[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008123615A1 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
WO2008123615A1
WO2008123615A1 PCT/JP2008/056827 JP2008056827W WO2008123615A1 WO 2008123615 A1 WO2008123615 A1 WO 2008123615A1 JP 2008056827 W JP2008056827 W JP 2008056827W WO 2008123615 A1 WO2008123615 A1 WO 2008123615A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
temperature
duty
image forming
value
Prior art date
Application number
PCT/JP2008/056827
Other languages
English (en)
French (fr)
Inventor
Teruhiko Namiki
Daizo Fukuzawa
Mahito Yoshioka
Yasuhiro Shimura
Hiromitsu Kumada
Original Assignee
Canon Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kabushiki Kaisha filed Critical Canon Kabushiki Kaisha
Priority to EP08739933.3A priority Critical patent/EP2141552B1/en
Priority to KR1020117019189A priority patent/KR101217506B1/ko
Priority to KR1020097022657A priority patent/KR101100613B1/ko
Priority to CN2008800106352A priority patent/CN101646980B/zh
Priority to US12/203,643 priority patent/US7630662B2/en
Publication of WO2008123615A1 publication Critical patent/WO2008123615A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2039Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5004Power supply control, e.g. power-saving mode, automatic power turn-off
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00362Apparatus for electrophotographic processes relating to the copy medium handling
    • G03G2215/00367The feeding path segment where particular handling of the copy medium occurs, segments being adjacent and non-overlapping. Each segment is identified by the most downstream point in the segment, so that for instance the segment labelled "Fixing device" is referring to the path between the "Transfer device" and the "Fixing device"
    • G03G2215/00413Fixing device
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00362Apparatus for electrophotographic processes relating to the copy medium handling
    • G03G2215/00535Stable handling of copy medium
    • G03G2215/00556Control of copy medium feeding
    • G03G2215/00599Timing, synchronisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00362Apparatus for electrophotographic processes relating to the copy medium handling
    • G03G2215/00535Stable handling of copy medium
    • G03G2215/00717Detection of physical properties
    • G03G2215/00772Detection of physical properties of temperature influencing copy sheet handling
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00362Apparatus for electrophotographic processes relating to the copy medium handling
    • G03G2215/00919Special copy medium handling apparatus
    • G03G2215/00949Copy material feeding speed switched according to current mode of the apparatus, e.g. colour mode
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0103Plural electrographic recording members
    • G03G2215/0119Linear arrangement adjacent plural transfer points
    • G03G2215/0138Linear arrangement adjacent plural transfer points primary transfer to a recording medium carried by a transport belt
    • G03G2215/0145Linear arrangement adjacent plural transfer points primary transfer to a recording medium carried by a transport belt the linear arrangement being vertical
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/20Details of the fixing device or porcess
    • G03G2215/2003Structural features of the fixing device
    • G03G2215/2045Variable fixing speed

Definitions

  • the present invention relates to an image forming apparatus such as a copying machine or a printer, and more particularly to an image forming apparatus having a current detection circuit that detects the amount of current flowing from a commercial power source into the image forming apparatus.
  • a laser printer which is an image forming apparatus that employs an electrophotographic method, includes a latent image carrier that carries a latent image, and a developer (hereinafter referred to as toner) that is applied to the latent image carrier to produce the latent image ′.
  • a developing device that visualizes the toner image, a transfer device that transfers the toner image onto the recording paper conveyed in a predetermined direction, and the recording paper that has received the transfer of the toner image by the transfer device is heated under predetermined fixing processing conditions.
  • a fixing device for fixing the toner image onto the recording paper by applying pressure. .
  • the monitors used in the image forming apparatus have been increased in speed.
  • the size of the monitor has increased and the current consumption of the image forming apparatus has increased.
  • colorization of office documents has progressed, and many color laser printers are being produced.
  • Color laser printers use a large number of motors because they can form multiple images at the same time.
  • the current consumed by the fixing device is large because it is necessary to fix toner images that are superimposed on multiple colors onto recording paper.
  • the power consumed by the image forming apparatus is highest during the period during which the fixing device is heated to a temperature at which fixing can be performed (warm-up period). This is because if the load other than the fixing device starts the print preparation operation during this warm-up period, the power consumed by the other loads is added to the large power consumed by the fixing device.
  • C PU outputs a start signal to a load other than the fixing device, and simultaneously outputs a signal for limiting the input current to the temperature control unit of the fixing device.
  • the power consumption of the fixing device is not as high as during the warm-up period, so even if a load other than the fixing device is activated while the current is flowing through the fixing device, the maximum current of the entire image forming apparatus Rarely exceeded 15 A.
  • the power consumption of loads other than the fixing device has also increased due to the increase in the speed and size of motors used in conjunction with the increase in the speed of image forming apparatuses and the increase in the number of motors used in connection with colorization. For this reason, it has become necessary to design in consideration of the situation where the maximum current of the entire image forming apparatus exceeds 15 A even during the printing period.
  • the current to the fixing device is adjusted at the timing when the load other than the fixing device is activated so that the maximum current of the entire image forming apparatus does not exceed 15 A. It is conceivable to create a limiting sequence. ⁇ PT / JP2008 / 056827
  • the start timing of each load varies, and it is very difficult to design a sequence that limits the current flowing to the fixing device at each timing when many loads other than the fixing device are started.
  • the individual power consumption of loads other than the fixing device is not necessarily constant, but fluctuates. Therefore, if the current that flows to the fixing device when a load other than the fixing device is activated at a certain rate, the current that flows to the fixing device becomes unnecessary even though there is room in the current that can be used by the entire image forming device. It is also possible to limit it. In this case, the processing capability of the fixing device is unnecessarily reduced, and as a result, the processing capability of the image forming apparatus is unnecessarily reduced. ⁇
  • Patent Document 1 discloses that a current detection device that detects an inflow current to the image forming apparatus is provided to limit the current that flows to the fixing device so as not to exceed the maximum current of the commercial power supply.
  • Patent Literature 1 Japanese Patent Publication No. 3-7 3 8 7 0 Disclosure of Invention
  • the present invention for solving the above-described problems includes an image forming unit that forms an image on a recording material, and a fixing unit that is controlled to maintain a control target temperature and heats and fixes the image on the recording material to the recording material. And a current detection circuit that detects an input current from a commercial power source to the apparatus, and when the current detected by the current detection circuit exceeds a predetermined value, the current can be input to the fixing unit.
  • the maximum current is limited, and the maximum current that can be supplied to the fixing unit is limited, and the temperature of the fixing unit falls below a predetermined temperature lower than the control target temperature, the recording material conveyed to the fixing unit The conveyance interval is increased.
  • it is possible to provide an image forming apparatus capable of suppressing a decrease in processing capability while suppressing an input current from a commercial power source to the image forming apparatus to a predetermined value or less.
  • FIG. 1 is a flowchart (part 1) illustrating the image forming operation of the first embodiment.
  • FIG. 2 is a flowchart (part 2) illustrating the image forming operation of the first embodiment. ..
  • FIG. 3 is a diagram illustrating the configuration of the image forming apparatus according to the first embodiment. '
  • FIG. 4 is a diagram illustrating a circuit of the image forming apparatus according to the first embodiment.
  • FIG. 5 is a diagram showing a fixing current waveform in Example 1.
  • FIG. 6 is a diagram for explaining the current suppression operation in the first embodiment.
  • FIG. 7 is a diagram illustrating a circuit of the image forming apparatus according to the second embodiment.
  • FIG. 8 is a flowchart illustrating the image forming operation according to the second embodiment (part 1).
  • FIG. 9 is a flowchart (part 2) illustrating the image forming operation in the second embodiment.
  • FIG. 10 is a flowchart (part 3) illustrating the image forming operation in the second embodiment.
  • FIG. 11 is a circuit diagram of the image forming apparatus according to the third embodiment. .
  • Fig. 1 2 is a flowchart showing the image forming operation in Example 3
  • FIG. 13 is a flowchart for explaining the image forming operation in the third embodiment.
  • FIG. 14 is a flowchart for explaining the image forming operation in the third embodiment.
  • FIG. 15 is a schematic configuration diagram of an image forming apparatus (laser printer) using an electrophotographic process according to Examples 4 to 7.
  • FIG. 16 is a block diagram showing the configuration of a heater control circuit that controls energization driving of the ceramic heater.
  • FIGS. 17A and 17B are diagrams for explaining the outline of the ceramic heater.
  • FIGS. 18A and 18B are diagrams showing a schematic configuration of the heat fixing device.
  • FIG. 19 is a block diagram illustrating the configuration of the current detection circuit 1 2 2 7.
  • FIG. 20 is a block diagram illustrating the configuration of the current detection circuit 1 2 2 8.
  • FIG. 21 is a waveform diagram for explaining the operation of the current detection circuit 1 2 2 7.
  • FIG. 22 is a waveform diagram for explaining the operation of the current detection circuit 1 2 2 8.
  • FIG. 23 is a flowchart illustrating the control sequence of the fixing device by the engine controller according to the fourth embodiment, which is configured by FIGS. 23A and 23B.
  • FIG. 24 is a block diagram illustrating a functional configuration of the engine controller according to the fourth embodiment. '
  • FIG. 25 is composed of FIGS. 25A and 25B, and is a flowchart explaining the control sequence of the fixing device by the engine controller according to the fifth embodiment. 2 6, Mel block diagram showing the configuration of the engine controller according to Embodiment 5 alpha
  • FIG. 27 is a flowchart illustrating the control sequence of the fixing device by the engine controller according to the sixth embodiment, which is configured by FIGS. 27A and 27B.
  • FIG. 28 is a block diagram showing the configuration of the engine controller according to the sixth embodiment.
  • FIG. 29 is a flowchart for explaining the control sequence of the fixing device by the engine controller according to the seventh embodiment. ⁇
  • FIG. 30 is a block diagram illustrating the configuration of the engine controller according to the seventh embodiment.
  • FIG. 31 is a graph showing changes in the input current (inlet current) from the commercial power source to the image forming apparatus when the duty determination algorithm of the fourth embodiment is used.
  • FIG. 3 is a diagram showing a configuration of an “image forming apparatus” (color laser printer with an option device) that is Embodiment 1. .
  • 4 0 1 is a color laser printer
  • 4 0 2 is a cassette for storing recording paper 3
  • 4 0 4 is a pickup roller for feeding recording / paper 3 2 from a paper feed cassette 4 0
  • 4 0 5 is the above-mentioned
  • This is a paper feed roller that conveys the recording paper 3 2 fed out by the pickup roller 40 4.
  • Reference numeral 4 06 denotes a retard roller for making a pair with the paper feed roller 4.0 5 and prevents double feeding of the recording paper 32.
  • Reference numeral 40 7 denotes a registration roller pair.
  • 4 0 9 is an electrostatic adsorption transfer belt (hereinafter referred to as ETB: electrical transfer belt), which transports the recording paper 32 by electrostatic adsorption.
  • ETB electrostatic adsorption transfer belt
  • 4 10 is a process cartridge, a photosensitive drum 3 0 5, a cleaning device 3 0 6 for removing toner on the photosensitive drum 3 0 5, a charging roller 3 0 3, a developing roller 3 0 2, and a toner storage capacity.
  • 4 1 1 is detachable from the color laser printer 4 0 1.
  • Reference numeral 4 2 0 denotes a scanner unit, which is a laser unit that emits a laser beam modulated based on each image signal transmitted from a video controller 4 4 0 to be described later, and from each laser unit 4 2 1. It consists of a polygon mirror 4 2 2 for scanning laser light on each photosensitive drum 3 5, a scanner motor 4 2 3, and an imaging lens group 4 2 4.
  • the process cartridge 4 10 and the scanner unit 4 2 0 exist for four colors (yellow Y, magenta ⁇ , cyan C, and black B).
  • 4 3 1 is a fixing device, and is equipped with a fixing roller 4 3 3 and a pressure roller 4 3 4 having a heater 4 3 2 inside, and a recording paper 3 2 from the fixing roller 4 3 3 It consists of a fixing paper outlet pair 4 3 5.
  • 4 5 1, 4 5 2, 4 5 3 are DC plusless motors
  • 4 5 1 is the main motor that drives the process cartridge 4 1
  • 4 5 2 is the ETB motor that drives the ETB
  • 4 5 3 is It is a fixing motor that drives the fixing device.
  • Reference numeral 20 1 denotes a DC controller that is a control unit of the laser printer 4, which includes a microphone computer 20 7 and various input / output control circuits (not shown).
  • 2 0 2 is a low-voltage power supply circuit that steps down the primary AC current and steps it down to supply power to each DC brushless motor 4 5 1, 4 5 2, 4 5 3, DC controller 2 0 1, etc. '
  • Reference numeral 44 0 denotes a video controller.
  • image data sent from a host computer 4 41 such as a personal computer is received, the image data is developed into bit map data to generate an image signal for image formation.
  • 3 2 3 is a grammage discriminator that irradiates the recording paper with light and discriminates the grammage of the recording paper from the amount of light transmitted through the recording paper.
  • 3 2 4 is a temperature detector that detects the ambient temperature of the image forming device. It is a sensor.
  • 6 5 1 is a paper feeding unit that is an optional device for dealing with different recording papers. 'Feeding paper 3 2 is fed out from paper feeding cassettes 6 5 2 and 6 5 2 that store recording paper 3 2 Pickup roller 6 5 4.
  • a paper discharge unit which is an optional device that sorts the recording paper discharged from the color laser printer 4 0 1 into a paper discharge tray for each predetermined number of sheets.
  • 7 0 1 is a transport unit that is an optional device that transports the recording paper discharged from the color laser printer 4 0 1 to a discharge unit 8 0 1 that is an optional device, and a pair of transport rollers 7 0 3 and 7 0 4
  • the motor 7 0 2 is driven.
  • Reference numeral 9 0 1 denotes an image scanner which is an optional device including a document transport unit 9 30 and a document reading unit 9 3 1.
  • 9 0 2 is a document transport motor that transports a document 9 3 2
  • 9 0 4 is an exposure unit
  • 9 0 5 is an exposure device
  • 9 0 6 is a mirror
  • 9 0 3 is an exposure unit 9 0.4 moved horizontally
  • the scanner drive motor to be driven 9 07 is a reflection device
  • 9 0 8 and 9 0 9 are mirrors.
  • Reference numeral 9 1 0 denotes a light receiving device
  • 9 4 0 denotes an image scanner controller unit that controls the operation of the image scanner 9 0 1 and converts a signal received by the light receiving device 9 1 0 into image data.
  • image data is transmitted from the host computer 4 41 to the video controller 4 40.
  • the video controller 44 0 transmits a PRINT signal that instructs the DC controller 2 0 1 to start image formation, and converts the received image data into bitmap data.
  • the DC controller 20 1 starts driving the scanner motor 4 2 3, the main motor 4 5 1, the ETB motor 4 5 2, and the fixing motor 4 5 3 at a predetermined timing.
  • Drives roller 4 0 4, feed roller 4 0 5, retard roller 4 0 6 Then feed out the recording paper 3 2 from the paper cassette 4 0 2.
  • the temperature detection sensor 3 2 4 detects the ambient temperature (environment temperature) of the image forming apparatus 4 0 1 and corrects the image forming condition selected according to the detection result.
  • the recording paper 3 2 is transported to the registration roller pair 40 7 and temporarily stops.
  • the laser unit 4 2 1 is controlled ON / OFF according to the image signal depending on the bitmap data.
  • Laser light emitted from the laser unit 4 2 1 is irradiated to the photosensitive drum 3 0 5 through the polygon mirror 4 2 2 and the imaging lens group 4 2 4, and is charged to a predetermined potential by the charging roller 3 0 3.
  • An electrostatic image is formed on 0 5.
  • toner is supplied from the developing roller 302 to the electrostatic latent image to form a toner image.
  • the above-described toner image forming operation is performed for yellow Y, magenta ⁇ , cyan C, and black ⁇ at a predetermined timing.
  • the recording paper 3 2 that has been stopped by the registration roller pair 40 7 is re-fed to the paper roller 40 0 9 at a predetermined timing according to the toner image forming operation, and the transfer roller With 4 3 0, the toner images on the photosensitive drum 3 0 5 are sequentially transferred onto the recording paper 3 2 to form a color image.
  • the photosensitive drum 300, the charging roller 300, the laser unit 4 21, the developing roller 3 0 2, the transfer roller 4 30, and the like are configured to form a toner image on the recording paper. Is referred to as an image forming unit.
  • the color toner image formed on the recording paper 3 2 is conveyed to the fixing device 4 3 1 and heated and pressed by the fixing roller 4 3 3 and the pressure roller 4 3 4 heated to the specified temperature
  • the paper After fixing to 3 2, the paper is discharged out of the image forming apparatus 4 0 1 by the fixing discharge roller pair 4 3 5.
  • the discharged recording paper 3 2 passes through the transport unit 7 0 1 and is discharged to the unit 8 0 Conveyed to 1.
  • the recording paper 32 is delivered to the paper output tray 8 6 every predetermined number of sheets.
  • the operation of the image scanner 9 0 1 will be described. After placing the original 9 3 2 in the original transport section 9 3 0, select the copy mode or the scanner mode that only converts the read data into an electronic file from the panel (not shown).
  • the document 9 3 2 is transported to the document reading unit 9 3 1 by the document transport motor 90 2 at a predetermined timing. Then, the exposure unit 9 04 is moved horizontally by the scanner driving motor 90 3, and the original 9 3 2 is irradiated with the light from the exposure apparatus 95. The reflected light from the document is received by the light receiving device 9 1 0 via the mirror 9 0 6 and the mirrors 9 0 8 and 9 0 9 in the reflecting device 9 0 7, and the received light signal is the image scanner controller 9 4. Sent to 0.
  • the image scanner controller unit 9 4 0 receives the received signal as image data and transmits it to the video controller 44 0. After that, the host computer
  • the image scanner controller unit 9 40 sends the received signal to an electronic file in a predetermined file format and transmits it to the host computer 4 41 via the video controller 4 40.
  • image formation on recording paper is not executed.
  • the operation of the image scanner operates independently of the image forming operation of the color laser printer 410.
  • FIG. 4 is a circuit diagram of the image forming apparatus of this embodiment.
  • 2 0 2 is a low-voltage power supply
  • 5 0 1 is an inlet
  • 5 0 2 is an AC filter that removes noise from the commercial power supply and noise from the low-voltage power supply
  • 5 0 3 is a main switch
  • 5 0 4 is a diode bridge
  • 5 0 5 is a converter that generates 24 V
  • 5 0 6 is a comparator control circuit.
  • 5 0 7 is a diode
  • 5 0 8 is a capacitor
  • 5 0 9 is a constant voltage control circuit
  • 5 1 0 is a photocoupler
  • 5 1 1 is a D CZD C converter that generates 3 V from 2 4 V
  • 512 is a current transformer
  • 513 is a resistor
  • 514 is a current detection circuit (first current detection circuit) that detects an input current (total primary current) from the commercial power supply to the image forming apparatus
  • 515 is a zero-cross detection circuit.
  • 521 is an interlock switch that opens and closes in conjunction with the door of the image forming apparatus
  • .522 is a relay
  • 523 is a triac
  • 524, 5.25, and 527 are resistors
  • 526 is a phototriattor coupler
  • 528 is a transistor.
  • 431 is a fixing device (fixing unit)
  • 433 is a fixing roller
  • 434 is a pressure roller
  • 432 is a heater
  • 529 is a thermo switch
  • 530 is a thermistor (temperature detection element) that detects the temperature of the fixing roller 433
  • 531 is a resistor
  • 581 is a capacitor.
  • FIG. 5 is a diagram for explaining the waveform of the fixing current flowing through the fixing device.
  • the DC controller 201 detects the divided voltage of the thermistor 530 and the resistor 531 via the A / 7 D port 1.
  • Thermistor 53 ⁇ has a characteristic that the resistance value decreases with increasing temperature.
  • the temperature of the fixing roller 433 is detected from the pressure voltage.
  • Commercial power is supplied to the heater 432 in the fixing device 431 via a relay 522, a triac 523 and a thermo switch 529.
  • the DC controller 201 detects a so-called zero crossing timing, ie, a so-called zero crossing timing, when the positive / negative polarity of the commercial power is switched via the zero crossing detection circuit 515, and generates an internal zero crossing signal.
  • a predetermined time after the zero cross is detected (hereinafter T OFF ), a triac ON signal is output from ONZOFF port 1 and transistor 528 is turned ON.
  • T OFF a predetermined time after the zero cross is detected
  • a triac ON signal is output from ONZOFF port 1 and transistor 528 is turned ON.
  • the transistor 528 is turned on, a current flows to the phototriac cover 526 through the resistor 527, and the phototriattor coupler 526 is turned on.
  • the phototriattor coupler 526 is turned on, a gate current flows to the triac 523 via the resistors 524 and 525, the triac 523 is turned on, and a current flows to the heater 432 to generate heat.
  • the triac 523 is turned off at the timing of the next zero cross, that is, the gate current is zero.
  • the DC controller 201 controls the fixing roller 433 to a predetermined temperature by controlling the time T OFF .
  • a primary total current flowing in the image forming apparatus 401 is converted into a current by a voltage by a current transformer 512 and a resistor 513.
  • an effective value calculation is performed on the result of current-voltage conversion by the current detection circuit 514, and the result is output to A / D port 2 of the DC controller 201.
  • the DC controller 201 detects the primary total current based on the voltage value of the AZD port 2. When the detected primary total current exceeds the specified current value I 1 im it, the triac ON signal output from the ONZOF F port 1 is delayed (lt) according to the exceeded current value.
  • the fixing current is limited rather than the fixing current that flows when the fixing current is not limited (dashed line in Fig. 5), and the total primary current is I 1 i mit or less (first-stage adjustment operation).
  • the delay time lt is set so that the primary total current does not exceed I 1 i mit ⁇ I p (see FIG. 6) after the current limit.
  • 1 and 2 are flowcharts for explaining the image forming operation in this embodiment.
  • current suppression during continuous image formation will be described with reference to FIGS.
  • the second stage adjustment operation for securing the fixing property while suppressing the current will be described with reference to FIG. ⁇
  • S 1 0 3 it is determined whether the fixing device temperature (detection temperature of the thermistor 5 3 0) has reached Ta, and when it reaches Ta, image formation is started in S 1 0 4, and at a predetermined timing. Feed recording paper 3 2 from paper cassette 4.0 2. During image formation, the current flowing to the fixing unit is controlled so that the fixing unit temperature maintains the control target temperature T f.
  • the temperature Ta is set to the control target of the fixing unit during printing, which is set to a temperature lower than the target temperature Tf, but the temperature Ta can be set to the same temperature as the control target temperature Tf. It can be set appropriately.
  • the temperature of the fixing device is monitored. If the temperature of the fixing device is equal to or higher than a predetermined temperature T b «T f), image formation is continued until printing is completed in S 1 0 6.
  • the temperature Tb is a lower limit fixable temperature wheel that can secure the fixability of the toner image.
  • the paper feed interval is determined in S 1 1 1. If the paper feed interval is less than T s 1 imit, image formation is paused until the fuser temperature (detection temperature of the thermistor 53 0) rises to T f in S 1 1 2 and S 1 1 3 The subsequent paper feed interval is extended by T sa from the current paper feed interval. As a result, the paper feed interval is changed from T s 1 to T s 2 (two T s 1 + T sa) (FIG. 6). And S 1 0 Continue image formation in step 4. In other words, the conveyance interval of the recording material conveyed to the fixing device is increased. By extending the paper feed interval, it is possible to raise the temperature of the fuser when there is a gap between papers, and the temperature drop of the fuser can be reduced even when the fixing current is suppressed (second stage adjustment operation). ⁇
  • the paper feed interval becomes T slimit (limit) via S 107, S 110, and Sill.
  • Tsa the temperature of the fixing device
  • the temperature of the fixing device becomes Tb or less even when the paper feed interval is T s 1 imit (S 1 1 1) performs the third stage adjustment operation shown in Fig. 2.
  • the temperature of the fixing unit is set to the predetermined temperature T b while the conveyance interval of the recording material conveyed to the fixing unit is expanded to a predetermined limit. If it falls below, at least one of the multiple optional devices installed in the device. Operation is limited ..
  • the adjustment operation in the third stage is limited by limiting the image forming operation according to the operating status of the image forming apparatus (stopping some operations of the multiple drive units (loads)). The next total current is suppressed.
  • the image forming apparatus according to the present embodiment has a scanner mode in which the image of the original is read by the image scanner 9 0 1 and converted into an electronic file, and the image scanner 9 0 1 reads the image of the original and outputs this image information. Accordingly, the laser printer 4 0 1 has a copy mode for forming an image on a recording sheet.
  • the laser printer 4 0 1 has a printer mode in which an image is formed on a recording sheet in accordance with image information transmitted from an external device 4 41 such as a host computer.
  • the printer mode can be executed even when an original is read in the scanner mode.
  • the scanner mode can be executed even when image formation is performed in the printer mode.
  • S 1 5 1 it is determined whether or not the image scanner 9 0 1 is operating.
  • the image scanner 9 0 1 is operating in scanner mode or copy mode.
  • the scanning operation is stopped in S 1 5 2 (if the scanning operation is in the middle of one original, the original is scanned to the end and stopped).
  • 1 Use 5 3 to determine whether the scanner mode or copy mode.
  • scan operation is resumed in S 1 5 6.
  • the image is formed in S 15 4 when the image is formed in the printer mode.
  • the printer mode is in a permitted state, and if new image information is transmitted from the external device 44 1, image formation according to this image information can be executed. That is, it is only necessary to avoid a situation in which the laser printer 4 0 1 and the image scanner 9 0 1 operate simultaneously.
  • the scanner mode is not set in S 15 3, that is, in the copy mode, after the image of the scanned document is formed in S 1 5 7 and S 1 5 8 (reading of S 1 52 is stopped) The image is formed according to the image information that has already been read before), and the remaining original is read in S 15 9. Then, the remaining originals read in S 1 60 and S 16 1 are printed.
  • Fig. 6 shows the relationship between the primary total current and the fuser temperature when the current suppression described in Figs. 1 and 2 is performed.
  • the current suppression effect in this example will be described with reference to FIG.
  • the fixing device temperature is a predetermined temperature T b (a temperature T lower than the steady-state target temperature T f by a predetermined value).
  • T b a temperature T lower than the steady-state target temperature T f by a predetermined value.
  • the processing can be executed until the paper feed interval T s 2 finally reaches the predetermined paper feed interval upper limit T s 1 imit. Furthermore, if the image formation is continued, it is possible that the re-fixer temperature falls below Tb at t5. Since the paper feed interval has reached T s 1 imit at this point, the operation of some of the drive units is restricted as shown in Table 1 in 6. As a result, image formation is continued while the primary temperature is kept below I 1 imit and the fuser temperature is kept above Tb (third stage adjustment operation).
  • the primary total current can be controlled not to exceed I 1 imit while preventing the toner image from being insufficiently fixed.
  • control is performed so as not to exceed the maximum current of the commercial power source, and the desired fixing property is achieved. Can be ensured, and the decrease in image forming capability can be minimized.
  • not only the primary total current but also the current flowing through the fixing device is detected, and it is determined whether or not the reason why the primary total current has increased is the increase in the current flowing through the fixing device. It differs from Example 1 in that the third stage adjustment operation is set.
  • FIG. 7 is a circuit diagram of the image forming apparatus of this embodiment. Those already described in FIG. 4 of Example 1 are denoted by the same reference numerals and description thereof is omitted.
  • 6 0 1 is a current transformer
  • 6 0 2 is a resistor
  • the result of the current-to-voltage conversion is calculated by the fixing current detection circuit (second current detection circuit) 6 0 3, and the result is output to AZD port 5 of DC controller 2 0 1.
  • DC controller 2 0 1 is AZD port 5
  • the fixing current is detected based on the voltage value.
  • FIG. 8, FIG. 9, and FIG. 10 are flowcharts for explaining the image forming operation in this embodiment.
  • the first-stage adjustment operation (current suppression operation) will be described with reference to FIG.
  • the heating of the fixing roller 4 3 3 is first opened in S 2 0 1 by the above-described method, and the main motor 4 5 1 and £ 8 motor 4 5 2 are fixed in S 2 0 2.
  • Landing motor 4 5 Start driving the motor such as 3.
  • S 2 0 3 it is determined whether the fixing unit temperature has reached Ta, and when it reaches Ta, image formation is started in S 2 0 4, and the recording paper is fed from the paper feed set 4 0 2 at a predetermined timing. 3 Feed 2 in.
  • the temperature of the fixing device is controlled so as to maintain the control target temperature T f.
  • the fixing device temperature is monitored. If the fixing device temperature is equal to or higher than the predetermined temperature T b, image formation is continued until printing is completed in S 2 0 6. On the other hand, if it is detected in S 2 0 5 that the temperature of the fixing device is equal to or lower than T b, it is determined in S 2 0 7 whether the fixing current is limited (adjustment operation in the first stage described above). If the fixing current is not limited, it is determined in S 2 0 8 that the fixing device has an abnormally low temperature, and printing is terminated in S 2 0 9.
  • S 2 07 If it is determined in S 2 07 that the fixing current is limited, it is determined in S 2 1 0 whether or not the image formation is continued, and if it is the last image formation, the image formation is terminated as it is. On the other hand, if image formation continues, the paper feed interval is determined in S 2 1 1. If the paper feed interval is less than T s 1 imit, image formation is paused until the fuser temperature rises to T f in S 2 1 2, and the subsequent paper feed intervals are Extend by T sa than the paper feed interval (second stage adjustment). Then, image formation is continued in S 2 0 4. By extending the paper feed interval, it is possible to raise the temperature of the fuser during the interval between papers, and the temperature drop of the fuser can be reduced even when the fixing current is suppressed.
  • the third stage adjustment operation of the second embodiment will be described with reference to FIGS.
  • Table 2 the third-stage adjustment operation of this embodiment suppresses the primary total current by limiting the image forming operation according to the operation state of the image forming apparatus and the fixing current.
  • S 25 1 of FIG. 9 it is determined whether the image scanner 901 is operating. If it is operating, the fixing current is detected in S 252. If the fixing current is less than IF th (the detection value of the fixing current detecting means is less than the predetermined value), the motor drive current is large (to a load other than the fixing device). (The current that flows is large) and the scanning operation is stopped in S253 (if the scanning operation is in the middle of one original, the original Read to the end and stop). Next, in S 2 5 4, it is determined whether the scanner mode or copy mode. In the scanner mode, image formation is continued until the end of printing in S 2 5 5 and S 2 5 6 (allowing image formation in the printer mode). After printing is completed, the scanning operation is resumed in S 2 5 7. On the other hand, in the copy mode, after forming an image of a scanned document at S 2 5 8> S 2 5 9, the remaining document is scanned at S 2 60. Then, the remaining originals read in S 2 61 and S 2 62 are printed.
  • S 2 71 check the operating status of the discharge unit 8 0 1.
  • the fixing current is detected in S 2 72, and if the fixing current is less than IF th, the motor drive current is large (to a load other than the fixing unit). (The current that flows is large.)
  • S2 7 3 prohibits sorting and still operation (the recording paper that is in the middle of stapling is terminated during the sort, and then operation is prohibited). Then, image formation is performed until the end of printing in S 2 7 4 and S 2 7 5 (image formation in the printer mode is permitted).
  • the fixing current is greater than IF th in S 2 7 2, it is determined that the toner image formed on the recording paper with a large basis weight is being fixed, and the image forming speed is set to 12 2 in S 2 7 6. change. Then, image formation is performed until printing is completed in S 2 7 7 and S 2 7 8 (image formation in the printer mode is permitted). On the other hand, if it is determined in S 2 71 that the paper discharge unit 8 0 1 is not operating, the fixing current is detected in S 2 79.
  • the fixing current is equal to or greater than IF th, it is determined that the toner image formed on the recording paper with a large basis weight is being fixed, and the image forming speed is changed to 1/2 speed in S 2 79, and S 2 7 7 and S 2 7 8 Perform image formation until the end of printing (allow image formation in printer mode). If the fixing current is less than IF th, it is determined in S 2 8 3 that an abnormal current is flowing in the image forming apparatus, and printing is stopped in S 2 8 4.
  • control is performed so as not to exceed the maximum current of the commercial power source, and the desired fixing property is achieved. Can be ensured, and the decrease in image forming capability can be minimized. ..
  • Embodiment 3 An “image forming apparatus” that is Embodiment 3 will be described.
  • the primary total current not only the primary total current but also the basis weight of the recording paper and the ambient temperature (environmental temperature) of the image forming device are detected, and the reason why the primary total current has increased is the increase in the current flowing through the fuser.
  • FIG. 11 is a circuit diagram of the image forming apparatus of this embodiment. Those already described in FIG. 4 of Embodiment 1 are denoted by the same reference numerals and description thereof is omitted.
  • 3 2 3 is a grammage discriminating device (basis weight detecting means) having a light irradiation element 5 61 and a transmitted light amount detecting element 5 6 3.
  • the DC controller 2 0 1 turns on the light irradiation element 5 6 1 at a predetermined timing when the recording paper 3 2 reaches the basis weight determination device 3 2 3.
  • Transmitted light intensity detection element 5 6 3 outputs the output corresponding to the received light intensity to A / D port 3 of DC controller 2 0 1, and DC controller 2 0 1 is based on the voltage value of AZD port 3 Detect the amount.
  • 3 2 4 is a temperature detection sensor that detects the ambient temperature of the image forming device (environmental temperature detection The output corresponding to the detected temperature is output to A / D port 4 of DC controller 2 0 1.
  • the DC controller 2 0 1 detects the ambient temperature of the image forming apparatus based on the voltage value of the AZD port 4. .
  • FIG. 12, FIG. 13, and FIG. 14 are flowcharts for explaining the image forming operation of this embodiment.
  • the current suppression operation during continuous image formation will be described below with reference to FIGS.
  • the second stage adjustment operation extension of the paper feed interval
  • the fixing unit temperature is detected to be T b or less in S 3 0 5
  • whether or not the fixing current is limited in S 3 0 7 (determining whether or not the above-mentioned first stage adjustment operation has been executed. If the fixing current is not limited, it is determined that the fixing unit has an abnormally low temperature in S 3 0 8, and printing is terminated in S 3 0 9. It is determined that the fixing current is limited in S 3 0 7. In this case, it is determined whether or not the image formation is continued in S 3 1 0, and if it is the last image formation, the image formation is terminated as it is.
  • the third-stage adjustment operation suppresses the primary total current by limiting the image forming operation according to the operation status of the image forming apparatus, the basis weight of the recording paper, and the ambient temperature. .
  • the scanning operation is stopped at S 356.
  • S 357 it is determined whether the scanner mode or the copy mode.
  • image formation is continued until printing is finished in S358 and S359, and after the printing is finished, the reading operation is resumed in S360.
  • copy In the one mode after forming the scanned original image in S 3 6 1 and S 3 6 2, the remaining original is read in S 3 6 3. Then, the remaining originals read in S 36 4 and S 3 6 5 are printed. If the basis weight is 90 gZm 2 or more with S 3 5 2, detect the ambient temperature with S 36 6.
  • the ambient temperature and the recording paper temperature are the same, and the lower the recording paper temperature, the higher the fixing device temperature. If it is determined in S 3 6 6 that the ambient temperature is 15 ° C or higher, it is determined that fixing is possible even if the fixing unit temperature is low, and the operation returns to S 3 5 3 and performs the above operation. On the other hand, if the ambient temperature is less than 15 ° C, it is determined that the fixing device temperature needs to be maintained at Tb or higher, and the image forming speed is changed to .1 / 2 speed in S 367. Then, image formation is performed until the end of printing in S 3 68 and S 369.
  • S 40 1 the operation state of the discharge unit 80 1 is confirmed. If the output unit 80 1 is operating, the basis weight of the recording paper is detected in S 40 2, and if the basis weight is less than 90 g / m 2 , fixing is possible even if the fixing unit temperature is Tb. Judgment is made and image formation is performed in S403. If the fixing device temperature is higher than Tb—10 ° C., image formation is continued until printing is completed in S 40 3, S 404 and S 40.5. When the fixing device temperature becomes Tb—10 ° C. or lower (S 404), sorting and stippling are prohibited in S 406. Then, in S407 and S4088, image formation is performed until printing is completed.
  • the ambient temperature is detected in S409. If it is determined that the ambient temperature is 15 ° C or higher, it is determined that fixing is possible even if the fixing unit temperature is low, and the operation returns to S.403. On the other hand, if the ambient temperature is less than 15 ° C, it is determined that the fixing device temperature needs to be maintained at Tb or higher, and the image forming speed is changed to 1/2 speed in S 4 10. Then, image formation is performed in S 4 1 1 and S 4 1 2 until printing is completed.
  • S 4 1 3 detects the basis weight of the recording paper. If the basis weight is less than 90 g Zm 2 , it is determined that the primary total current is large in S 4 1 4 because an abnormal current is flowing in the image forming device, and printing is stopped in S 4 1 5 To do. If the basis weight is 90 g / m 2 or more, S 4 16 detects the ambient temperature. If the ambient temperature is 15 ° C or higher, determine that the primary total current is large because an abnormal current is flowing in the image-type device, return to S 4 1 4 and stop printing.
  • the above-described control is performed, so that the maximum current of the commercial power source can be reduced even when the current consumption of the image forming apparatus increases during continuous image formation. It is possible to control so as not to exceed the limit, to secure a desired fixing property, and to minimize a decrease in image forming ability.
  • Examples 1 to 3 description was made using a color laser printer.
  • the image forming apparatus is not limited to a color laser printer, and may be a monochrome laser printer.
  • the execution of the third stage adjustment operation may be determined according to the operation status of the optional paper feed mute.
  • Example 2 the primary total current and the current flowing through the fixing device were detected, and it was determined whether or not the reason why the primary total current increased was an increase in the current flowing through the fixing device. However, only the primary total current is detected.For example, the primary total current increased due to the difference between the primary total current when the fuser is OFF and when it is OFF. It may be determined whether or not the current flowing through the vessel is increased.
  • the image forming apparatus in which the adjustment operation from the first stage to the third stage is set has been described, but at least the adjustment operation in the first stage and the second stage is set. Just do it. Even with this configuration, it is possible to provide an image forming apparatus capable of suppressing a decrease in processing capability while suppressing an input current from a commercial power source to the image forming apparatus to a predetermined value or less.
  • Embodiments 1 to 3 The difference from Embodiments 1 to 3 is the method for determining the upper limit value of the current that can be supplied to the fixing device in the first-stage adjustment operation (current limitation to the fixing device). If Embodiments 4 to 7 are used as the first-stage adjustment operation, it is possible to further suppress a decrease in the processing capability of the image forming apparatus.
  • FIG. 15 is a schematic configuration diagram of an image forming apparatus (laser printer) using an electrophotographic process according to Examples 4 to 7.
  • the laser printer main unit 1 1 0 1 (hereinafter referred to as the main unit 1 1 0 1) can be equipped with a force set 1 1 0 2 for storing the recording sheet S, and the recording sheet S supplied from this cassette 1 1 0 2 can be attached to the recording sheet S.
  • 1 1 0 3 is a cassette presence / absence sensor that detects the presence / absence of the recording sheet S in the cassette 1 1 0 2.
  • 1 1 0 4 is a cassette size sensor that detects the size of the recording sheet S accommodated in the cassette 1 1 0 2, and is composed of, for example, a plurality of micro switches.
  • Reference numeral 1 1 0 5 denotes a paper feed roller that picks up the recording sheet S from the cassette 1 1 0 2 and conveys it.
  • a registration roller pair 1 1 0 6 for conveying the recording sheet S synchronously is provided downstream of the paper feed roller 1 1 0 5.
  • an image forming unit 1 1 0 8 for forming a toner image on the recording sheet S based on the laser beam from the laser scanner unit 1 10 7 is provided downstream of the registration roller pair 1 1 0 6. Yes. Further, the toner image formed on the recording sheet S is thermally fixed downstream of the image forming unit 1 1 0 8.
  • a fixing device 1 109 is provided.
  • a paper discharge sensor 1 1 10 for detecting the conveyance state of the paper discharge unit, a paper discharge roller pair 1 1 1 1 for discharging the recording sheet S, and an image are formed and fixed.
  • a loading tray 1 1 12 is provided for loading and storing the recorded sheets S.
  • the conveyance reference of the recording sheet S is set to be approximately the center with respect to the length in the direction orthogonal to the conveyance direction of the recording sheet S, that is, the width of the recording sheet S.
  • the laser scanner unit 1 107 has a laser unit 1 13 that emits laser light modulated based on an image signal (image signal VDO) transmitted from the external device 1 131.
  • the laser light from the laser unit 1 1 1 3 is reflected by a polygon mirror that is driven to rotate by a polygon motor 1 1 14 and reflected by an imaging lens 1 1 1 5, a folding mirror 1 1 1 6, etc. 1 1 17 Scan over.
  • the image forming unit 1 1 08 includes a photosensitive drum 1 1 17, a primary charging roller 1 1 1 9, a developing unit 1 1 20, a transfer charging roller 1 121, a cleaner 1 122, and the like necessary for a known electrophotographic process. ing.
  • the fuser 1 1 09 detects the surface temperature of the fixed film heater 1 109 c and the ceramic heater 1 109 c installed in the fixing film 1 109 a, the pressure roller 1 109 b, and the fixing film 1 109 a.
  • Thermistor 1 109 d Thermistor 1 109 d.
  • the main motor 1 123 applies a rotational force to the paper feed roller 1 105 via the paper feed roller clutch 1 1 24. Further, a rotational force is applied to the registration roller pair 1 10 6 via a registration roller clutch 1 125. Further, a driving force is also applied to each unit of the image forming unit 1 108 including the photosensitive drum 1 1 17, the fixing device 1 109, and the paper discharge roller pair 1 1 1 1.
  • An engine controller 1126 controls the electrophotographic process by the laser scanner unit 1107, the image forming unit 1108, the fixing unit 1109, and the conveyance control of the recording sheet S in the main body 1101.
  • 1 1 27 is a video controller It is a troller and is connected to an external device 1 131 such as a personal computer by a general-purpose interface (Centronics, RS 232 C, etc.) 1130.
  • the video controller 1 127 expands the image information sent via the general-purpose interface 1130 into bit data, and sends the bit data to the engine controller 1126 as VDO signal ⁇ .
  • FIG. 1′6 is a block diagram showing a configuration of a heater control circuit (power supply control circuit) for controlling energization driving to the ceramic heater 1109 c in the embodiment of the present invention. .
  • Reference numeral 1201 denotes an AC power supply (commercial power supply) to which the image forming apparatus is connected.
  • an AC power source 1201 is supplied to a heating element 1203 and a heating element 1 220 of a ceramic heater 1 109 c through an AC filter 1202 and a relay 1241.
  • the heat generator 1203 and the heat generator 1220 constituting the ceramic heater 1109 c generate heat.
  • the supply of electric power to the heating element 1203 is controlled by turning on and off the triac 1204 (energization switching control).
  • Resistors 1205 and 1206 are bias resistors of the triac 1204, and the phototriattor coupler 1207 is a device for securing a creepage distance between the primary and secondary.
  • the resistor 1208 is a resistor for limiting the current flowing through the phototriac coupler 1207, and the transistor 1209 turns on / off the power to the phototriattor coupler 1207.
  • the transistor 1209 operates in accordance with a signal (ON1) supplied from the engine controller 1126 via the resistor 1210.
  • the supply of power to the heating element 1220 is controlled by turning on and off the triac 1213.
  • Resistors 1214 and 1215 are bias resistors of Triac 1213, and Phototriat-Takabra 1216 is a device for securing a creepage distance between the primary and secondary.
  • This photo triac coupler 1216 The triac 1 2 1 3 can be turned on by energizing the light emitting diode.
  • the resistor 1 2 1 7 is a resistor for limiting the current flowing through the phototriac coupler 1 2 1 6.
  • the transistor 1 2 1 8 is turned on and off by the phototriac coupler 1 2 1 6 in accordance with a signal (ON2) supplied from the engine controller 1 1 2 6 via the resistor 1 2 1 9.
  • the AC power 1 1 2 0 1 is input to the zero cross detection circuit 1 2 1 2 via the AC filter 1 2 0 2.
  • the zero cross detection circuit 1 2 1 2 notifies the engine controller 1 1 2 6 with a pulse signal that the voltage of the AC power 1 1 2 0 1 is equal to or lower than a threshold value.
  • the signal sent to the engine controller 1 1 2 6 is referred to as a ZEROX signal.
  • the engine controller 1 1 2 6 detects the edge of this ZEROX signal pulse, and controls on / off of the triac 1 2 0 4 or 1 2 1 3 by phase control or wave number control.
  • the heater current supplied to the heating elements 1 2 0 3 and 1 2 2 0 by driving these triacs 1 2 0 4 and 1 2 1 3 is converted into a voltage by a current transformer 1 2 2 5, .Current detection circuit (second current detection circuit) 1 2 2 Input to 7.
  • the current detection circuit 1 2 2 7 converts the voltage-converted heater current waveform into an effective value or its square value, and inputs it to the engine controller 1 1 2 6 as the HCRRT1 signal.
  • the HCRRT1 signal input in this way is converted to 870 by the engine controller 1 1 2 6 and managed as a digital value.
  • the current from the AC power source 1 2 0 1 input through the AC filter 1 2 0 2 is converted into a voltage by the current transformer 1 2 2 6, and the current detection circuit (first current detection circuit) 1 2 2 Input to 8.
  • the current detection circuit 1 2 2 8 the combined current waveform of the voltage-converted heater current waveform and low-voltage power supply current waveform is converted to the effective value or its square value, and the HCRRT2 signal is used as the engine controller 1 1 2 Enter in 6.
  • the HCRRT2 signal input in this way is the engine controller 1 1 2
  • 1st current detection circuit 1 2 2 8 This is a circuit that detects the input current (total primary current) from the commercial power supply to the image forming apparatus, and the second current detection circuit 1227 is a circuit that detects the current flowing through the fixing device.
  • the thermistor (temperature detection element) 1109 d is an element for detecting the temperature of the ceramic heater 1109 c in which the heating elements 1203 and 1220 are formed.
  • the thermistor 1109d is arranged on the ceramic heater 1109c via an insulator having a dielectric strength voltage so as to secure an insulation distance from the heating elements 1203, 1220.
  • the temperature detected by the thermistor 1 109 d is detected as a divided voltage between the resistor 1222 and the thermistor 1109 d and input to the engine controller 1 126 as a TH signal.
  • the TH signal input in this way is AZD converted by the engine controller 1126 and managed as a digital value. '
  • the temperature of the ceramic heater 1109 c is monitored by the engine controller 1126 as a TH signal. Then, by comparing with the set temperature (control target temperature) of the ceramic heater 1109 c set by the engine controller 1126, the power ratio to be supplied to the heating elements 1203 and 1 220 constituting the ceramic heater 1 109 c ( Calculate (duty). Then, it is converted into a phase angle (phase control) or wave number (wave number control) corresponding to the supplied power ratio, and the engine controller 1126 sends an ON1 signal to the transistor 1209 or an ON2 signal to the transistor 1218 according to the control conditions. To do. In this way, the temperature of the ceramic heater 1109c is controlled.
  • the upper limit power ratio is accurately calculated based on the HCRRT1 and HCRRT2 signals reported from the current detection circuit 1227 and current detection circuit 1228. Then, control is performed so that power equal to or less than the upper power ratio is energized.
  • the following control table is provided in the engine controller 1126, and control is performed based on this control table.
  • an excessive temperature rise prevention portion 1 2 2 3 is arranged in the ceramic heater 1 1 0 9 c.
  • This overheating prevention part 1 2 2 3 is a thermal fuse ⁇ j.
  • the engine controller 1 1 2 6 sets an abnormal temperature value for detecting abnormal high temperatures separately from the temperature control set temperature. ing. If the temperature information indicated by the ⁇ signal exceeds the abnormal temperature value, the engine controller 1 1 2 6 sets the RLD signal to low level. This turns off transistor 1 24 2 and opens relay 1 2 4 1. In this way, the power supply to the heating elements 1 2 0 3 and 1 2 2 0 is cut off. Normally, during temperature control, the engine controller 1 1 26 always outputs the RLD signal at a high level to turn on the transistor 1242 and turn on the relay 1241 (conducting state).
  • the resistor 1243 is a current limiting resistor, and the resistor 1244 is a bias resistance between the base and emitter of the transistor 1242.
  • the diode 1245 is a back electromotive force absorbing ffl element when the relay 1241 is off. .
  • FIGS. 17 and 17B are views for explaining the outline of the ceramic heater 1109c according to the present embodiment.
  • Fig. 17A is a cross-sectional view of the ceramic surface heater
  • 1301 in Fig. 17B shows the surface on which the heating elements 1203 and 1220 are formed
  • 1302 in Fig. 17B shows the surface indicated by 1301. Indicates the opposite side (see Figure 17A).
  • This ceramic surface heater 1109 c is composed of two ceramic insulating substrates 1331 such as SiC, A1N, and A12O3, and heating elements 1203 and 1220 formed by paste printing on the surface of the insulating substrate 1331. It is composed of a protective layer 1334 made of glass or the like that protects the heating element. On the protective layer 1334, a thermistor 1109d for detecting the temperature of the ceramic surface heater 1109c and an overheat prevention part 1223 are arranged.
  • the thermistor 1109d and the overheat prevention section 1223 are the minimum sheet-feeding standard, that is, a position symmetrical to the right with respect to the lengthwise center of the heating sections 1203a and 1220a. It is arranged at a position inside the recording sheet width.
  • the heating element 1203 is a part 1203 a that generates heat when power is supplied, the electrode parts 1203 c and 1203 d to which power is supplied via the connector, and these electrode parts 1203 c and 1203 d and the heating element. And a conductive portion 1203 b for connecting to 1203.
  • the heating element 1220 includes a portion 122 0 a that generates heat when electric power is supplied, an electrode portion 1203 c and 1220 d to which electric power is supplied via a connector, and a conductive member connected to the electrode portion 1203 c and 1220 d. Part 1220 b.
  • the electrode part 1203 c is connected in common to the two heating elements 1203 and 1220.
  • the heating element 1203 and 1220 are common electrodes.
  • a glass layer may be formed on the surface facing the insulating substrate 1331 on which the heating elements 1203 and 1 220 are printed in order to improve slidability.
  • the common electrode 1203 c is connected from the HOT side terminal of the AC power source 1201 via the overheat prevention unit 1223.
  • the electrode part 1203 d is connected to the triac 1 204 that controls the heating element 1203 and is connected to the Neutral terminal of the AC power source 12 1.
  • Electrode portion 1 220 d is electrically connected to TRIAC 12 13 that controls heating element 1220, and is connected to the Neutral terminal of AC power supply 1201.
  • the ceramic heater 1 109 c is supported by a film guide 1 162 as shown in FIGS. 18A and 18B.
  • Figs. 18A and 18B are diagrams showing a schematic configuration of the thermal fixing device 1 109 according to the present embodiment.
  • Figs. 1 and 8A are heating elements 1 203, 1 22 with respect to the insulating substrate 1331.
  • the case where 0 is on the opposite side to the fixing nip portion (the region where the fixing film 1 109 a and the pressure roller 1 109 b are in contact) is shown.
  • FIG. 18B shows the case where the heating elements 1203 and 1220 are located on the fixing dip portion side with respect to the insulating substrate 1331.
  • the fixing film 1 109 a is manufactured in a cylindrical shape using a heat-resistant material (for example, polyimide) as a material, and is externally fitted to a film guide 1062 that supports a ceramic heater 1 110 c on the lower surface side.
  • a ceramic heater 1 109 c on the lower surface of the film guide 1062 and an elastic pressure roller 1 109 b as a pressure member are pressed against each other via a fixing film 1 109 a.
  • a fixing ap portion having a predetermined width as a heating portion is formed.
  • an excessive temperature rise prevention unit 1223 for example, a thermostat is in contact with the insulating substrate 1133 1 surface of the ceramic heater 1109c or the surface of the protective layer 1334.
  • the position of the overheat prevention portion 1223 is corrected by the film guide 1062, and the heat sensitive surface of the overheat prevention portion 1223 is in contact with the surface of the ceramic heater 1109c.
  • the thermistor 1 109 d is also in contact with the surface of the ceramic heater 1 109 c.
  • the ceramic heater 1 109 c may have the heating elements 1203 and 1 220 on the side opposite to the tip portion, or as shown in FIG. 1 220 may be on the ep side.
  • slidable grease may be applied to the interface between the fixing film 1 10 9a and the ceramic heater 1 109c.
  • FIG. 19 is a block diagram for explaining the configuration of the current detection circuit (second current detection circuit) 1227 according to the present embodiment
  • FIG. 21 is a waveform diagram for explaining the operation of this current detection circuit 12.27.
  • the current detection circuit 1227 inputs the secondary current of the load current (fixing current) of the detection target (fixing unit) and the voltage corresponding to that is input to the voltage holding circuit.
  • Capacitor 1074 a Holds and outputs.
  • the current transformer 1225 converts the current waveform into a voltage on the secondary side.
  • a half-wave rectifier circuit that rectifies the voltage output of the current transformer 1 225 by diodes 1051a and 1053a is constructed, and a load resistance of 105.2a and 1054a is connected.
  • 1603 shows a waveform half-wave rectified by the diode 1053a.
  • This voltage waveform is input to the multiplier 1056 a through the resistor 1055 a.
  • this multiplier 1056a functions as a square circuit that outputs a squared voltage waveform. This squared waveform is input to one terminal of the operational amplifier 1059a via the resistor 1057a.
  • the reference voltage 1 084 a is input to the + terminal of the operational amplifier 1059 a via the resistor 1058 a and is inverted and amplified by the feedback resistor 1060 a (functions as an amplifier circuit). It is assumed that the operational amplifier 1059a is supplied with power from a single power source.
  • the 1605 shows a waveform that is inverted and amplified with reference to a reference voltage of 1084 a.
  • the The output of the operational amplifier 1 0 5 9 a is input to the + terminal of the operational amplifier 1 0 7 2 a constituting the integrating circuit.
  • the reference voltage 1 0 8 4 a and the voltage difference between the waveform input to its + terminal and the current determined by the resistor 1 0 7 1 a are input to the capacitor 1 0 7 4 a
  • the transistor 10.7 3a is controlled so that it flows in. In this way, the capacitor 1 0 7 4 a is charged with the reference voltage 1 0 8 4 a and the current determined by the voltage difference between the waveform input to the + terminal and the resistor 1 0 7 1 a.
  • This DIS signal turns on after a predetermined time Tdly from the rising edge of the ZEROX signal, and turns off at the same timing as, or just before, the falling edge of the ZEROX signal.
  • Tdly the rising edge of the ZEROX signal
  • the energization period of the heater which is the half-wave rectification period of the diode 1 0 5 3 a, can be controlled without interference.
  • the peak hold voltage Vlf of the capacitor 10 7 4 a is the integral value for the half period of the square value of the waveform obtained by converting the current waveform to the secondary side by the current transformer 1 2 2 5. It becomes.
  • the voltage value thus peak-held in the capacitor 10 7 4 a is sent from the current detection circuit 1 2 2 7 to the engine controller 1 1 2 6 as the HCRRT1 signal.
  • the voltage Vlf corresponds to the current detected by the current detection circuit (second current detection circuit) 1 2 2 7 (current flowing through the heater of the fuser).
  • FIG. 20 is a block diagram illustrating the configuration of the current detection circuit (first current detection circuit ;! 1 2 2 8) according to the present embodiment.
  • FIG. 22 shows the operation of this current detection circuit 1 2 2 8.
  • This circuit also inputs the secondary current of the power source current to be detected (the input current from the commercial power source to the image forming device) and holds the corresponding voltage in the voltage holding circuit (capacitor 1075 b). Output.
  • Reference numeral 1701 denotes a power supply current I 2 supplied via the AC filter 1202, and this current 12 is voltage-converted on the secondary side by a current transformer 1226.
  • This power supply current I 2 is the sum of the current II (1601) flowing through the heater 1109 c (heating elements 1203 and 1220) and the low-voltage power supply (LVPS) current 13.
  • the voltage output from this current transformer 1226 is rectified by diodes 1051b and 1053b, and 1052b and 1054b are connected as load resistors.
  • 1703 shows the voltage waveform half-wave rectified by the diode 1053 b, and this waveform is input to the multiplier 1056 b via the resistor 105.5 b.
  • 1704 shows a waveform squared by the multiplier 1056 b. This squared voltage waveform is input to one terminal of the operational amplifier 1059b via the resistor 1057b.
  • the reference voltage 1084 b is input to the + terminal of the operational amplifier 1059 b via the resistor 1058 b and is inverted and amplified by the feedback resistor 106 ° b.
  • the operational amplifier 1059b is supplied with a single power source.
  • the waveform thus inverted and amplified with reference to the reference voltage 1084 b, that is, the output of the operational amplifier 1059 b is input to the + terminal of the operational amplifier 1072 b.
  • the operational amplifier 1072 b controls the transistor 1073 b so that the reference voltage 1084 b and the voltage difference between the waveform input to its + terminal and the current determined by the resistor 1071 b flow into the capacitor 107 4 b. ing. As a result, the capacitor 1074 b is charged with the current determined by the voltage difference between the reference voltage 1084 b and the waveform input to the + terminal and the resistor 1071 b. When the half-wave rectification section by diode 1 053 b ends, the charging current to capacitor 1074 b disappears, and the voltage value is peak-held.
  • diode 10 By turning on the transistor 1 0 7 5 b during the half-wave rectification period of 5 1 b, the voltage charged in the capacitor 1 0 7 4 b is discharged.
  • This transistor 1 0 7 5 b is turned on / off by a DIS signal from the engine controller 1 1 2 6 shown by '1 7 0 7.
  • Based on the ZEROX signal shown by 1 7 0 2 Controls transistor .1 0 7 5 b.
  • the DIS signal turns on after a predetermined time Tdly from the rising edge of the ZEROX signal, and turns off during the half-wave rectification period of the diode 1 0 5 3 b due to the falling edge of the ZEROX signal or turning off immediately before. It can be controlled without interference. .
  • the peak hold voltage V2f of the capacitor 10 7 4 b is an integral value for the half period of the square value of the waveform obtained by converting the current waveform to the secondary side by the current transformer 1 2 2 6.
  • the voltage of the capacitor 1 0 7 4 b is sent from the current detection circuit 1 2 2 8 to the engine controller 1 1 2 6 as the HCRRT2 signal indicated by 1 7 0 6.
  • the voltage V2f corresponds to the current (input current to the image forming apparatus) detected by the current detection circuit (first current detection circuit) 1 2 28.
  • FIGS. 2 3A and 2 3 B are flowcharts for explaining a control sequence of the fixing device 1 1 0 9 by the engine controller 1 1 2 6 according to Embodiment 4 of the present invention.
  • FIG. 24 is a block diagram illustrating a functional configuration of the engine controller 1 1 2 6 according to the fourth embodiment.
  • the processing according to the fourth embodiment will be described in detail with reference to FIGS. 23A and 23B and FIG. '
  • step S 1 0 3 it is determined whether a heater on request for turning on the heater 1 1 0 9 c of the engine controller 1 1 2 6 is input. If this heater-on request is not input, step S 1 0 3 1 is executed. If a heater-on request is input, the process proceeds to step S 1 0 3 2, and the initial power duty D set in advance is set to the power duty storage unit 1. 9 0 Save to 5. Next, proceeding to step S 1 0 3 3, the power duty determining unit 1 9 0 2 turns on the heater 1 1 0 9 c with the power duty D stored in the power duty discriminating unit 1 90 0 5. Determined as power duty.
  • the ON1 signal output unit 1 9 0 3 and the ON2 signal output unit 1 90 4 output the ON1 signal and ON2 signal, respectively, and the heater 1 1 0 9 c heating element 1 Energize 2 0 3 and 1 2 2 0.
  • the on-pulse of ⁇ 1 and ⁇ 2 signals is triggered by the ZEROX signal at the phase angle ⁇ ⁇ corresponding to the power duty D stored in the power duty storage unit ⁇ 9 0 5, and the engine is Controller 1 1 2 6 is sent out.
  • current is supplied to the heating elements 1 2 0 3 and 1 2 2 0 at a phase angle of 1.
  • the power duty D is set to a value that does not exceed the allowable current in consideration of the input voltage range assumed in advance and the resistance value of the heater 11010 c. In other words, the power duty D is set assuming that the input voltage is maximum, the heater resistance is minimum, and the low piezoelectric source (LVPS) current is maximum.
  • the heater temperature detector 1 9 1 4 detects the temperature of the heater 1 1 0 9 c based on the ⁇ signal.
  • the Dp calculation unit 1 9 1 5 calculates the heater input power duty Dp (first calculation means). In other words, 'Duty D p is a duty (input power ratio) determined based on the detected temperature of the heater temperature detector 1 9 14.
  • the Vlf detection unit 1960 acquires the voltage Vlf.
  • This voltage Vlf corresponds to the voltage value Vlf peak-held by the capacitor 10 7 4 a (FIG. 19) described above. In other words, it is the peak hold value of the HCRRT1 signal shown in Fig. 21 and corresponds to the current flowing through the fixing device.
  • step S 1 0 37 the Vlf frequency correction unit 19 0 7 corrects the voltage Vlf in accordance with the frequency of the AC power source 1 2 0 1.
  • voltage Vlf The reason for the correction is that the voltage value V If peak-held by the capacitor 1 0 7 4 a becomes a value dependent on the frequency of the AC power supply. Therefore, unless otherwise explained, the detection current of the second current detection circuit 1 2 2 7 indicates the voltage Vlf after correction with the AC power supply frequency.
  • step S 1 0 3 8 Vlf frequency compensation: Df calculation part 1 90 8 is loaded (fixing unit) current limit based on frequency corrected voltage Vlf corrected by IE part 1 9 0 7
  • the duty Df (second upper limit value) is calculated based on the following formula (Equation 1) ⁇ (second calculation means).
  • D represents the current duty
  • Df represents the power duty that is controlled so that the load current I If is less than or equal to the preset current value I lf — lim.
  • the current value I lf-lim is a current value that can supply the power required for printing and warm-up and does not fall into a thermal runaway state even when supplied to the load. That is, the duty D f is an upper limit value of the duty for preventing the heater from being in an abnormal heat generation state.
  • the voltage value Vlf—lim is a voltage value corresponding to the current value I lf lim.
  • the V2f detector 1990 acquires a voltage of 2 £.
  • This voltage V2f corresponds to the voltage value V2f peak-held by the capacitor 74 b (Fig. 20) described above. That is, this is the peak hold value of the HCRRT2 signal shown in FIG. 22, and corresponds to the input current from the commercial power supply to the image forming apparatus.
  • the peak hold value is acquired within the period Tdly from the ZEROX signal as a trigger until the DIS signal is transmitted after the rising edge of the ZEROX signal.
  • This period Tdly is set to a time sufficient for the engine controller 1 1 2 6 to detect the peak hold voltage value V2f.
  • the process proceeds to step S 1 0 40 0, and the V2f frequency correction unit 1 9 1 0 corrects the voltage V2f according to the frequency of the AC power supply 1 2 0 1.
  • the reason for correcting the voltage V2f with the frequency of the AC power supply is the same as in the case of the second current detection circuit. Therefore, unless otherwise specified, the detection current of the first current detection circuit 1 2 2 8 is assumed to indicate the voltage V2f after correction by the AC power supply frequency.
  • V2f comparison unit 1 9 1 1 force It is determined whether or not the corrected voltage V2f exceeds a predetermined voltage (threshold voltage) V2f_th.
  • the predetermined voltage (threshold voltage) V2f_th is a value corresponding to a current of 15 A (ampere) in this embodiment. If the voltage V2f exceeds the threshold voltage V2f-th, the process proceeds to step S 1 0 4 2. Then, the Di calculation unit 1 9 1 2 uses the preset voltage V2f-lim and the voltage V2f frequency-corrected in step S40, according to the following formula (Equation 2), and the power supply current limit duty Di (First upper limit value) is calculated (third calculation means).
  • the voltage value V2f_lim corresponds to a current value smaller than the current value 15 A set by the standard as an input current that can be supplied from the commercial power source to the rain image forming apparatus.
  • the voltage V2f-lim is set to a value corresponding to 14.7 A.
  • the reason why the voltage V2f_th and the voltage V2Uim are set as described above is to prevent the input current to the image forming apparatus from frequently exceeding 15 A. Therefore, the voltage V2f-th and the voltage V2f_lim may be set to the same value (for example, a value corresponding to 15 5 or a value corresponding to 14.7 A).
  • the duty D i is an upper limit value of the duty so as not to exceed a predetermined input current that can be supplied from the commercial power source to the image forming apparatus.
  • This duty D i depends on the voltage V2f (ie, the detection current of the first current detection circuit 1 2 2 8) and V
  • step S 1 0 4 3 the magnitude of the power supply current limit duty Di and the load current limit duty Df obtained in step S 1 0 4 2 is determined. ;! If Df is larger than Di, that is, if the load current limit is larger than the power supply current limit, the process proceeds to step S 1 0 4 4, where the magnitude of the power input power duty Dp and the power supply current limit duty Di is larger or smaller. If Dp is greater than Di, that is, if the heater input power is greater than the power supply current limit, proceed to step S 1 0 45 and save the smaller power supply current limit duty Di as the power duty. Save to part 1 9 0 5.
  • step S 1 0 4 if Df is smaller than Di in step S 1 0 4 3, that is, if the load current limit is larger than the power supply current limit, the process proceeds to step S 1 0 4 9 and the heater input power duty Dp and Judge the magnitude of the load current limit duty Df. If Dp is larger than Df, the process proceeds to step S 1 0 50 0, the smaller load current limit duty Df is stored in the power duty storage unit 190 5, and the process proceeds to step S 1 0 46.
  • step S 1 0 4 the process proceeds to step S 1 0 5 1, and the smaller heater input power duty Save Dp in the power duty storage unit 1 9 0 5 and proceed to Step S 46.
  • the voltage V2f exceeds the threshold voltage V2f-th, the smaller power duty D is obtained and stored in the power duty storage unit 190.
  • FIG. 31 shows the change in the input current (inlet current) from the commercial power supply to the image forming device when such a duty determination algorithm is used.
  • Figure 3 1 is determined using the detected temperature of the heater temperature detector 1 9 1 4 and the control target temperature.
  • the figure shows the case where the specified duty D p is 60% and the duty D f is determined to be 90%.
  • the duty D that can be supplied to the heater is Dp by the duty determination algorithm described above.
  • the input current to the image forming device will reduce the current Ilimit (14.7 A). (“Before limit” in Figure 31).
  • the duty D i is determined to be 55% in the example of FIG. Since the duty D i is smaller than the duty D p, the duty D applied to the heater is changed to 55%, and the input current to the image forming device becomes the current as shown in “After restriction” in Fig. 31. It will be within the range of Ilimit (14.7 A).
  • the temperature detection element that detects the temperature of the fixing unit (heater)
  • the detection current of the first current detection circuit that detects the input current from the commercial power supply to the device g exceeds the specified value, the temperature is detected by the temperature detection element.
  • Duty Dp set according to the output, duty D i set according to the output of the first current detection circuit that detects the input current from the commercial power supply to the device, and output of the output of the second current detection circuit The fixing unit is energized with the smallest of the duty D f set accordingly.
  • duty D i is set to duty D, the current applied to the fixing unit (heater) is limited.
  • the smallest duty among the three duties (Dp, Df, D i) is determined as the duty to be applied to the heater.
  • the input current from the commercial power source to the image forming apparatus can be kept below a predetermined value. Therefore, it is possible to provide an image forming apparatus that can suppress a decrease in processing capability. In other words, if the detection current of the first current detection circuit is below a predetermined value (predetermined input current), the fixing unit
  • the fixing part When the fixing part is energized with a duty according to the detection temperature of the temperature detection element that detects the temperature of the (heater), and the detection current exceeds the specified value, the duty set according to the detection temperature of the temperature detection element It is only necessary to energize the fixing unit with a smaller one of Dp and the duty D i set according to the output of the first current detection circuit.
  • duty D i is set to duty D, the input current to the fixing unit (heater) is limited. .
  • step S 1 0 4 9 the process proceeds to step S 1 0 4 9 and D p or D f is selected.
  • step S 1 0 46 When the power duty D is stored in any of steps S 1 0 4 5, S 1 0 5 1, S 1 0 5 0, the process proceeds to step S 1 0 46.
  • step S 1 0 4 6 based on the stored power duty D, the ON1 signal output unit 1 9 0 3 and the ON2 signal output unit 1 9 0 4 respectively output the ON1 signal and the ON2 signal to generate heating elements.
  • step S 1 0 4 7 proceed to step S 1 0 4 7 to determine whether there is a heater-on request. If there is a heater-on request, proceed to step S 1 0 3 4 and repeat the above process, but if there is no heater-on request, step S 1 Proceed to 1 0 4 8 to turn off the heater and end the process.
  • Example 4 it is possible to control the power supply to the heater so that the current supplied from the commercial power supply (AC power supply) 1 2 0 1 does not exceed the predetermined upper limit current. it can.
  • the current of the fuser is lower than a predetermined temperature (lower limit temperature for fixing) that is lower than the control target temperature, current adjustment is performed at least in the second stage as in Example 1. (Operation to increase the conveyance interval of the recording material to be conveyed to the fixing device) may be executed.
  • Example 5 shows below.
  • the device configuration according to the fifth embodiment is the same as that of the fourth embodiment described above, and a description thereof will be omitted.
  • FIG. 25A and 25B are flowcharts for explaining a control sequence of the fixing device 1109 by the engine controller 1126 according to the fifth embodiment of the present invention.
  • FIG. 26 is a block diagram showing the configuration of the engine controller 1126 according to the fifth embodiment.
  • steps S 1061 to S 1063, S 1065 to S 1068, and S 1070 to S 1072 in FIG. 25A are basically the same processing as steps S 1031 to 1040 in FIG. 23A.
  • step S1061 the heater-on request half IJ disconnection portion 1901 of the engine controller 1126 determines whether a heater-on request has been input. If the request is input, the process proceeds to step S1062, and the preset initial power duty D is set. Stored in the power duty storage unit 1905. If this heater-on request is not generated, the process of step S1061 is repeated.
  • the power duty determining unit 1902 determines the ON1 signal from the ON1 signal output unit 1903 and the ON2 signal output unit 1904 based on the power duty D stored in the power duty storage unit 1905. The ON2 signal is output, so that the heating elements 1203 and 1220 are energized with the power duty D.
  • variable N update unit 1005 substitutes “0” for the variable N.
  • This variable N represents the number of times that the duty Di is adopted as the duty D to be applied to the heater during the period when the heater ON request exists.
  • the duty D i is used instead of the duty Dp because the input current from the commercial power source to the image forming device exceeds the limit Ilimit. Therefore, the variable N is used to limit the input current from the commercial power supply to the image forming device during the period when the heater ON request exists. It is also the number of times that exceeded Ilimit.
  • a large value of variable N means that the input current frequently exceeded the limit Ilimit during the period when there was a heater ⁇ N requirement.
  • the detection current by the first current detection circuit 1 2 2 8 becomes close to Ilimit. Therefore, if the input current limit Ilimit is set to 15 A or a value very close to this value, the input current may frequently exceed the limit Ilimit. Therefore, in this embodiment, when N exceeds a predetermined value a, the current duty D is reduced by a somewhat large fixed value and the duty D m is set. When the duty D m is adopted, the N value is not updated for a while.
  • step S 1 0 6 5 proceed to step S 1 0 6 5 to detect the temperature of the heater 1 1 9 c using the heater temperature detector 1 9 1 4 force 'TH signal. Thereafter, in step S 1 0 6 6, the Dp calculation unit 1 9 1 5 calculates the heater input power duty Dp. Next step S 1 0 7
  • step 7 With the heating elements 1 2 0 3 and 1 2 2 0 energized with duty D, the Vlf detection section 1 90 6 detects the voltage Vlf. After acquiring voltage Vlf in this way, step
  • step S 1 0 70 the Df calculation unit 1 90 8 calculates the load current limit duty Df based on the above-described equation (1) based on the voltage Vlf.
  • step S 1 0 71 V2f detection unit 1960 detects and acquires voltage V2f with heating elements 1 2 0 3 and 1 2 2 0 energized with duty D.
  • step S 1 0 7 2 the V2f frequency correction unit 1 9 1 0 corrects the voltage value V2f according to the frequency of the AC power source 1 2 0 1.
  • step S 1 0 73 the variable N comparison unit 1 0 1 3 determines whether the variable N is larger than the predetermined value a. If N is smaller than a, the process proceeds to step S 1 0 74 and the current value I 2f is calculated from the I 2f calculation unit 1 1 ° 14 4 voltage value V2f. This current value I 2f is calculated using a conversion table as shown in Table 5 above, for example. A common conversion table may be used for the conversion table for I If calculation and the conversion table for I 2f calculation, or separate conversion tables may be used.
  • step S 1 0 7 5 the Di calculation unit 1 9 1 2 determines the current value I 2f and the current value I Using If and the preset limit value I 2f_lim of the current supplied from the AC power source 1 2 0 1, the power source current limit small duty Di is calculated according to the following equation (Equation 3).
  • step S 1 0 7 6 it is determined whether the load current limit duty Df and the power supply current limit duty Di are large or small. If Df is greater than Di, the process proceeds to step S 1 0 7 7 to determine whether the heater input power duty Dp and Di are large or small. If Dp is larger than Di, the process proceeds to step S 1 0 78 and Di is stored in the power duty storage unit 1 9 0 5. Then, the process proceeds to step S 1 0 7 9, and the variable N update unit 1 1 0 0 5. updates the variable N to (N + 1) and proceeds to step S 1 0 8 0. On the other hand, if Dp is smaller than Di, the process proceeds to step S 1 0 88 and the Dp is stored in the power duty storage unit 190 0 5. In step S 1 0 90, the variable N updating unit 1 1 0 0 5 substitutes 0 for the variable N, and the process proceeds to step S 1 0 8 0.
  • step S 1 0 7 6 If it is determined in step S 1 0 7 6 that Df is smaller than Di, the process proceeds to step S 1 0 8 7 to determine whether Dp and Df are large or small. If Dp is smaller than Df, the process proceeds to step S 1 0 8 8 described above. If Dp is greater than Df, the process proceeds to step S 1 0 8 9, and Df is stored in the power duty storage unit 1 9 0 5. Then go to step S 1 0 9 0.
  • step S 1 0 8 5 If the value of variable N is greater than a in step S 1 0 7 3, the process proceeds to step S 1 0 83 and variable N update unit 1 0 0 5 assigns 0 to variable N. Then proceed to step S 1 0 8 4 and Dm calculation unit 1 9 1 3 Force Current heater input power duty B Calculate the power duty Dm obtained by subtracting the specified value from D. Then, the process proceeds to step S 1 0 8 5 to compare the magnitude of Df and Dm. If Df is smaller than Dm, the process proceeds to step S 1 0 8 7. If Df is greater than Dm, the process proceeds to step S 1 0 8 6, and Dp and Dm are compared in magnitude. If Dp is smaller than Dm, the process proceeds to step S 1 0 8 8. Otherwise, the process proceeds to step S 1 0 9 1, and Dm is stored in the power duty storage unit 1 9 0 5 and the above-described step S 1 Proceed to 0 9 0.
  • step S 1 0 8 the ON1 signal output unit 9 0 3 and ON2 signal output unit 9 0 4 respectively output the ON1 signal and ON2 signal based on the stored power duty D, and the heating element 1 2 Energize 0 3 and 1 2 2 0 with power duty D.
  • step S 1 0 8 it is determined whether or not there is a heater-on request. On the other hand, if there is no heater on request, the process proceeds to step S82, where the heater is turned off and the process is terminated.
  • the current supplied to the heater can be controlled in a range where the current supplied from the AC power source 1201 does not exceed the predetermined upper limit current.
  • FIGS. 27A and 27B are flowcharts for explaining the control sequence of the fixing device 1 1 0 9 by the engine controller 1 1 2 6 according to Embodiment 6 of the present invention.
  • FIG. 28 is a block diagram showing the configuration of the engine controller 1 1 2 6 according to the sixth embodiment.
  • step S 1 1 0 the heater-on request determination unit 1 9 0 1 of the engine controller 1 1 2 6 determines whether a heater-on request has been input. When this heater-on request is input, the process proceeds to step S 1 1 0 2, and the preset power duty D is stored in the power duty storage unit 190 5. If this heater-on request is not generated, the process of step S 1 1 0 1 is repeated. Next, in step S 1 1 0 3, the power duty determining unit 1 90 2 determines the power duty for turning on the heater 1 0 9 c.
  • the ON1 signal output unit 1 90 3 and the ON2 signal output unit 1 90 0 4 output the ON1 signal and ON2 signal, respectively, and the heating elements 1 2 0 3 and 1 2 2 0 are output. Drive with power duty D.
  • the process proceeds to step S 1 1 0 4, and the voltage Vlf is detected and acquired by the Vlf detector 1 90 6 while the heating elements 1 2 0 3 and 1 2 2 0 are driven at the duty D.
  • the process proceeds to step S 1 1 0 5, the frequency of the voltage Vlf is corrected by the Vlf frequency correction unit 1 9 0 7 and stored in the Vlf storage unit 1 1 1 0 8.
  • step S 1 1 0 6 the voltage V 2 f is acquired by the V 2 f ′ detection unit 1 90 9 while the heating elements 1 2 0 3,. Then, the process proceeds to step S 1 1 0 7 where the frequency correction of the voltage V2f is performed by the V2f frequency correction unit 1 9 1 0 and the result is stored in the V2f storage unit 1 1 1 1 1.
  • step S 1 1 0 8 the data number comparison unit 1 1 1 1 2 determines whether or not the number of data of the duty D, the voltage Vlf, and the voltage V2f has been acquired by a preset number b. If these numbers have not reached b, the process returns to step S 1 1 0 3 and repeats the above process.
  • step S 1 1 0 when the number of acquired data reaches b in step S 1 1 0 8, the process proceeds to step S 1 1 0 9, where the D—ave calculation unit 1 1 1 1 3 sets the heater input power duty D for the latest b. Calculate the average value (D_ave).
  • step S 1 1 1 0 the heater temperature detector 1 9 1 4 force S The heater temperature is detected from the TH signal.
  • P2008 / 056827 P2008 / 056827
  • Dp calculation unit 1915 calculates heater input power duty Dp for PID control.
  • the processing in these steps S 1 110 and S 1111 is the same as steps S 1034 and S 1035 in FIGS. 23A and 23B.
  • step S1112 the Vlf_ave calculation unit 11114 calculates the average value (Vlf-ave) of the latest voltage value Vlf for b.
  • step S 1113 the Df calculation unit 1908 calculates the load current limit duty Df according to the following equation (4) based on the average value Vlf_ave.
  • step S 1114 the V2f_ave calculation unit 11116 calculates the average value (V2f ⁇ ave) of the latest voltage value V2f for b.
  • step S1115 the average value V2f—ave and the threshold voltage V2f—th are determined. If the average value V 2f_ave is greater than V2f—th, the process proceeds to step S 1116, and the Di calculation unit 19 12 calculates the power supply current limit duty Di according to the following equation ( ⁇ 5) and proceeds to step S 118. .
  • the power duty D is determined by the power duty determining unit 1902. Since the subsequent algorithm for determining the duty D is the same as that shown in FIGS. 23A and 23B, a description thereof will be omitted.
  • step S 1127 the ON1 signal and ON2 signal are output from the ON1 signal output unit 1903 and ON2 signal output unit 1904, respectively, based on the stored power duty D. As a result, the heating elements 1203 and 1220 are energized with the power duty D.
  • step S1128 it is determined whether or not there is a heater-on request. If there is a heater-on request, the process returns to step S1104 and the above processing is repeated. If there is no heater request, proceed to step S 1 129 to turn off the heater and end the process.
  • the current supplied to the heater can be controlled within a range where the current supplied from the AC power source does not exceed the predetermined upper limit current. Further, the control of the above-described fifth embodiment may be performed by obtaining D_ave, Vlf-ave, and V2f_aye as in the sixth embodiment.
  • the average value of the input current from the commercial power source to the image forming apparatus within a predetermined time and the average value of the current supplied to the heater within the predetermined time are used.
  • the feature is that the number of updates of the upper limit value of the duty of the current supplied to the battery is reduced.
  • FIG. 29 is a flowchart for explaining the control sequence of the stator 10 109 by the engine controller 11 26 according to the seventh embodiment of the present invention.
  • FIG. 30 is a block diagram illustrating the configuration of the engine controller 1 1 2 6 according to the seventh embodiment.
  • the power duty control unit 1 1 2 0 0 is an average power duty detection unit 1 1 2 when the average of the current value supplied from the AC power source 1 2 0 1 to the image forming apparatus exceeds the upper limit.
  • the commercial frequency detector 1 1 2 1 5 detects the frequency of the AC power source 1 2 0 1.
  • the average current detection unit 1 1 2 0 5 receives the peak hold value of the HCRRT2 signal corresponding to the current value supplied to this image forming apparatus from the AC power source 1 2 0 1 by the frequency correction unit 1 1 2 1 6 Correct and store in the storage unit 1 1 2 0 7.
  • Storage section 1 1 2 0 7 The current value (within a predetermined period) over a fixed time is stored, and the average value is calculated by the average current calculation unit 11206.
  • the average current detector 11205 outputs this average current value to the power duty calculator 11217.
  • the average current detection unit 11201 corrects the peak hold value of the HCRRT1 signal corresponding to the current value supplied to the heater 1109 c by the frequency correction unit 11214 and stores it in the storage unit 11203.
  • the storage unit 1 1203 stores a current value (within a predetermined period) for a predetermined time, and the average value is calculated by the average current calculation unit 11202.
  • the time stored by the average current detector 11201 may be a predetermined time different from the time stored by the average current detector 1 120 5.
  • Average current detection section 11201 outputs this average current value to power duty calculation section 11217.
  • Average power duty detection section 11209 stores the value calculated by power duty calculation section 11217 in storage section 11211.
  • the storage unit 11211 stores the power duty of a predetermined time that matches the time stored in the average current detection unit 1 120′5, and the average power duty calculation unit 1 1210 calculates the average value.
  • the average power duty detection unit 11209 outputs the calculated average power duty to the power duty calculation unit 11217.
  • the storage unit 112.13 holds the initial values of power duty and current value.
  • Upper limit power duty calculation unit 11222 of 1217 is the upper limit power that can be supplied to heater 1 109c according to the output of average current detection unit 1 1201, average current detection unit 11205, average power duty detection unit 11209
  • the utility Dlimit—n is calculated.
  • the power duty supplied to the heater 1109 c is determined in the judgment unit 11221 based on the output of the heater temperature control unit 1220 and the calculation result of the upper limit power duty calculation unit 1 1222.
  • the upper limit power duty Dlimit-n calculated in this way is stored in the storage unit 11211 of the average power duty detection unit 11209.
  • step S 1131 the engine controller 1126 determines whether a power supply start request (heater on request) to the heater 1 109 ⁇ is generated. If an on request is generated, the process proceeds to step S 1132.
  • the predetermined power duty Dlimit-1 is set as the maximum power duty in consideration of the resistance value of the heater 1109c and the like in the assumed input voltage range. Here, for example, assuming that the input voltage is the minimum and the resistance value is the maximum, the power duty is set so as not to exceed the allowable current that can be applied to the heater 1109c.
  • step S1133 the heater temperature control is started with the above-described power duty Dlimit-1 being the upper limit duty.
  • the electric power supplied to the heating elements 1203 and 1220 is controlled by, for example, PID control so that the predetermined temperature set in the engine controller 1 1 26 is reached.
  • the power duty D–n for driving the heater is determined from the difference between the target temperature information (control target temperature) and the temperature information from the TH signal. However, if the calculated power duty D—n exceeds the upper limit duty Dlimit_l, this upper limit duty Dlimit—1 is set as the power duty D—1. In other words, in step S 1133, the heater temperature control is performed with the power duty D ⁇ 1 equal to or lower than the upper limit duty Dlimit ⁇ 1.
  • the ON pulse of the ON 1 signal and ON2 signal is sent out from the engine controller 1126 using the ZEROX signal as a trigger at the phase angle 1 corresponding to the power duty D_l.
  • current is supplied to the heating elements 1203 and 1220 at the phase angle ⁇ - 1.
  • the current power duty D_l value is stored in the storage unit 11211.
  • the average current at a predetermined time L is obtained, and control is performed based on the average value.
  • step S 1 1 3 5 proceed to step S 1 1 3 5 and detect the ZEROX cycle T-1.
  • the frequency of the AC power source 1202 is detected by detecting the time interval T from the falling edge of the ZEROX signal to the falling edge.
  • Current value I If— Equivalent to 1 is acquired. This corresponds to the voltage value Vlf— 1 peak-held by the capacitor 1 0 7 4 a as described above. That is, the peak hold value of the HCRRTl signal shown in FIG. In this example ⁇ , this value is acquired within the period Tdly from when the ZEROX signal is used as a trigger until the DIS signal is sent after the rising edge of the ZEROX signal. This period Tdly is set to a time sufficient for the engine controller 1 1 2 6 to detect the peak hold value Vlf_l.
  • the current value is detected, and the upper limit current value and the upper limit duty are calculated based on the current value.
  • the held voltage value is detected. Then, a current value corresponding to this voltage value is obtained and calculation is performed.
  • the frequency correction value of the current value I If— 1 is obtained and stored in the storage unit 1 1 2 0 3.
  • the storage unit 1 1 2 1 3 stores the initial value “0” of the storage unit 1 1 2 0 3.
  • the current value I If-1 obtained by the HCRRTl signal is an integral value corresponding to a half cycle of the frequency of the AC power source 1 2 0 1 having a square waveform as described above. Now, setting this specific frequency the frequency of the AC power source 1201, e.g., a pre-5 OH Z, current I the If becomes a current value of 50 H Z.
  • I 150—1 I lf_lx (1 / T— 1) / 50
  • step S 1138 the process proceeds to step S 1138, and the voltage V2f ⁇ from the HCRRT2.
  • Get 1 (equivalent to current value I 2f— 1). As described above, this corresponds to the voltage V2f peak-held by the capacitor 1074b. That is, the peak hold value of the HCRRT2 signal shown in FIG.
  • step S 1 139 the frequency correction value of the current value I2f ⁇ 1 obtained at step S 1138 is obtained, and the result is stored in the storage unit 11207.
  • the current value for several k can be stored in the storage unit 1 1207, and the initial value “0” is stored in the storage unit 1 1213.
  • the current value I 2f_l obtained from the HCRRT2 signal is an integral value corresponding to a half cycle of the frequency of the square waveform, as described above. If the frequency of the AC power supply 1201 is set to a specific frequency, for example, 50 Hz in advance, the current value I2f is a current value at 50 Hz.
  • I 220—1 I 2f_lx (1 / T— 1) / 50.
  • step S1140 Based on the 50Hz conversion value of the current value I If stored in the storage unit 1 1203 in step S137, the engine controller 1126 sets the frequency value of the current value Ilf_l corrected for several m. Calculate the average current value II ave.
  • step S 1 141 the current limit value (first current value) Ilimitl that can be supplied to heating element 1 203, 1 220 and the average current value I 1—ave calculated in step S 1 1 39 are calculated. Compare.
  • the current limit value I limitl is, for example, the current limit value at 50 Hz.
  • step S 1 141 the processing in step S 1 141 is performed even when the current supplied from the AC power source 120 1 to the image forming apparatus is within an allowable range, and the upper limit value of the power supplied to the heating elements 1203 and 1 220 is This is because it varies depending on the rating of the elements used in the circuit of Fig.16. Therefore, it is necessary to control below the limit value I limitl here.
  • the current value I If is controlled by the power duty Dlimit—1, which is the duty limit to the heater. If the value is not exceeded, Steps S 1 136 to S 1 1 37 and S 1 140 to S 1 142 may be omitted.
  • step S 1 141 If it is determined in step S 1 141 that I 1 ⁇ ave ⁇ I limitl, the process proceeds to step S 1 142, and if I 1 ⁇ ave is I limitl, the process proceeds to step S 1 143.
  • step S 1 142 the current supplied to the heating elements 1203 and 1220 exceeds the current limit value that can be supplied to the heater.
  • average power duty calculation unit 1 1210 force Calculates average value Dl-ave for several m of power duty D—n stored in storage unit 1 12 1 1 in step S 1 134 (k ⁇ m) 0 and this Based on average power duty Dl_ave, average current value I 1—ave of current value I If calculated in step S 1 140, and predetermined current limit value I limitl that can be supplied to heating element 1 203., 1220 Dlimit — Calculates 2 (Dlimit_n + 1 is calculated). This power duty Dlimit-2 is obtained by the following equation.
  • step S 1 141 determines whether I 1—ave is I limitl. If it is determined in step S 1 141 that I 1—ave is I limitl, the process proceeds to step S 1 143, and the current value I 2f converted to 50 Hz is stored in the storage unit 1 1207 in step S 1 139. Based on the above, calculate the average current value I 2—ave for several k minutes.
  • step S 1 1 4 4 the current limit value (second current value) I limit2 that can be supplied from the predetermined AC power source 1 2 0 1 and the average current value I calculated in step S 1 1 4 3 2—Compare with ave.
  • the current limit value I limit2 is set as a current limit value at 50 Hz, for example.
  • step S 1 4 4 if I 2—ave I limit2, proceed to step S 1 1 4 5; if I 2—ave, I limit 2, branch to step S 1 1 4 6.
  • Step S 1 1 4 5 is when the average current supplied from the AC power source 1 2 0 1 exceeds a predetermined current limit value. Therefore, in this case, the average power duty calculation unit 1 1 2 1 0, the average of the power duty for several k based on the power duty stored in the storage unit 1 1 2 1 1 in step S 1 1 3 4 Calculate the value D 2—ave. Based on the average power duty D 2_ave calculated in this way and the current value I 2f— 1 converted to 50 ⁇ z I 250—1, the heating element 1 2 0 3 and 1 2 2 0 can be energized. Calculate the power duty Dlimit_2. This power duty Dlimit-2 is obtained by the following equation.
  • the power duty Dliniit- 2 upper limit, Dlimit- 2 min (D_ave, D limit— 1— X).
  • “min” means the smaller of the parentheses.
  • X indicates the reduction rate of the upper limit power duty when the current value I 2f and the average current value for several k both exceed the current limit value I limit2.
  • the value of X is set to a predetermined value according to the amount of current flowing through all the circuits (LVPS) except for the heater 1 1 0 9 c and the rate of change of the current value for each wave.
  • the change in the power duty due to the temperature control of the heater can be determined by referring to the average power duty D2ave. In addition, it can respond to changes in the current value that flows in the entire circuit (LVPS) except for the heater 1109c. Temperature control is possible without lowering the upper limit of m-force duty more than necessary. '
  • step S 1146 the power duty supplied to the heating elements 1203 and 1220 is increased. calculate. Note that the value of the upper limit power duty Dlimit_n is maintained as it is, unless the value of the upper limit power duty Dlimit_n is updated in steps S1142 and S1145.
  • step S 1133 the heater is temperature-controlled at a power duty Dn that is equal to or less than the upper limit power duty Dlimit-n.
  • step S 11 36 the voltage value Vlf—n (current value I If—n) is obtained from the HCRRT1 signal.
  • step S11308 the voltage value V2f—n (current value I 2f_n) is obtained from the HCR T2 signal. To get.
  • steps S 1137 and S 1139 values obtained by frequency correction of the respective values are stored in the storage units 11203 and 11207.
  • upper limit power duty calculation section 11222 calculates upper limit power duty Dlim — n + 1. The upper limit power duty is calculated based on values calculated by the average current detection unit 11201, the average current detection unit 11205, and the average power duty detection unit 11209.
  • the temperature of the heater is adjusted to the required temperature before printing.
  • the current that can be used to heat the heater may differ significantly from the case where the heater is temperature-controlled while driving a heater.
  • the upper limit power duty is reset to the predetermined power duty Dlimit-1 at the start of heater temperature adjustment, the maximum current is applied when the heater temperature is adjusted before printing. It is possible to control with the optimal current setting value even during printing.
  • a predetermined set value may be set for the power duty during printing. (When the sequence is switched from the pre-printing temperature control to the print state, if the Dlimit-n value exceeds the set value, the Dlimit-n + 1 is controlled to be equal to or less than the set value described above.)
  • the average current value calculated by the average current detection unit 11201, the average current detection unit 11205, and the average power duty detection unit 112 ⁇ 9 is used.
  • the voltage and power factor of the input power supply, the resistance value of the heater, and the waveform rate of the current waveform The upper limit can be set with high accuracy. In this way, it is possible to maximize the power performance under each condition.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Fixing For Electrophotography (AREA)

Abstract

連続画像形成中に画像形成装置の消費電流が増加した場合においても、商用電源の最大電流を超えないように制御するとともに、所望の定着性を確保し、かつ画像形成能力の低下を最小限に止めることのできる画像形成装置を提供する。商用電源から装置への入力電流を検知する電流検知回路を有し、電流検知回路によって検知された電流が所定値を超えた場合、定着部に投入可能な最大電流が制限され、定着部へ投入可能な最大電流が制限されている状態で定着部の温度が制御目標温度より低い所定温度を下回った場合、定着部へ搬送される記録材の搬送間隔が拡大する。

Description

明 細 書 画像形成装置 技術分野
本発明は、 複写機やプリンタ等の画像形成装置に関し、 特に、 商用電源から 画像形成装置に流入する電流量を検知する電流検知回路を有する画像形成装置 に関するものである。 . 背景技術
電子写真方式を採用する画像形成装置であるレーザプリンタは、 潜像を担持 する潜像担持体と、 該潜像担持体に現像剤 (以降トナーという) を付与するこ とにより前記潜像'をトナー像として可視化する現像装置と、 所定方向に搬送さ れる記録紙にトナー像を転写する転写装置と、 該転写装置によって前記トナー 像の転写を受けた記録紙を所定の定着処理条件にて加熱及び加圧すること よ り前記トナー像を記録紙に定着させる定着装置を備えている。 .
近年の画像形成装置の高速化に伴い、 画像形成装置に使用するモニタが高速 化 Z大型化し、 画像形成装置の消費電流が増加している。 また、 オフィス文書 のカラー化が進み、 カラーレーザプリンタが多く生産されている。 カラーレー ザプリンタは、 複数の画像形成を同時に行うためモータの使用個数が多く、 更 に、 複数色重ねられたトナー像を記録紙に定着させる必要があるため定着装置 が消費する電流も大きい。 更に、 画像形成装置の高機能化に伴い、 複数の記録 紙サイズに対応するための給紙ォプション装置や、 排出された記録紙を所定枚 数毎に仕分けしたりスティプルしたりする排紙ォプション装置、 原稿のコピー や電子フアイルイヒを行うための自動紙送り機構付きイメージスキャナ等のォプ シヨン装置が装着されるようになってきている。 その結果、 画像形成装置の消 費電流は益々増加してきている。
これら機器で消費.可能な電流の上限の一つの目安は、 米国では U L (Underwriters Laboratories Inc.) 規格、 日本国では電気用品安全法等で定め られている。 したがって、 商用電源で供給可能な最大電流を超えないように画 像形成装置を設計する必要がある。 この最大電流は、 例えば日本国や米国では 1 5 Aであり、 E U (European Union) では 1 0 Aである。 これらはいずれも 実効値である。
通常、 画像形成装置で消費する電力が最も高くなるのは定着装置を定着可能 な温度まで昇温させる期間 (ウォームアップ期間) である。 このウォームアツ プ期間に定着装置以外の負荷がプリント準備動作を始めると、 定着装置で消費 されている大きな電力に、 その他の負荷の消費電力が加わるためである。
そこで従来は、 画像形成装置全体の最大電流が 1 5 Aを超えないように、 定 着装置以外の負荷が起動するタイミングで定着装置への電流を制限するシーケ ンスが組まれていた。 例えば、 C P Uが、 定着装置以外の負荷に起動信号を出 すと同時に、 定着装置の温度制御部に対して投入電流を制限するための信号を 出すという具合である。
一方、 プリント期間中は、 定着装置の消費電力がウォームアップ期間中ほど 高くないので、 定着装置に電流を流している最中に定着装置以外の負荷が起動 しても画像形成装置全体の最大電流が 1 5 Aを超えることは殆どなかった。 . しかしながら、 画像形成装置の高速化に伴う使用モータの高速化/大型化、 更にはカラー化に伴う使用モータ個数の増加によって、.定着装置以外の負荷の 消費電力も増加してきた。 このため、 プリント期間中でも画像形成装置全体の 最大電流が 1 5 Aを超える状況を考慮して設計する必要性が出てきている。 ' そこで、 プリント期間中もウォームアップ期間中と同様に、 画像形成装置全 体の最大電流が 1 5 Aを超えないように、 定着装置以外の負荷が起動するタイ ミングで定着装置への電流を制限するシーケンスを組むことが考えられる。 . ■ P T/JP2008/056827
3 しかしながら、 各負荷の起動タイミングはまちまちであり、 定着装置以外の 多くの負荷が起動する各々のタイミングで定着装置へ流れる電流を制限するシ 一ケン を設計するのは非常に困難である。 また、 定着装置以外の負荷の個々 の消費電力は必ずしも一定ではなく、 変動するものである。 したがって、 定着 装置以外の負荷が起動した際に定着装置に流す電流を一定の割合で制限すると、 画像形成装置全体で使える電流に余裕があるにも拘わらず、 定着装置に流れる 電流を不必要に制限してしまうことも考えられる。 この場合、 定着装置の処理 能力が不必要に低下して、 結果的に画像形成装置の処理能力を不必要に落とす ことになつてしまう。 ·
そこで、 特許文献 1には、 画像形成装置への流入電流を検知する電流検知装 置を設け、 商用電源の最大電流を超えないように定着装置に流す電流を制限す ることが開示されている
特許文献 1 特公平 3— 7 3 8 7 0号公報 発明の開示
しかしながら、 定着装置に流す電流を制限した場合、 徐々に定着装置の温度 が低下し、 所望の定着性を確保できなくなる。
課題を解決するための手段
上述の課題を解決するための本発明は、 記録材に画像を形成する画像形成部と、 制御目標温度を維持するように制御されており記録材上の画像を記録材に加熱 定着する定着部と、 商用電源から装置への入力電流を検知する電流検知回路 と、 を有する画像形成装置において、 前記電流検知回路によって検知された電 流が所定値を超えた場合、 前記定着部に投入可能な最大電流が制限され、 前記 定着部へ投入可能な最大電流が制限されている状態で前記定着部の温度が前記 制御目標温度より低い所定温度を下回った場合、 前記定着部へ搬送される記録 材の搬送間隔が拡大することを特徴とする。 本発明によれば、 商用電源から画像形成装置への入力電流を所定値以下に抑 えつつ処理能力の低下を抑えられる画像形成装置を提供できる。 図面の簡単な説明
図 1は、 実施例 1の画像形成動作を説明するフローチャート (その 1 ) を示 した図である。
図 2は、 実施例 1の画像形成動作を説明するフローチャート (その 2 ) を示 した図である。 . .
図 3は、 実施例 1の画像形成装置の構成を示した図である。 '
図 4は、 実施例 1の画像形成装置の回路を示した図である。
図 5は、 実施例 1における定着電流波形を示した図である。
図 6は、 実施例 1における電流抑制動作を説明した図である。
図 7は、 実施例 2の画像形成装置の回路を示した図である。
図 8は、 実施例 2における画像形成動作を説明するフローチャート (その 1 ) を示した図である。
図 9は、 実施例 2における画像形成動作を説明するフローチャート (その 2 ) を示した図である。
図 1 0は、 実施例 2における画像形成動作を説明するフローチャート (その 3 ) を示した図である。
図 1 1は、 実施例 3の画像形成装置の回路図を示した図である。 .
図 1 2は、 実施例 3における画像形成動作を説明するフロニチャート (その
1 ) を示した図である。
図 1 3は、 実施例 3における画像形成動作を説明するフローチャート (その
2 ) を示した図である。
図 1 4は、 実施例 3における画像形成動作を説明するフローチャート (その
3 ) を示した図である。 図 1 5は、 実施例 4〜 7に係る電子写真プロセスを用いた画像形成装置 (レ 一ザプリンタ) の概略構成図である。
図 1 6は、 セラミックヒータへの通電駆動を制御するヒータ制御回路の構成 を示すブロック図である。
図 1 7A及ぴ 1 7 Bは、 セラミックヒータの概略を説明する図である。
図 1 8 A及び 1 8 Bは、 熱定着器の概略構成を示す図である。
図 1 9は、 電流検出回路 1 2 2 7の構成を説明するブロック図である。
図 2 0は、 電流検出回路 1 2 2 8の構成を説明するプロック図である。
図 2 1は、 電流検出回路 1 2 2 7の動作を説明するための波形図である。
図 2 2は、 電流検出回路 1 2 2 8の動作を説明するための波形図である。
図 2 3は、 図 2 3A及ぴ 2 3 B で構成されており、 実施例 4に係るエンジン コントローラによる定着器の制御シーケンスを説明するフローチャートである。 図 2 4は、 実施例 4に係るエンジンコントローラの機能構成を示すブロック 図である。 '
図 2 5は、 図 2 5 A及ぴ 2 5 Bで構成されており、 実施例 5に係るエンジン コントローラによる定着器の制御シーケンスを説明するフローチヤ一トである。 図 2 6は、 実施例 5に係るエンジンコントローラの構成を示すブロック図で める α
図 2 7は、 図 2 7A及び 2 7 B で構成されており、 実施例 6に係るエンジン コントローラによる定着器の制御シーケンスを説明するフ.ローチャートである。 図 2 8は、 実施例 6に係るエンジンコントローラの構成を示すプロック図で める。
図 2 9は、 実施例 7に係るエンジンコントローラによる定着器の制御シーケ ンスを説明するフローチャートである。 ■
図 3 0は、 実施例 7に係るエンジンコントローラの構成を示すブロック図で ある。 図 3 1は、 実施例 4のデューティ決定アルゴリズムを用いた場合の商用電源 から画像形成装置への入力電流 (インレット電流) の変化を示した図である。
符号の説明 . 2 0 1 D Cコントローラ
4 0 1 カラーレーザプリンタ
4 3 1 着器
5 1 2 第 1電流検知回路 .
1 2 2 8 第 1電流検知回路
1 2 2 7 第 2電流検知回路
発明を実施するための最良の形態
以下本発明を実施するための最良の形態を、 実施例により詳しく説明する。 実施例 1
図 3は実施例 1.である"画像形成装置"(ォプション装置付きのカラーレーザプ リンタ) の構成を示す図である。 .
4 0 1はカラーレーザプリンタ、 4 0 2は記録紙 3 2を収納する給 カセッ ト、 4 0 4は給紙カセット 4 0 2から記録/紙 3 2を繰り出すピックアップロー ラ、 4 0 5は前記ピックアップローラ 4 0 4によって繰り出された記録紙 3 2 を搬送する給紙ローラである。 4 0 6は前記給紙ローラ 4 .0 5と対をなし記録 紙 3 2の重送を防止するためのリタードローラ、 4 0 7はレジストローラ対で ある。
4 0 9は静電吸着搬送転写ベルト (以下 E T B : electrical transfer beltと記 す) であり、 記録紙 3 2を静電吸着させて搬送する。 4 1 0はプロセスカート リッジであり、 感光ドラム 3 0 5、 感光ドラム 3 0 5上のトナーを除去するク リーユング装置 3 0 6、 帯電ローラ 3 0 3、 現像ローラ 3 0 2、 トナー格納容 器 4 1 1を備えており、 カラーレーザプリンタ 4 0 1に対し着脱可能となって いる。
4 2 0はスキャナュニットであり、 後述するビデオコントローラ 4 4 0から 送出される各画像信号に基づいて変調されたレーザ光を発光するレーザュニ.ッ ト 4 2 1、 各レーザュニット 4 2 1からのレーザ光を各感光ドラム 3 0 5上に 走查するためのポリゴンミラー 4 2 2とスキャナモータ 4 2 3、 結像レンズ群 4 2 4により構成されている。 なお、 前記プロセスカートリッジ 4 1 0とスキ ャナユニット 4 2 0は、 4色 (イェロー Y、 マゼンタ Μ、 シアン C、 ブラック B ) 分存在する。
4 3 1は定着器であり、 内部に加熱用のヒータ 4 3 2を備えた定着ローラ 4 3 3と加圧ローラ 4 3 4、 定着ローラ 4 3 3からの記録紙 3 2を搬送するため の定着排紙口 ラ対 4 3 5により構成されている。
4 5 1、 4 5 2、 4 5 3は D Cプラシレスモータであり、 4 5 1はプロセス カートリッジ 4 1 0を駆動十るメインモータ、 4 5 2は E T Bを駆動する E T Bモータ、 4 5 3は定着器を駆動する定着モータである。
2 0 1はレーザプリンタ 4 0 1の制御部である D Cコントローラであり、 マ イク口コンピュータ 2 0 7、 及び各種入出力制御回路 (不図示) 等で構成され ている。
2 0 2は低圧電源回路であり、 1次 A C電流を平滑後に降圧し、 各 D Cブラ シレスモータ 4 5 1, 4 5 2, 4 5 3や、 D Cコントローラ 2 0 1などに電力 を供給する。 '
4 4 0はビデオコントローラであり、 パーソナルコンピュータ等のホストコ ンピュータ 4 4 1から送出される画像データを受け取るとこの画像データをビ ットマップデータに展開し、 画像形成用の画像信号を生成する。
3 2 3は記録紙に光を照射し、 記録紙の透過光量から記録紙の坪量を判別す る坪量判別装置である。 3 2 4は画像形成装置の周囲温度を検知する温度検知 センサである。
6 5 1は異なる記録紙に対応するためのオプション装置である給紙ュニット であり、'記録紙 3 2を収納する給紙カセット 6 5 2、 給紙カセット 6 5 2から 記録紙 3 2を繰り出すピックアップローラ 6 5 4とを有する。
8 0 1はカラーレーザプリンタ 4 0 1から排出された記録紙を所定枚数毎に 排紙トレイにソートするォプション装置である排紙ュ-ットであり、 搬送ロー ラ対 8 0 4、 8 0 5を駆動するモータ 8 0 2と、 排紙トレイ 8 0 6を昇降動作 させるモータ 8 0 3とを有する。 .
7 0 1はカラーレーザプリンタ 4 0 1から排出された記録紙をオプション装 置である排紙ュニット 8 0 1に搬送するォプション装置である搬送ュニットで あり、 搬送ローラ対 7 0 3、 7 0 4を駆動するモータ 7 0 2を有する。
9 0 1は原稿搬送部 9 3 0と原稿読み込み部 9 3 1とからなるォプション装 置であるイメージスキャナである。 9 0 2は原稿 9 3 2を搬送する原稿搬送モ ータ、 9 0 4は露光ユニット、 9 0 5は露光装置、 9 0 6はミラー、 9 0 3は 露光ュニット 9 0. 4を水平移動させるスキャナ駆動モータ、 9 0 7は反射装置、 9 0 8、 9 0 9はミラーである。 9 1 0は受光装置、 9 4 0はイメージスキヤ ナ 9 0 1の動作を制御するとともに、 受光装置 9 1 0で受光した信号を画像デ ータ化するイメージスキャナコントローラュニットである。
次に画像形成動作を説明する。
.まず、 ホストコンピュータ 4 4 1からビデオコントローラ 4 4 0に画像デー タが送信される。 ビデオコントローラ 4 4 0は、 D Cコントローラ 2 0 1に画 像形成の開始を指示する P R I N T信号を送信するとともに、 受信した画像デ ータをビットマップデータに変換する。 P R I N T信号を受信した D Cコント ローラ 2 0 1は、 所定のタイミングでスキャナモータ 4 2 3、 及ぴメインモー タ 4 5 1 , E T Bモータ 4 5 2,定着モータ 4 5 3の駆動を開始するとともに、 ピックアップローラ 4 0 4、 給紙ローラ 4 0 5、 リタードローラ 4 0 6を駆動 して給紙カセット 4 0 2から記録紙 3 2を繰り出す。 その後、 坪量判別装置 3
2 3で記録紙 3 2の厚みを判別し、 記録紙に応じた画像形成速度及ぴ画像形成 条件を選択し、 記録紙 3 2の判別結果により画像形成速度の変更が必要な場合 はメインモータ 4 5 1, Έ Τ Βモータ 4 5 2, 定着モータ 4 5 3の回転速度を 変更する。 .
また、 温度検知センサ 3 2 4で画像形成装置 4 0 1の周囲温度 (環境温度) を検知し、 検知結果に応じて選択した画像形成条件の補正を行う。 記録紙 3 2 は、 レジストローラ対 4 0 7まで搬送して一旦停止する。 次に、 ビットマップ データに依存した画像信号に応じてレーザュニット 4 2 1を O N/O F F制御 する。 レーザユニット 4 2 1から出射するレーザ光はポリゴンミラー 4 2 2、 結像レンズ群 4 2 4を介して感光ドラム 3 0 5に照射され、 帯電ローラ 3 0 3 により所定電位に帯電した感光ドラム 3 0 5上に静電画像が形成される。 その 後、 この静電潜像に対して現像ローラ 3 0 2からトナーを供給しトナー像に現 像する。 前述のトナー像形成動作は所定のタイミングでイェロー Y、 マゼンタ Μ、 シアン C , ブラック Κに対し行う。
一方、 レジストローラ対 4 0 7でー且停止してい.た記録紙 3 2を、 前記トナ 一像形成動作に応じた所定のタイミングで Ε Τ Β 4 0 9に再給紙し、 転写ロー ラ 4 3 0で感光ドラム 3 0 5上のトナー像を順次記録紙 3 2上に転写してカラ 一像を形成する。 以上のように、 感光ドラム 3 0 5、 帯電ローラ 3 0 3、 レー ザユニット 4 2 1、 現像ローラ 3· 0 2、 転写ローラ 4 3 0等、 記録紙上にトナ 一画像を形成するための構成を画像形成部と称する。 記録紙 3 2上に形成され たカラートナー像は定着器 4 3 1に搬送.され、 所定温度に加熱された定着ロー ラ 4 3 3と加圧ローラ 4 3 4によって加熱、 加圧 (圧力をかける) され記録紙
3 2に定着されたのち、 定着排紙ローラ対 4 3 5により画像形成装置 4 0 1外 に排出される。
排出された記録紙 3 2は、 搬送ュ-ット 7 0 1を経由して排紙ュニット 8 0 1に搬送される。 排紙ュニット 8 0 1では、 所定枚数毎に記録紙 3 2が排紙ト レイ 8 0 6にお出される。
次にイメージスキャナ 9 0 1の動作について説明する。 原稿搬送部 9 3 0に 原稿 9 3 2をセット後、 コピーモードか、 読み取りデータを電子ファイル化す るだけのスキャナモードかを不図示のパネルより選択する。
コピーモードを選択した場合、 原稿搬送モータ 9 0 2により所定のタイミン グで原稿 9 3 2を原稿読み込み部 9 3 1に搬送する。 そして、 スキャナ駆動モ ータ 9 0 3により露光ュ-ット, 9 0 4を水平移動させ露光装置 9 0 5の光を原 稿 9 3 2に照射する。 原稿からの反射光はミラー 9 0 6、 及び反射装置 9 0 7 内のミラー 9 0 8、 9 0 9を経由して受光装置 9 1 0で受光され、 受光信号は イメージスキャナコン.トローラュニット 9 4 0に送信される。
イメージスキャナコントローラュニット 9 4 0は受信した信号を画像データ ィ匕し、 ビデオコントローラ 4 4 0に送信する。 その後は、 ホストコンピュータ
4 4 1カゝらの画像形成と同様の動作で記録紙に画像形成を行う。
—方、 スキャナモードを選択した場合、 イメージスキャナコントローラユエ ット 9 4 0は受信した信号を所定のファイル形式で電子ファイルィヒし、 ビデオ コントローラ 4 4 0経由でホストコンピュータ 4 4 1に送信する。 スキャナモ 一ドの場合、 記録紙への画像形成は実行しない。
なお、 通常、 イメージスキャナの動作は、 カラーレーザプリンタ 4 0 1の画 像形成動作とは独立に動作する。
図 4は本実施例の画像形成装置の回路図である。 2 0 2は低圧電源、 5 0 1 はインレット、 5 0 2は商用電源からのノィズ及び低圧電源からのノイズを除 去する A Cフィルタ、 5 0 3はメインスィッチ、 5 0 4はダイオードブリッジ、
5 0 5は 2 4 Vを生成するコンバータ、 5 0 6はコンパ タ制御回路である。 5 0 7はダイォード、 5 0 8はコンデンサ、 5 0 9は定電圧制御回路、 5 1 0 はフォトカプラ、 5 1 1は 2 4 Vから 3 Vを生成する D CZD Cコンバータ、 512はカレント トランス、 513は抵抗、 514は商用電源から画像形成装 置への入力電流 (1次総電流) を検知する電流検知回路 (第 1電流検知回路)、 515はゼロクロス検知回路である。
521は画像形成装置のドアと連動して開閉するインタロックスィッチ、 .5 22はリレー、 523はトライアツク、 524, 5.25、 527は抵抗、 52 6はフォトトライアツタカプラ、 528はトランジスタである。 また、 431 は定着器 (定着部)、 433は定着ローラ、 434は加圧ローラ、 432は加熱 ヒータ、 529はサーモスイッチ、 530は定着ローラ 433の温度を検知す るサーミスタ (温度検知素子)、 531は抵抗、 581はコンデンサである。 続いて、 回路動作について説明する。
メインスィッチ 503が ONされると、 インレツト 501及ぴ ACフィルタ 502を介して商用電流が流れ、 ダイォードブリッジ 504とコンデンサ 58 1で全波整流される。 そして、 コンバータ制御回路 506によりコンバータ 5 05がスイッチングされ、 コンバータ 505の 2次側に脈流電流が励起される。 前記脈流電流はタイォード 507及びコンデンサ 508により整流される。 整 流後の電圧を定電圧制御部 509が検知し、 一定電圧 (本実埯例では 24 V) になるようにフォトカプラ 510を介してコンバータ制御回路 506を制御す る。 整流された 24 V電圧は、 DCブラシレスモータ 451等に供給されると ともに、 DC/DCコンバータ 511に供給され 3 Yが生成される。 生成され た 3Vは DCコントローラ 201に供給され、 画像形成装置 401の制御に使 用される。 '
次に、 定着器の温度制御動作について説明する。 図 5は定着器に流れる定着 電流波形を説明する図である。
DCコントローラ 201はサーミスタ 530と抵抗 531の分圧電圧を A/7 Dポート 1を介して検知する。 サーミスタ 53◦は温度の上昇とともに抵抗値 が低下する特性をもっており、 DCコントローラ 201は AZDポート 1の分 圧電圧より定着ローラ 433の温度を検出する。 定着器 431内の加熱ヒータ 432には、 リ レー 522、 トライアツク 523及ぴサーモスイッチ 529を 介し,て商用電源が供給される。 DCコントローラ 201は、 ゼロクロス検知回 路 515を介して、 商用電¾|の正負が切り替わるタイミング、 いわゆるゼロク ロスを検知し、.内部ゼロクロス信号を生成する。 そして、 ゼロクロスを検知し てから所定時間後 (以降 TOFF) に ONZOFFポート 1より トライアツク ON 信号を出力し、 トランジスタ 528を ONする。 トランジスタ 528が〇Nす ると、 抵抗 527を介してフォトトライアツクカブラ 526に電流が流れフォ トトライアツタカプラ 526が ONする。 フォトトライアツタカプラ 526が ONすると抵抗 524、 525を介してトライアツク 523にゲート電流が流 れ、 トライアツク 523が ONし、 加熱ヒータ 432に電流が流れ発熱する。 そして、 トライアツク 523はゲート電流がゼロ、 すなわち次のゼロクロスの タイミングで OFFする。 DCコントローラ 201は時間 TOFFを制御すること で、 定着ローラ 433を所定温度に制御する。
続いて、 定着器へ流す電流が制限された場合の定着電流波形を説明する。 まず、 カレント トランス 512及ぴ抵抗 513で画像形成装置 401に流れ る 1次総電流を電流一電圧変換する。 次に、 電流一電圧変換した結果を電流検 知回路 514で実効値演算し、 結果を DCコントローラ 201の A/Dポ一ト 2に出力する。 DCコントローラ 201は AZDポート 2の電圧値に基づいて、 1次総電流を検出する。 検出した 1次総電流が所定電流値 I 1 im i tを超え ると、 超えた電流値に応じて ONZOF Fポート 1から出力するトライアツク ON信号を遅延 ( lt) させる。 その結果、 定着電流制限を行っていない時に 流れる定着電流 (図 5の破線) よりも定着電流を制限し、 1次総電流を I 1 i mi t以下にする (第 1段階の調整動作)。 本実施例では電流制限後に 1次総電 流が I 1 i mi t— I p (図 6参照) を超えないように遅延時間 ltを設定し ている。 図 1、 図 2は本実施例における画像形成動作を説明するフローチャートであ る。以下に図 1、図 2を用いて、連続画像形成中の電流抑制について説明する。 まず、'図 1を用いて電流を抑制しつつ定着性を確保するための第 2段階の調 整動作について説明する。 ■
®像形成が閑始されると、 まず S 1 0 1で前述の手法により定着ローラ4 3
3の加熱を開始し、 S 1 0 2でメインモータ 4 5 1、 Έ Τ Βモータ 4 5 2、 定 着モータ 4 5 3等のモータの駆動を開始する。 S 1 0 3で定着器の温度 (サー ミスタ 5 3 0の検知温度) が T aに到達したかを判断し、 T aに到達したら S 1 0 4で画像形成を開始し、 所定のタイミングで給紙カセット 4 .0 2から記録 紙 3 2を給紙する。 画像形成中は定着器の温度が制御目標温度 T f を維持する ように定着器へ流す電流を制御する。 本実施例では、 温度 T aをプリント中の 定着器の制御目.標温度 T f より低い温度に設定しているが、 温度 T aを制御目 標温度 T f と同じ温度に設定してもよく、 適宜設定すればよい。
S 1 0 5で定着器の温度をモニタし、 定着器の温度が所定温度 T b « T f ) 以上であれば S 1 0 6で印字が終了するまで画像形成を継続する。 本実施例で は、温度 T bはトナー像の定着性を確保できる定着可能下限温車である。一方、 S 1 0 5で定着器の温度が T b以下と検知した場合、 S 1 0 7で定着電流が制 限されているかを判断する。 定着電流が制限されていない場合、 S 1 0 8で定 着器の異常低温と判断し、 S 1 0 9で印字を終了する。 S 1 0 7で定着電流が 制限されていると判断した場合、 S 1 1 0で画像形成が継続するか否かを判断 し、 最後の画像形成である場合はそのまま画像形成を終了する。
一方、 画像形成が継続する場合は、 S 1 1 1で給紙間隔を判断する。 給紙間 隔が T s 1 i m i t以下である場合は、 S 1 1 2で定着器の温度 (サーミスタ 5 3 0の検知温度) が T f に上昇するまで画像形成を一時停止し、 S 1 1 3で 以降の給紙間隔を現在の給紙間隔よりも T s a延長する。 これにより給紙間隔 が T s 1から T s 2 (二 T s 1 +T s a ) に変更される (図 6 )。 そして、 S 1 0 4で画像形成を継続する。 換言すると、 定着器に搬送される記録材の搬送間隔 が拡大する。 給紙間隔を延長することで、 紙間時に定着器の温度を上昇させる ことが可能となり、 定着電流が抑制された状況においても定着器の温度低下が 低減できる (第 2段階の調整動作)。 ·
^紙間隔を延長した後も定着器の温度 (サーミスタ 530の検知温度) が T b以下となった場合は、 S 107、 S 1 10、 S i l lを経て給紙間隔が T s l i m i t (限界 になるまで給紙間隔を T s aずつ延長しながら画像形成を 継続する。 即ち、 定着部に搬送される記録材の搬送間隔が拡大した状態で、 定 着部の温度が所定温度 T bを下回った場合、 定着部に搬送される記録材の搬送 間隔が更に拡大する。 給紙間隔を T s 1 i m i tとしても定着器の温度 (サー ミスタ 530の検知温度) が Tb以下となってしまう場合 (S 1 1 1) は、 図 2に記載する第 3段階の調整動作を行う。 即ち、 定着部に搬送される記録材の 搬送間隔が所定限度まで拡大した状態で、 定着部の温度が所定温度 T bを下回 つた場合、 装置に装着されている複数のオプション機器の少なくとも一つの動 作が制限される。.
次に図 2を用いて第 3段階の調整動作について説明する。
[表 1]
Figure imgf000016_0001
第 3段階の調整動作は、 表 1に示すように画像形成装置の動作状況に応じて 画像形成動作を制限する (複数の駆動部 (負荷) の一部の動作を停止する) こ とで 1次総電流を抑制する。 上述したが、 本実施例の画像形成装置は、 イメージスキャナ 9 0 1で原稿の 画像を読み取り電子ファイル化するだけのスキャナモードと、 イメージスキヤ ナ 9 0 1が原稿の画像を読み取り且つこの画像情報に応じてレーザプリンタ 4 0 1が記録紙に画像形成するコピーモードを有する。 更に、 ホストコンビユー タ等の外部装脣4 4 1から送信される画像情報に応じてレーザプリンタ 4 0 1 が記録紙に画像形成するプリンタモードを有する。 プリンタモードはスキャナ モ一ドで原稿を読み取つている時でも実行可能である。 また、 スキャナモード はプリンタモードで画像形成を行っている時でも実行可能である。
まず S 1 5 1でイメージスキャナ 9 0 1が動作しているかどうかを判断する。 ィメージスキャナ 9 0 1が動作しているということは、 スキャナモードまたは コピーモードである。 イメージスキャナ 9 0 1が動作している場合は、 S 1 5 2で読み取り動作を停止し (読取動作が一枚の原稿の途中である場合、 その原 稿は最後まで読み取って停止させる)、 S 1 5 3でスキャナモードかコピーモー ドかを判断する。 スキャナモードの場合は、 S 1 5 4、 S 1 5 5で印字終了ま で画像形成を «繞し、 印字終了後、 S 1 5 6で読み取り動作を再開する。 スキ ャナモードであるにも拘わらず S 1 5 4で画像形成しているのはプリンタモー ドで画像形成している場合である。 S 1 5 4ではプリンタモードは許可状態で あり、 外部装置 4 4 1から新しい画像情報が送信されれば、 この画像情報に応 じた画像形成は実行可能である。 つまり、 レーザプリンタ 4 0 1とイメージス キヤナ 9 0 1が同時に作動する状況を回避すればよい。 一方、 S 1 5 3でスキ ャナモードでないと判断した場合、 即ちコピーモードの場合、' S 1 5 7、 S 1 5 8で読み取り済み原稿の画像形成を行った後 (S 1 5 2の読取停止が実行さ れる前に既に読み取られていた画像情報に応じた画像形成)、 S 1 5 9で残りの 原稿の読み取りを行う。 そして、 S 1 6 0、 S 1 6 1で読み取った残りの原稿 の印字を行う。
イメージスキャナ 9 0 1が動作していない場合は、 S 1 6 2で排紙ュ-ット 8 0 1の動作状態を確認する。 排紙ュニット 8 0 1が動作している場合は、 S 1 6 3でソートとスティプル動作を禁止し (ソート途中ゃスティプル途中の記 録紙は終了させて、 その後、 動作禁止する)、 S 1 6 4、 S 1 6 5で印字終了ま で画像形成を継続する。 S 1 6 4ではプリンタモードは許可状態であり、 S 1 6 4の画像形成はプリンタモードでの画像形成を意味している。 従って、 外部 装置 4 4 1から新しい画像情報が送信されれば、 この画像情報に応じた画像形 成は実行可能である。 一方、 排紙ュニット 8 0 1が動作していない場合は、 S 1 6 6で画像形成装置に異常な電流が流れていると判断し、 S 1 6 7で印字を 中止する。 .
図 6は図 1、 図 2で説明した電流抑制を行つた場合の 1次総電流と定着器温 度の関係を示した図である。 図 6を用いて、 本実施例における電流抑制効果に ついて説明する。
t 1で画像形成を開始すると、 定着器 4 3 1の加熱を開始するとともに、 メ インモータ 4 5 1、 E T Bモータ 4 5 2、 定着モータ 4 5 3等のモータの駆動 を開始する。 t 2で定着器温度が T aに到達すると画像形成を開始し、 所定の タイミングで給紙カセット 4 0 2から記録紙 3 2を給紙する。 画像形成中は定 着器温度が制御目標温度 T f を維持するように制御する。 しかし、 1 3で1次 総電流が I 1 i m i tを超えてしまうため、 図 5で示した手法で定着電流を制 限し、 1次総電流が I 1 i m i tを超えないように制御を行う (第 1段階の調 整動作)。 ただし、 定着電流の最大値が制限されるため、 定着器温度は徐々に低 下し、 t 4で定着器温度が所定温度 T b (定常時の目標温度 T f より所定値だ け低い温度 T b ) 以下となってしまう。 そこで、 定着器温度が T f に上昇する まで画像形成を一時停止するとともに、 以降の給紙間隔を T s 2に広げる (第 2段階の調整動作)。 給紙間隔を延長することで、 紙間時に定着器の温度を上昇 させることが可能となり、 定着電流が抑制された状況においても定着器の温度 低下が低減できる。 この第 2段階の調整動作は、 定着器温度が T b以下に降下 2008/056827
する度に給紙間隔を距離 T s aずつ広げるものであり、 最終的に給紙間隔 T s 2が所定の給紙間隔上限 T s 1 i m i tに達するまで実行できる。 更に画像形 成を継続した場合に、 t 5で再ぴ定着器温度が T b以下となることも考えられ る。 この時点で給紙間隔は T s 1 i m i tに達しているため、 6で表1に示 すように複数の駆動部の一部の動作を制限する。 これにより 1次総電流を I 1 i m i t以下に抑えつつ定着器温度を T b以上に保ちながら画像形成を継続す る (第 3段階の調整動作)。
この結果、 トナー像の定着不足の発生を防止しながら、 1次総電流が I 1 i m i tを超えないように制御できている。 :
以上説明したように、 本実施例によれば、 連続画像形成中に画像形成装置の 消費電流が増加した場合においても、 商用電源の最大電流を超えないように制 御するとともに、 所望の定着性を確保し、 かつ画像形成能力の低下を最小限に 止めることができる。
実施例 2
実施例 2である"画像形成装置"について説明する。
本実施例では、 1次総電流だけでなく定着器に流れる電流も検知し、 1次総 電流が増加した理由が、 定着器に流れる電流の増加か否かを判断し、 判断結果 に応じて第 3段階の調整動作を設定する点が実施例 1と異なる。
本実施例の全体構成は、 実施例 1の図 3と同様なので、 その説明を援用し、 ここでの 度の説明を省略する。
図 7は本実施例の画像形成装置の回路図である。 実施例 1の図 4に記載済の ものは同じ符号を付すとともに説明を省略する。
6 0 1はカレントトランス、 6 0 2は抵抗であり、 加熱ヒータ 4 3 2に流れ る定着電流を電流一電圧変換する。 電流一電圧変換した結果を定着電流検知回 路 (第 2電流検知回路) 6 0 3で実効値演算し、 結果を D Cコントローラ 2 0 1の AZDポート 5に出力する。 D Cコントローラ 2 0 1は AZDポート 5の 電圧値に基づいて、 定着電流を検出する。
図 8、 図 9、 図 1 0は本実施例における画像形成動作を説明するフローチヤ ートである。
以下に図 8〜図 1 0を用いて、 連続画像形成中の調整動作について説明す ¾。 まず、 図 8を用いて第 1段階の調整動作 (電流抑制動作) について説明する。 画像形成が開始されると、 まず S 2 0 1で前述の手法により定着ローラ 4 3 3の加熱を開台し、 S 2 0 2でメインモータ 4 5 1、 £丁8モータ4 5 2、 定 着モータ 4 5 3等のモータの駆動を開始する。. S 2 0 3で定着器温度が T aに 到達したかを判断し、 T aに到達したら S 2 0 4で画像形成を開始し、 所定の タイミングで給紙力セット 4 0 2から記録紙 3 2を給紙する。 画像形成中は定 着器の温度が制御目標温度 T f を維持するように制御する。
S 2 0 5で定着器温度をモニタし、 定着器の温度が所定温度 T b以上であれ ば S 2 0 6で印字が終了するまで画像形成を継続する。 一方、 S 2 0 5で定着 器の温度が T b以下と検知した場合、 S 2 0 7で定着電流が制限されている(前 述の第 1段階の調整動作) かを判断する。 定着電流が制限されていない場合、 S 2 0 8で定着器の異常低温と判断し、 S 2 0 9で印字を終了する。 S 2 0 7 で定着電流が制限されていると判断した場合、 S 2 1 0で画像形成が継続する か否かを判新し、 最後の画像形成である場合はそのまま画像形成を終了する。 一方、 画像形成が継続する場合は、 S 2 1 1で給紙間隔を判断する。 給紙間隔 が T s 1 i m i t以下である場合は、 S 2 1 2で定着器の温度が T f に上昇す るまで画像形成を一時停止し、 S 2 1 3で以降の給紙間隔を現在の給紙間隔よ りも T s a延長する (第 2段階の調整動作)。 そして、 S 2 0 4で画像形成を継 続する。 給紙間隔を延長することで、 紙間時に定着器の温度を上昇させること が可能となり、 定着電流が抑制された状況においても定着器の温度低下が低減 できる。
給紙間隔を延長した後も定着器の温度が所定温度 T b以下となった場合は、 S 207、 S 2 10、 S 21 1を経て給紙間隔が T s 1 i m i tになるまで給 紙間隔を距離 T s aずつ延長しながら画像形成を継続する。 ここまでは、 実施 例 1の第 2段階の調整動作までと同じ動作である。 .
給紙間隔を T s 1 i m i tとしても定着器の温度が Tb以下となってしまう場 合 (S 21 1) .は、 図 9に記載する第 3段階の調整動作を行う。
次に図 9と図 10を用いて実施例 2の第 3段階の調整動作について説明する。 本実施例の第 3段階の調整動作は、 表 2に示すように画像形成装置の動作状 況と定着電流に応じて画像形成動作を制限することで 1次総電流を抑制する。
[表 2]
Figure imgf000021_0001
まず図 9の S 25 1でイメージスキャナ 901が動作しているかどうかを判 断する。 動作している場合は、 S 252で定着電流を検知し、 定着電流が I F t h未満 (定着電流検出手段の検出値が所定値未満) であればモータ駆動電流 が大きい (定着器以外の負荷に流れる電流が大きい) と判断して S 253で読 み取り動作を停止する (読取動作が一枚の原稿の途中である場合、 その原稿は 最後まで読み取って停止させる)。 次に、 S 2 5 4でスキャナモードかコピーモ 一ドかを判断する。 スキャナモードの場合は、 S 2 5 5、 S 2 5 6で印字終了 まで画像形成を継続し (プリンタモードの画像形成を許可する)、 印字終了後、 S 2 5 7で読み取り動作を再開する。 一方、 コピーモードの場合、. S 2 5 8 > S 2 5 9で読み取り済み原稿の画像形成を行つた後、 S 2 6 0で残りの原稿の 読み取りを行う。 そして、 S 2 6 1、 S 2 6 2で読み取った残りの原稿の印字 を行う。
S 2 5 2で、 定着電流が I F t h以上 (所定値以上) である場合は、 単位体 積当りの熱容量 (以降 .坪量という) の大きい記録紙に形成した.トナー像を定 着処理中だと判断し、 S 2 6 3で定着速度を 1ノ 2速に変更する。 一般的に同 じ坪量の記録紙に定着する場合、 定着速度が遅いほど定着電流は低くなる。 本 実施例の画像形成装置の場合、 定着速度のみを変更することが出来ないため、 画像形成部の画像形成速度も同時に 1 / 2速に変更する。 そして、 S 2 6 4、 S 2. 6 5で印字終了まで画像形成を行う。
次に、 S 2 5 1でイメージスキャナ 9 0 1が動作していない場合の動作につ いて図 1 0を用いて説明する。 まず、 S 2 7 1で排紙ュニット 8 0 1の動作状 態を確認する。 排紙ュ-ット 8 0 1が動作している場合は、 S 2 7 2で定着電 流を検知し、 定着電流が I F t h未満であればモータ駆動電流が大きい (定着 器以外の負荷に流れる電流が大きい) と判断して S 2 7 3でソートとスティブ ル動作を禁止する (ソート途中ゃスティプル途中の記録紙.は終了させて、 その 後、 動作禁止する)。 そして、 S 2 7 4、 S 2 7 5で印字終了まで画像形成を行 う (プリンタモードでの画像形成を許可する)。
S 2 7 2で、 定着電流が I F t h以上である場合は、 坪量の大きい記録紙に 形成したトナー像を定着処理中だと判断し、 S 2 7 6で画像形成速度を 1 2 速に変更する。 そして、 S 2 7 7、 S 2 7 8で印字終了まで画像形成を行う (プ リンタモードでの画像形成を許可する)。 一方、 S 2 7 1で排紙ュ-ット 8 0 1が動作していないと判断した場合は、 S 2 7 9で定着電流を検知する。 定着電流が I F t h以上である場合は、 坪量 の大きい記録紙に形成したトナー像を定着処理中だと判断して S 2 7 9で画像 形成速度を 1 / 2速に変更し、 S 2 7 7、 S 2 7 8で印字終了まで画像形成を 行う (プリンタモードでの画像形成を許可する)。 定着電流が I F t h未満であ る場合は、 S 2 8 3で画像形成装置に異常な電流が流れていると判断し、 S 2 8 4で印字を中止する。
以上説明したように、 本実施例によれば、 連続画像形成中に画像形成装置の 消費電流が増加した場合においても、 商用電源の最大電流を超えないように制 御するとともに、 所望の定着性を確保し、 かつ画像形成能力の低下を最小限に 止めることができる。 . . '
実施例 3
実施例 3である"画像形成装置"について説明する。本実施例では、 1次総電流 だけでなく記録紙の坪量と画像形成装置の周囲温度 (環境温度) を検知し、 1 次総電流が増加した理由が、 定着器に流れる電流の増加か否かを判断し、 判断 結果に応じて第 3段階の調整動作を選択する。 本実施例の全体構成は実施例 1 と同様なので、 その説明を援用し、 ここでの再説明を省略する。
図 1 1は本実施例の画像形成装置の回路図である。 実施例 1の図 4に記载済 のものは同じ符号を付すとともに説明を省略する。
. 3 2 3は坪量判別装置ズ坪量検知手段) であり、 光照射素子 5 6 1と透過光 量検出素子 5 6 3を有する。 D Cコントローラ 2 0 1は記録紙 3 2が坪量判別 装置 3 2 3に到達する所定のタイミングで光照射素子 5 6 1を O Nさせる。 透 過光量検出素子 5 6 3は受光光量に応じた出力を D Cコントローラ 2 0 1の A /Dポート 3に出力し、 D Cコントローラ 2 0 1は AZDポート 3の電圧値に 基づいて記録紙の坪量を検出する。
3 2 4は画像形成装置の周囲温度を検知する温度検知センサ (環境温度検知 手段) であり、 検知温度に応じた出力を D Cコントローラ 2 0 1の A/Dポー ト 4に出力する。 D Cコントローラ 2 0 1は AZDポート 4の電圧値に基づい て画像形成装置の周囲温度を検出する。 .
図 1 2、 図 1 3、 図 1 4は本実施例の画像形成動作を説明するフローチヤ一 トである。 以下に図 1 2〜図 1 4を用いて、 連続画像形成中の電流抑制動作に ついて説明する。 まず、 図 1 2を用いて第 2段階の調整動作 (給紙間隔の延長) について説明する。
画像形成が開始されると、.まず S 3 0 1で前述の手法により定着ローラ 4 3 3の加熱を開始し、 S 3 0 2でメインモータ 4 5 1、 £丁8モータ4 5 2、 定 着モータ 4 5 3等のモータの駆動を開始する。 S 3 0 3で定着器の温度が T a に到達したかを判断し、 T aに到達したら S 3 0 4で画像形成を開始し、 所定 のタイミングで給紙カセット 4 0 2から記録紙 3 2を給紙する。 画像形成中は 制御目標温度 T f を維持するように制御する。 S 3 0 5で定着器の温度をモ- タし、 定着器の温度が所定温度 T b以上であれば S 3 0 6で印字が終了するま で画像形成を継続する。
一方、 S 3 0 5で定着器の温度が T b以下と検知した場合、 S 3 0 7で定着 電流が制限されているか (前述の第 1段階の調整動作が実行されているかどう 力 を判断する。 定着電流が制限されていない場合、 S 3 0 8で定着器の異常 低温と判断し、 S 3 0 9で印字を終了する。 S 3 0 7で定着電流が制限されて いると判断した場合、 S 3 1 0で画像形成が継続するか否かを判断し、 最後の 画像形成である場合はそのまま画像形成を終了する。 一方、 画像形成が継続す る場合は、 S 3 1 1で給紙間隔を判断する。 給紙間隔が T s 1 i m i t以下で ある場合は、 S 3 1 2で定着器の温度が T f に上昇するまで画像形成を一 Bき停 止し、 S 3 1 3で以降の給紙間隔を現在の給紙間隔より T s a延長する (第 2 段階の調整動作)。 そして、 S 3 0 4で画像形成を継続する。 給紙間隔を延長す ることで、 紙間時に定着器の温度を上昇させることが可能となり、 定着電流が 抑制された状況においても定着器の温度低下が低減できる。
給紙間隔を延長した後も定着器の温度が所定温度 T b以下となった場合は、
S 307、 S 31 0、 S 311を経て給紙間隔が T s 1 i m i tになるまで給 紙間隔を T s aずつ延長しながら画像形成を継続する。 給紙間隔を T s l im i tとしても定着器温度が Tb以下となってしまう場合 (S 3 1 1) は、 図 1
3、 図 14に記載する第 3段階の調整動作を行う。
次に図 1 3と図 14を用いて第 3段階の調整動作について説明する。
第 3段階の調整動作は、 表 3に示すように画像形成装置の動作状況と記録紙 の坪量、 及ぴ周囲温度に応じて画像形成動作を制限することで 1次総電流を抑 制する。
[表 3]
Figure imgf000026_0001
まず図 1 3の S 35 1でイメージスキャナ 901が動作しているかどうかを 判断する。 動作している場合は、 S 352で記録紙の坪量を検知し、 坪量が 9 0 gZm2未満であれば定着器温度が Tbであっても定着可能と判断し、 S 35 3で画像形成を行う。 そして、 定着器温度が Tb— 10°Cより高ければ、 S 3 53、 S 354、 S 355で印字終了まで画像形成を継続する。
定着器温度が T b ~ 10°C以下になった場合 (S 354) は、 S 356で読 み取り動作を停止する。 次に、 S 357でスキャナモードかコピーモードかを 判断する。 スキャナモードの場合は、 S 358、 S 359で印字終了まで画像 形成を継続し、 印字終了後、 S 360で読み取り動作を再開する。 一方、 コピ 一モードの場合、 S 3 6 1、 S 3 6 2で読み取り済み原稿の画像形成を行った 後、 S 3 6 3で残りの原稿の読み取りを行う。 そして、 S 36 4、 S 3 6 5で 読み取った残りの原稿の印字を行う。 . S 3 5 2で、 坪量が 9 0 gZm2以上である場合は、 S 36 6で周囲温度を検 知する。 一般的に周囲温度と記録紙の温度は同じであり、 記録紙温度が低いほ ど定着器温度を高くする必要がある。 S 3 6 6で周囲温度が 1 5°C以上と判断 した場合は、 定着器温度が低くても定着可能であると判断し、 S 3 5 3に戻り 前述の動作を行う。 一方、 周囲温度が 1 5 °C未満の場合は、 定着器温度を Tb 以上に維持する必要があると判断し、 S 36 7で画像形成速度を.1/2速に変 更する。 そして、 S 3 6 8、 S 36 9で印字終了まで画像形成を行う。
次に、 S 3 5 1でイメージスキャナ 9 0 1が動作していない場合の動作につ いて図 1 4を用いて説明する。 まず、 S 40 1で排紙ュニット 80 1の動作状 態を確認する。 排紙ュニット 80 1が動作している場合は、 S 40 2で記録紙 の坪量を検知し、坪量が 90 g/m 2未満であれば定着器温度が Tbであっても 定着可能と判断し、 S 40 3で画像形成を行う。 そして、 定着器温度が Tb— 1 0°Cより高ければ、 S 40 3、 S 404、 S 40.5で印字終了まで画像形成 を継続する。 定着器温度が T b— 1 0°C以下になった場合 (S 404) は、 S 406でソートとスティプル動作を禁止する。 そして、 S 40 7、 S 40 8で 印字終了まで画像形成を行う。
. S 402で、 記録紙の坪量が 90 gZm 2以上である場合は、 S 40 9で周囲 温度を検知する。 周囲温度が 1 5 °C以上と判断した場合は、 定着器温度が低く ても定着可能であると判断し、 S.40 3に戻り前述の動作を行う。 一方、 周囲 温度が 1 5°C未満の場合は、 定着器温度を Tb以上に維持する必要があると判 断し、 S 4 1 0で画像形成速度を 1/2速に変更する。 そして、 S 4 1 1、 S 4 1 2で印字終了まで画像形成を行う。
一方、 S 40 1で排紙ュニット 80 1が動作していないと判断した場合は、 S 4 1 3で記録紙の坪量を検知する。 坪量が 9 0 g Zm2未満の場合、 S 4 1 4 で 1次総電流が大きい理由が画像形成装置に異常な電流が流れているためと判 断し、 S 4 1 5で印字を中止する。 坪量が 9 0 g /m 2以上の場合は、 S 4 1 6 で周囲温度を検知する。 周囲温度が 1 5 °C以上の場合は、 1次総電流が大きい 理由が画像形 ^装置に異常な電流が流れているためと判断し、 S 4 1 4に戻つ て印字を中止する。 周囲温度が 1 5 °C未満の場合は、 定着器温度を T b以上に 維持する必要があると判断し、 S 4 1 7で画像形成速度を 1 / 2速に変更する。 そして、 S 4 1 8、 S 4 1 9で印字終了まで画像形成を行う。
以上説明したように、.本実施例によれば、 前述の制御を行うこ.とで、 連続画 像形成中に画像形成装置の消費電流が増加した場合においても、 商用電源の最 大電流を超えないように制御するとともに、 所望の定着性を確保し、 画像形成 能力の低下を最小限に止めることが可能となる。
なお、.実施例 1〜3では、 カラーレーザプリンタを用いて説明を行った。 し かしながら、 画像形成装置はカラーレーザプリンタに限定されるものではなく、 モノクロレーザプリンタであっても構わない。
また、 オプション給紙ュュットの動作状態に応じて第 3段階の調整動作の実 行を判断しても構わない。
実施例 1〜3では、 第 2段階の調整動作 (給紙間隔の延長) を実行する場合 と第 3段階の調整動作 (定着器以外の負荷の駆動禁止) を実行する場合の基準 となる所定温度を同じ T bとして説明を行った。 しかしながら、 それぞれの調 整動作を行う基準の温度は異ならせても構わない。 '
実施例 2では、 1次総電流と定着器に流れる電流を検知し、 1次総電流が増 加した理由が、 定着器に流れる電流の増加か否かを判断した。 し力 しながら、 1次総電流のみを検知し、 例えば定着器を〇Nしているときと O F Fしている ときの 1次総電流の差から、 1次総電流が増加した理由が、 定着器に流れる電 流の増加か否かを判断しても構わない。 また、 上述した実施例 1〜3では、 第 1段階から第 3段階までの調整動作が 設定されている画像形成装置について説明したが、 少なくとも第 1段階と第 2 段階の調整動作が設定されていれば良い。 この構成であっても、 商用電源から 画像形成装置への入力電流を所定値以下に抑えつつ処理能力の低下を抑えられ る画像形成装髯を提供することができる。
次に、 商用電源から画像形成装置への入力電流を所定値以下に抑えつつ処理 能力の低下を抑えられる画像形成装置の他の実施例を以下の実施例 4〜 7に説 明する。 実施例 1〜3との違いは、 前述した第 1段階の調整動作 (定着器への 電流制限) における定着器への投入可能電流の上限値決定方法である。 実施例 4 ~ 7を第 1段階の調整動作として用いれば、 更に画像形成装置の処理能力の 低下を抑えることができる。
実施例 4
図 1 5は、 実施例 4〜 7に係る電子写真プロセスを用レ、た画像形成装置 (レ 一ザプリンタ) の概略構成図である。
レーザプリンタ本体 1 1 0 1 (以下、 本体 1 1 0 1 ) は、 記録シート Sを収 納する力セット 1 1 0 2が装着可能で、 このカセット 1 1 0 2から供給される 記録シート Sに画像を形成する。 1 1 0 3は、 カセット 1 1 0 2の記録シート Sの有無を検知するカセット有無センサである。 1 1 0 4は、 カセット 1 1 0 2に収容されている記録シート Sのサイズを検知するカセットサイズセンサで、 ここでは例えば複数のマイクロスイッチで構成されている。 1 1 0 5は、 カセ ット 1 1 0 2から記録シート Sをピックアップして搬送する給紙ローラである。 この給紙ローラ 1 1 0 5の下流には記録シート Sを同期搬送するレジストロー ラ対 1 1 0 6が設けられている。 また、 このレジストローラ対 1 1 0 6の下流 には、 レーザスキャナ部 1 1 0 7からのレーザ光に基づいて記録シート S上に トナー像を形成する画像形成部 1 1 0 8が設けられている。 更に、 この画像形 成部 1 1 0 8の下流には、 記録シート S上に形成されたトナー像を熱定着する' 定着器 1 109が設けられている。 そして、 この定着器 1 109の下流には、 排紙部の搬送状態を検知する排紙センサ 1 1 10、 記録シート Sを排紙する排 紙ローラ対 1 1 1 1、 画像が形成されて定着された記録シート Sを積載して収 容する積载トレイ 1 1 12が設けられている。 尚、 ここでこの記録シート Sの 搬送基準は、 記録シート Sの搬送方向に直交する方向の長さ、 つまり記録シー ト Sの幅に対して、 略中央になるように設定されている。 '
またレーザスキャナ部 1 107は、 外部装置 1 13 1から送出される画像信 号 (画像信号 VDO) に基づいて変調されたレーザ光を発光するレーザュニッ ト 1 1 13を有している。 このレーザユニット 1 1 1 3からのレーザ光は、 ポ リゴンモータ 1 1 14により回転駆動されるポリゴンミラーにより反射され、 結像レンズ 1 1 1 5、 折り返しミラー 1 1 1 6等により反射されて感光ドラム 1 1 17上を走査する。
画像形成部 1 1 08は、 公知の電子写真プロセスに必要な、 感光ドラム 1 1 17、 一次帯電ローラ 1 1 1 9、 現像器 1 1 20、 転写帯電ローラ 1 121、 クリーナ 1 122等を有している。 また定着器 1 1 09は、 定着フィルム 1 1 09 a, 加圧ローラ 1 109 b、 定着フィルム 1 109 a内部に設けられた定 着用セラミックヒータ 1 109 c、 セラミックヒータ 1 109 cの表面温度を 検出するサーミスタ 1 109 d.を有している。
また、 メインモータ 1 123は、 給紙ローラ 1 105に対して給紙ローラク ラッチ 1 1 24を介して回転力を与えている。 またレジストローラ対 1 106 には、 レジストローラクラッチ 1 125を介して回転力を与えている。 更に、 感光ドラム 1 1 17を含む画像形成部 1 108の各ュニット、 定着器 1 109、 排紙ローラ対 1 1 1 1にも駆動力を与えている。
1 126はエンジンコントローラであり、 レーザスキャナ部 1 107、 画像 形成部 1 108、 定着器 1 109による電子写真プロセスの制御、 及び本体 1 101での記録シート Sの搬送制御等を行なっている。 1 1 27はビデオコン トローラであり、 パーソナルコンピュータ等の外部装置 1 131と汎用のイン タフエース (セントロニクス、 RS 232 C等) 1130で接続されている。 ビデオコントローラ 1 127は、 この汎用インタフェース 1130を介して送 られてくる画像情報をビットデータに展開し、 そのビットデータを VDO信:^ として、 エンジンコントローラ 1126へ送出している。
図 1'6は、 本発明の実施の形態において、 セラミックヒータ 1109 cへの 通電駆動を制御するヒータ制御回路 (電力供給制御回路) の構成を示すブロッ ク図である。 .
1201は、 この画像形成装置が接続される交流電源 (商用電源) を示して いる。 この画像形成装置は、 交流電源 1201を ACフィルタ 1202, リレ — 1241を介してセラミックヒータ 1 109 cの発熱体 1203, 発熱体 1 220へ供給している。 これによりセラミックヒータ 1109 cを構成する発 熱体 1203、 発熱体 1220を発熱させる。 この発熱体 1203への電力の 供給は、 トライアツク' 1204の通電、 遮断により制御される (通電切替え制 御)。抵抗 1205, 1206は、このトライアツク 1204のバイアス抵抗で、 フォトトライアツタカプラ 1207は、 一次、 二次間の沿面距離を確保するた めのデバイスである。 このフォトトライアツクカプラ 1207の発光ダイォー ドに通電することにより、 トライアツク 1204がオンされる。 抵抗 1208 は、 フォトトライアツクカブラ 1207に流れる電流を制限するための抵抗で あり、 トランジスタ 1209によりフォトトライアツタカプラ 1207への通 電がオンノオフされる。 このトランジスタ 1209は、 抵抗 1210を介して エンジンコントローラ 1126から供給される信号(ON1)に従って動作する。 また発熱体 1220への電力の供給は、 トライアツク 1213の通電、 遮断 により制御される。 抵抗 1214, 1215は、 トライアツク 1213のバイ ァス抵抗で、 フォトトライアツタカブラ 1216は、 一次、 二次間の沿面距離 を確保するためのデバイスである。 このフォトトライアツクカプラ 1216の 発光ダイオードに通電することにより、 トライアツク 1 2 1 3をオンすること ができる。 抵抗 1 2 1 7は、 フォトトライアツクカプラ 1 2 1 6に流れる電流 を制限するための抵抗である。 トランジスタ 1 2 1 8は、 抵抗 1 2 1 9を介し てエンジンコントローラ 1 1 2 6から供給される信号 (ON2) に従って、 この フォトトライァックカプラ 1 2 1 6による通電をオン オフしている。
また、 交流電¾1 1 2 0 1は、 A Cフィルタ 1 2 0 2を介してゼロクロス検出 回路 1 2 1 2に入力される。 このゼロクロス検出回路 1 2 1 2は、 交流電¾1 1 2 0 1の電圧が、 閾値以下の電圧になっていることをエンジンコントローラ 1 1 2 6に対してパルス信号で報知する。 以下、 このエンジンコントローラ 1 1 2 6に送出される信号を ZEROX信号と呼ぶ。 エンジンコントローラ 1 1 2 6 は、 この ZEROX信号のパルスのエッジを検知し、 位相制御又は波数制御によ り トライアツク 1 2 0 4或は 1 2 1 3のオンノオフを制御している。
これらトライアツク 1 2 0 4及ぴ 1 2 1 3を駆動することにより発熱体 1 2 0 3 , 1 2 2 0に通電されるヒータ電流は、 カレントトランス 1 2 2 5によつ て電圧変換され、.電流検出回路 (第 2電流検知回路) 1 2 2 7に入力される。 この電流検出回路 1 2 2 7は、 電圧変換されたヒータ電流波形を実効値もしく はその 2乗値に変換し、 HCRRT1信号としてエンジンコントローラ 1 1 2 6に 入力される。 こうして入力された HCRRT1信号は、エンジンコントローラ 1 1 2 6で八70変換され、 デジタル値で管理される。
.また A Cフィルタ 1 2 0 2を介して入力される交流電源 1 2 0 1からの電流 は、 カレントトランス 1 2 2 6によって電圧変換され、 電流検出回路 (第 1電 流検知回路) 1 2 2 8に入力される。 この電流検出回路 1 2 2 8では、 電圧変 換されたヒータ電流波形と低圧電源電流波形の合成電流波形を、 実効値もしく はその 2乗値に変換し、 HCRRT2信号としてエンジンコントローラ 1 1 2 6に 入力する。 こうして入力された HCRRT2信号は、 エンジンコントローラ 1 1 2
6で AZD変換され、 デジタル値で管理される。 第 1電流検知回路 1 2 2 8は 商用電源から画像形成装置への入力電流( 1次総電流)を検知する回路であり、 第 2電流検知回路 1227は定着器に流れる電流を検知する回路である。
サーミスタ (温度検知素子) 1109 dは、 発熱体 1203, 1220が形 成されているセラミックヒータ 1109 cの温度を検知するための素子である。 このサーミスタ 1 109 dは、 セラミックヒータ 1109 c上に発熱体 120 3, 1220に対して絶縁距離を確保できるように、 絶縁耐圧を有する絶縁物 を介して配置されている。 このサーミスタ 1 109 dによって検出される温度 は、 抵抗 1222と、 サーミスタ 1109 dとの分圧として検出され、 ェンジ ンコントローラ 1 126に TH信号として入力される。こうして入力された TH 信号は、 エンジンコントローラ 1126で AZD変換され、 デジタル値で管理 される。 '
このセラミックヒータ 1109 cの温度は、 TH信号としてエンジンコント口 ーラ 1126で監視されている。 そしてエンジンコントローラ 1126で設定 されているセラミックヒータ 1109 cの設定温度 (制御目標温度) と比較す ることによって、.セラミックヒータ 1 109 cを構成する発熱体 1203, 1 220に供給するべき電力比 (デューティ) を算出.する。 そして、 その供給す る電力比に対応した位相角 (位相制御) 又は波数 (波数制御) に換算し、 その 制御条件によりエンジンコントローラ 1126がトランジスタ 1209に ON1 信号、或はトランジスタ 1218に ON2信号を送出する。 こうしてセラミック ヒータ 1109 cの温度が制御される。 ここで発熱体 1203, 1220に供 給する電力比を算出する際に、 電流検出回路 1227と電流検出回路 1228 力 ら報知される HCRRT1信号、 HCRRT2信号を基に上限の電力比を正確に算 出して、 その上限の電力比以下の電力が通電されるように制御する。 例えば、 位相制御の場合、 下記のような制御テーブルがエンジンコントローラ 1126 に設けられており、 この制御テーブルに基づいて制御する。
[表 4] 電力比 位相角
ディーティ D (%) a (。 )
1 0 0 , 0
. 9 7. 5 2 8. 5 6
7 5 6 6. 1 7
5 0 9 0
2 5 1 1 3. 8 3
2. 5 1 5 1. 44
0 1 8 0 . 更に、 発熱体 1 2 0 3, 1 2 2 0に電力を供給して制御する回路など故障し て発熱体 1 2 0 3, 1.2 2 0が熱暴走に至った場合、 その過昇温を防止する一 手段として、 過昇温防止部 1 2 2 3がセラミックヒータ 1 1 0 9 cに配されて いる。 この過昇温防止部 1 2 2 3は、 ^j.えば温度ヒューズゃサーモスィツチで ある。 発熱体 1 2 0 3, 1 2 2 0が熱暴走になって過昇温防止部 1 2 2 3が所 定の温度以上になると、 この過昇温防止部 1 2 2 3が開放状態となって発熱体 1 2 0 3, 1 2 2 0への通電が遮断される。
また TH信号として監視されているセラミックヒータ 1 1 0 9 cの温度制御 のために、 エンジンコントローラ 1 1 2 6で温度制御の設定温度とは別に異常 高温を検知するための異常温度値が設定されている。 これにより ΊΉ信号が示 す温度情報が、 その異常温度値以上になった場合は、 エンジンコントローラ 1 1 2 6は RLD信号をロウレベルにする。 これにより トランジスタ 1 24 2がォ フ状態になってリレー 1 2 4 1を開放する。 こうして発熱体 1 2 0 3 , 1 2 2 0への通電が遮断される。 通常、 温度制御時には、 エンジンコントローラ 1 1 26は RLD信号を常にハイレベルで出力してトランジスタ 1242をオンにし、 リ レー 1241をオン (導通状態) にしている。 抵抗 1243は電流制限抵抗 であり、'抵抗 1244は、 トランジスタ 1242のベース ·ェミッタ間のバイ ァス抵抗である。 ダイオード 1245はリレー 1241のオフ時の逆起電力吸 収 ffl素子である。 .
図 17 及ぴ17Bは、 本実施の形態に係るセラミックヒータ 1 109 cの 概略を説明する図である。 図 17 Aは、 セラミック面発ヒータの断面図、 図 1 7 Bの 1301は、 発熱体 1203, 1220が形成されている面を示してお り、図 17Bの 1302.は、 1301が示す面とは反対側の面を示している (図 17 A参照)。
このセラミック面発ヒータ 1109 cは、 SiC, A1N, A12O3等のセラミック ス系の絶縁基板 1331と、 この絶縁基板 1331面上にペースト印刷等で形 成されている発熱体 1203, 1220と、 2本の発熱体を保護しているガラ ス等の保護層 1334から構成されている。 この保護層 1334上に、 セラミ ック面発ヒータ 1109 cの温度を検出するサーミスタ 1109 dと過昇温防 止部 1223が配置されている。 サ一ミスタ 1109 dと過昇温防止部 122 3は記録シートの搬送基準、 つまり発熱部 1203 a, 1220 aの長さ方向 の中心に対して 右対称な位置で、 かつ通紙可能な最小の記録シート幅よりも 内側の位置に配設されている。
.発熱体 1203は、 電力が供給されると発熱する部分 1203 aと、 コネク タを介して電力が供給される電極部 1203 c, 1203 dと、 これら電極部 1203 c, 1203 dと発熱体.1203とを接続する導電部 1203 bとを 有している。 また発熱体 1220は、 電力が供給されると発熱する部分 122 0 aと、コネクタを介して電力が供給される電極部 1203 c, 1220 dと、 電極部 1203 c, 1220 dと接続される導電部 1220 bとを有している。 電極部 1203 cは、 2本の発熱体 1203と 1220に共通に接続されてお り、発熱体 1203, 1220の共通電極となっている。 また発熱体 1203, 1 220が印刷されている絶縁基板 1331との対向面側に摺動性を向上させ るためにガラス層が形成される場合もある。
この共通電極 1203 cは、交流電源 1201の HOT側端子から過昇温防 部 1223を介して接続される。 電極部 1203 dは、 発熱体 1203を制御 するトライアツク 1 204に接続され、 交流電源 12 Ό 1の Neutral端子に接 続される。 電極部 1 220 dは、 発熱体 1220を制御するトライアツク 12 13と電気的に接続され、 交流電源 1201の Neutral端子に接続される。 セ ラミックヒータ 1 109 cは、 図 18 A及び 18 Bに示すように、 フィルムガ イド 1 162によって支持されている。
図.18 A及び 1 8 Bは、 本実施の形態に係る熱定着器 1 109の概略構成を 示す図で、 図 1· 8 Aは、 絶縁基板 1331に対して、 発熱体 1 203, 1 22 0が定着ニップ部' (定着フィルム 1 109 aと加圧ローラ 1 109 bが接触す る領域) と反対側にある場合を示している。 また図 1 8 Bは、 絶縁基板 1 33 1に対して、 発熱体 1 203, 1 220が定着二ップ部側に位置している場合 を示している。
定着フィルム 1 109 aは、 耐熱材 (例えばポリイミド) を材料として筒状 に製造されたもので、 セラミックヒータ 1 1 09 cを下面側に支持させたフィ ルムガイド 1062に外嵌させてある。 そして、 このフィルムガイド 1062 の下面のセラミックヒータ 1 109 cと、 加圧部材としての弾性加圧ローラ 1 109 bとを、 定着フィルム 1 109 aを介して圧接させている。 こうして加 熱部としての所定幅の定着エップ部を形成している。 また過昇温防止部 1 22 3、 例えば、 サーモスタツトがセラミックヒータ 1 109 cの絶縁基板.1 33 1面上、 或は保護層 1 334面上に当接されている。 この過昇温防止部 122 3は、 フィルムガイド 1062に位置を矯正され、 過昇温防止部 1 223の感 熱面がセラミックヒータ 1 109 cの面上に当接されている。 図示はしていな いが、 サーミスタ 1 109 dも同様に、 このセラミックヒータ 1 109 cの面 上に当接されている。 ここで、 図 18 Aのように、 セラミックヒータ 1 109 cは発熱体 1203, 1 220が-ップ部と反対側にあっても良く、 或は図 1 8 Bのように、発熱体 1203, 1 220がエップ部側にあってもかまわない。 また、 定着フィルム 1 109 aの摺動性を上げるために、 定着フィルム 1 10 9 aとセラミックヒータ 1 109 cとの界面に摺動性のグリースを塗布しても かまわない。
図 19は、 本実施の形態に係る電流検出回路 (第 2電流検知回路) 1227 の構成を説明するブロック図、 図 21は、 この電流検出回路 1 2.27の動作を 説明するための波形図である。 電流検出回路 1227は検出対象.(定着器) の 負荷電流 (定着電流) の二次電流を入力し、 それに応じた電圧を電圧保持回路
(コンデンサ 1074 a) で保持して出力している。
図 21の 1601では、発熱体 1 203に電流 I 1が流されると、カレントト ランス 1225によって、 その電流波形が二次側で電圧変換される。 このカレ ントトランス 1 225の電圧出力をダイォード 1051 a, 1053 aによつ て整流する半波整流回路を構.成し、 負荷抵抗として^ g抗 105.2 a, 1054 aを接続している。 1603は、 このダイオード 1053 aによって半波整流 された波形を示す。 この電圧波形は、 抵抗 1055 aを介して乗算器 1056 aに入力される。 この乗算器 1056 aは、 1604で示すように、 2乗した 電圧波形を出力する二乗回路として機能している。 この 2乗された波形は、 抵 抗 1057 aを介してオペアンプ 1059 aの一端子に入力される。 このオペ アンプ 1059 aの +端子には、 抵抗 1058 aを介してリファレンス電圧 1 084 aが入力されており、 帰還抵抗 1060 aにより反転増幅される (増幅 回路として機能)。 尚、 このオペアンプ 1059 aは片電源から電源が供給され ているものとする。
1605は、 リファレンス電圧 1084 aを基準に反転増幅された波形を示 す。 このオペアンプ 1 0 5 9 aの出力は、 積分回路を構成するオペアンプ 1 0 7 2 aの +端子に入力される。 オペアンプ 1 0 7 2 aでは、 リファレンス電圧 1 0 8 4 aと、 その +端子に入力された波形の電圧差と、 抵抗 1 0 7 1 aで決 定される電流がコンデンサ 1 0 7 4 aに流入されるようにトランジスタ 1 0 .7 3 aを制御している。 こうしてコンデンサ 1 0 7 4 aは、 リファレンス電圧 1 0 8 4 aと、 その +端子に入力された波形の電圧差と抵抗 1 0 7 1 aで決定さ れる電流で充電される。
ダイォード 1 0 5 3 aによる半波整流区間が終わると、 コンデンサ 1 0 7 4 aへの充電電流がなくなるため、 その電圧値がピークホールドされる (電圧保 持回路)。 そして 1 6 0 6に示すように、 ダイオード 1 0 5 1 aの半波整流期間 に DIS信号により トランジスタ 1 0 7 5 aをオンする。 これにより、 コンデン サ 1 0 7 4 aの充電電圧が放電される。 1 6 0 7で示すように、 トランジスタ 1 0 7 5 aは、 エンジンコントローラ 1 1 2 6からの DIS信号によりオン Zォ フされており、 1 6 0 2で示す ZEROX信号を基に、 トランジスタ 1 0 7 5 a のオン オフ制御を行っている。 この DIS信号は、 ZEROX信号の立上がりェ ッジから所定時間 Tdly後にオンし、 ZEROX信号の立下がりエッジと同じタイ ミング、' もしくは直前でオフする。 これにより、 ダイオード 1 0 5 3 aの半波 整流期間であるヒ タの通電期間を干渉することなく制御できる。
つまり、 コンデンサ 1 0 7 4 aのピークホールド電圧 Vlf は、 カレントトラ ンス 1 2 2 5によつて電流波形が二次側に電'圧変換された波形の 2乗値の半周 期分の積分値となる。 こうしてコンデンサ 1 0 7 4 aにピークホールドされた 電圧値が、電流検出回路 1 2 2 7から HCRRT1信号としてエンジンコントロー ラ 1 1 2 6に送出される。 つまり、 電圧 Vlf が電流検出回路 (第 2電流検知回 路) 1 2 2 7で検出する電流(定着器のヒータに流れる電流) に対応している。 図 2 0は、 本実施の形態に係る電流検出回路 (第 1電流検知回路;! 1 2 2 8 の構成を説明するブロック図、 図 2 2は、 この電流検出回路 1 2 2 8の動作を 説明するための波形図である。 この回路もまた、 検出対象である電源電流 (商 用電源から画像形成装置への入力電流) の二次電流を入力し、 それに応じた電 圧を電圧保持回路 (コンデンサ 1075 b) で保持して出力している。
1701は、 ACフィルタ 1202を介して供給される電源電流 I 2を示レ、 この電流 12は.カレントトランス 1226によって二次側で電圧変換される。こ の電源電流 I 2は、 ヒータ 1109 c (発熱体 1203, 1220) に流す電流 II (1601) と、 低圧電源 (LVPS) 電流 13との合計である。
このカレント トランス 1226からの電圧出力をダイオード 1051 b, 1 053 bによって整流し、 負荷抵抗として 1052 b, 1054 bを接続して いる。 1703は、 ダイォード 1053 bで半波整流された電圧波形を示し、 この波形は抵抗 105.5 bを介して乗算器 1056 bに入力される。 1704 は、 この乗算器 1056 bにより 2乗された波形を示す。 この 2乗された電圧 波形は、 抵抗 1057 bを介してオペアンプ 1059 bの一端子に入力されて いる。 一方、 このオペアンプ 1059 bの +端子には、 抵抗 1058 bを介し てリファレンス電圧 1084 bが入力されており、 帰還抵抗 106◦ bにより 反転増幅される。 尚、 このオペアンプ 1059 bは、 片電源で電源供給されて いる。 こうしてリファレンス電圧 1084 bを基準に反転増幅された波形、 つ まり、 オペアンプ 1059 bの出力は、 オペアンプ 1072 bの +端子に入力 される。
.オペアンプ 1072 bは、 リファレンス電圧 1084 bと、 その +端子に入 力された波形の電圧差と抵抗 1071 bに決定される電流がコンデンサ 107 4 bに流入されるようにトランジスタ 1073 bを制御している。 これにより コンデンサ 1074 bは、 リファレンス電圧 1084 bと +端子に入力された 波形の電圧差と抵抗 1071 bで決定される電流で充電される。 ダイオード 1 053 bによる半波整流区間が終わると、 コンデンサ 1074 bへの充電電流 がなくなるため、 その電圧値がピークホールドされる。 ここでダイオード 10 5 1 bの半波整流期間にトランジスタ 1 0 7 5 bをオンすることにより、 コン デンサ 1 0 7 4 bにチャージされた電圧を放電する。 このトランジスタ 1 0 7 5 bは、' 1 7 0 7で示す、 エンジンコントローラ 1 1 2 6力 らの DIS信号によ りオン/オフされており、 1 7 0 2で示す、 ZEROX信号を基にトランジスタ.1 0 7 5 bを制御している。 DIS信号は、 ZEROX信号の立上がりエッジから所定 時間 Tdly後にオンし、 ZEROX信号の立下がりエッジ、 もしくは直前でオフす るこどにより、 ダイオード 1 0 5 3 bの半波整流期間のヒータ電流期間に干渉 することなく制御することができる。 .
つまり、 コンデンサ 1 0 7 4 bのピークホールド電圧 V2f は、 カレントトラ ンス 1 2 2 6によって電流波形が二次側に電圧変換された波形の 2乗値の半周 期分の積分値となる。 .1 7 0 6では、 コンデンサ 1 0 7 4 bの電圧が、 1 7 0 6で示す HCRRT2信号として、電流検出回路 1 2 2 8からエンジンコントロー ラ 1 1 2 6に送出される。 つまり、 電圧 V2f が電流検出回路 (第 1電流検知回 路) 1 2 2 8で検出する電流 (画像形成装置への入力電流) に対応している。 次に本発明の実施例 4に係る画像形成装置のエンジンコントローラ 1 1 2 6 による定着器の制御シーケンスについて説明する。
図 2 3A及ぴ 2 3 B は、 本発明の実施例 4に係るエンジンコントローラ 1 1 2 6による定着器 1 1 0 9の制御シーケンスを説明するフローチヤ一トである。 また図 2 4は、 実施例 4に係るエンジンコントローラ 1 1 2 6の機能構成を示 すプロック図である。 以下、 図 2 3A、 2 3 B及び図 2 4を参照して、 実施例 4 に係る処理を詳しく説明する。 '
先ずステップ S 1 0 3 1で、 エンジンコントローラ 1 1 2 6のヒータオン要 求判断部 1 9 0 1力 ヒータ 1 1 0 9 cをオンするヒータオン要求が入力され たかを判断する。 このヒータオン要求が入力されない場合はステップ S 1 0 3 1を実行するが、 ヒータオン要求が入力されるとステップ S 1 0 3 2に進み、 予め設定されたイニシャルの電力デューティ Dを電力デューティ保存部 1 9 0 5に保存する。 次にステップ S 1 0 3 3に進み、 電力デューティ決定部 1 9 0 2が、 電力デューティィ呆存部 1 9 0 5に保存された電力デューティ Dを、 ヒー タ 1 1 0 9 cをオンさせる電力デューティとして決定する。 そしてその電力デ ユーティ Dに基づいて ON1信号出力部 1 9 0 3、 ON2信号出力部 1 9 0 4力、 らそれぞれ ON1 .信号、 ON2信号を出力してヒータ 1 1 0 9 cの発熱体 1 2 0 3, 1 2 2 0に通電する。 ここでは、 ステップ S 1ひ 3 2で電力デューティ保 存部 Γ 9 0 5に保存された電力デューティ Dに相当する位相角 α ΐで、 ΟΝ1, ΟΝ2信号のオンパルスが ZEROX信号をトリガにして、 エンジンコントローラ 1 1 2 6ょリ送出される。 これにより発熱体 1 2 0 3, 1 2 2 0には、 位相角 ひ 1で電流が供給される。 尚、 この電力デューティ Dは、予め想定されている入 力電圧の範囲やヒータ.1 1 0 9 cの抵抗値等を考慮して許容電流を超えない値 に設定されている。 つまり、 入力電圧が最大、 ヒータの抵抗値が最小、 低圧電 源 (LVPS) 電流が最大の場合を想定して電力デューティ Dが設定されている。 次にステップ S 1 0 3 4に進み、 ヒータ温度検出部 1 9 1 4が ΤΗ信号に基 づいてヒータ 1 1 0 9 cの温度を検出する。 次にステップ S 1 0 3 5に進み、 Dp算出部 1 9 1 5がヒータ投入電力デューティ Dpを算出する(第 1算出手段)。 つまり、'デューティ D pはヒータ温度検出部 1 9 1 4の検知温度に基づいて決 定されるデューティ (投入電力比率) である。
次にステップ S 1 0 3 6に進み、 発熱体 1 2 0 3 , 1 2 2 0がデューティ D で通電された状態で、 電流検出回路 (第 2電流検知回路) 1 2 2 7 (図 1 6 ) 力 ら送られてくる HCRRT1信号により、 Vlf検出部 1 9 0 6が電圧 Vlf を取 得する。 この電圧 Vlf は、 前述したコンデンサ 1 0 7 4 a (図 1 9 ) でピーク ホールドされた電圧値 Vlfに該当している。即ち、図 2 1に示す HCRRT1信号 のピークホールド値であり、 定着器に流れる電流に対応じている。 この電圧 V Ifを取得した後、ステップ S 1 0 3 7で、交流電源 1 2 0 1の周波数に応じて、 Vlf周波数補正部 1 9 0 7が電圧 Vlfを補正する。 周波数に応じて電圧 Vlfを 補正する理由は、 コンデンサ 1 0 7 4 aでピークホールドされた電圧値 V If は 交流電源の周波数に依.存した値となってしまうからである。 したがって、 特に 説明がない場合、 第 2の電流検知回路 1 2 2 7の検知電流は、 交流電源周波数 で補正した後の電圧 Vlf を指すものとする。 次にステップ S 1 0 3 8に進み、 Vlf 周波数補: IE部 1 9 0 7で補正された周波数補正後の電圧 Vlf を基に、 Df 算出部 1 9 0 8が負荷 (定着器) 電流リミットデューティ Df (第 2上限値) を 以下の数式 (数 1 )· に基づいて算出する (第 2算出手段)。
[数 1 ]
Df= (Vlf_lim/Vlf) xD
ここで Dは現在のデューティを示し、 Dfは、負荷電流 I Ifが予め設定された 電流値 I lf_ lim以下になるように制御される電力デューティを示す。 また電流 値 I lf— limは、 プリント、 ウォームアップに必要な電力を供給でき、 かつ、 負 荷に供給されても熱暴走状態に陥らない電流値である。 つまり、 デューティ D f はヒータが異常発熱状態にならないようにするためのデューティの上限値で ある。 なお、 電圧値 Vlf— limは電流値 I lf limに対応する電圧値である。
次にステップ S 1 0 3 9に進み、 発熱体 1 2 0 3 , 1 2 2 0がデューティ D で通電された状態で、 電流検出回路 (第 1電流検知回路) 1 2 2 8 · (図 1 6 ) 力 ら送られてくる HCRRT2信号により、 V2f検出部 1 9 0 9が電圧 2£を取 得する。 この電圧 V2f は、 前述したコンデンサ 7 4 b (図 2 0 ) でピークホー ルドされた電圧値 V2fに該当している。即ち、図 2 2に示す HCRRT2信号のピ ークホールド値であり、 商用電源から画像形成装置への入力電流に対応してい る。
この実施例 4では、 ZEROX信号をトリガにして、 ZEROX信号の立上がりェ ッジから DIS信号を送出するまでの間、 期間 Tdly内にこのピークホールド値 を取得する。 この期間 Tdlyは、 エンジンコントローラ 1 1 2 6がピークホール ド電圧値 V2f を検知するのに十分な時間に設定されている。 こうして電圧値 V 2f を取得した後、 ステップ S 1 0 4 0に進み、 交流電源 1 2 0 1の周波数に応 じて V2f周波数補正部 1 9 1 0が電圧 V2fを補正する。 電圧 V2fを交流電源の 周波数で補正する理由も第 2の電流検知回路の場合と同じである。 したがって、 特に説明がない場合、 第 1の電流検知回路 1 2 2 8の検知電流は、 交流電源周 波擎で補正した後の電圧 V2fを指すものとする。
次にステップ S 1 0 4 1に進み、 V2f 比較部 1 9 1 1力 その補正された電 圧 V2fが所定電圧 (閾値電圧) V2f_thを越えているかどうかを判定する。所定 電圧 (閾値電圧) V2f_thは、 本実施例では電流 1 5 A (アンペア) に相当する 値である。ここで電圧 V2fが閾値電圧 V2f— thを超えている場合はステップ S 1 0 4 2に進む。 そして Di算出部 1 9 1 2が、 予め設定された電圧 V2f— limと、 ステップ S 4 0で周波数捕正された電圧 V2f とを用いて、 以下の数式 (数 2 ) に従って電源電流リミットデューティ Di (第 1上限値) を算出する (第 3算出 手段)。
[数 2 ]
Di= (V2f_lim/V2f) xD
ここで、 本実施例の場合、 電圧値 V2f_lim は商用電源から雨像形成装置に供 給可能な入力電流として規格上設定された電流値 1 5 Aよりも小さな電流値に 対応している。 本実施例では電圧 V2f— lim を 1 4 . 7 Aに相当する値に設定し ている。 このように、 電圧 V2f_thと電圧 V2Uimを夫々設定している理由は、 画像形成装置への入力電流が頻繁に 1 5 Aを超えないようにするためである。 したがって、電圧 V2f—thと電圧 V2f_limを同じ値(例えば 1 5 Άに相当する値、 または 1 4 . 7 Aに相当する値等) に設定しても構わない。
以上のように、 デューティ D iは商用電源から画像形成装置に供給可能な所 定の入力電流を超えないようにするためのデューティの上限値である。 このデ ユーティ D iは、 電圧 V2f (即ち第 1電流検知回路 1 2 2 8の検知電流) と V
2f_lim (即ち所定の入力電流) の差分に応じて異なる。 こうして電¾¾電流リミットデューティ Diを求めた後、 次に、 電力デューティ 决定部 1 9 0 2で電力デューティ Dを決定する処理について説明する。
まずステップ S 1 0 4 3に進み、 ステップ S 1 0 4 2で求めた電源電流リミ ットデューティ Di と負荷電流リミツトデューティ Df との大小を判定する。 ;! こ Df が Diより大きい場合、 即ち、 電源電流リミットよりも負荷電流リミツ トの方が大きい場合はステップ S 1 0 4 4に進み、 ヒ"タ投入電力デューティ Dp と電源電流リミットデューティ Di との大小を判定する。 ここで Dp が Di より大きい場合、 即ち、'電源電流リミツトよりもヒータ投入電力が大きい場合 はステップ S 1 0 4 5に進み、小さい方の電源電流リミットデューティ Diを電 力デューティ保存部 1 9 0 5に保存する。
一方、 ステップ S 1 0 4 3で Dfが Diより小さい場合、 即ち、'電源電流リミ ットよりも負荷電流リミットの方が大きい場合はステップ S 1 0 4 9に進み、 ヒータ投入電力デューティ Dpと負荷電流リミットデューティ Dfの大小を判定 する。 ここで Dpが Dfより大きい場合はステップ S 1 0 5 0に進み、 小さい方 の負荷電流リミットデューティ Df を電力デューティ保存部 1 9 0 5に保存し てステップ S 1 0 4 6に進む。 一方、 ステップ S 1 0 4 4で Dpが Diより小さ い場合、 或はステップ S 1 0 4 9で Dpが Dfよりも小さい場合はステップ S 1 0 5 1に進み、小さい方のヒータ投入電力デューティ Dpを電力デューティ保存 部 1 9 0 5に保存してステップ S 4 6に進む。 このように電圧 V2f が閾値電圧 V2f— thを超えている場合は、 より小さい方の電力デューティ Dを求めて電力デ ユーティ保存部 1 9 0 5に保存する。 '
このように、 デューティ D pと、 デューティ D f と、 デューティ D iとを比 較して、 最も小さなデューティをヒータに通電するデューティ Dに決定する。 このようなデューティ決定アルゴリズムを用いた場合の商用電源から画像形成 装置への入力電流 (インレット電流) の変化を図 3 1に示す。
図 3 1は、 ヒータ温度検出部 1 9 1 4の検知温度と制御目標温度を用いて決 定されるデューティ D pが 60%で、 且つデューティ D f が 90%に決定され ている場合を示してある。 ヒータ以外の画像形成装置 (オプション装置を含む) の負荷 ' (低圧電源負荷) に流れる電流が少ない定常時、 ヒータに投入可能なデ ユーティ Dは上述のデューティ決定アルゴリズムによって D pになる。 しか.し ながら、 D=60%でヒータに通電している時に低圧電源負荷に流れる電流が増 大 (Ma x時) すると、 画像形成装置への入力電流が電流 Ilimit (14. 7 A) を超えることがある (図 31の 「制限前」)。 そこで、 図 23A及び 23B のス テツプ S 1039で第 1電流検知回路 1228が電流 Ilimit以上の値を検知す ると、 図 31の例の場合、 デューティ D iが 55%に決定される。 このデュー ティ D iがデューティ D pよりも小さいので、 ヒータに投入されるデューティ Dが 55%に変更されて、 図 31の 「制限後」 のように、 画像形成装置への入 力電流が電流 Ilimit (14. 7 A) の範囲内に収まるようになる。 このように、 商用電源から装置への入力電流を検知する第 1電流検知回路の検知電流が所定 値 (所定の入力電流) 以下の場合、 定着部 (ヒータ) の温度を検知する温度検 知素子の検知温度に応じたデューティで定着部へ通電し、 商用電源から装 gへ の入力電流を検知する第 1電流検知回路の検知電流が所定値を超えた場合、 温 度検知素子の検知温度に応じて設定されるデューティ Dpと、 商用電源から装 置への入力電流を検知する第 1電流検知回路の出力に応じて設定されるデュー ティ D iと、 第 2電流検知回路の出力の出力に応じて設定されるデューティ D f と、 のうち、 最も小さいデューティで定着部へ通電する。 デューティ D iを デューティ Dに設定した場合、 定着部 (ヒータ) への投入電流が制限されたこ とになる。
なお、 本実施例では 3つのデューティ (Dp、 Df 、 D i ) のうち、 最も小さ いデューティをヒータに投入するデューティに決定している。 しかしながら、 少なくともデューティ Dpとデューティ D iのうち小さレ、ほうをデューティ D に決定すれば、 商用電源から画像形成装置への入力電流を所定値以下に抑えつ つ処理能力の低下を抑えられる画像形成装置を提供することができる。 つまり、 第 1電流検知回路の検知電流が所定値 (所定の入力電流) 以下の場合、 定着部
(ヒータ) の温度を検知する温度検知素子の検知温度に応じたデューティで定 着部へ通電し、 検知電流が所定値を超えた場合、 温度検知素子の検知温度に応 じ T設定されるデューティ D pと、 第 1電流検知回路の出力に応じて設定され るデューティ D iと、 のうち、 小さいほうのデューティで定着部へ通電すれば よい。 デューティ D iをデューティ Dに設定した場合、 定着部 (ヒータ) への 投入電流が制限されたことになる。 .
一方、 ステップ S 1 0 4 1で、 ピークホールド電圧値 V2fが閾値電圧 V2f— th を超えていない場合はステップ S 1 0 4 9に進み、 D pもしくは D f が選択さ れる。
こうしてステップ S 1 0 4 5 , S 1 0 5 1 , S 1 0 5 0のいずれかで電力デ ユーティ Dが保存されるとステップ S 1 0 4 6に進む。 ステップ S 1 0 4 6で は、 その保存された電力デューティ Dに基づいて、 ON1信号出力部 1 9 0 3、 ON2信号出力部 1 9 0 4からそれぞれ ON1信号、 ON2信号を出力して発熱体 1 2 0 3, 1 2 2 0を電力デューティ Dで通電する。 次にステップ S 1 0 4 7 に進み、 ヒータオン要求があるかどうかを判断し、 ヒータオン要求がある場合 はステップ S 1 0 3 4に進み、 上記処理を繰り返すが、 ヒータオン要求が無い 場合はステップ S 1 0 4 8に進み、 ヒータをオフして処理を終了する。
. 以上説明したように実施例 4によれば、 商用電源 (交流電源) 1 2 0 1から 供給される電流が所定の上限電流を超えない範囲でヒータに電力を供給するよ うに制御することができる。 また、 このような電流制限を行っている時に定着 器の温度が制御目標温度より低い所定温度 (定着可能下限温度) を下回った場 合、 実施例 1と同様に、 少なくとも第 2段階の調整動作 (定着器へ搬送する記 録材の搬送間隔を拡大する動作) を実行すればよい。 このことは、 以下に示す 実施例 5〜 7も同様である。 実施例 5
次に本発明の実施例 5に係る画像形成装置のエンジンコントローラ 1 126 による定着器の制御シーケンスについて説明する。 尚、 この実施例 5に係る装 置構成は前述の実施例 4と同様であるため、 その説明を省略する。
図 25A及び 25B は、 本発明の実施例 5に係るエンジンコントローラ 11 26による定着器 1109の制御シーケンスを説明するフローチャートである。 また図 26は、 実施例 5に係るエンジンコントローラ 1 126の構成を示すブ ロック図である。 以下、'図 25A、 25.B及ぴ図 26を参照して、 実施例 5に係 る処理を詳しく説明する。 尚、 図 25A のステップ S 1061〜S 1063, S 1065〜S 1068, S 1070〜S 1072は、 図 23Aのステップ S 1031〜 1040と基本的に同じ処理である。
ステップ S 1061で、 エンジンコントローラ 1126のヒータオン要求半 IJ 断部 1901がヒータオン要求が入力されたかを判断し、 その要求が入力され るとステップ S 1062に進み、 予め設定されたイニシャルの電力デューティ Dを電力デューティ保存部 1905に保存する。 このヒータオン要求が発生し ない場合はステップ S 1061の処理を繰り返す。 次にステップ S 1063に 進み、 電力デューティ決定部 1902は、 電力デューティ保存部 1905に保 存された電力デュ^"ティ Dに基づいて ON1信号出力部 1903、 ON2信号出 力部 1904から ON1信号、 ON2信号をそれぞれ出力する。 こうして発熱体 1203, 1220が電力デューティ Dで通電される。 次にステ プ S 106 4に進み、変数 N更新部 1005で変数 Nに 「0」 を代入する。 この変数 Nは、 ヒータ ON要求が存在する期間中に、 ヒータに投入するデューティ Dとしてデ ユーティ D iが採用された回数を表している。 デューティ Dpではなくデュー ティ D iが採用されているということは、 商用電源から画像形成装置への入力 電流がリミット Ilimitを越えたからである。 したがって、 変数 Nは、 ヒータ O N要求が存在する期間中に、 商用電源から画像形成装置への入力電流がリミッ ト Ilimitを越えた回数でもある。 変数 Nの値が大きいということは、 ヒータ〇 N要求が存在する期間中に頻繁に入力電流がリミット Ilimitを越えたことにな る。 実施例 4に示したようなデューティ決定アルゴリズムの場合、 決定される デューティ Dでヒータに通電すると、 第 1電流検知回路 1 2 2 8による検知霉 流が Ilimitに近くなる。. したがって入力電流リミット Ilimitを 1 5 A、 または この値に非常に近い値に設定していると、 頻繁に入力電流がリミット Ilimitを 越えることも考えられる。そこで、本実施例では、 Nが所定値 aを超えた場合、 現在のデューティ Dを多少大きな固定値で削減してデューティ D mを設定する。 そして、 デューティ D mが採用された場合には、 暫くの間、 N値が更新されな いようにしている。
次にステップ S 1 0 6 5に進み、 ヒータ温度検出部 1 9 1 4力 ' TH信号によ りヒータ 1 1ひ 9 cの温度を検出する。その後ステップ S 1 0 6 6で、 Dp算出 部 1 9 1 5がヒータ投入電力デューティ Dpを算出する。次にステップ S 1 0 7
7で、 発熱体 1 2 0 3 , 1 2 2 0にデューティ Dで通電した状態で、 Vlf 検出 部 1 9 0 6で電圧 Vlfを検出する。 こうして電圧 Vlfを取得した後、 ステップ
S 1 0 6 8に進み、 V lf 周波数補正部 1 9 0 7力 S、 交流電源 1 2 0 1の周波数 に応じて電圧値 Vlf を補正する。 次にステップ S 1 0 6 9に進み、 I If算出部
1 1 0 0 9が周波数補正後の電圧値 Vlfから電流値 I Ifを算出する。 この電流 値 I If の算出は、 例えば表 5に示すような変換テーブルがエンジンコントロー ラ 1 1 2 6に設けられており、 この変換テーブルに基づいて電流値 I If を算出 する。 ' [表 5 ]
Figure imgf000049_0001
次にステップ S 1 0 7 0に進み、 Df算出部 1 9 0 8が電圧 Vlfを基に、前述 の式 (1 ) に基づいて負荷電流リミットデューティ Dfを算出する。 次にステツ プ S 1 0 7 1に進み、 発熱体 1 2 0 3, 1 2 2 0がデューティ Dで通電された 状態で、 V2f検出部 1 9 0 6が電圧 V2fを検知して取得する。 この電圧 V2fを 取得した後、 ステップ S 1 0 7 2で、 V2f 周波数補正部 1 9 1 0が交流電源 1 2 0 1の周波数に応じて電圧値 V2fを捕正する。
次にステップ S 1 0 7 3に進み、 変数 N比較部 1 0 1 3が変数 Nと予め設定 された所定値 aとの大小を判定する。 ここで Nが aよりも小さい場合はステツ プ S 1 0 7 4に進み、 I 2f算出部 1 1◦ 1 4力 電圧値 V2fから電流値 I 2fを 算出する。 この電流値 I 2f の算出は、 例えば前述の表 5に示すような変換テー ブルを用いて行われる。 尚、 I If算出用の変換テーブルと I 2f算出用の変換テ 一ブルは共通の変換テーブルを使用しても良く、 或はそれぞれ別の変換テープ ルを使用しても良い。
次にステップ S 1 0 7 5に進み、 Di算出部 1 9 1 2が電流値 I 2fと電流値 I If と、.予め設定されている交流電源 1 2 0 1から供給される電流の制限値 I 2f_lim とを用いて、 以下の数式 (数 3 ) に従って電源電流リミツ小デューティ Diを算出する。
[数 3 ]
Di= ( I If- I 2f+ I 2f_lim) xD/ I If
こうして電源電流リミツトデューティ Diを求めた後、 次に、 電力デューティ 決定部 1 9 0 2で電力デューティ Dを決定する処理について説明する。 尚、 こ の図 2 5 A及び 2 5 B において、 デューティ D p、 D i、 D f を用いてデュー ティ Dを決定するアルゴリズムは実施例 4と同じである。
まずステップ S 1 0 7 6で、負荷電流リミットデューティ Dfと電源電流リミ ットデューティ Diの大小を判定する。ここで Dfが Diより大きい場合はステツ プ S 1 0 7 7に進み、 ヒータ投入電力デューティ Dpと Diの大小を判定する。 ここで Dpが Diより大きい場合はステップ S 1 0 7 8に進み、 Diを電力デュ 一ティ保存部 1 9 0 5に保存する。 そしてステップ S 1 0 7 9に進み、 変数 N 更新部 1 1 0 0 5.が変数 Nを(N + 1 )に更新してステップ S 1 0 8 0に進む。 一方、 Dpが Diより小さい場合はステップ S 1 0 8 8に進み、 Dpを電力デュ 一ティ保存部 1 9 0 5に保存する。 そしてステップ S 1 0 9 0で、 変数 N更新 部 1 1 0 0 5が変数 Nに 0を代入してステップ S 1 0 8 0に進む。
またステップ S 1 0 7 6で、 Df が Diより小さい場合はステップ S 1 0 8 7 に進み、 Dpと Dfの大小を判定する。 ここで Dpが Dfより小さい場合は前述の ステップ S 1 0 8 8に進むが、 Dpが Dfより大きい場合はステップ S 1 0 8 9 に進み、 Dfを電力デューティ保存部 1 9 0 5に保存してステップ S 1 0 9 0に 進む。
またステップ S 1 0 7 3で、 変数 Nの値が aより大きい場合はステップ S 1 0 8 3に進み、 変数 N更新部 1 0 0 5が変数 Nに 0を代入する。 その後ステツ プ S 1 0 8 4に進み、 Dm算出部 1 9 1 3力 現在のヒータ投入電力デューテ ィ Dから所定値を減じた電力デューティ Dm を算出する。 そしてステップ S 1 0 8 5に進み、 Dfと Dmの大小の比較を行う。 ここで Dfが Dmより小さい場 合はステップ S 1 0 8 7に進むが、 Dfが Dmより大きい場合はステップ S 1 0 8 6に進み、 Dpと Dmの大小の比較を行う。 ここで Dpが Dmより小さい場合 はステップ S 1 0 8 8に進み、 そうでないときはステップ S 1 0 9 1に進み、 Dm を電力デューティ保存部 1 9 0 5に保存して前述のステップ S 1 0 9 0に 進む。
こうしてステップ S 1◦ 7 8 , S 1 0 8 8 , S 1 0 8 9 , S 1 0 9 1のいず れかで電力デューティ Dが保存されるとステップ S 1 0 8 0に進む。 ステップ S 1 0 8 0では、 その保存された電力デューティ Dに基づいて、 ON1信号出力 部 9 0 3、 ON2信号出力部 9 0 4から ON1信号、 ON2信号をそれぞれ出力し て、 発熱体 1 2 0 3 , 1 2 2 0を電力デューティ Dで通電する。 次にステップ S 1 0 8 1に進み、 ヒータオン要求があるかどうかを判定し、 ヒータオン要求 がある場合はステップ S 1 0 6 5に進み、 上記処理を繰り返す。 一方、 ヒータ オン要求が無い場合はステップ S 8 2に進み、 ヒータをオフして処理を終了す る。
以上説明したように実施例 5によれば、 交流電源 1 2 0 1から供給される電 流が所定の上限電流を超えない範囲で、 ヒータに供給する電流を制御すること ができる。
実施例 6
次に本発明の実施例 6に係る画像形成装置のエンジンコントローラ 1 1 2 6 による定着器の制御シーケンスについて説明する。 尚、 この実施例 6に係る装 置構成は前述の実施例 4と同様であるため、 その説明を省略する。
図 2 7A及ぴ 2 7 B は、 本発明の実施例 6に係るエンジンコントローラ 1 1 2 6による定着器 1 1 0 9の制御シーケンスを説明するフローチヤ一トである。 また図 2 8は、 実施例 6に係るエンジンコントローラ 1 1 2 6の構成を示すブ 口ック図である。
先ずステップ S 1 1 0 1で、 エンジンコントローラ 1 1 2 6のヒータオン要 求判断部 1 9 0 1がヒータオン要求が入力したかを判定する。 このヒータオン 要求を入力するとステップ S 1 1 0 2に進み、 予め設定された電力デューティ Dを電力デューティ保存部 1 9 0 5に保存する。 このヒータオン要求が発生し ない場合はステップ S 1 1 0 1の処理を繰り返す。 次にステップ S 1 1 0 3で、 電力デューティ決定部 1 9 0 2がヒータ 1 0 9 cをオンさせる電力デューティ を決定する。 そして、 この決定した電力デューティに基づいて ON1信号出力部 1 9 0 3、 ON2信号出力部 1 9 0 4から ON1信号、 ON2信号をそれぞれ出力 し、 発熱体 1 2 0 3, 1 2 2 0を電力デューティ Dで駆動する。 次にステップ S 1 1 0 4に進み、 発熱体 1 2 0 3, 1 2 2 0をデューティ Dで駆動している 状態で、 Vlf検出部 1 9 0 6により電圧 Vlf を検出して取得する。 その後ステ ップ S 1 1 0 5に進み、 Vlf周波数補正部 1 9 0 7により電圧 Vlfの周波数補 正を行って Vlf保存部 1 1 1 0 8に保存する。次にステップ S 1 1 0 6に進み、 発熱体 1 2 0 3 , . 1 2 2 0をデューティ Dで駆動した状態で、 V2f'検出部 1 9 0 9により、 電圧 V2f を取得する。 そしてステップ. S 1 1 0 7に進み、 V2f周 波数補正部 1 9 1 0により電圧 V2fの周波数補正を行い、 その結果を V2f保存 部 1 1 1 1 1に保存する。
次にステップ S 1 1 0 8に進み、 データ数比較部 1 1 1 1 2がデューティ D、 電圧 Vlf、 電圧 V2f のデータ数が、 予め設定されている数 bだけ取得できたか どうかを判定する。 これらの取得数が bに到達していない場合はステップ S 1 1 0 3に戻り、 上記の処理を繰り返す。
こうしてステップ S 1 1 0 8で、 取得したデータ数が bに到達するとステツ プ S 1 1 0 9に進み、 D— ave算出部 1 1 1 1 3が最新の b分のヒータ投入電力 デューティ Dの平均値 (D_ave)を算出する。次にステップ S 1 1 1 0に進み、 ヒータ温度検出部 1 9 1 4力 S TH信号よりヒータの温度を検出する。 そしてス P2008/056827
: 51 テツプ S 1111で、 Dp算出部 1915が P I D制御用のヒータ投入電力デュ 一ティ Dpを算出する。 これらステップ S 1 110, S 1111の処理は図 23 A及ぴ 23 Bのステップ S 1034, S 1035と同じである。
次にステップ S 1112に進み、 Vlf_ave算出部 11114が最新の b分の 電圧値 Vlf の平均値 (Vlf— ave) を算出する。 そしてステップ S 1113で、 Df算出部 1908が平均値 Vlf_aveを基に以下の式(4) に従って負荷電流リ ミットデューティ Dfを算出する。
Df= (Vlf—limZVlf—ave) xD …式 (4)
次にステップ S 1114に進み、 V2f_ave算出部 11116が最新の b分の 電圧値 V2f の平均値 (V2f— ave) を算出する。 そしてステップ S 1115で、 この平均値 V2f— ave と閾値電圧 V2f— th の大小を判定する。 ここで平均値 V 2f_aveが V2f— thより大きい場合はステップ S 1116に進み、 Di算出部 19 12が以下の式 (·5) に従って電源電流リミットデューティ Diを算出してステ ップ S 118に進む。
Di= (V2f_lim/V2f_ave) xD …式 (5)
こうして電源電流リミットデューティ Diを求めた後、 次に、 電力デューティ決 定部 1902で電力デューティ Dを決定する。 尚、 以降のデューティ Dの決定 アルゴリズムは図 23 A及び 23Bと共通しているので説明は省略する。
こうしてステップ S 1 120, S 1 121 , S 1 123のいずれかで電力デ ユーティ Dが保存されるとステップ S 1 127に進む。 ステップ S 1127で は、 保存された電力デューティ Dに基づいて、 ON1信号出力部 1903、 ON2 信号出力部 1904からそれぞれ ON1信号、 ON2信号を出力する。 これによ り、 発熱体 1203, 1220が電力デューティ Dで通電される。 次にステツ プ S 1128に進み、 ヒータオン要求があるかどうかを判定し、 ヒータオン要 求がある場合はステップ S 1104に戻り上記処理を繰り返す。 またヒータォ ン要求が無い場合はステップ S 1 129に進み、 ヒータをオフして処理を終了 P T/JP2008/056827
52 する。
以上説明したように寒施例 6によれば、 交流電源から供給される電流が所定 の上限電流を超えない範囲で、 ヒータに供給する電流を制御することができる。 また前述の実施例 5の制御を、実施例 6のように D_ave、 Vlf— ave、 V2f_aye を求めて行な てもよい。
実施例 7
実施例 7は、 制御を簡略化するために、 商用電源から画像形成装置への入力 電流の所定時間内の平均値、.及びヒータへ供給する電流の所定時間内の平均値 を用いて、 ヒータへ供給する電流のデューティの上限値の更新回数を少なくす るところが特徴である。
次に本発明の実施例.7に係る画像形成装置のエンジン =iント π—ラ 1 1 2 6 による定着器の制御シーケンスについて説明する。 尚、 この実施例 7に係る装 置構成は前述の実施例 4と同様であるため、 その説明を省略する。
図 2 9は、 本発明の実施例 7に係るエンジンコントローラ 1 1 2 6による定 着器 1 0 9の制御シーケンスを説明するフローチャートである。 また図 3 0は、 実施例 7に係るエンジンコントローラ 1 1 2 6の構成を示すブロック図である。 図 3 0において、 電力デューティ制御部 1 1 2 0 0が、 上述したエンジンコ ントローラ 1 1 2 6の一機能として実現されるものとする。 電力デューティ制 御部 1 1 2 0 0は、 交流電源 1 2 0 1から画像形成装置に供給される電流値の 所定時間の平均が上限値を超えた場合に、 平均電力デューティ検出部 1 1 2 0 9、 平均電流検出部 1 1 2 0 1 , 1 1 2 0 5の検出結果に基づいて上限電力デ ユーティを算出する。 商用周波数検出部 1 1 2 1 5は、 交流電源 1 2 0 1の周 波数を検出する。
平均電流検出部 1 1 2 0 5は、 交流電源 1 2 0 1から、'この画像形成装置に 供給される電流値に対応する HCRRT2信号のピークホールド値を、周波数補正 部 1 1 2 1 6で補正して記憶部 1 1 2 0 7に記憶する。 記憶部 1 1 2 0 7は所 定時間に亘る (所定期間内の) 電流値を記憶しており、 その平均値を平均電流 算出部 11206で算出する。 平均電流検出部 11205は、 この平均電流値 を電力デューティ算出部 11217に出力する。
平均電流検出部 11201は、 ヒータ 1109 c 供給される電流値に対応 す ¾ HCRRT1信号のピークホールド値を、周波数捕正部 11214で補正して 記憶部 11203に記憶する。 記憶部 1 1203は所定時間に亘る (所定期間 内の) 電流値を記憶しており、 その平均値を平均電流算出部 11202で算出 する。 平均電流検出部 11201が記憶する時間は、 平均電流検出部 1 120 5が記憶する時間と異なる所定時間を記憶してもよレ、。 平均電流検出部 112 01は、 この平均電流値を、 電力デューティ算出部 11217に出力する。
平均電力デューティ検出部 11209は、 電力デューティ算出部 11217 で算出された値を記憶部 11211に記憶する。 記憶部 11211は、 平均電 流検出部 1 120'5が記憶する時間と一致する所定時間の電力デューティを記 憶しており、 その平均値を平均電力デューティ算出部 1 1210で算出する。 平均電力デューティ検出部 11209は、 この算出された平均電力デューティ を電力デューティ算出部 1121 7に出力する。 格納部 112.13は、 電力デ ユーテ や電流値の初期値を保持している。
電力デューティ算出部 1 1217の上限電力デューティ算出部 11222は、 平均電流検出部 1 1201、 平均電流検出部 11205、 平均電力デューティ 検出部 11209の出力に応じて、 ヒータ 1 109 cに 給可能な上限電力デ ユーティ Dlimit— nを算出する。 ヒータ 1109 cに供給される電力デューティ は、 判断部 11221において、 .ヒータ温調制御部 1220の出力と、 上限電 力デューティ算出部 1 1222の算出結果に基づいて決定される。 こうして算 出された上限電力デューティ Dlimit— nは、平均電力デューティ検出部 1120 9の記憶部 11211に記憶される。
次に図 29のフローチャートを参照して、 実施例 7に係る定着器 1109の 制御シーケンスについて説明する。
まずステップ S 1131で、 エンジンコントローラ 1126にて、 ヒータ 1 109 έへの電力供給開始要求 (ヒータオン要求) が発生するかを判断し、 ォ ン要求が発生するとステップ S 1132に進む。 ステップ S 1132では、 予 め定められた電力デューティ Dlimit— 1を、想定されている入力電圧の範囲ゃヒ ータ 1109 cの抵抗値等を考慮して最大電力デューティとして設定する。 こ こでは例えば、 入力電圧が最小で、 抵抗値が最大の場合を想定して、 ヒータ 1 109 cに通電可能な許容電流を超えない電力デューティとして設定する。 次にステップ S 1133に進み、 上述の電力デューティ Dlimit— 1を上限デュ 一ティとしてヒータ温調制御を開始する。 ここではエンジンコントローラ 1 1 26に設定されている所定の温度になるように、 TH信号を基に、'例えば P I D 制御により発熱体 1203, 1220に供給する電力を制御する。 そして以下 の処理では、 目標め温度情報 (制御目標温度) と TH信号による温度情報との 差分から、 ヒータを駆動する電力デューティ D—nを決定している。 但し、 算出 した電力デューティ D—nが上限デューティ Dlimit_lを超える場合は、この上限 デューティ Dlimit— 1を電力デューティ D— 1とする。つまりステップ S 1133 では、上限デューティ Dlimit— 1以下の電力デューティ D— 1でヒータの温調制御 を行うことになる。'ここでは電力デューティ D_lに相当する位相角 1で、 ON 1信号、 ON2信号のオンパルスが ZEROX信号をトリガにしてエンジンコント ローラ 1126ょリ送出される。 これにより発熱体 1203, 1220に位相 角 α—1で電流が供給される。 '
次にステップ S 1134に進み、 現時点の電力デューティ D_lの値を記憶部 11211に記憶する。 ここでは所定時間 Lにおける平均電流を求めて、 その 平均値を基に制御する。 そして、 そのサンプリングする数 kは、 交流電源 12 01の最小の商用周波数 f に応じて決定される。 例えば、 k = Lxf で求められ る。 従って記憶部 11211は、 数 k分の電力デューティを保存でき、 また格 P T/JP2008/056827
' 55 納部 1 1 2 1 3には、 初期値の上限電力デューティ D limit— 1及ぴ 「0」 が格納 されている。 こうして最新の数 k分の電力デューティを保持する。
次にステップ S 1 1 3 5に進み、 ZEROX周期 T— 1 を検出する。 ここでは、 商用周波数検出部 1 1 2 1 5力 ZEROX信号の立下がりエツジから立下がりェ ッジまでの時間間隔 Tを検出することにより交流電源 1 2 0 1の周波数を検知 する。
次にステップ S 1 1 3 6に進み、電力デューティ D一 1で通電している状態で、 ヒータに流れる電流を検知する電流検出回路 1 2 2 7から送られてくる HCRRTl信号により電圧 Vlf— 1 (電流値 I If— 1に相当) を取得する。 .これは前 述したようにコンデンサ 1 0 7 4 aでピークホールドされた電圧値 Vlf— 1 に相 当している。 即ち、 図 2 1に示す HCRRTl信号のピークホールド値である。 こ の実施例 Ίでは、 ZEROX信号をトリガにして、 ZEROX信号の立ち上がりエツ ジから DIS信号を送出するまでの間、 期間 Tdly内にこの値を取得する。 この 期間 Tdlyは、エンジンコントローラ 1 1 2 6がピークホールド値 Vlf_lを検知 するのに十分な時間に設定されている。
尚、 図 2 9のフローチャートの説明では、 電流値を検出し、 .その電流値に基 づいて上限電流値及ぴ上限デューティを求めるように説明しているが、 前述し たように、 実際はピークホールドされた電圧値を検出している。 そして、 この 電圧値に対応する電流値を求めて計算を実行している。
.次にステップ S 1 1 3 7に進み、 電流値 I If— 1 の周波数補正値を求めて記憶 部 1 1 2 0 3に記憶する。 尚、 ここで記憶部 1 1 2 0 3には、' m波 (交流電源 の m周期) 分の電流値を保存する。 例えば、 ヒータ 1 1 0 9 cに流れる電流を 1波 (交流電源の 1周期) ごとに検知して電流の制限値を設定する場合は、 m = 1に設定する。 格納部 1 1 2 1 3は、 記憶部 1 1 2 0 3の初期値 「 0」 を格 納している。 ここで、 HCRRTl信号により得られる電流値 I If— 1値は、 前述し たように、 2乗波形の交流電源 1 2 0 1の周波数の半周期分の積分値である。 いま、 この交流電源 1201の周波数を特定の周波数、 例えば予め 5 OH Zと 設定すると、 電流値 I Ifは 50 H Zにおける電流値となる。
いま電流値 I If— 1の 50 H z換算値を I 150—1 とすると、 ZEROX周期 T_l より、
I 150—1= I lf_lx( 1 /T— 1)/ 50
で表すことができる。
次にステップ S 1138に進み、電力デューティ D—1で通電している状態で、 商用電源から画像形成装置への入力電流を検知する電流検出回路 1228から 送られてくる HCRRT2.信号から電圧 V2f— 1 (電流値 I 2f— 1に相当)を取得する。 これは前述したようにコンデンサ 1074 bでピークホールドされた電圧 V2f に該当している。即ち、図 22に示す HCRRT2信号のピークホールド値である。 次にステップ S 1 139に進み、 ステップ S 1138で求めた電流値 I2f— 1 の周波数補正値を求め、 その結果を記憶部 11207に記憶する。 ここではス テツプ S 1134で保存した電力デューティと同じく、 記憶部 1 1207に数 k分の電流値を保存可能であり、 格納部 1 1213には初期値 「0」 が格納さ れている。 ここで、 HCRRT2信号により得られる電流値 I 2f_lは、 前述したよ うに、 2乗波形の周波数の半周期分の積分値である。 交流電源 1201の周波 数を特定の周波数、 例えば予め 50Hzと設定しておくと、 電流値 I2f は 50 H zにおける電流値となる。
. 電流値 I 2f— 1の 50 H z換算値を I 250—1とすると、 ZEROX周期 T_lより、
I 220—1= I 2f_lx ( 1 /T— 1) /50 . ·
で表すことができる。
次にステップ S 1140に進み、 ステップ S 137で記憶部 1 1203に記 憶した、 電流値 I If の 50Hz換算値に基づき、 エンジンコントローラ 112 6において、 数 m分の周波数補正した電流値 I lf_lの平均電流値 I I一 aveを算 出する。 次にステップ S 1 141に進み、 発熱体 1 203, 1 220に供給可能な電 流制限値 (第 1電流値) Ilimitl と、 ステップ S 1 1 39で算出した平均電流 値 I 1— aveとを比較する。ここで電流制限値 I limitlは、例えば 50 H zにおけ る電流制限値とする。 尚、 このステップ S 1 141の処理は、 交流電源 120 1より画像形成装置に供給される電流が許容範囲内で供給されている場合でも、 発熱体 1203, 1 220に供給する電力の上限値が、 図 1 6の回路に使用さ れている素子の定格によって変動するためである。 従って、 ここでは制限値 I limitl以下に制御する必要がある。 伹し、 想定されている交流電力の電圧範囲 やヒータ 1 109 cの抵抗値等を考慮して、 ヒータへのデューティリミットで ある電力デューティ Dlimit— 1で制御する場合に電流値 I Ifが許容電流値を超え ない場合は、 ステップ. S 1 136〜S 1 1 37, S 1 140〜S 1 142を省 いてもよい。
そしてステップ S 1 141で、 I 1— ave≥ I limitlであると判定されるとステ ップ S 1 142に進み、 I 1— aveく I limitlの場合はステップ S 1 143に進む。 ステップ S 1 142に移行する場合、 発熱体 1 203, 1220に供給する電 流が、 予め定められたヒータへ供給可能な電流制限値を超えている。 このため 平均電力デューティ算出部 1 1210力 ステップ S 1 134で記憶部 1 12 1 1に保存した電力デューティ D—nの数 m分の平均値 Dl— aveを算出する (k ≥m)0 そしてこの平均電力デューティ Dl_aveと、 ステップ S 1 140で算出 した電流値 I If の平均電流値 I 1— ave と、 発熱体 1 203., 1220に供給可 能な所定の電流制限値 I limitlとを元に Dlimit— 2を算出する (Dlimit_n+1を 算出する)。 尚、 この電力デューティ Dlimit— 2は、以下の式により求められる。
Dlimit— 2= ( I limitl/ I 1— ave) Dl_ave
一方、 ステップ S 1 141で、 I 1— aveく I limitlと判定した場合はステップ S 1 143に進み、 ステップ S 1 139で記憶部 1 1207に記憶した、 電流 値 I 2fの 50 H z換算値に基づいて、数 k分の平均電流値 I 2— aveを算出する。 そしてステップ S 1 1 4 4で、 予め定められている交流電源 1 2 0 1より供給 可能な電流制限値 (第 2電流値) I limit2 と、 ステップ S 1 1 4 3で算出した 平均電流値 I 2— aveとを比較する。 ここでは電流制限値 I limit2を、例えば 5 0 H zにおける電流制限値としておく。
ステップ S 1. 1 4 4で、 I 2— ave I limit2の場合.はステップ S 1 1 4 5に進 み、 I 2— aveく I limit2の場合はステップ S 1 1 4 6に分岐する。 ステップ S 1 1 4 5は、'交流電源 1 2 0 1より供給される平均電流が、 予め定められた電流 制限値を超えた場合である。.従って、 この場合は、 平均電力デューティ算出部 1 1 2 1 0カ、 ステップ S 1 1 3 4で記憶部 1 1 2 1 1に記憶した電力デュー ティに基づき、数 k分の電力デューティの平均値 D 2— aveを算出する。 こうして 算出した平均電力デュ.ーティ D 2_ave .と、 電流値 I 2f— 1 の 5 0Ή z換算値 I 250—1 に基づき、 発熱体 1 2 0 3, 1 2 2 0に通電可能な、 上限の電力デュー ティ Dlimit_2を算出する。 尚、 この電力デューティ Dlimit— 2は、 以下の式に より求められる。
D limit— 2= ( I limit2, I 2一 ave) D2_ave
こ して、 電流値 I 2f— 1 の5 0 H z換算値 I 250一 1 、 I 250— 1≥ I limit2 の場合は、 上限の電力デューティ Dliniit— 2 は、 Dlimit— 2=min (D_ave, D limit— 1— X) となる。 一方、 I 250— 1く I limit2 の場合は、 上限の電力デュー ティ Dlimit— 2 は、 Dlimit— 2=min (D— ave, Dlimit— 1) となる。 なお、 ここ で 「minし)」 は、 括弧内のいずれか小さい方を意味している。 また Xは、 電流 値 I 2f及び数 k分の平均電流値がともに電流制限値 I limit2を超えた場合の、 上限電力デューティの低減率を示.している。 この Xの値は、 ヒータ 1 1 0 9 c を除いた全回路(LVPS)に流れる電流量や 1波ごとの電流値の変化率に応じて、 所定の値に設定される。
このように、 上限電力デューティ Dlimit— 2を求める際、 平均電力デューティ D2 aveを参照することにより、ヒータの温調制御による電力デューティの変化 や、 ヒータ 1109 cを除いた全回路 (LVPS) に流れる電流値の変化に対応で きる。 また必要以上に m力デューティの上限を下げることなく温調制御が可能 である。'
以上の処理を、 ステップ S 1146で、 ヒータ 1109 cの温調制御が終了す るまで、 交流霉¾ 1201の周期ごとに繰り返し行い、 エンジンコントローラ 1126において、 発熱体 1203, 1220に供給する電力デューティを算 出する。 尚、 上限電力デューティ Dlimit_nの値は、 ステップ S 1142及ぴ S 1145で更新されない限り、上限電力デューティ Dlimit_n-1の値がそのまま 保持される。
以上 f¾明したように実施例 7では、 ステップ S 1133で、 上限電力デュー ティ Dlimit— n以下の電力デューティ D—nでヒータを温調制御する。 そして、 ステップ S 11· 36で、 HCRRT1信号により電圧値 Vlf— n (電流値 I If— n) を 取得し、.ステップ S 1138で、 HCR T2信号により電圧値 V2f— n (電流値 I 2f_n) を取得する。 そしてステップ S 1137, S 1139で、 それぞれを周 波数捕正した値を記憶部 11203及ぴ 11207に記憶する。
次に、 電流値 I If一 nの m波分の平均値及び、 電流値 I 2f_n k波分の平均値 を求め、'これら平均値のそれぞれが各対応する制限値 Ilindtl或は Ilimit2 を 超えたかどうかを判定する。 そして、 この制限値を越えた場合は、 上限電力デ ユーティ算出部 11222において、 上限電力デューティ Dlim — n+1を算出 する。 尚、 この上限電力デューティは、 平均電流検出部 11201、 平均電流 検出部 11205、 平均電力デューティ検出部 11209で算出した値に基づ いて算出される。
尚、 上述の説明では、 ヒータ 1109 cを構成する発熱体 1203, 122 0が 2つの場合で説明したが本発明はこれに限定されるものでなく、 発熱体が 1本の場合であっても、 同様の制御が可能である。
尚、 プリント前にヒータを必要な温度まで温調する場合と、 プリント中にモ 一タ等を駆動させながらヒータを温調する場合とでは、 ヒータの加熱に使用で きる電流が大幅に異な.る場合がある。 実施例 7では、 ヒータ温調開始時に予め 定められた電力デューティ Dlimit— 1に上限電力デューティをリセットしている ので、 プリント前にヒータを温調する際に最大限の電流を投入し、 'かつプリン ト中にも最適な電流設定値で制御することが可能である。
またプリント前のヒータ温調時とは別に、 プリント中では電力デューティに 所定の設定値を設けてもよい。 (プリント前温調から、 プリント状態にシーケン スが切り替わった際に、 Dlimit— n の値が所定の設定値を超える場合は、 Dlimit— n+1を前述した設定値以下に制御する。)
以上説明したように実施例 7によれば、 平均電流検出部 11201、 平均電 流検出部 11205、 平均電力デューティ検出部 112 Ό 9で算出した電流値 を平均した値を用いている。 これにより、 ノイズや突入電流や瞬時的な負荷変 動などにより一時'的に電流が増大しても、 入力電源の電圧や力率、 ヒータの抵 抗値のバラつきや電流波形の波形率に対して精度良く上限値を設定できる。 こ うして各条件において最大限に電力性能を出させることが可能となる。
この出願は 2007年 3月 30日に出願された日本国特許出願第 2007- 092441号、 2007年 4月 25日に出願された日本国特許出願第 200 7-115992号及ぴ 2008年 3月 28日に出願された日本国特許出願第 2008-086955号からの優先権を主張するものであり、 その内容を引 用してこの出願の一部とするものである。

Claims

請 求 の 範 囲
1 . 記録材に画像を形成する画像形成部と、 制御目標温度を維持するように 制御されており記録材上の画像を記録材に加熱定着する定着部と、 商用電源か ら裝置への入力電流を検知する電流検知回路ど、 を有する画像形成装置におい て、
前記電流検知回路によつて検知された電流が所定値を超えた場合、 前記定着 部に投入可能な最大電流が制限され、 前記定着部へ投入可能な最大電流が制限 されている状態で前記定着部の温度が前記制御目標温度より低レ、所定温度を下 回った場合、 前記定着部へ搬送される記録材の搬送間隔が拡大することを特徴 とする画像形成装置。 ·
2 . 前記定着部に搬送される記録材の搬送間隔が拡大した状態で、 前記定着. 部の温度が前記所定温度を下回った場合、 前記定着部に搬送される記録材の搬 送間隔が更に拡大することを特徴とする請求項 1に記載の画像形成装置。
3 . 前記定着部に搬送される記録材の搬送間隔が所定限度まで拡大した状態 で、 前記定着部の温度が前記所定温度を下回った場合、 前記装置に装着されて いる複数のオプション機器の少なくとも一つの動作が制限されることを特徴と する請求項 2に記載の画像形成装置。
4 . 前記装置は更に、 前記定着部の温度を検知する温度検知素子を有し、 前 記電流検知回路の検知電流が前記所定値以下の場合、 前記温度検知素子の検知 温度に応じたデューティで前記定着部へ通電し、 前記検知電流が前記所定値を 超えた場合、 前記温度検知素子の検知温度に応じて設定されるデューティ D p と、 前記電流検知回路の出力に応じて設定されるデューティ D iと、 のうち、 小さいほうのデューティで前記定着部へ通電することを特徴とする請求項 1に 記載の画像形成装置。
5 . 前記装置は更に、 前記定着部の温度を検知する温度検知素子と、 前記定 62 着部への電流を検知する第 2電流検知回路と、 を有し、 商用電源から装置への 入力電流を検知する前己電流検知回路の検知電流が前記所定値以下の場合、 前 記温度検知素子の検知温度に応じたデューティで前記定着部へ通電し、 商用電 源から装置への入力電流を検知する前記電流検知回路の前記検知電流が前記所 定镇を超えた場合、 前記温度検知素子の検知温度に応じて設定されるデューテ ィ D pと、 商用電源から装置への入力電流を検知する前記電流検知回路の出力 に応じて設定されるデューティ D iと、 前記第 2電流検知回路の出力の出力に 応じて設定されるデューティ D f と、 のうち、 最も小さいデューティで前記定 着部へ通電することを特徴とする請求項 1に記載の画像形成装置。.
PCT/JP2008/056827 2007-03-30 2008-03-31 画像形成装置 WO2008123615A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP08739933.3A EP2141552B1 (en) 2007-03-30 2008-03-31 Image formation device
KR1020117019189A KR101217506B1 (ko) 2007-03-30 2008-03-31 화상 형성 장치
KR1020097022657A KR101100613B1 (ko) 2007-03-30 2008-03-31 화상 형성 장치
CN2008800106352A CN101646980B (zh) 2007-03-30 2008-03-31 图像形成设备
US12/203,643 US7630662B2 (en) 2007-03-30 2008-09-03 Image forming apparatus for fixing an image on a recording material and a current detection circuit therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007092441 2007-03-30
JP2007-092441 2007-03-30
JP2007115992 2007-04-25
JP2007-115992 2007-04-25
JP2008-086955 2008-03-28
JP2008086955A JP4869278B2 (ja) 2007-03-30 2008-03-28 画像形成装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/203,643 Continuation US7630662B2 (en) 2007-03-30 2008-09-03 Image forming apparatus for fixing an image on a recording material and a current detection circuit therefor

Publications (1)

Publication Number Publication Date
WO2008123615A1 true WO2008123615A1 (ja) 2008-10-16

Family

ID=39831069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056827 WO2008123615A1 (ja) 2007-03-30 2008-03-31 画像形成装置

Country Status (6)

Country Link
US (1) US7630662B2 (ja)
EP (1) EP2141552B1 (ja)
JP (1) JP4869278B2 (ja)
KR (2) KR101100613B1 (ja)
CN (2) CN102540839B (ja)
WO (1) WO2008123615A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102164A (ja) * 2008-10-24 2010-05-06 Canon Inc 画像形成装置及びその制御方法
JP2013123348A (ja) * 2011-12-12 2013-06-20 Canon Inc ゼロクロス検知回路を有する電源、及び、画像形成装置

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101133587B1 (ko) * 2007-06-11 2012-04-06 삼성전자주식회사 전원공급장치 및 이를 구비한 화상형성장치
JP4988511B2 (ja) * 2007-10-31 2012-08-01 株式会社リコー 画像形成装置および画像形成方法
JP5127542B2 (ja) * 2008-04-07 2013-01-23 キヤノン株式会社 定着装置
WO2010002130A2 (en) 2008-07-03 2010-01-07 Lg Electronics Inc. Method for processing ndi in random access procedure and a method for transmitting and receiving a signal using the same
JP5344569B2 (ja) * 2009-01-28 2013-11-20 キヤノン株式会社 画像形成装置
JP4840454B2 (ja) * 2009-02-05 2011-12-21 コニカミノルタビジネステクノロジーズ株式会社 定着装置および画像形成装置
JP5523190B2 (ja) 2009-06-08 2014-06-18 キヤノン株式会社 画像形成装置
JP5847874B2 (ja) * 2009-06-08 2016-01-27 キヤノン株式会社 画像形成装置
JP5473416B2 (ja) * 2009-06-10 2014-04-16 キヤノン株式会社 画像形成装置
US8331819B2 (en) 2009-06-11 2012-12-11 Canon Kabushiki Kaisha Image forming apparatus
JP2011002724A (ja) * 2009-06-19 2011-01-06 Canon Inc 定着装置
EP2476027B1 (en) 2009-09-11 2014-06-25 Canon Kabushiki Kaisha Heater, image heating device with the heater and image forming apparatus therein
JP5561036B2 (ja) * 2009-10-15 2014-07-30 株式会社リコー 故障判別装置、定着装置、画像形成装置、故障判別システム
JP5495772B2 (ja) 2009-12-21 2014-05-21 キヤノン株式会社 ヒータ及びこのヒータを搭載する像加熱装置
JP5791264B2 (ja) 2009-12-21 2015-10-07 キヤノン株式会社 ヒータ及びこのヒータを搭載する像加熱装置
JP4818472B2 (ja) 2010-03-18 2011-11-16 キヤノン株式会社 画像形成装置
JP5839821B2 (ja) 2010-05-12 2016-01-06 キヤノン株式会社 加熱装置及び画像形成装置
JP5780812B2 (ja) 2010-05-12 2015-09-16 キヤノン株式会社 電圧検知装置及び像加熱装置
JP5465092B2 (ja) * 2010-06-03 2014-04-09 キヤノン株式会社 定着装置及び画像形成装置
JP5495984B2 (ja) 2010-07-01 2014-05-21 キヤノン株式会社 像加熱装置
CN102398800A (zh) * 2010-07-02 2012-04-04 株式会社东芝 马达控制装置、图像形成装置、马达控制方法
JP5409582B2 (ja) * 2010-11-26 2014-02-05 京セラドキュメントソリューションズ株式会社 画像形成装置
JP5693190B2 (ja) * 2010-12-08 2015-04-01 キヤノン株式会社 画像形成装置
JP2012123244A (ja) 2010-12-09 2012-06-28 Canon Inc 画像形成装置
US9077209B2 (en) * 2011-01-20 2015-07-07 Panasonic Intellectual Property Management Co., Ltd. Power generation system, power generating module, module fixing device and method for installing power generation system
WO2012144004A1 (ja) * 2011-04-18 2012-10-26 キヤノン株式会社 誘導加熱方式の定着装置を備えた画像形成装置
JP5943559B2 (ja) 2011-06-02 2016-07-05 キヤノン株式会社 定着装置
JP5871515B2 (ja) 2011-08-16 2016-03-01 キヤノン株式会社 画像形成装置及び濃度情報取得方法
JP6021536B2 (ja) * 2011-09-15 2016-11-09 キヤノン株式会社 画像形成装置
EP2624422B1 (en) * 2012-01-31 2019-08-28 Canon Kabushiki Kaisha Power source, power failure detection apparatus, and image forming apparatus
JP5687234B2 (ja) * 2012-03-14 2015-03-18 京セラドキュメントソリューションズ株式会社 画像形成装置及びヒータ制御方法
KR101992769B1 (ko) * 2012-10-30 2019-09-30 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 화상 형성 장치 및 그 제어 방법
JP6234126B2 (ja) 2013-09-10 2017-11-22 キヤノン株式会社 画像形成装置
JP6198580B2 (ja) 2013-11-18 2017-09-20 キヤノン株式会社 像加熱装置及びこの像加熱装置を搭載する画像形成装置
JP6478545B2 (ja) 2013-11-18 2019-03-06 キヤノン株式会社 像加熱装置及びこの像加熱装置を搭載する画像形成装置
JP6478683B2 (ja) 2014-03-10 2019-03-06 キヤノン株式会社 画像形成装置及びこの装置に搭載される安全回路
JP6463073B2 (ja) 2014-10-21 2019-01-30 キヤノン株式会社 定着装置
JP2017102306A (ja) * 2015-12-02 2017-06-08 京セラドキュメントソリューションズ株式会社 画像形成装置、画像形成方法
JP2019018404A (ja) * 2017-07-13 2019-02-07 株式会社東芝 画像形成装置及び制御方法
JP7051320B2 (ja) 2017-07-21 2022-04-11 キヤノン株式会社 画像形成装置
CN111123680A (zh) * 2018-11-01 2020-05-08 联想图像(天津)科技有限公司 打印机及其加热控制电路和加热装置
JP7224860B2 (ja) 2018-11-08 2023-02-20 キヤノン株式会社 画像形成装置
US10845741B2 (en) 2018-11-09 2020-11-24 Canon Kabushiki Kaisha Image forming apparatus in which a first circuit for supplying power to a heater and second and third circuits electrically isolated from the first circuit are linearly disposed on a circuit board surface
CN114355742B (zh) * 2022-01-19 2023-10-24 宁波得力科贝技术有限公司 定影控制方法及打印机

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105180A (ja) 1981-12-17 1983-06-22 Fuji Xerox Co Ltd 複写機の電力制御装置
JPS61276473A (ja) 1985-05-31 1986-12-06 Canon Inc 画像形成装置
JPH0373870A (ja) 1989-08-14 1991-03-28 Kansai Electric Power Co Inc:The 電気回路網シミュレータの自動接続機構
JPH04174457A (ja) 1990-11-07 1992-06-22 Sharp Corp 電子写真装置
JPH06202401A (ja) 1993-01-07 1994-07-22 Ricoh Co Ltd 画像形成装置
JP2002268446A (ja) 2001-03-12 2002-09-18 Canon Inc 画像形成装置及びその制御方法並びに記憶媒体
JP2005024899A (ja) 2003-07-02 2005-01-27 Canon Inc 画像形成装置
JP2005024779A (ja) 2003-06-30 2005-01-27 Canon Inc 画像形成装置および電力制御方法
US20050231126A1 (en) 2004-04-20 2005-10-20 Takashi Nara Image forming apparatus
US20060078344A1 (en) 2003-01-21 2006-04-13 Canon Kabushiki Kaisha Image forming apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4035146B2 (ja) * 2003-02-20 2008-01-16 松下電器産業株式会社 加熱定着装置及びその制御方法
JP2005221677A (ja) * 2004-02-04 2005-08-18 Canon Inc 画像形成装置
JP4386262B2 (ja) * 2004-02-04 2009-12-16 キヤノン株式会社 画像形成装置
CN1725120A (zh) * 2004-07-15 2006-01-25 柯尼卡美能达商用科技株式会社 图像形成设备
KR100608020B1 (ko) * 2004-12-23 2006-08-02 삼성전자주식회사 전자 사진 형성 장치에 포함되는 정착 장치 및 정착장치의 온도 제어 방법 및 온도 제어 방법을 구현하는컴퓨터용 프로그램을 저장하는 저장 매체

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105180A (ja) 1981-12-17 1983-06-22 Fuji Xerox Co Ltd 複写機の電力制御装置
JPS61276473A (ja) 1985-05-31 1986-12-06 Canon Inc 画像形成装置
JPH0373870A (ja) 1989-08-14 1991-03-28 Kansai Electric Power Co Inc:The 電気回路網シミュレータの自動接続機構
JPH04174457A (ja) 1990-11-07 1992-06-22 Sharp Corp 電子写真装置
JPH06202401A (ja) 1993-01-07 1994-07-22 Ricoh Co Ltd 画像形成装置
JP2002268446A (ja) 2001-03-12 2002-09-18 Canon Inc 画像形成装置及びその制御方法並びに記憶媒体
US20060078344A1 (en) 2003-01-21 2006-04-13 Canon Kabushiki Kaisha Image forming apparatus
JP2005024779A (ja) 2003-06-30 2005-01-27 Canon Inc 画像形成装置および電力制御方法
JP2005024899A (ja) 2003-07-02 2005-01-27 Canon Inc 画像形成装置
US20050231126A1 (en) 2004-04-20 2005-10-20 Takashi Nara Image forming apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2141552A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102164A (ja) * 2008-10-24 2010-05-06 Canon Inc 画像形成装置及びその制御方法
JP2013123348A (ja) * 2011-12-12 2013-06-20 Canon Inc ゼロクロス検知回路を有する電源、及び、画像形成装置

Also Published As

Publication number Publication date
US7630662B2 (en) 2009-12-08
KR101100613B1 (ko) 2011-12-29
US20090003868A1 (en) 2009-01-01
EP2141552A1 (en) 2010-01-06
KR101217506B1 (ko) 2013-01-02
EP2141552B1 (en) 2015-03-18
JP2008292988A (ja) 2008-12-04
EP2141552A4 (en) 2011-10-05
CN101646980A (zh) 2010-02-10
KR20090130092A (ko) 2009-12-17
CN102540839B (zh) 2014-12-31
CN101646980B (zh) 2012-07-04
KR20110106449A (ko) 2011-09-28
CN102540839A (zh) 2012-07-04
JP4869278B2 (ja) 2012-02-08

Similar Documents

Publication Publication Date Title
WO2008123615A1 (ja) 画像形成装置
US7076183B2 (en) Image fusing device and image forming apparatus
JP4920985B2 (ja) 画像形成装置
JP5479025B2 (ja) 像加熱装置及び画像形成装置
US9122224B2 (en) Image forming apparatus and power supply device
JP3919670B2 (ja) 画像形成装置
JP5004334B2 (ja) 画像形成装置
JP5000008B2 (ja) 画像形成装置
JP2007212868A (ja) 画像形成装置
US9535379B2 (en) Image forming apparatus with warmup power control and connectable option device
JP5473416B2 (ja) 画像形成装置
JP2016025827A (ja) 電流制御装置及び画像形成装置
JP5094180B2 (ja) 画像形成装置
JP2013029746A (ja) 画像形成装置
JP5311893B2 (ja) 画像形成装置
JP2005208252A (ja) 画像形成装置
JP2009288649A (ja) 画像形成装置
JP2006113117A (ja) 画像形成装置
JP2001318560A (ja) 画像形成装置
JP2008250060A (ja) 画像形成装置
JP2006162861A (ja) 画像形成装置
JP2004334663A (ja) 電力制御手段と加熱装置及びそれを具備した画像形成装置
JP3452342B2 (ja) 定着装置
JP2002174984A (ja) 画像形成装置
JP2011253071A (ja) 画像形成装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880010635.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008739933

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20097022657

Country of ref document: KR

Kind code of ref document: A