WO2009048724A2 - Compositions for catalytic gasification of a petroleum coke and process for their conversion to methane - Google Patents
Compositions for catalytic gasification of a petroleum coke and process for their conversion to methane Download PDFInfo
- Publication number
- WO2009048724A2 WO2009048724A2 PCT/US2008/076991 US2008076991W WO2009048724A2 WO 2009048724 A2 WO2009048724 A2 WO 2009048724A2 US 2008076991 W US2008076991 W US 2008076991W WO 2009048724 A2 WO2009048724 A2 WO 2009048724A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gasification
- particulate composition
- petroleum coke
- calcium
- alkali metal
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/463—Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/02—Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
- C10L5/34—Other details of the shaped fuels, e.g. briquettes
- C10L5/36—Shape
- C10L5/366—Powders
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L9/00—Treating solid fuels to improve their combustion
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0903—Feed preparation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0943—Coke
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0973—Water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0983—Additives
- C10J2300/0986—Catalysts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1853—Steam reforming, i.e. injection of steam only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates particulate compositions of a crude oil resid-based petroleum coke containing at least two preselected catalytic components, which composition exhibits an efficient, enhanced-yielding gasification to value-added gaseous products, particularly when used in a steady-state integrated gasification process. More particularly, this invention concerns compositions of a petroleum coke loaded with a mixture of (i) an alkali metal component, and (ii) a calcium component.
- the present invention further relates to processes wherein these particulate compositions, in the presence of steam, exhibit gasification activity, and thereby form value-added gaseous products including methane and one or more of hydrogen, carbon monoxide and other higher hydrocarbons.
- Petroleum coke is a generally solid carbonaceous residue derived from delayed coking or fluid coking a carbon source such as a crude oil resid. Petroleum coke in general has a poorer gasification reactivity, particularly at moderate temperatures, than does bituminous coal due, for example, to its highly crystalline carbon and elevated levels of organic sulfur derived from heavy-gravity oil. Use of catalysts is necessary for improving the lower reactivity of petroleum cokes.
- the present invention is directed to the gasification of a petroleum coke derived from a crude oil resid, for example, by coking processes used for upgrading heavy-gravity residual crude oil, which petroleum coke contains ash but as a minor component, typically about 1.0 wt% or less, and more typically about 0.5 wt% of less, based on the weight of the coke.
- the ash in such lower-ash cokes predominantly comprises metals such as nickel and vanadium.
- the present invention is directed to particulate compositions of such petroleum coke containing at least two preselected components that exhibit an efficient, enhanced-yielding gasification to value-added gaseous products. More particularly, the present invention is a particulate composition having a particle distribution size suitable for gasification in a fluidized bed zone, comprising an intimate mixture of (A) a petroleum coke derived from crude oil comprising ash in an amount of about 1.0 wt% or less, based on the weight of the petroleum coke, and (B) a gasification catalyst which under suitable conditions of temperature and pressure and in the presence of steam exhibits gasification activity whereby value added gaseous products are formed, wherein:
- the gasification catalyst comprises (i) a first component which is a source of at least one alkali metal, and (ii) a second component which is a source of calcium; and
- compositions of the present invention are particularly useful for catalytic gasification of petroleum coke at moderate temperatures, such as disclosed in US2007/0083072A1.
- compositions and process according to the invention can be readily incorporated into fluidized bed gasification units, and can result in a more cost-effective, high-yielding production of methane gas.
- the present invention also provides a process for converting petroleum coke to methane, comprising the steps of:
- the petroleum coke utilized in the present invention is derived from a crude oil, for example, by coking processes used for upgrading heavy-gravity residual crude oil, which petroleum coke contains ash but as a minor component, typically about 1.0 wt% or less, and more typically about 0.5 wt% of less, based on the weight of the coke.
- the ash in such lower-ash cokes predominantly comprises metals such as nickel and vanadium.
- the petroleum coke preferably comprises at least about 70 wt% carbon, and alternatively at least about 80 wt% carbon, based on the weight of the petroleum coke.
- the petroleum coke comprises less than about 20 wt% percent inorganic compounds, based on the weight of the petroleum coke.
- the petroleum coke is utilized in particulate form as a fine powder having a particle size distribution suitable for gasification in a fluidized bed zone, which size also facilitates efficient catalyst loading.
- the ground coke (and resulting composition) has a particle size preferably ranging from about 25 microns, or from about 45 microns, to about 2500 microns, or to about 500 microns. Petroleum coke can be ground by any methods known to the art.
- Particulate compositions according to the present invention are based on the above-described petroleum coke, and contain (i) an amount of an alkali metal component, as alkali metal and/or a compound containing alkali metal, sufficient to provide, in the composition, a ratio of alkali metal atoms to carbon atoms in the range of from about 0.01 to about 0.1 , or in a range from about 0.01 to about 0.08, or in a range from about 0.01 to about 0.05; and (ii) an amount of calcium component, as calcium metal and/or a compound containing calcium, sufficient to provide, in the composition, a ratio of calcium atoms to carbon atoms in the range of from about 0.01 to about 0.1 , or in a range from about 0.01 to about 0.08, or in a range from about 0.01 to about 0.05.
- an alkali metal component as alkali metal and/or a compound containing alkali metal
- the alkali metal component is typically loaded to achieve an alkali metal content of from about 3 to about 10 times more than the ash content of the petroleum coke, on a mass basis.
- the ratio of alkali metal atoms to calcium atoms can range from about
- Suitable alkali metals are lithium, sodium, potassium, rubidium and cesium, and potassium is preferred.
- Particulate compositions in accordance with the present invention can be prepared by a process comprising the steps of: (a) grinding a petroleum coke, and (b) soaking the ground coke in a catalyst-containing solution for a contact time and at a temperature so as to provide ample opportunity to achieve substantial and uniform catalyst loading.
- the soaked catalyst-loaded coke can be recovered and used as such or, more preferably, can be further processed prior to gasification as disclosed in US2007/0083072A1.
- the finely ground coke is soaked as a slurry in a catalyst-rich solution, preferably of a salt of a catalysts.
- the solution is in an aqueous medium.
- other liquids such as ethanol may be used.
- a slurry mixture is useful, for example, a mixture of an aqueous potassium hydroxide and calcium hydroxide powder.
- Suitable alkali metal catalyst salts include, but are not limited to, carbonate, hydroxide, acetate, halide and nitrate salts.
- carbonate or hydroxide salts are used and, more preferably, carbonate salts are used.
- potassium carbonate is used.
- Suitable calcium salts include, but are not limited to, hydroxide, acetate, halide and nitrate salts. In preferred embodiments, nitrate and acetate salts are used.
- the total amount of catalyst loaded is controlled by controlling the concentration of catalyst components in the solution, as well as the contact time, temperature and method, as can be readily determined by those of ordinary skill in the relevant art based on the characteristics of the starting petroleum coke.
- the particulate compositions of the present invention are particularly useful in integrated gasification processes for converting petroleum coke to combustible gases, such as methane.
- the particulate compositions of the present invention provide a suitable feedstream of catalyst-containing petroleum coke to any steam gasification process.
- steam gasification processes provide a means for the introducing of dry particulate feed into a fluidized bed zone in a gasification reactor.
- Coke and superheated steam are reacted while in contact with the catalyst having steam gasification activity, to form a raw product gas, comprised of unreacted steam, methane, carbon dioxide, hydrogen and carbon monoxide, and a particulate residue, or char having catalyst values incorporated therewith.
- a purge of the char is withdrawn from the gasification reactor.
- a raw product effluent stream is cooled to condense unreacted steam to form a sour water stream and a stream of cooled raw product gas from which methane and other components such as syngas are recovered.
- the particulate compositions of the present invention are particularly useful for gasification at moderate temperatures of at least about 450 0 C, or of at least about 600 0 C or above, to about 900°C, or to about 75O 0 C, or to about 700 0 C; and at pressures of at least about 50 psig, or at least about 200 psig, or at least about 400 psig, to about 1000 psig, or to about 700 psig, or to about 600 psig.
- Analyses of the petroleum coke samples provided results as follows: 8.9 percent by weight volatile matter and 0.38 percent by weight ash (proximate analysis); metal components in the ash of vanadium 170 mg/kg and nickel 220 mg/kg; carbon 86.3 percent, hydrogen 3.6 percent, nitrogen 1.8 percent, sulfur 6.0 percent and oxygen 2.3 percent (ultimate analysis); and a BET surface area of 2 to 3 m 2 /g.
- the atomic ratio of hydrogen to carbon was 0.20, and sulfur to carbon 0.026.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
The present invention relates to particulate compositions of a lower ash type petroleum coke containing at least two preselected components (alkali metal and calcium) that exhibit an efficient, enhanced-yielding gasification to value added gaseous products, particularly when used in a steady-state integrated gasification process. The compositions of the present invention are particularly useful for catalytic gasification of petroleum coke at moderate temperatures ranging from about 450°C to about 900°C. Advantageously, the compositions can be readily incorporated into fluidized bed gasification units, and can result in a cost-effective, high-yielding production of methane gas from petroleum coke.
Description
TITLE
COMPOSITIONS FOR CATALYTIC GASIFICATION OF A PETROLEUM
COKE
FIELD OF THE INVENTION
[0001 ] The present invention relates particulate compositions of a crude oil resid-based petroleum coke containing at least two preselected catalytic components, which composition exhibits an efficient, enhanced-yielding gasification to value-added gaseous products, particularly when used in a steady-state integrated gasification process. More particularly, this invention concerns compositions of a petroleum coke loaded with a mixture of (i) an alkali metal component, and (ii) a calcium component.
[0002] The present invention further relates to processes wherein these particulate compositions, in the presence of steam, exhibit gasification activity, and thereby form value-added gaseous products including methane and one or more of hydrogen, carbon monoxide and other higher hydrocarbons.
BACKRGOUND OF THE INVENTION
[0003] In view of numerous factors such as higher energy prices and environmental concerns, the production of value-added gaseous products from lower- fuel-value carbon sources, such as petroleum coke and coal, is receiving renewed attention. The catalytic gasification of such materials to produce methane and other value-added gases is disclosed, for example, in US3828474, US3958957, US3998607, US4057512, US4092125, US4094650, US4204843, US4468231 and GB1599932.
[0004] More recent developments to such technology directed specifically to methane as a predominant gaseous product are disclosed in commonly owned US2007/0000177A1 , US2007/0083072A1 , U.S. Application Serial No. 11/421511 (filed
1 June 2006 and entitled "Catalytic Steam Gasification Process with Recovery and Recycle of Alkali Metal Compounds"), and U.S. Application Serial No. 11/832809 (filed
2 August 2007 and entitled "Catalyst-Loaded Coal Compositions, Processes for Preparing Same, and Integrated Processes for Preparation of Methane from Coal").
[0005] Petroleum coke is a generally solid carbonaceous residue derived from delayed coking or fluid coking a carbon source such as a crude oil resid. Petroleum coke in general has a poorer gasification reactivity, particularly at moderate
temperatures, than does bituminous coal due, for example, to its highly crystalline carbon and elevated levels of organic sulfur derived from heavy-gravity oil. Use of catalysts is necessary for improving the lower reactivity of petroleum cokes.
[0006] One advantageous catalytic process for gasifying petroleum cokes to methane and other value-added gaseous products is disclosed in the above- mentioned US2007/0083072A1. This publication discloses the use of alkali metals to catalyze the gasification reaction. While the process disclosed in this publication is generally quite effective, it would be desirable to find alternative catalyst systems with potentially improved gasification activity.
SUMMARY OF THE INVENTION
[0007] The present invention is directed to the gasification of a petroleum coke derived from a crude oil resid, for example, by coking processes used for upgrading heavy-gravity residual crude oil, which petroleum coke contains ash but as a minor component, typically about 1.0 wt% or less, and more typically about 0.5 wt% of less, based on the weight of the coke. Typically the ash in such lower-ash cokes predominantly comprises metals such as nickel and vanadium.
[0008] In this context, the present invention is directed to particulate compositions of such petroleum coke containing at least two preselected components that exhibit an efficient, enhanced-yielding gasification to value-added gaseous products. More particularly, the present invention is a particulate composition having a particle distribution size suitable for gasification in a fluidized bed zone, comprising an intimate mixture of (A) a petroleum coke derived from crude oil comprising ash in an amount of about 1.0 wt% or less, based on the weight of the petroleum coke, and (B) a gasification catalyst which under suitable conditions of temperature and pressure and in the presence of steam exhibits gasification activity whereby value added gaseous products are formed, wherein:
[0009] (a) the gasification catalyst comprises (i) a first component which is a source of at least one alkali metal, and (ii) a second component which is a source of calcium; and
[001 0] (b) the gasification catalyst is present in an amount sufficient to provide, in the particulate composition, a ratio of alkali metal atoms to carbon atoms in the range of from about 0.01 to about 0.1 , and a ratio of calcium atoms to carbon atoms in the range of from about 0.01 to about 0.1.
[001 1 ] The compositions of the present invention are particularly useful for catalytic gasification of petroleum coke at moderate temperatures, such as disclosed in US2007/0083072A1. Advantageously, compositions and process according to the invention can be readily incorporated into fluidized bed gasification units, and can result in a more cost-effective, high-yielding production of methane gas.
[001 2] In this context, the present invention also provides a process for converting petroleum coke to methane, comprising the steps of:
[001 3] (1 ) combining a petroleum coke and a catalyst having steam gasification activity to produce a particulate composition having a particle distribution size suitable for gasification in a fluidized bed zone,
[001 4] (2) reacting the particulate composition in a fluidized bed zone in the presence of steam to form gaseous products including methane and one or more of hydrogen, carbon monoxide and other higher hydrocarbons, and
[001 5] (3) recovering methane from the gaseous products,
[001 6] wherein the particulate composition is as set forth herein.
DETALED DESCRIPTION THE PREFERRED EMBODIMENTS
[001 7] All publications, patent applications, patents and other references mentioned herein, if not otherwise indicated, are explicitly incorporated by reference herein in their entirety for all purposes as if fully set forth.
[001 8] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control.
[001 9] Except where expressly noted, trademarks are shown in upper case.
[0020] Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described herein.
[0021 ] Unless stated otherwise, all percentages, parts, ratios, etc., are by weight.
[0022] When an amount, concentration, or other value or parameter is given as either a range, preferred range or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the invention be limited to the specific values recited when defining a range.
[0023] When the term "about" is used in describing a value or an end-point of a range, the disclosure should be understood to include the specific value or end-point referred to.
[0024] As used herein, the terms "comprises," "comprising," "includes,"
"including," "has," "having" or any other variation thereof, are intended to cover a non- exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, "or" refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
[0025] Use of "a" or "an" are employed to describe elements and components of the invention. This is done merely for convenience and to give a general sense of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
[0026] The materials, methods, and examples herein are illustrative only and, except as specifically stated, are not intended to be limiting.
Petroleum Coke
[0027] As indicated previously, the petroleum coke utilized in the present invention is derived from a crude oil, for example, by coking processes used for upgrading heavy-gravity residual crude oil, which petroleum coke contains ash but as a minor component, typically about 1.0 wt% or less, and more typically about 0.5 wt% of less, based on the weight of the coke. Typically the ash in such lower-ash cokes
predominantly comprises metals such as nickel and vanadium. The petroleum coke preferably comprises at least about 70 wt% carbon, and alternatively at least about 80 wt% carbon, based on the weight of the petroleum coke. Typically, the petroleum coke comprises less than about 20 wt% percent inorganic compounds, based on the weight of the petroleum coke.
[0028] The petroleum coke is utilized in particulate form as a fine powder having a particle size distribution suitable for gasification in a fluidized bed zone, which size also facilitates efficient catalyst loading. The ground coke (and resulting composition) has a particle size preferably ranging from about 25 microns, or from about 45 microns, to about 2500 microns, or to about 500 microns. Petroleum coke can be ground by any methods known to the art.
Catalyst Component
[0029] Particulate compositions according to the present invention are based on the above-described petroleum coke, and contain (i) an amount of an alkali metal component, as alkali metal and/or a compound containing alkali metal, sufficient to provide, in the composition, a ratio of alkali metal atoms to carbon atoms in the range of from about 0.01 to about 0.1 , or in a range from about 0.01 to about 0.08, or in a range from about 0.01 to about 0.05; and (ii) an amount of calcium component, as calcium metal and/or a compound containing calcium, sufficient to provide, in the composition, a ratio of calcium atoms to carbon atoms in the range of from about 0.01 to about 0.1 , or in a range from about 0.01 to about 0.08, or in a range from about 0.01 to about 0.05.
[0030] The alkali metal component is typically loaded to achieve an alkali metal content of from about 3 to about 10 times more than the ash content of the petroleum coke, on a mass basis.
[0031 ] The ratio of alkali metal atoms to calcium atoms can range from about
1 :5, or about 1 :3, or about 1 :2, to about 5:1 , or about 3:1 , or about 2:1.
[0032] Suitable alkali metals are lithium, sodium, potassium, rubidium and cesium, and potassium is preferred.
Methods of Making the Particulate Compositions
[0033] Particulate compositions in accordance with the present invention can be prepared by a process comprising the steps of: (a) grinding a petroleum coke, and
(b) soaking the ground coke in a catalyst-containing solution for a contact time and at a temperature so as to provide ample opportunity to achieve substantial and uniform catalyst loading. The soaked catalyst-loaded coke can be recovered and used as such or, more preferably, can be further processed prior to gasification as disclosed in US2007/0083072A1.
[0034] The finely ground coke is soaked as a slurry in a catalyst-rich solution, preferably of a salt of a catalysts. The solution is in an aqueous medium. Depending upon the solubility of the source compounds, other liquids such as ethanol may be used. Where the desired source is insoluble in water and alcohols, a slurry mixture is useful, for example, a mixture of an aqueous potassium hydroxide and calcium hydroxide powder.
[0035] Suitable alkali metal catalyst salts include, but are not limited to, carbonate, hydroxide, acetate, halide and nitrate salts. In preferred embodiments, carbonate or hydroxide salts are used and, more preferably, carbonate salts are used. In a particularly preferred embodiment, potassium carbonate is used.
[0036] Suitable calcium salts include, but are not limited to, hydroxide, acetate, halide and nitrate salts. In preferred embodiments, nitrate and acetate salts are used.
[0037] The total amount of catalyst loaded is controlled by controlling the concentration of catalyst components in the solution, as well as the contact time, temperature and method, as can be readily determined by those of ordinary skill in the relevant art based on the characteristics of the starting petroleum coke.
Catalytic Gasification
[0038] The particulate compositions of the present invention are particularly useful in integrated gasification processes for converting petroleum coke to combustible gases, such as methane.
[0039] Generally, the particulate compositions of the present invention provide a suitable feedstream of catalyst-containing petroleum coke to any steam gasification process. Generally, such steam gasification processes provide a means for the introducing of dry particulate feed into a fluidized bed zone in a gasification reactor. Coke and superheated steam are reacted while in contact with the catalyst having steam gasification activity, to form a raw product gas, comprised of unreacted steam, methane, carbon dioxide, hydrogen and carbon monoxide, and a particulate residue, or char having catalyst values incorporated therewith. A purge of the char is
withdrawn from the gasification reactor. A raw product effluent stream is cooled to condense unreacted steam to form a sour water stream and a stream of cooled raw product gas from which methane and other components such as syngas are recovered.
[0040] The particulate compositions of the present invention are particularly useful for gasification at moderate temperatures of at least about 4500C, or of at least about 6000C or above, to about 900°C, or to about 75O0C, or to about 7000C; and at pressures of at least about 50 psig, or at least about 200 psig, or at least about 400 psig, to about 1000 psig, or to about 700 psig, or to about 600 psig.
[0041 ] A preferred process is described in US2007/0083072A1 , and reference can be had to that publication for further process details.
EXAMPLES
Petroleum Coke Sample Preparation
[0042] Where the as-received petroleum coke was found to be too damp (i.e. not free-flowing) to be jaw-crushed, it was necessary to first air-dry it in a mechanical- convection oven at 35°C for an extended period of time. Stage-crushing was performed carefully so as not to generate excessive fines and to maximize the amount of material having particle sizes ranging from about 0.85 to about 1.4 mm.
[0043] Analyses of the petroleum coke samples provided results as follows: 8.9 percent by weight volatile matter and 0.38 percent by weight ash (proximate analysis); metal components in the ash of vanadium 170 mg/kg and nickel 220 mg/kg; carbon 86.3 percent, hydrogen 3.6 percent, nitrogen 1.8 percent, sulfur 6.0 percent and oxygen 2.3 percent (ultimate analysis); and a BET surface area of 2 to 3 m2/g. The atomic ratio of hydrogen to carbon was 0.20, and sulfur to carbon 0.026.
[0044] Compounds of potassium (nitrate, acetate, hydroxide and carbonate) and calcium (nitrate, acetate and hydroxide) were used as catalyst precursors in a liquid medium. Preselected amounts were contacted with the petroleum coke by mixing with a rotary evaporator at room temperature or at 0°C if a water/ethanol solution was used. After separation from the liquid, the wet solid particles were subjected to reduced pressure thereby drying them for gasification.
[0045] Catalysts of about 1 and about 5 mass % of potassium were made, as well as catalysts of 3 mass % calcium. Binary catalysts of combinations of the above were also made.
Petroleum Coke Gasification
[0046] Gasification was carried out in a high-pressure apparatus that included a quartz reactor. About 100 mg of the sample was first charged into a platinum cell held in the reactor and then gasified. Typical gasification conditions were as follows: total pressure, 1.0 MPa; partial pressure of H2O, 0.21 MPa, in an atmosphere of high purity argon; temperatures, 75O0C to 9000C; and reaction times, 2 to 3 hr. Product gas after the removal of H2O and H2S was analyzed on-line with a high-speed micro GC attached with a thermal conductivity detector. In order to determine the amount of H2 produced precisely, argon gas was used as the carrier gas of GC. Coke conversion was estimated by using the weight change before and after gasification and expressed in percent by weight on a catalyst-free basis.
[0047] The conversion of petroleum coke without any catalyst was only about
25 percent at 7500C; however, it increased with increased temperature and reached about 95 percent at 9000C. Petroleum coke treated with a calcium salt (3%) exhibited almost no catalytic effects, irrespective of the temperature. By contrast, potassium compounds promoted the steam gasification even at low loading of 1 percent by weight and the conversion was about 40 percent at 75O0C and about 95 percent at 85O0C.
[0048] Gasification of petroleum coke using binary combinations of calcium and potassium compounds (1 % K/3% Ca) was also studied. Conversions of petroleum coke at 75O0C with these binary catalysts was higher than that with only potassium compounds alone - about 55% versus about 40%.
[0049] In a second test, petroleum coke overall conversion, after 2 hours at
75O0C, without any catalysts was only about 15 percent, which was almost unchanged with calcium compounds alone (3%), whereas conversion increased up to about 40-45 percent when a potassium-containing catalyst (5%) was used. An increase in conversion to more than 95% was observed with the use of binary compositions (5% K/3% Ca). A temperature of about 9000C was required to obtain a conversion that high for uncatalyzed coke, meaning that the binary catalysts demonstrated a lowering of more than 15O0C in gasification temperature.
[0050] The rates of methane formation for the binary catalysts at 7500C were found to be high (and highest) under the conditions at the start of the gasification (where the molar ratio of coke/H2O was highest), but decreased rapidly as the time increased (and the molar ratio of coke/H2O decreased).
Claims
1. A particulate composition having a particle distribution size suitable for gasification in a fluidized bed zone, comprising an intimate mixture of (A) a petroleum coke derived from crude oil comprising ash in an amount of about 1.0 wt% or less, based on the weight of the petroleum coke, and (B) a gasification catalyst which under suitable conditions of temperature and pressure and in the presence of steam exhibits gasification activity whereby value added gaseous products are formed, wherein:
(a) the gasification catalyst comprises (i) a first component which is a source of at least one alkali metal, and (ii) a second component which is a source of calcium; and
(b) the gasification catalyst is present in an amount sufficient to provide, in the particulate composition, a ratio of alkali metal atoms to carbon atoms in the range of from about 0.01 to about 0.1 , and a ratio of calcium atoms to carbon atoms in the range of from about 0.01 to about 0.1.
2. The particulate composition according to claim 1 , wherein the alkali metal is potassium.
3. The particulate composition according to claim 1 or claim 2, wherein the source of alkali metal is an alkali metal salt selected from the group consisting of carbonate, hydroxide, acetate, halide and nitrate salts.
4. The particulate composition according to claim 1 , wherein the source of alkali metal is potassium carbonate.
5. The particulate composition according to any of claims 1-4, wherein the source of calcium is a calcium salt selected from the group consisting of hydroxide, acetate, halide and nitrate salts.
6. The particulate composition according to any of claims 1-5, wherein the source of calcium is calcium nitrate or calcium acetate.
7. The particulate composition according to any of claims 1-6, wherein the gasification catalyst is present in an amount sufficient to provide in the particulate composition a molar ratio of alkali metal atoms to carbon atoms in the range of from about 0.01 to about 0.08.
8. The particulate composition according to any of claims 1-7, wherein the gasification catalyst is present in an amount sufficient to provide in the particulate composition a molar ratio of calcium atoms to carbon atoms in the range of from about 0.01 to about 0.08.
9. The particulate composition according to any of claims 1-8, having a particle size ranging from about 25 microns to about 2500 microns.
10. A process for converting petroleum coke to methane, comprising the steps of:
(1 ) combining a petroleum coke and a catalyst having steam gasification activity to produce a particulate composition having a particle distribution size suitable for gasification in a fluidized bed zone,
(2) reacting the particulate composition in a fluidized bed zone in the presence of steam to form gaseous products including methane and one or more of hydrogen, carbon monoxide and other higher hydrocarbons, and
(3) recovering methane from the gaseous products,
wherein the particulate composition is as set forth in any one of claims 1-9.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US97858807P | 2007-10-09 | 2007-10-09 | |
US60/978,588 | 2007-10-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009048724A2 true WO2009048724A2 (en) | 2009-04-16 |
WO2009048724A3 WO2009048724A3 (en) | 2009-06-25 |
Family
ID=40445646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/076991 WO2009048724A2 (en) | 2007-10-09 | 2008-09-19 | Compositions for catalytic gasification of a petroleum coke and process for their conversion to methane |
Country Status (2)
Country | Link |
---|---|
US (1) | US20090090056A1 (en) |
WO (1) | WO2009048724A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8999020B2 (en) | 2008-04-01 | 2015-04-07 | Greatpoint Energy, Inc. | Processes for the separation of methane from a gas stream |
US10344231B1 (en) | 2018-10-26 | 2019-07-09 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with improved carbon utilization |
US10435637B1 (en) | 2018-12-18 | 2019-10-08 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation |
US10464872B1 (en) | 2018-07-31 | 2019-11-05 | Greatpoint Energy, Inc. | Catalytic gasification to produce methanol |
US10618818B1 (en) | 2019-03-22 | 2020-04-14 | Sure Champion Investment Limited | Catalytic gasification to produce ammonia and urea |
CN111676079A (en) * | 2020-06-11 | 2020-09-18 | 大冶市都鑫摩擦粉体有限公司 | Preparation system and process of petroleum coke composition for catalytic gasification |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8114176B2 (en) * | 2005-10-12 | 2012-02-14 | Great Point Energy, Inc. | Catalytic steam gasification of petroleum coke to methane |
US7922782B2 (en) * | 2006-06-01 | 2011-04-12 | Greatpoint Energy, Inc. | Catalytic steam gasification process with recovery and recycle of alkali metal compounds |
CN105062563A (en) * | 2007-08-02 | 2015-11-18 | 格雷特波因特能源公司 | Catalyst-loaded coal compositions, methods of making and use |
US20090090055A1 (en) * | 2007-10-09 | 2009-04-09 | Greatpoint Energy, Inc. | Compositions for Catalytic Gasification of a Petroleum Coke |
CN101910371B (en) * | 2007-12-28 | 2014-04-02 | 格雷特波因特能源公司 | Processes for making syngas-derived products |
WO2009086367A1 (en) * | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Petroleum coke compositions for catalytic gasification and preparation process thereof |
WO2009086363A1 (en) * | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Coal compositions for catalytic gasification and process for its preparation |
US20090165361A1 (en) * | 2007-12-28 | 2009-07-02 | Greatpoint Energy, Inc. | Carbonaceous Fuels and Processes for Making and Using Them |
US20090165383A1 (en) * | 2007-12-28 | 2009-07-02 | Greatpoint Energy, Inc. | Catalytic Gasification Process with Recovery of Alkali Metal from Char |
WO2009086407A2 (en) | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock |
WO2009086377A2 (en) * | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Catalytic gasification process with recovery of alkali metal from char |
US20090166588A1 (en) * | 2007-12-28 | 2009-07-02 | Greatpoint Energy, Inc. | Petroleum Coke Compositions for Catalytic Gasification |
WO2009086383A2 (en) * | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Catalytic gasification process with recovery of alkali metal from char |
US20090260287A1 (en) * | 2008-02-29 | 2009-10-22 | Greatpoint Energy, Inc. | Process and Apparatus for the Separation of Methane from a Gas Stream |
US8114177B2 (en) | 2008-02-29 | 2012-02-14 | Greatpoint Energy, Inc. | Co-feed of biomass as source of makeup catalysts for catalytic coal gasification |
US8361428B2 (en) * | 2008-02-29 | 2013-01-29 | Greatpoint Energy, Inc. | Reduced carbon footprint steam generation processes |
US7926750B2 (en) * | 2008-02-29 | 2011-04-19 | Greatpoint Energy, Inc. | Compactor feeder |
US8286901B2 (en) * | 2008-02-29 | 2012-10-16 | Greatpoint Energy, Inc. | Coal compositions for catalytic gasification |
US8652222B2 (en) | 2008-02-29 | 2014-02-18 | Greatpoint Energy, Inc. | Biomass compositions for catalytic gasification |
US20090220406A1 (en) * | 2008-02-29 | 2009-09-03 | Greatpoint Energy, Inc. | Selective Removal and Recovery of Acid Gases from Gasification Products |
WO2009111342A2 (en) * | 2008-02-29 | 2009-09-11 | Greatpoint Energy, Inc | Carbonaceous fines recycle |
WO2009111331A2 (en) | 2008-02-29 | 2009-09-11 | Greatpoint Energy, Inc. | Steam generation processes utilizing biomass feedstocks |
WO2009111345A2 (en) | 2008-02-29 | 2009-09-11 | Greatpoint Energy, Inc. | Catalytic gasification particulate compositions |
US8297542B2 (en) * | 2008-02-29 | 2012-10-30 | Greatpoint Energy, Inc. | Coal compositions for catalytic gasification |
US20090217582A1 (en) * | 2008-02-29 | 2009-09-03 | Greatpoint Energy, Inc. | Processes for Making Adsorbents and Processes for Removing Contaminants from Fluids Using Them |
KR101231444B1 (en) | 2008-04-01 | 2013-02-18 | 그레이트포인트 에너지, 인크. | Sour shift process for the removal of carbon monoxide from a gas stream |
US20090324462A1 (en) * | 2008-06-27 | 2009-12-31 | Greatpoint Energy, Inc. | Four-Train Catalytic Gasification Systems |
AU2009262073B2 (en) * | 2008-06-27 | 2012-09-06 | Greatpoint Energy, Inc. | Four-train catalytic gasification systems for SNG production |
WO2009158580A2 (en) * | 2008-06-27 | 2009-12-30 | Greatpoint Energy, Inc. | Four-train catalytic gasification systems |
US8502007B2 (en) * | 2008-09-19 | 2013-08-06 | Greatpoint Energy, Inc. | Char methanation catalyst and its use in gasification processes |
WO2010033850A2 (en) | 2008-09-19 | 2010-03-25 | Greatpoint Energy, Inc. | Processes for gasification of a carbonaceous feedstock |
WO2010033848A2 (en) * | 2008-09-19 | 2010-03-25 | Greatpoint Energy, Inc. | Processes for gasification of a carbonaceous feedstock |
CN102159682B (en) | 2008-09-19 | 2014-04-30 | 格雷特波因特能源公司 | Processes for gasification of a carbonaceous feedstock |
KR101275429B1 (en) * | 2008-10-23 | 2013-06-18 | 그레이트포인트 에너지, 인크. | Processes for gasification of a carbonaceous feedstock |
KR101290423B1 (en) | 2008-12-30 | 2013-07-29 | 그레이트포인트 에너지, 인크. | Processes for preparing a catalyzed coal particulate |
US8734547B2 (en) * | 2008-12-30 | 2014-05-27 | Greatpoint Energy, Inc. | Processes for preparing a catalyzed carbonaceous particulate |
WO2010132551A2 (en) * | 2009-05-13 | 2010-11-18 | Greatpoint Energy, Inc. | Processes for hydromethanation of a carbonaceous feedstock |
US8268899B2 (en) | 2009-05-13 | 2012-09-18 | Greatpoint Energy, Inc. | Processes for hydromethanation of a carbonaceous feedstock |
JP5269251B2 (en) * | 2009-05-13 | 2013-08-21 | グレイトポイント・エナジー・インコーポレイテッド | Process for the hydrogenation methanation of carbonaceous feedstock |
WO2011017630A1 (en) | 2009-08-06 | 2011-02-10 | Greatpoint Energy, Inc. | Processes for hydromethanation of a carbonaceous feedstock |
US20110064648A1 (en) * | 2009-09-16 | 2011-03-17 | Greatpoint Energy, Inc. | Two-mode process for hydrogen production |
KR101350061B1 (en) * | 2009-09-16 | 2014-01-14 | 그레이트포인트 에너지, 인크. | Processes for hydromethanation of a carbonaceous feedstock |
WO2011034889A1 (en) | 2009-09-16 | 2011-03-24 | Greatpoint Energy, Inc. | Integrated hydromethanation combined cycle process |
WO2011034890A2 (en) | 2009-09-16 | 2011-03-24 | Greatpoint Energy, Inc. | Integrated hydromethanation combined cycle process |
AU2010310849B2 (en) | 2009-10-19 | 2013-05-02 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process |
AU2010310846B2 (en) * | 2009-10-19 | 2013-05-30 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process |
AU2010339952B8 (en) | 2009-12-17 | 2013-12-19 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process |
WO2011084581A1 (en) | 2009-12-17 | 2011-07-14 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process injecting nitrogen |
US8669013B2 (en) | 2010-02-23 | 2014-03-11 | Greatpoint Energy, Inc. | Integrated hydromethanation fuel cell power generation |
US8652696B2 (en) * | 2010-03-08 | 2014-02-18 | Greatpoint Energy, Inc. | Integrated hydromethanation fuel cell power generation |
JP5559422B2 (en) | 2010-04-26 | 2014-07-23 | グレイトポイント・エナジー・インコーポレイテッド | Hydrogenation methanation of carbonaceous feedstock with vanadium recovery. |
KR101506381B1 (en) | 2010-05-28 | 2015-03-26 | 그레이트포인트 에너지, 인크. | Conversion of liquid heavy hydrocarbon feedstocks to gaseous products |
KR101424941B1 (en) | 2010-08-18 | 2014-08-01 | 그레이트포인트 에너지, 인크. | Hydromethanation of carbonaceous feedstock |
AU2011299120A1 (en) | 2010-09-10 | 2013-04-04 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
CN103249815B (en) | 2010-11-01 | 2016-08-24 | 格雷特波因特能源公司 | The hydrogenation methanation of carbon containing feed |
CN103210068B (en) | 2010-11-01 | 2015-07-08 | 格雷特波因特能源公司 | Hydromethanation of a carbonaceous feedstock |
US8648121B2 (en) | 2011-02-23 | 2014-02-11 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with nickel recovery |
EA201391403A1 (en) | 2011-03-29 | 2014-11-28 | ФЬЮЭЛИНА ТЕКНОЛОДЖИЗ, ЭлЭлСи | HYBRID FUEL AND METHOD OF HIS PRODUCTION |
WO2012145497A1 (en) | 2011-04-22 | 2012-10-26 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with char beneficiation |
US9127221B2 (en) | 2011-06-03 | 2015-09-08 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
WO2013025812A1 (en) | 2011-08-17 | 2013-02-21 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
CN103890148A (en) | 2011-08-17 | 2014-06-25 | 格雷特波因特能源公司 | Hydromethanation of a carbonaceous feedstock |
CN103974897A (en) | 2011-10-06 | 2014-08-06 | 格雷特波因特能源公司 | Hydromethanation of a carbonaceous feedstock |
WO2014055349A1 (en) | 2012-10-01 | 2014-04-10 | Greatpoint Energy, Inc. | Agglomerated particulate low-rank coal feedstock and uses thereof |
CN104704089B (en) | 2012-10-01 | 2017-08-15 | 格雷特波因特能源公司 | Graininess low rank coal raw material of agglomeration and application thereof |
US9034058B2 (en) | 2012-10-01 | 2015-05-19 | Greatpoint Energy, Inc. | Agglomerated particulate low-rank coal feedstock and uses thereof |
KR101717863B1 (en) | 2012-10-01 | 2017-03-17 | 그레이트포인트 에너지, 인크. | Use of contaminated low-rank coal for combustion |
EA037733B1 (en) | 2014-12-03 | 2021-05-14 | Дрексел Юниверсити | Direct incorporation of natural gas into hydrocarbon liquid fuels |
EA037523B1 (en) | 2016-02-18 | 2021-04-07 | 8 Риверз Кэпитл, Ллк | System and method for power production using methanation |
HU231341B1 (en) | 2019-03-29 | 2023-01-28 | Mol Magyar Olaj- És Gázipari Nyilvánosan Működő Részvénytársaság | Method for producing hydrogen rich gaseous mixture |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2852710A1 (en) * | 1978-12-06 | 1980-06-12 | Didier Eng | Steam gasification of coal or coke - with injection of gaseous ammonia or aq. metal oxide as catalyst |
US4336034A (en) * | 1980-03-10 | 1982-06-22 | Exxon Research & Engineering Co. | Process for the catalytic gasification of coal |
US4551155A (en) * | 1983-07-07 | 1985-11-05 | Sri International | In situ formation of coal gasification catalysts from low cost alkali metal salts |
US5435940A (en) * | 1993-11-12 | 1995-07-25 | Shell Oil Company | Gasification process |
US20070000177A1 (en) * | 2005-07-01 | 2007-01-04 | Hippo Edwin J | Mild catalytic steam gasification process |
US20070083072A1 (en) * | 2005-10-12 | 2007-04-12 | Nahas Nicholas C | Catalytic steam gasification of petroleum coke to methane |
Family Cites Families (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US383327A (en) * | 1888-05-22 | Envelope for protecting grapes while maturing | ||
US2886405A (en) * | 1956-02-24 | 1959-05-12 | Benson Homer Edwin | Method for separating co2 and h2s from gas mixtures |
US3034848A (en) * | 1959-04-14 | 1962-05-15 | Du Pont | Compaction of dyes |
DE1403859A1 (en) * | 1960-09-06 | 1968-10-31 | Neidl Dipl Ing Georg | Circulation pump |
US3435590A (en) * | 1967-09-01 | 1969-04-01 | Chevron Res | Co2 and h2s removal |
US3647567A (en) * | 1969-11-28 | 1972-03-07 | Celanese Coatings Co | Post-dipping of acidic deposition coatings |
US3985519A (en) * | 1972-03-28 | 1976-10-12 | Exxon Research And Engineering Company | Hydrogasification process |
US4094650A (en) * | 1972-09-08 | 1978-06-13 | Exxon Research & Engineering Co. | Integrated catalytic gasification process |
JPS5323777B2 (en) * | 1972-12-04 | 1978-07-17 | ||
US4021370A (en) * | 1973-07-24 | 1977-05-03 | Davy Powergas Limited | Fuel gas production |
US3958957A (en) * | 1974-07-01 | 1976-05-25 | Exxon Research And Engineering Company | Methane production |
DE2501376A1 (en) * | 1975-01-15 | 1976-07-22 | Metallgesellschaft Ag | METHOD FOR REMOVING MONOPHENOLS, DIPHENOLS AND THE LIKE FROM WASTEWATERS |
DE2503507C2 (en) * | 1975-01-29 | 1981-11-19 | Metallgesellschaft Ag, 6000 Frankfurt | Process for the purification of gases produced by gasifying solid fossil fuels using water vapor and oxygen under pressure |
GB1508712A (en) * | 1975-03-31 | 1978-04-26 | Battelle Memorial Institute | Treating solid fuel |
US4091073A (en) * | 1975-08-29 | 1978-05-23 | Shell Oil Company | Process for the removal of H2 S and CO2 from gaseous streams |
US4005996A (en) * | 1975-09-04 | 1977-02-01 | El Paso Natural Gas Company | Methanation process for the production of an alternate fuel for natural gas |
US4077778A (en) * | 1975-09-29 | 1978-03-07 | Exxon Research & Engineering Co. | Process for the catalytic gasification of coal |
US4322222A (en) * | 1975-11-10 | 1982-03-30 | Occidental Petroleum Corporation | Process for the gasification of carbonaceous materials |
US4069304A (en) * | 1975-12-31 | 1978-01-17 | Trw | Hydrogen production by catalytic coal gasification |
US4330305A (en) * | 1976-03-19 | 1982-05-18 | Basf Aktiengesellschaft | Removal of CO2 and/or H2 S from gases |
IT1075397B (en) * | 1977-04-15 | 1985-04-22 | Snam Progetti | METHANATION REACTOR |
US4152119A (en) * | 1977-08-01 | 1979-05-01 | Dynecology Incorporated | Briquette comprising caking coal and municipal solid waste |
US4200439A (en) * | 1977-12-19 | 1980-04-29 | Exxon Research & Engineering Co. | Gasification process using ion-exchanged coal |
US4204843A (en) * | 1977-12-19 | 1980-05-27 | Exxon Research & Engineering Co. | Gasification process |
US4265868A (en) * | 1978-02-08 | 1981-05-05 | Koppers Company, Inc. | Production of carbon monoxide by the gasification of carbonaceous materials |
US4193771A (en) * | 1978-05-08 | 1980-03-18 | Exxon Research & Engineering Co. | Alkali metal recovery from carbonaceous material conversion process |
US4193772A (en) * | 1978-06-05 | 1980-03-18 | Exxon Research & Engineering Co. | Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue |
US4189307A (en) * | 1978-06-26 | 1980-02-19 | Texaco Development Corporation | Production of clean HCN-free synthesis gas |
US4318712A (en) * | 1978-07-17 | 1982-03-09 | Exxon Research & Engineering Co. | Catalytic coal gasification process |
US4372755A (en) * | 1978-07-27 | 1983-02-08 | Enrecon, Inc. | Production of a fuel gas with a stabilized metal carbide catalyst |
GB2027444B (en) * | 1978-07-28 | 1983-03-02 | Exxon Research Engineering Co | Gasification of ash-containing solid fuels |
US4249471A (en) * | 1979-01-29 | 1981-02-10 | Gunnerman Rudolf W | Method and apparatus for burning pelletized organic fibrous fuel |
US4243639A (en) * | 1979-05-10 | 1981-01-06 | Tosco Corporation | Method for recovering vanadium from petroleum coke |
US4260421A (en) * | 1979-05-18 | 1981-04-07 | Exxon Research & Engineering Co. | Cement production from coal conversion residues |
US4315758A (en) * | 1979-10-15 | 1982-02-16 | Institute Of Gas Technology | Process for the production of fuel gas from coal |
US4331451A (en) * | 1980-02-04 | 1982-05-25 | Mitsui Toatsu Chemicals, Inc. | Catalytic gasification |
NL8101447A (en) * | 1981-03-24 | 1982-10-18 | Shell Int Research | METHOD FOR PREPARING HYDROCARBONS FROM CARBON-CONTAINING MATERIAL |
DE3264214D1 (en) * | 1981-03-24 | 1985-07-25 | Exxon Research Engineering Co | Apparatus for converting a fuel into combustible gas |
DE3113993A1 (en) * | 1981-04-07 | 1982-11-11 | Metallgesellschaft Ag, 6000 Frankfurt | METHOD FOR THE SIMULTANEOUS PRODUCTION OF COMBUSTION GAS AND PROCESS HEAT FROM CARBON-MATERIAL MATERIALS |
US4428535A (en) * | 1981-07-06 | 1984-01-31 | Liquid Carbonic Corporation | Apparatus to cool particulate matter for grinding |
US4500323A (en) * | 1981-08-26 | 1985-02-19 | Kraftwerk Union Aktiengesellschaft | Process for the gasification of raw carboniferous materials |
US4432773A (en) * | 1981-09-14 | 1984-02-21 | Euker Jr Charles A | Fluidized bed catalytic coal gasification process |
US4439210A (en) * | 1981-09-25 | 1984-03-27 | Conoco Inc. | Method of catalytic gasification with increased ash fusion temperature |
DE3377360D1 (en) * | 1982-03-29 | 1988-08-18 | Asahi Chemical Ind | Process for thermal cracking of carbonaceous substances which increases gasoline fraction and light oil conversions |
DE3217366A1 (en) * | 1982-05-08 | 1983-11-10 | Metallgesellschaft Ag, 6000 Frankfurt | METHOD FOR PRODUCING A MOST INERT-FREE GAS FOR SYNTHESIS |
US4436028A (en) * | 1982-05-10 | 1984-03-13 | Wilder David M | Roll mill for reduction of moisture content in waste material |
DE3229396C2 (en) * | 1982-08-06 | 1985-10-31 | Bergwerksverband Gmbh, 4300 Essen | Process for the production of carbonaceous adsorbents impregnated with elemental sulfur |
US4436531A (en) * | 1982-08-27 | 1984-03-13 | Texaco Development Corporation | Synthesis gas from slurries of solid carbonaceous fuels |
US4505881A (en) * | 1983-11-29 | 1985-03-19 | Shell Oil Company | Ammonium polysulfide removal of HCN from gaseous streams, with subsequent production of NH3, H2 S, and CO2 |
US4508693A (en) * | 1983-11-29 | 1985-04-02 | Shell Oil Co. | Solution removal of HCN from gaseous streams, with pH adjustment of reacted solution and hydrolysis of thiocyanate formed |
US4497784A (en) * | 1983-11-29 | 1985-02-05 | Shell Oil Company | Solution removal of HCN from gaseous streams, with hydrolysis of thiocyanate formed |
US4808194A (en) * | 1984-11-26 | 1989-02-28 | Texaco Inc. | Stable aqueous suspensions of slag, fly-ash and char |
US4572826A (en) * | 1984-12-24 | 1986-02-25 | Shell Oil Company | Two stage process for HCN removal from gaseous streams |
US4720289A (en) * | 1985-07-05 | 1988-01-19 | Exxon Research And Engineering Company | Process for gasifying solid carbonaceous materials |
CA1300885C (en) * | 1986-08-26 | 1992-05-19 | Donald S. Scott | Hydrogasification of biomass to produce high yields of methane |
US4803061A (en) * | 1986-12-29 | 1989-02-07 | Texaco Inc. | Partial oxidation process with magnetic separation of the ground slag |
US4810475A (en) * | 1987-08-18 | 1989-03-07 | Shell Oil Company | Removal of HCN, and HCN and COS, from a substantially chloride-free gaseous stream |
US4892567A (en) * | 1988-08-15 | 1990-01-09 | Mobil Oil Corporation | Simultaneous removal of mercury and water from fluids |
US5093094A (en) * | 1989-05-05 | 1992-03-03 | Shell Oil Company | Solution removal of H2 S from gas streams |
JPH075895B2 (en) * | 1989-09-29 | 1995-01-25 | 宇部興産株式会社 | Method to prevent ash from adhering to gasification furnace wall |
US5094737A (en) * | 1990-10-01 | 1992-03-10 | Exxon Research & Engineering Company | Integrated coking-gasification process with mitigation of bogging and slagging |
US5277884A (en) * | 1992-03-02 | 1994-01-11 | Reuel Shinnar | Solvents for the selective removal of H2 S from gases containing both H2 S and CO2 |
AU666752B2 (en) * | 1992-06-05 | 1996-02-22 | Battelle Memorial Institute | Method for the catalytic conversion of organic materials into a product gas |
US5865898A (en) * | 1992-08-06 | 1999-02-02 | The Texas A&M University System | Methods of biomass pretreatment |
US5733515A (en) * | 1993-01-21 | 1998-03-31 | Calgon Carbon Corporation | Purification of air in enclosed spaces |
US5720785A (en) * | 1993-04-30 | 1998-02-24 | Shell Oil Company | Method of reducing hydrogen cyanide and ammonia in synthesis gas |
US5964985A (en) * | 1994-02-02 | 1999-10-12 | Wootten; William A. | Method and apparatus for converting coal to liquid hydrocarbons |
US6506349B1 (en) * | 1994-11-03 | 2003-01-14 | Tofik K. Khanmamedov | Process for removal of contaminants from a gas stream |
US5855631A (en) * | 1994-12-02 | 1999-01-05 | Leas; Arnold M. | Catalytic gasification process and system |
US6028234A (en) * | 1996-12-17 | 2000-02-22 | Mobil Oil Corporation | Process for making gas hydrates |
US6180843B1 (en) * | 1997-10-14 | 2001-01-30 | Mobil Oil Corporation | Method for producing gas hydrates utilizing a fluidized bed |
US6187465B1 (en) * | 1997-11-07 | 2001-02-13 | Terry R. Galloway | Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions |
US6168768B1 (en) * | 1998-01-23 | 2001-01-02 | Exxon Research And Engineering Company | Production of low sulfer syngas from natural gas with C4+/C5+ hydrocarbon recovery |
US6015104A (en) * | 1998-03-20 | 2000-01-18 | Rich, Jr.; John W. | Process and apparatus for preparing feedstock for a coal gasification plant |
AUPQ118899A0 (en) * | 1999-06-24 | 1999-07-22 | Woodside Energy Limited | Natural gas hydrate and method for producing same |
US6379645B1 (en) * | 1999-10-14 | 2002-04-30 | Air Products And Chemicals, Inc. | Production of hydrogen using methanation and pressure swing adsorption |
FR2808223B1 (en) * | 2000-04-27 | 2002-11-22 | Inst Francais Du Petrole | PROCESS FOR THE PURIFICATION OF AN EFFLUENT CONTAINING CARBON GAS AND HYDROCARBONS BY COMBUSTION |
US6506361B1 (en) * | 2000-05-18 | 2003-01-14 | Air Products And Chemicals, Inc. | Gas-liquid reaction process including ejector and monolith catalyst |
JP5019683B2 (en) * | 2001-08-31 | 2012-09-05 | 三菱重工業株式会社 | Gas hydrate slurry dewatering apparatus and method |
US6878358B2 (en) * | 2002-07-22 | 2005-04-12 | Bayer Aktiengesellschaft | Process for removing mercury from flue gases |
US7205448B2 (en) * | 2003-12-19 | 2007-04-17 | Uop Llc | Process for the removal of nitrogen compounds from a fluid stream |
DE202005021662U1 (en) * | 2005-09-07 | 2009-03-05 | Siemens Aktiengesellschaft | Apparatus for producing synthesis gases by partial oxidation of slurries produced from ash-containing fuels with partial quenching and waste heat recovery |
US7922782B2 (en) * | 2006-06-01 | 2011-04-12 | Greatpoint Energy, Inc. | Catalytic steam gasification process with recovery and recycle of alkali metal compounds |
US20080141591A1 (en) * | 2006-12-19 | 2008-06-19 | Simulent Inc. | Gasification of sulfur-containing carbonaceous fuels |
CN105062563A (en) * | 2007-08-02 | 2015-11-18 | 格雷特波因特能源公司 | Catalyst-loaded coal compositions, methods of making and use |
US20090090055A1 (en) * | 2007-10-09 | 2009-04-09 | Greatpoint Energy, Inc. | Compositions for Catalytic Gasification of a Petroleum Coke |
WO2009086377A2 (en) * | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Catalytic gasification process with recovery of alkali metal from char |
WO2009086383A2 (en) * | 2007-12-28 | 2009-07-09 | Greatpoint Energy, Inc. | Catalytic gasification process with recovery of alkali metal from char |
US7926750B2 (en) * | 2008-02-29 | 2011-04-19 | Greatpoint Energy, Inc. | Compactor feeder |
CN102159682B (en) * | 2008-09-19 | 2014-04-30 | 格雷特波因特能源公司 | Processes for gasification of a carbonaceous feedstock |
WO2010033850A2 (en) * | 2008-09-19 | 2010-03-25 | Greatpoint Energy, Inc. | Processes for gasification of a carbonaceous feedstock |
CN201288266Y (en) * | 2008-09-22 | 2009-08-12 | 厦门灿坤实业股份有限公司 | Heat insulation cover of electric iron |
WO2011017630A1 (en) * | 2009-08-06 | 2011-02-10 | Greatpoint Energy, Inc. | Processes for hydromethanation of a carbonaceous feedstock |
KR101350061B1 (en) * | 2009-09-16 | 2014-01-14 | 그레이트포인트 에너지, 인크. | Processes for hydromethanation of a carbonaceous feedstock |
WO2011034889A1 (en) * | 2009-09-16 | 2011-03-24 | Greatpoint Energy, Inc. | Integrated hydromethanation combined cycle process |
WO2011034890A2 (en) * | 2009-09-16 | 2011-03-24 | Greatpoint Energy, Inc. | Integrated hydromethanation combined cycle process |
US20110064648A1 (en) * | 2009-09-16 | 2011-03-17 | Greatpoint Energy, Inc. | Two-mode process for hydrogen production |
AU2010310846B2 (en) * | 2009-10-19 | 2013-05-30 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process |
AU2010310849B2 (en) * | 2009-10-19 | 2013-05-02 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process |
-
2008
- 2008-09-19 WO PCT/US2008/076991 patent/WO2009048724A2/en active Application Filing
- 2008-09-19 US US12/234,018 patent/US20090090056A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2852710A1 (en) * | 1978-12-06 | 1980-06-12 | Didier Eng | Steam gasification of coal or coke - with injection of gaseous ammonia or aq. metal oxide as catalyst |
US4336034A (en) * | 1980-03-10 | 1982-06-22 | Exxon Research & Engineering Co. | Process for the catalytic gasification of coal |
US4551155A (en) * | 1983-07-07 | 1985-11-05 | Sri International | In situ formation of coal gasification catalysts from low cost alkali metal salts |
US5435940A (en) * | 1993-11-12 | 1995-07-25 | Shell Oil Company | Gasification process |
US20070000177A1 (en) * | 2005-07-01 | 2007-01-04 | Hippo Edwin J | Mild catalytic steam gasification process |
US20070083072A1 (en) * | 2005-10-12 | 2007-04-12 | Nahas Nicholas C | Catalytic steam gasification of petroleum coke to methane |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8999020B2 (en) | 2008-04-01 | 2015-04-07 | Greatpoint Energy, Inc. | Processes for the separation of methane from a gas stream |
US10464872B1 (en) | 2018-07-31 | 2019-11-05 | Greatpoint Energy, Inc. | Catalytic gasification to produce methanol |
US10344231B1 (en) | 2018-10-26 | 2019-07-09 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with improved carbon utilization |
US10435637B1 (en) | 2018-12-18 | 2019-10-08 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation |
US10618818B1 (en) | 2019-03-22 | 2020-04-14 | Sure Champion Investment Limited | Catalytic gasification to produce ammonia and urea |
CN111676079A (en) * | 2020-06-11 | 2020-09-18 | 大冶市都鑫摩擦粉体有限公司 | Preparation system and process of petroleum coke composition for catalytic gasification |
Also Published As
Publication number | Publication date |
---|---|
US20090090056A1 (en) | 2009-04-09 |
WO2009048724A3 (en) | 2009-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090090056A1 (en) | Compositions for Catalytic Gasification of a Petroleum Coke | |
US20090090055A1 (en) | Compositions for Catalytic Gasification of a Petroleum Coke | |
AU2011248701B2 (en) | Hydromethanation of a carbonaceous feedstock with vanadium recovery | |
AU2008345189B2 (en) | Petroleum coke compositions for catalytic gasification | |
JP7475161B2 (en) | Biomass gasification method | |
AU2017307385A1 (en) | A process and a system for producing synthesis gas | |
DeGroot et al. | The effects of ion-exchanged cobalt catalysts on the gasification of wood chars in carbon dioxide | |
Ross et al. | Catalytic conversion of wood barks to fuel gases | |
JP3975271B2 (en) | Biomass gasification method and catalyst used therefor | |
Onwudili et al. | Reaction of different carbonaceous materials in alkaline hydrothermal media for hydrogen gas production | |
WO2020201785A2 (en) | Improved process for production of hydrogen rich gaseous mixture | |
US11697107B2 (en) | Process for gasification of a carbonaceous raw material of low value as a fuel using a nanocatalyst | |
Takahashi et al. | Hydrogen production from reaction of apple pomace with water over commercial steam reforming Ni catalysts | |
CN109923061B (en) | Hydrothermal stable catalyst formula and preparation process thereof | |
Minowa et al. | Hydrogen Production from Lignocellulosic Materials by Steam Gasification Using a Reduced Nickel Catalyst: Hydrogen production from biomass | |
CN115279866B (en) | Catalytic gasification process, catalyst, use of a catalyst and process for preparing a catalyst | |
WO2013154910A1 (en) | Catalytical gasifier configuration for biomass pyrolysis | |
Tewari et al. | Unlocking Syngas Synthesis from Lignocellulose Pinewood Without Gasifying Agent: Catalytic and Pressure Insights | |
Li et al. | BIOMASS VOLATILE GASIFICATION USING DOLOMITE AND DOLOMITE-NI/AL2O3 COMBINATIONS | |
Tomishige et al. | Catalyst development for the synthesis gas and hydrogen production from biomass by gasification, pyrogasification, and steam reforming | |
Huttinger et al. | Inhibition of hydrogasification of brown coals by moisture: influence of heating rate, temperature and pressure | |
Tristantini et al. | Utilization of CaO coal char Prepared through Ion Exchange of CaCl2 for Partial Oxidation of Methane | |
Diniyati et al. | Catalytic Activity of Coal Char on Water–Gas Shift Reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08838207 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08838207 Country of ref document: EP Kind code of ref document: A2 |