WO2009072405A1 - Chemical mechanical polishing pad and chemical mechanical polishing method - Google Patents
Chemical mechanical polishing pad and chemical mechanical polishing method Download PDFInfo
- Publication number
- WO2009072405A1 WO2009072405A1 PCT/JP2008/071161 JP2008071161W WO2009072405A1 WO 2009072405 A1 WO2009072405 A1 WO 2009072405A1 JP 2008071161 W JP2008071161 W JP 2008071161W WO 2009072405 A1 WO2009072405 A1 WO 2009072405A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mechanical polishing
- chemical mechanical
- water
- polishing pad
- polishing
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/24—Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
Definitions
- the present invention relates to a chemical mechanical polishing pad and a chemical mechanical polishing method.
- CMP Chemical Mechanical Polishing
- Japanese Patent Laid-Open No. 2002-134445 discloses a polishing rate by incorporating a polymer of a monomer having a hydrophilic functional group such as a carboxyl group as a component constituting the polishing pad to improve the hydrophilicity of the polishing pad surface.
- Techniques for improving the quality are disclosed.
- this technique has a problem that it is difficult to obtain a uniform pad composition and the flatness of the surface to be polished is impaired.
- JP 2004-343099 A discloses that a polishing pad is manufactured by using a material obtained by blending a crosslinked gen elastomer and an anhydride-modified polymer (graft polymer) to improve the polishing rate. And a technique for improving the flatness of the surface to be polished is disclosed. According to this technology, it has been confirmed that there is a certain effect in improving the polishing rate and the flatness of the surface to be polished. However, this technology has a limit in improving the content of acid anhydride groups in the pad because the mechanical strength of the pad is impaired when the proportion of the graft polymer used in the blend material is increased. There is a certain limit to the extent to which the above effects are manifested. Disclosure of the invention
- the present invention has been made in view of the above circumstances, and has an object of being excellent in polishing speed, flatness of a surface to be polished, that is, in-plane uniformity of polishing amount on the surface to be polished, and chemicals with less scratches.
- a mechanical polishing pad and a chemical mechanical polishing method using the polishing pad are provided.
- the problem of the present invention is, firstly,
- a chemical mechanical polishing pad having a polishing layer formed from (A) a precursor component of a water-insoluble matrix and (B) a composition containing a water-soluble substance,
- (A-1) (a1) at least one unsaturated compound selected from the group consisting of unsaturated carboxylic acids and unsaturated carboxylic acid anhydrides;
- the problem of the present invention is secondly,
- the chemical mechanical polishing pad of the present invention has a polishing layer formed from (A) a precursor component of a water-insoluble matrix and (B) a composition containing a water-soluble substance.
- composition for forming a polishing layer each component of the composition for forming the polishing layer of the chemical mechanical polishing pad of the present invention (hereinafter, also referred to as “a composition for forming a polishing layer”) will be described.
- the precursor component of the (A) water-insoluble matrix used in the present invention comprises at least (A-1) (a1) a group consisting of an unsaturated carboxylic acid and an unsaturated carboxylic acid anhydride. At least one unsaturated compound (hereinafter referred to as “unsaturated compound (al)”) selected from:
- (a 2) An unsaturated compound other than the above (al) (hereinafter referred to as “unsaturated compound (a 2)”), and a random copolymer or block copolymer (hereinafter referred to as these random copolymer and Block copolymers are collectively called “copolymer (Al) j”. Random copolymers and block copolymers in copolymer (A-1) are graft polymers ( For example, the copolymer (A-1) is a random copolymer of an unsaturated compound (al) and an unsaturated compound (a 2). Is preferred.
- the unsaturated compound (al) examples include an unsaturated monocarboxylic acid, an unsaturated dicarboxylic acid and its anhydride, and a mono [(meth) acryloyloxyalkyl] ester of a divalent or higher polyvalent carboxylic acid. At least one unsaturated compound selected from the group consisting of can be preferably used. Specific examples thereof include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, ⁇ -chloroacrylic acid, cinnamic acid, etc .;
- unsaturated dicarboxylic acid or its anhydride for example, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, mesaconic acid, etc .;
- Mono [(meth) acryloyloxyalkyl] esters of divalent or higher polyvalent carboxylic acids such as succinic acid mono (2-acryloyl oxychheter), succinic acid mono (2_methacryloyloxychetyl) , Monosulfuric acid (2-acryloyloxyethyl), mono-furic acid (2-methacryloylchichet), and the like.
- unsaturated monocarboxylic acids are preferable, and acrylic acid or methacrylic acid is particularly preferable.
- the unsaturated compound (a 2) is not particularly limited as long as it can be copolymerized with the unsaturated compound (al), and examples thereof include aromatic vinyl compounds, indene and derivatives thereof, and aliphatic conjugates. As well as selected from the group consisting of ⁇ -aged refins Preferred examples include at least one unsaturated compound.
- aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, ⁇ -vinyltoluene, m-vinyltoluene, p-vinyltoluene and the like;
- Indene and its derivatives such as Indene, 1-methylindene, etc .
- Aliphatic conjugates such as 1,3-butadiene, isoprene, etc .
- ⁇ -olefin examples include ethylene, propylene, 1-butene, 1-hexene and the like. -Of these, ⁇ -aged lefin is preferred, especially ethylene.
- (meth) acrylic acid obtained by using (meth) acrylic acid as the unsaturated compound (al) and ethylene as the unsaturated compound (a 2) A random copolymer or block copolymer with ethylene is preferred, and a random copolymer of (meth) acrylic acid and ethylene is particularly preferred.
- the copolymerization ratio of the unsaturated compound (al) in the copolymer (A-1) is preferably 5 to 20% by mass, more preferably 5 to 15% by mass, and even more preferably. 7-15% by mass.
- the copolymerization ratio of the unsaturated compound (al) is less than 5% by mass, the surface of the resulting chemical mechanical polishing pad polishing surface has insufficient hydrophilicity, and the chemical mechanical aqueous dispersion supplied during chemical mechanical polishing is not suitable. It is not preferable because the holding capacity is poor and the polishing speed is impaired and the number of scratches may increase, and the mechanical strength of the polishing surface is insufficient and the durability of the chemical mechanical polishing pad may be poor.
- the copolymerization ratio of the unsaturated compound (al) exceeds 20% by mass, the degree of polymerization of the resulting copolymer (A-1) is lowered, and a high molecular weight copolymer cannot be obtained. This is not preferable because the mechanical strength of the polishing pad is lowered and the durability of the chemical mechanical polishing pad may be poor.
- the weight average molecular weight of the copolymer (A-1) is preferably 10 0, 0 0 0 to 2 0 0, 0 0 0, more preferably 2 0, 0 0 0 to 1 5 0, 0 0 0 It is.
- a commercially available product may be used as the copolymer (A-1).
- Examples of such commercially available products include Lexpearl A 2 10 K (manufactured by Nippon Polyethylene Co., Ltd.), Nucrel AN 4 2 2 5 C, N 2 0 30 H, N 5 1 3 0 H, N 1 5 60, N 0 2 0 0 H (Mitsui DuPont Polychemical Co., Ltd.), etc. Can be mentioned.
- a chemical mechanical polishing pad having a water-insoluble matrix manufactured from a precursor component containing the copolymer (A-1) as described above has a mechanical strength (appropriate hardness, etc.) required in the chemical mechanical polishing process.
- it has excellent affinity with the abrasive grains in the chemical mechanical polishing aqueous dispersion supplied during chemical mechanical polishing, so it provides a polished object that exhibits a high polishing rate and has a high degree of in-plane uniformity. This is preferable.
- the precursor component of the (A) water-insoluble matrix used in the present invention contains the copolymer (A-1) as described above in an amount of 60 to 100 mass when the total amount is 100 mass parts. Part, preferably 70 to 95 parts by mass, more preferably 70 to 90 parts by mass.
- the precursor component of the (A) water-insoluble matrix used in the present invention contains at least the copolymer (A-1) as described above, but (A-2) other heavy components are used as necessary.
- (A-3) a compound having two or more carbon-carbon double bonds in the molecule (hereinafter referred to as "polyfunctional compound (A-3)").
- thermoplastic resins examples include thermoplastic resins, elastomers, rubber, cured resins (resins obtained by curing thermosetting resins, photocurable resins, etc. by heat, light, etc.) and the like. preferable.
- a thermoplastic resin or an elastomer is more preferable because it is stable against strong acid or strong alkali contained in many chemical mechanical polishing aqueous dispersions and is less softened by water absorption.
- thermoplastic resin examples include 1,2-polybutadiene resin, polyolefin resin, polystyrene resin, polyester resin, polyamide resin, fluorine resin, polycarbonate resin, and polyacetal resin.
- polyolefin resin examples include polyethylene, and examples of the fluororesin include polyvinylidene fluoride.
- elastomer examples include, for example, Jen Elastomer, Polyolefin Examples thereof include a elastomer (TPO), a styrene elastomer, a thermoplastic elastomer, a silicone elastomer, and a fluorine elastomer.
- jenlastomer examples include 1,2-polybutadiene.
- styrene elastomer include styrene-butadiene-styrene block copolymer (SBS), hydrogenated block copolymer (SEBS), and the like.
- thermoplastic elastomer examples include thermoplastic polyurethane elastomer (TPU), thermoplastic polyester elastomer (TPE E), and polyamide elastomer (TPAE).
- cured resin examples include urethane resin, epoxy resin, acrylic resin, unsaturated polyester resin, polyurethane resin, urea resin, key resin, phenol resin, and vinyl ester resin.
- 1,2-polybutadiene resin is particularly preferred.
- These polymers (A-2) may be used alone or in combination of two or more.
- the content ratio of (A-2) other polymer in the precursor component of the water-insoluble matrix is preferably (A) when the total amount of the precursor component of the water-insoluble matrix is 100 parts by mass. Is 40 parts by mass or less, more preferably 5 to 30 parts by mass, and further preferably 10 to 30 parts by mass.
- polyfunctional compound (A-3) examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, ⁇ ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,4-Butanediol di (meth) acrylate, 1,6-Hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, glycerin di (meth) acrylate, polyethylene glycol (PEG # 200 ) Di (meth) acrylate, polyethylene glycol (PEG # 40 0) Di (meth) acrylate, polyethyleneglycol (PEG # 600) Di (meth) acrylate, trimethylolpropane tri (meth) acrylate, Nyu Erisuri! ⁇ Irutori (meta) ach relay, dipen evening erythritol hexa
- Polyethylene glycol (PEG # 2 0 0) di (meth) acrylate means a compound in which the hydroxyl groups at both ends of polyethylene glycol PEG # 2 0 0 respectively form an ester bond with (meth) acrylic acid. .
- trimethylolpropane tri (meth) acrylate, triaryliso, :: / annulate or divinylbenzene is preferred.
- the content ratio of the polyfunctional compound (A-3) in the precursor component of the water-insoluble matrix is (A) When the total amount of the precursor component of the water-insoluble matrix is 100 parts by mass, The amount is preferably 10 parts by mass or less, more preferably 1 to 10 parts by mass, and further preferably 1 to 8 parts by mass.
- the water-soluble substance (B) used in the present invention is separated from the polishing surface of the polishing pad by contacting with the chemical mechanical polishing aqueous dispersion supplied during chemical mechanical polishing, and the chemical mechanical polishing aqueous system is used. It is a substance that has the function of forming pores that can hold the dispersion. When desorbing from the polishing surface, in addition to an embodiment in which it is dissolved in water, an embodiment in which it is desorbed by swelling or sol formation upon contact with water is also included.
- the (B) water-soluble substance may be either an organic water-soluble substance or an inorganic water-soluble substance.
- organic water-soluble substances examples include saccharides (polysaccharides such as starch, dextrin and cyclodextrin, lactose, mannitol, etc.), celluloses (hydroxy Propyl cellulose, methyl cellulose, etc.), protein, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylic acid, polyethylene oxide, water-soluble photosensitive resin, sulfonated polyisoprene, sulfonated isoprene copolymer, and the like.
- saccharides polysaccharides such as starch, dextrin and cyclodextrin, lactose, mannitol, etc.
- celluloses hydroxy Propyl cellulose, methyl cellulose, etc.
- protein polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylic acid, polyethylene oxide, water-soluble photosensitive resin, sulfonated polyisoprene, sulfonated iso
- inorganic water-soluble substances include potassium acetate, potassium nitrate, potassium carbonate, potassium hydrogen carbonate, potassium bromide, potassium phosphate, potassium sulfate, magnesium sulfate, and calcium nitrate.
- water-soluble substance one of the above may be used, or a mixture of two or more may be used.
- the water-soluble substance is preferably solid from the viewpoint that the hardness of the polishing surface of the resulting chemical mechanical polishing pad can be set to an appropriate value.
- the water-soluble substance is preferably in the form of particles.
- the average particle diameter is preferably 0.1 to 500 m, more preferably 0.5 to lO O m.
- the water-soluble substance dissolves or swells in water or the like only when exposed to the surface layer in the polishing layer of the chemical mechanical polishing pad, does not absorb moisture, and does not swell in the polishing layer. Therefore, (B) the water-soluble substance may have an outer shell that suppresses moisture absorption in at least a part of the outermost part.
- the outer shell (B) is physically adsorbed to the water-soluble substance, (B) it is chemically bonded to the water-soluble substance, or both, and (B) it is in contact with the water-soluble substance. Also good.
- materials that form such an outer shell include epoxy resins, polyimides, polyamides, polysilicates, and silane coupling agents.
- the water-soluble substance may consist of a water-soluble substance having an outer shell and a water-soluble substance not having an outer shell, and the surface of the water-soluble substance having an outer shell is all outside. Even if the shell is not covered, the above effect can be sufficiently obtained.
- the use ratio of (B) water-soluble substance in the composition for forming a polishing layer used in the present invention is (A) 1 to 300 parts by weight with respect to 100 parts by weight of the precursor component of the water-insoluble matrix.
- the amount is preferably part by mass, more preferably 1 to 2500 parts by mass, and further preferably 3 to 200 parts by mass.
- composition for forming a polishing layer used in the present invention contains (A) a precursor component of a water-insoluble matrix and (B) a water-soluble substance as essential components as described above.
- An agent may be contained.
- the polishing layer of the chemical mechanical polishing pad of the present invention has a cross-linked structure.
- Power S When the composition for forming a polishing layer contains a cross-linking agent, it has a cross-linked structure. The formation can be performed by heating.
- crosslinking agents examples include organic peroxides, sulfur, sulfur compounds and the like. Of these, it is preferable to use an organic peroxide (hereinafter, a method for forming a crosslinked structure using an organic peroxide is also referred to as “P0 crosslinking”).
- organic peroxide examples include dicumyl peroxide, jetyl peroxide, diethyl tert-butyl peroxide, diacetyl peroxide, and diacyl peroxide.
- the amount of the crosslinking agent used is preferably (A), 10 parts by mass or less, more preferably 0.1 to 8 parts by mass with respect to 100 parts by mass of the water-insoluble matrix precursor component. . By using the amount within this range, the generation of scratches in the chemical mechanical polishing process can be suppressed, and a chemical mechanical polishing pad with high strength and high polishing speed can be obtained.
- the method for obtaining the polishing layer forming composition used in the present invention is not particularly limited.
- the above components can be obtained by kneading by a known method using a kneader or the like.
- a conventionally known kneader can be used.
- kneading machines such as rolls, kneaders, Banbury mixers, extruders (single screw, multi screw) Can do.
- the temperature at the time of kneading should be appropriately set depending on the type of components used, but is preferably 70 to 150, for example.
- the polishing layer of the chemical mechanical polishing pad of the present invention is produced from the composition as described above. By molding the above composition into the desired shape under the appropriate temperature and pressure,
- the precursor component of the water-insoluble matrix forms a water-insoluble matrix
- (B) a polishing layer in which the water-soluble substance is dispersed can be obtained.
- the polishing layer of the chemical mechanical polishing pad of the present invention preferably has a crosslinked structure.
- the polishing layer of the polishing pad has a crosslinked structure, whereby (A) a precursor of a water-insoluble matrix.
- the water-insoluble matrix formed from the ingredients has an appropriate elastic recovery force, so that the displacement due to the shear stress applied to the chemical mechanical polishing pad during polishing can be kept small, and the water-insoluble matrix during polishing and dressing. It is possible to effectively suppress the matrix from being excessively stretched and plastically deformed to fill the pores, and the surface of the polishing layer from becoming excessively fuzzy. Therefore, pores are efficiently formed even during dressing, the retention of the slurry during polishing can be prevented from decreasing, and excellent polishing flatness can be realized with less fuzzing.
- the forming method is not particularly limited.
- the composition for forming a polishing layer used in the present invention does not contain the crosslinking agent, it can be, for example, electron beam crosslinking by electron beam irradiation, and when the composition contains the crosslinking agent.
- crosslinking by heating can be performed.
- the above composition is preferably formed into a molded body having a desired shape at a temperature of 100 to 170, preferably under a pressure of 5 to 50 MPa.
- a polishing layer having a crosslinked structure can be obtained by irradiating it with an electron beam.
- the amount of electron beam irradiation is preferably in the range of 10 to 400 kGy (Gy: gray, JZ kg), and more preferably. It is preferably 25 to 300 kGy, more preferably 50 to 200 kGy.
- the electron beam irradiation dose is less than 10 kGy, radical generation by the electron beam is insufficient and the degree of crosslinking is excessively small, which is not preferable. If it exceeds 400 kGy, molecular cutting occurs in the polishing layer, resulting in a decrease in mechanical strength of the resulting polishing layer.
- the acceleration voltage of the electron beam is preferably in the range of 0.5 to 3 MV, more preferably 0.7 to 2.0 MV, and still more preferably. 0.8 to 1.5 MV, most preferably 0.9 to 1.2 MV. If the irradiation voltage is less than 0.5 MV, the proportion of electrons captured and absorbed in the surface layer of the molded body is relatively high, and this is not preferable because crosslinking within the polishing layer becomes insufficient. On the other hand, it exceeds 3 MV. This is not preferable because the heat generation of the molded body is increased, the material constituting the molded body is altered, the molecular cutting occurs, and the mechanical strength of the resulting polishing layer is lowered.
- the acceleration voltage of the electron beam is appropriately set depending on the permeability to the molded body.
- the degree of transmission of the electron beam depends on the thickness of the molded body and the kinetic energy of the electron beam.
- the acceleration voltage is preferably set as follows.
- the acceleration voltage of the electron beam is preferably 0.5 MV or more, more preferably 0.8 MV or more. If the thickness of the molded body is 2 mm or more and less than 3 mm, the acceleration voltage is preferably 0.8 MV or more, more preferably 1 MV or more. When the thickness is 3 mm or more and less than 4 mm, the acceleration voltage is preferably 1.2 MV or more, more preferably 1.5 MV or more. When the thickness is 4 to 5 mm, the acceleration voltage is preferably 1.7 MV or more, more preferably 2 MV or more.
- the acceleration voltage required for the thickness is proportional to the specific gravity of the molded product. Therefore, for example, the acceleration voltage required when the specific gravity of the molded body is 0.8 is 0.8 times the acceleration voltage when the specific gravity is 1.
- the composition containing the cross-linking agent is preferably formed into a desired shape at a temperature of 1550 to 190, preferably under a pressure of 5 to 50 Pa.
- a polishing layer having a crosslinked structure can be obtained.
- the shape of the polishing layer obtained as described above can be, for example, a disc shape (columnar shape), a polygonal column shape, etc., and a disc shape is preferable.
- the diameter of the polishing surface (one bottom surface of the cylinder) can be, for example, 1550 to 1,200 mm, and in particular, 500 to It can be 8 20 mm.
- the thickness of the polishing pad can be, for example, 0.5 to 5.0 mm, particularly 1.0 to 3.0 mm, and in particular 1.5 to 3.0 mm.
- the polishing layer can have an appropriate recess on the polishing surface or the back surface thereof.
- the shape of the recess include concentric grooves, radial grooves, circular recesses, polygonal recesses, and combinations thereof.
- the chemical mechanical polishing pad of the present invention has a polishing layer formed as described above.
- the chemical mechanical polishing pad of the present invention can be a single-layer polishing pad consisting only of the polishing layer as described above, or is a multilayer pad provided with a support layer on the back side of the polishing layer as described above. be able to.
- the support layer is a layer that supports the chemical mechanical polishing pad on the back side of the polishing surface.
- the characteristics of the support layer are not particularly limited, but are preferably softer than the polishing layer. By providing a softer support layer, even when the thickness of the polishing layer is thin, the polishing pad force rises during polishing, and the surface of the polishing layer is curved. Can be prevented and stable polishing can be performed.
- the planar shape of the support layer is preferably the same planar shape as the planar shape of the polishing layer and the same size.
- the thickness of the support layer is preferably 0.1 to 5 mm, and more preferably 0.2 to 2 Omm.
- the chemical mechanical polishing method of the present invention is for chemically mechanically polishing an object to be polished using the chemical mechanical polishing pad of the present invention as described above.
- the polishing pad of the present invention as described above can be attached to a commercially available chemical mechanical polishing apparatus and subjected to a chemical mechanical polishing step according to a known method using an appropriate chemical mechanical polishing aqueous dispersion.
- Examples of the material that constitutes the surface to be polished include a metal that is a wiring material, a barrier metal, an insulator, and a material that is a combination thereof.
- Examples of the metal as the wiring material include evening kutten, aluminum, copper, and an alloy containing at least one of them.
- Examples of the barrier metal include tantalum, tantalum nitride, niobium, and niobium nitride.
- S I_ ⁇ 2 the insulator, for example, S I_ ⁇ 2, S I_ ⁇ small amounts of boron and Li down added boron Rinshirike one bets to 2 (BPSG), F and fluorine-doped S I_ ⁇ 2 SG (F 1 uorine—Do ⁇ ed Silicate Glass) and low-dielectric constant silicon oxide insulators.
- the S I_ ⁇ 2 obtained, for example, a thermal oxide film, PETEOS (P 1 a sma Enh an ce d-TEOS), HDP (H i gh De nsity P la sma Enhanc ed- TE_ ⁇ _S), by a thermal C VD method S i 0 2 can be mentioned.
- PETEOS P 1 a sma Enh an ce d-TEOS
- HDP H i gh De nsity P la sma Enhanc ed- TE_ ⁇ _S
- Example 1 (A) Acrylic acid monoethylene copolymer (trade name “Lexpearl A210K:”, manufactured by Nippon Polyethylene Co., Ltd.), acrylic acid as copolymer (A-1) as a precursor component of water-insoluble matrix (Random copolymer of 7% by mass and 93% by mass of ethylene.) 100 parts by mass and (B) j6-cyclodextrin (trade name “Dexipal) 6-100” as a water-soluble substance, The average particle size was 15 urn) 38 parts by mass were kneaded with a twin screw extruder adjusted to 140 to obtain a pellet of the polishing layer forming composition.
- this sheet-like molded product was set in a scanning electron beam irradiation device (model “EPS-3000”, manufactured by NHV Corporation), at room temperature and normal pressure, with a voltage of 1 MV and an electron dose of 25 kGy.
- the electron beam was cross-linked by electron beam irradiation after 8 passes. Thereafter, the thickness of the electron beam-cross-linked sheet-like molded body was adjusted using a wide belt sander to a thickness of 2.5 mm.
- Polishing head rotation speed 100 rpm
- Aqueous dispersion for polishing machine polishing CMS 7401, CMS 7452 (both made by JSR Corporation) and water 1: 1: 6 (mass ratio) mixture
- Aqueous dispersion feed rate 30 OmLZ min
- Polishing amount Cu film thickness before polishing-Cu film thickness after polishing
- Polishing rate average polishing amount / polishing time
- the number of scratches on the entire surface to be polished was measured using “Surfscan SP 1” manufactured by KLA-Tencor Corporation.
- A 90 parts by mass of a copolymer (A-1) acrylic acid-ethylene random copolymer “Lexel A 210K” as a precursor component of a water-insoluble matrix and a polyfunctional compound ( ⁇ -3 10 parts by mass of triaryl isocyanurate “ ⁇ C” (manufactured by Nippon Kasei Co., Ltd.) and 1 part by mass of (B) water-soluble substance) 8-cyclodextrin “Dexipar 3-100”
- the pellets of the composition for forming the polishing layer were obtained by kneading with a twin-screw extruder adjusted in temperature.
- a polishing layer was prepared in the same manner as in Example 1 except that this pellet was used, and this was used as a single-layer chemical mechanical polishing pad to evaluate its polishing performance. The evaluation results are shown in Table 2.
- A As a precursor component of a water-insoluble matrix, a copolymer (A-1), methacrylic acid monoethylene copolymer (trade name “AN4225C”, manufactured by Mitsui DuPont Polychemical Co., Ltd. This is a random copolymer of 5% by weight of acid and 95% by weight of ethylene.) 70 parts by weight, styrene-butadiene copolymer (trade name “TR 2827”, which is another polymer (A-2), J SR Co., Ltd.) 27 parts by mass And polyfunctional compound (A-3) Triaryl isocyanurate “TA IC” 3 parts by mass, and (B) As a water-soluble substance] 8-cyclodextrin “Dexipar
- A-1 methacrylic acid monoethylene copolymer
- AN4225C manufactured by Mitsui DuPont Polychemical Co., Ltd.
- Park Mill D 40 (trade name, manufactured by NOF Corporation, containing 40% by mass of dicumyl peroxide.) 1 part by mass (converted to pure dicumyl peroxide) 0.4 parts by mass) was added, kneaded, and then molded by carrying out a crosslinking reaction by heating (P0 crosslinking) at 1700 for 18 minutes in a mold.
- a disk-shaped sheet-like molded body having a thickness of 0 m and a thickness of 3.5 mm was obtained.
- a polishing layer was prepared in the same manner as in Example 1 except that this sheet-like molded body was used, and this was used as a single-layer chemical mechanical polishing pad to evaluate its polishing performance.
- the evaluation results are shown in Table 2. Examples 6-7 and 9-12
- Comparative example Hydrogenated product of maleic anhydride-modified styrene-butadiene-styrene block copolymer (trade name “Tuftec 191 1”, manufactured by Asahi Kasei Co., Ltd.) as a precursor component of the water-insoluble matrix Value: 2 mg CH 3 ONa / g, equivalent to 2. 07 mg KOHZg) 20 parts by mass and 1,2-polybutadiene “RB 830” 80 parts by mass as a water-soluble substance) 8-cyclodextrin “Dexic Pearl” 8-100
- a polishing layer was prepared in the same manner as in Example 5 except that 38 parts by mass was used, and this was used as a single-layer chemical mechanical polishing pad to improve its polishing performance. The evaluation results are shown in Table 2. Comparative Example 2
- each unit component used as the precursor component of the water-insoluble matrix and the type and amount of the water-soluble substance were as shown in Table 1, respectively. This was used as a single-layer chemical mechanical polishing pad to evaluate its polishing performance. The evaluation results are shown in Table 2.
- Multifunctional compound (B) Water-soluble dwelling materials Cross-linking agent
- Example 1 A210K 100 ⁇ 0 ⁇ 0 i8- CD 38 ⁇ 0 Electron beam
- Example 2 A210K 60 RB830 40 ⁇ 0 CD 38 ⁇ 0 Electron beam
- Example 3 N0200H 100 ⁇ 0 ⁇ 0) 3 -CD 8 ⁇ 0 Electron beam
- Example 4 A210K 90 ⁇ 0 TAIC 10 / S-CD 1 ⁇ 0 Electron beam
- Example 5 A 4225C 70 TR2827 27 TAIC 3/3 -CD 8 PQD40 0.4 P
- Example 6 N2030 90 ⁇ 0 TAIC 10 3-CD 38 ⁇ 0 Electron beam
- Example 7 A210K 95 ⁇ 0 TMP 5 ⁇ -CD 10 1 ⁇ 0 Electron beam
- Example 8 N1560 75 RB830 20 TAIC 5 / 3-CD 65 PQD40 0.4 P
- Example 9 N1560 65 RB830 35 ⁇ 0 PEO 7 ⁇
- A210K Ethylene acrylate copolymer (trade name “Lexpearl A 210 K:”, manufactured by Nippon Polyethylene Co., Ltd., a random copolymer of 7% by weight acrylic acid and 93% by weight ethylene)
- Methacrylic acid monoethylene copolymer (trade name “Nuclelic NO 2 00H”, manufactured by Mitsui DuPont Polychemical Co., Ltd., random copolymer of 2% by weight methacrylic acid and 98% by weight of ethylene .)
- AN4225 C Methacrylic acid monoethylene copolymer (trade name “AN4225C”, manufactured by Mitsui DuPont Polychemical Co., Ltd., random copolymer of 5% by weight of methyl acrylate and 95% by weight of ethylene. )
- Methacrylic acid monoethylene copolymer (trade name “Nucrel N 20 30H”, manufactured by Mitsui DuPont Polychemical Co., Ltd., random copolymer of 20% by weight of methyl methacrylate and 80% by weight of ethylene Polymer.)
- Methacrylic acid-ethylene copolymer (trade name “Nucrel N156 0”, manufactured by Mitsui DuPont Polychemical Co., Ltd., a random copolymer of 15% by weight of methacrylic acid and 85% by weight of ethylene)
- R B 830 1, 2 _ polybutadiene (thermoplastic resin, trade name “R B 830”, manufactured by JSR Corporation)
- TR 2827 Random copolymer of styrene monobutadiene (trade name “TR 28 27”, manufactured by JSR Corporation)
- TT1911 Maleic anhydride-modified styrene monobutadiene-styrene block copolymer hydrogenated product (graft copolymer, trade name “Tuftec 191 1”, manufactured by Asahi Kasei Co., Ltd., acid value: 2 mg CH 3 ⁇ Na / g 2. Equivalent to 07mg KOHZg)
- PAA Polyacrylic acid (trade name “AQUALIC H”, manufactured by Nippon Shokubai Co., Ltd.)
- PE Polyethylene (trade name “YF30”, manufactured by Nippon Polyethylene Co., Ltd.)
- A-2 Multifunctional compounds
- TAI C triallyl isocyanate (trade name “TAI C”, manufactured by Nippon Kasei Co., Ltd.)
- TMP Sakai Limethylol Propane Trimethyl (Product name “Acrylester TMP”, manufactured by Mitsubishi Rayon Co., Ltd.)
- PE ⁇ Polyethylene oxide (trade name “Alcox E30”, manufactured by Meisei Chemical Co., Ltd.)
- PQD40 Park Mill D 40 (trade name, manufactured by NOF Corporation, containing 40% by mass of dicumyl peroxide. Table 1 shows values converted to pure dicumyl peroxide.)
- the polishing rate is 60 nm / min or more, the in-plane uniformity of the polishing amount is 6% or less, and scratches are 60 or less, it is considered that the polishing characteristics are good.
- Table 2 it was revealed that the chemical mechanical polishing pads of the present invention in Examples 1 to 14 have good polishing characteristics.
- the chemical mechanical polishing pads of Comparative Examples 1 to 5 which are not the present invention do not show good results in all of the polishing rate, the in-plane uniformity of the polishing amount, and the scratch performance.
- a chemical mechanical polishing pad and a chemical mechanical polishing method that provide a polished surface that has an excellent polishing rate, excellent in-plane uniformity of the polishing amount, and little scratches.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Disclosed is a chemical mechanical polishing pad having a polishing layer which is made from a composition containing a precursor component (A) of a water-insoluble matrix and a water-soluble substance (B). The chemical mechanical polishing pad is characterized in that the precursor component (A) of a water-insoluble matrix contains 60-100 parts by mass of a random copolymer or block copolymer (A-1) of at least one unsaturated compound (a1) selected from the group consisting of unsaturated carboxylic aids and unsaturated carboxylic acid anhydrides and an unsaturated compound (a2) other than the unsaturated compound (a1), when the total of the precursor component (A) is taken as 100 parts by mass.
Description
明 細 書 化学機械研磨パッドおよび化学機械研磨方法 Description Mechanical chemical polishing pad and chemical mechanical polishing method
技術分野 Technical field
本発明は、 化学機械研磨パッドおよび化学機械研磨方法に関する。 The present invention relates to a chemical mechanical polishing pad and a chemical mechanical polishing method.
背景技術 Background art
近年の半導体装置等の製造において、 優れた平坦性を有する表面を形成するこ とができる研磨方法として、 化学機械研磨方法 (Chemi c a l Me c ha n i c a 1 Po l i s h i ng, —般に 「CMP」 と略称される。) が広く用 いられている。 この化学機械研磨方法においては、 化学機械研磨パッドの材質に より研磨結果が大きく変化することが知られており、 様々な組成の化学機械研磨 パッドが提案されている。 As a polishing method that can form a surface with excellent flatness in the manufacture of semiconductor devices and the like in recent years, a chemical mechanical polishing method (Chemical Mechanical Polishing, generally referred to as “CMP”). Abbreviated)) is widely used. In this chemical mechanical polishing method, it is known that the polishing result varies greatly depending on the material of the chemical mechanical polishing pad, and chemical mechanical polishing pads of various compositions have been proposed.
例えば特開 2002— 134445号公報にはカルボキシル基のような親水性 官能基を有するモノマーの重合体を、 研磨パッドを構成する成分として組み込ん で研磨パッド表面の親水性を向上させることにより、 研磨速度の向上を行う技術 が開示されている。 しかしこの技術は、 均一なパッド組成物を得ること力難しぐ 被研磨面の平坦性力損なわれるとの問題がある。 For example, Japanese Patent Laid-Open No. 2002-134445 discloses a polishing rate by incorporating a polymer of a monomer having a hydrophilic functional group such as a carboxyl group as a component constituting the polishing pad to improve the hydrophilicity of the polishing pad surface. Techniques for improving the quality are disclosed. However, this technique has a problem that it is difficult to obtain a uniform pad composition and the flatness of the surface to be polished is impaired.
また、 特開 2004— 343099号公報には、 架橋ジェンエラストマ一と酸 無水物変性された重合体 (グラフト重合体) とをブレンドした材料を用いて研磨 パッドを製造することにより、 研磨速度を向上させるとともに、 被研磨面の平坦 性を向上する技術が開示されている。 この技術によると、 確かに研磨速度および 被研磨面の平坦性の向上にある程度の効果を奏することが確認されている。 しか しながらこの技術は、 ブレンド材料におけるグラフト重合体の使用割合を多くす るとパッドの機械的強度を損なうため、 パッド中の酸無水物基の含有割合の向上 には限界があり、 その結果、 上記効果が発現される程度には一定の限界がある。
発明の開示 In addition, JP 2004-343099 A discloses that a polishing pad is manufactured by using a material obtained by blending a crosslinked gen elastomer and an anhydride-modified polymer (graft polymer) to improve the polishing rate. And a technique for improving the flatness of the surface to be polished is disclosed. According to this technology, it has been confirmed that there is a certain effect in improving the polishing rate and the flatness of the surface to be polished. However, this technology has a limit in improving the content of acid anhydride groups in the pad because the mechanical strength of the pad is impaired when the proportion of the graft polymer used in the blend material is increased. There is a certain limit to the extent to which the above effects are manifested. Disclosure of the invention
本発明は、 前記事情に鑑みなされたものであり、 その目的は、 研磨速度に優れ、 且つ被研磨面の平坦性、 すなわち被研磨面における研磨量の面内均一性に優れ、 スクラッチの少ない化学機械研磨パッドおよび該研磨パッドを用いた化学機械研 磨方法を提供することにある。 The present invention has been made in view of the above circumstances, and has an object of being excellent in polishing speed, flatness of a surface to be polished, that is, in-plane uniformity of polishing amount on the surface to be polished, and chemicals with less scratches. A mechanical polishing pad and a chemical mechanical polishing method using the polishing pad are provided.
本発明によれば、 本発明の前記課題は、 第一に、 According to the present invention, the problem of the present invention is, firstly,
(A) 非水溶性マトリックスの前駆体成分および (B) 水溶性物質を含有する組 成物から形成された研磨層を有する化学機械研磨パッドであって、 A chemical mechanical polishing pad having a polishing layer formed from (A) a precursor component of a water-insoluble matrix and (B) a composition containing a water-soluble substance,
上記 (A) 非水溶性マトリックスの前駆体成分はその全量を 1 0 0質量部とし た場合に、 (A) When the total amount of the precursor component of the water-insoluble matrix is 100 parts by mass,
(A— 1 ) ( a 1 ) 不飽和カルボン酸および不飽和カルボン酸無水物よりなる群 から選ばれる少なくとも 1種の不飽和化合物と、 (A-1) (a1) at least one unsaturated compound selected from the group consisting of unsaturated carboxylic acids and unsaturated carboxylic acid anhydrides;
( a 2 ) 上記 (a l ) 以外の不飽和化合物と、 のランダム共重合体またはブロッ ク共重合体 (a 2) Random copolymer or block copolymer of unsaturated compound other than the above (a l) and
を 6 0〜1 0 0質量部含有するものである、 化学機械研磨パッドによって達成さ れる。 Is achieved by a chemical mechanical polishing pad that contains 60 to 100 parts by mass.
本発明の前記課題は、 第二に、 The problem of the present invention is secondly,
上記の化学機械研磨パッドを用いて被研磨物を化学機械研磨する、 化学機械研磨 方法によって達成される。 発明を実施するための最良の形態 This is achieved by a chemical mechanical polishing method in which a workpiece is chemically mechanically polished using the chemical mechanical polishing pad. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の化学機械研磨パッドは、 (A) 非水溶性マトリックスの前駆体成分お よび (B) 水溶性物質を含有する組成物から形成された研磨層を有する。 The chemical mechanical polishing pad of the present invention has a polishing layer formed from (A) a precursor component of a water-insoluble matrix and (B) a composition containing a water-soluble substance.
以下、 本発明の化学機械研磨パッドの研磨層を形成するための組成物 (以下、 「研磨層形成用組成物」 ともいう。) の各成分について説明する。 Hereinafter, each component of the composition for forming the polishing layer of the chemical mechanical polishing pad of the present invention (hereinafter, also referred to as “a composition for forming a polishing layer”) will be described.
く (A) 非水溶性マトリックスの前駆体成分〉 (A) Precursor component of water-insoluble matrix>
本発明に用いられる (A) 非水溶性マトリックスの前駆体成分は、 少なくとも (A— 1 ) ( a 1 ) 不飽和カルボン酸および不飽和カルボン酸無水物よりなる群
から選ばれる少なくとも 1種の不飽和化合物 (以下、 「不飽和化合物 (a l)」 と いう。) と、 The precursor component of the (A) water-insoluble matrix used in the present invention comprises at least (A-1) (a1) a group consisting of an unsaturated carboxylic acid and an unsaturated carboxylic acid anhydride. At least one unsaturated compound (hereinafter referred to as “unsaturated compound (al)”) selected from:
(a 2) 上記 (a l) 以外の不飽和化合物 (以下、 「不飽和化合物 (a 2)」 とい う。) と、 のランダム共重合体またはブロック共重合体 (以下、 これらランダム 共重合体およびブロック共重合体を総称して 「共重合体 (A-l)j ともいう。) を含有する。 共重合体 (A— 1) におけるランダム共重合体およびブロック共重 合体とは、 それぞれグラフト重合体 (例えば酸無水物変性重合体) を含まない概 念である。 共重合体 (A— 1) としては、 不飽和化合物 (a l) と不飽和化合物 (a 2) のランダム共重合体であることが好ましい。 (a 2) An unsaturated compound other than the above (al) (hereinafter referred to as “unsaturated compound (a 2)”), and a random copolymer or block copolymer (hereinafter referred to as these random copolymer and Block copolymers are collectively called “copolymer (Al) j”. Random copolymers and block copolymers in copolymer (A-1) are graft polymers ( For example, the copolymer (A-1) is a random copolymer of an unsaturated compound (al) and an unsaturated compound (a 2). Is preferred.
上記不飽和化合物 (a l) としては、 例えば不飽和モノカルボン酸、 不飽和ジ カルボン酸およびその無水物ならびに 2価以上の多価カルボン酸のモノ 〔 (メ 夕) ァクリロイロキシアルキル〕 エステルよりなる群から選択される少なくとも 1種の不飽和化合物を好ましく使用することができる。 これらの具体例としては、 不飽和モノカルボン酸として例えばアクリル酸、 メ夕クリル酸、 クロトン酸、 α —クロルアクリル酸、 けい皮酸等; Examples of the unsaturated compound (al) include an unsaturated monocarboxylic acid, an unsaturated dicarboxylic acid and its anhydride, and a mono [(meth) acryloyloxyalkyl] ester of a divalent or higher polyvalent carboxylic acid. At least one unsaturated compound selected from the group consisting of can be preferably used. Specific examples thereof include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, α-chloroacrylic acid, cinnamic acid, etc .;
不飽和ジカルボン酸またはその無水物として例えばマレイン酸、 無水マレイン酸、 フマル酸、 ィタコン酸、 無水ィタコン酸、 シトラコン酸、 無水シトラコン酸、 メ サコン酸等; As unsaturated dicarboxylic acid or its anhydride, for example, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, mesaconic acid, etc .;
2価以上の多価カルボン酸のモノ 〔(メタ) ァクリロイロキシアルキル〕 エステ ルとして例えばこはく酸モノ (2—アクリロイ口キシェテル)、. こはく酸モノ (2 _メ夕クリロイロキシェチル)、 フ夕ル酸モノ (2—ァクリロイロキシエヂ ル)、 フ夕ル酸モノ (2—メ夕クリロイ口キシェチル) 等、 をそれぞれ挙げるこ とができる。 Mono [(meth) acryloyloxyalkyl] esters of divalent or higher polyvalent carboxylic acids such as succinic acid mono (2-acryloyl oxychheter), succinic acid mono (2_methacryloyloxychetyl) , Monosulfuric acid (2-acryloyloxyethyl), mono-furic acid (2-methacryloylchichet), and the like.
これらのうち、 不飽和モノカルボン酸が好ましく、 特にアクリル酸またはメタ クリル酸が好ましい。 Of these, unsaturated monocarboxylic acids are preferable, and acrylic acid or methacrylic acid is particularly preferable.
上記不飽和化合物 (a 2) としては、 上記不飽和化合物 (a l) との共重合が 可能である限り特に制限されなレが、 例えば芳香族ビニル化合物、 インデンおよ びその誘導体、 脂肪族共役ジェンならびに α—才レフィンよりなる群から選択さ
れる少なくとも 1種の不飽和化合物が好ましく例示される。 The unsaturated compound (a 2) is not particularly limited as long as it can be copolymerized with the unsaturated compound (al), and examples thereof include aromatic vinyl compounds, indene and derivatives thereof, and aliphatic conjugates. As well as selected from the group consisting of α-aged refins Preferred examples include at least one unsaturated compound.
これらの具体例としては、 芳香族ビニル化合物として例えばスチレン、 α—メチ ルスチレン、 ο—ビニルトルエン、 m—ビニルトルエン、 p—ビニルトルエン 等; Specific examples thereof include aromatic vinyl compounds such as styrene, α-methylstyrene, ο-vinyltoluene, m-vinyltoluene, p-vinyltoluene and the like;
ィンデンおよびその誘導体として例えばィンデン、 1ーメチルインデン等; 脂肪族共役ジェンとして例えば 1, 3—ブタジエン、 イソプレン等; Indene and its derivatives, such as Indene, 1-methylindene, etc .; Aliphatic conjugates such as 1,3-butadiene, isoprene, etc .;
α—ォレフインとして例えばエチレン、 プロピレン、 1—ブテン、 1一へキセン 等、 をそれぞれ挙げることができる。- これらのうち、 α—才レフインが好ましく、 特にエチレンが好ましい。 Examples of α-olefin include ethylene, propylene, 1-butene, 1-hexene and the like. -Of these, α-aged lefin is preferred, especially ethylene.
共重合体 (Α— 1 ) としては、 特に、 不飽和化合物 (a l ) として (メタ) ァ クリル酸を、 不飽和化合物 (a 2 ) としてエチレンを用いて得られた、 (メタ) アクリル酸とエチレンとのランダム共重合体またはプロック共重合体が好ましく、 (メタ) アクリル酸とエチレンとのランダム共重合体がとりわけ好ましい。 As the copolymer (Α-1), (meth) acrylic acid obtained by using (meth) acrylic acid as the unsaturated compound (al) and ethylene as the unsaturated compound (a 2), A random copolymer or block copolymer with ethylene is preferred, and a random copolymer of (meth) acrylic acid and ethylene is particularly preferred.
共重合体 (A— 1 ) における不飽和化合物 (a l ) の共重合割合は、 5〜2 0 質量%であることが好ましく、 より好ましくは 5〜1 5質量%であり、 さらに好 ましくは 7〜1 5質量%である。 不飽和化合物 (a l ) の共重合割合が 5質量% 未満であると、 得られる化学機械研磨パッド研磨面の表面の親水性が不足し、 化 学機械研磨時に供給される化学機械水系分散体の保持能力に乏しくなって研磨速 度が損なわれるとともにスクラツチ数力増大する場合があるほか、 研磨面の機械 的強度が不足して化学機械研磨パッドの耐久性に乏しくなる場合があるため好ま しくない。 一方、 不飽和化合物 (a l ) の共重合割合が 2 0質量%を超えると、 得られる共重合体 (A— 1 ) の重合度が低下し、 高分子量の共重合体が得られな いために、 研磨パッドの機械強度が低下し、 化学機械研磨パッドの耐久性に乏し くなる場合があるため好ましくない。 The copolymerization ratio of the unsaturated compound (al) in the copolymer (A-1) is preferably 5 to 20% by mass, more preferably 5 to 15% by mass, and even more preferably. 7-15% by mass. When the copolymerization ratio of the unsaturated compound (al) is less than 5% by mass, the surface of the resulting chemical mechanical polishing pad polishing surface has insufficient hydrophilicity, and the chemical mechanical aqueous dispersion supplied during chemical mechanical polishing is not suitable. It is not preferable because the holding capacity is poor and the polishing speed is impaired and the number of scratches may increase, and the mechanical strength of the polishing surface is insufficient and the durability of the chemical mechanical polishing pad may be poor. . On the other hand, if the copolymerization ratio of the unsaturated compound (al) exceeds 20% by mass, the degree of polymerization of the resulting copolymer (A-1) is lowered, and a high molecular weight copolymer cannot be obtained. This is not preferable because the mechanical strength of the polishing pad is lowered and the durability of the chemical mechanical polishing pad may be poor.
共重合体 (A— 1 ) の重量平均分子量は 1 0 , 0 0 0〜2 0 0 , 0 0 0である ことが好ましく、 より好ましくは 2 0 , 0 0 0〜1 5 0 , 0 0 0である。 The weight average molecular weight of the copolymer (A-1) is preferably 10 0, 0 0 0 to 2 0 0, 0 0 0, more preferably 2 0, 0 0 0 to 1 5 0, 0 0 0 It is.
共重合体 (A- 1 ) としては、 市販品を用いてもよい。 かかる市販品としては、 例えばレクスパール A 2 1 0 K (日本ポリエチレン (株) 製)、 ニュクレル AN
4 2 2 5 C、 同 N 2 0 3 0 H、 同 N 5 1 3 0 H、 同 N 1 5 6 0、 同 N 0 2 0 0 H (以上、 三井 ·デュポンポリケミカル (株) 製) 等を挙げることができる。 A commercially available product may be used as the copolymer (A-1). Examples of such commercially available products include Lexpearl A 2 10 K (manufactured by Nippon Polyethylene Co., Ltd.), Nucrel AN 4 2 2 5 C, N 2 0 30 H, N 5 1 3 0 H, N 1 5 60, N 0 2 0 0 H (Mitsui DuPont Polychemical Co., Ltd.), etc. Can be mentioned.
上記の如き共重合体 (A— 1 ) を含有する前駆体成分から製造された非水溶性 マトリックスを有する化学機械研磨パッドは、 化学機械研磨工程において必要な 機械的強度 (適度な硬度等) を有するとともに、 化学機械研磨時に供給される化 学機械研磨用水系分散体中の砥粒との親和性に優れるため、 高い研磨速度を示し、 且つ高度の面内均一性を有する被研磨物を与えることができることとなるため、 好ましい。 A chemical mechanical polishing pad having a water-insoluble matrix manufactured from a precursor component containing the copolymer (A-1) as described above has a mechanical strength (appropriate hardness, etc.) required in the chemical mechanical polishing process. In addition, it has excellent affinity with the abrasive grains in the chemical mechanical polishing aqueous dispersion supplied during chemical mechanical polishing, so it provides a polished object that exhibits a high polishing rate and has a high degree of in-plane uniformity. This is preferable.
本発明に用いられる (A) 非水溶性マトリックスの前駆体成分は、 その全量を 1 0 0質量部とした場合に上記の如き共重合体 (A- 1 ) を 6 0〜: 1 0 0質量部、 好ましくは 7 0〜9 5質量部、 より好ましくは 7 0〜9 0質量部含有する。 本発明に用いられる (A) 非水溶性マトリックスの前駆体成分は、 少なくとも 上記の如き共重合体 (A— 1 ) を含有するが、 それ以外に必要に応じて (A— 2 ) 他の重合体、 (A— 3 ) 分子内に 2個以上の炭素一炭素二重結合を有する化 合物 (以下、 「多官能性化合物 (A— 3 )」 という。) 等を含有してもよい。 上記 (A— 2 ) 他の重合体としては、 例えば熱可塑性樹脂、 エラストマ一、 ゴ ム、 硬化樹脂 (熱硬化性樹脂、 光硬化性樹脂等を熱、 光等によって硬化した樹 脂) 等が好ましい。 多くの化学機械研磨用水系分散体が含有する強酸または強ァ ルカリに対して安定であり、 且つ吸水による軟化が少ないことから熱可塑性樹脂 またはエラストマ一がより好ましい。 The precursor component of the (A) water-insoluble matrix used in the present invention contains the copolymer (A-1) as described above in an amount of 60 to 100 mass when the total amount is 100 mass parts. Part, preferably 70 to 95 parts by mass, more preferably 70 to 90 parts by mass. The precursor component of the (A) water-insoluble matrix used in the present invention contains at least the copolymer (A-1) as described above, but (A-2) other heavy components are used as necessary. And (A-3) a compound having two or more carbon-carbon double bonds in the molecule (hereinafter referred to as "polyfunctional compound (A-3)"). Examples of the other polymer (A-2) include thermoplastic resins, elastomers, rubber, cured resins (resins obtained by curing thermosetting resins, photocurable resins, etc. by heat, light, etc.) and the like. preferable. A thermoplastic resin or an elastomer is more preferable because it is stable against strong acid or strong alkali contained in many chemical mechanical polishing aqueous dispersions and is less softened by water absorption.
上記熱可塑性樹脂としては、 例えば 1, 2—ポリブタジエン樹脂、 ポリオレフ イン樹脂、 ポリスチレン樹脂、 ポリエステル樹脂、 ポリアミド樹脂、 フッ素樹脂、 ポリカーボネート樹脂、 ポリアセタール樹脂等を挙げることができる。 上記ポリ ォレフィン樹脂としては例えばポリエチレン等を、 前記フッ素樹脂としては例え ばポリフッ化ビ二リデン等を、 それぞれ挙げることができる。 Examples of the thermoplastic resin include 1,2-polybutadiene resin, polyolefin resin, polystyrene resin, polyester resin, polyamide resin, fluorine resin, polycarbonate resin, and polyacetal resin. Examples of the polyolefin resin include polyethylene, and examples of the fluororesin include polyvinylidene fluoride.
上記エラストマ一としては、 例えばジェンエラストマ一、 ポリオレフインエラ
ストマー (TPO)、 スチレン系エラストマ一、 熱可塑性エラストマ一、 シリコ ーンエラストマ一、 フッ素エラストマ一等を挙げることができる。 前記ジェンェ ラストマーとしては、 例えば 1, 2—ポリブタジエン等を挙げることができる。 前記スチレン系エラストマ一としては、 例えばスチレン一ブタジエン一スチレン ブロック共重合体 (SBS)、 その水素添加ブロック共重合体 (SEBS) 等を 挙げることができる。 前記熱可塑性エラストマ一としては、 例えば熱可塑性ポリ ウレタンエラストマ一 (TPU)、 熱可塑性ポリエステルエラス卜マー (TPE E)、 ポリアミドエラストマ一 (TPAE) 等を挙げることができる。 Examples of the above-mentioned elastomer include, for example, Jen Elastomer, Polyolefin Examples thereof include a elastomer (TPO), a styrene elastomer, a thermoplastic elastomer, a silicone elastomer, and a fluorine elastomer. Examples of the jenlastomer include 1,2-polybutadiene. Examples of the styrene elastomer include styrene-butadiene-styrene block copolymer (SBS), hydrogenated block copolymer (SEBS), and the like. Examples of the thermoplastic elastomer include thermoplastic polyurethane elastomer (TPU), thermoplastic polyester elastomer (TPE E), and polyamide elastomer (TPAE).
上記硬化樹脂としては、 例えばウレタン樹脂、 エポキシ樹脂、 アクリル樹脂、 不飽和ポリエステル樹脂、 ポリウレ夕ンーゥレア樹脂、 ゥレア樹脂、 ケィ素樹脂、 フエノール樹脂、 ビニルエステル樹脂等を挙げることができる。 Examples of the cured resin include urethane resin, epoxy resin, acrylic resin, unsaturated polyester resin, polyurethane resin, urea resin, key resin, phenol resin, and vinyl ester resin.
これらのうち、 特に好ましくは 1, 2—ポリブタジエン樹脂である。 Of these, 1,2-polybutadiene resin is particularly preferred.
これらの重合体 (A-2) は 1種のみを用いてもよく、 2種以上を併用しても よい。 These polymers (A-2) may be used alone or in combination of two or more.
(A) 非水溶性マトリックスの前駆体成分における (A— 2) 他の重合体の含 有割合は、 (A) 非水溶性マトリックスの前駆体成分の全量を 100質量部とし た場合に、 好ましくは 40質量部以下であり、 より好ましくは 5〜30質量部で あり、 さらに 10〜 30質量部であること力好ましい。 上記多官能性化合物 (A— 3) としては、 例えばエチレングリコールジ (メ 夕) ァクリレート、 ジエチレングリコールジ (メタ) ァクリレート、 卜リエチレ ングリコールジ (メタ) ァクリレート、 テトラエチレングリコールジ (メタ) ァ クリレート、 1, 4—ブタンジオールジ (メタ) ァクリレート、 1, 6—へキサ ンジオールジ (メタ) ァクリレート、 1, 9ーノナンジオールジ (メタ) ァクリ レート、 グリセリンジ (メタ) ァクリレート、 ポリエチレングリコール (PEG # 200) ジ (メタ) ァクリレート、 ポリエチレングリコール (PEG#40 0) ジ (メタ) ァクリレート、 ポリエチレングリコール (PEG# 600) ジ (メタ) ァクリレート、 トリメチロールプロパントリ (メタ) ァクリレー卜、 ぺ
ン夕エリスリ! ^一ルトリ (メタ) ァクリレー卜、 ジペン夕エリスリトールへキサ(A) The content ratio of (A-2) other polymer in the precursor component of the water-insoluble matrix is preferably (A) when the total amount of the precursor component of the water-insoluble matrix is 100 parts by mass. Is 40 parts by mass or less, more preferably 5 to 30 parts by mass, and further preferably 10 to 30 parts by mass. Examples of the polyfunctional compound (A-3) include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 卜 ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,4-Butanediol di (meth) acrylate, 1,6-Hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, glycerin di (meth) acrylate, polyethylene glycol (PEG # 200 ) Di (meth) acrylate, polyethylene glycol (PEG # 40 0) Di (meth) acrylate, polyethyleneglycol (PEG # 600) Di (meth) acrylate, trimethylolpropane tri (meth) acrylate, Nyu Erisuri! ^ Irutori (meta) ach relay, dipen evening erythritol hexa
(メタ) ァクリレート、 ネオペンチルダリコールジ (メタ) ァクリレート、 ジァ リルフタレー卜、 テトラァリルォキシェタン、 卜リアリルイソシァヌレー卜、 N, N, 一m—フエ二レンビスマレイミド、 N, N, 一トルィレンビスマレイミド、 トリァリルイソシァヌレート、 トリメ夕ァリルイソシァヌレート、 ジビニルペン ゼン、 トリァリルイソシァヌレート等を挙げることができる。 なお、 上記におい て、 「P E G # 2 0 0」、 「P E G # 4 0 0」 および 「P E G # 6 0 0」 は、 それ ぞれ三洋化成 (株) 製のポリエチレングリコールの商品名であり、 例えば 「ポリ エチレングリコール (P E G # 2 0 0 ) ジ (メタ) ァクリレート」 とは、 ポリエ チレングリコール P E G # 2 0 0の両末端の水酸基がそれぞれ (メタ) アクリル 酸とエステル結合を形成した化合物を意味する。 (Meth) acrylate, neopentyl alcoholic acid (meth) acrylate, diallyl phthalate, tetraaryloxetane, 卜 allyl isocyanurate, N, N, 1m-phenylene bismaleimide, N, N, mono-tolylene bismaleimide, triaryl isocyanurate, trimeryl isocyanurate, divinyl benzene, triaryl isocyanurate and the like. In the above, “PEG # 2 0 0”, “PEG # 4 0 0” and “PEG # 6 0 0” are trade names of polyethylene glycols manufactured by Sanyo Kasei Co., Ltd. “Polyethylene glycol (PEG # 2 0 0) di (meth) acrylate” means a compound in which the hydroxyl groups at both ends of polyethylene glycol PEG # 2 0 0 respectively form an ester bond with (meth) acrylic acid. .
これらのうち、 トリメチロールプロパントリ (メタ) ァクリレート、 卜リアリ ルイソ、:/ァヌレートまたはジビニルべンゼンが好ましい。 Of these, trimethylolpropane tri (meth) acrylate, triaryliso, :: / annulate or divinylbenzene is preferred.
(A) 非水溶性マトリックスの前駆体成分における多官能性化合物 (A— 3 ) の含有割合は、 (A) 非水溶性マトリックスの前駆体成分の全量を 1 0 0質量部 とした場合に、 好ましくは 1 0質量部以下であり、 より好ましくは 1〜1 0質量 部であり、 さらに 1〜8質量部であることが好ましい。 (A) The content ratio of the polyfunctional compound (A-3) in the precursor component of the water-insoluble matrix is (A) When the total amount of the precursor component of the water-insoluble matrix is 100 parts by mass, The amount is preferably 10 parts by mass or less, more preferably 1 to 10 parts by mass, and further preferably 1 to 8 parts by mass.
< (B) 水溶性物質 > <(B) Water-soluble substances>
本発明に使用される (B) 水溶性物質は、 化学機械研磨時に供給される化学機 械研磨用水系分散体と接触することにより研磨パッドの研磨面から離脱して、 化 学機械研磨用水系分散体を保持することのできる空孔 (ポア) を形成する機能を 有する物質である。 研磨面から脱離するに際しては、 水に溶解する態様の他、 水 との接触により膨潤またはゾル化して脱離する態様も含む。 The water-soluble substance (B) used in the present invention is separated from the polishing surface of the polishing pad by contacting with the chemical mechanical polishing aqueous dispersion supplied during chemical mechanical polishing, and the chemical mechanical polishing aqueous system is used. It is a substance that has the function of forming pores that can hold the dispersion. When desorbing from the polishing surface, in addition to an embodiment in which it is dissolved in water, an embodiment in which it is desorbed by swelling or sol formation upon contact with water is also included.
かかる (B) 水溶性物質は、 有機水溶性物質、 無機水溶性物質のいずれであつ てもよい。 The (B) water-soluble substance may be either an organic water-soluble substance or an inorganic water-soluble substance.
有機水溶性物質としては、 例えば糖類 (でんぷん、 デキストリンおよびシクロ デキストリンの如き多糖類、 乳糖、 マンニット等)、 セルロース類 (ヒドロキシ
プロピルセルロース、 メチルセルロース等)、 蛋白質、 ポリビニルアルコール、 ポリビニルピロリドン、 ポリアクリル酸、 ポリエチレンオキサイド、 水溶性の感 光性樹脂、 スルホン化ポリイソプレン、 スルホン化イソプレン共重合体等を挙げ ることができる。 Examples of organic water-soluble substances include saccharides (polysaccharides such as starch, dextrin and cyclodextrin, lactose, mannitol, etc.), celluloses (hydroxy Propyl cellulose, methyl cellulose, etc.), protein, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylic acid, polyethylene oxide, water-soluble photosensitive resin, sulfonated polyisoprene, sulfonated isoprene copolymer, and the like.
無機水溶性物質としては、 例えば酢酸カリウム、 硝酸カリウム、 炭酸カリウム 、 炭酸水素カリウム、 臭化カリウム、 リン酸カリウム、 硫酸カリウム、 硫酸マグ ネシゥムおよび硝酸カルシウム等を挙げることができる。 Examples of inorganic water-soluble substances include potassium acetate, potassium nitrate, potassium carbonate, potassium hydrogen carbonate, potassium bromide, potassium phosphate, potassium sulfate, magnesium sulfate, and calcium nitrate.
(B) 水溶性物質としては、 上記のうちの 1種類を用いてもよいし、 2種類以 上を混合して用いてもよい。 (B) As the water-soluble substance, one of the above may be used, or a mixture of two or more may be used.
(B) 水溶性物質は、 得られる化学機械研磨パッドの研磨面の硬度を適正な値 とすることができるという観点から、 中実体であること力好ましい。 (B) The water-soluble substance is preferably solid from the viewpoint that the hardness of the polishing surface of the resulting chemical mechanical polishing pad can be set to an appropriate value.
また、 (B) 水溶性物質は、 粒子状であることが好ましい。 その平均粒径は、 好ましくは 0. 1〜5 0 0 mであり、 より好ましくは 0. 5〜; l O O mであ る。 (B) 水溶性物質の平均粒径を上記の範囲とすることにより、 高い研磨速度 を示し、 かつ機械的強度に優れた化学機械研磨パッドを得ることができる。 In addition, (B) the water-soluble substance is preferably in the form of particles. The average particle diameter is preferably 0.1 to 500 m, more preferably 0.5 to lO O m. (B) By setting the average particle size of the water-soluble substance within the above range, a chemical mechanical polishing pad that exhibits a high polishing rate and is excellent in mechanical strength can be obtained.
なお、 (B ) 水溶性物質は、 化学機械研磨パッドの研磨層において表層に露出 した場合にのみ水等に溶解または膨潤し、 研磨層の内部では吸湿せず、 さらには 膨潤しないことが好ましい。 このため (B) 水溶性物質は最外部の少なくとも一 部に吸湿を抑制する外殻を備えていてもよい。 この外殻は (B) 水溶性物質に物 理的に吸着していても、 (B) 水溶性物質と化学結合していても、 さらにはこの 両方により (B) 水溶性物質に接していてもよい。 このような外殻を形成する材 料としては、 例えばエポキシ樹脂、 ポリイミド、 ポリアミド、 ポリシリケート、 シランカップリング剤等を挙げることができる。 この場合、 (B) 水溶性物質は、 外殻を有する水溶性物質と外殻を有さない水溶性物質とからなつていてもよく、 外殻を有する水溶性物質はその表面のすべてが外殻に被覆されていなくても十分 に前記効果を得ることができる。 It is preferable that (B) the water-soluble substance dissolves or swells in water or the like only when exposed to the surface layer in the polishing layer of the chemical mechanical polishing pad, does not absorb moisture, and does not swell in the polishing layer. Therefore, (B) the water-soluble substance may have an outer shell that suppresses moisture absorption in at least a part of the outermost part. The outer shell (B) is physically adsorbed to the water-soluble substance, (B) it is chemically bonded to the water-soluble substance, or both, and (B) it is in contact with the water-soluble substance. Also good. Examples of materials that form such an outer shell include epoxy resins, polyimides, polyamides, polysilicates, and silane coupling agents. In this case, (B) the water-soluble substance may consist of a water-soluble substance having an outer shell and a water-soluble substance not having an outer shell, and the surface of the water-soluble substance having an outer shell is all outside. Even if the shell is not covered, the above effect can be sufficiently obtained.
本発明で使用される研磨層形成用組成物における (B) 水溶性物質の使用割合 は、 (A) 非水溶性マトリックスの前駆体成分 1 0 0質量部に対して 1〜3 0 0
質量部であることが好ましく、 1〜2 5 0質量部であることがより好ましく、 さ らに好ましくは 3〜2 0 0質量部である。 The use ratio of (B) water-soluble substance in the composition for forming a polishing layer used in the present invention is (A) 1 to 300 parts by weight with respect to 100 parts by weight of the precursor component of the water-insoluble matrix. The amount is preferably part by mass, more preferably 1 to 2500 parts by mass, and further preferably 3 to 200 parts by mass.
(B) 水溶性物質の含有量を上記の範囲とすることにより、 高い研磨速度を示 し且つ適正な硬度および機械的強度を持つ化学機械研磨パッドとすることができ る。 (B) By setting the content of the water-soluble substance in the above range, a chemical mechanical polishing pad that exhibits a high polishing rate and has appropriate hardness and mechanical strength can be obtained.
<架橋剤 > <Crosslinking agent>
本発明で使用される研磨層形成用組成物は、 上記の如き (A) 非水溶性マトリ ックスの前駆体成分および (B) 水溶性物質を必須の成分として含有するが、 そ の他に架橋剤を含有していてもよい。 The composition for forming a polishing layer used in the present invention contains (A) a precursor component of a water-insoluble matrix and (B) a water-soluble substance as essential components as described above. An agent may be contained.
本発明の化学機械研磨パッドの研磨層は、 後述の通り、 架橋構造を有している こと力 S好ましいカ^ 研磨層形成用組成物が架橋剤を含有している場合には、 架橋 構造の形成を加熱により行うことができることとなる。 As will be described later, the polishing layer of the chemical mechanical polishing pad of the present invention has a cross-linked structure. Power S When the composition for forming a polishing layer contains a cross-linking agent, it has a cross-linked structure. The formation can be performed by heating.
かかる架橋剤としては、 例えば有機過酸化物、 硫黄、 硫黄化合物等を挙げる ことができる。 これらのうち、 有機過酸化物を使用することが好ましい (以下、 有機過酸化物を用いる架橋構造形成方法を 「P〇架橋」 ともいう。)。 有機過酸化 物としては、 例えば過酸化ジクミル、 過酸化ジェチル、 過酸化ジー t一プチル、 過酸化ジァセチル、 過酸化ジァシル等を挙げることができる。 Examples of such crosslinking agents include organic peroxides, sulfur, sulfur compounds and the like. Of these, it is preferable to use an organic peroxide (hereinafter, a method for forming a crosslinked structure using an organic peroxide is also referred to as “P0 crosslinking”). Examples of the organic peroxide include dicumyl peroxide, jetyl peroxide, diethyl tert-butyl peroxide, diacetyl peroxide, and diacyl peroxide.
架橋剤の使用量は、 (A)、非水溶性マトリックスの前駆体成分 1 0 0質量部に 対して好ましくは 1 0質量部以下であり、 より好ましくは 0 . 1〜8質量部であ る。 この範囲の使用量とすることにより、 化学機械研磨工程においてスクラッチ の発生が抑制され、 力、つ研磨速度の高い化学機械研磨パッドを得ることができる。 The amount of the crosslinking agent used is preferably (A), 10 parts by mass or less, more preferably 0.1 to 8 parts by mass with respect to 100 parts by mass of the water-insoluble matrix precursor component. . By using the amount within this range, the generation of scratches in the chemical mechanical polishing process can be suppressed, and a chemical mechanical polishing pad with high strength and high polishing speed can be obtained.
<研磨層形成用組成物の調製方法 > <Method for preparing polishing layer forming composition>
本発明で使用される研磨層形成用組成物を得る方法は特に限定されない。 例え ば、 上記の各成分を混練機等を用いて公知の方法により混練して得ることができ る。 混練機としては従来より公知のものを用いることができる。 例えばロール、 ニーダー、 バンバリ一ミキサー、 押出機 (単軸、 多軸) 等の混練機を挙げること
ができる。 混練の際の温度は、 使用する成分の種類により適宜に設定するべきで あるが、 例えば 7 0〜1 5 0でであることが好ましい。 The method for obtaining the polishing layer forming composition used in the present invention is not particularly limited. For example, the above components can be obtained by kneading by a known method using a kneader or the like. A conventionally known kneader can be used. For example, kneading machines such as rolls, kneaders, Banbury mixers, extruders (single screw, multi screw) Can do. The temperature at the time of kneading should be appropriately set depending on the type of components used, but is preferably 70 to 150, for example.
<化学機械研磨パッドの研磨層の形成方法〉 <Method for forming polishing layer of chemical mechanical polishing pad>
本発明の化学機械研磨パッドの研磨層は、 上記の如き組成物から製造される。 上記の組成物を適当な温度および圧力下で所望の形状に成型することにより、 The polishing layer of the chemical mechanical polishing pad of the present invention is produced from the composition as described above. By molding the above composition into the desired shape under the appropriate temperature and pressure,
(A) 非水溶性マトリックスの前駆体成分は非水溶性マトリックスを形成し、 そ の中に (B) 水溶性物質が分散した研磨層を得ることができる。 (A) The precursor component of the water-insoluble matrix forms a water-insoluble matrix, and (B) a polishing layer in which the water-soluble substance is dispersed can be obtained.
本発明の化学機械研磨パッドの研磨層は、 架橋構造を有していることが好まし レ^ 研磨パッドの研磨層が架橋構造を有することにより、 上記 (A) 非水溶性マ トリックスの前駆体成分から形成された非水溶性マトリックスが適度の弾性回復 力を有することとなり、 研磨時に化学機械研磨パッドにかかるずり応力による変 位を小さく抑えることができ、 また、 研磨時およびドレッシング時に非水溶性マ 卜リックスが過度に引き延ばされ塑性変形してポアが埋まることや、 研磨層の表 面が過度に毛羽立つこと等を効果的に抑制できる。 したがって、 ドレッシング時 にもポアが効率よく形成され、 研磨時のスラリーの保持性の低下が防止でき、 毛 羽立ちが少なく優れた研磨平坦性を実現することができることとなり、 好ましレ^ 架橋構造の形成方法としては、 特に限定されない。 The polishing layer of the chemical mechanical polishing pad of the present invention preferably has a crosslinked structure. The polishing layer of the polishing pad has a crosslinked structure, whereby (A) a precursor of a water-insoluble matrix. The water-insoluble matrix formed from the ingredients has an appropriate elastic recovery force, so that the displacement due to the shear stress applied to the chemical mechanical polishing pad during polishing can be kept small, and the water-insoluble matrix during polishing and dressing. It is possible to effectively suppress the matrix from being excessively stretched and plastically deformed to fill the pores, and the surface of the polishing layer from becoming excessively fuzzy. Therefore, pores are efficiently formed even during dressing, the retention of the slurry during polishing can be prevented from decreasing, and excellent polishing flatness can be realized with less fuzzing. The forming method is not particularly limited.
本発明に使用される研磨層形成用組成物が上記架橋剤を含有しないものである 場合には例えば電子線照射による電子線架橋によることができ、 上記架橋剤を含 有するものである場合には例えば電子線架橋のほか加熱による架橋を行うことが できる。 When the composition for forming a polishing layer used in the present invention does not contain the crosslinking agent, it can be, for example, electron beam crosslinking by electron beam irradiation, and when the composition contains the crosslinking agent. For example, in addition to electron beam crosslinking, crosslinking by heating can be performed.
架橋構造の形成を電子線照射により行う場合には、 上記組成物を好ましくは 1 0 0〜1 7 0での温度において好ましくは 5〜 5 0 M P aの圧力下で所望の形状 の成型体とし、 これに電子線照射を行なうことにより、 架橋構造を有する研磨層 を得ることができる。 When the crosslinked structure is formed by electron beam irradiation, the above composition is preferably formed into a molded body having a desired shape at a temperature of 100 to 170, preferably under a pressure of 5 to 50 MPa. A polishing layer having a crosslinked structure can be obtained by irradiating it with an electron beam.
前記成型体に対して電子線を照射する工程において、 電子線の照射量は 1 0〜 4 0 0 k G y (G y :グレイ、 J Z k g ) の範囲であること力好ましく、 より好
ましくは 25〜 300 kGyでり、 さらに好ましくは 50〜200 kGyである。 電子線の照射量が 10 kGy未満では電子線によるラジカル発生が不十分のため 架橋度が過度に小さいため好ましくない。 400 kGyを超えると研磨層におい て分子切断が生じ、 得られる研磨層の機械的強度の低下が生じるため好ましくな レ^ In the step of irradiating the molded body with an electron beam, the amount of electron beam irradiation is preferably in the range of 10 to 400 kGy (Gy: gray, JZ kg), and more preferably. It is preferably 25 to 300 kGy, more preferably 50 to 200 kGy. When the electron beam irradiation dose is less than 10 kGy, radical generation by the electron beam is insufficient and the degree of crosslinking is excessively small, which is not preferable. If it exceeds 400 kGy, molecular cutting occurs in the polishing layer, resulting in a decrease in mechanical strength of the resulting polishing layer.
前記成型体に対して電子線を照射する工程において、 電子線の加速電圧は 0. 5〜 3 MVの範囲であること力好ましく、 より好ましくは 0. 7〜2. 0MVで あり、 さらに好ましくは 0. 8〜1. 5MV、 最も好ましくは 0. 9〜1. 2M Vである。 照射電圧が 0. 5 MV未満では成型体の表層部で捕獲吸収される電子 の割合が相対的に多くなり、 研磨層内部における架橋が不十分となるため好まし くなく、 一方、 3MVを超えると成型体の発熱が大きくなり、 成型体を構成する 材料の変質が発生するとともに、 分子切断が起こり、 得られる研磨層の機械的強 度の低下が生じるため好ましくない。 In the step of irradiating the molded body with an electron beam, the acceleration voltage of the electron beam is preferably in the range of 0.5 to 3 MV, more preferably 0.7 to 2.0 MV, and still more preferably. 0.8 to 1.5 MV, most preferably 0.9 to 1.2 MV. If the irradiation voltage is less than 0.5 MV, the proportion of electrons captured and absorbed in the surface layer of the molded body is relatively high, and this is not preferable because crosslinking within the polishing layer becomes insufficient. On the other hand, it exceeds 3 MV. This is not preferable because the heat generation of the molded body is increased, the material constituting the molded body is altered, the molecular cutting occurs, and the mechanical strength of the resulting polishing layer is lowered.
ここで、 電子線の加速電圧は、 前記成型体に対する透過性により適切に設定さ れることが好ましい。 電子線の透過の程度は、 成型体の厚みおよび電子線の運動 エネルギーに依存する。 その照射厚みに従って厚み方向に均一に透過可能に電子 線の照射条件を調節することにより、 厚み方向で架橋度が均一である成型体とす ることができ、 好ましい。 また、 その照射厚みに従って厚み方向に不均一に透過 するように電子線の照射条件を調節すると、 適度に厚み方向で架橋度が異なる研 磨層を得ることができる。 Here, it is preferable that the acceleration voltage of the electron beam is appropriately set depending on the permeability to the molded body. The degree of transmission of the electron beam depends on the thickness of the molded body and the kinetic energy of the electron beam. By adjusting the irradiation conditions of the electron beam so that it can be transmitted uniformly in the thickness direction according to the irradiation thickness, it is possible to obtain a molded body having a uniform degree of crosslinking in the thickness direction. Further, by adjusting the irradiation condition of the electron beam so as to transmit unevenly in the thickness direction according to the irradiation thickness, it is possible to obtain polished layers having moderately different degrees of crosslinking in the thickness direction.
加速電圧は、 例えば概略以下のようにして設定されることが好ましい。 For example, the acceleration voltage is preferably set as follows.
例えば成型体の比重が 1である場合、 成型体の厚みが 2 mm未満であれば、 電 子線の加速電圧は好ましくは 0. 5MV以上、 さらに好ましくは 0. 8MV以上 である。 成型体の厚みが 2 mm以上 3 mm未満であれば、 加速電圧は好ましくは 0. 8 MV以上であり、 さらに好ましくは 1MV以上である。 また、 厚み 3 mm 以上 4 mm未満の場合、 加速電圧は好ましくは 1. 2MV以上、 さらに好ましく は 1. 5 MV以上である。 厚み 4〜 5 mmの場合、 加速電圧は好ましくは 1. 7 MV以上、 さらに好ましくは 2 MV以上である。 成型体の厚みに対して加速電圧
が低すぎる場合には、 電子線が厚み方向に貫通せずに十分な電子線照射効果が期 待できない。 厚みに対して必要な加速電圧は成型品の比重に比例する。 従って、 例えば成型体の比重が 0 . 8の場合に必要な加速電圧は比重が 1の場合の加速電 圧の 0 . 8倍である。 For example, when the specific gravity of the molded body is 1, if the thickness of the molded body is less than 2 mm, the acceleration voltage of the electron beam is preferably 0.5 MV or more, more preferably 0.8 MV or more. If the thickness of the molded body is 2 mm or more and less than 3 mm, the acceleration voltage is preferably 0.8 MV or more, more preferably 1 MV or more. When the thickness is 3 mm or more and less than 4 mm, the acceleration voltage is preferably 1.2 MV or more, more preferably 1.5 MV or more. When the thickness is 4 to 5 mm, the acceleration voltage is preferably 1.7 MV or more, more preferably 2 MV or more. Accelerating voltage against the thickness of the molded body If it is too low, the electron beam does not penetrate in the thickness direction, and a sufficient electron beam irradiation effect cannot be expected. The acceleration voltage required for the thickness is proportional to the specific gravity of the molded product. Therefore, for example, the acceleration voltage required when the specific gravity of the molded body is 0.8 is 0.8 times the acceleration voltage when the specific gravity is 1.
一方、 架橋構造の形成を熱により行う場合には、 上記架橋剤を含有する組成物 を好ましくは 1 5 0〜1 9 0 の温度において好ましくは 5〜 5 0 P aの圧力下 で所望の形状に成型することにより、 架橋構造を有する研磨層を得ることができ る。 On the other hand, when the cross-linked structure is formed by heat, the composition containing the cross-linking agent is preferably formed into a desired shape at a temperature of 1550 to 190, preferably under a pressure of 5 to 50 Pa. By molding into a polishing layer, a polishing layer having a crosslinked structure can be obtained.
上記のようにして得られる研磨層の形状としては、 例えば円盤状 (円柱状)、 多角柱状等であることができ、 円盤状であること力好ましい。 The shape of the polishing layer obtained as described above can be, for example, a disc shape (columnar shape), a polygonal column shape, etc., and a disc shape is preferable.
研磨層の大きさとしては、 例えば円盤状である場合、 その研磨面 (円柱の一方 の底面) の直径が例えば 1 5 0〜1 , 2 0 0 mmであることができ、 特に 5 0 0 〜8 2 0 mmであることができる。 研磨パッドの厚みとしては、 例えば 0. 5〜 5. 0 mmであることができ、 特に 1 . 0〜3 . 0 mm、 就中 1 . 5〜3. 0 m mであることができる。 As the size of the polishing layer, for example, in the case of a disk shape, the diameter of the polishing surface (one bottom surface of the cylinder) can be, for example, 1550 to 1,200 mm, and in particular, 500 to It can be 8 20 mm. The thickness of the polishing pad can be, for example, 0.5 to 5.0 mm, particularly 1.0 to 3.0 mm, and in particular 1.5 to 3.0 mm.
また、 上記研磨層は、 その研磨面またはその裏面に適当な凹部を有することが できる。 凹部の形状としては、 同心円状の溝、 放射状の溝、 円形の凹部および多 角形の凹部ならびにこれらの組み合わせ等を挙げることができる。 ぐ化学機械研磨パッド〉 Further, the polishing layer can have an appropriate recess on the polishing surface or the back surface thereof. Examples of the shape of the recess include concentric grooves, radial grooves, circular recesses, polygonal recesses, and combinations thereof. Chemical mechanical polishing pad>
本発明の化学機械研磨パッドは、 上記の如くして形成された研磨層を有する。 本発明の化学機械研磨パッドは、 上記の如き研磨層のみからなる単層の研磨パ ッドであることができ、 あるいは上記の如き研磨層の裏面側に支持層を備える多 層型パッドであることができる。 The chemical mechanical polishing pad of the present invention has a polishing layer formed as described above. The chemical mechanical polishing pad of the present invention can be a single-layer polishing pad consisting only of the polishing layer as described above, or is a multilayer pad provided with a support layer on the back side of the polishing layer as described above. be able to.
上記支持層は、 化学機械研磨パッドを研磨面の裏面側で支える層である。 この 支持層の特性は特に限定されないが、 研磨層に比べてより軟質であることが好ま しい。 より軟質な支持層を備えることにより、 研磨層の厚みが薄い場合であって も、 研磨時に研磨パッド力浮き上がることや、 研磨層の表面が湾曲すること等を
防止でき、 安定して研磨を行うことができる。 The support layer is a layer that supports the chemical mechanical polishing pad on the back side of the polishing surface. The characteristics of the support layer are not particularly limited, but are preferably softer than the polishing layer. By providing a softer support layer, even when the thickness of the polishing layer is thin, the polishing pad force rises during polishing, and the surface of the polishing layer is curved. Can be prevented and stable polishing can be performed.
支持層の平面形状は、 研磨層の平面形状と同じ平面形状であり、 かつ同じ大き さであることが好ましい。 支持層の厚みとしては、 0. 1〜 5mmであることが 好ましく、 0. 2〜2. Ommとすることがより好ましい。 The planar shape of the support layer is preferably the same planar shape as the planar shape of the polishing layer and the same size. The thickness of the support layer is preferably 0.1 to 5 mm, and more preferably 0.2 to 2 Omm.
<化学機械研磨方法 > <Chemical mechanical polishing method>
本発明の化学機械研磨方法は、 上記の如き本発明の化学機械研磨パッドを用い て被研磨物を化学機械研磨するものである。 The chemical mechanical polishing method of the present invention is for chemically mechanically polishing an object to be polished using the chemical mechanical polishing pad of the present invention as described above.
上記の如き本発明の研磨パッドは、 市販の化学機械研磨装置に装着して、 適当 な化学機械研磨用水系分散体を用いて、 公知の方法に準じて化学機械研磨工程に 供することができる。 The polishing pad of the present invention as described above can be attached to a commercially available chemical mechanical polishing apparatus and subjected to a chemical mechanical polishing step according to a known method using an appropriate chemical mechanical polishing aqueous dispersion.
被研磨面を構成する材料としては、 配線材料たる金属、 バリアメタルおよび絶 縁体ならびにこれらの組み合わせからなる材料を挙げることができる。 前記配線 材料たる金属としては、 例えば夕ングクテン、 アルミニウム、 銅およびこれらの うちの少なくとも一種を含有する合金等を挙げることができる。 前記バリアメタ ルとしては、 タンタル、 窒化タンタル、 ニオブ、 窒化ニオブ等を挙げることがで きる。' 前記絶縁体としては、 例えば S i〇2 、 S i〇2 に少量のホウ素およびリ ンを添加したホウ素リンシリケ一ト (BPSG)、 S i〇2 にフッ素をドープし た F SG (F 1 u o r i n e— Do ρ e d S i l i c a t e G l a s s) と 呼ばれる絶縁体、 および低誘電率の酸化シリコン系絶縁体等を挙げることができ る。 S i〇2 としては、 例えば熱酸化膜、 PETEOS (P 1 a sma Enh an c e d-TEOS), HDP (H i gh De n s i t y P l a sma Enhanc e d— TE〇S)、 熱 C VD法により得られる S i 02等を挙げる ことができる。 実施例 Examples of the material that constitutes the surface to be polished include a metal that is a wiring material, a barrier metal, an insulator, and a material that is a combination thereof. Examples of the metal as the wiring material include evening kutten, aluminum, copper, and an alloy containing at least one of them. Examples of the barrier metal include tantalum, tantalum nitride, niobium, and niobium nitride. 'As the insulator, for example, S I_〇 2, S I_〇 small amounts of boron and Li down added boron Rinshirike one bets to 2 (BPSG), F and fluorine-doped S I_〇 2 SG (F 1 uorine—Do ρ ed Silicate Glass) and low-dielectric constant silicon oxide insulators. The S I_〇 2 obtained, for example, a thermal oxide film, PETEOS (P 1 a sma Enh an ce d-TEOS), HDP (H i gh De nsity P la sma Enhanc ed- TE_〇_S), by a thermal C VD method S i 0 2 can be mentioned. Example
以下、 実施例により、 本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
実施例 1
(A) 非水溶性マトリックスの前駆体成分として共重合体 (A-1) であるァ クリル酸一エチレン共重合体 (商品名 「レクスパール A210K:」、 日本ポリェ チレン (株) 製、 アクリル酸 7質量%ぉよびエチレン 93質量%のランダム共重 合体である。) 100質量部および (B) 水溶性物質として j6—シクロデキスト リン (商品名 「デキシパール) 6— 100」、 塩水港精糖 (株) 製、 平均粒径 15 urn) 38質量部を 140でに調温された二軸押出機にて混練することにより、 研磨層形成用組成物のペレツトを得た。 Example 1 (A) Acrylic acid monoethylene copolymer (trade name “Lexpearl A210K:”, manufactured by Nippon Polyethylene Co., Ltd.), acrylic acid as copolymer (A-1) as a precursor component of water-insoluble matrix (Random copolymer of 7% by mass and 93% by mass of ethylene.) 100 parts by mass and (B) j6-cyclodextrin (trade name “Dexipal) 6-100” as a water-soluble substance, The average particle size was 15 urn) 38 parts by mass were kneaded with a twin screw extruder adjusted to 140 to obtain a pellet of the polishing layer forming composition.
このペレツ卜を金型内で 140 に加熱して可塑化した後、 金型内の温度を 3 0でに冷却して固化させることにより、 直径 840mm、 厚み 3. 5mmの円盤 状のシート状の成型体を作成した。 After heating this pellets to 140 in the mold and plasticizing it, the temperature in the mold is cooled to 30 and solidified to form a disk-shaped sheet with a diameter of 840 mm and a thickness of 3.5 mm. A molded body was created.
次いでこのシート状成型体を、 スキャン方式の電子線照射装置 ((株) NHV コーポレーション製、 型式 「EPS— 3000」) にセットして常温'常圧下で、 電圧 1MV、 電子線量 25 kGyの条件下で 8パスさせて電子線照射による電子 線架橋を行った。 その後、 ワイドベルトサンダーを用いて電子線架橋されたシ一 ト状成型体の厚み調整を行い、 厚み 2. 5 mmとした。 Next, this sheet-like molded product was set in a scanning electron beam irradiation device (model “EPS-3000”, manufactured by NHV Corporation), at room temperature and normal pressure, with a voltage of 1 MV and an electron dose of 25 kGy. The electron beam was cross-linked by electron beam irradiation after 8 passes. Thereafter, the thickness of the electron beam-cross-linked sheet-like molded body was adjusted using a wide belt sander to a thickness of 2.5 mm.
さらに、 厚み調製後のシート状成型体につき、 (株) 加藤機械製の溝加工機を 用いて、 幅 0. 5mm、 深さ 1. 0mm、 ピッチ 1. 5 mmの同心円状の溝 (溝 の断面形状は矩形である。) を切削加工により形成し、 研磨面に溝を有する研磨 層を作製した。 Furthermore, for the sheet-like molded body after thickness adjustment, using a groove processing machine manufactured by Kato Machine Co., Ltd., concentric grooves (width of 0.5 mm, depth of 1.0 mm, pitch of 1.5 mm) The cross-sectional shape is rectangular.) Was formed by cutting, and a polishing layer having grooves on the polished surface was produced.
この研磨層を単層の化学機械研磨パッドとして用いて、 以下のように化学機械 研磨を行い、 その研磨性能を評価した。 Using this polishing layer as a single-layer chemical mechanical polishing pad, chemical mechanical polishing was performed as follows, and the polishing performance was evaluated.
[化学機械研磨] [Chemical mechanical polishing]
上記化学機械研磨パッドの溝を加工していない面へ 3 M社製両面テープ #42 2をラミネートした後、 アプライドマテリアル社製の化学機械研磨装置 「Ap p l i ed Re f l ex i on」 に装着し、 片面表面に C u膜 (膜厚 1, 500 nm) を有する 12インチのシリコンウェハを被研磨物として、 以下の条件にて C u膜の化学機械研磨を行った。
定盤回転数: 120 r pm After laminating 3 M double-sided tape # 42 2 to the unmachined surface of the chemical mechanical polishing pad, attach it to the Applied Materials Chemical Mechanical Polishing Device “Ap plied Re fl ex i on”. Using a 12-inch silicon wafer having a Cu film (thickness 1,500 nm) on one surface, the Cu film was subjected to chemical mechanical polishing under the following conditions. Plate rotation speed: 120 rpm
研磨へッド回転数: 100 r pm Polishing head rotation speed: 100 rpm
研磨圧力: RP/Z o n e 1ZZ on e 2ZZ o n e 3 = 7. 5X6. 0/3. 0/3. 5 [p s i ] Polishing pressure: RP / Zone 1ZZ on e2ZZone 3 = 7.5X6. 0/3. 0/3. 5 [p s i]
研磨機械研磨用水系分散体: CMS 7401、 CMS 7452 (ともに J S R (株) 製) および水の 1 : 1 : 6 (質量比) 混合物 Aqueous dispersion for polishing machine polishing: CMS 7401, CMS 7452 (both made by JSR Corporation) and water 1: 1: 6 (mass ratio) mixture
水系分散体供給速度: 30 OmLZ分 Aqueous dispersion feed rate: 30 OmLZ min
研磨時間: 1分 Polishing time: 1 minute
[研磨速度および研磨量の面内均一性の評価] [Evaluation of in-plane uniformity of polishing rate and polishing amount]
研磨後のウェハの被研磨面の直径方向に、 両端からそれぞれ 5 mmの範囲を除 いて均等に 33点の特定点を設定し、 これら特定点について化学機械研磨前後の Cu膜の厚みを測定した。 この測定結果から、 下記式により、 研磨速度および研 磨量の面内均一性を計算した。 33 specific points were set evenly in the diameter direction of the polished surface of the wafer after polishing, excluding the range of 5 mm from both ends, and the thickness of the Cu film before and after chemical mechanical polishing was measured at these specific points. . From this measurement result, the in-plane uniformity of the polishing rate and the polishing amount was calculated by the following formula.
研磨量 = 研磨前の Cu膜厚一研磨後の Cu膜厚 Polishing amount = Cu film thickness before polishing-Cu film thickness after polishing
研磨速度 = 研磨量の平均値/研磨時間 Polishing rate = average polishing amount / polishing time
研磨量の面内均一性 (%) = (研磨量の標準偏差 ÷研磨量の平均値) X 100 In-plane uniformity of polishing amount (%) = (Standard deviation of polishing amount ÷ Average value of polishing amount) X 100
[スクラッチ数の評価] [Evaluation of number of scratches]
研磨後のウェハの被研磨面につき、 ケーエルエー 'テンコール社製 「サーフス キャン SP 1」 を用いて被研磨面全面あたりのスクラッチ数を計測した。 For the polished surface of the wafer after polishing, the number of scratches on the entire surface to be polished was measured using “Surfscan SP 1” manufactured by KLA-Tencor Corporation.
以上の評価結果を第 2表に示した。 実施例 2 The above evaluation results are shown in Table 2. Example 2
(A) 非水溶性マトリックスの前駆体成分として、 共重合体 (A— 1) である アクリル酸一エチレン ランダム共重合体 「レクスパール A210K」 60質量 部および他の重合体 (Α— 2) である 1, 2—ポリブタジエン (熱可塑性樹脂、
商品名 「RB 830」、 J SR (株) 製) 40質量部を用いたほかは実施利 1と 同様にして研磨層を作製した。 この研磨層を単層の化学機械研磨パッドとして用 いて実施例 1と同様にしてその研磨性能を言鞭した。 評価結果は第 2表に示した。 実施例 3 (A) As a precursor component of a water-insoluble matrix, 60 parts by mass of copolymer (A-1), an ethylene acrylate random copolymer “Lexpearl A210K” and other polymers (Α-2) 1,2-polybutadiene (thermoplastic resin, Product name “RB 830” (manufactured by JSR Co., Ltd.) A polishing layer was prepared in the same manner as in Practical 1 except that 40 parts by mass was used. Using this polishing layer as a single-layer chemical mechanical polishing pad, the polishing performance was stated in the same manner as in Example 1. The evaluation results are shown in Table 2. Example 3
(A) 非水溶性マトリックスの前駆体成分として使用した共重合体 (A-1) の種類および量ならびに (B) 水溶性物質の種類および量を、 それぞれ第 1表に 記載のとおりとしたほかは実施例 1と同様にして研磨層を作製し、 これを単層の 化学機械研磨パッドとして用いてその研磨性能を評価した。 評価結果は第 2表に 示した。 実施例 4 (A) The type and amount of the copolymer (A-1) used as the precursor component of the water-insoluble matrix and (B) the type and amount of the water-soluble substance are as shown in Table 1. Prepared a polishing layer in the same manner as in Example 1, and evaluated the polishing performance by using this as a single-layer chemical mechanical polishing pad. The evaluation results are shown in Table 2. Example 4
(A) 非水溶性マトリックスの前駆体成分として共重合体 (A—1) であるァ クリル酸—エチレン ランダム共重合体 「レクス ール A 210K」 90質量部 および多官能性化合物 (Α— 3) であるトリァリルイソシァヌレート 「ΤΑΙ C」 (日本化成 (株) 製) 10質量部と、 (B) 水溶性物質として) 8—シクロデキ ストリン 「デキシパール3— 100」 1質量部とを、 140でに調温された二軸 押出機にて混練することにより、 研磨層形成用組成物のペレツトを得た。 (A) 90 parts by mass of a copolymer (A-1) acrylic acid-ethylene random copolymer “Lexel A 210K” as a precursor component of a water-insoluble matrix and a polyfunctional compound (化合物 -3 10 parts by mass of triaryl isocyanurate “ΤΑΙ C” (manufactured by Nippon Kasei Co., Ltd.) and 1 part by mass of (B) water-soluble substance) 8-cyclodextrin “Dexipar 3-100” The pellets of the composition for forming the polishing layer were obtained by kneading with a twin-screw extruder adjusted in temperature.
このペレツトを用いたほかは実施例 1と同様にして研磨層を作製し、 これを単 層の化学機械研磨パッドとして用いてその研磨性能を評価した。 評価結果は第 2 表に示した。 実施例 5 A polishing layer was prepared in the same manner as in Example 1 except that this pellet was used, and this was used as a single-layer chemical mechanical polishing pad to evaluate its polishing performance. The evaluation results are shown in Table 2. Example 5
(A) 非水溶性マトリックスの前駆体成分として、 共重合体 (A— 1) である メ夕クリル酸一エチレン共重合体 (商品名 「AN4225C」、 三井デュポンポ リケミカル (株) 製、 メ夕クリル酸 5質量%ぉよびエチレンが 95質量%のラン ダム共重合体である。) 70質量部、 他の重合体 (A— 2) であるスチレンーブ 夕ジェン共重合体 (商品名 「TR 2827」、 J SR (株) 製) 27質量部およ
び多官能性化合物 (A—3 ) であるトリァリルイソシァヌレート 「TA I C」 3 質量部と、 (B) 水溶性物質として ]8—シクロデキストリン 「デキシパール |8— 1 0 0」 8質量部とを、 1 2 0でに加熱された二一ダ一にて混練した。 その後、 有機過酸化物として 「パークミル D 4 0」 (商品名、 日本油脂 (株) 製、 過酸化 ジクミルを 4 0質量%含有する。) 1質量部 (純品の過酸化ジクミルに換算して 0 . 4質量部に相当する。) を添加し、 さらに混練した後、 金型内にて 1 7 0 で 1 8分間、 加熱による架橋反応 (P〇架橋) を行なって成型し、 直径 8 4 0 m、 厚み 3. 5 mmの円盤状のシート状成型体を得た。 (A) As a precursor component of a water-insoluble matrix, a copolymer (A-1), methacrylic acid monoethylene copolymer (trade name “AN4225C”, manufactured by Mitsui DuPont Polychemical Co., Ltd. This is a random copolymer of 5% by weight of acid and 95% by weight of ethylene.) 70 parts by weight, styrene-butadiene copolymer (trade name “TR 2827”, which is another polymer (A-2), J SR Co., Ltd.) 27 parts by mass And polyfunctional compound (A-3) Triaryl isocyanurate “TA IC” 3 parts by mass, and (B) As a water-soluble substance] 8-cyclodextrin “Dexipar | 8— 1 0 0” 8 parts by mass Were kneaded in a heater heated at 120. Then, as an organic peroxide, “Park Mill D 40” (trade name, manufactured by NOF Corporation, containing 40% by mass of dicumyl peroxide.) 1 part by mass (converted to pure dicumyl peroxide) 0.4 parts by mass) was added, kneaded, and then molded by carrying out a crosslinking reaction by heating (P0 crosslinking) at 1700 for 18 minutes in a mold. A disk-shaped sheet-like molded body having a thickness of 0 m and a thickness of 3.5 mm was obtained.
このシート状成型体を用いたほかは実施例 1と同様にして研磨層を作製し、 こ れを単層の化学機械研磨パッドとして用いてその研磨性能を評価した。 評価結果 は第 2表に示した。 実施例 6〜 7および 9〜1 2 A polishing layer was prepared in the same manner as in Example 1 except that this sheet-like molded body was used, and this was used as a single-layer chemical mechanical polishing pad to evaluate its polishing performance. The evaluation results are shown in Table 2. Examples 6-7 and 9-12
(A) 非水溶性マトリックスの前駆体成分として使用した各単位成分の種類お よび量ならびに (B) 水溶性物質の種類および量を、 それぞれ第 1表に記載のと おりとしたほかは実施例 1と同様にして研磨層を作製し、 これを単層の化学機械 研磨パッドとして用いてその研磨性能を評価した。 評価結果は第 2表に示した。 . なお、 実施例 9において (B) 水溶性物質として使用したポリエチレンォキシ ドは、 得られた研磨層中で平均粒径 7 mの粒子状で存在していた。 実施例 8、 1 3および 1 4 (A) Examples and amounts of each unit component used as a precursor component of a water-insoluble matrix, and (B) Types and amounts of water-soluble substances were as described in Table 1, respectively. A polishing layer was prepared in the same manner as in 1, and the polishing performance was evaluated using this as a single-layer chemical mechanical polishing pad. The evaluation results are shown in Table 2. In Example 9, (B) The polyethylene oxide used as the water-soluble substance was present in the obtained polishing layer in the form of particles having an average particle diameter of 7 m. Examples 8, 1 3 and 1 4
(A) 非水溶性マトリックスの前駆体成分として使用した各単位成分の種類お よび量、 (B ) 水溶性物質の種類および量ならびに架橋剤の種類および量を、 そ れぞれ第 1表に記載のとおりとしたほかは実施例 5と同様にして研磨層を作製し、 これを単層の化学機械研磨パッドとして用いてその研磨性能を評価した。 評価結 果は第 2表に示した。 比較例
非水溶性マトリックスの前駆体成分としてグラフ卜共重合体である無水マレイ ン酸変性スチレン一ブタジエン一スチレンブロック共重合体の水素添加物 (商品 名 「タフテック 191 1」、 旭化成 (株) 製、 酸価; 2mg CH3ONa/g 、 2. 07mg KOHZgに相当) 20質量部および 1, 2—ポリブタジエン 「RB 830」 80質量部、 水溶性物質として )8—シクロデキストリン 「デキシ パール) 8— 100」 38質量部を用いたほかは実施例 5と同様にして研磨層を作 製し、 これを単層の化学機械研磨パッドとして用いてその研磨性能を^ Kした。 評価結果は第 2表に示した。 比較例 2 (A) The type and amount of each unit component used as the precursor component of the water-insoluble matrix, (B) The type and amount of the water-soluble substance and the type and amount of the crosslinking agent are shown in Table 1. A polishing layer was prepared in the same manner as in Example 5 except that it was as described, and this was used as a single-layer chemical mechanical polishing pad to evaluate its polishing performance. The evaluation results are shown in Table 2. Comparative example Hydrogenated product of maleic anhydride-modified styrene-butadiene-styrene block copolymer (trade name “Tuftec 191 1”, manufactured by Asahi Kasei Co., Ltd.) as a precursor component of the water-insoluble matrix Value: 2 mg CH 3 ONa / g, equivalent to 2. 07 mg KOHZg) 20 parts by mass and 1,2-polybutadiene “RB 830” 80 parts by mass as a water-soluble substance) 8-cyclodextrin “Dexic Pearl” 8-100 A polishing layer was prepared in the same manner as in Example 5 except that 38 parts by mass was used, and this was used as a single-layer chemical mechanical polishing pad to improve its polishing performance. The evaluation results are shown in Table 2. Comparative Example 2
非水溶性マトリックスの前駆体成分として使用した各単位成分の種類および量 ならびに水溶性物質の種類および量を、 それぞれ第 1表に記載のとおりとしたほ かは実施例 1と同様にして研磨層を作製し、 これを単層の化学機械研磨パッドと して用いてその研磨性能を評価した。 評価結果は第 2表に示した。 比較例 3〜 5 The type and amount of each unit component used as the precursor component of the water-insoluble matrix and the type and amount of the water-soluble substance were as shown in Table 1, respectively. This was used as a single-layer chemical mechanical polishing pad to evaluate its polishing performance. The evaluation results are shown in Table 2. Comparative Examples 3-5
非水溶性マトリックスの前駆体成分として使用した各単位成分の種類および量 ならびに水溶性物質の種類および量を、 それぞれ第 1表に記載のとおりとしたほ かは実施例 5と同様にして研磨層を作製し、 これを単層の化学機械研磨パッドと して用いてその研磨性能を評価した。 評価結果は第 2表に示した。
The type and amount of each unit component used as the precursor component of the water-insoluble matrix and the type and amount of the water-soluble substance were as shown in Table 1, respectively. This was used as a single-layer chemical mechanical polishing pad to evaluate its polishing performance. The evaluation results are shown in Table 2.
第 1表 Table 1
(A) 非水溶性マ卜リックス前駆体成分 (A) Water-insoluble matrix precursor component
多官能性化合物 (B) 水溶住物資 架橋剤 Multifunctional compound (B) Water-soluble dwelling materials Cross-linking agent
共重合体 (A - 1) 他の重合体 (A-2) 架橋構造 Copolymer (A-1) Other polymer (A-2) Cross-linked structure
(A-3) 形成方法 種類 種類 種類 種類 種類 (A-3) Forming method Type Type Type Type Type
(質量部) (質量部) (質量部) (質量部) (質量部) 実施例 1 A210K 100 ― 0 ― 0 i8- CD 38 ― 0 電子線 実施例 2 A210K 60 RB830 40 ― 0 CD 38 ― 0 電子線 実施例 3 N0200H 100 ― 0 ― 0 )3 -CD 8 ― 0 電子線 実施例 4 A210K 90 ― 0 TAIC 10 /S-CD 1 ― 0 電子線 実施例 5 A 4225C 70 TR2827 27 TAIC 3 /3-CD 8 PQD40 0. 4 PO 実施例 6 N2030 90 ― 0 TAIC 10 3 - CD 38 ― 0 電子線 実施例 7 A210K 95 ― 0 TMP 5 β-CD 10 1 ― 0 電子線 実施例 8 N1560 75 RB830 20 TAIC 5 /3-CD 65 PQD40 0. 4 PO 実施例 9 N1560 65 RB830 35 ― 0 PEO 7 ― 0 電子線 実施例 10 A210K 72 TR2827 23 TAIC 5 K2S04 225 ― 0 電子線 実施例 11 N1560 80 RB830 1 5 TAIC 5 iS-CD 3 ― 0 電子線 実施例 12 N1560 70 RB830 25 TAIC 5 K2S04 286 ― 0 電子線 実施例 13 A210K 95 ― 0 TAIC 5 K2S04 350 PQD40 0. 4 PO 実施例 14 N1560 60 RB830 40 ― 0 j8-CD 38 PQD40 1. 2 PO
(Mass part) (mass part) (mass part) (mass part) (mass part) Example 1 A210K 100 ― 0 ― 0 i8- CD 38 ― 0 Electron beam Example 2 A210K 60 RB830 40 ― 0 CD 38 ― 0 Electron beam Example 3 N0200H 100 ― 0 ― 0) 3 -CD 8 ― 0 Electron beam Example 4 A210K 90 ― 0 TAIC 10 / S-CD 1 ― 0 Electron beam Example 5 A 4225C 70 TR2827 27 TAIC 3/3 -CD 8 PQD40 0.4 P Example 6 N2030 90 ― 0 TAIC 10 3-CD 38 ― 0 Electron beam Example 7 A210K 95 ― 0 TMP 5 β-CD 10 1 ― 0 Electron beam Example 8 N1560 75 RB830 20 TAIC 5 / 3-CD 65 PQD40 0.4 P Example 9 N1560 65 RB830 35 ― 0 PEO 7 ― 0 Electron beam Example 10 A210K 72 TR2827 23 TAIC 5 K2S04 225 ― 0 Electron beam Example 11 N1560 80 RB830 1 5 TAIC 5 iS-CD 3 ― 0 Electron beam Example 12 N1560 70 RB830 25 TAIC 5 K2S04 286 ― 0 Electron beam Example 13 A210K 95 ― 0 TAIC 5 K2S04 350 PQD40 0.4.PO Example 14 N1560 60 RB830 40 ― 0 j8-CD 38 PQD40 1.2 PO
第 1表 (つづき) Table 1 (continued)
上記第 1表において、 各成分の略称はそれぞれ以下の意味である。 In Table 1 above, the abbreviations for each component have the following meanings.
<共重合体 (A— 1) > <Copolymer (A-1)>
A210K:アクリル酸一エチレン共重合体 (商品名 「レクスパール A 210 K:」、 日本ポリエチレン (株) 製、 アクリル酸 7質量%ぉよびエチレン 93質量 %のランダム共重合体である。) A210K: Ethylene acrylate copolymer (trade name “Lexpearl A 210 K:”, manufactured by Nippon Polyethylene Co., Ltd., a random copolymer of 7% by weight acrylic acid and 93% by weight ethylene)
NO 200H:メ夕クリル酸一エチレン共重合体 (商品名 「ニュクレル NO 2 00H」、 三井 ·デュポンポリケミカル (株) 製、 メ夕クリル酸 2質量%ぉよび エチレン 98質量%のランダム共重合体である。) NO 200H: Methacrylic acid monoethylene copolymer (trade name “Nuclelic NO 2 00H”, manufactured by Mitsui DuPont Polychemical Co., Ltd., random copolymer of 2% by weight methacrylic acid and 98% by weight of ethylene .)
AN4225 C:メ夕クリル酸一エチレン共重合体 (商品名 「AN4225C 」、 三井 ·デュポンポリケミカル (株) 製、 メ夕クリル酸 5質量%およびェチレ ン 95質量%のランダム共重合体である。) AN4225 C: Methacrylic acid monoethylene copolymer (trade name “AN4225C”, manufactured by Mitsui DuPont Polychemical Co., Ltd., random copolymer of 5% by weight of methyl acrylate and 95% by weight of ethylene. )
N 2030 H:メ夕クリル酸一エチレン共重合体 (商品名 「ニュクレル N 20 30H」、 三井 ·デュポンポリケミカル (株) 製、 メ夕クリル酸 20質量%およ びエチレン 80質量%のランダム共重合体である。) N 2030 H: Methacrylic acid monoethylene copolymer (trade name “Nucrel N 20 30H”, manufactured by Mitsui DuPont Polychemical Co., Ltd., random copolymer of 20% by weight of methyl methacrylate and 80% by weight of ethylene Polymer.)
N1560 :メタクリル酸—エチレン共重合体 (商品名 「ニュクレル N156 0」、 三井 ·デュポンポリケミカル (株) 製、 メ夕クリル酸 15質量%およびェ チレン 85質量%のランダム共重合体である。) N1560: Methacrylic acid-ethylene copolymer (trade name “Nucrel N156 0”, manufactured by Mitsui DuPont Polychemical Co., Ltd., a random copolymer of 15% by weight of methacrylic acid and 85% by weight of ethylene)
<他の重合体 (A-2) > <Other polymers (A-2)>
R B 830 : 1, 2 _ポリブタジエン (熱可塑性樹脂、 商品名 「R B 830」 、 J S R (株) 製) R B 830: 1, 2 _ polybutadiene (thermoplastic resin, trade name “R B 830”, manufactured by JSR Corporation)
TR 2827 :スチレン一ブタジエン ランダム共重合体 (商品名 「TR 28 27」、 J SR (株) 製) TR 2827: Random copolymer of styrene monobutadiene (trade name “TR 28 27”, manufactured by JSR Corporation)
TT1911 :無水マレイン酸変性スチレン一ブタジエン—スチレンブロック 共重合体の水素添加物 (グラフト共重合体、 商品名 「タフテック 191 1」、 旭 化成 (株) 製、 酸価; 2mg CH3〇Na/g、 2. 07mg KOHZgに 相当) TT1911: Maleic anhydride-modified styrene monobutadiene-styrene block copolymer hydrogenated product (graft copolymer, trade name “Tuftec 191 1”, manufactured by Asahi Kasei Co., Ltd., acid value: 2 mg CH 3 ○ Na / g 2. Equivalent to 07mg KOHZg)
PAA :ポリアクリル酸 (商品名 「アクアリック H」、 (株) 日本触媒製)
PE :ポリエチレン (商品名 「YF30」、 日本ポリエチレン (株) 製) 比較例 1、 2および 5では、 他の重合体 (A-2) としてそれぞれ 2種類の重 合体を併用した。 ぐ多官能性化合物 (A— 3) > PAA: Polyacrylic acid (trade name “AQUALIC H”, manufactured by Nippon Shokubai Co., Ltd.) PE: Polyethylene (trade name “YF30”, manufactured by Nippon Polyethylene Co., Ltd.) In Comparative Examples 1, 2, and 5, two types of polymers were used in combination as other polymers (A-2). Multifunctional compounds (A-3)>
TAI C : トリアリルイソシァネート (商品名 「TAI C」、 日本化成 (株) 製) TAI C: triallyl isocyanate (trade name “TAI C”, manufactured by Nippon Kasei Co., Ltd.)
TMP: 卜リメチロールプロパントリメ夕クリレート (商品名 「ァクリエステ ル TMP」、 三菱レイヨン (株) 製) TMP: Sakai Limethylol Propane Trimethyl (Product name “Acrylester TMP”, manufactured by Mitsubishi Rayon Co., Ltd.)
< (B) 水溶性物質 > <(B) Water-soluble substances>
i8— CD : )8—シクロデキストリン (商品名 「デキシパール — 100」、 塩 水港精糖 (株) 製、 平均粒径 15/zm) i8—CD:) 8-cyclodextrin (trade name “Dexipal — 100”, manufactured by Shimizu Minato Sugar Co., Ltd., average particle size 15 / zm)
PE〇:ポリエチレンォキシド (商品名 「アルコックス E30」、 明成化学ェ 業 (株) 製) PE ○: Polyethylene oxide (trade name “Alcox E30”, manufactured by Meisei Chemical Co., Ltd.)
K2 S04 :硫酸力リゥム (大塚化学 (株) 製、 平均粒径 50 zm) ぐ架橋剤 > K2 S04: Ryu sulfate (Otsuka Chemical Co., Ltd., average particle size 50 zm) Cross-linking agent>
PQD40 :パークミル D 40 (商品名、 日油 (株) 製、 過酸化ジクミルを 4 0質量%含有する。 第 1表においては、 純品の過酸化ジクミルに換算した値を示 した。)
PQD40: Park Mill D 40 (trade name, manufactured by NOF Corporation, containing 40% by mass of dicumyl peroxide. Table 1 shows values converted to pure dicumyl peroxide.)
第 2表 Table 2
評価結果 Evaluation results
研磨量の Polishing amount
研磨速度 スクラッチ 面内均一性 Polishing speed Scratch In-plane uniformity
(nmZ分) (個/ゥェ八) (for nmZ) (pieces / we eight)
( ) ()
実施例 1 730 2. 8 32 実施例 2 830 3. 2 45 実施例 3 650 5. 8 57 実施例 4 780 2. 9 43 実施例 5 770 3. 5 28 実施例 6 810 3. 3 44 実施例 7 780 2. 9 26 実施例 8 840 2. 6 18 実施例 9 820 2. 8 35 実施例 10 760 3. 5 28 実施例 1 1 770 2. 9 38 実施例 12 790 4. 4 24 実施例 13 630 5. 5 45 実施例 14 750 3. 8 28 比較例 1 580 6. 8 130 比較例 2 ' 420 8. 3 65 比較例 3 620 4. 5 82 比較例 4 570 4. 8 58 比較例 5 . 380 9. 8 75
Example 1 730 2. 8 32 Example 2 830 3. 2 45 Example 3 650 5. 8 57 Example 4 780 2. 9 43 Example 5 770 3. 5 28 Example 6 810 3. 3 44 Example 7 780 2. 9 26 Example 8 840 2. 6 18 Example 9 820 2. 8 35 Example 10 760 3. 5 28 Example 1 1 770 2. 9 38 Example 12 790 4. 4 24 Example 13 630 5. 5 45 Example 14 750 3. 8 28 Comparative Example 1 580 6. 8 130 Comparative Example 2 '420 8. 3 65 Comparative Example 3 620 4. 5 82 Comparative Example 4 570 4. 8 58 Comparative Example 5. 380 9. 8 75
C uの化学機械研磨工程においては、 研磨速度 6 0 0 nm/m i n以上、 研磨 量の面内均一性 6 %以下およびスクラッチ 6 0個以下であれば良好な研磨特性を 有すると考えられる。 第 2表によれば、 実施例 1〜1 4における本発明の化学機 械研磨パッドは良好な研磨特性を有することが明らかとなった。 これに対し本願 発明ではない比較例 1〜 5の化学機械研磨パッドは研磨速度、 研磨量の面内均一 性およびスクラッチ性能のすべてについて良好な結果を示したものはない。 以上説明してきたとおり、 本発明によれば、 研磨速度に優れ、 研磨量の面内均 一性に優れ且つスクラッチの少ない被研磨面を与える化学機械研磨パッドおよび 化学機械研磨方法が提供される。
In the chemical mechanical polishing process of Cu, if the polishing rate is 60 nm / min or more, the in-plane uniformity of the polishing amount is 6% or less, and scratches are 60 or less, it is considered that the polishing characteristics are good. According to Table 2, it was revealed that the chemical mechanical polishing pads of the present invention in Examples 1 to 14 have good polishing characteristics. On the other hand, the chemical mechanical polishing pads of Comparative Examples 1 to 5 which are not the present invention do not show good results in all of the polishing rate, the in-plane uniformity of the polishing amount, and the scratch performance. As described above, according to the present invention, there are provided a chemical mechanical polishing pad and a chemical mechanical polishing method that provide a polished surface that has an excellent polishing rate, excellent in-plane uniformity of the polishing amount, and little scratches.
Claims
1. (A) 非水溶性マトリックスの前駆体成分および (B) 水溶性物質を含有 する組成物から形成された研磨層を有する化学機械研磨パッドであつて、 上記 (A) 非水溶性マトリックスの前駆体成分はその全量を 100質量部とし た場合に、 1. A chemical mechanical polishing pad having a polishing layer formed from (A) a precursor component of a water-insoluble matrix and (B) a composition containing a water-soluble substance, wherein (A) the water-insoluble matrix When the total amount of precursor components is 100 parts by mass,
(A— 1) (a l) 不飽和カルボン酸および不飽和カルボン 無水物よりなる群 から選ばれる少なくとも 1種の不飽和化合物と、 (A-1) (a l) at least one unsaturated compound selected from the group consisting of unsaturated carboxylic acids and unsaturated carboxylic anhydrides;
(a 2) 上記 (a l) 以外の不飽和化合物と、 のランダム共重合体またはブロッ ク共重合体 (a 2) Random copolymer or block copolymer of unsaturated compound other than the above (a l)
を 60〜: I 00質量部含有するものであることを特徴とする、 化学機械研磨パッ ド、。 60 to: Chemical mechanical polishing pad, characterized by containing 100 parts by mass of I.
2. 上記 (A— 1) 共重合体における不飽和化合物 (a l) の共重合割合が 5 〜 20質量%である、 請求項 1に記載の化学機械研磨パッド。 2. The chemical mechanical polishing pad according to claim 1, wherein the copolymerization ratio of the unsaturated compound (al) in the (A-1) copolymer is 5 to 20% by mass.
3. 上記 (A— 1) 共重合体における不飽和化合物 (a l) 力不飽和モノカル ボン酸であり、 不飽和化合物 (a 2) が α—才レフインである、 請求項 1または 2に記載の化学機械研磨パッド。 3. The unsaturated compound (al) in the above (A-1) copolymer is a force-unsaturated monocarboxylic acid, and the unsaturated compound (a 2) is α-year-old refin. Chemical mechanical polishing pad.
4. 上記 (Α) 非水溶性マトリックスの前駆体成分が、 さらに分子内に 2個以 上の炭素一炭素二重結合を有する化合物を含有する、 請求項 1または 2に記載の 化学機械研磨パッド。 4. The chemical mechanical polishing pad according to claim 1 or 2, wherein the precursor component of (ii) the water-insoluble matrix further contains a compound having two or more carbon-carbon double bonds in the molecule. .
5. 上記 (Α) 非水溶性マトリックスの前駆体成分が、 さらに 1, 2—ポリブ 夕ジェン樹脂を含有する、 請求項 1または 2に記載の化学機械研磨パッド。 5. The chemical mechanical polishing pad according to claim 1 or 2, wherein the precursor component of the water-insoluble matrix (1) further contains a 1,2-polybutadiene resin.
6. 上記組成物における (Β) 水溶性物質の含有割合が、 (Α) 非水溶性マト
リックスの前駆体成分 1 0 0質量部に対して 1〜3 0 0質量部である、 請求項 1 または 2に記載の化学機械研磨パッド。 6. The content of (i) water-soluble substance in the above composition is (ii) water-insoluble matto 3. The chemical mechanical polishing pad according to claim 1, wherein the chemical mechanical polishing pad is 1 to 300 parts by mass with respect to 100 parts by mass of the precursor component of Rix.
7 . 上記研磨層が架橋構造を有する、 請求項 1または 2に記載の化学機械研磨 パッド。 7. The chemical mechanical polishing pad according to claim 1 or 2, wherein the polishing layer has a crosslinked structure.
8 . 研磨層の架橋構造が電子線照射により形成されたものである、 請求項 7に 記載の化学機械研磨パッド。 8. The chemical mechanical polishing pad according to claim 7, wherein the crosslinked structure of the polishing layer is formed by electron beam irradiation.
9. 請求項 1または 2に記載の化学機械研磨パッドを用いて被研磨物を化学機 械研磨することを特徴とする、 化学機械研磨方法。
9. A chemical-mechanical polishing method, wherein the object to be polished is subjected to chemical-mechanical polishing using the chemical-mechanical polishing pad according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009544630A JPWO2009072405A1 (en) | 2007-12-07 | 2008-11-14 | Chemical mechanical polishing pad and chemical mechanical polishing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007317003 | 2007-12-07 | ||
JP2007-317003 | 2007-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009072405A1 true WO2009072405A1 (en) | 2009-06-11 |
Family
ID=40717587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/071161 WO2009072405A1 (en) | 2007-12-07 | 2008-11-14 | Chemical mechanical polishing pad and chemical mechanical polishing method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2009072405A1 (en) |
TW (1) | TW200930498A (en) |
WO (1) | WO2009072405A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012248851A (en) * | 2010-07-28 | 2012-12-13 | Du Pont Mitsui Polychem Co Ltd | Laminate film, and film for semiconductor manufacturing using the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000034416A (en) * | 1998-05-15 | 2000-02-02 | Jsr Corp | Polymer composition and abrasive pad |
JP2001047355A (en) * | 1999-08-06 | 2001-02-20 | Jsr Corp | Polymeride composition for polishing pad, and polishing pad using it |
JP2004083723A (en) * | 2002-08-26 | 2004-03-18 | Jsr Corp | Composition for polishing pad, and polishing pad using the same |
JP2007095842A (en) * | 2005-09-27 | 2007-04-12 | Fujifilm Corp | Chemical mechanical planarization method for semiconductor integrated circuit |
JP2007201449A (en) * | 2005-12-28 | 2007-08-09 | Jsr Corp | Chemical-mechanical polishing pad and chemical-mechanical polishing method |
-
2008
- 2008-11-14 JP JP2009544630A patent/JPWO2009072405A1/en not_active Withdrawn
- 2008-11-14 WO PCT/JP2008/071161 patent/WO2009072405A1/en active Application Filing
- 2008-11-28 TW TW97146451A patent/TW200930498A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000034416A (en) * | 1998-05-15 | 2000-02-02 | Jsr Corp | Polymer composition and abrasive pad |
JP2001047355A (en) * | 1999-08-06 | 2001-02-20 | Jsr Corp | Polymeride composition for polishing pad, and polishing pad using it |
JP2004083723A (en) * | 2002-08-26 | 2004-03-18 | Jsr Corp | Composition for polishing pad, and polishing pad using the same |
JP2007095842A (en) * | 2005-09-27 | 2007-04-12 | Fujifilm Corp | Chemical mechanical planarization method for semiconductor integrated circuit |
JP2007201449A (en) * | 2005-12-28 | 2007-08-09 | Jsr Corp | Chemical-mechanical polishing pad and chemical-mechanical polishing method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012248851A (en) * | 2010-07-28 | 2012-12-13 | Du Pont Mitsui Polychem Co Ltd | Laminate film, and film for semiconductor manufacturing using the same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2009072405A1 (en) | 2011-04-21 |
TW200930498A (en) | 2009-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1470893B1 (en) | Polishing pad and chemical mechanical polishing method | |
KR100681980B1 (en) | Polishing Pad | |
EP1164559B1 (en) | Composition for polishing pad and polishing pad using the same | |
US20070149096A1 (en) | Chemical mechanical polishing pad and chemical mechanical polishing method | |
TWI323207B (en) | Abrasive pad, method and metal mold for manufacturing the same, and semiconductor wafer polishing method | |
EP2083027B1 (en) | Mechanical polishing pad and chemical mechanical polishing method | |
JPWO2008114805A1 (en) | Chemical mechanical polishing pad and chemical mechanical polishing method | |
JP2004327974A (en) | Polishing pad, its manufacturing method and die, and polishing method of semiconductor wafer | |
CN100486770C (en) | Chemical mechanical polishing pad, manufacturing process thereof and chemical mechanical polishing method for semiconductor wafers | |
JP5263481B2 (en) | Chemical mechanical polishing pad | |
US7790788B2 (en) | Method for producing chemical mechanical polishing pad | |
CN100537144C (en) | Chemical mechanical polishing pad and chemical mechanical polishing process | |
JP2007201449A (en) | Chemical-mechanical polishing pad and chemical-mechanical polishing method | |
WO2009072405A1 (en) | Chemical mechanical polishing pad and chemical mechanical polishing method | |
JP4379462B2 (en) | Polishing pad composition and polishing pad using the same | |
KR100661445B1 (en) | Chemical Mechanical Polishing Pad, Production Method Thereof, and Chemical Mechanical Polishing Process | |
JP2009267187A (en) | Chemical mechanical polishing pad and chemical mechanical polishing method | |
JP2001214154A (en) | Composition for abrasive pad and abrasive pad using the same | |
JP4798103B2 (en) | Polishing pad | |
JP4379615B2 (en) | Chemical mechanical polishing pad composition, chemical mechanical polishing pad, and chemical mechanical polishing method | |
JPWO2008114520A1 (en) | Chemical mechanical polishing pad and chemical mechanical polishing method | |
JP2010016034A (en) | Chemical mechanical polishing pad, and chemical mechanical polishing method | |
JP2007245291A (en) | Chemical mechanical polishing pad and chemical mechanical polishing method | |
JP2009066728A (en) | Chemical-mechanical polishing pad, and chemical-mechanical polishing method | |
JP2004083722A (en) | Composition for polishing pad, and polishing pad using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08856813 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009544630 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08856813 Country of ref document: EP Kind code of ref document: A1 |