead to carried out the internalization of receptors. Once present in endosomes, the scaffolding capacity of ⁇ -arrestin allows the coupling of desensitized receptors with various signaling proteins such as c-Src and MAPK. Subsequently, the dephosphorylated receptor is recycled and located again in the plasma membrane or it degrades in lysosomes.
- GPCRs G-protein coupled receptors
- Fig. 2 Functional interactome of GRK2. Numerous proteins involved in signal transduction interact with GRK2 and are regulated by this protein. Thus, the kinase activity of GRK2 not only determines the functional state of a large number of GPCR receptors but also that of various cytosolic substrates, which allows modulating different cellular processes. On the other hand, new functions of GRK2 arise due to its ability to interact with a multitude of proteins, regardless of their kinase activity.
- Fig. 4 Analysis of GRK2 levels and the activation status of AKT in samples of patients with breast carcinoma.
- Samples of infiltrating ductal carcinoma of the breast as well as normal tissue from them were processed to quantify, by means of immunodetection techniques with specific antibodies, the levels of the GRK2 protein and phosphorylation of AKT.
- the densitometric data obtained were normalized with the levels of actin and total AKT, respectively.
- a and B) The means of each individual from 4-5 determinations are represented taking as reference the values of a randomized control sample. The average value (-) is indicated in each population (control and tumor).
- Fig. 5 The union of growth factors such as IGF1 to its receptors promotes the stimulation of PI3K and the production of PIP3 phospholipid, which induces the activation of AKT kinase.
- the Mdm2 ligase responsible for the degradation of GRK2, is phosphorylated by AKT and said modification directs the ligase to the nucleus preventing its interaction with GRK2 and favoring the stabilization of the protein and its overexpression.
- Fig. 6 GRK2 levels affect the ability to migrate MCF-7 and MCF10A cells in response to fibronectin.
- Fig. 7 GRK2 modulation of the migration induced by different diffusible chemotactic signals.
- the MCF7 cells panel A) transiently transfected with an empty vector, the GRK2 expression vector or the S ⁇ RNA-GRK2 construct, were selected as above for chemotactic migration assays at the indicated signals. Similar tests were carried out in Hs578T cells (panel B) infected or not with the control adenovirus and the construction of S ⁇ RNA-GRK2 at MOI 100.
- Fig. 8 The ability to invade matrigel in MCF7 cells is modulated by GRK2 levels.
- the ⁇ SEM of 3-4 experiments performed in duplicate are represented where * p ⁇ 0.05 ** p ⁇ 0.01 and *** p ⁇ 0.001, compared with Transfection controls of empty vector or those of cells infected with the control adenovirus. Representative autoradiographs of changes included in GRK2 levels are shown.
- GRK2 levels affect the invasive capacity of cell lines from metastatic tumors.
- Hs578T breast carcinoma cells (panel A) and B16F10 melanoma (panel B) without infecting and infected with the control adenovirus or with the S ⁇ RNA-GRK2 to MOI 100 construct were used for serum invasion tests in matrigel. * p ⁇ 0.05, ** p ⁇ 0.01. The reduction of GRK2 levels was confirmed by immunodetection.
- Fig. 10 Effect of GRK2 levels on cell proliferation.
- MCF-7 cells were infected as indicated above with the adenoviral vector of the siRNA construct of GRK2 or with the control adenovirus.
- Cell proliferation was determined by the CelITiter 96® method
- Fig. 11 Inhibition of the expression of GRK2 in malignant cells prevents the formation of orthotopic tumors in mice.
- MCF7 breast carcinoma cells infected with adenovirus control or with the adenovirus of the SYRNA-GRK2 construct were inoculated subcutaneously in the respective flanks of immunocompromised mice as indicated in the scheme. Tumor growth was analyzed for 19 days and the size recorded by calipers was plotted.
- the invention will be illustrated by tests carried out by the inventors, which show the specificity and effectiveness of the inhibition of the expression of GRK2 by means of siRNA in the treatment of cancer that occurs with the overexpression of GRK2 and the functional amplification of the PI3K / Akt signaling pathway, and more specifically, in breast cancer, where GRK2 would cooperate with Akt in the acquisition of tumor characteristics.
- EXAMPLE 1 Analysis of GRK2 expression levels and the degree of AKT activation in a population of samples of 27 patients affected by breast cancer.
- infiltrating ductal breast carcinomas with different degrees of differentiation were analyzed.
- 12 samples of non-tumor breast tissue from the examined patients were analyzed.
- the expression of GRK2 in the mammary gland of the analyzed individuals generally exhibits a certain degree of variability, it can be observed that the levels detected by "immunoblot" are, on average, significantly lower in the control samples compared to the tumor samples ( Fig. 4A).
- the activation of AKT in non-tumor samples is almost imperceptible, being frequently below the detection limits of our test conditions (Fig. 4B).
- the PI3K / AKT pathway is amplified in many types of cancer, such as ovarian, pancreas, breast or thyroid.
- the activation of AKT confers oncogenic properties as it regulates the progression of the cell cycle, promotes survival, inhibits apoptosis, and stimulates cell migration and invasiveness through the secretion of metalloproteases.
- the presence of GRK2 could cooperate with AKT in the regulation of these cellular functions or even mediate some of the effects of AKT in them.
- Cellular migration is a complex process that requires coordinating changes in the cytoskeleton of the cell (necessary to generate the precise tensile forces for locomotion), with pro-migratory extracellular stimuli, transmitted to the cell interior by different membrane receptors, between those that stand out GPCRs and receptors with kinase activity.
- the interactions of integrin receptors and their extracellular matrix ligands are not only important in the adhesion of the cells to the substrate, determining their mobility, but also in providing migration routes acting as guides. This role is critical in the process of invasion of tumor cells, which must degrade the basal lamina and the extracellular matrix of the tissue of origin and recognize certain components of the extracellular matrix as physical support for locomotion.
- fibronectin plays an important role in tumor progression.
- This glycoprotein can be presented as a soluble molecule or plasma fibronectin, the result of the action of the plasmin protease, or as a component of the extracellular matrix in its unproteolyzed form.
- a characteristic common to numerous tumors is the increase in the activity of the UPAR / plasmin system and the greater presence of plasma fibronectin.
- numerous transformed cells with invasive potential express specific receptors for this type of fibronectin). Therefore, we characterized the role of GRK2 in the migratory response to fibronectin of transformed MCF-7 breast epithelial cells.
- the cells were transfected transiently with a GRK2 expression plasmid or with a specific siRNA construct, and were magnetically selected with the "dynabeads" method to enrich the proportion of transfected cells.
- the increased expression of GRK2 in MCF-7 cells causes a greater migration to fibronectin (Fig. 6A).
- the inhibition of the expression of the kinase causes a sharp decrease in migration compared to the control cells that have been transfected with an empty plasmid (pcDNA3) (Fig. 6A).
- EXAMPLE 3 The migratory response of transformed breast epithelial cells is affected by variations in GRK2 levels in response to different signals that stimulate AKT activity.
- the aberrant migration of cancer cells responds to various chemotactic gradients that stimulate their evasion. of the primary tumor focus.
- Some of these chemotactic signals such as S1 P and IGF-1, often come from the stroma "reactive" to the tumor, produced by fibroblasts and immune system cells.
- S1 P and IGF-1 are the factors that regulate not only the migration of breast epithelial cells, but also their proliferation and survival.
- These signals converge in the activation of AKT, which would trigger the accumulation of GRK2 and the potentiation of cell migration. Therefore, we wanted to determine if the migration mediated by this type of stimuli was modulated by GRK2 expression levels.
- Figure 7A shows that the increase in GRK2 levels in transiently transfected MCF-7 cells induces greater migration against S1 P and IGF-1 stimuli. Again, and similar to what was observed in fibronectin-dependent migration, the presence of a specific interference RNA of GRK2 attenuates the migratory response of MCF-7 to these soluble signals, reducing 50% compared to control cells. .
- the GRK2-dependent regulation of the migration to chemotactic signals also extends to other transformed cell types of breast epithelium with a different degree of differentiation from that of MCF-7, as observed in the Hs578T cell line, derived from a little differentiated infiltrating ductal carcinoma. After the infection of these cells with the adenoviral vector siRNA of GRK2, the migration in response to IGF-1 and S1 P is strongly inhibited, reaching a
- GRK2 are critical in the migration of breast epithelial cells in response to certain stimuli involved in tumor progression.
- ligands of the ErbB receptor family are especially relevant in the development of breast tumors.
- the ErbB2 protocol is overexpressed in about 30% of this type of tumors.
- GRK2 modulated the migration to these gradients, we considered whether the presence of GRK2 also had any effect on the invasion capacity of breast epithelial cells stimulated by relevant chemotactic signals in breast tumors.
- GRK2 levels were modified in the slightly invasive cell line MCF-7, transfecting as It has already been described with the kinase expression vector or with the siRNA-GRK2 construct, and the invasive response of these cells to stimuli present in the serum was analyzed by matrigel invasion assays (Fig. 8A). These tests simulate to some extent the conditions of invasion "in vivo", since the matrigel, extracellular matrix obtained from isolated mouse tumors and composed of laminin, collagenolV and growth factors among others, mimics the basal lamina of tissues .
- HS578T and B16 F10 melanoma cells capable of inducing tumors in nude mice and metastasizing, as well as penetrating collagen matrices with high efficiency in response to serum.
- the decrease in GRK2 levels, by infection with the siRNA-GRK2 adenoviral vector promotes a notable reduction in the ability to invade matrigel Hs578T and B16F10 cells.
- GRK2 is a key molecule in the modulation of migration and tumor invasion to different stimuli that signal through membrane receptors of a very diverse nature. This also suggests that GRK2 must play a basic and general functional role in the migration and invasion process. In line with this concept, the regulation of GRK2 invasiveness is observed not only in tumor lines of very different origin, such as breast carcinomas and melanomas, but also in non-transformed cells. Therefore, GRK2 must modulate fundamental activities in migration, perhaps related to changes in the cytoskeleton, adhesion and / or integration of diffusible migratory signals in these processes.
- GRK2 expression levels by AKT would represent a key mechanism by which cells would acquire a greater migratory potential and would have facilitated the process of tumor transformation.
- cells with high levels of GRK2 could present and acquire a transformed phenotype.
- the analysis of the endogenous levels of GRK2 in several cell lines shows that non-transformed and reduced motility cells such as MCF10A and 184B5 express lower levels of GRK2 than transformed and mobile cells such as MCF-7 or MDA-MB-468 (Fig .10).
- AKT AKT-like protein kinase
- GRK2 is subject to upward regulation mediated by AKT, we wonder if GRK2 could be modulating, in addition to the migration / invasion of breast epithelial cells, processes such as cell proliferation. To do this, we analyze the growth rate in serum response of MCF-7 cells treated with a control adenovirus or with the viral construction of the GRK2 siRNA after 24, 48, 72 and 96 hours of culture. The decrease in GRK2 levels affects the proliferative capacity of the cells after 72 hours.
- EXAMPLE 6 In vivo assay of a siRNA capable of inhibiting the expression of GRK2 for use in the treatment of cancers in which GRK2 is cooperating with AKT.
- G protein-coupled kinase receptor (GRK) interactome Role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta 1768: 913-942
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Virology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The invention relates to the use of siRNA in order to inhibit the expression of GRK2 as antitumour therapy in cancers in which AKT co-operates with GRK2 in the acquisition of tumour characteristics and to the use of said siRNA as a therapeutic agent in the treatment of melanoma, breast cancer, ovarian cancer, prostate cancer, gliomas and thyroid cancer.
Description
GRK2 TERAPIA ANTITUMORAL GRK2 ANTITUMORAL THERAPY
La presente invención pertenece al campo de Ia biología, biología molecular y bioquímica. Se dirige a Ia regulación de Ia expresión de GRK2 para el tratamiento del melanoma, cáncer de mama, cáncer de ovario, cáncer de próstata, gliomas y cáncer de tiroides.The present invention belongs to the field of biology, molecular biology and biochemistry. It is directed to the regulation of the expression of GRK2 for the treatment of melanoma, breast cancer, ovarian cancer, prostate cancer, gliomas and thyroid cancer.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
Las quinasas de receptores acoplados a proteínas G (GRKs - G protein-coupled receptor kinases) participan, junto con las arrestinas, en los procesos de regulación de múltiples receptores acoplados a proteínas G (GPCR) de gran relevancia fisiológica y farmacológica. Estas proteínas forman una familia de siete miembros (GRK1-GRK7) que fosforilan específicamente receptores activados por agonista en residuos de serina/ treonina, promoviendo procesos de internalización, reciclaje y/o degradación de GPCRs en combinación con las β-arrestinas (Fig. 1 ). Las proteínas GRKs poseen además otros sustratos de membrana no GPCRs, así como sustratos citosólicos que diversifican las consecuencias funcionales de Ia actividad de estas quinasas. Asimismo, se han identificado numerosas moléculas con las que las GRKs interaccionan de modo independiente de Ia actividad quinasa (Pao, 2002; Ribas, 2007), Io cual pone de manifiesto Ia existencia de funciones "scaffold" o de andamiaje para esta familia de proteínas.G protein-coupled receptor kinases (GRKs - G protein-coupled receptor kinases) participate, together with arrests, in the processes of regulation of multiple G protein-coupled receptors (GPCRs) of great physiological and pharmacological relevance. These proteins form a family of seven members (GRK1-GRK7) that specifically phosphorylate agonist-activated receptors in serine / threonine residues, promoting internalization, recycling and / or degradation processes of GPCRs in combination with β-arrestinas (Fig. 1 ). GRK proteins also have other non-GPCR membrane substrates, as well as cytosolic substrates that diversify the functional consequences of the activity of these kinases. Likewise, numerous molecules have been identified with which the GRKs interact independently of the kinase activity (Pao, 2002; Ribas, 2007), which demonstrates the existence of scaffold or scaffolding functions for this family of proteins .
Dado que los GPCR modulan procesos celulares básicosSince GPCRs modulate basic cellular processes
(diferenciación, migración, ciclo celular, respuestas antiapoptóticas) con frecuencia su actividad se halla involucrada en el origen y desarrollo de tumores de distinta naturaleza (Dorsam, 2007). Así, potentes mitógenos como trombina, S1 P, LPA, sonic hedgehod o endotelina regulan Ia
proliferación en células tumorales y sus receptores se hallan sobreexpresados en varios tipos de cáncer (colon, mama, próstata, melanoma). Asimismo, receptores de quimioquinas como CXCR4 o CXCR2 desempeñan un papel central en Ia metástasis tumoral. Las células tumorales que sobreexpresan estos receptores son activadas por quimioquinas liberadas por células estromales, macrófagos y leucocitos infiltrados en el tumor, estimulando Ia motilidad y supervivencia de las células cancerosas.(differentiation, migration, cell cycle, antiapoptotic responses) frequently its activity is involved in the origin and development of tumors of different nature (Dorsam, 2007). Thus, potent mitogens such as thrombin, S1 P, LPA, sonic hedgehod or endothelin regulate Ia Proliferation in tumor cells and their receptors are overexpressed in several types of cancer (colon, breast, prostate, melanoma). Likewise, chemokine receptors such as CXCR4 or CXCR2 play a central role in tumor metastasis. Tumor cells that overexpress these receptors are activated by chemokines released by stromal cells, macrophages and leukocytes infiltrated in the tumor, stimulating the motility and survival of cancer cells.
Dado que Ia señalización de los receptores GPCRs en contextos tumorales exhibe frecuentemente cambios, bien como consecuencia de una amplificación en los niveles de expresión de los mismos, bien como resultado de alteraciones en los mecanismos de regulación de su funcionalidad conducentes a una ganancia de función, es de interés general analizar los procesos que modulan a su vez Ia actividad de las moléculas reguladoras de estos receptores. En este sentido Ia proteína GRK2, que es Ia más ubicua y mejor caracterizada isoforma de Ia familia de GRKs, se perfila como una molécula clave en Ia señalización celular con un gran potencial fisiopatológico en contextos tumorales, ya que no sólo regularía Ia actividad de distintos GPCRs implicados en cáncer, sino también de proteínas citosólicas implicadas en vías de señalización proliferativas y de supervivencia (p38, Smads, entre otras), así como de proteínas de membrana no GPCRs con potencial oncogénico (receptor de EGF). Asimismo, GRK2 es capaz de modular diversas proteínas como por ejemplo PI3K, ERK o GIT1 de manera independiente de fosforilación, sugiriendo que posee propiedades de proteína adaptadora o "scaffold" (Fig. 2). Dada Ia compleja diversidad funcional de GRK2, existen en Ia célula sofisticados mecanismos que regulan tanto Ia actividad de Ia quinasa como sus niveles de expresión, cuya alteración se asocia a situaciones patológicas. Así, el estudio de los procesos que regulan Ia estabilidad y funcionalidad de GRK2, ha revelado que cambios en Ia estabilidad de Ia proteína y/o en su funcionalidad tienen repercusiones
directas en Ia fisiología celular, mostrando Ia participación de GRK2 en Ia migración celular y en procesos de transformación neoplásica.Since the signaling of GPCRs receptors in tumor contexts frequently exhibits changes, either as a result of an amplification in their expression levels, or as a result of alterations in the mechanisms of regulation of their functionality leading to a gain in function, It is of general interest to analyze the processes that in turn modulate the activity of the regulatory molecules of these receptors. In this sense, the GRK2 protein, which is the most ubiquitous and best characterized isoform of the family of GRKs, is emerging as a key molecule in cell signaling with great pathophysiological potential in tumor contexts, since it would not only regulate the activity of different GPCRs involved in cancer, but also of cytosolic proteins involved in proliferative and survival signaling pathways (p38, Smads, among others), as well as non GPCRs membrane proteins with oncogenic potential (EGF receptor). Likewise, GRK2 is able to modulate various proteins such as PI3K, ERK or GIT1 independently of phosphorylation, suggesting that it has properties of adapter protein or "scaffold" (Fig. 2). Given the complex functional diversity of GRK2, there are sophisticated mechanisms in the cell that regulate both the kinase activity and its expression levels, whose alteration is associated with pathological situations. Thus, the study of the processes that regulate the stability and functionality of GRK2, has revealed that changes in the stability of the protein and / or its functionality have repercussions. Direct in cell physiology, showing the participation of GRK2 in cell migration and in neoplastic transformation processes.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
La presente invención se enfrenta con el problema de inhibir Ia acción de Ia GRK2, no sólo a nivel de su actividad serina-treonina kinasa, sino de sus funciones "scaffold". Así, Ia supresión de Ia expresión de GRK2 en las enfermedades cancerosas en las que esta proteína se encuentra sobreexpresada, y en las que está contribuyendo o cooperando con AKT en Ia adquisición y mantenimiento de las características tumorales, sería una terapia apropiada.The present invention faces the problem of inhibiting the action of the GRK2, not only at the level of its serine-threonine kinase activity, but of its "scaffold" functions. Thus, the suppression of the expression of GRK2 in cancerous diseases in which this protein is overexpressed, and in which it is contributing or cooperating with AKT in the acquisition and maintenance of tumor characteristics, would be an appropriate therapy.
En este sentido, Ia presente invención proporciona una secuencia de ribonucleótidos o RNA que pertenece al denominado siRNA (small interfering RNA), ARN pequeño de interferencia o ARN de silenciamiento, capaz de inhibir Ia expresión genética de Ia proteína GRK2 (de aquí en adelante siRNA de Ia invención), proporcionando nuevas técnicas eficaces contra Ia proliferación y Ia migración celular, relacionadas con el cáncer. La solución proporcionada por esta invención se basa en que los inventores han observado que es posible Ia inhibición de Ia proliferación y migración celular en determinados tipos de cáncer, mediante el uso de una molécula de RNA de secuencia concreta que se une al ARN mensajero que codifica para Ia proteína GRK2 impidiendo su traducción y por tanto inhibiendo su expresión. Así, el empleo de siRNA, tal y como se describe en esta memoria, permite Ia inhibición de Ia expresión de GRK2 en patologías tumorales en las que Ia proteína GRK2 se halla sobre-expresada como resultado de una amplificación funcional de Ia vía de señalización dependiente de PI3K, contribuyendo a Ia transformación tumoral y cooperando -con Akt.
Por lo tanto, de acuerdo con un primer aspecto de Ia presente invención, se proporciona una composición (de aquí en adelante composición de Ia invención) que comprende un siRNA capaz de inhibir Ia proliferación y migración celular basado en Ia inhibición de Ia expresión de Ia proteína GRK2, para su uso en aquellos contextos patológicos en los que el GRK2 esté contribuyendo o cooperando con AKT en Ia adquisición o mantenimiento de características tumorales.In this sense, the present invention provides a sequence of ribonucleotides or RNA that belongs to the so-called siRNA (small interfering RNA), small interfering RNA or silencing RNA, capable of inhibiting the genetic expression of the GRK2 protein (hereinafter siRNA of the invention), providing new effective techniques against cancer proliferation and cell migration. The solution provided by this invention is based on the fact that the inventors have observed that the inhibition of cell proliferation and migration in certain types of cancer is possible, through the use of a specific RNA sequence molecule that binds to the messenger RNA that encodes for the GRK2 protein preventing its translation and therefore inhibiting its expression. Thus, the use of siRNA, as described herein, allows the inhibition of GRK2 expression in tumor pathologies in which the GRK2 protein is overexpressed as a result of a functional amplification of the dependent signaling pathway. of PI3K, contributing to tumor transformation and cooperating - with Akt. Therefore, in accordance with a first aspect of the present invention, there is provided a composition (hereinafter composition of the invention) comprising a siRNA capable of inhibiting cell proliferation and migration based on the inhibition of Ia expression GRK2 protein, for use in those pathological contexts in which GRK2 is contributing or cooperating with AKT in the acquisition or maintenance of tumor characteristics.
Una realización preferida de Ia invención, Io constituye una composición de Ia invención que comprenda una construcción de RNA (construcción de RNA de Ia invención) que al menos contenga una cualquiera de las secuencias de nucleótidos posibles de siRNA capaces de inhibir Ia expresión de GRK2, y sin perjuicio de que adicionalmente formen parte de Ia presente invención cualquiera de las secuencias y construcciones de RNA de Ia invención anteriormente descritas que sean objeto de modificaciones, preferentemente químicas, que conduzcan a una mayor estabilidad frente a Ia acción de ribonucleasas y con ello a una mayor eficiencia. Sin que dichas modificaciones supongan Ia alteración de su mecanismo de acción, que es Ia unión específica al complejo RISC (RNA-induced silencing complex), activándolo y manifestando una actividad helicasa que separa las dos hebras dejando solo Ia hebra antisentido asociada al complejo. El complejo ribonucleoprotéico resultante se une al mRNA diana (ARN mensajero del GRK2). Si Ia complementariedad no es perfecta, RISC queda asociado al mensajero y se atenúa Ia traducción. Pero si es perfecta, RISC actúa como RNasa, cortando al mensajero y quedando libre para repetir el proceso.A preferred embodiment of the invention, constitutes a composition of the invention comprising an RNA construct (RNA construct of the invention) that contains at least any one of the possible nucleotide sequences of siRNA capable of inhibiting the expression of GRK2, and notwithstanding that, in addition, any of the RNA sequences and constructions of the invention described above that are subject to modifications, preferably chemical, that lead to greater stability against the action of ribonucleases and thereby to be part of the present invention Greater efficiency Without these modifications, this involves the alteration of its mechanism of action, which is the specific binding to the RISC complex (RNA-induced silencing complex), activating it and manifesting a helicase activity that separates the two strands leaving only the antisense strand associated with the complex. The resulting ribonucleoproteal complex binds to the target mRNA (GRK2 messenger RNA). If the complementarity is not perfect, RISC is associated with the messenger and the translation is attenuated. But if it is perfect, RISC acts as RNasa, cutting the messenger and being free to repeat the process.
La composición de Ia presente invención se utiliza en el tratamiento de aquellos tipos de cáncer, en los que se ha observado que Ia proteínaThe composition of the present invention is used in the treatment of those types of cancer, in which it has been observed that the protein
GRK2 se encuentra cooperando con Ia AKT, como son el melanoma, cáncer de mama, cáncer de ovario, cáncer de próstata, gliomas y cáncer de tiroides.
La preparación de Ia secuencia de siRNA de Ia invención o de Ia construcción de RNA de Ia invención sería evidente para un experto en Ia materia, y se podría llevar a cabo por síntesis química, Io cual permite además Ia incorporación de modificaciones químicas tanto en los distintos nucleótidos del producto como Ia incorporación de otros compuestos químicos en cualquiera de los extremos. Por otro lado, Ia síntesis también podría realizarse enzimáticamente utilizando cualquiera de las RNA polimerasas disponibles. La síntesis enzimática también permite alguna modificación química de los productos o RNAs inhibidores.GRK2 is cooperating with AKT, such as melanoma, breast cancer, ovarian cancer, prostate cancer, gliomas and thyroid cancer. The preparation of the siRNA sequence of the invention or of the RNA construction of the invention would be evident to one skilled in the art, and could be carried out by chemical synthesis, which also allows the incorporation of chemical modifications both in the different nucleotides of the product such as the incorporation of other chemical compounds at any of the ends. On the other hand, the synthesis could also be carried out enzymatically using any of the available RNA polymerases. Enzymatic synthesis also allows some chemical modification of inhibitor products or RNAs.
El diseño de Ia secuencia de nucleótidos del siRNA de Ia invención también sería evidente para un experto en Ia materia. Así, se podría realizar mediante un diseño aleatorio en el que se seleccionen 19-21 bases del ARNm diana sin tener en cuenta Ia secuencia o Ia información posicional que tiene en el transcrito. Otra alternativa no limitativa de Ia presente invención sería el diseño convencional mediante parámetros simples desarrollados por los pioneros de Ia técnica (Calipel, A. et al., 2003) completados con un análisis BLAST de nucleótidos. Otra posibilidad podría ser un diseño racional, en el que se emplee un procedimiento informático dirigido a identificar las dianas óptimas de siRNA en un ARNm. Las secuencias diana se analizan en grupos de 19 nucleótidos a Ia vez y se identifican las que tienen mejores características en función de un algoritmo que incorpora un gran número de parámetros termodinámicos y de secuencia.The design of the nucleotide sequence of the siRNA of the invention would also be evident to one skilled in the art. Thus, it could be done through a random design in which 19-21 bases of the target mRNA are selected without taking into account the sequence or positional information it has in the transcript. Another non-limiting alternative of the present invention would be the conventional design using simple parameters developed by the pioneers of the technique (Calipel, A. et al., 2003) completed with a BLAST nucleotide analysis. Another possibility could be a rational design, in which a computer procedure is used to identify the optimal siRNA targets in an mRNA. The target sequences are analyzed in groups of 19 nucleotides at the same time and those with the best characteristics are identified based on an algorithm that incorporates a large number of thermodynamic and sequence parameters.
Un segundo aspecto de Ia invención Io constituye una composición (de aquí en adelante segunda composición de Ia invención) que comprenda una construcción genética de DNA, en adelante construcción genética de DNA de Ia invención, Ia cual dirigiría Ia transcripción in vitro o intracelular de Ia secuencia siRNA o construcción de RNA de Ia invención, y que comprende, al menos, uno de los siguientes tipos de secuencias: a)
secuencia de nucleótidos de DNA, preferentemente de doble cadena, que comprende, al menos, Ia secuencia codificante del siRNA de Ia invención o de Ia construcción de RNA de Ia invención para su transcripción in vitro, o, b) secuencia de nucleótidos de DNA, preferentemente de doble cadena, correspondiente a un sistema o vector de expresión génica que comprende Ia secuencia codificante de Ia secuencia de RNA de Ia invención operativamente enlazada con, al menos, un promotor que dirija Ia transcripción de dicha secuencia de nucleótidos de interés, y con otras secuencias necesarias o apropiadas para Ia transcripción y su regulación adecuada en tiempo y lugar, por ejemplo, señales de inicio y terminación, sitios de corte, señal de poliadenilación, origen de replicación, activadores transcripcionales (enhancers), silenciadores transcripcionales (silencers), etc.. para su uso en aquellos contextos patológicos en los que el GRK2 está contribuyendo a Ia adquisición o mantenimiento de características tumorales en cooperación con Ia vía de señalización dependiente de PI3K y Akt. Múltiples de estos sistemas o vectores de expresión pueden ser obtenidos por métodos convencionales conocidos por los expertos en Ia materia (Sambrook et al., 1989) y forman parte de Ia presente invención.A second aspect of the invention constitutes a composition (hereinafter the second composition of the invention) comprising a genetic construction of DNA, hereinafter genetic construction of DNA of the invention, which would direct the in vitro or intracellular transcription of Ia siRNA sequence or RNA construct of the invention, and comprising at least one of the following types of sequences: a) DNA nucleotide sequence, preferably double stranded, comprising, at least, the sequence encoding the siRNA of the invention or the RNA construct of the invention for in vitro transcription, or, b) DNA nucleotide sequence, preferably double stranded, corresponding to a gene expression system or vector comprising the sequence coding for the RNA sequence of the invention operably linked with at least one promoter that directs the transcription of said nucleotide sequence of interest, and with other sequences necessary or appropriate for the transcription and its adequate regulation in time and place, for example, start and end signals, cutoff sites, polyadenylation signal, origin of replication, transcriptional activators (enhancers), transcriptional silencers (silencers), etc .. for use in those pathological contexts in which the GRK2 is contributing to the acquisition or maintenance nimiento of tumor characteristics in cooperation with the signaling pathway dependent on PI3K and Akt. Multiple of these expression systems or vectors can be obtained by conventional methods known to those skilled in the art (Sambrook et al., 1989) and are part of the present invention.
Las composiciones de Ia presente invención permiten Ia transfección del siRNA de Ia invención al interior de una célula, in vivo o in vitro. La transfección se podría llevar a cabo, pero sin limitarnos a, transfección directa o vectores que faciliten el acceso del siRNA al interior de Ia célula. Así, ejemplos de estos vectores son, sin limitarse a, retrovirus, lentivirus, adenovirus, virus adeno-asociados, virus del Herpes simplex, plásmidos de DNA no virales, liposomas catiónicos y conjugados moleculares.The compositions of the present invention allow the transfection of the siRNA of the invention into a cell, in vivo or in vitro. The transfection could be carried out, but not limited to, direct transfection or vectors that facilitate the access of the siRNA inside the cell. Thus, examples of these vectors are, without limitation, retroviruses, lentiviruses, adenoviruses, adeno-associated viruses, Herpes simplex viruses, non-viral DNA plasmids, cationic liposomes and molecular conjugates.
Así, por ejemplo, los siRNA de Ia presente invención, así como ARN o ADN precursores de estos siRNA, pueden conjugarse con péptidos de liberación u otros compuestos para favorecer el transporte de estos siRNA
al interior de Ia célula. Entre estas proteínas se encuentran aquellas conocidas en el estado del arte, que tienen propiedades que favorecen Ia penetración en las células. Como ejemplos, y sin limitarse a estos, se incluyen los que se describen en Ia solicitud de patente US 20040204377.Thus, for example, the siRNAs of the present invention, as well as RNA or DNA precursors of these siRNAs, can be conjugated with release peptides or other compounds to favor the transport of these siRNAs. inside the cell. Among these proteins are those known in the state of the art, which have properties that favor cell penetration. As examples, and not limited to these, those described in the patent application US 20040204377 are included.
En una realización aún más preferida de Ia presente invención, Ia transferencia a las células tumorales del siRNA de Ia invención se podría realizar fusionando construcciones SÍRNA-GRK2 a RNA-aptámeros. La presencia en las construcciones de SÍRNA-GRK2 de RNA-aptameros con capacidad de unión selectiva a antígenos tumorales permite dirigir el siRNA a células tumorales para inhibir Ia expresión del GRK2. Esto permitiría una transferencia selectiva y eficiente a las células tumorales.In an even more preferred embodiment of the present invention, the transfer to the siRNA tumor cells of the invention could be performed by fusing SIRR-GRK2 constructs to RNA-aptamers. The presence in the SIRR-GRK2 constructions of RNA-aptamers with the capacity of selective binding to tumor antigens allows the siRNA to be directed to tumor cells to inhibit the expression of GRK2. This would allow a selective and efficient transfer to the tumor cells.
Normalmente los aptámeros son susceptibles a Ia degradación por nucleasas en el medio intracelular. En este sentido y con el fin de solucionar este problema se pueden presentar modificaciones en Ia estructura química que los provean de una resistencia notable a Ia degradación. Las modificaciones que involucran Ia posición 2' han sido particularmente utilizadas pues se sabe que el radical -OH en este carbono es indispensable en el mecanismo de reacción de las nucleasas.Normally aptamers are susceptible to degradation by nucleases in the intracellular medium. In this sense and in order to solve this problem, modifications in the chemical structure can be presented that provide them with a remarkable resistance to degradation. The modifications that involve the 2 'position have been particularly used since it is known that the -OH radical in this carbon is indispensable in the reaction mechanism of the nucleases.
El cambio más común es Ia sustitución con un grupo -NH2 que permite prolongar el tiempo de vida de los oligoribonucleótidos en más de 20 veces, Otra estrategia para impedir Ia degradación de aptámeros es utilizar las configuraciones especulares de los blancos en una selección convencional para generar los D-aptámeros normales. Una vez conocida su secuencia son sintetizados en su conformación L-enantiomérica que es reconocida específicamente por el blanco natural pero no es sustrato de las nucleasas presentes en el medio celular.The most common change is the substitution with a group -NH2 that allows the life time of oligoribonucleotides to be extended more than 20 times. Another strategy to prevent the degradation of aptamers is to use the specular configurations of the targets in a conventional selection to generate the normal D-aptamers. Once their sequence is known, they are synthesized in their L-enantiomeric conformation that is specifically recognized by the natural target but is not a substrate for the nucleases present in the cellular medium.
Los siRNAs de Ia invención pueden también suministrarse mezclados con agentes de liberación, como por ejemplo, dendrímeros.
En un tercer aspecto de Ia invención se contempla que las composiciones de Ia presente invención son composiciones farmacéuticas, que comprenden una cantidad terapéuticamente efectiva de Ia secuencia de siRNA de Ia invención y/o construcción de RNA de Ia invención y/o construcciones genéticas de DNA de Ia invención, junto con, opcionalmente, uno o más adyuvantes y/o vehículos farmacéuticamente aceptables.The siRNAs of the invention can also be supplied mixed with releasing agents, such as dendrimers. In a third aspect of the invention it is contemplated that the compositions of the present invention are pharmaceutical compositions, which comprise a therapeutically effective amount of the siRNA sequence of the invention and / or RNA construction of the invention and / or genetic DNA constructs of the invention, together with, optionally, one or more pharmaceutically acceptable adjuvants and / or vehicles.
En el contexto de Ia presente memoria se entiende como "siRNA" (small interfering RNA ó ARN pequeño de interferencia) una clase de ARN de doble cadena de 20 a 25 nucleótidos de largo, y más preferentemente entre 21 y 23 nucleótidos, que está involucrado en Ia ruta de Ia interferencia de ARN, donde el siRNA interfiere Ia expresión de un gen específico. En Ia presente invención, este gen específico es el GRK2. En este sentido, Ia presente invención utiliza a título ilustrativo como siRNA IaIn the context of the present specification, "siRNA" (small interfering RNA or small interfering RNA) is understood as a class of double stranded RNA 20 to 25 nucleotides long, and more preferably between 21 and 23 nucleotides, which is involved in the route of RNA interference, where the siRNA interferes with the expression of a specific gene. In the present invention, this specific gene is GRK2. In this sense, the present invention uses illustratively as siRNA Ia
SEQ ID NO: 2, secuencia nucleotídica capaz de inhibir Ia expresión deSEQ ID NO: 2, nucleotide sequence capable of inhibiting the expression of
GRK2 en células tumorales, Io cual impide que dichas células malignas desarrollen tumores in vivo (ver ejemplo 6).GRK2 in tumor cells, which prevents these malignant cells from developing tumors in vivo (see example 6).
En el contexto de Ia presente invención, las secuencias SEQ ID NO:In the context of the present invention, the sequences SEQ ID NO:
3 y SEQ ID NO: 4 representa las secuencias que flanquean Ia región 5' y 3' respectivamente de Ia SEQ ID NO: 2 para crear el hairpin en Ia estructura que se expresará con el adenovirus. La Fig. 3 muestra Ia estructura secundaria más probable que adoptaría esta construcción de siRNA.3 and SEQ ID NO: 4 represents the sequences that flank the 5 ' and 3 ' region respectively of SEQ ID NO: 2 to create the hairpin in the structure that will be expressed with the adenovirus. Fig. 3 shows the most likely secondary structure that this siRNA construct would adopt.
Como "GRK2", en el contexto de Ia presente invención, se define una secuencia de nucleótidos o polinucleótido, que constituye Ia secuencia codificante de Ia proteína GRK2, y que comprendería diversas variantes procedentes de:
a) moléculas de ácido nucleico que codifican un polipéptido que comprende Ia secuencia aminoacídica de Ia SEQ ID NO: 1 , b) moléculas de ácido nucleico cuya cadena complementaria híbrida con Ia secuencia polinucleotídica de a), c) moléculas de ácido nucleico cuya secuencia difiere de a) y/o b) debido a Ia degeneración del código genético, d) moléculas de ácido nucleico que codifican un polipétptido que comprende Ia secuencia aminoacídica con una homología de un 99%, 98%, 95%, 90%, o un 80% con Ia SEQ ID NO: 1.As "GRK2", in the context of the present invention, a nucleotide or polynucleotide sequence is defined, which constitutes the coding sequence of the GRK2 protein, and which would comprise various variants from: a) nucleic acid molecules that encode a polypeptide comprising the amino acid sequence of SEQ ID NO: 1, b) nucleic acid molecules whose complementary chain hybridizes with the polynucleotide sequence of a), c) nucleic acid molecules whose sequence differs a) and / or b) due to the degeneracy of the genetic code, d) nucleic acid molecules that encode a polypeptide comprising the amino acid sequence with a homology of 99%, 98%, 95%, 90%, or 80 % with SEQ ID NO: 1.
en las que el polipéptido codificado por dichos ácidos nucleicos posee Ia actividad catalítica, Ia actividad scaffold y las características estructurales de GRK2.in which the polypeptide encoded by said nucleic acids possesses the catalytic activity, the scaffold activity and the structural characteristics of GRK2.
En el contexto de Ia presente invención el término "homología" hace referencia a Ia semejanza entre dos estructuras debida a una ascendencia evolutiva común, y más concretamente, a Ia semejanza entre dos o más secuencias aminoacídicas.In the context of the present invention the term "homology" refers to the similarity between two structures due to a common evolutionary ancestry, and more specifically, to the similarity between two or more amino acid sequences.
Dado que las secuencias nucleotídicas del gen GRK2 son afines en cuanto a su evolución, y dado que Ia función de este depende de Ia secuencia aminoacídica a Ia que se transcribe, puede esperarse que Ia homología global de los genomas al nivel de los aminoácidos, en distintos grupos de poblaciones y/o individuos, y en distintos animales, y más concretamente a nivel de Ia secuencia aminoacídica que se recoge en Ia SEQ ID NO: 1 , sea de un 80% o mayor, y más preferiblemente de un 90% o mayor y más preferiblemente de un 95, un 98 o un 99% o mayor. La correspondencia entre Ia secuencia aminoacídica de Ia SEQ ID NO: 1 y Ia secuencia perteneciente a otro individuo u organismo se puede determinar por métodos conocidos en Ia técnica.
En el contexto de esta memoria, se entiende por "AKT" aquellas proteínas con actividad quinasa que fosforilan diversos sustratos en serinas y treoninas y son activadas por su translocación a Ia membrana plasmática y su unión al fosfolípido PIP3. Estas proteínas, de las que existen varias isoformas (Akt1 o PKBα, Akt2 o PKBβ y Akt3 o PKBy, se encuentran reguladas por numerosos factores de crecimiento y desempeñan un papel clave en Ia supervivencia celular, proliferación y migración celular.Since the nucleotide sequences of the GRK2 gene are related in terms of their evolution, and since the function of this depends on the amino acid sequence to which it is transcribed, it can be expected that the overall homology of the genomes at the amino acid level, in different groups of populations and / or individuals, and in different animals, and more specifically at the level of the amino acid sequence that is included in SEQ ID NO: 1, is 80% or greater, and more preferably 90% or greater and more preferably 95, 98 or 99% or greater. The correspondence between the amino acid sequence of SEQ ID NO: 1 and the sequence belonging to another individual or organism can be determined by methods known in the art. In the context of this report, "AKT" means those proteins with kinase activity that phosphorylate various substrates in serines and threonines and are activated by their translocation to the plasma membrane and their binding to the PIP3 phospholipid. These proteins, of which there are several isoforms (Akt1 or PKBα, Akt2 or PKBβ and Akt3 or PKBy), are regulated by numerous growth factors and play a key role in cell survival, proliferation and cell migration.
Tal como se utiliza en Ia presente invención el términoAs used in the present invention the term
"modificaciones químicas" se refiere a Ia introducción de nucleótidos modificados químicamente en Ia secuencia de RNA de Ia invención, por ejemplo, y sin limitarse a éstos, grupos S sustituyendo O en Ia cadena fosfodiéster, o Ia inclusión de 5 metilcitosinas, que permiten incrementar Ia eficiencia del mismo (conferir mayor resistencia frente a degradación, favorecer su entrada a las células, etc), así como cualquier modificación en Ia pentosa o en Ia base nitrogenada. Otras modificaciones del siRNA que pueden aumentar Ia estabilidad son aquellas que se describen en Bolcato- Bellemin et al. 2007 en las que se introduce cortas secuencias de poli-dA y poli-dT protuberantes y complementarias en los extremos del siRNA favoreciendo así Ia agregación y formación de concatémeros."chemical modifications" refers to the introduction of chemically modified nucleotides in the RNA sequence of the invention, for example, and without being limited thereto, S groups replacing O in the phosphodiester chain, or the inclusion of 5 methylcytosines, which allow increasing The efficiency of the same (confer greater resistance against degradation, favor its entry into the cells, etc.), as well as any modification in the pentose or in the nitrogenous base. Other modifications of the siRNA that can increase the stability are those described in Bolcato-Bellemin et al. 2007 in which short sequences of protruding and complementary poly-dA and poly-dT sequences are introduced at the ends of the siRNA thus favoring the aggregation and formation of concatamers.
Tal y como se usa en esta memoria, el término "transfección" se refiere a Ia introducción o transferencia de una molécula de ácido nucleico exógena en una célula eucariota, incluyendo, pero no limitándose a ella, una molécula de ácido ribonucleico o desoxiribonucleico (por ejemplo,As used herein, the term "transfection" refers to the introduction or transfer of an exogenous nucleic acid molecule into a eukaryotic cell, including, but not limited to, a ribonucleic or deoxyribonucleic acid molecule (by example,
RNA ó DNA desnudo).RNA or naked DNA).
En el contexto de Ia presente invención se entiende por "aptámeros" moléculas de ácido nucleico que son capaces de unirse a otra molécula de particular interés con gran afinidad y especificad (Tuerk y GoId, 1990;
Ellington y Szostak, 1990). En el contexto de Ia presente invención, esta molécula diana de particular interés sería un antígeno tumoral específico o un marcador indicativo de que Ia célula ha adquirido características tumorales. Un aptámero se obtiene típicamente por selección in vitro de Ia unión a una molécula diana. Sin embargo, Ia selección in vivo también es posible. Tiene típicamente entre 10 y 300 nucleótidos de longitud. Más comúnmente, un aptámero debe estar entre 30 y 100 nucleótidos de longitud.In the context of the present invention, "aptamers" means nucleic acid molecules that are capable of binding to another molecule of particular interest with great affinity and specificity (Tuerk and GoId, 1990; Ellington and Szostak, 1990). In the context of the present invention, this target molecule of particular interest would be a specific tumor antigen or an indicative marker that the cell has acquired tumor characteristics. An aptamer is typically obtained by in vitro selection of the binding to a target molecule. However, in vivo selection is also possible. It is typically between 10 and 300 nucleotides in length. More commonly, an aptamer must be between 30 and 100 nucleotides in length.
En esta memoria, se entiende por "dendrímeros" polímeros altamente ramificados con arquitectura bien definida, capaces de liberar otros compuestos a Ia célula.In this report, "dendrimers" means highly branched polymers with a well-defined architecture, capable of releasing other compounds to the cell.
En el sentido utilizado en esta descripción, Ia expresión "cantidad terapéuticamente efectiva" se refiere a Ia cantidad de secuencia de siRNA de Ia invención o a Ia cantidad de una construcción génica de RNA o DNA, que permitan su expresión intracelular calculada para producir el efecto deseado y, en general, vendrá determinada, entre otras causas, por las características propias de dichas secuencias y construcciones y el efecto terapéutico a conseguir. Los adyuvantes y vehículos farmacéuticamente aceptables que pueden ser utilizados en dichas composiciones son los vehículos conocidos por los técnicos en Ia materia. La composición farmacéutica proporcionada por esta invención puede ser facilitada por cualquier vía de administración, para Io cual dicha composición se formulará en Ia forma farmacéutica adecuada a Ia vía de administración elegida. En una realización particular, Ia administración de Ia composición proporcionada por esta invención se efectúa por vía subcutánea, pudiendo ser posibles otras vías como por ejemplo Ia vía intraperitoneal, parenteral, etc.
A Io largo de Ia descripción y las reivindicaciones Ia palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en Ia materia, otros objetos, ventajas y características de Ia invención se desprenderán en parte de Ia descripción y en parte de Ia práctica de Ia invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de Ia presente invención.In the sense used in this description, the expression "therapeutically effective amount" refers to the amount of the siRNA sequence of the invention or to the amount of an RNA or DNA gene construct that allows its calculated intracellular expression to produce the desired effect. and, in general, will be determined, among other causes, by the characteristics of said sequences and constructions and the therapeutic effect to be achieved. The pharmaceutically acceptable adjuvants and vehicles that can be used in said compositions are the vehicles known to those skilled in the art. The pharmaceutical composition provided by this invention may be provided by any route of administration, for which said composition will be formulated in the pharmaceutical form suitable to the route of administration chosen. In a particular embodiment, the administration of the composition provided by this invention is carried out subcutaneously, other routes being possible, such as, for example, intraperitoneal, parenteral, etc. Throughout the description and the claims, the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and characteristics of the invention will emerge partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
Figura 1 : Regulación de receptores acoplados a proteínas G (GPCRs) por las proteínas GRKs y β-arrestinas. La desensibilización homologa se inicia con Ia fosforilación del receptor activado por las GRKs y concluye con el reclutamiento de las β-arrestinas que desacoplan funcionalmente al receptor de las proteínas G. Asimismo, las β-arrestinan interaccionan directamente con Ia maquinaria endocítica necesaria para llevar a cabo Ia internalización de receptores. Una vez presentes en endosomas, Ia capacidad andamio de β-arrestina permite el acoplamiento de los receptores desensibilizados con diversas proteínas señalizadoras como c- Src y MAPK. Posteriormente, el receptor defosforilado se recicla y se localiza de nuevo en Ia membrana plasmática o bien se degrada en lisosomas.Figure 1: Regulation of G-protein coupled receptors (GPCRs) by GRKs and β-arrestin proteins. Homologous desensitization begins with the phosphorylation of the receptor activated by the GRKs and concludes with the recruitment of the β-arrestins that functionally decouple the receptor from the G proteins. Likewise, the β-arrests interact directly with the endocytic machinery necessary to lead to carried out the internalization of receptors. Once present in endosomes, the scaffolding capacity of β-arrestin allows the coupling of desensitized receptors with various signaling proteins such as c-Src and MAPK. Subsequently, the dephosphorylated receptor is recycled and located again in the plasma membrane or it degrades in lysosomes.
Fig. 2. Interactoma funcional de GRK2. Numerosas proteínas implicadas en Ia transducción de señales interaccionan con GRK2 y son reguladas por esta proteína. Así, Ia actividad quinasa de GRK2 no sólo determina el estado funcional de un gran número de receptores GPCR sino también el de diversos sustratos citosólicos, Io cual permite modular diferentes procesos celulares. Por otro lado, nuevas funciones de GRK2 surgen debido a su capacidad para interaccionar con multitud de proteínas, independientemente de su actividad quinasa.
Fig. 3. Construcción de siRNA que representa Ia estructura secundaria más probable, y que incluye Ia SEQ ID NO: 2, y las secuencias flanqueantes que forman el hairpin, SEQ ID N O: 3 y SEQ ID NO: 4. Es Ia construcción de siRNA con Ia que se han llevado a cabo los ejemplos de Ia invención.Fig. 2. Functional interactome of GRK2. Numerous proteins involved in signal transduction interact with GRK2 and are regulated by this protein. Thus, the kinase activity of GRK2 not only determines the functional state of a large number of GPCR receptors but also that of various cytosolic substrates, which allows modulating different cellular processes. On the other hand, new functions of GRK2 arise due to its ability to interact with a multitude of proteins, regardless of their kinase activity. Fig. 3. Construction of siRNA that represents the most probable secondary structure, and that includes SEQ ID NO: 2, and the flanking sequences that form the hairpin, SEQ ID NO: 3 and SEQ ID NO: 4. It is the construction of siRNA with which the examples of the invention have been carried out.
Fig. 4 Análisis de los niveles de GRK2 y del estado de activación de AKT en muestras de pacientes con carcinoma de mama. Muestras de carcinoma ductal infiltrante de mama así como de tejido normal procedente de los mismos se procesaron para cuantificar, mediante técnicas de inmunodetección con anticuerpos específicos, los niveles de Ia proteína GRK2 y de fosforilación de AKT. Los datos densitométricos obtenidos se normalizaron con los niveles de actina y AKT total, respectivamente. A y B) Se representan las medias de cada individuo procedentes de 4-5 determinaciones tomando como referencia los valores de una muestra control aleatoria. Se indica en cada población (control y tumoral) el valor promedio ( — ). C) Representación estratificada de las muestras tumorales AKT positivas y negativas en relación al grado de expresión de GRK2, tomando como referencia el valor promedio de Ia población control. Se consideran muestras positivas o negativas aquellas que difieren como mínimo en un 15% del valor promedio control teniendo en cuenta Ia desviación estándar de Ia media. D) Representación en histograma de los niveles de GRK2 anteriores correspondientes a las muestras tumorales, mostrando datos clínicos relevantes.Fig. 4 Analysis of GRK2 levels and the activation status of AKT in samples of patients with breast carcinoma. Samples of infiltrating ductal carcinoma of the breast as well as normal tissue from them were processed to quantify, by means of immunodetection techniques with specific antibodies, the levels of the GRK2 protein and phosphorylation of AKT. The densitometric data obtained were normalized with the levels of actin and total AKT, respectively. A and B) The means of each individual from 4-5 determinations are represented taking as reference the values of a randomized control sample. The average value (-) is indicated in each population (control and tumor). C) Stratified representation of positive and negative AKT tumor samples in relation to the degree of GRK2 expression, taking as reference the average value of the control population. Positive or negative samples are considered to be those that differ at least 15% from the average control value taking into account the standard deviation of the mean. D) Histogram representation of previous GRK2 levels corresponding to tumor samples, showing relevant clinical data.
Fig.5 La unión de factores de crecimiento como el IGF1 a sus receptores promueve Ia estimulación de Ia PI3K y Ia producción del fosfolípido PIP3, el cual induce Ia activación de Ia quinasa AKT. La ligasa Mdm2, responsable de Ia degradación de GRK2, es fosforilada por AKT y dicha modificación dirige Ia ligasa al núcleo impidiendo su interacción con GRK2 y favoreciendo Ia estabilización de Ia proteína y su sobre-expresión.
Fig.6 Los niveles de GRK2 afectan a Ia capacidad de migración de células MCF-7 y MCF10A en respuesta a fibronectina. Se realizaron experimentos de migración quimiotáctica en repuesta a fibronectina en células MCF7 (panel A) y MCF10A (panel B) transfectadas con el vector de expresión de GRK2, el vector de expresión de Ia construcción siRNA de GRK2 o el vector vacío en combinación con el vector de CD-8 y seleccionadas por el método dynabeads. Se representan las ±SEM de 3-4 experimentos realizados por duplicadosFig. 5 The union of growth factors such as IGF1 to its receptors promotes the stimulation of PI3K and the production of PIP3 phospholipid, which induces the activation of AKT kinase. The Mdm2 ligase, responsible for the degradation of GRK2, is phosphorylated by AKT and said modification directs the ligase to the nucleus preventing its interaction with GRK2 and favoring the stabilization of the protein and its overexpression. Fig. 6 GRK2 levels affect the ability to migrate MCF-7 and MCF10A cells in response to fibronectin. Chemotactic migration experiments in fibronectin response were performed in MCF7 (panel A) and MCF10A (panel B) cells transfected with the GRK2 expression vector, the GRK2 siRNA construct expression vector or the empty vector in combination with the CD-8 vector and selected by the dynabeads method. The ± SEM of 3-4 experiments performed in duplicates are represented
Fig.7 Modulación por GRK2 de Ia migración inducida por distintas señales quimiotácticas difusibles. Las células MCF7 (panel A) transitoriamente transfectadas con un vector vacío, el vector de expresión de GRK2 o de Ia construcción de SÍRNA-GRK2, se seleccionaron como anteriormente para ensayos de migración quimiotáctica a las señales indicadas. Similares ensayos se llevaron a cabo en las células Hs578T (panel B) infectadas o no con el adenovirus control y Ia construcción de SÍRNA-GRK2 a MOI 100. Se representaron las medias ±SEM de 3-4 experimentos realizados por duplicado donde *p< 0,05 y **p<0,01 , cuando se comparan con los controles de transfección del vector vacío o con las células infectadas con el Adcontrol (Hs578T), no difiriendo Ia motilidad de éstas últimas respecto a las células sin infectar.Fig. 7 GRK2 modulation of the migration induced by different diffusible chemotactic signals. The MCF7 cells (panel A) transiently transfected with an empty vector, the GRK2 expression vector or the SÍRNA-GRK2 construct, were selected as above for chemotactic migration assays at the indicated signals. Similar tests were carried out in Hs578T cells (panel B) infected or not with the control adenovirus and the construction of SÍRNA-GRK2 at MOI 100. The means ± SEM of 3-4 experiments performed in duplicate were represented where * p < 0.05 and ** p <0.01, when compared with the transfection controls of the empty vector or with cells infected with Adcontrol (Hs578T), the motility of the latter does not differ with respect to the uninfected cells.
Fig.8 La capacidad de invadir matrigel en células MCF7 está modulada por los niveles de GRK2. A) Las células transfectadas en las mismas condiciones mencionadas anteriormente se utilizaron para realizar experimentos de invasión en matrigel en respuesta a 20% suero. B) Las células MCF7 sin infectar e infectadas con el adenovirus control o con Ia construcción SÍRNA-GRK2 a MOI 100 se emplearon para realizar experimentos de invasión en matrigel en respuesta a los estímulos indicados. Se representan las ±SEM de 3-4 experimentos realizados por duplicado donde *p<0,05 **p<0,01 y ***p<0,001 , comparando con los
controles de transfección de vector vacío o con los de células infectadas con el adenovirus control. Se muestran autorradiografías representativas de los cambios incluidos en los niveles de GRK2.Fig. 8 The ability to invade matrigel in MCF7 cells is modulated by GRK2 levels. A) Transfected cells under the same conditions mentioned above were used to perform matrigel invasion experiments in response to 20% serum. B) Uninfected MCF7 cells and infected with the control adenovirus or with the SÍRNA-GRK2 to MOI 100 construct were used to perform matrigel invasion experiments in response to the indicated stimuli. The ± SEM of 3-4 experiments performed in duplicate are represented where * p <0.05 ** p <0.01 and *** p <0.001, compared with Transfection controls of empty vector or those of cells infected with the control adenovirus. Representative autoradiographs of changes included in GRK2 levels are shown.
Fig.9 Los niveles de GRK2 afectan a Ia capacidad invasiva de líneas celulares procedentes de tumores metastáticos. Las células de carcinoma de mama Hs578T (panel A) y el melanoma B16F10 (panel B) sin infectar e infectadas con el adenovirus control o con Ia construcción SÍRNA-GRK2 a MOI 100 se utilizaron para ensayos de invasión en matrigel en respuesta a suero. *p<0,05, **p<0,01. La reducción de los niveles de GRK2 se confirmó mediante inmunodetecciónFig. 9 GRK2 levels affect the invasive capacity of cell lines from metastatic tumors. Hs578T breast carcinoma cells (panel A) and B16F10 melanoma (panel B) without infecting and infected with the control adenovirus or with the SÍRNA-GRK2 to MOI 100 construct were used for serum invasion tests in matrigel. * p <0.05, ** p <0.01. The reduction of GRK2 levels was confirmed by immunodetection.
Fig. 10. Efecto de los niveles de GRK2 en Ia proliferación celular. Las células MCF-7 se infectaron tal y como se ha indicado anteriormente con el vector adenoviral de Ia construcción siRNA de GRK2 o con el adenovirus control. La proliferación celular se determinó por el método CelITiter 96®Fig. 10. Effect of GRK2 levels on cell proliferation. MCF-7 cells were infected as indicated above with the adenoviral vector of the siRNA construct of GRK2 or with the control adenovirus. Cell proliferation was determined by the CelITiter 96® method
AQueous (promega) en placas multipocillo-96 a los tiempos indicados. Se muestran las ±SEM de 4 experimentos realizados por cuadriplicado. *p<0,05 y **p<0,01.AQueous (promise) in multiwell plates-96 at the indicated times. The ± SEM of 4 experiments performed in quadruplicate are shown. * p <0.05 and ** p <0.01.
Fig. 11. La Inhibición de Ia expresión de GRK2 en células malignas impide Ia formación de tumores ortotópicos en ratón. Células de carcinoma de mama MCF7 infectadas con adenovirus control o con el adenovirus de Ia construcción SÍRNA-GRK2 se inocularon por vía subcutánea en los respectivos flancos de ratones inmunodeprimidos tal y como se indica en el esquema. Durante 19 días se analizó el crecimiento tumoral y el tamaño registrado mediante calibres se representó gráficamente.
EXPOSICIÓN DETALLADA DE MODOS DE REALIZACIÓNFig. 11. Inhibition of the expression of GRK2 in malignant cells prevents the formation of orthotopic tumors in mice. MCF7 breast carcinoma cells infected with adenovirus control or with the adenovirus of the SYRNA-GRK2 construct were inoculated subcutaneously in the respective flanks of immunocompromised mice as indicated in the scheme. Tumor growth was analyzed for 19 days and the size recorded by calipers was plotted. DETAILED EXHIBITION OF REALIZATION MODES
A continuación se ilustrará Ia invención mediante unos ensayos realizados por los inventores, que ponen de manifiesto Ia especificidad y efectividad de Ia inhibición de Ia expresión de GRK2 mediante siRNA en el tratamiento del cáncer que cursa con Ia sobre-expresión de GRK2 y Ia amplificación funcional de Ia vía de señalización PI3K/Akt, y más concretamente, en el cáncer de mama, donde GRK2 cooperaría con Akt en Ia adquisición de características tumorales.Next, the invention will be illustrated by tests carried out by the inventors, which show the specificity and effectiveness of the inhibition of the expression of GRK2 by means of siRNA in the treatment of cancer that occurs with the overexpression of GRK2 and the functional amplification of the PI3K / Akt signaling pathway, and more specifically, in breast cancer, where GRK2 would cooperate with Akt in the acquisition of tumor characteristics.
EJEMPLO 1. Análisis de los niveles de expresión de GRK2 y el grado de activación de AKT en una población de muestras de 27 pacientes afectados de cáncer de mama.EXAMPLE 1. Analysis of GRK2 expression levels and the degree of AKT activation in a population of samples of 27 patients affected by breast cancer.
Para este estudio, se analizaron carcinomas de mama ductales infiltrantes con distintos grados de diferenciación. Como controles se analizaron 12 muestras de tejido mamario no tumorales procedentes de los pacientes examinados. Aunque Ia expresión de GRK2 en Ia glándula mamaria de los individuos analizados exhibe en general cierto grado de variabilidad, se puede observar que los niveles detectados por "inmunoblot" son, en promedio, significativamente más bajos en las muestras control comparado con las muestras tumorales (Fig. 4A). Asimismo, Ia activación de AKT en las muestras no tumorales es casi imperceptible, estando frecuentemente por debajo de los límites de detección de nuestras condiciones de ensayo (Fig. 4B). De las muestras tumorales analizadas un 40% muestra altos niveles de activación de AKT (muestras Akt positivas) mientras que el 60% muestra igual o menor activación de AKT (muestras Akt negativas y no cambio) que el valor promedio observado en las muestras no tumorales. Dentro de las muestras es posible estratificar Ia población en función del grado de expresión de GRK2 en términos de mayor, menor o no cambio en comparación con el promedio observado en
Ia población control. Así, en muestras AKT positivas se observa que Ia distribución estratificada por niveles de GRK2 es: Niveles altos de GRK2 69%, niveles bajos de GRK2 18%. Sin embargo, en las muestras AKT negativas Ia distribución es: Niveles altos de GRK2 40%, niveles bajos 65%. Estos datos indican una cierta correlación positiva entre el grado de activación de AKT y los niveles de Ia proteína GRK2 en coherencia con el eje regulador PI3K/ AKT/ Mdm2/ GRK2 que hemos descrito previamente en los sistemas celulares de epitelio transformado de mama (Salcedo et al., 2006). La Fig. 5 muestra un esquema de estos resultados. Es más, dentro de las muestras control existen dos pacientes con altos niveles de GRK2 que se alejan del promedio de Ia población control y que, también muestran una alta activación de AKT.For this study, infiltrating ductal breast carcinomas with different degrees of differentiation were analyzed. As controls, 12 samples of non-tumor breast tissue from the examined patients were analyzed. Although the expression of GRK2 in the mammary gland of the analyzed individuals generally exhibits a certain degree of variability, it can be observed that the levels detected by "immunoblot" are, on average, significantly lower in the control samples compared to the tumor samples ( Fig. 4A). Likewise, the activation of AKT in non-tumor samples is almost imperceptible, being frequently below the detection limits of our test conditions (Fig. 4B). Of the tumor samples analyzed, 40% show high levels of activation of AKT (positive Akt samples) while 60% show equal or less activation of AKT (negative Akt samples and no change) than the average value observed in non-tumor samples. . Within the samples it is possible to stratify the population based on the degree of expression of GRK2 in terms of greater, lesser or no change compared to the average observed in The population control. Thus, in positive AKT samples it is observed that the distribution stratified by GRK2 levels is: High levels of GRK2 69%, low levels of GRK2 18%. However, in the negative AKT samples the distribution is: High levels of GRK2 40%, low levels 65%. These data indicate a certain positive correlation between the degree of activation of AKT and the levels of the GRK2 protein in coherence with the PI3K / AKT / Mdm2 / GRK2 regulatory axis that we have previously described in the cellular systems of transformed breast epithelium (Salcedo et al., 2006). Fig. 5 shows a scheme of these results. Moreover, within the control samples there are two patients with high levels of GRK2 that move away from the average of the control population and who also show a high activation of AKT.
En base a los resultados obtenidos, que muestran Ia regulación al alza de los niveles de GRK2 tras Ia activación de AKT en células de carcinoma de mama y en muestras de pacientes con carcinomas de mama positivos para Ia activación de AKT, en los siguientes ejemplos se tratará de determinar si GRK2 era un simple marcador pasivo de Ia activación de AKT o un factor "activo" en los procesos de transformación celular causados por Ia sobreestimulación de Ia vía de PI3K/ AKT.Based on the results obtained, which show the upward regulation of GRK2 levels after the activation of AKT in breast carcinoma cells and in samples of patients with breast carcinomas positive for the activation of AKT, the following examples show It will try to determine if GRK2 was a simple passive marker of the activation of AKT or an "active" factor in the processes of cellular transformation caused by the overstimulation of the PI3K / AKT pathway.
La vía de PI3K/ AKT se encuentra amplificada en muchos tipos de cáncer, como los de ovario, páncreas, mama o tiroides. La activación de AKT confiere propiedades oncogénicas ya que regula Ia progresión del ciclo celular, promueve Ia supervivencia, inhibe Ia apoptosis, y estimula Ia migración e invasividad celular mediante Ia secreción de metaloproteasas . La presencia de GRK2 podría cooperar con AKT en Ia regulación de estas funciones celulares o incluso mediar algunos de los efectos de AKT en las mismas. Por tanto, analizamos Ia capacidad proliferativa de las células, su movilidad y su migración invasiva tras manipular Ia expresión de GRK2,
bien aumentando sus niveles transitoriamente por transfección, bien disminuyéndolos con construcciones siRNA o por infección con adenovirus de siRNA GRK2, tanto en células transformadas HS578T, MCF-7 y BL16F10, como en células no transformadas MCF-10A.The PI3K / AKT pathway is amplified in many types of cancer, such as ovarian, pancreas, breast or thyroid. The activation of AKT confers oncogenic properties as it regulates the progression of the cell cycle, promotes survival, inhibits apoptosis, and stimulates cell migration and invasiveness through the secretion of metalloproteases. The presence of GRK2 could cooperate with AKT in the regulation of these cellular functions or even mediate some of the effects of AKT in them. Therefore, we analyze the proliferative capacity of cells, their mobility and their invasive migration after manipulating the expression of GRK2, either by transiently increasing their levels by transfection, either by decreasing them with siRNA constructs or by infection with GRK2 siRNA adenovirus, both in transformed HS578T, MCF-7 and BL16F10 cells, as in non-transformed MCF-10A cells.
EJEMPLO 2. Participación del GRK2 en Ia migración celular de MCF-7 en respuesta a fibronectina.EXAMPLE 2. Participation of GRK2 in the cell migration of MCF-7 in response to fibronectin.
La migración celular es un proceso complejo que requiere coordinar cambios en el citoesqueleto de Ia célula (necesarios para generar las fuerzas de tracción precisas para Ia locomoción), con los estímulos extracelulares pro-migratorios, transmitidos al interior celular por distintos receptores de membrana, entre los que destacan GPCRs y receptores con actividad quinasa. Las interacciones de receptores de integrinas y sus ligandos de Ia matriz extracelular no sólo son importantes en Ia adhesión de las células al sustrato, determinando Ia movilidad de las mismas, sino también en proporcionar rutas de migración actuando como guías. Este papel es crítico en el proceso de invasión de las células tumorales, que deben degradar Ia lámina basal y Ia matriz extracelular del tejido de origen y reconocer determinados componentes de Ia matriz extracelular como soporte físico para Ia locomoción. En este contexto, Ia fibronectina desempeña un papel importante en Ia progresión tumoral. Esta glicoproteína puede presentarse como molécula soluble o fibronectina plasmática, resultado de Ia acción de Ia proteasa plasmina, o como componente de Ia matriz extracelular en su forma no proteolizada. Una característica común a numerosos tumores es el aumento de Ia actividad del sistema UPAR/ plasmina y Ia mayor presencia de fibronectina plasmática. Asimismo, numerosas células transformadas con potencial invasivo expresan receptores específicos para este tipo de fibronectina). Por tanto, caracterizamos el papel de GRK2 en Ia respuesta migratoria a fibronectina de las células de epitelio de mama transformadas MCF-7.
Las células se transfectaron de manera transitoria con un plásmido de expresión de GRK2 o con una construcción de siRNA específica, y se seleccionaron magnéticamente con el método "dynabeads" para enriquecer Ia proporción de células transfectadas. El aumento de expresión de GRK2 en células MCF-7 causa una mayor migración a fibronectina (Fig. 6A). Por el contrario, Ia inhibición de Ia expresión de Ia quinasa provoca una fuerte disminución de Ia migración en comparación con las células control que han sido transfectadas con un plásmido vacío (pcDNA3) (Fig. 6A).Cellular migration is a complex process that requires coordinating changes in the cytoskeleton of the cell (necessary to generate the precise tensile forces for locomotion), with pro-migratory extracellular stimuli, transmitted to the cell interior by different membrane receptors, between those that stand out GPCRs and receptors with kinase activity. The interactions of integrin receptors and their extracellular matrix ligands are not only important in the adhesion of the cells to the substrate, determining their mobility, but also in providing migration routes acting as guides. This role is critical in the process of invasion of tumor cells, which must degrade the basal lamina and the extracellular matrix of the tissue of origin and recognize certain components of the extracellular matrix as physical support for locomotion. In this context, fibronectin plays an important role in tumor progression. This glycoprotein can be presented as a soluble molecule or plasma fibronectin, the result of the action of the plasmin protease, or as a component of the extracellular matrix in its unproteolyzed form. A characteristic common to numerous tumors is the increase in the activity of the UPAR / plasmin system and the greater presence of plasma fibronectin. Also, numerous transformed cells with invasive potential express specific receptors for this type of fibronectin). Therefore, we characterized the role of GRK2 in the migratory response to fibronectin of transformed MCF-7 breast epithelial cells. The cells were transfected transiently with a GRK2 expression plasmid or with a specific siRNA construct, and were magnetically selected with the "dynabeads" method to enrich the proportion of transfected cells. The increased expression of GRK2 in MCF-7 cells causes a greater migration to fibronectin (Fig. 6A). On the contrary, the inhibition of the expression of the kinase causes a sharp decrease in migration compared to the control cells that have been transfected with an empty plasmid (pcDNA3) (Fig. 6A).
Estos resultados sugerían una correlación positiva entre los niveles de GRK2 y Ia motilidad celular. Con el fin de generalizar esta correlación, analizamos si Ia presencia de GRK2 regulaba Ia migración en células normalmente con escasa motilidad como Ia línea celular no transformada MCF-10A, que posee además bajos niveles de expresión de GRK2. Como se observa en Ia figura 6 B, Ia sobreexpresión de Ia quinasa estimula el fenotipo migratorio de estas células a señales de fibronectina. En este caso, el número de células MCF-10A que migran al aumentar los niveles de GRK2 es similar al número de células en migración registradas para MCF-7 (MCF-7=44; MCF-10A + GRK2=47,4, promedio de células que migran por campo en ambos casos). Por tanto, estos resultados sugieren que potenciales señales oncogénicas que converjan en Ia activación de AKT, aumentarían los niveles de GRK2 en células epiteliales normales y este aumento facilitaría Ia migración celular en un contexto tumoral.These results suggested a positive correlation between GRK2 levels and cell motility. In order to generalize this correlation, we analyzed whether the presence of GRK2 regulated migration in cells normally with low motility such as the non-transformed MCF-10A cell line, which also has low levels of GRK2 expression. As seen in Figure 6B, the overexpression of the kinase stimulates the migratory phenotype of these cells to fibronectin signals. In this case, the number of MCF-10A cells that migrate with increasing levels of GRK2 is similar to the number of migrating cells registered for MCF-7 (MCF-7 = 44; MCF-10A + GRK2 = 47.4, average of cells that migrate by field in both cases). Therefore, these results suggest that potential oncogenic signals that converge on the activation of AKT, would increase GRK2 levels in normal epithelial cells and this increase would facilitate cell migration in a tumor context.
EJEMPLO 3. La respuesta migratoria de células epiteliales de mama transformadas se ve afectada por variaciones en los niveles de GRK2 en respuesta a distintas señales que estimulan Ia actividad de AKT.EXAMPLE 3. The migratory response of transformed breast epithelial cells is affected by variations in GRK2 levels in response to different signals that stimulate AKT activity.
La migración aberrante de las células cancerosas responde a gradientes quimiotácticos diversos que estimulan Ia evasión de las mismas
del foco tumoral primario. Algunas de estas señales quimiotácticas, como S1 P e IGF-1 , proceden con frecuencia del estroma "reactivo" al tumor, producidas por fibroblastos y células del sistema inmune. Tanto S1 P como IGF-1 son los factores que regulan no sólo Ia migración de las células epiteliales de mama, sino también su proliferación y supervivencia. Estas señales confluyen en Ia activación de AKT, Io cual desencadenaría Ia acumulación de GRK2 y Ia potenciación de Ia migración celular. Por tanto, quisimos determinar si Ia migración mediada por este tipo de estímulos estaba modulada por los niveles de expresión de GRK2.The aberrant migration of cancer cells responds to various chemotactic gradients that stimulate their evasion. of the primary tumor focus. Some of these chemotactic signals, such as S1 P and IGF-1, often come from the stroma "reactive" to the tumor, produced by fibroblasts and immune system cells. Both S1 P and IGF-1 are the factors that regulate not only the migration of breast epithelial cells, but also their proliferation and survival. These signals converge in the activation of AKT, which would trigger the accumulation of GRK2 and the potentiation of cell migration. Therefore, we wanted to determine if the migration mediated by this type of stimuli was modulated by GRK2 expression levels.
En Ia figura 7 A se muestra que el aumento en los niveles de GRK2 en células MCF-7 transitoriamente transfectadas induce una mayor migración frente a los estímulos de S1 P e IGF-1. De nuevo, y de forma similar a Io observado en Ia migración dependiente de fibronectina, Ia presencia de un RNA de interferencia específico de GRK2 atenúa Ia respuesta migratoria de MCF-7 a estas señales solubles, reduciéndose un 50% en comparación con las células control.Figure 7A shows that the increase in GRK2 levels in transiently transfected MCF-7 cells induces greater migration against S1 P and IGF-1 stimuli. Again, and similar to what was observed in fibronectin-dependent migration, the presence of a specific interference RNA of GRK2 attenuates the migratory response of MCF-7 to these soluble signals, reducing 50% compared to control cells. .
Asimismo, Ia regulación dependiente de GRK2 de Ia migración a señales quimiotácticas también se extiende a otros tipos celulares transformados de epitelio de mama con un grado de diferenciación distinto al de MCF-7, tal y como observamos en Ia línea celular Hs578T, derivada de un carcinoma ductal infiltrante poco diferenciado. Tras Ia infección de estas células con el vector adenoviral siRNA de GRK2, Ia migración en respuesta a IGF-1 y a S1 P se inhibe fuertemente, alcanzando unLikewise, the GRK2-dependent regulation of the migration to chemotactic signals also extends to other transformed cell types of breast epithelium with a different degree of differentiation from that of MCF-7, as observed in the Hs578T cell line, derived from a little differentiated infiltrating ductal carcinoma. After the infection of these cells with the adenoviral vector siRNA of GRK2, the migration in response to IGF-1 and S1 P is strongly inhibited, reaching a
45,5±10% de Ia respuesta migratoria normal a IGF-1 y un 26,2±5% con45.5 ± 10% of the normal migratory response to IGF-1 and 26.2 ± 5% with
S1 P, mientras que las células con el adenovirus control no muestran alteraciones en Ia motilidad comparado con las células sin tratar (Fig. 7B).S1 P, while the cells with the control adenovirus do not show alterations in motility compared to the untreated cells (Fig. 7B).
En base a estos resultados podemos concluir que los niveles deBased on these results we can conclude that the levels of
GRK2 son críticos en Ia migración de las células de epitelio de mama en
respuesta a determinados estímulos implicados en Ia progresión tumoral. En este contexto, los ligandos de Ia familia de los receptores ErbB son especialmente relevantes en el desarrollo de tumores de mama. El proto- oncogen ErbB2 se halla sobreexpresado en cerca del 30% de este tipo de tumores. Dado que Ia estimulación de estos receptores es una potente señal para Ia inducción de Ia motilidad y supervivencia celulares, constituyendo su presencia un marcador pronóstico de Ia malignidad del tumor y de su capacidad metastática, analizamos si Ia expresión de GRK2 modulaba Ia respuesta quimiotáctica inducida por estos receptores. Ya que no se ha identificado un ligando específico para ErbB2, las células MCF-7 se estimularon con heregulina, que promueve Ia heterodimerización de los receptores ErbB2 con los receptores ErbB3 y ErbB4, y su activación. Como se aprecia en Ia figura 7A, Ia sobreexpresión de GRK2 aumenta notablemente Ia migración de células MCF-7 a heregulina. Estos resultados refuerzan Ia implicación funcional de esta quinasa en el desarrollo y/ o adquisición de las características tumorales de las células transformadas.GRK2 are critical in the migration of breast epithelial cells in response to certain stimuli involved in tumor progression. In this context, ligands of the ErbB receptor family are especially relevant in the development of breast tumors. The ErbB2 protocol is overexpressed in about 30% of this type of tumors. Since the stimulation of these receptors is a potent signal for the induction of cell motility and survival, their presence constituting a prognostic marker of the malignancy of the tumor and its metastatic capacity, we analyze whether the expression of GRK2 modulated the chemotactic response induced by these receptors Since a specific ligand for ErbB2 has not been identified, MCF-7 cells were stimulated with heregulin, which promotes the heterodimerization of ErbB2 receptors with ErbB3 and ErbB4 receptors, and their activation. As can be seen in Figure 7A, the overexpression of GRK2 significantly increases the migration of MCF-7 cells to heregulin. These results reinforce the functional implication of this kinase in the development and / or acquisition of the tumor characteristics of the transformed cells.
EJEMPLO 4. GRK2 potencia Ia capacidad invasiva de diversas células tumorales de mama con distintos grados de transformación.EXAMPLE 4. GRK2 enhances the invasive capacity of various breast tumor cells with varying degrees of transformation.
Como ya hemos mencionado, una de las características claves de Ia progresión tumoral es Ia habilidad de metastatizar o invadir otros tejidos para Io cual las células transformadas adquieren Ia capacidad de degradar Ia lámina basal y Ia matriz extracelular a través de Ia cual migran en respuesta a gradientes quimiotácticos. Dado que GRK2 modulaba Ia migración a estos gradientes, nos planteamos determinar si Ia presencia de GRK2 tenía también algún efecto en Ia capacidad de invasión de las células de epitelio de mama estimuladas por señales quimiotácticas relevantes en los tumores de mama. Así, los niveles de GRK2 se modificaron en Ia línea celular poco invasiva MCF-7, transfectando como
ya se ha descrito con el vector de expresión de Ia quinasa o con Ia construcción siRNA-GRK2, y se analizó Ia respuesta invasiva de estas células a estímulos presentes en el suero mediante ensayos de invasión a matrigel (Fig. 8A). Estos ensayos simulan en cierta medida las condiciones de invasión "in vivo", ya que el matrigel, matriz extracelular obtenida a partir de tumores aislados de ratón y compuesta por laminina, colágenolV y factores de crecimiento entre otros, mimetiza Ia lámina basal de los tejidos.As we have already mentioned, one of the key characteristics of tumor progression is the ability to metastasize or invade other tissues for which the transformed cells acquire the ability to degrade the basal lamina and the extracellular matrix through which they migrate in response to chemotactic gradients. Since GRK2 modulated the migration to these gradients, we considered whether the presence of GRK2 also had any effect on the invasion capacity of breast epithelial cells stimulated by relevant chemotactic signals in breast tumors. Thus, the levels of GRK2 were modified in the slightly invasive cell line MCF-7, transfecting as It has already been described with the kinase expression vector or with the siRNA-GRK2 construct, and the invasive response of these cells to stimuli present in the serum was analyzed by matrigel invasion assays (Fig. 8A). These tests simulate to some extent the conditions of invasion "in vivo", since the matrigel, extracellular matrix obtained from isolated mouse tumors and composed of laminin, collagenolV and growth factors among others, mimics the basal lamina of tissues .
En estas condiciones experimentales se observa una clara correlación entre los niveles de expresión de GRK2 y Ia invasividad celular. Así, Ia sobreexpresión de Ia quinasa promueve un 75% más de invasión respecto a las células control, mientras que Ia disminución de GRK2 reduce un 50% Ia capacidad de invasión de células MCF-7 en respuesta a suero (Fig. 8A). De modo similar, Ia invasión del matrigel en respuesta a IGF-1 , S1 P y heregulina también se inhibe apreciablemente (más del 60%) al bloquear Ia expresión de GRK2 en células MCF-7 (Fig. 8B).In these experimental conditions a clear correlation is observed between the levels of GRK2 expression and cell invasiveness. Thus, the overexpression of the kinase promotes 75% more invasion with respect to the control cells, while the decrease in GRK2 reduces the invasion capacity of MCF-7 cells by 50% in response to serum (Fig. 8A). Similarly, the invasion of the matrigel in response to IGF-1, S1 P and heregulin is also significantly inhibited (more than 60%) by blocking the expression of GRK2 in MCF-7 cells (Fig. 8B).
La siguiente cuestión fue determinar si los efectos de GRK2 en Ia capacidad de invasión eran extensibles también a líneas celulares con un fenotipo acusadamente invasivo. Para ello, utilizamos las células de mamaThe next question was to determine if the effects of GRK2 on the invasion capacity were also extensible to cell lines with a markedly invasive phenotype. To do this, we use breast cells
HS578T y células de melanoma B16 F10, capaces de inducir tumores en ratones "nude" y metastatizar, así como de penetrar matrices de colágeno con alta eficiencia en respuesta a suero. Como se observa en Ia figura 9, Ia disminución de los niveles de GRK2, mediante infección con el vector adenoviral siRNA-GRK2, promueve una notable reducción en Ia capacidad de invasión a matrigel de células Hs578T y B16F10.HS578T and B16 F10 melanoma cells, capable of inducing tumors in nude mice and metastasizing, as well as penetrating collagen matrices with high efficiency in response to serum. As can be seen in Figure 9, the decrease in GRK2 levels, by infection with the siRNA-GRK2 adenoviral vector, promotes a notable reduction in the ability to invade matrigel Hs578T and B16F10 cells.
Este conjunto de resultados pone de manifiesto por primera vez que GRK2 es una molécula clave en Ia modulación de Ia migración y Ia invasión tumoral a diferentes estímulos que señalizan a través de
receptores de membrana de naturaleza muy diversa. Esto sugiere, además, que GRK2 debe desempeñar un papel funcional básico y general en el proceso de migración e invasión. En línea con este concepto, Ia regulación de Ia invasividad por GRK2 se observa no sólo en líneas tumorales de muy diferente origen, como carcinomas de mama y melanomas, sino también en células no transformadas. Por tanto, GRK2 debe modular actividades fundamentales en migración, relacionadas quizás con cambios del citoesqueleto, Ia adhesión y/o Ia integración de señales migratorias difusibles en estos procesos.This set of results shows for the first time that GRK2 is a key molecule in the modulation of migration and tumor invasion to different stimuli that signal through membrane receptors of a very diverse nature. This also suggests that GRK2 must play a basic and general functional role in the migration and invasion process. In line with this concept, the regulation of GRK2 invasiveness is observed not only in tumor lines of very different origin, such as breast carcinomas and melanomas, but also in non-transformed cells. Therefore, GRK2 must modulate fundamental activities in migration, perhaps related to changes in the cytoskeleton, adhesion and / or integration of diffusible migratory signals in these processes.
En este contexto, Ia regulación de los niveles de expresión de GRK2 por AKT representaría un mecanismo clave por el cual las células adquirirían un mayor potencial migratorio y tendrían facilitado el proceso de transformación tumoral. Así, células con altos niveles de GRK2 podrían presentar y adquirir un fenotipo transformado. En efecto, el análisis de los niveles endógenos de GRK2 en varias líneas celulares muestra que células no transformadas y con reducida motilidad como MCF10A y 184B5 expresan menores niveles de GRK2 que células transformadas y mótiles como MCF-7 o MDA-MB-468 (Fig. 10).In this context, the regulation of GRK2 expression levels by AKT would represent a key mechanism by which cells would acquire a greater migratory potential and would have facilitated the process of tumor transformation. Thus, cells with high levels of GRK2 could present and acquire a transformed phenotype. Indeed, the analysis of the endogenous levels of GRK2 in several cell lines shows that non-transformed and reduced motility cells such as MCF10A and 184B5 express lower levels of GRK2 than transformed and mobile cells such as MCF-7 or MDA-MB-468 (Fig .10).
EJEMPLO 5. Los niveles de GRK2 afectan a Ia tasa de proliferación celular.EXAMPLE 5. GRK2 levels affect the rate of cell proliferation.
Otra de las funciones de AKT en diversos tipos de tumores anteriormente mencionada es su participación en procesos de supervivencia celular, promoviendo mecanismos de escapada de apoptosis y Ia proliferación celular. Dado que GRK2 está sujeto a Ia regulación al alza mediada por AKT, nos preguntamos si GRK2 podía estar modulando, además de Ia migración/ invasión de células del epitelio de mama, procesos como Ia proliferación celular. Para ello, analizamos Ia tasa de crecimiento en
respuesta a suero de células MCF-7 tratadas con un adenovirus control o con Ia construcción viral del siRNA de GRK2 tras 24, 48, 72 y 96 horas de cultivo. La disminución de los niveles de GRK2 afecta a Ia capacidad proliferativa de las células a partir de las 72 horas. En el intervalo de tiempo de 72 a 96 horas, las células que han sido infectadas con el adenovirus de SÍRNA-GRK2 muestran un menor crecimiento (163,5±36% y 167±33% de proliferación a las 72 y 96 horas, respectivamente, comparado con 24h) que las células control (253±34% de proliferación a las 72 horas y 331 ±60% a las 96 horas).Another of the functions of AKT in various types of tumors mentioned above is their participation in cell survival processes, promoting mechanisms to escape apoptosis and cell proliferation. Since GRK2 is subject to upward regulation mediated by AKT, we wonder if GRK2 could be modulating, in addition to the migration / invasion of breast epithelial cells, processes such as cell proliferation. To do this, we analyze the growth rate in serum response of MCF-7 cells treated with a control adenovirus or with the viral construction of the GRK2 siRNA after 24, 48, 72 and 96 hours of culture. The decrease in GRK2 levels affects the proliferative capacity of the cells after 72 hours. In the time interval of 72 to 96 hours, cells that have been infected with the SÍRNA-GRK2 adenovirus show lower growth (163.5 ± 36% and 167 ± 33% proliferation at 72 and 96 hours, respectively , compared with 24h) than the control cells (253 ± 34% proliferation at 72 hours and 331 ± 60% at 96 hours).
EJEMPLO 6. Ensayo in vivo de un siRNA capaz de inhibir Ia expresión de GRK2 para su uso en el tratamiento de cánceres en los que el GRK2 se encuentre cooperando con AKT.EXAMPLE 6. In vivo assay of a siRNA capable of inhibiting the expression of GRK2 for use in the treatment of cancers in which GRK2 is cooperating with AKT.
La atenuación de Ia respuesta migratoria/invasiva y proliferativa de diversas líneas celulares tumorales (de epitelio de mama y melanoma) en los ensayos in vitro descritos como consecuencia de Ia inhibición de Ia expresión de Ia proteína GRK2 mediante el uso de construcciones siRNA, sugiere que esta estrategia de inhibición podría ser efectiva en el tratamiento de ciertos tumores. Con objeto de proporcionar evidencias de esta hipótesis, se analizó el efecto de Ia supresión de GRK2 en Ia formación y desarrollo de tumores in vivo. Para ello se procedió a Ia inducción de tumores ortotópicos en ratones inmunosuprimidos (athymic nude fox Nu/Un) mediante Ia inyección subcutánea de células transformadas de epitelio de mama MCF7 (5x106 células en una suspensión de glucosa/PBS/matrigel por ratón) infectadas con una contrucción adenoviral control o con Ia construcción adenoviral del siRNA- GRK2. Los resultados obtenidos muestran que Ia inhibición de GRK2 en células MCF7 bloquea su capacidad para formar tumores en este modelo in vivo, no observándose signos de tumoración a las tres semanas de inoculación, mientras que en ausencia del siRNA de GRK2, las células
malignas MCF7 sí desarrollan el tumor. Por tanto, estos resultados indican Ia potencialidad de Ia inhibición de GRK2 con siRNA como medida de intervención en el tratamiento de tumores de mama.The attenuation of the migratory / invasive and proliferative response of various tumor cell lines (of breast epithelium and melanoma) in the in vitro assays described as a consequence of the inhibition of the expression of the GRK2 protein through the use of siRNA constructs, suggests that This inhibition strategy could be effective in the treatment of certain tumors. In order to provide evidence of this hypothesis, the effect of the suppression of GRK2 on the formation and development of tumors in vivo was analyzed. For this, the induction of orthotopic tumors in immunosuppressed mice (athymic nude fox Nu / Un) was carried out by subcutaneous injection of transformed MCF7 breast epithelial cells (5x106 cells in a glucose / PBS / matrigel suspension per mouse) infected with an adenoviral control construction or with the adenoviral construction of the siRNA-GRK2. The results obtained show that the inhibition of GRK2 in MCF7 cells blocks its ability to form tumors in this model in vivo, not showing signs of tumor at three weeks of inoculation, while in the absence of GRK2 siRNA, the cells Malignant MCF7 do develop the tumor. Therefore, these results indicate the potential of the inhibition of GRK2 with siRNA as an intervention measure in the treatment of breast tumors.
REFERENCIASREFERENCES
Dorsam, R. T. y Gutkind, J. S. (2007). G-protein-coupled receptors and cáncer. Nat Rev Cáncer 7, 79-94Dorsam, R. T. and Gutkind, J. S. (2007). G-protein-coupled receptors and cancer. Nat Rev Cancer 7, 79-94
Ellington, A.D. y Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346:818-22Ellington, A.D. and Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818-22
Pao, C. S. y Benovic, J. L. (2002). Phosphorylation-lndependent Desensitization of G Protein-Coupled Receptors? Sci. STKE. p42.Pao, C. S. and Benovic, J. L. (2002). Phosphorylation-lndependent Desensitization of G Protein-Coupled Receptors? Sci. STKE. p42.
Ribas C, Pénela P., Murga C, Salcedo A., Garcia-Hoz C, Jurado-Pueyo M. et al. (2007). The G protein-coupled receptor kinase (GRK) interactome: Role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta 1768: 913-942Ribas C, Pénela P., Murga C, Salcedo A., Garcia-Hoz C, Jury-Pueyo M. et al. (2007). The G protein-coupled kinase receptor (GRK) interactome: Role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta 1768: 913-942
Salcedo, A., Mayor, F. y Pénela, P. (2006). Mdm2 is involved in the ubiquitination and degradation of G-protein-coupled receptor kinase 2. EMBO J 25(20): 4752^1762Salcedo, A., Mayor, F. and Pénela, P. (2006). Mdm2 is involved in the ubiquitination and degradation of G-protein-coupled receptor kinase 2. EMBO J 25 (20): 4752 ^ 1762
Sambrook, J., Fritsch, E. F. y Maniatis, T. (1989). Molecular cloning: a laboratory manual, 2nd ed. CoId Spring Harbor LaboratorySambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular cloning: a laboratory manual, 2nd ed. CoId Spring Harbor Laboratory
Tuerk, C. y GoId, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-10
Tuerk, C. and GoId, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-10
Claims
1. Composición que comprenda un siRNA, capaz de inhibir Ia expresión de GRK2, para su uso en el tratamiento de enfermedades cancerígenas en las que el GRK2 se encuentra cooperando con AKT.1. Composition comprising a siRNA, capable of inhibiting the expression of GRK2, for use in the treatment of carcinogenic diseases in which GRK2 is cooperating with AKT.
2. Composición que comprenda un siRNA capaz de inhibir Ia expresión de GRK2 para su uso en el tratamiento del melanoma.2. Composition comprising a siRNA capable of inhibiting the expression of GRK2 for use in the treatment of melanoma.
3. Composición que comprenda un siRNA capaz de inhibir Ia expresión de GRK2 para su uso en el tratamiento del cáncer de mama.3. Composition comprising a siRNA capable of inhibiting the expression of GRK2 for use in the treatment of breast cancer.
4. Composición que comprenda un siRNA capaz de inhibir Ia expresión de GRK2 para su uso en el tratamiento del cáncer de ovario.4. Composition comprising a siRNA capable of inhibiting the expression of GRK2 for use in the treatment of ovarian cancer.
5. Composición que comprenda un siRNA capaz de inhibir Ia expresión de GRK2 para su uso en el tratamiento del cáncer de próstata.5. Composition comprising a siRNA capable of inhibiting the expression of GRK2 for use in the treatment of prostate cancer.
6. Composición que comprenda un siRNA capaz de inhibir Ia expresión de GRK2 para su uso en el tratamiento de gliomas.6. Composition comprising a siRNA capable of inhibiting the expression of GRK2 for use in the treatment of gliomas.
7. Composición que comprenda un siRNA capaz de inhibir Ia expresión de GRK2 para su uso en el tratamiento del cáncer de tiroides.7. Composition comprising a siRNA capable of inhibiting the expression of GRK2 for use in the treatment of thyroid cancer.
8. Composición según cualquiera de las reivindicaciones anteriores, en el que el siRNA se encuentra como construcciones SÍRNA-GRK2 fusionadas a RNA aptámeros.8. Composition according to any of the preceding claims, wherein the siRNA is found as SIRR-GRK2 constructs fused to aptameric RNAs.
9. Composición según cualquiera de las reivindicaciones 1-8, donde el siRNA está incluido en una construcción genética de RNA. 9. Composition according to any of claims 1-8, wherein the siRNA is included in a genetic RNA construct.
10. Composición según cualquiera de las reivindicaciones 1-8, donde el siRNA está incluido en una construcción genética de DNA capaz de transcribirse in vitro ó in vivo a una secuencia de RNA.10. Composition according to any of claims 1-8, wherein the siRNA is included in a genetic DNA construct capable of transcribing in vitro or in vivo to an RNA sequence.
11. Composición farmacéutica que contiene una cantidad terapéuticamente efectiva de siRNA capaz de inhibir Ia expresión de GRK2, para su uso en el tratamiento de melanoma.11. Pharmaceutical composition containing a therapeutically effective amount of siRNA capable of inhibiting the expression of GRK2, for use in the treatment of melanoma.
12. Composición farmacéutica que contiene una cantidad terapéuticamente efectiva de siRNA, capaz de inhibir Ia expresión de GRK2, para su uso en el tratamiento de cáncer de mama.12. Pharmaceutical composition containing a therapeutically effective amount of siRNA, capable of inhibiting the expression of GRK2, for use in the treatment of breast cancer.
13. Composición farmacéutica que contiene una cantidad terapéuticamente efectiva de siRNA , capaz de inhibir Ia expresión de GRK2, para su uso en el tratamiento de cáncer de ovario.13. Pharmaceutical composition containing a therapeutically effective amount of siRNA, capable of inhibiting the expression of GRK2, for use in the treatment of ovarian cancer.
14. Composición farmacéutica que contiene una cantidad terapéuticamente efectiva de siRNA, RNA o DNA de Ia invención, capaz de inhibir Ia expresión de GRK2, para su uso en el tratamiento de cáncer de próstata.14. Pharmaceutical composition containing a therapeutically effective amount of siRNA, RNA or DNA of the invention, capable of inhibiting the expression of GRK2, for use in the treatment of prostate cancer.
15. Composición farmacéutica que contiene una cantidad terapéuticamente efectiva de siRNA, capaz de inhibir Ia expresión de GRK2, para su uso en el tratamiento de gliomas.15. Pharmaceutical composition containing a therapeutically effective amount of siRNA, capable of inhibiting the expression of GRK2, for use in the treatment of gliomas.
16. Composición farmacéutica que contiene una cantidad terapéuticamente efectiva de siRNA capaz de inhibir Ia expresión de GRK2, para su uso en el tratamiento de cáncer de tiroides.16. Pharmaceutical composition containing a therapeutically effective amount of siRNA capable of inhibiting the expression of GRK2, for use in the treatment of thyroid cancer.
17. Composición farmacéutica según cualquiera de las reivindicaciones 11- 16, donde el siRNA está incluido en una construcción genética de RNA. 17. Pharmaceutical composition according to any of claims 11-16, wherein the siRNA is included in a genetic RNA construct.
18. Composición farmacéutica según cualquiera de las reivindicaciones 11- 16, donde el siRNA está incluido en una construcción genética de DNA capaz de transcribirse in vitro ó in vivo a una secuencia de RNA. 18. Pharmaceutical composition according to any of claims 11-16, wherein the siRNA is included in a genetic DNA construct capable of transcribing in vitro or in vivo to an RNA sequence.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200703272A ES2332558B1 (en) | 2007-12-11 | 2007-12-11 | GRK2 ANTITUMORAL THERAPY. |
ESP200703272 | 2007-12-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009074707A1 true WO2009074707A1 (en) | 2009-06-18 |
Family
ID=40755257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2008/070231 WO2009074707A1 (en) | 2007-12-11 | 2008-12-11 | Grk2 antitumour therapy |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2332558B1 (en) |
WO (1) | WO2009074707A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021046225A1 (en) * | 2019-09-03 | 2021-03-11 | Flagship Pioneering Innovations V, Inc. | Methods and compositions for treating cancer |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4161917A4 (en) * | 2020-05-27 | 2024-08-28 | Sonata Therapeutics Inc | Grk2 inhibitors and uses thereof |
-
2007
- 2007-12-11 ES ES200703272A patent/ES2332558B1/en active Active
-
2008
- 2008-12-11 WO PCT/ES2008/070231 patent/WO2009074707A1/en active Application Filing
Non-Patent Citations (6)
Title |
---|
HANSEN, J. L. ET AL.: "Role of G-protein- coupled receptor kinase 2 in the heart - Do regulatory mechanisms open novthe therapeutic perspectives?", TRENDS CARDIOVASC. MED., vol. 16, no. 5, July 2006 (2006-07-01), pages 169 - 177 * |
IWATA, K. ET AL.: "Bimodal regulation of the human H1 histamine receptor by G protein-coupled recptor kinase 2.", J. BIOL. CHEM., vol. 280, no. 3, 21 January 2005 (2005-01-21), pages 2197 - 2204 * |
KIM, J. ET AL.: "Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling.", PROC. NAT. ACAD. SCI. USA, vol. 102, no. 5, 1 February 2005 (2005-02-01), pages 1442 - 1447 * |
REITER, E. ET AL.: "GRKs and beta- arrestins: role in receptor silencing, trafficking and signaling.", TRENDS ENDOCRINOL. METABOL., vol. 17, no. 4, May 2006 (2006-05-01), pages 159 - 165 * |
REN, X.-R. ET AL.: "Different G protein-coupled receptor kinases govern G protein and beta. arrestin-mediated signaling of V2 vasopressin receptor.", PROC. NAT. ACAD. SCI. USA, vol. 102, no. 5, 1 February 2005 (2005-02-01), pages 1448 - 1453 * |
RIBAS, C. ET AL.: "The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling.", BIOCHIM. BIOPHYS. ACTA, vol. 1768, no. 4, 28 March 2007 (2007-03-28), pages 913 - 922 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021046225A1 (en) * | 2019-09-03 | 2021-03-11 | Flagship Pioneering Innovations V, Inc. | Methods and compositions for treating cancer |
EP4025590A4 (en) * | 2019-09-03 | 2024-01-03 | Flagship Pioneering Innovations V, Inc. | Methods and compositions for treating cancer |
Also Published As
Publication number | Publication date |
---|---|
ES2332558B1 (en) | 2011-01-24 |
ES2332558A1 (en) | 2010-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE49229E1 (en) | Methods and compositions for treating malignant tumors associated with KRAS mutation | |
US9938354B2 (en) | Lin28-mediated control of let-7 biogenesis | |
JP2017518764A (en) | Multi-targeted RNAi for the treatment of cancer | |
US10792299B2 (en) | Methods and compositions for treating malignant tumors associated with kras mutation | |
CN101796184A (en) | Compositions and methods of treating cancer | |
ES2669450T3 (en) | MELK regulation for the treatment of breast cancer | |
US11352628B2 (en) | Methods and compositions for treating malignant tumors associated with KRAS mutation | |
Chen et al. | EphA1 receptor silencing by small interfering RNA has antiangiogenic and antitumor efficacy in hepatocellular carcinoma | |
KR101638156B1 (en) | Pharmaceutical composition for preventing or treating hepatitis C virus infectious disease | |
ES2332558B1 (en) | GRK2 ANTITUMORAL THERAPY. | |
Ulasov et al. | MT1-MMP silencing by an shRNA-armed glioma-targeted conditionally replicative adenovirus (CRAd) improves its anti-glioma efficacy in vitro and in vivo | |
EP3658158A1 (en) | Smac/diablo inhibitors useful for treating cancer | |
EP2571989A1 (en) | Method for reducing expression of downregulated i renal cell carcinoma i malignant gliomas | |
Tay et al. | The lilliputians and the giant: an emerging oncogenic microRNA network that suppresses the PTEN tumor suppressor in vivo | |
WO2013075233A1 (en) | Method for treating brain cancer | |
CA2532094A1 (en) | Sp1 and sp3 targeted cancer therapies and therapeutics | |
CN105803053B (en) | Application of human RBM17 gene and related medicine thereof | |
US20220275373A1 (en) | Methods and compositions for treating malignant tumors associated with kras mutation | |
WO2024076781A9 (en) | Polynucleotides for silencing transcript variant 1 of assembly factor for spindle microtubules and applications thereof | |
US11168327B2 (en) | STEAP2 inhibitors for the treatment of liver cancers | |
WO2012042091A2 (en) | Use of tak1 inhibitors in the prevention and treatment of peritoneal membrane failure | |
WO2018151840A2 (en) | Methods and compositions for treating malignant tumors | |
Dassie | Selective targeting of cancer cells with RNA aptamers | |
D’Andrea et al. | Genetic and functional dissection of the miR-17∼ 92 cluster of miRNAs | |
Pencheva | Identification of a Microrna Network that Regulates Melanoma Metastasis and Angiogenesis by Targeting Apoe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08860667 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08860667 Country of ref document: EP Kind code of ref document: A1 |