[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008155089A1 - Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfahigkeit - Google Patents

Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfahigkeit Download PDF

Info

Publication number
WO2008155089A1
WO2008155089A1 PCT/EP2008/004851 EP2008004851W WO2008155089A1 WO 2008155089 A1 WO2008155089 A1 WO 2008155089A1 EP 2008004851 W EP2008004851 W EP 2008004851W WO 2008155089 A1 WO2008155089 A1 WO 2008155089A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
oil
use according
carbon atoms
radical
Prior art date
Application number
PCT/EP2008/004851
Other languages
English (en)
French (fr)
Inventor
Matthias Krull
Robert Janssen
Original Assignee
Clariant Finance (Bvi) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Finance (Bvi) Limited filed Critical Clariant Finance (Bvi) Limited
Priority to CA2691067A priority Critical patent/CA2691067A1/en
Priority to US12/665,005 priority patent/US20100180492A1/en
Priority to JP2010512591A priority patent/JP5517924B2/ja
Priority to PL08759257T priority patent/PL2162513T3/pl
Priority to EP08759257.2A priority patent/EP2162513B1/de
Priority to RU2010101618/04A priority patent/RU2475517C2/ru
Publication of WO2008155089A1 publication Critical patent/WO2008155089A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/146Macromolecular compounds according to different macromolecular groups, mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1966Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/1641Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aliphatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1981Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)

Definitions

  • the present invention relates to the use of nucleating agents to improve the cold flowability of mineral oil distillates containing detergent additives, as well as the mineral oil distillates additive.
  • paraffin-rich crude oils are extracted and processed, which consequently also lead to paraffin-rich fuel oils.
  • the paraffins contained in particular in middle distillates can crystallize on lowering the temperature of the oil and partially agglomerate with the inclusion of oil. This crystallization and agglomeration can cause blockages of the filters in engines and firing systems, especially in winter, which prevents safe metering of the fuels and may possibly lead to a complete interruption of the fuel supply.
  • the paraffin problem is also exacerbated by the environmental reasons to reduce the sulfur content increasing hydrodesulfurization of fuel oils, which leads to an increased proportion of cold-critical paraffins in the fuel oil.
  • cold flow improvers In order to improve the cold flow properties, middle distillates are often added with chemical additives, so-called cold flow improvers or flow improvers, which modify the crystal structure and agglomeration tendency of the precipitated paraffins, so that the oils thus added can still be pumped or used at temperatures which are often more than 20 ° C. lower than non-additized oils.
  • cold flow improver oil-soluble copolymers of ethylene and unsaturated esters, oil-soluble polar nitrogen compounds and / or comb polymers are usually used. In addition, however, other additions have been proposed.
  • detergent additives are being developed with ever increasing effectiveness. In addition, they are often used in very high dosage rates. It is reported that this reduces, for example, in diesel fuels, the specific consumption and the performance of the engines is increased.
  • these additives often have negative effects on the cold flowability of middle distillates and in particular on the efficacy of known cold flow improvers. Especially with middle distillates with low boiling point and simultaneously low aromatic content, it is often difficult or even impossible to adjust in the presence of modern detergent additives using conventional flow improvers a satisfactory cold flow behavior. For example, the addition of detergent additives often results in an antagonistic effect on the effectiveness of the added cold flow improvers.
  • the paraffin dispersion of the middle distillate, set by paraffin dispersants is impaired, without being able to be reconstituted by increased metering of paraffin dispersant.
  • the filterability measured as CFPP with cold flow improvers of additized oils in the cold is often significantly reduced and can only be compensated for by greatly increased metering of the flow improver.
  • detergent additives which are derived from higher polyamines and those which are, for example, conditional have very high molecular weights by multiple alkylation and / or acylation of these polyamines.
  • those detergent additives whose hydrophobic residue is derived from sterically hindered olefins and / or higher molecular weight and / or polyfunctionalized poly (olefins).
  • the invention thus relates to the use of at least one oil-soluble, acting as nucleator for the paraffin crystallization compound B), selected from
  • Detergent additive A which is an oil-soluble, amphiphilic compound comprising at least one alkyl or alkenyl radical attached to a polar group, wherein the alkyl or alkenyl radical is 10 to 500 carbon atoms and the polar group is 2 or more nitrogen atoms includes.
  • Another object of the invention is a process for improving the response of mineral oil flow improvers C) in middle distillates containing ashless nitrogen-containing detergent additives A), and wherein the ashless nitrogen-containing detergent additives A) are oil-soluble, amphiphilic compounds comprising at least one alkyl or alkenyl group attached to a polar group, wherein the alkyl or alkenyl group is 10 to 500 carbon atoms and the polar group is 2 or more Includes nitrogen atoms,
  • oil-soluble compound B which acts as a nucleator for paraffin crystallization, selected from comb polymers carrying alkyl side chains of at least 20 carbon atoms, different from C;
  • Another object of the invention are additives containing
  • At least one ashless, nitrogen-containing detergent additive A which is an oil-soluble, amphiphilic compound comprising at least one alkyl or alkenyl radical bonded to a polar group, wherein the alkyl or alkenyl radical has 10 to 500 carbon atoms and the polar group comprises 2 or more nitrogen atoms,
  • A) and B) is also referred to below as "inventive additive".
  • Another object of the invention are middle distillates having a sulfur content of less than 100 ppm and a 90% distillation point of below 360 0 C, containing
  • At least one ashless, nitrogen-containing detergent additive A which is an oil-soluble, amphiphilic compound comprising at least one alkyl or alkenyl radical bonded to a polar group, wherein the alkyl or alkenyl radical has 10 to 500 carbon atoms and the polar group comprises 2 or more nitrogen atoms,
  • At least one oil-soluble compound B) acting as nucleator for paraffin crystallization selected from comb polymers bearing alkyl side chains of at least 20 carbon atoms in length, and
  • the improvement in the response of cold flow improvers C) according to the invention is understood to improve at least one cold property of middle distillates adjusted or adjustable by cold flow improver C) and adversely affected by the addition of a detergent additive A) by addition of a compound B) acting as a nucleating agent for the paraffin crystallization , Specifically, by adding the nucleating agent B), the cold property set or adjustable without the presence of the detergent additive A) by the cold flow improver C) is achieved.
  • Cold properties are understood here individually or in combination as the pour point, the cold filterability (CoId filter plugging point), the low-temperature flow capability and the paraffin dispersion of middle distillates.
  • Especially affected is the response of flow improvers in middle distillates containing more than 10 ppm of a nitrogen containing detergent additive A), in particular more than 20 ppm and especially more than 40 ppm such as 50 to 2,000 ppm of nitrogen-containing detergent additive A).
  • the additives according to the invention preferably contain from 0.01 to 10 parts by weight, based on one part by weight of the nitrogen-containing detergent additive A, and in particular from 0.05 to 5 parts by weight, for example from 0.1 to 3 parts by weight of the oil-soluble compound B) acting as nucleator for the paraffin crystallization.
  • Ashless means that the additives in question essentially consist only of elements which form gaseous reaction products during combustion.
  • the additives consist essentially only of the elements carbon, hydrogen, oxygen and nitrogen.
  • ashless additives are substantially free of metals and metal salts.
  • Nucleators are understood to be compounds which initiate the crystallization of paraffins on cooling a paraffin-containing oil. They thus shift the beginning of the paraffin crystallization of the oil additized with them, which can be determined, for example, by measuring the cloud point or the Wax Appearance Temperature (WAT), to higher temperatures. These are compounds that are soluble in the oil above the cloud point and begin to crystallize just above the temperature of the paraffin saturation and then serve as seed for the crystallization of the paraffins. Thus, they prevent over-saturation of the oil with paraffins and lead to crystallization near the saturation concentration. This leads to the formation of a multiplicity of equally small paraffin crystals.
  • WAT Wax Appearance Temperature
  • paraffin crystallization thus begins at a higher temperature than in non-additized oil. This can be determined, for example, by measuring the WAT by means of differential scanning calorimetry (DSC) with a slow cooling of the oil at, for example, -2 K / min.
  • DSC differential scanning calorimetry
  • middle distillates 10 to 10,000 ppm and in particular 50 to 3,000 ppm of the nitrogen-containing detergent additives A) are added.
  • the alkyl or alkenyl group imparts oil-solubility to the detergent additives.
  • alkyl radical has 15 to 500 carbon atoms and in particular 20 to 350 carbon atoms, for example 50 to 200 carbon atoms.
  • This alkyl radical can be linear or branched, in particular it is branched.
  • the alkyl radical is derived from oligomers of lower olefins having 3 to 6 C atoms such as propene, butene, pentene or hexene and mixtures thereof.
  • Preferred isomers of these olefins are isobutene, 2-butene, 1-butene, 2-methyl-2-butene, 2,3-dimethyl-2-butene, 1-pentene, 2-pentene and iso-pentene and mixtures thereof.
  • Particular preference is given to propene, isobutene, 2-butene, 2-methyl-2-butene, 2,3-dimethyl-2-butene and mixtures thereof.
  • Particularly suitable for the preparation of such detergent additives are highly reactive low molecular weight polyolefins having a proportion of terminal double bonds of at least 75%, especially at least 85% and in particular at least 90% such as at least 95%.
  • Particularly preferred low molecular weight polyolefins are poly (isobutylene), poly (2-butene), poly (2-methyl-2-butene), poly (2,3-dimethyl-2-butene), poly (ethylene-co-isobutylene) and atactic poly (propylene).
  • the molecular weight of particularly preferred polyolefins is between 500 and 3000 g / mol.
  • Such oligomers of lower olefins are accessible, for example, by polymerization using Lewis acids such as BF 3 and AICI 3 , by means of Ziegler catalysts and in particular by means of metallocene catalysts.
  • the polar component of the detergent additives which are particularly problematic for the response of known cold additives is derived from polyamines having 2 to 20 N atoms.
  • polyamines having 2 to 20 N atoms.
  • Such polyamines correspond for example to the formula
  • each R 9 is independently hydrogen, an alkyl or hydroxyalkyl radical having up to 24 carbon atoms, a polyoxyalkylene radical - (AO) r or polyiminoalkylene radical - [AN (R 9 )] S - (R 9 ) but wherein at least R 9 is hydrogen, q is an integer from 1 to 19, A is an alkylene radical having 1 to 6 C atoms, r and s are independently from 1 to 50. Usually these are mixtures of polyamines and in particular mixtures of poly (ethylene amines) and / or poly (propyleneamines). Examples include: ethylenediamine, 1, 2-propylenediamine, dimethylaminopropylamine, diethylenetriamine (DETA), dipropylenetriamine,
  • Triethylenetetramine (TETA), tripropylenetetramine, tetraethylenepentamine (TEPA), tetrapropylenepentamine, pentaethylenehexamine (PEHA), pentapropylenehexamine, and heavy polyamines.
  • Heavy polyamines are generally understood as meaning mixtures of polyalkylenepolyamines which, in addition to small amounts of TEPA and PEHA, mainly contain oligomers having 7 or more nitrogen atoms, of which two or more are in the form of primary amino groups. These polyamines often also contain branched structural elements via tertiary amino groups.
  • Suitable amines include those which comprise cyclic structural units derived from piperazine.
  • the piperazine units may preferably carry hydrogen at one or both nitrogen atoms, an alkyl or hydroxyalkyl radical having up to 24 carbon atoms or a polyiminoalkylene radical - [AN (R 9 )] s- (R 9 ) where A, R 9 and s have the meanings given above.
  • Suitable amines include alicyclic diamines such as 1,4-di (aminomethyl) cyclohexane and heterocyclic nitrogen compounds such as imidazolines and N-aminoalkylpiperazines such as N- (2-aminoethyl) piperazine.
  • detergent additives whose polar portion is derived from hydroxyl-bearing polyamines, heterocycle-substituted polyamines, and aromatic polyamines are problematic.
  • Examples include: N- (2-hydroxyethyl) ethylenediamine, N, N 1 -bis (2-hydroxyethyl) ethylenediamine, N- (3-hydroxybutyl) tetra (methylene) diamine, N-2-aminoethylpiperazine, N-2 and N-3-aminopropylmorpholine, N-3- (dimethylamino ) propylpiperazine, 2-heptyl-3- (2-aminopropyl) imidazoline, 1,4-bis (2-aminoethyl) piperazine, 1- (2-hydroxyethyl) piperazine, various isomers of phenylenediamine and naphthalenediamine and mixtures of these amines.
  • Detergent additives based on heavy polyamines in which R 9 is hydrogen in the above formula and q has values of at least 3, in particular at least 4, such as 5, 6 or 7, are particularly critical for the cold additization of middle distillates.
  • R 9 is hydrogen in the above formula and q has values of at least 3, in particular at least 4, such as 5, 6 or 7, are particularly critical for the cold additization of middle distillates.
  • a proportion of more than 10 wt .-%, in particular more than 20 wt .-% and especially of more than 50 wt .-% of amines having q-values of 4 or higher and especially with q Values of 5 or higher and in particular with q values of 6 or higher on the total amount of amines used have proven particularly critical.
  • oil-soluble alkyl moiety and the polar head group of the detergent additives may be linked together either directly via a C-N or through an ester, amide or imide bond. Accordingly, preferred detergent additives are
  • Alkylpolyamines Mannich reaction products, hydrocarbyl-substituted succinamides and imides, and mixtures of these classes of compounds.
  • the detergent additives linked via CN bonds are preferably alkyl polyamines which are obtainable, for example, by reacting polyisobutylenes with polyamines, for example by hydroformylation and subsequent reductive amination with the abovementioned polyamines.
  • one or more alkyl radicals may be bound to the polyamine.
  • Detergent additives based on higher polyamines having more than 4 N atoms, for example those having 5, 6 or 7 N atoms, are particularly critical for the cold addition.
  • Detergent additives containing amide or imide bonds are obtainable, for example, by reacting alkenylsuccinic anhydrides with polyamines.
  • Alkenylsuccinic anhydride and polyamine are preferably reacted in a molar ratio of about 1: 0.5 to about 1: 1.
  • the preparation of the underlying Alkenylbernsteinklaanhydride is usually carried out by addition of ethylenically unsaturated polyolefins or chlorinated polyolefins to ethylenically unsaturated dicarboxylic acids.
  • alkenyl succinic anhydrides can be prepared by reaction of chlorinated polyolefins with maleic anhydride.
  • the preparation can also be achieved by thermal addition of polyolefins to maleic anhydride in an "ene reaction.”
  • Highly reactive olefins having a high content of, for example, more than 75% and especially more than 85 mol%, based on the total number of polyolefin molecules, are present
  • the molar ratio of the two reactants in the reaction between maleic anhydride and polyolefin can vary within wide limits. Preferably, it may be between 10: 1 and 1: 5, with molar ratios of 6: 1 to 1: 1 being particularly preferred.
  • Maleic anhydride is preferably used in stoichiometric excess, for example 1.1 to 3 mol of maleic anhydride per mole of polyolefin. Excess maleic anhydride can be removed from the reaction by, for example, distillation.
  • alkenyl succinic anhydride Preferably, for the reaction of 1, 0 to 1, 7 and in particular 1, 1 to 1, 5 mol alkenyl succinic anhydride per mole of polyamine used, so that free primary amino groups remain in the product.
  • alkenyl succinic anhydride and polyamine are reacted equimolarly.
  • Typical and particularly preferred acylated nitrogen compounds are obtained by reacting poly (isobutylene), poly (2-butenyl), poly (2-methyl-2-butenyl) -, poly (2,3-dimethyl-2-butenyl) - or Poly (propenyl) succinic anhydrides having an average of about 1, 2 to 1, 5 anhydride groups per alkyl radical whose alkylene radicals carry between 50 and 400 carbon atoms, with a mixture of poly (ethylene amines) having about 3 to 7 nitrogen atoms and about 1 to 6 ethylene units available. Oil-soluble Mannich reaction products based on polyolefin-substituted phenols and polyamines also impair the effectiveness of conventional cold flow improvers.
  • Mannich bases of this kind are prepared by known processes, for example by alkylating phenol and / or salicylic acid with the polyolefins described above, such as, for example, poly (isobutylene), poly (2-butene), poly (2-methyl-2-butene), poly ( 2,3-dimethyl-2-butene) or atactic poly (propylene) followed by condensation of the alkylphenol with aldehydes with 1 to 6 C atoms such as formaldehyde or its reactive equivalents such as formalin or paraformaldehyde and the above-described polyamines such as TEPA, PEHA or heavy polyamines produced.
  • polyolefins described above such as, for example, poly (isobutylene), poly (2-butene), poly (2-methyl-2-butene), poly ( 2,3-dimethyl-2-butene) or atactic poly (propylene) followed by condensation of the alkylphenol with aldehydes with 1 to 6 C atoms such as formal
  • the average molecular weight determined by means of vapor pressure osmometry is particularly efficient, but at the same time also for the cold additization of middle distillates of particularly critical detergent additives is above 800 g / mol and in particular above 2,000 g / mol such as above 3,000 g / mol.
  • the average molecular weight of the above-described detergent additives can also be increased via crosslinking reagents and adapted to the intended use.
  • Suitable crosslinking reagents are, for example, dialdehydes such as glutaric dialdehyde, bisepoxides derived, for example, from bisphenol A, dicarboxylic acids and their reactive derivatives such as maleic anhydride and alkenylsuccinic anhydrides, and higher polybasic carboxylic acids and their derivatives such as trimellitic acid, trimellitic anhydride and pyromellitic dianhydride.
  • dialdehydes such as glutaric dialdehyde
  • bisepoxides derived, for example, from bisphenol A
  • dicarboxylic acids and their reactive derivatives such as maleic anhydride and alkenylsuccinic anhydrides
  • higher polybasic carboxylic acids and their derivatives such as trimellitic acid, trimellitic anhydride and pyromellitic dianhydride.
  • Preferred comb polymers B) acting as nucleator for the paraffin crystallization are polymers which carry alkyl side chains bonded to the polymer backbone and have a length of at least 20 carbon atoms. Particularly preferred are those polymers which carry side chains having 22 to 60, such as 24 to 45 carbon atoms.
  • the proportion of these alkyl side chains in the total amount of the alkyl side chains of the polymer is at least 10 mol%, preferably at least 25 mol% and in particular at least 50 mol%, for example at least 80 mol%.
  • the side chains are linear or have at least correspondingly long linear segments.
  • the polymer backbone may for example be composed of ethylenically unsaturated mono- and / or polycarboxylic acids such as, for example, acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid.
  • monomers such as olefins, vinyl esters and / or vinyl ethers. Particular preference is given to copolymers based on fumaric acid and vinyl acetate and those based on maleic acid and ⁇ -olefins.
  • the polymer backbone carries long-chain alkyl radicals with a molar average of at least 18, preferably at least 20, such as at least 24 C atoms.
  • the alkyl radicals can be bonded directly to the backbone via a C-C bond or can be bound to the polymer backbone via an ester, amide, imide or ammonium group.
  • the alkyl radicals can be bonded to the polymer backbone via spacers such as, for example, polyoxyalkylene or polyalkyleneamine groups having in each case 1 to 200 and in particular 2 to 50 oxyalkyl or alkylenamine units.
  • nucleator suitable for the paraffin crystallization comb polymers B are, for example, polymers of the formula (1)
  • AR 1 COOR 1 , OCOR 1 , FT-COOR 1 , OR 1 ;
  • R 1 is a hydrocarbon chain having at least 20 carbon atoms
  • R is a hydrocarbon chain of 1 to 10 carbon atoms; m is a number between 0.4 and 1, 0; and n is a number between 0 and 0.6.
  • Preferred comb polymers are, for example, copolymers of ethylenically unsaturated dicarboxylic acids such as maleic or fumaric acid with other ethylenically unsaturated monomers such as olefins or vinyl esters.
  • Particularly preferred olefins are ⁇ -olefins having at least 22 and especially 24 to 60 carbon atoms such as C 2 o- ⁇ -olefin, C 24 - ⁇ -olefin, C 26 - ⁇ -olefin and mixtures thereof such as C 2 o -24 - ⁇ -olefin, C 26 - 28 - ⁇ -olefin or C 24-2S - ⁇ -olefin as well as technical chain sections in the region C 30 +.
  • ⁇ -olefins are meant linear alkenes with terminal double bond.
  • a particularly preferred comonomer vinyl ester is vinyl acetate.
  • the copolymers of unsaturated carboxylic acids are essentially alternating copolymers.
  • these copolymers of ethylenically unsaturated carboxylic acids are esterified with alcohols to at least 50%, preferably to 60-100% and in particular to 70-98%, for example to 80-95%.
  • Alcohols having at least 20 and preferably having at least 22 carbon atoms are preferably used for this purpose.
  • shorter-chain alcohols having, for example, 10 to 18 and especially 12 to 16 C atoms for the esterification, provided that the polymer already carries a sufficient amount of long side chains with at least 20 C atoms.
  • comb polymers are homo- and copolymers of
  • copolymers of dicarboxylic acids, such as maleic or fumaric acid and vinyl acetate, which have been esterified with long-chain fatty alcohols having at least 20 carbon atoms are used as comb polymers.
  • copolymers contain at least 10 mol%, preferably at least 25 mol% and in particular at least 50 mol% such as at least 80 mol% of the monomers alkyl chains having at least 20 carbon atoms and preferably 22 to 60 such as 24 to 45 carbon atoms.
  • alkylphenol-aldehyde resins which are derived from alkylphenols having one or two alkyl radicals in ortho and / or para position to the OH group.
  • Particularly preferred as starting materials are alkylphenols which carry at least two hydrogen atoms capable of condensation with aldehydes on the aromatic and in particular monoalkylated phenols.
  • the alkyl radical is in the para position to the phenolic OH group.
  • the alkyl radicals may be the same or different in the case of the alkylphenol-aldehyde resins which can be used in the process according to the invention, they may be saturated or, preferably, unsaturated
  • At least 10 mol%, preferably at least 25 mol% and in particular at least 50 mol%, for example at least 80 mol% of the alkyl radicals of the alkylphenol resins suitable according to the invention as nucleator B) have alkyl chains with at least 20 carbon atoms and preferably between 22 and 60 such as 24 to 45 carbon atoms. On a molar average, the alkyl radicals have at least 18, preferably 20 to 60, such as 24 to 45 carbon atoms.
  • mixtures of alkylphenols having different alkyl radicals are used for the preparation of the alkylphenol resins. For example, resins based on mixtures of C 2 o / 22/24 -alkylphenols, C 24/26/2 ⁇ -alkylphenols and alkylphenols with chain lengths of C 30 and higher have proven particularly suitable.
  • Suitable alkylphenol resins can also structural units of further
  • Phenolic analogs such as salicylic acid, hydroxybenzoic acid and their derivatives such as esters, amides and salts or consist of them. That is, the Alkyl radicals may be bonded to the phenol directly via a C-C bond or via an ester or ether group.
  • Preferred polycondensates are accessible by reacting alkylphenols with aldehydes and / or ketones.
  • Suitable aldehydes for the alkylphenol-aldehyde resins are those having 1 to 12 carbon atoms and preferably those having 1 to 4 carbon atoms such as formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, 2-ethylhexanal, benzaldehyde, glyoxalic acid and their reactive equivalents such as paraformaldehyde and trioxane.
  • Particularly preferred is formaldehyde in the form of paraformaldehyde and especially formalin.
  • the polycondensation can also be carried out in the presence of aldehydes and amines in the form of a Mannich reaction.
  • the compounds suitable as nucleator B) are alkylphenol-formaldehyde resins which contain oligomers or polymers having a repeating structural unit of the formula (2)
  • R 11 is C 20 -C 20 -alkyl-I or -alkenyl, OR 10 or 0-C (O) -R 10 , R 10 is C 20 -C 200 -alkyl or -alkenyl and n is a number of 5 to 200 is included.
  • R 10 is preferably C 22 -C 30 -alkyl or -alkenyl and in particular C 24 -C 50 -alkyl or -alkenyl.
  • R is C 22 -C 00 alkyl or alkenyl and especially C 24 -C 50 alkyl or alkenyl.
  • n is a number from 7 to 100 and especially for a number from 10 to 50.
  • alkylphenol-aldehyde resins are accessible by known methods, for. B. by condensation of the corresponding alkylphenols with formaldehyde, ie with 0.5 to 1.5 MoI 1, preferably 0.8 to 1.2 moles of formaldehyde per mole of alkylphenol.
  • the condensation can be carried out solvent-free, but preferably it is carried out in the presence of an inert or only partially water-miscible inert organic solvent such as mineral oils, alcohols, ethers and the like. Particularly preferred are solvents which can form azeotropes with water.
  • solvents in particular aromatics such as toluene, xylene diethylbenzene and higher boiling commercial solvent mixtures such as Shellsol ® AB, and solvent naphtha are used.
  • fatty acids and their derivatives such as esters with lower alcohols having 1 to 5 carbon atoms such as ethanol and especially methanol are suitable as solvents.
  • the condensation is preferably carried out between 70 and 200 ° C., for example between 90 and 160 ° C. It is usually catalysed by 0.05 to 5% by weight of bases or preferably by 0.05 to 5% by weight of acids.
  • acidic catalysts in addition to carboxylic acids such as acetic acid and oxalic acid in particular strong mineral acids such as hydrochloric acid, phosphoric acid and sulfuric acid and sulfonic acids are common catalysts.
  • Particularly suitable catalysts are sulfonic acids which contain at least one sulfonic acid group and at least one saturated or unsaturated, linear, branched and / or cyclic hydrocarbon radical having 1 to 40 C atoms and preferably having 3 to 24 C atoms.
  • aromatic sulfonic acids especially alkylaromatic monosulfonic acids having one or more C 1 -C 8 -alkyl radicals and, in particular, those having C 3 -C 22 -alkyl radicals.
  • Suitable examples are methanesulfonic acid, butanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, xylenesulfonic acid, 2-mesitylenesulfonic acid, 4-ethylbenzenesulfonic acid, isopropylbenzenesulfonic acid, 4-butylbenzenesulfonic acid, 4-octylbenzenesulfonic acid; Dodecylbenzenesulfonic acid, didodecylbenzenesulfonic acid, naphthalenesulfonic acid. Mixtures of these sulfonic acids are suitable.
  • the molecular weight of the comb polymers B) preferred as nucleators for paraffin crystallization by gel permeation chromatography against poly (styrene) standards in THF is preferably 1,000-100,000 g / mol, particularly preferably 2,000-50,000 g / mol and especially 2,500-25,000 g / mol for example 3,000-20,000 g / mol.
  • the prerequisite here is that the comb polymers, at least in application-relevant concentrations of 0.001 to 1 wt .-% are oil-soluble.
  • the quantitative ratio between detergent additive A) and nucleators B) in the additized oil can vary within wide limits. It has proven particularly useful to use from 0.01 to 10 parts by weight, in particular from 0.05 to 5 parts by weight, for example from 0.1 to 3 parts by weight of nucleator per part by weight of detergent additive, in each case based on the active ingredient.
  • ethylene copolymers (component III) or mixtures thereof with one or more of the constituents IV to VII are used
  • Mixtures of ethylene copolymers (constituent III) and alkylphenol-aldehyde resins (constituent V) and of ethylene copolymers (constituent III) and comb polymers (constituent VI) have proven particularly useful.
  • Mixtures of ethylene copolymers (constituent III) with constituents IV and V or constituents IV and VI have proven particularly suitable for the paraffin dispersion.
  • Preferred cold flow improvers as constituent III are copolymers of ethylene and olefinically unsaturated compounds.
  • Suitable ethylene copolymers are, in particular, those which contain, in addition to ethylene, from 8 to 21 mol%, in particular from 10 to 18 mol%, of olefinically unsaturated comonomer compounds.
  • the olefinically unsaturated compounds are preferably vinyl esters, acrylic esters, methacrylic esters, alkyl vinyl ethers and / or alkenes, where the mentioned compounds may be substituted with hydroxyl groups.
  • One or more comonomers may be included in the polymer.
  • the vinyl esters are preferably those of the formula 1
  • R 1 is Ci to C ß o-alkyl, preferably C 4 to Ci ⁇ -alkyl, especially C 6 - to Ci 2 alkyl.
  • said alkyl groups may be substituted with one or more hydroxyl groups.
  • R 1 is a branched alkyl radical or a neoalkyl radical having 7 to 11 carbon atoms, in particular having 8, 9 or 10 carbon atoms.
  • Particularly preferred vinyl esters are derived from secondary and especially tertiary carboxylic acids whose branching is in the alpha position to the carbonyl group.
  • Suitable vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl hexanoate, vinyl heptanoate, vinyl octanoate, vinyl pivalate, vinyl 2-ethylhexanoate, vinyl laurate, vinyl stearate and versatic acid esters such as vinyl neononanoate, vinyl neodecanoate, vinyl neoundecanoate.
  • the acrylic esters are preferably those of the formula 2
  • R 2 is hydrogen or methyl and R 3 is Cr to C 30 -alkyl, preferably C 4 - to C-
  • Suitable acrylic esters include, for. B. Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n- and iso-butyl (meth) acrylate, hexyl, octyl, 2-ethylhexyl, decyl, dodecyl, tetradecyl, hexadecyl , Octadecyl (meth) acrylate and mixtures of these comonomers.
  • said alkyl groups may be substituted with one or more hydroxyl groups.
  • An example of such an acrylic ester is hydroxyethyl methacrylate.
  • alkyl vinyl ethers are preferably compounds of the formula 3
  • R to C 30 alkyl preferably C 4 4 Cr - to C 6 -alkyl, in particular C 6 - to C 2 is alkyl.
  • alkyl preferably C 4 4 Cr - to C 6 -alkyl, in particular C 6 - to C 2 is alkyl.
  • examples which may be mentioned are methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether.
  • said alkyl groups may be substituted with one or more hydroxyl groups.
  • the alkenes are preferably simple unsaturated hydrocarbons having 3 to 30 carbon atoms, especially 4 to 16 carbon atoms and especially 5 to 12 carbon atoms.
  • Suitable alkenes include propene, butene, isobutylene, pentene, hexene, 4-methylpentene, octene, diisobutylene and norbornene and its derivatives such as methylnorbornene and vinylnorbornene.
  • said alkyl groups may be substituted with one or more hydroxyl groups.
  • terpolymers which, apart from ethylene, have from 3.5 to 20 mol%, in particular from 8 to 15 mol% of vinyl acetate and from 0.1 to 12 mol%, in particular from 0.2 to 5 mol%, of at least one longer-chain and preferably branched one Vinyl esters such as vinyl 2-ethylhexanoate, vinyl neononanoate or vinyl neodecanoate, wherein the total comonomer content of the terpolymers is preferably between 8 and 21 mol%, in particular between 12 and 18 mol%.
  • copolymers contain, in addition to ethylene and 8 to 18 moI% vinyl esters of C 2 - to C 2-carboxylic acids 0.5 to 10 mol% olefins, such as propene, butene, isobutylene, hexene, 4-methylpentene, octene, diisobutylene and / or norbornene.
  • olefins such as propene, butene, isobutylene, hexene, 4-methylpentene, octene, diisobutylene and / or norbornene.
  • these ethylene-co- and terpolymers have melt viscosities at 140 0 C from 20 to 10,000 m-Pas, in particular from 30 to 5,000 m-Pas, especially from 50 to 2,000 m-Pas.
  • the means of 1 H-NMR spectroscopy, certain degrees of branching are preferably between 1 and 9 CH 3 / CH 2 groups IOO, especially between 2 and 6 CH 3 / IOO CH 2 groups that do not stem from the comonomers.
  • the polymers underlying the mixtures differ in at least one characteristic.
  • they may contain different comonomers, have different comonomer contents, molecular weights and / or degrees of branching.
  • the mixing ratio between the additives according to the invention and ethylene copolymers as constituent III can vary within wide limits depending on the application, with the ethylene copolymers III often representing the greater proportion.
  • Such additive and oil mixtures preferably contain 0.1 to 25, preferably 0.5 to 10 parts by weight of ethylene copolymers per part by weight of the additive combination according to the invention.
  • cold flow improvers which are suitable are oil-soluble polar nitrogen compounds (constituent IV). These are preferably reaction products of fatty amines with compounds containing an acyl group.
  • the preferred amines are compounds of the formula NR 6 R 7 R 8 , wherein R 6 , R 7 and R 8 may be the same or different, and at least one of these groups is C 6 -C 36 -alkyl, C 6 -C 36 cycloalkyl
  • polyamines of the formula - [N- (CH 2 ) n ] m -NR 6 R 7 , in which m is a number between 1 and 20 and n, R 6 and R 7 have the meanings given above, are suitable as fatty amines .
  • the alkyl and alkenyl radicals can be linear or branched and contain up to two double bonds. Preferably, they are linear and substantially saturated, that is they have iodine numbers of less than 75 gb / g, preferably less than 60 gl 2 / g and in particular between 1 and 10 gl 2 / g.
  • Especially preferred secondary fatty amines in which two of the groups R 6, R 7 and R 8 is C 8 -C 36 -alkyl, C 6 -C 36 cycloalkyl, C 8 -C 36 -alkyl are -alkenyl, in particular C 2 -C 24 alkyl, Ci 2 -C 24 alkenyl or cyclohexyl.
  • Suitable fatty amines are, for example, octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, eicosylamine, behenylamine, didecylamine, didodecylamine, ditetradecylamine, dihexadecylamine,
  • the amines contain chain cuts based on natural raw materials such as e.g. Coco fatty amine, tallow fatty amine, hydrogenated tallow fatty amine, dicoco fatty amine, ditallow fatty amine and di (hydrogenated tallow fatty amine).
  • Particularly preferred amine derivatives are amine salts, imides and / or amides such as, for example, amide ammonium salts of secondary fatty amines, in particular of dicocosfettamine, ditallow fatty amine and distearylamine.
  • acyl group is meant here a functional group of the following formula:
  • Suitable carbonyl compounds for the reaction with amines are both monomeric and polymeric compounds having one or more carboxyl groups. In the case of the monomeric carbonyl compounds, preference is given to those having 2, 3 or 4 carbonyl groups. They can also contain heteroatoms such as oxygen, sulfur and nitrogen.
  • Suitable carboxylic acids are, for example, maleic, fumaric, crotonic, itaconic and succinic acids, Ci-C 4 o-alkenylsuccinic, adipic, glutaric, sebacic, and malonic acids and benzoic, phthalic, trimellitic and pyromellitic acid, nitrilotriacetic acid, ethylenediaminetetraacetic acid and their reactive derivatives such as esters, anhydrides and acid halides.
  • Copolymers of ethylenically unsaturated acids such as, for example, acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid, have proven particularly suitable as polymeric carbonyl compounds, particular preference is given to copolymers of maleic anhydride.
  • Suitable comonomers are those which impart oil solubility to the copolymer. Oil-soluble is understood here to mean that the copolymer, after reaction with the fatty amine, becomes practically relevant
  • Suitable comonomers are, for example, olefins, alkyl esters of acrylic acid and methacrylic acid, alkyl vinyl esters and alkyl vinyl ethers having 2 to 75, preferably 4 to 40 and in particular 8 to 20 carbon atoms in the alkyl radical.
  • the carbon number refers to the alkyl radical attached to the double bond.
  • the molecular weights of the polymeric carbonyl compounds are preferably between 400 and 20,000, more preferably between 500 and 10,000, for example between 1,000 and 5,000.
  • Oil-soluble polar nitrogen compounds which have been obtained by reaction of aliphatic or aromatic amines, preferably long-chain aliphatic amines, with aliphatic or aromatic mono-, di-, tri- or tetracarboxylic acids or their anhydrides have proven particularly suitable (compare US Pat. No. 4,211,534).
  • the same are amides and ammonium salts of aminoalkylenepolycarboxylic acids such as nitrilotriacetic acid or
  • Ethylenediaminetetraacetic acid with secondary amines as oil-soluble polar nitrogen compounds suitable (see EP 0398101).
  • Other oil-soluble polar nitrogen compounds are copolymers of maleic anhydride with ⁇ , ⁇ -unsaturated compounds, which may optionally be reacted with primary monoalkylamines and / or aliphatic alcohols (see EP-AO 154 177, EP-O 777 712), the reaction products of Alkenylspirobislactonen with Amines (see EP-AO 413 279 B1) and according to EP-AO 606 055 A2 reaction products of terpolymers based ⁇ . ⁇ -unsaturated dicarboxylic acid anhydrides, ⁇ , ⁇ -unsaturated compounds and polyoxyalkylene ethers of lower unsaturated alcohols.
  • the mixing ratio between the inventive ethylene copolymers III and oil-soluble polar nitrogen compounds as constituent IV may vary depending on the application.
  • Such additive mixtures preferably contain 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, based on the active compounds, of at least one oil-soluble polar nitrogen compound per part by weight of the additive combination according to the invention.
  • alkylphenol-aldehyde resins are also suitable as flow improvers.
  • Component V are, in particular, those alkylphenol-aldehyde resins which are derived from alkylphenols having one or two alkyl radicals in ortho and / or para position to the OH group.
  • Particularly preferred as starting materials are alkylphenols which carry at least two hydrogen atoms capable of condensation with aldehydes on the aromatic and in particular monoalkylated phenols.
  • the alkyl radical is in the para position to the phenolic OH group.
  • alkyl radicals (which are generally understood to mean hydrocarbon radicals as defined below for constituent V) may be the same or different in the alkylphenol-aldehyde resins which can be used in the process according to the invention, they may be saturated or unsaturated and have preferably 1-20, in particular 4-16 such as 6 to 12 carbon atoms; it is preferably n-, iso- and tert-butyl, n- and iso-pentyl, n- and iso-hexyl, n- and iso-octyl, n- and iso-nonyl-, n - and iso-decyl, n- and iso-dodecyl, tetradecyl, hexadecyl, octadecyl, tripropenyl, tetrapropenyl, poly (propenyl) - and
  • Poly (isobutenyl) radicals are used for the preparation of the alkylphenol resins.
  • resins based on butyphenol on the one hand and octyl, nonyl and / or dodecylphenol in a molar ratio of 1:10 to 10: 1, on the other hand have proven particularly useful.
  • Suitable alkylphenol resins may also contain or consist of structural units of other phenol analogs such as salicylic acid, hydroxybenzoic acid and derivatives thereof such as esters, amides and salts.
  • Suitable aldehydes for the alkylphenol-aldehyde resins are those having 1 to 12 carbon atoms and preferably those having 1 to 4 carbon atoms such as formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, 2-ethylhexanal, benzaldehyde, glyoxalic acid and their reactive equivalents such as paraformaldehyde and trioxane.
  • Particularly preferred is formaldehyde in the form of paraformaldehyde and especially formalin.
  • the molecular weight of the alkylphenol-aldehyde resins measured by gel permeation chromatography against poly (styrene) standards in THF is preferably 500-25,000 g / mol, more preferably 800-10,000 g / mol and especially 1,000-5,000 g / mol such as 1500-3,000 g / mol.
  • the prerequisite here is that the alkylphenol-aldehyde resins, at least in application-relevant concentrations of 0.001 to 1 wt .-% are oil-soluble.
  • these are alkylphenol-formaldehyde resins which contain oligomers or polymers having a repeating structural unit of the formula (3)
  • R 12 is C r C 18 alkyl or alkenyl, OR 13 or 0-C (O) -R 13 , R 13 is C 1 -C 18 alkyl or alkenyl and n is a number from 2 to 100.
  • R 13 is preferably C 1 -C 6 -alkyl or -alkenyl and in particular C 4 -C 6 alkyl or alkenyl such as for C 6 -C 2 alkyl or alkenyl.
  • R 12 is CrC-i ⁇ alkyl or alkenyl and especially C 4 -C 6 alkyl or alkenyl such as for C 6 -C 2 alkyl or alkenyl.
  • n is a number from 2 to 50 and especially a number from 3 to 25, such as a number from 5 to 15.
  • Suitable comb polymers are, for example, copolymers of ethylenically unsaturated dicarboxylic acids such as maleic or fumaric acid with other ethylenically unsaturated monomers such as olefins or vinyl esters.
  • Particularly suitable olefins are ⁇ -olefins having 10 to 18 and especially 12 to 16 carbon atoms such as 1-decene, 1-dodecene, 1-tetradecene,
  • olefins based on oligomerized C 2 -C 6 -olefins such as poly (isobutylene) with a high proportion of terminal double bonds are suitable as comonomers.
  • a particularly suitable vinyl ester is, for example, vinyl acetate.
  • these copolymers are at least 50% esterified with alcohols having 10 to 18 and especially 12 to 16 carbon atoms.
  • Suitable alcohols include n-decan-1-ol, n-dodecan-1-ol, n-tetradecan-1-ol, n-hexadecan-1-ol, n-octadecan-1-ol and mixtures thereof. Particular preference is given to mixtures of n-tetradecan-1-ol and n-hexadecan-1-ol.
  • comb polymers are poly (alkyl acrylates), poly (alkyl methacrylates) and
  • 16 C atoms derived as well as poly (vinyl esters), which are derived from fatty acids with 10 to 18 and especially 12 to 16 carbon atoms.
  • Polyoxyalkylene compounds such as, for example, esters, ethers and ether / esters of polyols which carry at least one alkyl radical having 12 to 30 C atoms.
  • the oil-soluble polyoxyalkylene compounds have at least 2, such as, for example, 3, 4 or 5 aliphatic hydrocarbon radicals.
  • these radicals independently of one another have 16 to 26 C atoms, for example 17 to 24 C atoms.
  • these radicals of the oil-soluble polyoxyalkylene compounds are linear. Further preferably, they are largely saturated, in particular, these are alkyl radicals. Esters are especially preferred.
  • Polyols which are particularly suitable according to the invention are polyethylene glycols, polypropylene glycols, polybutylene glycols and their copolymers having a molecular weight of about 100 to about 5,000 g / mol, preferably 200 to 2,000 g / mol.
  • the oil-soluble polyoxyalkylene compounds are derived from polyols having 3 or more OH groups, preferably from polyols having 3 to about 50 OH groups, for example 4 to 10 OH groups, in particular neopentyl glycol, glycerol, trimethylolethane, trimethylolpropane , Sorbitan, pentaerythritol, as well as the resulting from condensation oligomers having 2 to 10 monomer units such as.
  • polyglycerol As polyglycerol.
  • polystyrene resin such as sorbitol, sucrose, glucose, fructose and their oligomers such as cyclodextrin are suitable as polyols, provided that their esterified or etherified alkoxylates are oil-soluble at least in application-relevant amounts.
  • Preferred polyoxyalkylene compounds thus have a branched polyoxyalkylene core to which are attached multiple alkyl-solubilizing alkyl radicals.
  • the polyols are generally reacted with from 3 to 70 mol of alkylene oxide, preferably from 4 to 50, in particular from 5 to 20, mol of alkylene oxide per hydroxyl group of the polyol.
  • Preferred alkylene oxides are ethylene oxide, propylene oxide and / or butylene oxide.
  • the alkoxylation is carried out by known methods.
  • the fatty acids which are suitable for the esterification of the alkoxylated polyols preferably have 12 to 30 and in particular 16 to 26 C atoms.
  • Suitable fatty acids are, for example, lauric, tridecane, myristic, pentadecane, palmitic, margarine, stearic, isostearic, arachic and behenic, oleic and erucic acid, palmitoleic, myristoleic, ricinoleic acid and natural fats and oils derived fatty acid mixtures.
  • Preferred fatty acid mixtures contain more than 50 mol% of fatty acids having at least 20 carbon atoms.
  • Preferably, less than 50 mol% of the fatty acids used for the esterification contain double bonds, in particular less than 10 mol%; specifically, they are largely saturated.
  • the esterification can also be carried out starting from reactive derivatives of the fatty acids such as esters with lower alcohols (for example methyl or ethyl esters) or anhydrides.
  • the term "iodine number" of the fatty acid or of the fatty alcohol used is understood to be largely saturated by up to 5 g of I per 100 g of fatty acid or fatty alcohol.
  • fatty acids for the esterification of the alkoxylated polyols, it is also possible to use mixtures of fatty acids with fat-soluble, polybasic carboxylic acids.
  • suitable polybasic carboxylic acids are dimer fatty acids, alkenylsuccinic acids and aromatic polycarboxylic acids and derivatives thereof such as anhydrides and C 1 to C 5 esters.
  • Alkenylsuccinic acid and its derivatives with alkyl radicals having 8 to 200, in particular 10 to 50, C atoms are preferred. Examples are dodecenyl, octadecenyl and
  • Poly (isobutenyl) succinic anhydride The polybasic carboxylic acids are preferably used here to lower levels of up to 30 mol%, preferably 1 to 20 mol%, in particular 2 to 10 mol%.
  • Ester and fatty acid are used for the esterification based on the content of hydroxyl groups on the one hand and carboxyl groups on the other hand in a ratio of 1, 5: 1 to 1: 1, 5, preferably in the ratio 1, 1: 1 to 1: 1, 1 and in particular equimolar.
  • the acid number of the esters formed is generally below 15 mg KOH / g, preferably below 10 mg KOH / g, especially below 5 mg KOH / g.
  • the OH number of the esters is preferably below 20 mg KOH / g and especially below 10 mg KOH / g.
  • the terminal hydroxyl groups are formed, for example, by oxidation or by
  • fatty alcohols having 8 to 50, in particular 12 to 30, especially 16 to 26 carbon atoms By reaction with fatty alcohols having 8 to 50, in particular 12 to 30, especially 16 to 26 carbon atoms, polyoxyalkylene esters according to the invention are likewise obtained.
  • Preferred fatty alcohols or fatty alcohol mixtures contain more than 50 mol% of fatty alcohols having at least 20 carbon atoms.
  • esters of alkoxylated fatty alcohols with fatty acids are suitable according to the invention.
  • alkoxylated polyols described above can be converted by etherification with fatty alcohols having 8 to 50, in particular 12 to 30, especially 16 to 26 C-atoms in accordance with the invention suitable polyoxyalkylene compounds.
  • the preferred fatty alcohols are linear and largely saturated.
  • the etherification takes place completely or at least largely completely.
  • the etherification is carried out by known methods.
  • Particularly preferred polyoxyalkylene compounds are derived from polyols having 3, 4 and 5 OH groups, which carry about 5 to 10 mol of structural units derived from ethylene oxide per hydroxyl group of the polyol and are largely completely esterified with largely saturated C 17 -C 24 fatty acids.
  • Further particularly preferred polyoxyalkylene compounds are polyethylene glycols which have been esterified with largely saturated C 7 -C 24 -fatty acids and have molecular weights of about 350 to 1,000 g / mol.
  • polyoxyalkylene compounds examples include stearic and especially behenic acid esterified polyethylene glycols having molecular weights between 350 and 800 g / mol; Neopentyl glycol 14-ethylene oxide distearate (neopentyl glycol alkoxylated with 14 moles of ethylene oxide and then esterified with 2 moles of stearic acid), and especially neopentyl glycol 14-ethylene oxide dibehenate; Glycerol 20-ethylene oxide tristearate, glycerol 20-ethylene oxide dibehenate, and especially glycerol 20-ethylene oxide tribehenate; Trimethylolpropane-22-ethylene oxide tribehenate; Sorbitan 25-ethylene oxide tristearate, sorbitan 25-ethylene oxide tetrastearate, sorbitan 25-ethylene oxide tribehenate, and especially sorbitan 25-ethylene oxide tetrabehenate; Pentaerythritol-30-ethylene oxide tribehenate, pentaerythri
  • detergent additive A) and Nucleator B) containing inventive additives preferably contain 10 to 90 wt .-% and in particular 20 to 80 wt .-% such as 30 to 70 wt .-% detergent additive A) and 10-90 wt .-% and in particular 20-80% by weight, for example 30-70% by weight of nucleator B).
  • the additives preferably contain 15-80% by weight, preferably 20-70% by weight of detergent additive A), 2-40% by weight, preferably 5-25% by weight.
  • the additives according to the invention are preferably used as concentrates which contain from 10 to 95% by weight and preferably from 20 to 80% by weight, for example from 25 to 60% by weight, of solvent.
  • Preferred solvents are higher-boiling aliphatic, aromatic hydrocarbons, alcohols, esters, ethers and mixtures thereof.
  • Such concentrates preferably contain from 0.01 to 10 parts by weight, preferably from 0.05 to 5 parts by weight, for example from 0.1 to 3 parts by weight of the comb polymer B) per part by weight of detergent additive A).
  • novel nucleators B improve the response of detergent-containing middle distillates such as kerosene, jet fuel, diesel and heating oil for conventional flow improvers with regard to the reduction of pour point and CFPP value and the improvement of paraffin dispersion.
  • Particularly preferred mineral oil distillates are middle distillates.
  • Middle distillates, in particular mineral oils refer to those which are obtained by distillation of crude oil, in the range of about 150 to 450 0 C and in particular in
  • middle distillates contain about 5 to 50 wt .-% such as about 10 to 35 wt .-% of n-paraffins, of which the longer-chain Crystallize on cooling and affect the flowability of the middle distillate.
  • Particularly advantageous are the compositions of the invention in middle aromatics with low aromatic content of less than 21 wt .-%, such as less than 19 wt .-%.
  • the compositions according to the invention are furthermore particularly advantageous in
  • middle distillates with low final boiling point i.e. in those middle distillates which have 90% distillation points below 360 0 C, in particular 350 0 have C and in special cases below 340 0 C and further in middle distillates, the Siedebreiten between 20 and 90% distillation volume of less than 120 0 C and in particular of less than 110 0 C.
  • aromatic compounds is meant the sum of mono-, di- and polycyclic aromatic compounds as determinable by HPLC according to DIN EN 12916 (2001 edition).
  • the middle distillates may also contain minor amounts, for example up to 40% by volume, preferably 1 to 20% by volume, especially 2 to 15, for example 3 to 10% by volume of the oils of animal and / or vegetable origin described in more detail below such as fatty acid methyl esters.
  • compositions according to the invention are also suitable for improving the cold properties of detergent additives containing fuels based on renewable raw materials (biofuels).
  • biofuels oils obtained from animal and preferably vegetable material or both, and derivatives thereof, which can be used as fuel and especially as diesel or fuel oil.
  • biofuels oils obtained from animal and preferably vegetable material or both, and derivatives thereof, which can be used as fuel and especially as diesel or fuel oil.
  • biofuels examples include rapeseed oil, coriander oil, soybean oil, cottonseed oil, sunflower oil, castor oil, olive oil, peanut oil, corn oil, almond oil, palm kernel oil, coconut oil, mustard seed oil, beef tallow, bone oil, fish oils and used edible oils.
  • Other examples include oils derived from wheat, jute, sesame, shea nut, arachis oil and linseed oil.
  • biodiesel fatty acid alkyl esters can be derived from these oils by methods known in the art.
  • Rapeseed oil which is a mixture of glycerol esterified fatty acids, is preferred because it is available in large quantities and is readily available by squeezing rapeseed.
  • sunflower, palm and soybeans and their mixtures with rapeseed oil are preferred.
  • esters of fatty acids are particularly suitable as biofuels.
  • Preferred esters have an iodine value of from 50 to 150 and in particular from 90 to 125.
  • Mixtures with particularly advantageous properties are those which are principally, i. H. to contain at least 50 wt .-% of methyl esters of fatty acids having 16 to 22 carbon atoms and 1, 2 or 3 double bonds.
  • the preferred lower alkyl esters of fatty acids are the methyl esters of oleic, linoleic, linolenic and erucic acids.
  • the additives can be used alone or together with other additives, for.
  • pour point depressants or dewaxing aids with other detergents, with antioxidants, cetane number improvers, dehazem, demulsifiers, dispersants, defoamers, dyes, corrosion inhibitors, lubricity additives, sludge inhibitors, odorants and / or cloud point depressants.
  • other detergents with antioxidants, cetane number improvers, dehazem, demulsifiers, dispersants, defoamers, dyes, corrosion inhibitors, lubricity additives, sludge inhibitors, odorants and / or cloud point depressants.
  • paraffin dispersion in middle distillates is determined in the short sediment test as follows:
  • test oils used were current middle distillates from European refineries.
  • the CFPP value was determined in accordance with EN 116 and the determination of the cloud point in accordance with ISO 3015.
  • the determination of the aromatic hydrocarbon groups was carried out in accordance with DIN EN 12916 (November 2001 edition)
  • ASA alkenyl succinic anhydrides
  • highly reactive polyolefins proportion of terminal double bonds> 90%, degree of maleation about 1, 2 to 1.3
  • Alkenyl succinic anhydride and polyamine were reacted in a molar ratio of 1, 0 to 1, 5 moles of alkenyl succinic anhydride per mole of polyamine (see Table 2).
  • the detergent additives were used as 33% solutions in higher boiling aromatic solvent.
  • the dosage rates given in Tables 2 to 4 for the detergent additives A) and nucleators B) relate to the active ingredients used.
  • test oil 1 The determination of the CFPP values in test oil 1 was carried out after adding the oil with 200 ppm C2 and 150 ppm C3.
  • DA detergent additive
  • P2B poly (butene) from a mixture of different butene isomers with a proportion of 2-butene of about 80%;
  • TEPA tetraethylenepentamine;
  • PEHA pentaethylenehexamine;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Lubricants (AREA)
  • Detergent Compositions (AREA)

Abstract

Gegenstand der Erfindung ist die Verwendung mindestens einer öllöslichen, als Nucleator für die Paraffinkristallisation wirkenden Verbindung B), ausgewählt aus Kammpolymeren, die Alkylseitenketten mit einer Länge von mindestens 18 C-Atomen im molaren Mittel tragen, zur Verbesserung des Ansprechverhaltens von Mineralölkaltfließverbesserern C), welche von B) verschieden sind, in Mitteldestillaten, die mindestens ein aschefreies, stickstoffhaltiges Detergenzadditiv A) enthalten, welches eine öllösliche, amphiphile Verbindung ist, die mindestens einen Alkyl- oder Alkenylrest umfasst, der an eine polare Gruppe gebunden ist, wobei der Alkyl- oder Alkenylrest 10 bis 500 C-Atome und die polare Gruppe 2 oder mehr Stickstoffatome umfasst.

Description

Beschreibung
Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
Die vorliegende Erfindung betrifft die Verwendung von Nukleierungsmitteln zur Verbesserung der Kaltfließfähigkeit von Detergenzadditive enthaltenden Mineralöldestillaten, sowie die additivierten Mineralöldestillate.
Immer schärfer werdende Umweltschutzgesetze erfordern eine immer anspruchsvoller werdende Motorentechnologie zur Einhaltung der festgelegten Emissionsgrenzwerte. Eine Belegung von Motorenteilen wie beispielsweise der Ventile mit Verbrennungsrückständen verändert jedoch die Charakteristika des Motors und führt zu erhöhten Emissionen wie auch zu erhöhtem Verbrauch. Daher werden Motorkraftstoffen Detergenzadditive zugesetzt, die derartige Ablagerungen entfernen bzw. ihre Bildung verhindern. Dabei handelt es sich im Allgemeinen um öllösliche Amphiphile, die neben einem öllöslichen, temperaturstabilen hydrophoben Rest eine polare Kopfgruppe enthalten.
Andererseits werden im Zuge abnehmender Welterdölreserven immer schwerere und damit paraffinreichere Rohöle gefördert und verarbeitet, die folglich auch zu paraffinreicheren Brennstoffölen führen. Die insbesondere in Mitteldestillaten enthaltenen Paraffine können bei Erniedrigung der Temperatur des Öls auskristallisieren und teilweise unter Einschluss von Öl agglomerieren. Durch diese Kristallisation und Agglomeration kann es vor allem im Winter zu Verstopfungen der Filter in Motoren und Feuerungsanlagen kommen, wodurch eine sichere Dosierung der Brennstoffe verhindert wird und unter Umständen eine völlige Unterbrechung der Kraftstoffzufuhr eintreten kann. Die Paraffinproblematik wird zudem durch die aus Umweltschutzgründen zwecks Absenkung des Schwefelgehalts zunehmende hydrierende Entschwefelung von Brennstoffölen verschärft, die zu einem erhöhten Anteil an kältekritischen Paraffinen im Brennstofföl führt. Zur Verbesserung der Kaltfließeigenschaften werden Mitteldestillaten oftmals chemische Additive, so genannte Kaltfließverbesserer bzw. Fließverbesserer zugesetzt, die Kristallstruktur und Agglomerationsneigung der ausfallenden Paraffine modifizieren, so dass sich die so additivierten Öle noch bei Temperaturen pumpen bzw. verwenden lassen, die oft mehr als 20 0C tiefer liegen als bei nicht additivierten Ölen. Als Kaltfließverbesserer werden üblicherweise öllösliche Copolymere aus Ethylen und ungesättigten Estern, öllösliche polare Stickstoffverbindungen und/oder Kammpolymere verwendet. Darüber hinaus sind aber auch weitere Zusätze vorgeschlagen worden.
Im Zuge der immer anspruchsvoller werdenden Motorentechnologie sowie steigender Anforderungen an die Umweltverträglichkeit von Brennstoffölen und ihrer Verbrennungsprodukte werden Detergenzadditive mit immer höherer Wirksamkeit entwickelt. Zudem werden sie oftmals in sehr hohen Dosierraten eingesetzt. Es wird berichtet, dass dadurch zum Beispiel bei Dieselkraftstoffen der spezifische Verbrauch reduziert bzw. die Leistung der Motoren erhöht wird. Diese Additive haben jedoch häufig negative Auswirkungen auf die Kaltfließfähigkeit von Mitteldestillaten und insbesondere auf die Wirksamkeit bekannter Kaltfließverbesserer. Insbesondere bei Mitteldestillaten mit niedrigem Siedeende und gleichzeitig niedrigem Aromatengehalt ist es häufig schwer oder sogar unmöglich, in Gegenwart moderner Detergenzadditive mittels herkömmlicher Fließverbesserer ein befriedigendes Kaltfließverhalten einzustellen. So wird oftmals durch Zugabe von Detergenzadditiven ein antagonistischer Effekt auf die Wirksamkeit der zugesetzten Kaltfließverbesserer beobachtet. Dabei wird die durch Paraffindispergatoren eingestellte Paraffindispergierung des Mitteldestillats beeinträchtigt, ohne durch erhöhte Dosierung an Paraffindispergator wieder hergestellt werden zu können. Oftmals wird so auch die als CFPP gemessene Filtrierbarkeit mit Kaltfließverbesserem additivierter Öle in der Kälte deutlich reduziert und lässt sich nur durch stark erhöhte Dosierung des Fließverbesserers ausgleichen.
Besonders problematisch sind dabei insbesondere solche Detergenzadditive, die sich von höheren Polyaminen ableiten sowie solche, die zum Beispiel bedingt durch mehrfache Alkylierung und/oder Acylierung dieser Polyamine sehr hohe Molekulargewichte aufweisen. Ebenfalls besonders problematisch sind solche Detergenzadditive, deren hydrophober Rest sich von sterisch stark gehinderten Olefinen und/oder von höhermolekularen und/oder mehrfach funktionalisierten Poly(olefinen) ableitet.
Aufgabe vorliegender Erfindung war es somit, das Ansprechverhalten von Kaltfließverbesserern in Detergenzadditive enthaltenden Mitteldestillaten zu verbessern. Eine weitere Aufgabe der Erfindung war es, ein gegenüber dem Stand der Technik verbessertes Detergenzadditiv bereit zu stellen, das das Ansprechverhalten von Kaltfließverbesserern nicht beeinträchtigt.
Überraschenderweise wurde nun gefunden, dass bestimmte öllösliche, als Nucleatoren für die Paraffinkristallisation wirkende Verbindungen der Beeinträchtigung der Wirksamkeit üblicher Kaltfließverbesserer durch stickstoffhaltige Detergenzadditive entgegenwirken bzw. diese Beeinträchtigung aufheben.
Gegenstand der Erfindung ist somit die Verwendung mindestens einer öllöslichen, als Nucleator für die Paraffinkristallisation wirkenden Verbindung B), ausgewählt aus
Kammpolymeren, die AI kylseiten ketten mit einer Länge von mindestens 20 C-Atomen tragen, zur Verbesserung des Ansprechverhaltens von Mineralölkaltfließverbesserern C), welche von B) verschieden sind, in Mitteldestillaten, die mindestens ein aschefreies, stickstoffhaltiges
Detergenzadditiv A) enthalten, welches eine öllösliche, amphiphile Verbindung ist, die mindestens einen Alkyl- oder Alkenylrest umfasst, der an eine polare Gruppe gebunden ist, wobei der Alkyl- oder Alkenylrest 10 bis 500 C-Atome und die polare Gruppe 2 oder mehr Stickstoffatome umfasst.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Verbesserung des Ansprechverhaltens von Mineralölkaltfließverbesserern C) in Mitteldestillaten, die aschefreie stickstoffhaltige Detergenzadditive A) enthalten, und worin die aschefreien stickstoffhaltigen Detergenzadditive A) öllösliche, amphiphile Verbindungen sind, die mindestens einen Alkyl- oder Alkenylrest umfassen, der an eine polare Gruppe gebunden ist, wobei der Alkyl- oder Alkenylrest 10 bis 500 C-Atome und die polare Gruppe 2 oder mehr Stickstoffatome umfasst,
indem man dem Öl mindestens eine von C) verschiedene, öllösliche, als Nucleator für die Paraffinkristallisation wirkende Verbindung B), ausgewählt aus Kammpolymeren, die Alkylseitenketten mit einer Länge von mindestens 20 C-Atomen tragen, zusetzt.
Ein weiterer Gegenstand der Erfindung sind Additive, enthaltend
a) mindestens ein aschefreies, stickstoffhaltiges Detergenzadditiv A), welches eine öllösliche, amphiphile Verbindung ist, die mindestens einen Alkyl- oder Alkenylrest umfasst, der an eine polare Gruppe gebunden ist, wobei der Alkyl- oder Alkenylrest 10 bis 500 C-Atome und die polare Gruppe 2 oder mehr Stickstoffatome umfasst,
und
b) mindestens eine öllösliche, als Nucleator für die Paraffin kristallisation wirkende Verbindung B), ausgewählt aus Kammpolymeren, die Alkylseitenketten mit einer Länge von mindestens 20 C-Atomen tragen
sowie gegebenenfalls
c) einen von B) verschiedenen Mineralölkaltfließverbesserer C).
Die Kombination aus A) und B) wird im Folgenden auch als „erfindungsgemäßes Additiv" bezeichnet. Ein weiterer Gegenstand der Erfindung sind Mitteldestillate mit einem Schwefelgehalt von weniger als 100 ppm und einem 90 %-Destillationspunkt von unter 360 0C, enthaltend
a) mindestens ein aschefreies, stickstoffhaltiges Detergenzadditiv A), welches eine öllösliche, amphiphile Verbindung ist, die mindestens einen Alkyl- oder Alkenylrest umfasst, der an eine polare Gruppe gebunden ist, wobei der Alkyl- oder Alkenylrest 10 bis 500 C-Atome und die polare Gruppe 2 oder mehr Stickstoffatome umfasst,
b) mindestens eine öllösliche, als Nucleator für die Paraffinkristallisation wirkende Verbindung B), ausgewählt aus Kammpolymeren, die Alkylseitenketten mit einer Länge von mindestens 20 C-Atomen tragen, sowie
c) mindestens einen von B) verschiedenen Mineralölkaltfließverbesserer C).
Unter der Verbesserung des Ansprechverhaltens von Kaltfließverbesserern C) wird erfindungsgemäß verstanden, dass mindestens eine durch Kaltfließverbesserer C) eingestellte bzw. einstellbare und durch die Zugabe eines Detergenzadditivs A) beeinträchtigte Kälteeigenschaft von Mitteldestillaten durch Zugabe einer als Nukleierungsmittel für die Paraffinkristallisation wirkenden Verbindung B) verbessert wird. Speziell wird durch die Zugabe des Nukleierungsmittels B) die ohne Gegenwart des Detergenzadditivs A) durch den Kaltfließverbesserer C) eingestellte oder einstellbare Kälteeigenschaft erzielt. Unter Kälteeigenschaften werden dabei einzeln oder in Kombination der Erstarrungspunkt (Pour Point), die Kaltfiltrierbarkeit (CoId Filter Plugging Point), die Kaltfließfähigkeit (Low Temperature Flow) sowie die Paraffindispergierung von Mitteldestillaten verstanden.
Besonders beeinträchtigt ist das Ansprechverhalten von Fließverbesserern in Mitteldestillaten, die mehr als 10 ppm eines stickstoffhaltigen Detergenzadditivs A), insbesondere mehr als 20 ppm und speziell mehr als 40 ppm wie beispielsweise 50 bis 2.000 ppm stickstoffhaltiges Detergenzadditiv A) enthalten.
Bevorzugt enthalten die erfindungsgemäßen Additive bezogen auf einen Gewichtsteil des stickstoffhaltigen Detergenzadditivs A) 0,01 bis 10 Gewichtsteile, und insbesondere 0,05 bis 5 Gewichtsteile wie beispielsweise 0,1 bis 3 Gewichtsteile der öllöslichen, als Nucleator für die Paraffinkristallisation wirkenden Verbindung B).
Aschefrei bedeutet, dass die betreffenden Additive im Wesentlichen nur aus Elementen bestehen, die bei der Verbrennung gasförmige Reaktionsprodukte bilden. Bevorzugt bestehen die Additive im Wesentlichen nur aus den Elementen Kohlenstoff, Wasserstoff, Sauerstoff und Stickstoff. Insbesondere sind aschefreie Additive im Wesentlichen frei von Metallen und Metallsalzen.
Unter Nucleatoren werden Verbindungen verstanden, die bei der Abkühlung eines paraffinhaltigen Öls die Kristallisation von Paraffinen initiieren. Sie verschieben damit den Beginn der Paraffinkristallisation des mit ihnen additivierten Öls, der beispielsweise durch Messung des Cloud Points oder der Wax Appearance Temperatur (WAT) bestimmt werden kann, zu höheren Temperaturen. Es handelt sich dabei um Verbindungen, die oberhalb des Cloud Points im Öl löslich sind und knapp oberhalb der Temperatur der Paraffinsättigung auszukristallisieren beginnen um sodann als Impfkeime für die Kristallisation der Paraffine zu dienen. Somit verhindern sie eine Übersättigung des Öls mit Paraffinen und führen zu einer Kristallisation nahe der Sättigungskonzentration. Dies führt zur Bildung einer Vielzahl von gleich kleinen Paraffinkristallen. In Gegenwart eines Nucleators beginnt die Paraffinkristallisation also bei höherer Temperatur als im nicht additivierten Öl. Dies ist zum Beispiel durch Messung der WAT mittels Differentialthermoanalyse (Differential Scanning Calorimetry, DSC) bei einer langsamen Abkühlung des Öls mit beispielsweise -2 K/min bestimmbar.
Bevorzugt werden Mitteldestillaten 10 bis 10.000 ppm und insbesondere 50 bis 3.000 ppm der stickstoffhaltigen Detergenzadditive A) zugesetzt. Vorzugsweise verleiht der Alkyl- oder Alkenylrest den Detergenzadditiven die Öllöslichkeit.
Besonders problematisch sind solche Detergenzadditive, deren Alkylrest 15 bis 500 C-Atome und insbesondere 20 bis 350 C-Atome wie beispielsweise 50 bis 200 C-Atome hat. Dieser Alkylrest kann linear oder verzweigt sein, insbesondere ist er verzweigt. In einer bevorzugten Ausführungsform leitet sich der Alkylrest von Oligomeren niederer Olefine mit 3 bis 6 C-Atomen wie Propen, Buten, Penten bzw. Hexen und deren Mischungen ab. Bevorzugte Isomere dieser Olefine sind iso-Buten, 2-Buten, 1 -Buten, 2-Methyl-2-buten, 2,3-Dimethyl-2-buten, 1 -Penten, 2-Penten und iso-Penten sowie deren Mischungen. Besonders bevorzugt sind Propen, iso-Buten, 2-Buten, 2-Methyl-2-buten, 2,3-Dimethyl-2-buten und deren Mischungen. Insbesondere bevorzugt sind Olefinmischungen, die zu mehr als 70 mol-%, speziell mehr als 80 mol-% wie beispielsweise mehr als 90 mol-% oder mehr als 95 mol-% 2-Methyl-2-buten, 2,3-Dimethyl-2-buten und/oder Isobuten enthalten. Besonders geeignet zur Herstellung derartiger Detergenzadditive sind hoch reaktive niedermolekulare Polyolefine mit einem Anteil endständiger Doppelbindungen von mindestens 75 %, speziell mindestens 85 % und insbesondere mindestens 90 % wie beispielsweise mindestens 95 %. Besonders bevorzugte niedermolekulare Polyolefine sind Poly(isobutylen), Poly(2-buten), Poly(2-methyl-2-buten), Poly(2,3-dimethyl-2-buten), Poly(ethylen-co-isobutylen) und ataktisches Poly(propylen). Das Molekulargewicht besonders bevorzugter Polyolefine liegt zwischen 500 und 3.000 g/mol. Derartige Oligomere niederer Olefine sind beispielsweise durch Polymerisation mittels Lewis-Säuren wie BF3 und AICI3, mittels Ziegler-Katalysatoren und insbesondere mittels Metallocen- Katalysatoren zugänglich.
Der polare Anteil der für das Ansprechverhalten bekannter Kälteadditive besonders problematischen Detergenzadditive leitet sich von Polyaminen mit 2 bis 20 N-Atomen ab. Derartige Polyamine entsprechen beispielsweise der Formel
(R9)2N-[A-N(R9)]q-(R9) worin jedes R9 unabhängig voneinander für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit bis zu 24 C-Atomen, einen Polyoxyalkylenrest -(A-O)r oder Polyiminoalkylenrest -[A-N(R9)]S-(R9) steht, wobei jedoch mindestens ein R9 für Wasserstoff steht, q für eine ganze Zahl von 1 bis 19, A für einen Alkylenrest mit 1 bis 6 C-Atomen, r und s unabhängig voneinander für 1 bis 50 stehen. Üblicherweise handelt es sich um Mischungen von Polyaminen und insbesondere um Mischungen von Poly(ethylenaminen) und/oder Poly(propylenaminen). Beispielsweise seien genannt: Ethylendiamin, 1 ,2-Propylendiamin, Dimethylaminopropylamin, Diethylentriamin (DETA), Dipropylentriamin,
Triethylentetramin (TETA), Tripropylentetramin, Tetraethylenpentamin (TEPA), Tetrapropylenpentamin, Pentaethylenhexamin (PEHA) Pentapropylenhexamin und schwere Polyamine. Unter schweren Polyaminen werden allgemein Mischungen von Polyalkylenpolyaminen verstanden, die neben geringen Mengen TEPA und PEHA hauptsächlich Oligomere mit 7 oder mehr Stickstoffatomen, von denen zwei oder mehr in Form primärer Aminogruppen vorliegen, enthalten. Oftmals enthalten diese Polyamine auch über tertiäre Aminogruppen verzweigte Strukturelemente.
Weitere geeignete Amine sind solche, die cyclische Struktureinheiten, die sich vom Piperazin ableiten, umfassen. Dabei können die Piperazineinheiten vorzugsweise an einem oder beiden Stickstoffatomen Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit bis zu 24 C-Atomen oder einen Polyiminoalkylenrest -[A-N(R9)]s-(R9) tragen, wobei A, R9 und s die oben gegebenen Bedeutungen haben.
Weitere geeignete Amine umfassen alicyclische Diamine wie 1 ,4-Di(aminomethyl)- cyclohexan und heterocyclische Stickstoffverbindungen wie Imidazoline und N-Aminoalkylpiperazine wie beispielsweise N-(2-Aminoethyl)piperazin.
Auch Detergenzadditive, deren polarer Anteil sich von mit Hydroxylgruppen tragenden Polyaminen, von mit Heterozyklen substituierten Polyaminen sowie von aromatischen Polyaminen ableitet sind problematisch. Beispielsweise seien genannt: N-(2-Hydroxyethyl)ethylendiamin, N,N1-bis-(2-Hydroxyethyl)ethylendiamin, N-(3-Hydroxybutyl)tetra(methylen)diamin, N-2-Aminoethylpiperazin, N-2- und N-3-Aminopropylmorpholin, N-3-(Dimethylamino)propylpiperazin, 2-Heptyl-3-(2-aminopropyl)imidazolin, 1 ,4-bis(2-Aminoethyl)piperazin, 1-(2-Hydroxyethyl)piperazin, verschiedene Isomere des Phenylendiamins und des Naphthalindiamins sowie Mischungen dieser Amine.
Besonders kritisch für die Kälteadditivierung von Mitteldestillaten sind Detergenzadditive auf Basis schwerer Polyamine, in denen in vorstehender Formel R9 für Wasserstoff steht und q Werte von mindestens 3, insbesondere mindestens 4 wie beispielsweise 5, 6 oder 7 annimmt. Bei Gemischen verschiedener Polyamine hat sich ein Anteil von mehr als 10 Gew.-%, insbesondere von mehr als 20 Gew.-% und speziell von mehr als 50 Gew.-% an Aminen mit q-Werten von 4 oder höher und speziell mit q-Werten von 5 oder höher und insbesondere mit q-Werten von 6 oder höher an der Gesamtmenge der eingesetzten Amine als besonders kritisch erwiesen.
Der öllösliche Alkylrest und die polare Kopfgruppe der Detergenzadditive können entweder direkt über eine C-N- oder über eine Ester-, Amid- oder Imidbindung miteinander verknüpft sein. Bevorzugte Detergenzadditive sind demnach
Alkylpoly(amine), Mannich-Reaktionsprodukte, kohlenwasserstoffsubstituierte Bernsteinsäureamide und -imide sowie Mischungen dieser Substanzklassen.
Bei den über C-N-Bindungen verknüpften Detergenzadditiven handelt es sich vorzugsweise um Alkylpoly(amine), die beispielsweise durch Umsetzung von Polyisobutylenen mit Polyaminen zum Beispiel durch Hydroformylierung und anschließende reduktive Aminierung mit den oben genannten Polyaminen zugänglich sind. Dabei können am Polyamin ein oder mehrere Alkylreste gebunden sein. Besonders kritisch für die Kälteadditivierung sind Detergenzadditive auf Basis höherer Polyamine mit mehr als 4 N-Atomen wie beispielsweise solche mit 5, 6 oder 7 N-Atomen. Amid- bzw. Imidbindungen enthaltende Detergenzadditive sind zum Beispiel durch Umsetzung von Alkenylbemsteinsäureanhydriden mit Polyaminen zugänglich. Alkenylbernsteinsäureanhydrid und Polyamin werden dabei bevorzugt im molaren Verhältnis von etwa 1 : 0,5 bis etwa 1 : 1 umgesetzt. Die Herstellung der zu Grunde liegenden Alkenylbernsteinsäureanhydride erfolgt üblicherweise durch Addition von ethylenisch ungesättigten Polyolefinen oder chlorierten Polyolefinen an ethylenisch ungesättigte Dicarbonsäuren.
Beispielsweise können Alkenylbernsteinsäureanhydride durch Reaktion von chlorierten Polyolefinen mit Maleinsäureanhydrid hergestellt werden. Alternativ gelingt die Herstellung auch durch thermische Addition von Polyolefinen an Maleinsäureanhydrid in einer „En-Reaktion". Dabei sind hochreaktive Olefine mit hohem Anteil von beispielsweise mehr als 75 % und speziell mehr als 85 mol-%, bezogen auf die Gesamtzahl an Polyolefinmolekülen, an Isomeren mit endständiger Doppelbindung besonders geeignet. Bei den endständig angeordneten Doppelbindungen kann es sich sowohl um Vinyliden- Doppelbindungen [-CH2-C(=CH2)-CH3] als auch um Vinyldoppelbindungen [-CH=C(CH3)2] handeln.
Für die Herstellung von Alkenylbemsteinsäureanhydriden kann das Molverhältnis der beiden Reaktanden bei der Umsetzung zwischen Maleinsäureanhydrid und Polyolefin in weiten Grenzen variieren. Vorzugsweise kann es zwischen 10:1 und 1 :5 betragen, wobei Molverhältnisse von 6:1 bis 1 :1 besonders bevorzugt sind. Maleinsäureanhydrid wird bevorzugt im stöchiometrischen Überschuss eingesetzt wie beispielsweise 1 ,1 bis 3 mol Maleinsäureanhydrid pro mol Polyolefin. Überschüssiges Maleinsäureanhydrid kann aus dem Reaktionsansatz zum Beispiel durch Destillation entfernt werden.
Da die insbesondere durch En-Reaktion primär gebildeten Addukte wiederum eine olefinische Doppelbindung enthalten, ist bei geeigneter Reaktionsführung eine weitere Anlagerung von ungesättigten Dicarbonsäuren unter Bildung so genannter bis-Maleinate möglich. Die dabei zugänglichen Reaktionsprodukte haben bezogen auf die mit ungesättigten Carbonsäuren umgesetzten Anteile der Poly(olefine) im Mittel einen Maleinierungsgrad von mehr als 1 , vorzugsweise etwa 1 ,01 bis 2,0 und insbesondere 1 ,1 bis 1 ,8 Dicarbonsäureeinheiten pro Alkylrest. Durch Umsetzung mit den oben genannten Aminen entstehen daraus Produkte mit deutlich gesteigerter Wirksamkeit als Detergenzadditive. Andererseits steigt mit zunehmendem Maleinierungsgrad auch die Beeinträchtigung der Wirksamkeit von Kaltfließverbesserern.
Die Umsetzung von Alkenylbernsteinsäureanhydriden mit Polyaminen führt zu Produkten, die ein oder mehrere Amid- und/oder Imidbindungen pro Polyamin sowie in Abhängigkeit vom Maleinierungsgrad ein oder zwei Polyamine pro
Alkylrest tragen können. Bevorzugt werden für die Umsetzung von 1 ,0 bis 1 ,7 und insbesondere 1 ,1 bis 1 ,5 mol Alkenylbernsteinsäureanhydrid pro mol Polyamin eingesetzt, so dass freie primäre Aminogruppen im Produkt verbleiben. In einer weiteren bevorzugten Ausführungsform werden Alkenylbernsteinsäureanhydrid und Polyamin equimolar umgesetzt. Bei der Umsetzung von Polyaminen mit
Alkenylbemsteinsäureanhydriden mit hohem Acylierungsgrad von 1 ,1 oder mehr Anhydridgruppen pro Alkylrest wie beispielsweise 1 ,3 oder mehr Anhydridgruppen pro Alkylrest entstehen auch Polymere, die besonders problematisch für das Ansprechverhalten von Kälteadditiven sind.
Typische und besonders bevorzugte acylierte Stickstoffverbindungen sind durch Umsetzung von Poly(isobutylen)-, Poly(2-butenyl)-, Poly(2-methyl-2-butenyl)-, Poly(2,3-dimethyl-2-butenyl)- bzw. Poly(propenyl)bernsteinsäureanhydriden mit im Mittel etwa 1 ,2 bis 1 ,5 Anhydridgruppen pro Alkylrest, deren Alkylenreste zwischen 50 und 400 C-Atome tragen, mit einer Mischung von Poly(ethylenaminen) mit etwa 3 bis 7 Stickstoffatomen und etwa 1 bis 6 Ethyleneinheiten erhältlich. Auch öllösliche Mannich-Reaktionsprodukte auf Basis von Polyolefin-substituierten Phenolen und Polyaminen beeinträchtigen die Wirksamkeit herkömmlicher Kaltfließverbesserer. Derartige Mannich-Basen sind nach bekannten Verfahren zum Beispiel durch Alkylierung von Phenol und/oder Salicylsäure mit den oben beschriebenen Polyolefinen wie beispielsweise Poly(isobutylen), Poly(2-buten), Poly(2-methyl-2-buten), Poly(2,3-dimethyl-2-buten) oder ataktisches Poly(propylen) und anschließende Kondensation des Alkylphenols mit Aldehyden mit 1 bis 6 C-Atomen wie beispielsweise Formaldehyd oder dessen reaktiven Equivalenten wie Formalin oder Paraformaldehyd und den oben beschriebenen Polyaminen wie beispielsweise TEPA, PEHA oder schweren Polyaminen herstellbar.
Das mittels Dampfdruckosmometrie bestimmte mittlere Molekulargewicht besonders effizienter, gleichzeitig aber auch für die Kälteadditivierung von Mitteldestillaten besonders kritischer Detergenzadditive liegt oberhalb 800 g/mol und insbesondere oberhalb 2.000 g/mol wie beispielsweise oberhalb 3.000 g/mol. Das mittlere Molekulargewicht der oben beschriebenen Detergenzadditive kann auch über Vernetzungsreagentien erhöht und dem Verwendungszweck angepasst werden.
Geeignete Vernetzungsreagentien sind zum Beispiel Dialdehyde wie Glutardialdehyd, Bisepoxide zum Beispiel abgeleitet von Bisphenol A, Dicarbonsäuren und deren reaktive Derivate wie beispielsweise Maleinsäureanhydrid und Alkenylbemsteinsäureanhydride sowie höhere mehrwertige Carbonsäuren und deren Derivate wie beispielsweise Trimellitsäure, Trimellitanhydrid und Pyromellitdianhydrid.
Bevorzugte, als Nucleator für die Paraffinkristallisation wirkende Kammpolymere B) sind Polymere, die an das Polymerrückgrat gebundene Alkylseitenketten mit einer Länge von mindestens 20 C-Atomen tragen. Besonders bevorzugt sind solche Polymere, die Seitenketten mit 22 bis 60 wie beispielsweise 24 bis 45 C-Atomen tragen. Der Anteil dieser Alkylseitenketten an der Gesamtmenge der Alkylseitenketten des Polymers liegt bei mindestens 10 mol-%, bevorzugt mindestens 25 mol-% und insbesondere mindestens 50 mol-% wie beispielsweise mindestens 80 mol-%. Bevorzugt sind die Seitenketten linear oder haben zumindest entsprechend lange lineare Segmente.
Das Polymerrückgrat kann beispielsweise aus ethylenisch ungesättigten Mono- und/oder Polycarbonsäuren wie beispielsweise Acrylsäure, Methacrylsäure, Fumarsäure, Maleinsäure, Itaconsäure aufgebaut sein. Daneben kann es weitere Monomere wie beispielsweise Olefine, Vinylester und/oder Vinylether enthalten. Besonders bevorzugt sind Copolymere auf Basis von Fumarsäure und Vinylacetat sowie solche auf Basis von Maleinsäure und α-Olefinen.
Das Polymerrückgrat trägt langkettige Alkylreste mit im molaren Mittel mindestens 18, bevorzugt mindestens 20 wie beispielsweise mindestens 24 C-Atomen. Die Alkylreste können wie im Falle von α-Olefinen direkt über eine C-C-Bindung an das Rückgrat gebunden sein oder über eine Ester, Amid, Imid oder Ammoniumgruppe an das Polymerrückgrat gebunden sein. Weiterhin können die Alkylreste über Spacer wie beispielsweise Polyoxyalkylen- oder Polyalkylenamingruppen mit jeweils 1 bis 200 und insbesondere 2 bis 50 Oxyalkyl- bzw. Alkylenamineinheiten an das Polymerrückgrat gebunden sein.
Als Nucleator für die Paraffinkristallisation geeignete Kammpolymere B) sind beispielsweise Polymere der Formel (1 )
Figure imgf000014_0001
(1 )
Darin bedeuten
A R1, COOR1, OCOR1, FT-COOR1, OR1;
D H, CH3, A oder R";
E H, A;
G H, R", R"-COOR\ einen Arylrest oder einen heterocyclischen Rest;
M H, COOR", OCOR", OR", COOH;
N H, R", COOR", OCOR, einen Arylrest;
R1 eine Kohlenwasserstoffkette mit mindestens 20 Kohlenstoffatomen;
R" eine Kohlenwasserstoffkette mit 1 bis 10 Kohlenstoffatomen; m eine Zahl zwischen 0,4 und 1 ,0; und n eine Zahl zwischen O und 0,6.
Bevorzugte Kammpolymere sind beispielsweise Copolymere ethylenisch ungesättigter Dicarbonsäuren wie Malein- oder Fumarsäure mit anderen ethylenisch ungesättigten Monomeren wie Olefinen oder Vinylestern. Besonders bevorzugte Olefine sind dabei α-Olefine mit mindestens 22 und speziell 24 bis 60 C-Atomen wie beispielsweise C2o-α-Olefin, C24-α-Olefin, C26-α-Olefin und deren Mischungen wie beispielsweise C2o-24-α-Olefin, C26-28-α-Olefin oder C24-2S- α-Olefin sowie technische Kettenschnitte im Bereich C30+. Unter α-Olefinen werden dabei lineare Alkene mit endständiger Doppelbindung verstanden. Ein als Comonomer besonders bevorzugter Vinylester ist Vinylacetat. Üblicherweise handelt es sich bei den Copolymeren ungesättigter Carbonsäuren um im Wesentlichen alternierende Copolymere.
Üblicherweise werden diese Copolymere ethylenisch ungesättigter Carbonsäuren zu mindestens 50 %, bevorzugt zu 60 -100 % und insbesondere zu 70 -98 % wie beispielsweise zu 80 -95 % mit Alkoholen verestert. Bevorzugt werden dafür Alkohole mit mindestens 20 und bevorzugt mit mindestens 22 C-Atomen eingesetzt. Es können jedoch auch kürzerkettige Alkohole beispielsweise mit 10 bis 18 und speziell 12 bis 16 C-Atomen zur Veresterung eingesetzt werden, sofern das Polymer bereits eine ausreichende Menge an langen Seitenketten mit mindestens 20 C-Atomen trägt.
Weitere bevorzugte Kammpolymere sind Homo- und Copolymere von
Alkylacrylaten, Alkylmethacrylaten und Alkylvinylethern, die sich von Alkoholen mit mindestens 20 und speziell 22 bis 60 C-Atomen wie beispielsweise 24 bis 40 C-Atomen ableiten sowie Homo- und Copolymere von Alkylvinylestern, die sich von Fettsäuren mit mindestens 20 und speziell 22 bis 40 C-Atomen ableiten. In einer weiteren bevorzugten Ausführungsform werden mit oben genannten langkettigen Fettalkoholen mit mindestens 20 C-Atomen veresterte Copolymere aus Dicarbonsäuren wie Malein- oder Fumarsäure und Vinylacetat als Kammpolymere eingesetzt. In Falle von Copolymeren enthalten mindestens 10 mol-%, bevorzugt mindestens 25 mol-% und insbesondere mindestens 50 mol-% wie beispielsweise mindestens 80 mol-% der Monomere Alkylketten mit mindestens 20 C-Atomen und bevorzugt 22 bis 60 wie beispielsweise 24 bis 45 C-Atomen.
Weitere bevorzugte Kammpolymere sind von Alkylaromaten abgeleitete Struktureinheiten enthaltende Polykondensate. Dies sind insbesondere Alkylphenol-Aldehydharze, die sich von Alkylphenolen mit ein oder zwei Alkylresten in ortho- und/oder para-Position zur OH-Gruppe ableiten. Besonders bevorzugt als Ausgangsmaterialien sind Alkylphenole, die am Aromaten mindestens zwei zur Kondensation mit Aldehyden befähigte Wasserstoffatome tragen und insbesondere monoalkylierte Phenole. Besonders bevorzugt befindet sich der Alkylrest in der para-Stellung zur phenolischen OH-Gruppe. Die Alkylreste können bei den im erfindungsgemäßen Verfahren einsetzbaren Alkylphenol- Aldehyd-Harzen gleich oder verschieden sein, sie können gesättigt oder bevorzugt ungesättigt sein
Mindestens 10 mol-%, bevorzugt mindestens 25 mol-% und insbesondere mindestens 50 mol-% wie beispielsweise mindestens 80 mol-%der Alkylreste der erfindungsgemäß als Nucleator B) geeigneten Alkylphenolharze besitzen dabei Alkylketten mit mindestens 20 C-Atomen und bevorzugt 22 bis 60 wie beispielsweise 24 bis 45 C-Atomen. Im molaren Mittel besitzen die Alkylreste mindestens 18, bevorzugt 20 bis 60 wie beispielsweise 24 bis 45 C-Atome. In einer bevorzugten Ausführungsform werden zur Herstellung der Alkylphenolharze Mischungen von Alkylphenolen mit unterschiedlichen Alkylresten eingesetzt. So haben sich beispielsweise Harze auf Basis von Mischungen aus C2o/22/24-Alkylphenolen, C24/26/2β-Alkylphenolen sowie von Alkylphenolen mit Kettenlängen von C30 und höher besonders bewährt.
Geeignete Alkylphenolharze können auch Struktureinheiten weiterer
Phenolanaloga wie Salicylsäure, Hydroxybenzoesäure sowie deren Derivate wie Ester, Amide und Salze enthalten oder aus ihnen bestehen. Das heißt, die Alkylreste können dabei direkt über eine C-C-Bindung oder über eine Ester- oder Ethergruppe an das Phenol gebunden sein.
Bevorzugte Polykondensate sind durch Umsetzung von Alkylphenolen mit Aldehyden und/oder Ketonen zugänglich. Geeignete Aldehyde für die Alkylphenol- Aldehydharze sind solche mit 1 bis 12 Kohlenstoffatomen und vorzugsweise solche mit 1 bis 4 Kohlenstoffatomen wie beispielsweise Formaldehyd, Acetaldehyd, Propionaldehyd, Butyraldehyd, 2-Ethylhexanal, Benzaldehyd, Glyoxalsäure sowie deren reaktive Equivalente wie Paraformaldehyd und Trioxan. Besonders bevorzugt ist Formaldehyd in Form von Paraformaldehyd und insbesondere Formalin. Die Polykondensation kann auch in Gegenwart von Aldehyden und Aminen in Form einer Mannich-Reaktion durchgeführt werden. In einer bevorzugten Ausführungsform der Erfindung handelt es sich bei den als Nucleator B) geeigneten Verbindungen um Alkylphenol-Formaldehydharze, die Oligo- oder Polymere mit einer repetitiven Struktureinheit der Formel (2)
Figure imgf000017_0001
worin R11 für C20-C20O-AI ky I oder -Alkenyl, O-R10 oder 0-C(O)-R10, R10 für C20-C200- Alkyl oder -Alkenyl und n für eine Zahl von 5 bis 200 steht, enthalten. R10 steht bevorzugt für C22-Ci oo-Alkyl oder -Alkenyl und insbesondere für C24-C50-Alkyl oder -Alkenyl. Besonders bevorzugt steht R11 für C22-Ci00-Alkyl oder -Alkenyl und insbesondere für C24-C50-Alkyl oder -Alkenyl. Bevorzugt steht n für eine Zahl von 7 bis 100 und speziell für eine Zahl von 10 bis 50.
Diese Alkylphenol-Aldehydharze sind nach bekannten Verfahren zugänglich, z. B. durch Kondensation der entsprechenden Alkylphenole mit Formaldehyd, d. h. mit 0,5 bis 1 ,5 MoI1 bevorzugt 0,8 bis 1 ,2 Mol Formaldehyd pro Mol Alkylphenol. Die Kondensation kann lösemittelfrei erfolgen, bevorzugt erfolgt sie jedoch in Gegenwart eines nicht oder nur teilweise wassermischbaren inerten organischen Lösemittels wie Mineralöle, Alkohole, Ether und ähnliches. Besonders bevorzugt sind Lösemittel, die mit Wasser Azeotrope bilden können. Als derartige Lösemittel werden insbesondere Aromaten wie Toluol, XyIoI Diethylbenzol und höher siedende kommerzielle Lösemittelgemische wie Shellsol® AB, und Solvent Naphtha eingesetzt. Auch Fettsäuren und deren Derivate wie beispielsweise Ester mit niederen Alkoholen mit 1 bis 5 C-Atomen wie beispielsweise Ethanol und insbesondere Methanol sind als Lösemittel geeignet. Die Kondensation erfolgt bevorzugt zwischen 70 und 200 0C wie beispielsweise zwischen 90 und 160 0C. Sie wird üblicherweise durch 0,05 bis 5 Gew.-% Basen oder vorzugsweise durch 0,05 bis 5 Gew.-% Säuren katalysiert. Als saure Katalysatoren sind neben Carbonsäuren wie Essigsäure und Oxalsäure insbesondere starke Mineralsäuren wie Salzsäure, Phosphorsäure und Schwefelsäure sowie Sulfonsäuren gebräuchliche Katalysatoren. Besonders geeignete Katalysatoren sind Sulfonsäuren, die mindestens eine Sulfonsäuregruppe und mindestens einen gesättigten oder ungesättigten, linearen, verzweigten und/oder cyclischen Kohlenwasserstoffrest mit 1 bis 40 C-Atomen und bevorzugt mit 3 bis 24 C-Atomen enthalten. Besonders bevorzugt sind aromatische Sulfonsäuren, speziell alkylaromatische Mono-Sulfonsäuren mit einem oder mehreren C-ι-C28-Alkylresten und insbesondere solche mit C3-C22-Alkylresten. Geeignete Beispiele sind Methansulfonsäure, Butansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure, Xylolsulfonsäure, 2-Mesitylensulfonsäure, 4-Ethylbenzolsulfonsäure, Isopropylbenzolsulfonsäure, 4-Butylbenzolsulfonsäure, 4-Octylbenzolsulfonsäure; Dodecylbenzolsulfonsäure, Didodecylbenzolsulfonsäure, Naphthalinsulfonsäure. Auch Mischungen dieser Sulfonsäuren sind geeignet. Üblicherweise verbleiben diese nach Beendigung der Reaktion als solche oder in neutralisierter Form im Produkt. Bevorzugt werden zur Neutralisation Amine und/oder aromatische Basen eingesetzt, da sie im Produkt verbleiben können; Metallionen enthaltende und damit Asche bildende Salze werden üblicherweise abgetrennt. Das mittels Gelpermeationschromatographie gegen Poly(styrol)-Standards in THF gemessenes Molekulargewicht der als Nucleatoren für die Paraffinkristallisation bevorzugten Kammpolymere B) beträgt bevorzugt 1.000 - 100.000 g/mol, besonders bevorzugt 2.000 - 50.000 g/mol und speziell 2.500 - 25.000 g/mol wie beispielsweise 3.000 - 20.000 g/mol. Voraussetzung ist hierbei, dass die Kammpolymere zumindest in anwendungsrelevanten Konzentrationen von 0,001 bis 1 Gew.-% öllöslich sind.
Das Mengenverhältnis zwischen Detergenzadditiv A) und Nucleatoren B) im additivierten Öl kann in weiten Grenzen variieren. Besonders bewährt hat sich ein Einsatz von 0,01 bis 10 Gewichtsteilen, insbesondere 0,05 bis 5 Gewichtsteilen wie beispielsweise 0,1 bis 3 Gewichtsteile an Nucleator pro Gewichtsteil Detergenzadditiv, jeweils bezogen auf den Wirkstoff.
Als Fließverbesserer C), die in den erfindungsgemäßen Mitteldestillaten eingesetzt werden, kommen insbesondere eine oder mehrere der folgenden Substanzklassen III bis VII in Betracht, wobei bevorzugt Ethylen-Copolymere (Bestandteil III) oder deren Mischungen mit einem oder mehreren der Bestandteile IV bis VII eingesetzt werden. Besonders bewährt haben sich dabei Mischungen aus Ethylen-Copolymeren (Bestandteil III) und Alkylphenol-Aldehydharzen (Bestandteil V) sowie aus Ethylen-Copolymeren (Bestandteil III) und Kammpolymeren (Bestandteil VI). Für die Paraffindispergierung haben sich insbesondere Mischungen von Ethylen-Copolymeren (Bestandteil III) mit den Bestandteilen IV und V bzw. den Bestandteilen IV und VI bewährt.
Bevorzugte Kaltfließverbesserer als Bestandteil III sind Copolymere aus Ethylen und olefinisch ungesättigten Verbindungen. Als Ethylen-Copolymere eignen sich insbesondere solche, die neben Ethylen 8 bis 21 mol-%, insbesondere 10 bis 18 mol-% olefinisch ungesättigte Verbindungen als Comonomere enthalten.
Bei den olefinisch ungesättigten Verbindungen handelt es sich vorzugsweise um Vinylester, Acrylester, Methacrylester, Alkylvinylether und/oder Alkene, wobei die genannten Verbindungen mit Hydroxylgruppen substituiert sein können. Es können ein oder mehrere Comonomere im Polymer enthalten sein.
Bei den Vinylestem handelt es sich vorzugsweise um solche der Formel 1
CH2=CH-OCOR1 (1 )
worin R1 Ci bis Cßo-Alkyl, vorzugsweise C4 bis Ciβ-Alkyl, speziell C6- bis Ci2-Alkyl bedeutet. In einer weiteren Ausführungsform können die genannten Alkylgruppen mit einer oder mehreren Hydroxylgruppen substituiert sein.
In einer weiteren bevorzugten Ausführungsform steht R1 für einen verzweigten Alkylrest oder einen Neoalkylrest mit 7 bis 11 Kohlenstoffatomen, insbesondere mit 8, 9 oder 10 Kohlenstoffatomen. Besonders bevorzugte Vinylester leiten sich von sekundären und insbesondere tertiären Carbonsäuren ab, deren Verzweigung sich in alpha-Position zur Carbonylgruppe befindet. Geeignete Vinylester umfassen Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylisobutyrat, Vinylhexanoat, Vinylheptanoat, Vinyloctanoat, Pivalinsäurevinylester, 2-Ethylhexansäurevinylester, Vinyllaurat, Vinylstearat sowie Versaticsäureester wie Neononansäurevinylester, Neodecansäurevinylester, Neoundecansäurevinylester.
In einer weiteren bevorzugten Ausführungsform enthalten diese Ethylen- Copolymere Vinylacetat und mindestens einen weiteren Vinylester der Formel 1 worin R1 für C4 bis C3o-Alkyl, vorzugsweise C4 bis Ciβ-Alkyl, speziell C6- bis Ci2-Alkyl steht.
Bei den Acrylestern handelt es sich vorzugsweise um solche der Formel 2
CH2=CR2-COOR3 (2)
worin R2 Wasserstoff oder Methyl und R3 Cr bis C30-Alkyl, vorzugsweise C4- bis C-|6-Alkyl, speziell C6- bis C-ι2-Alkyl bedeutet. Geeignete Acrylester umfassen z. B. Methyl(meth)acrylat, Ethyl(meth)acrylat, Propyl(meth)acrylat, n- und iso-Butyl(meth)acrylat, Hexyl-, Octyl-, 2-Ethylhexyl-, Decyl-, Dodecyl-, Tetradecyl-, Hexadecyl-, Octadecyl(meth)acrylat sowie Mischungen dieser Comonomere. In einer weiteren Ausführungsform können die genannten Alkylgruppen mit einer oder mehreren Hydroxylgruppen substituiert sein. Ein Beispiel für einen solchen Acrylester ist Hydroxyethylmethacrylat.
Bei den Alkylvinylethern handelt es sich vorzugsweise um Verbindungen der Formel 3
CH2=CH-OR4 (3)
worin R4 Cr bis C30-Alkyl, vorzugsweise C4- bis Ci6-Alkyl, speziell C6- bis Ci2-Alkyl bedeutet. Beispielsweise seien genannt Methylvinylether, Ethylvinylether, iso-Butylvinylether. In einer weiteren Ausführungsform können die genannten Alkylgruppen mit einer oder mehreren Hydroxylgruppen substituiert sein.
Bei den Alkenen handelt es sich vorzugsweise um einfache ungesättigte Kohlenwasserstoffe mit 3 bis 30 Kohlenstoffatomen, insbesondere 4 bis 16 Kohlenstoffatomen und speziell 5 bis 12 Kohlenstoffatomen. Geeignete Alkene umfassen Propen, Buten, Isobutylen, Penten, Hexen, 4-Methylpenten, Octen, Diisobutylen sowie Norbornen und seine Derivate wie Methylnorbornen und Vinylnorbomen. In einer weiteren Ausführungsform können die genannten Alkylgruppen mit einer oder mehreren Hydroxylgruppen substituiert sein.
Besonders bevorzugt sind Terpolymerisate, die außer Ethylen 3,5 bis 20 mol-%, insbesondere 8 bis 15 mol-% Vinylacetat und 0,1 bis 12 mol-%, insbesondere 0,2 bis 5 mol-% mindestens eines längerkettigen und bevorzugt verzweigten Vinylesters wie beispielsweise 2-Ethylhexansäurevinylester, Neononansäurevinylester oder Neodecansäurevinylester enthalten, wobei der gesamte Comonomergehalt der Terpolymerisate vorzugsweise zwischen 8 und 21 mol-%, insbesondere zwischen 12 und 18 mol-% liegt. Weitere besonders bevorzugte Copolymere enthalten neben Ethylen und 8 bis 18 moI-% Vinylestern von C2- bis Ci2-Carbonsäuren noch 0,5 bis 10 mol-% Olefine wie Propen, Buten, Isobutylen, Hexen, 4-Methylpenten, Octen, Diisobutylen und/oder Norbomen.
Vorzugsweise haben diese Ethylen-Co- und Terpolymere Schmelzviskositäten bei 140 0C von 20 bis 10.000 m-Pas, insbesondere von 30 bis 5.000 m-Pas, speziell von 50 bis 2.000 m-Pas. Die Mittels 1H-NMR-Spektroskopie bestimmten Verzweigungsgrade liegen bevorzugt zwischen 1 und 9 CH3/IOO CH2-Gruppen, insbesondere zwischen 2 und 6 CH3/IOO CH2-Gruppen, die nicht aus den Comonomeren stammen.
Bevorzugt werden Mischungen aus zwei oder mehr der oben genannten Ethylen- Copolymere eingesetzt. Besonders bevorzugt unterscheiden sich die den Mischungen zu Grunde liegenden Polymere in mindestens einem Charakteristikum. Beispielsweise können sie unterschiedliche Comonomere enthalten, unterschiedliche Comonomergehalte, Molekulargewichte und/oder Verzweigungsgrade aufweisen.
Das Mischungsverhältnis zwischen den erfindungsgemäßen Additiven und Ethylencopolymeren als Bestandteil III kann je nach Anwendungsfall in weiten Grenzen variieren, wobei die Ethylencopolymere III oftmals den größeren Anteil darstellen. Bevorzugt enthalten derartige Additiv- und Ölmischungen 0,1 bis 25, bevorzugt 0,5 bis 10 Gewichtsteile Ethylencopolymere pro Gewichtsteil der erfindungsgemäßen Additivkombination.
Als weitere Kaltfließverbesserer sind öllösliche polare Stickstoffverbindungen (Bestandteil IV) geeignet. Hierbei handelt es sich vorzugsweise um Umsetzungsprodukte von Fettaminen mit Verbindungen, die eine Acylgruppe enthalten. Bei den bevorzugten Aminen handelt es sich um Verbindungen der Formel NR6R7R8, worin R6, R7 und R8 gleich oder verschieden sein können, und wenigstens eine dieser Gruppen für Cβ-C36-Alkyl, C6-C36-Cycloalkyl,
C8-C36-Alkenyl, insbesondere Ci2-C24-Alkyl, C12-C24-Alkenyl oder Cyclohexyl steht, und die übrigen Gruppen entweder Wasserstoff, Ci-C36-Alkyl, C2-C36-Alkenyl, Cyclohexyl, oder eine Gruppe der Formeln -(A-O)x-E oder -(CH2Jn-NYZ bedeuten, worin A für eine Ethyl- oder Propylgruppe steht, x eine Zahl von 1 bis 50, E = H, C1-C30-AIkYl, C5-Ci2-Cycloalkyl oder C6-C3o-Aryl, und n = 2, 3 oder 4 bedeuten, und Y und Z unabhängig voneinander H, CrC3o-Alkyl oder -(A-O)x bedeuten. Auch Polyamine der Formel -[N-(CH2)n]m-NR6R7, in der m für eine Zahl zwischen 1 und 20 steht und n, R6 und R7 die oben gegebenen Bedeutungen haben, sind als Fettamine geeignet. Die Alkyl- und Alkenylreste können linear oder verzweigt sein und bis zu zwei Doppelbindungen enthalten. Bevorzugt sind sie linear und weitgehend gesättigt, das heißt sie haben Jodzahlen von weniger als 75 gb/g, bevorzugt weniger als 60 gl2/g und insbesondere zwischen 1 und 10 gl2/g. Besonders bevorzugt sind sekundäre Fettamine, in denen zwei der Gruppen R6, R7 und R8 für C8-C36-Al kyl, C6-C36-Cycloalkyl, C8-C36-Al kenyl, insbesondere für Ci2-C24-Alkyl, Ci2-C24-Alkenyl oder Cyclohexyl stehen. Geeignete Fettamine sind beispielsweise Octylamin, Decylamin, Dodecylamin, Tetradecylamin, Hexadecylamin, Octadecylamin, Eicosylamin, Behenylamin, Didecylamin, Didodecylamin, Ditetradecylamin, Dihexadecylamin,
Dioctadecylamin, Dieicosylamin, Dibehenylamin sowie deren Mischungen. Speziell enthalten die Amine Kettenschnitte auf Basis natürlicher Rohstoffe wie z.B. Cocosfettamin, Talgfettamin, hydriertes Talgfettamin, Dicocosfettamin, Ditalgfettamin und Di(hydriertes Talgfettamin). Besonders bevorzugte Aminderivate sind Aminsalze, Imide und/oder Amide wie beispielsweise Amid- Ammoniumsalze sekundärer Fettamine, insbesondere von Dicocosfettamin, Ditalgfettamin und Distearylamin.
Unter Acylgruppe wird hier eine funktionelle Gruppe folgender Formel verstanden:
> C = O
Für die Umsetzung mit Aminen geeignete Carbonylverbindungen sind sowohl monomere wie auch polymere Verbindungen mit einer oder mehreren Carboxylgruppen. Bei den monomeren Carbonylverbindungen werden solche mit 2, 3 oder 4 Carbonylgruppen bevorzugt. Sie können auch Heteroatome wie Sauerstoff, Schwefel und Stickstoff enthalten. Geeignete Carbonsäuren sind beispielsweise Malein-, Fumar-, Croton-, Itacon-, Bernsteinsäure, Ci-C4o-Alkenylbernsteinsäure, Adipin-, Glutar-, Sebacin-, und Malonsäure sowie Benzoe-, Phthal-, Trimellit- und Pyromellitsäure, Nitrilotriessigsäure, Ethylendiamintetra-essigsäure und deren reaktive Derivate wie beispielsweise Ester, Anhydride und Säurehalogenide. Als polymere Carbonylverbindungen haben sich insbesondere Copolymere ethylenisch ungesättigter Säuren wie beispielsweise Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure erwiesen, besonders bevorzugt sind Copolymere des Maleinsäureanhydrids. Als Comonomere sind solche geeignet, die dem Copolymer Öllöslichkeit verleihen. Unter öllöslich wird hier verstanden, dass sich das Copolymer nach Umsetzung mit dem Fettamin in praxisrelevanten
Dosierraten rückstandsfrei im zu additivierenden Mitteldestillat löst. Geeignete Comonomere sind beispielsweise Olefine, Alkylester der Acrylsäure und Methacrylsäure, Alkylvinylester und Alkylvinylether mit 2 bis 75, bevorzugt 4 bis 40 und insbesondere 8 bis 20 Kohlenstoffatomen im Alkylrest. Bei Olefinen bezieht sich die Kohlenstoffzahl auf den an die Doppelbindung gebundenen Alkylrest. Die Molekulargewichte der polymeren Carbonylverbindungen liegen bevorzugt zwischen 400 und 20.000, besonders bevorzugt zwischen 500 und 10.000 wie beispielsweise zwischen 1.000 und 5.000.
Besonders bewährt haben sich öllösliche polare Stickstoffverbindungen, die durch Reaktion aliphatischer oder aromatischer Amine, vorzugsweise langkettiger aliphatischer Amine, mit aliphatischen oder aromatischen Mono-, Di-, Tri- oder Tetracarbonsäuren oder deren Anhydriden erhalten werden (vgl. US 4 211 534). Des gleichen sind Amide und Ammoniumsalze von Aminoalkylenpolycarbonsäuren wie Nitrilotriessigsäure oder
Ethylendiamintetraessigsäure mit sekundären Aminen als öllösliche polare Stickstoffverbindungen geeignet (vgl. EP 0 398 101 ). Andere öllösliche polare Stickstoffverbindungen sind Copolymere des Maleinsäureanhydrids mit α,ß-ungesättigten Verbindungen, die gegebenenfalls mit primären Monoalkylaminen und/oder aliphatischen Alkoholen umgesetzt werden können (vgl. EP-A-O 154 177, EP-O 777 712), die Umsetzungsprodukte von Alkenylspirobislactonen mit Aminen (vgl. EP-A-O 413 279 B1 ) und nach EP-A-O 606 055 A2 Umsetzungsprodukte von Terpolymeren auf Basis α.ß-ungesättigter Dicarbonsäureanhydride, α,ß-ungesättigter Verbindungen und Polyoxyalkylenethem niederer ungesättigter Alkohole.
Das Mischungsverhältnis zwischen den erfindungsgemäßen Ethylen-Copolymeren III und öllöslichen polaren Stickstoffverbindungen als Bestandteil IV kann je nach Anwendungsfall variieren. Bevorzugt enthalten derartige Additivmischungen bezogen auf die Wirkstoffe 0,1 bis 10 Gewichtsteile, bevorzugt 0,2 bis 5 Gewichtsteile mindestens einer öllöslichen polaren Stickstoffverbindung pro Gewichtsanteil der erfindungsgemäßen Additivkombination.
Weiterhin als Fließverbesserer geeignet sind Alkylphenol-Aldehydharze als
Bestandteil V. Dies sind insbesondere solche Alkylphenol-Aldehydharze, die sich von Alkylphenolen mit ein oder zwei Alkylresten in Ortho- und/oder para-Position zur OH-Gruppe ableiten. Besonders bevorzugt als Ausgangsmaterialien sind Alkylphenole, die am Aromaten mindestens zwei zur Kondensation mit Aldehyden befähigte Wasserstoffatome tragen und insbesondere monoalkylierte Phenole. Besonders bevorzugt befindet sich der Alkylrest in der para-Stellung zur phenolischen OH-Gruppe. Die Alkylreste (darunter werden für den Bestandteil V generell Kohlenwasserstoffreste gemäß nachstehender Definition verstanden) können bei den im erfindungsgemäßen Verfahren einsetzbaren Alkylphenol- Aldehyd-Harzen gleich oder verschieden sein, sie können gesättigt oder ungesättigt sein und besitzen vorzugsweise 1 - 20, insbesondere 4 - 16 wie beispielsweise 6 - 12 Kohlenstoffatome; bevorzugt handelt es sich um n-, iso- und tert.-Butyl-, n- und iso-Pentyl-, n- und iso-Hexyl-, n- und iso-Octyl-, n- und iso-Nonyl-, n- und iso-Decyl-, n- und iso-Dodecyl-, Tetradecyl-, Hexadecyl-, Octadecyl-, Tripropenyl-, Tetrapropenyl-, Poly(propenyl)- und
Poly(isobutenyl)reste. In einer bevorzugten Ausführungsform werden zur Herstellung der Alkylphenolharze Mischungen von Alkylphenolen mit unterschiedlichen Alkylresten eingesetzt. So haben sich beispielsweise Harze auf Basis von Butyphenol einerseits und Octyl-, Nonyl- und/oder Dodecylphenol im molaren Verhältnis von 1 :10 bis 10:1 andererseits besonders bewährt. Geeignete Alkylphenolharze können auch Struktureinheiten weiterer Phenolanaloga wie Salicylsäure, Hydroxybenzoesäure sowie deren Derivate wie Ester, Amide und Salze enthalten oder aus ihnen bestehen.
Geeignete Aldehyde für die Alkylphenol-Aldehydharze sind solche mit 1 bis 12 Kohlenstoffatomen und vorzugsweise solche mit 1 bis 4 Kohlenstoffatomen wie beispielsweise Formaldehyd, Acetaldehyd, Propionaldehyd, Butyraldehyd, 2-Ethylhexanal, Benzaldehyd, Glyoxalsäure sowie deren reaktive Equivalente wie Paraformaldehyd und Trioxan. Besonders bevorzugt ist Formaldehyd in Form von Paraformaldehyd und insbesondere Formalin.
Das mittels Gelpermeationschromatographie gegen Poly(styrol)-Standards in THF gemessenes Molekulargewicht der Alkylphenol-Aldehyd-Harze beträgt bevorzugt 500 - 25.000 g/mol, besonders bevorzugt 800 - 10.000 g/mol und speziell 1.000 - 5.000 g/mol wie beispielsweise 1500 - 3.000 g/mol. Voraussetzung ist hierbei, dass die Alkylphenol-Aldehydharze zumindest in anwendungsrelevanten Konzentrationen von 0,001 bis 1 Gew.-% öllöslich sind.
In einer bevorzugten Ausführungsform der Erfindung handelt es sich dabei um Alkylphenol-Formaldehydharze, die Oligo- oder Polymere mit einer repetitiven Struktureinheit der Formel (3)
Figure imgf000026_0001
worin R12 für CrC18-Alkyl oder -Alkenyl, O-R13 oder 0-C(O)-R13, R13 für CrC18-Alkyl oder -Alkenyl und n für eine Zahl von 2 bis 100 steht, enthalten. R13 steht bevorzugt für C-i-Cie-Alkyl oder -Alkenyl und insbesondere für C4-Ci6-Alkyl oder -Alkenyl wie beispielsweise für C6-Ci2-Alkyl oder -Alkenyl. Besonders bevorzugt steht R12 für CrC-iβ-Alkyl oder -Alkenyl und insbesondere für C4-Ci6-Alkyl oder -Alkenyl wie beispielsweise für C6-Ci2-Alkyl oder -Alkenyl. Bevorzugt steht n für eine Zahl von 2 bis 50 und speziell für eine Zahl von 3 bis 25 wie beispielsweise eine Zahl von 5 bis 15.
Diese Alkylphenol-Aldehydharze sind ebenfalls nach den oben für die Verbindungen B) beschriebenen Verfahren zugänglich
Ebenfalls als Fließverbesserer geeignete Kammpolymere (Bestandteil VI) können beispielsweise durch die Formel (4)
Q H H
Figure imgf000027_0001
D M N (4)
beschrieben werden. Darin bedeuten
Q R1", COOR1", OCOR1", R"-COOR', OR"1; D H, CH3, A oder R"; E H1 A; G H, R", R"-COOR'", einen Arylrest oder einen heterocyclischen Rest; M H, COOR", OCOR", OR", COOH; N H, R", COOR", OCOR, einen Arylrest; R"1 eine Kohlenwasserstoffkette mit 8 bis 18, bevorzugt 10 bis
16 Kohlenstoffatomen; R" eine Kohlenwasserstoffkette mit 1 bis 10 Kohlenstoffatomen; m eine Zahl zwischen 0,4 und 1 ,0; und n eine Zahl zwischen O und 0,6. Geeignete Kammpolymere sind beispielsweise Copolymere ethylenisch ungesättigter Dicarbonsäuren wie Malein- oder Fumarsäure mit anderen ethylenisch ungesättigten Monomeren wie Olefinen oder Vinylestem. Besonders geeignete Olefine sind dabei α-Olefine mit 10 bis 18 und speziell 12 bis 16 C-Atomen wie beispielsweise 1-Decen, 1-Dodecen, 1-Tetradecen,
1-Hexadecen, 1-Octadecen und deren Mischungen. Auch längerkettige Olefine auf Basis oligomerisierter C2-C6-Olefine wie beispielsweise Poly(isobutylen) mit hohem Anteil endständiger Doppelbindungen sind als Comonomere geeignet. Ein besonders geeigneter Vinylester ist beispielsweise Vinylacetat. Üblicherweise werden diese Copolymere zu mindestens 50 % mit Alkoholen mit 10 bis 18 und speziell 12 bis 16 C-Atomen verestert. Geeignete Alkohole umfassen n-Decan-1-ol, n-Dodecan-1-ol, n-Tetradecan-1-ol, n-Hexadecan-1-ol, n-Octadecan-1-ol und deren Mischungen. Besonders bevorzugt sind Mischungen aus n-Tetradecan-1-ol und n-Hexadecan-1-ol. Als Kammpolymere ebenfalls geeignet sind Poly(alkylacrylate), Poly(alkylmethacrylate) und
Poly(alkylvinylether), die sich von Alkoholen mit 10 bis 18 und speziell 12 bis
16 C-Atomen ableiten sowie Poly(vinylester), die sich von Fettsäuren mit 10 bis 18 und speziell 12 bis 16 C-Atomen ableiten.
Weiterhin als Fließverbesserer geeignet sind öllösliche
Polyoxyalkylenverbindungen (Bestandteil VII) wie beispielsweise Ester, Ether und Ether/ester von Polyolen, die mindestens einen Alkylrest mit 12 bis 30 C-Atomen tragen. In einer bevorzugten Ausführungsform besitzen die öllöslichen Polyoxyalkylenverbindungen mindestens 2, wie beispielsweise 3, 4 oder 5 aliphatische Kohlenwasserstoffreste. Bevorzugt besitzen diese Reste unabhängig voneinander 16 bis 26 C-Atome wie beispielsweise 17 bis 24 C-Atome. Bevorzugt sind diese Reste der öllöslichen Polyoxyalkylenverbindungen linear. Weiterhin bevorzugt sind sie weitestgehend gesättigt, insbesondere handelt es sich dabei um Alkylreste. Ester sind besonders bevorzugt.
Erfindungsgemäß besonders geeignete Polyole sind Polyethylenglykole, Polypropylenglykole, Polybutylenglykole und deren Mischpolymerisate mit einem Molekulargewicht von ca. 100 bis ca. 5.000 g/mol, vorzugsweise 200 bis 2.000 g/mol. In einer besonders bevorzugten Ausführungsform leiten sich die öllöslichen Polyoxyalkylenverbindungen von Polyolen mit 3 oder mehr OH-Gruppen, bevorzugt von Polyolen mit 3 bis etwa 50 OH-Gruppen wie beispielsweise 4 bis 10 OH-Gruppen ab, insbesondere von Neopentylglykol, Glycerin, Trimethylolethan, Trimethylolpropan, Sorbitan, Pentaerythrit, sowie den daraus durch Kondensation zugänglichen Oligomeren mit 2 bis 10 Monomereinheiten wie z. B. Polyglycerin. Auch höhere Polyole wie beispielsweise Sorbitol, Saccharose, Glucose, Fructose sowie deren Oligomere wie beispielsweise Cyclodextrin sind als Polyole geeignet, sofern ihre veresterten bzw. veretherten Alkoxilate zumindest in anwendungsrelevanten Mengen öllöslich sind. Bevorzugte Polyoxyalkylenverbindungen haben somit einen verzweigten Polyoxyalkylenkern, an den mehrere Öllöslichkeit verleihende Alkylreste gebunden sind.
Die Polyole sind im Allgemeinen mit 3 bis 70 mol Alkylenoxid, bevorzugt 4 bis 50, insbesondere 5 bis 20 mol Alkylenoxid pro Hydroxylgruppe des Polyols umgesetzt. Bevorzugte Alkylenoxide sind Ethylenoxid, Propylenoxid und/oder Butylenoxid. Die Alkoxylierung erfolgt nach bekannten Verfahren. Die für die Veresterung der alkoxylierten Polyole geeigneten Fettsäuren haben vorzugsweise 12 bis 30 und insbesondere 16 bis 26 C-Atome. Geeignete Fettsäuren sind beispielsweise Laurin-, Tridecan-, Myristin-, Pentadecan-, Palmitin-, Margarin-, Stearin-, Isostearin-, Arachin- und Behensäure, Öl- und Erucasäure, Palmitolein-, Myristolein-, Ricinolsäure, sowie aus natürlichen Fetten und Ölen gewonnene Fettsäuremischungen. Bevorzugte Fettsäuremischungen enthalten mehr als 50 mol-% Fettsäuren mit mindestens 20 C-Atomen. Bevorzugt enthalten weniger als 50 mol-% der zur Veresterung verwendeten Fettsäuren Doppelbindungen, insbesondere weniger als 10 mol-%; speziell sind sie weitestgehend gesättigt. Die Veresterung kann auch ausgehend von reaktiven Derivaten der Fettsäuren wie Estern mit niederen Alkoholen (z. B. Methyl- oder Ethylester) oder Anhydriden erfolgen. Unter weitestgehend gesättigt wird im Sinne der vorliegenden Erfindung eine lodzahl der verwendeten Fettsäure bzw. des verwendeten Fettalkohols von bis zu 5 g I pro 100 g Fettsäure bzw. Fettalkohol verstanden.
Zur Veresterung der alkoxylierten Polyole können auch Gemische obiger Fettsäuren mit fettlöslichen, mehrwertigen Carbonsäuren eingesetzt werden Beispiele für geeignete mehrwertige Carbonsäuren sind Dimerfettsäuren, Alkenylbernsteinsäuren und aromatische Polycarbonsäuren sowie deren Derivate wie Anhydride und Cr bis C5-Ester. Bevorzugt sind Alkenylbemsteinsäure und deren Derivate mit Alkylresten mit 8 bis 200, insbesondere 10 bis 50 C-Atomen. Beispiele sind Dodecenyl-, Octadecenyl- und
Poly(isobutenyl)bernsteinsäureanhydrid. Bevorzugt werden die mehrwertigen Carbonsäuren dabei zu untergeordneten Anteilen von bis zu 30 mol-%, bevorzugt 1 bis 20 mol-%, insbesondere 2 bis 10 mol-% eingesetzt.
Ester und Fettsäure werden für die Veresterung bezogen auf den Gehalt an Hydroxylgruppen einerseits und Carboxylgruppen andererseits im Verhältnis 1 ,5 : 1 bis 1 : 1 ,5 eingesetzt, bevorzugt im Verhältnis 1 ,1 :1 bis 1 : 1 ,1 und insbesondere equimolar. Die Säurezahl der gebildeten Ester liegt im Allgemeinen unter 15 mg KOH/g, bevorzugt unter 10 mg KOH/g speziell unter 5 mg KOH/g. Die OH-Zahl der Ester liegt bevorzugt unter 20 mg KOH/g und speziell unter 10 mg KOH/g.
In einer bevorzugten Ausführungsform werden nach der Alkoxylierung des Polyols die endständigen Hydroxylgruppen zum Beispiel durch Oxidation oder durch
Umsetzung mit Dicarbonsäuren in endständige Carboxylgruppen überführt. Durch Umsetzung mit Fettalkoholen mit 8 bis 50, insbesondere 12 bis 30, speziell 16 bis 26 C-Atomen werden ebenfalls erfindungsgemäße Polyoxyalkylenester erhalten. Bevorzugte Fettalkohole bzw. Fettalkoholmischungen enthalten mehr als 50 mol-% Fettalkohole mit mindestens 20 C-Atomen. Bevorzugt enthalten weniger als 50 mol-% der zur Veresterung verwendeten Fettalkohole Doppelbindungen, insbesondere weniger als 10 mol-%; speziell sind sie weitestgehend gesättigt. Auch Ester alkoxilierter Fettalkohole mit Fettsäuren, die oben genannte Anteile an Poly(alkylenoxiden) enthalten und deren Fettalkohol und Fettsäure oben genannte Alkylkettenlängen und Sättigungsgrade besitzen, sind erfindungsgemäß geeignet.
Des weiteren können die oben beschriebenen alkoxilierten Polyole durch Veretherung mit Fettalkoholen mit 8 bis 50, insbesondere 12 bis 30, speziell 16 bis 26 C-Atomen in erfindungsgemäß geeignete Polyoxyalkylenverbindungen überführt werden. Die hierfür bevorzugten Fettalkohole sind linear und weitestgehend gesättigt. Bevorzugt erfolgt die Veretherung vollständig oder zumindest weitestgehend vollständig. Die Veretherung wird nach bekannten Verfahren durchgeführt.
Besonders bevorzugte Polyoxyalkylenverbindungen leiten sich von Polyolen mit 3, 4 und 5 OH-Gruppen ab, die pro Hydroxylgruppe des Polyols etwa 5 bis 10 mol von Ethylenoxid abgeleitete Struktureinheiten tragen und weitestgehend vollständig mit weitestgehend gesättigten C17-C24-Fettsäuren verestert sind. Weitere besonders bevorzugte Polyoxyalkylenverbindungen sind mit weitestgehend gesättigten Ci7-C24-Fettsäuren veresterte Polyethylenglykole mit Molekulargewichten von etwa 350 bis 1.000 g/mol. Beispiele für besonders geeignete Polyoxyalkylenverbindungen sind mit Stearin- und insbesondere Behensäure veresterte Polyethylenglykole mit Molekulargewichten zwischen 350 und 800 g/mol; Neopentylglykol-14-ethylenoxid-distearat (mit 14 mol Ethylenoxid alkoxiliertes und anschließend mit 2 mol Stearinsäure verestertes Neopentylglykol) und insbesondere Neopentylglykol-14-ethylenoxid-dibehenat; Glycerin-20-ethylenoxid-tristearat, Glycerin-20-ethylenoxid-dibehenat und insbesondere Glycerin-20-ethylenoxid-tribehenat; Trimethylolpropan-22- ethylenoxid-tribehenat; Sorbitan-25-ethylenoxid-tristearat, Sorbitan-25- ethylenoxid-tetrastearat, Sorbitan-25-ethylenoxid-tribehenat und insbesondere Sorbitan-25-ethylenoxid-tetrabehenat; Pentaerythritol-30-ethylenoxid-tribehenat, Pentaerythritol-30-ethylenoxid-tetrastearat und insbesondere Pentaerythritol-30- ethylenoxid-tetrabehenat und Pentaerythritol-20-ethylenoxid-10-propylenoxid- tetrabehenat. Das Mischungsverhältnis zwischen den erfindungsgemäßen Additiven und den weiteren Bestandteilen V, VI und VII ist im Allgemeinen jeweils zwischen 1 :10 und 10:1 , bevorzugt zwischen 1 : 5 und 5:1.
Nur Detergenzadditiv A) und Nucleator B) enthaltende erfindungsgemäße Additive enthalten bevorzugt 10 - 90 Gew.-% und insbesondere 20 - 80 Gew.-% wie beispielsweise 30 - 70 Gew.-% Detergenzadditiv A) und 10 - 90 Gew.-% und insbesondere 20 - 80 Gew.-% wie beispielsweise 30 - 70 Gew.-% Nucleator B). Sofern auch ein weiterer Kaltfließverbesserer C) zugegen ist, enthalten die Additive bevorzugt 15 - 80 Gew.-%, bevorzugt 20 - 70 Gew.-% Detergenzadditiv A), 2 - 40 Gew.-%, bevorzugt 5 - 25 Gew.-% Nucleator B) und 15 - 80 Gew.-%, bevorzugt 20 - 70 Gew.-% Kaltfließverbesserer C).
Die erfindungsgemäßen Additive werden zwecks einfacherer Handhabung bevorzugt als Konzentrate eingesetzt, die 10 bis 95 Gew.-% und bevorzugt 20 bis 80 Gew.-% wie beispielsweise 25 bis 60 Gew.-% an Lösemittel enthalten. Bevorzugte Lösemittel sind höhersiedende aliphatische, aromatische Kohlenwasserstoffe, Alkohole, Ester, Ether und deren Gemische. Bevorzugt enthalten derartige Konzentrate 0,01 bis 10 Gewichtsteile bevorzugt 0,05 bis 5 Gewichtsteile wie beispielsweise 0,1 bis 3 Gewichtsteile des Kammpolymers B) pro Gewichtsteil Detergenzadditiv A).
Die erfindungsgemäßen Nucleatoren B) verbessern das Ansprechverhalten von Detergenzadditiv enthaltenden Mitteldestillaten wie Kerosin, Jet-Fuel, Diesel und Heizöl für herkömmliche Fließverbesserer hinsichtlich der Absenkung von Pour Point und CFPP-Wert sowie der Verbesserung der Paraffindispergierung.
Besonders bevorzugte Mineralöldestillate sind Mitteldestillate. Als Mitteldestillat bezeichnet man insbesondere solche Mineralöle, die durch Destillation von Rohöl gewonnen werden, im Bereich von etwa 150 bis 450 0C und insbesondere im
Bereich von etwa 170 bis 390 CC sieden, beispielsweise Kerosin, Jet-Fuel, Diesel und Heizöl. Üblicherweise enthalten Mitteldestillate etwa 5 bis 50 Gew.-% wie beispielsweise etwa 10 bis 35 Gew.-% n-Paraffine, von denen die längerkettigen bei Abkühlung auskristallisieren und die Fließfähigkeit des Mitteldestillats beeinträchtigen können. Besonders vorteilhaft sind die erfindungsgemäßen Zusammensetzungen in Mitteldestillaten mit niedrigem Aromatengehalt von weniger als 21 Gew.-%, wie beispielsweise weniger als 19 Gew.-%. Besonders vorteilhaft sind die erfindungsgemäßen Zusammensetzungen weiterhin in
Mitteldestillaten mit niedrigem Siedeende, das heißt in solchen Mitteldestillaten, die 90 %-Destillationspunkte unter 360 0C, insbesondere 350 0C und in Spezialfällen unter 340 0C aufweisen und des weiteren in solchen Mitteldestillaten, die Siedebreiten zwischen 20 und 90 % Destillationsvolumen von weniger als 120 0C und insbesondere von weniger als 110 0C aufweisen. Unter aromatischen Verbindungen wird die Summe aus mono-, di- und polyzyklischen aromatischen Verbindungen verstanden, wie sie mittels HPLC gemäß DIN EN 12916 (Ausgabe 2001 ) bestimmbar ist. Die Mitteldestillate können auch untergeordnete Mengen wie beispielsweise bis zu 40 Vol.-%, bevorzugt 1 bis 20 Vol.-%, speziell 2 bis 15 wie beispielsweise 3 bis 10 Vol.-% der weiter unten näher beschriebenen Öle tierischen und/oder pflanzlichen Ursprungs wie beispielsweise Fettsäuremethylester enthalten.
Die erfindungsgemäßen Zusammensetzungen sind ebenfalls zur Verbesserung der Kälteeigenschaften von Detergenzadditive enthaltenden Kraftstoffen auf Basis nachwachsender Rohstoffe (Biokraftstoffe) geeignet. Unter Biokraftstoffen werden Öle verstanden, die aus tierischem und bevorzugt aus pflanzlichem Material oder beidem erhalten werden sowie Derivate derselben, welche als Kraftstoff und insbesondere als Diesel oder Heizöl verwendet werden können. Dabei handelt es sich insbesondere um Triglyceride von Fettsäuren mit 10 bis 24 C-Atomen sowie die aus ihnen durch Umesterung zugänglichen Fettsäureester niederer Alkohole wie Methanol oder Ethanol.
Beispiele für geeignete Biokraftstoffe sind Rapsöl, Korianderöl, Sojaöl, Baumwollsamenöl, Sonnenblumenöl, Ricinusöl, Olivenöl, Erdnussöl, Maisöl, Mandelöl, Palmkernöl, Kokosnussöl, Senfsamenöl, Rindertalg, Knochenöl, Fischöle und gebrauchte Speiseöle. Weitere Beispiele schließen Öle ein, die sich von Weizen, Jute, Sesam, Scheabaumnuß, Arachisöl und Leinöl ableiten. Die auch als Biodiesel bezeichneten Fettsäurealkylester können aus diesen Ölen nach im Stand der Technik bekannten Verfahren abgeleitet werden. Rapsöl, das eine Mischung von mit Glycerin veresterten Fettsäuren ist, ist bevorzugt, da es in großen Mengen erhältlich ist und in einfacher Weise durch Auspressen von Rapssamen erhältlich ist. Des Weiteren sind die ebenfalls weit verbreiteten Öle von Sonnenblumen, Palmen und Soja sowie deren Mischungen mit Rapsöl bevorzugt.
Besonders geeignet als Biokraftstoffe sind niedrige Alkylester von Fettsäuren. Hier kommen beispielsweise handelsübliche Mischungen der Ethyl-, Propyl-, Butyl- und insbesondere Methylester von Fettsäuren mit 14 bis 22 Kohlenstoffatomen, beispielsweise von Laurinsäure, Myristinsäure, Palmitinsäure, Palmitolsäure, Stearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Ricinolsäure, Elaeostearinsäure, Linolsäure, Linolensäure, Eicosansäure, Gadoleinsäure, Docosansäure oder Erucasäure in Betracht. Bevorzugte Ester haben eine lodzahl von 50 bis 150 und insbesondere von 90 bis 125. Mischungen mit besonders vorteilhaften Eigenschaften sind solche, die hauptsächlich, d. h. zu mindestens 50 Gew.-% Methylester von Fettsäuren mit 16 bis 22 Kohlenstoffatomen und 1 , 2 oder 3 Doppelbindungen enthalten. Die bevorzugten niedrigeren Alkylester von Fettsäuren sind die Methylester von Ölsäure, Linolsäure, Linolensäure und Erucasäure.
Die Additive können allein oder auch zusammen mit anderen Additiven verwendet werden, z. B. mit anderen Stockpunkterniedrigern oder Entwachsungshilfsmitteln, mit anderen Detergenzien, mit Antioxidantien, Cetanzahlverbesserem, Dehazem, Demulgatoren, Dispergatoren, Entschäumern, Farbstoffen, Korrosionsinhibitoren, Lubricity-Additiven, Schlamminhibitoren, Odorantien und/oder Zusätzen zur Erniedrigung des Cloud-Points. Beispiele
Verbesserung der Kaltfließfähigkeit von Mitteldestillaten
Zur Beurteilung des Effekts der erfindungsgemäßen Additive auf die
Kaltfließeigenschaften von Mitteldestillaten wurden Detergenzadditive (A) mit verschiedenen Nucleatoren (B) sowie weiteren Fließverbesserern (C) mit den unten angegebenen Charakteristika eingesetzt.
Die Unterdrückung des negativen Effekts der Detergenzadditive A) auf bekannte Kaltfließverbesserer für Mineralöle und Mineralöldestillate durch Nucleatoren wird zum einen an Hand des CFPP-Tests (CoId Filter Plugging Test nach EN 116) beschrieben.
Des Weiteren wird die Paraffindispergierung in Mitteldestillaten wie folgt im Kurzsedimenttest bestimmt:
150 ml der mit den in der Tabelle angegebenen Additivkomponenten versetzten Mitteldestillate wurden in 200 ml-Messzylindem in einem Kälteschrank mit -2 °C/Stunde auf -13 °C abgekühlt und 16 Stunden bei dieser Temperatur gelagert. Anschließend werden visuell Volumen und Aussehen sowohl der sedimentierten Paraffinphase wie auch der darüber stehenden Ölphase bestimmt und beurteilt. Eine geringe Sedimentmenge und eine trübe Ölphase zeigen eine gute Paraffindispergierung.
Zusätzlich werden direkt nach der Kaltlagerung die unteren 20 Vol.-% isoliert und der Cloud Point gemäß IP 3015 bestimmt. Eine nur geringe Abweichung des Cloud Points der unteren Phase (CPKs) vom Blindwert des Öls zeigt eine gute Paraffindispergierung. Tabelle 1 : Charakterisierung der Testöle:
Als Testöle wurden aktuelle Mitteldestillate aus europäischen Raffinerien herangezogen. Die Bestimmung des CFPP-Werts erfolgte gemäß EN 116 und die Bestimmung des Cloud Points gemäß ISO 3015. Die Bestimmung der aromatischen Kohlenwasserstoffgruppen erfolgte gemäß DIN EN 12916 (Ausgabe November 2001 )
Figure imgf000036_0001
Folgende Additive wurden eingesetzt:
(A) Charakterisierung der eingesetzten Detergenzadditive
Als Detergenzadditive A wurden verschiedene in Tabelle 2 aufgeführte
Umsetzungsprodukte aus Alkenylbernsteinsäureanhydriden (ASA) auf Basis hochreaktiver Polyolefine (Anteil der endständigen Doppelbindungen > 90 %; Maleinierungsgrad etwa 1 ,2 bis 1,3) mit Polyaminen eingesetzt. Alkenylbernsteinsäureanhydrid und Polyamin wurden dazu im molaren Verhältnis von 1 ,0 bis 1 ,5 Mol Alkenylbernsteinsäureanhydrid pro Mol Polyamin umgesetzt (siehe Tabelle 2). Zur besseren Dosierbarkeit wurden die Detergenzadditive als 33 %ige Lösungen in höhersiedendem aromatischem Lösemittel verwendet. Die in den Tabellen 2 bis 4 für die Detergenzadditive A) und Nucleatoren B) angegebenen Dosierraten beziehen sich auf die eingesetzten Wirkstoffe.
(B) Charakterisierung der eingesetzten Nucleatoren
B1 ) Alternierendes Copolymer aus Maleinsäureanhydrid und einer Mischung gleicher Teile C22- und C24-α-Olefin, verestert mit 1 ,5 mol pro mol Anhydridgruppen einer Mischung gleicher Teile Eicosanol und Docosanol,
50 %ig in höhersiedendem aromatischem Lösemittel
B2) C2o-24-Alkylphenol-Formaldehydharz, 50 %ig in höhersiedendem aromatischem Lösemittel
(C) Charakterisierung der eingesetzten weiteren Fließverbesserer
C1 ) Terpolymer aus Ethylen, 13 mol-% Vinylacetat und 2 mol-% Neodecansäurevinylester mit einer bei 1400C gemessenen Schmelzviskosität V140 von 95 mPas, 65 %ig in Kerosin C2) Mischung gleicher Teile von C1) und einem Copolymer aus Ethylen und
13,5 mol-% Vinylacetat mit einer bei 140 0C gemessenen Schmelzviskosität V140 von 125 m-Pas, 56 %ig in Kerosin.
C3) Mischung aus 2 Teilen Umsetzungsprodukt eines Copolymers aus
C14/C16-α-Olefin und Maleinsäureanhydrid mit 2 Equivalenten hydriertem Ditalgfettamin mit einem Teil Nonylphenol-Formaldehydharz, 50 %ig in höhersiedendem aromatischem Lösemittel.
C4) Umsetzungsprodukt aus Ethylendiamintetraessigsäure mit 4 Equivalenten Ditalgfettamin zum Amid-Ammoniumsalz, hergestellt gemäß EP 0 398 101 , 50 %ig in höhersiedendem aromatischem Lösemittel.
C5) Mischung gleicher Teile eines Umsetzungsprodukts aus Phthalsäureanhydrid und 2 Equivalenten Di(hydriertem Talgfett)amin mit einem Copolymer aus Fumarsäure-ditetradecylester, 50 %ig in höhersiedendem aromatischem Lösemittel.
Die Bestimmung der CFPP-Werte in Testöl 1 erfolgte nach Additivierung des Öls mit 200 ppm C2 und 150 ppm C3.
In den Beispielen der Tabellen 3 und 4 wurden als Detergenzadditiv A1 das Umsetzungsprodukt aus Poly(isobutenyl)-bernsteinsäureanhydrid und Pentaethylen-hexamin gemäß Tabelle 2, Beispiel 4 und als Detergenzadditiv A2 das Umsetzungsprodukt aus Poly(isobutenyl)bemsteinsäureanhydrid und Pentaethylenhexamin gemäß Tabelle 2, Beispiel 13 verwendet. Tabelle 2: Effekt von Nucleatoren auf den von Detergenzadditiven verursachten Antagonismus in Testöl 1
OO
Figure imgf000039_0001
DA = Detergenzadditiv; PIB = Poly(isobutylen); APP = ataktisches Poly(propylen); P2B = Poly(buten) aus Gemisch verschiedener Butenisomere mit einem Anteil an 2-Buten von ca. 80 %; TEPA = Tetraethylenpentamin; PEHA = Pentaethylenhexamin;
PAM = schweres Polyamin
Tabelle 3: Kaltfließverbesserung in Testöl 2
Ade Jitive Testöl 2
Beispiel A B C CFPP [0C]
14 (VgI.) - - 75 ppm C2 - -14
15 (VgI.) - - 100 ppm C2 - -19
16 (VgI.) - - 150 ppm C1 - -20
17 (VgI.) - - 75 ppm C1 150 ppm C3 -21
18 (VgI.) - - 100 ppm C1 150 ppm C3 -29
19 (VgI.) - - 150 ppm C1 150 ppm C3 -31
20 (Vgl.) 50 ppm A1 - 75 ppm C1 150 ppm C3 -14
21 (Vgl.) 50 ppm A1 - 100 ppm C1 150 ppm C3 -19
22 (Vgl.) 50 ppm A1 - 150 ppm C1 150 ppm C3 -20
23 (Vgl.) 50 ppm A1 - 150 ppm C1 250 ppm C3 -20
24 50 ppm A1 30 ppm B1 75 ppm C1 150 ppm C3 -20
25 50 ppm A1 40 ppm B1 100 ppm C1 150 ppm C3 -30
26 50 ppm A1 40 ppm B1 100 ppm C1 150 ppm C3 -31
27 (Vgl.) 50 ppm A2 - 75 ppm C1 150 ppm C4 -15
28 (Vgl.) 50 ppm A2 - 100 ppm C1 150 ppm C4 -12
29 (Vgl.) 50 ppm A2 - 150 ppm C1 150 ppm C4 -20
30 (Vgl.) 50 ppm A2 - 150 ppm C1 250 ppm C4 -21
31 50 ppm A2 30 ppm B1 75 ppm C1 150 ppm C4 -22
32 50 ppm A2 30 ppm B1 100 ppm C1 150 ppm C4 -29
33 50 ppm A2 30 ppm B2 75 ppm C1 150 ppm C4 -21 Tabelle 4: Kaltfließverbesserung in Testöl 3
Figure imgf000041_0001
Die Versuche zeigen, dass die Beeinträchtigung der Kaltfließeigenschaften wie zum Beispiel des CFPP-Werts und der Paraffindispergierung von mit Fließverbesserer additivierten Mitteldestillaten nur durch Zugabe der erfindungsgemäßen Nucleatoren ausgeglichen werden kann. Durch höhere Dosierung des Fließverbesserers alleine kann dieses Ergebnis nicht erzielt werden.

Claims

Patentansprüche
1. Verwendung mindestens einer öllöslichen, als Nucleator für die Paraffinkristallisation wirkenden Verbindung B)1 ausgewählt aus Kammpolymeren, die Alkylseitenketten mit einer Länge von mindestens 20 C-Atomen tragen, zur Verbesserung des Ansprechverhaltens von Mineralölkaltfließverbesserern C), welche von B) verschieden sind, in Mitteldestillaten, die mindestens ein aschefreies, stickstoffhaltiges Detergenzadditiv A) enthalten, welches eine öllösliche, amphiphile Verbindung ist, die mindestens einen Alkyl- oder Alkenylrest umfasst, der an eine polare Gruppe gebunden ist, wobei der Alkyl- oder Alkenylrest 10 bis 500 C-Atome und die polare Gruppe 2 oder mehr Stickstoffatome umfasst.
2. Verwendung nach Anspruch 1 , wobei, bezogen auf einen Gewichtsteil des stickstoffhaltigen Detergenzadditivs A), 0,01 bis 10 Gewichtsteile der öllöslichen, als Nucleator für die Paraffinkristallisation wirkenden Verbindung B) verwendet werden.
3. Verwendung nach Anspruch 1 und/oder 2, wobei das Mitteldestillat 10 bis 10.000 ppm eines aschefreien stickstoffhaltigen Detergenzadditivs A) enthält.
4. Verwendung nach einem oder mehreren der Ansprüche 1 bis 3, wobei das aschefreie stickstoffhaltige Detergenzadditiv A) einen Alkylrest mit 15 bis 500 C-Atomen hat.
5. Verwendung nach Anspruch 4, wobei der Alkylrest von Oligomeren niederer Olefine mit 3 bis 6 C-Atomen oder deren Mischungen abgeleitet ist.
6. Verwendung nach Anspruch 5, wobei eine Mischung von Oligomeren niederer Olefine mit 3 bis 6 C-Atomen zur Anwendung kommt, die zu mehr als 70 mol-% 2-Methyl-2-buten, 2,3-Dimethyl-2-buten und/oder Isobuten enthält.
7. Verwendung nach einem oder mehreren der Ansprüche 1 bis 6, wobei das aschefreie stickstoffhaltige Detergenzadditiv A) unter Verwendung hoch reaktiver niedermolekularer Polyolefine mit einem Anteil endständiger Doppelbindungen von mindestens 75 mol-% hergestellt ist.
8. Verwendung nach einem oder mehreren der Ansprüche 1 bis 7, wobei das aschefreie stickstoffhaltige Detergenzadditiv A) einen polaren Anteil umfasst, der von Polyaminen der Formel
(R9)2N-[A-N(R9)]q-(R9)
abgeleitet ist, worin jedes R9 unabhängig voneinander für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit bis zu 24 C-Atomen, einen Polyoxyalkylenrest -(A-O)r oder Polyiminoalkylenrest -[A-N(R9)]S-(R9) steht, wobei jedoch mindestens ein R9 für Wasserstoff steht, q für eine ganze Zahl von 1 bis 19, A für einen Alkylenrest mit 1 bis 6 C-Atomen, und r und s unabhängig voneinander für ganze Zahlen von 1 bis 50 stehen.
9. Verwendung nach Anspruch 8, wobei R9 für Wasserstoff steht und q Werte von mindestens 3 annimmt.
10. Verwendung nach einem oder mehreren der Ansprüche 1 bis 9, wobei das aschefreie stickstoffhaltige Detergenzadditiv A) einen öllöslichen Alkylrest und eine polare Kopfgruppe umfasst, und der öllösliche Alkylrest und die polare Kopfgruppe über eine C-N- oder über eine Ester-, Amid- oder Imidbindung miteinander verknüpft sind.
11. Verwendung nach einem oder mehreren der Ansprüche 1 bis 10, wobei das aschefreie stickstoffhaltige Detergenzadditiv A) ein mittels Dampfdruckosmometrie bestimmtes mittleres Molekulargewicht von oberhalb 800 g/mol aufweist.
12. Verwendung nach einem oder mehreren der Ansprüche 1 bis 11 , wobei als Kaltfließverbesserer C) Copolymere aus Ethylen und 8 bis 21 mol-% olefinisch ungesättigten Verbindungen, ausgewählt aus Vinylestem, Acrylestern, Methacrylestem, Alkylvinylethern und/oder Alkenen, zur Anwendung kommen, wobei die genannten Verbindungen mit Hydroxylgruppen substituiert sein können und ein oder mehrere dieser Comonomere im Polymer enthalten sein können.
13. Verwendung nach Anspruch 12, wobei als Kaltfließverbesserer C) Copolymere aus Ethylen und 8 bis 21 mol-% Vinylestem der Formel 1 zur Anwendung kommen
CH2=CH-OCOR1 (1 )
worin R1 Ci bis C3o-Alkyl bedeutet, und die genannten Alkylgruppen mit einer oder mehreren Hydroxylgruppen substituiert sein können.
14. Verwendung nach Anspruch 13, wobei R1 für einen verzweigten Alkylrest oder einen Neoalkylrest mit 7 bis 11 Kohlenstoffatomen steht.
15. Verwendung nach Anspruch 13 und/oder 14, wobei die Ethylen-Copolymere Vinylacetat und mindestens einen weiteren Vinylester der Formel 1 , worin R1 für C4 bis C30-Alkyl steht, enthalten.
16. Verwendung nach einem oder mehreren der Ansprüche 1 bis 15, wobei als Kaltfließverbesserer C) öllösliche polare Stickstoffverbindungen zur Anwendung kommen, welche Umsetzungsprodukte von Verbindungen der Formel NR6R7R8, worin R6, R7 und R8 gleich oder verschieden sein können, und wenigstens eine dieser Gruppen für C8-C36-Alkyl, C6-C36-Cycloalkyl, C8-C36-Al kenyl, insbesondere Ci2-C24-Alkyl, C-i2-C24-Alkenyl oder Cyclohexyl steht, und die übrigen Gruppen entweder Wasserstoff, CrC36-Alkyl, C2-C36-Alkenyl, Cyclohexyl, oder eine Gruppe der Formeln -(A-O)x-E oder -(CH2Jn-NYZ bedeuten, worin A für eine Ethyl- oder Propylgruppe steht, x eine Zahl von 1 bis 50, E = H, CrC30-Alkyl, C5-C12-Cycloalkyl oder C6-C30-Aryl, und n = 2, 3 oder 4 bedeuten, und Y und Z unabhängig voneinander H, Ci-C30-Alkyl oder -(A-O)x bedeuten, mit Verbindungen, welche mindestens eine Acylgruppe enthalten, sind.
17. Verwendung nach einem oder mehreren der Ansprüche 1 bis 16, wobei als Kaltfließverbesserer C) Alkylphenol-Aldehydharze zur Anwendung kommen, welche Kondensationsprodukte von Alkylphenolen mit ein oder zwei CrCiβ-Alkyl oder -Alkenylresten in Ortho- und/oder para-Position zur OH-Gruppe mit Aldehyden mit 1 bis 12 Kohlenstoffatomen sind.
18. Verwendung nach einem oder mehreren der Ansprüche 1 bis 17, wobei die als Nucleator für die Paraffinkristallisation wirkenden Kammpolymere einen Anteil der Alkylseitenketten mit mindestens 20 C-Atomen an der Gesamtmenge der Alkylseitenketten des Kammpolymers von mindestens 10 mol-% aufweisen.
19. Verwendung nach einem oder mehreren der Ansprüche 1 bis 18, wobei die als Nucleator für die Paraffinkristallisation wirkenden Kammpolymere Seitenketten mit 22 bis 60 C-Atome tragen.
20. Verwendung nach einem oder mehreren der Ansprüche 1 bis 19, wobei die Alkylseitenketten der Kammpolymere linear sind.
21. Verwendung nach einem oder mehreren der Ansprüche 1 bis 20, wobei die als Nucleator für die Paraffinkristallisation wirkenden Kammpolymere ein Rückgrat aus ethylenisch ungesättigten Monocarbonsäuren, Polycarbonsäuren oder einer Mischung daraus enthalten.
22. Verwendung nach einem oder mehreren der Ansprüche 1 bis 21 , wobei die Alkylseitenketten der Kammpolymere über eine Ester-, Amid-, Imid- oder Ammoniumgruppe an das Polymerrückgrat gebunden sind.
23. Verwendung nach einem oder mehreren der Ansprüche 1 bis 20 und 22, wobei die als Nucleator für die Parafflnkristallisation wirkenden Kammpolymere von Alkylaromaten abgeleitete Struktureinheiten enthaltende Polykondensate sind, die Alkylreste mit mindestens 20 C-Atomen aufweisen.
24. Verwendung nach Anspruch 23, wobei die Alkylreste über eine C-C-Bindung oder über eine Ester- oder Ethergruppe an den Aromaten gebunden sind.
25. Verwendung nach einem oder mehreren der Ansprüche 1 bis 24, wobei das Mengenverhältnis zwischen Detergenzadditiv A) und als Nucleator für die Paraffinkristallisation wirkendem Kammpolymer B) im additivierten Öl bei 0,01 bis
10 Gewichtsteilen an Nucleator pro Gewichtsteil Detergenzadditiv, jeweils bezogen auf den Wirkstoff, liegt.
26. Additive, enthaltend
a) mindestens ein aschefreies, stickstoffhaltiges Detergenzadditiv A), welches eine öllösliche, amphiphile Verbindung ist, die mindestens einen Alkyl- oder Alkenylrest umfasst, der an eine polare Gruppe gebunden ist, wobei der Alkyl- oder Alkenylrest 10 bis 500 C-Atome und die polare Gruppe 2 oder mehr Stickstoffatome umfasst, und b) mindestens eine öllösliche, als Nucleator für die Paraffinkristallisation wirkende Verbindung B), ausgewählt aus Kammpolymeren, die Alkylseitenketten mit einer Länge von mindestens 18 C-Atomen im molaren Mittel tragen.
27. Additive nach Anspruch 26, enthaltend einen von B) verschiedenen Mineralölkaltfließverbesserer C).
28. Additive nach Anspruch 26, worin der Mineralölkaltfließverbesserer C) aus den in einem oder mehreren der Ansprüche 12 bis 17 beschriebenen Verbindungen ausgewählt ist.
29. Mitteldestillate mit einem Schwefelgehalt von weniger als 100 ppm und einem 90 %-Destillationspunkt von unter 360 0C1 enthaltend
a) mindestens ein aschefreies, stickstoffhaltiges Detergenzadditiv A), welches eine öllösliche, amphiphile Verbindung ist, die mindestens einen Alkyl- oder Alkenylrest umfasst, der an eine polare Gruppe gebunden ist, wobei der Alkyl- oder Alkenylrest
10 bis 500 C-Atome und die polare Gruppe 2 oder mehr Stickstoffatome umfasst,
b) mindestens eine öllösliche, als Nucleator für die Paraffinkristallisation wirkende Verbindung B), ausgewählt aus Kammpolymeren, die Alkylseitenketten mit einer Länge von mindestens 18 C-Atomen im molaren Mittel tragen, sowie
c) mindestens einen von B) verschiedenen Mineralölkaltfließverbesserer C).
PCT/EP2008/004851 2007-06-20 2008-06-17 Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfahigkeit WO2008155089A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2691067A CA2691067A1 (en) 2007-06-20 2008-06-17 Detergent additive-containing mineral oils having improved cold flow properties
US12/665,005 US20100180492A1 (en) 2007-06-20 2008-06-17 Detergent Additive-Containing Mineral Oils Having Improved Cold Flow Properties
JP2010512591A JP5517924B2 (ja) 2007-06-20 2008-06-17 向上した低温流動性を有する清浄添加剤含有鉱油
PL08759257T PL2162513T3 (pl) 2007-06-20 2008-06-17 Oleje mineralne o polepszonej płynności w niskiej temperaturze, zawierające dodatki detergentowe
EP08759257.2A EP2162513B1 (de) 2007-06-20 2008-06-17 Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfähigkeit
RU2010101618/04A RU2475517C2 (ru) 2007-06-20 2008-06-17 Применение минеральных масел, содержащих моющую присадку и обладающих улучшенными характеристиками хладотекучести, и средний дистиллят

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007028305A DE102007028305A1 (de) 2007-06-20 2007-06-20 Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
DE102007028305.0 2007-06-20

Publications (1)

Publication Number Publication Date
WO2008155089A1 true WO2008155089A1 (de) 2008-12-24

Family

ID=39730709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/004851 WO2008155089A1 (de) 2007-06-20 2008-06-17 Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfahigkeit

Country Status (9)

Country Link
US (1) US20100180492A1 (de)
EP (1) EP2162513B1 (de)
JP (1) JP5517924B2 (de)
KR (1) KR101553225B1 (de)
CA (1) CA2691067A1 (de)
DE (1) DE102007028305A1 (de)
PL (1) PL2162513T3 (de)
RU (1) RU2475517C2 (de)
WO (1) WO2008155089A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094841A (ja) * 2006-10-10 2008-04-24 Afton Chemical Corp 分枝スクシニミド系分散剤化合物および前記化合物の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028307A1 (de) * 2007-06-20 2008-12-24 Clariant International Limited Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
DE102007028306A1 (de) * 2007-06-20 2008-12-24 Clariant International Limited Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
DE102007028304A1 (de) * 2007-06-20 2008-12-24 Clariant International Limited Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
US20130239465A1 (en) * 2012-03-16 2013-09-19 Baker Hughes Incorporated Cold Flow Improvement of Distillate Fuels Using Alpha-Olefin Compositions
CA3038772A1 (en) 2016-09-29 2018-04-05 Ecolab Usa Inc. Paraffin inhibitors, and paraffin suppressant compositions and methods
AU2017335819B2 (en) 2016-09-29 2021-10-21 Ecolab Usa Inc. Paraffin suppressant compositions and methods
GB201810852D0 (en) 2018-07-02 2018-08-15 Innospec Ltd Compositions, uses and methods
MX2021004623A (es) 2018-10-29 2021-07-15 Championx Usa Inc Alquenil succinimidas y uso como inhibidores de hidratos de gas natural.
WO2022049130A1 (en) 2020-09-01 2022-03-10 Shell Internationale Research Maatschappij B.V. Engine oil composition
JP2023541114A (ja) 2020-09-14 2023-09-28 エコラボ ユーエスエー インコーポレイティド プラスチック由来の合成原料のための低温流動性添加剤
CA3234581A1 (en) 2021-10-14 2023-04-20 Kameswara Vyakaranam Antifouling agents for plastic-derived synthetic feedstocks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2921330A1 (de) * 1978-05-25 1979-12-06 Exxon Research Engineering Co Additiv-zubereitung fuer destillat- heizoele aus drei (oder mehr) komponenten
WO1995003377A1 (en) * 1993-07-22 1995-02-02 Exxon Chemical Patents Inc. Additives and fuel compositions
WO2003042337A2 (de) * 2001-11-14 2003-05-22 Clariant Gmbh Schwefelarme mineralöldestillate mit verbesserten kälteeigenschaften
EP1801187A2 (de) * 2005-12-22 2007-06-27 Clariant Produkte (Deutschland) GmbH Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefliessfähigkeit

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022589A (en) * 1974-10-17 1977-05-10 Phillips Petroleum Company Fuel additive package containing polybutene amine and lubricating oil
US4108613A (en) * 1977-09-29 1978-08-22 Chevron Research Company Pour point depressants
CA1120269A (en) * 1978-05-25 1982-03-23 Robert D. Tack Additive combinations and fuels containing them
US4211534A (en) 1978-05-25 1980-07-08 Exxon Research & Engineering Co. Combination of ethylene polymer, polymer having alkyl side chains, and nitrogen containing compound to improve cold flow properties of distillate fuel oils
US4357148A (en) * 1981-04-13 1982-11-02 Shell Oil Company Method and fuel composition for control or reversal of octane requirement increase and for improved fuel economy
DE3405843A1 (de) * 1984-02-17 1985-08-29 Bayer Ag, 5090 Leverkusen Copolymere auf basis von maleinsaeureanhydrid und (alpha), (beta)-ungesaettigten verbindungen, ein verfahren zu ihrer herstellung und ihre verwendung als paraffininhibitoren
GB2174102A (en) * 1985-04-24 1986-10-29 Shell Int Research Diesel fuel composition
US4968321A (en) * 1989-02-06 1990-11-06 Texaco Inc. ORI-inhibited motor fuel composition
DE3916366A1 (de) 1989-05-19 1990-11-22 Basf Ag Neue umsetzungsprodukte von aminoalkylenpolycarbonsaeuren mit sekundaeren aminen und erdoelmitteldestillatzusammensetzungen, die diese enthalten
US5006130A (en) * 1989-06-28 1991-04-09 Shell Oil Company Gasoline composition for reducing intake valve deposits in port fuel injected engines
DE3926992A1 (de) * 1989-08-16 1991-02-21 Hoechst Ag Verwendung von umsetzungsprodukten von alkenylspirobislactonen und aminen als paraffindispergatoren
GB9213870D0 (en) * 1992-06-30 1992-08-12 Exxon Chemical Patents Inc Oil additives and compositions
GB9222458D0 (en) * 1992-10-26 1992-12-09 Exxon Chemical Patents Inc Oil additives and compositions
US5286264A (en) * 1992-12-21 1994-02-15 Texaco Inc. Gasoline detergent additive composition and motor fuel composition
DE59404053D1 (de) * 1993-01-06 1997-10-23 Hoechst Ag Terpolymere auf Basis von alpha,beta-ungesättigten Dicarbonsäureanhydriden, alpha,beta-ungesättigten Verbindungen und Polyoxyalkylenethern von niederen, ungesättigten Alkoholen
DE4430294A1 (de) 1994-08-26 1996-02-29 Basf Ag Polymermischungen und ihre Verwendung als Zusatz für Erdölmitteldestillate
GB9610363D0 (en) * 1996-05-17 1996-07-24 Ethyl Petroleum Additives Ltd Fuel additives and compositions
DE59708189D1 (de) * 1997-01-07 2002-10-17 Clariant Gmbh Verbesserung der Fliessfähigkeit von Mineralölen und Mineralöldestillaten unter Verwendung von Alkylphenol-Aldehydharzen
US6733550B1 (en) * 1997-03-21 2004-05-11 Shell Oil Company Fuel oil composition
GB9725579D0 (en) * 1997-12-03 1998-02-04 Exxon Chemical Patents Inc Additives and oil compositions
DE102007028307A1 (de) * 2007-06-20 2008-12-24 Clariant International Limited Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
DE102007028306A1 (de) * 2007-06-20 2008-12-24 Clariant International Limited Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit
DE102007028304A1 (de) * 2007-06-20 2008-12-24 Clariant International Limited Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2921330A1 (de) * 1978-05-25 1979-12-06 Exxon Research Engineering Co Additiv-zubereitung fuer destillat- heizoele aus drei (oder mehr) komponenten
WO1995003377A1 (en) * 1993-07-22 1995-02-02 Exxon Chemical Patents Inc. Additives and fuel compositions
WO2003042337A2 (de) * 2001-11-14 2003-05-22 Clariant Gmbh Schwefelarme mineralöldestillate mit verbesserten kälteeigenschaften
EP1801187A2 (de) * 2005-12-22 2007-06-27 Clariant Produkte (Deutschland) GmbH Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefliessfähigkeit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094841A (ja) * 2006-10-10 2008-04-24 Afton Chemical Corp 分枝スクシニミド系分散剤化合物および前記化合物の製造方法

Also Published As

Publication number Publication date
US20100180492A1 (en) 2010-07-22
JP5517924B2 (ja) 2014-06-11
EP2162513A1 (de) 2010-03-17
PL2162513T3 (pl) 2019-10-31
DE102007028305A1 (de) 2008-12-24
EP2162513B1 (de) 2019-04-10
KR101553225B1 (ko) 2015-09-15
RU2475517C2 (ru) 2013-02-20
RU2010101618A (ru) 2011-07-27
CA2691067A1 (en) 2008-12-24
KR20100049037A (ko) 2010-05-11
JP2010530452A (ja) 2010-09-09

Similar Documents

Publication Publication Date Title
EP1801187B1 (de) Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefliessfähigkeit
EP2162513B1 (de) Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfähigkeit
EP1749874B1 (de) Verwendung von alkylphenol-aldehydharzen zur herstellung von mineralölen mit verbesserter leitfähigkeit und kältefliessfähikeit
EP1749873B1 (de) Additive und deren verwendung zur verbesserung der elektrischen leitfähigkeit und kältefliessfähigkeit von mineralöldestillaten
EP2162512B1 (de) Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfähigkeit
DE102009060371A1 (de) Multifunktionelle Additive mit verbesserter Fließfähigkeit
WO2008155090A1 (de) Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfähigkeit
EP2162515B1 (de) Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfähigkeit
DE102009060389A1 (de) Kälteadditive mit verbesserter Fließfähigkeit
EP1752513B1 (de) Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit
EP4127106B1 (de) Zusammensetzungen und verfahren zur dispergierung von paraffinen in schwefelarmen brennstoffölen
DE102005061465B4 (de) Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08759257

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008759257

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12665005

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010512591

Country of ref document: JP

Ref document number: 2691067

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20107001390

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010101618

Country of ref document: RU