WO2008153198A1 - Egr率管理によるegr制御装置 - Google Patents
Egr率管理によるegr制御装置 Download PDFInfo
- Publication number
- WO2008153198A1 WO2008153198A1 PCT/JP2008/061168 JP2008061168W WO2008153198A1 WO 2008153198 A1 WO2008153198 A1 WO 2008153198A1 JP 2008061168 W JP2008061168 W JP 2008061168W WO 2008153198 A1 WO2008153198 A1 WO 2008153198A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- egr
- amount
- control device
- opening degree
- target
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/0065—Specific aspects of external EGR control
- F02D41/0072—Estimating, calculating or determining the EGR rate, amount or flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/45—Sensors specially adapted for EGR systems
- F02M26/48—EGR valve position sensors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to control of the EGR return amount of an internal combustion engine, and more particularly, to a control device of an internal combustion engine that controls the EGR return amount based on a target EGR ratio according to the state of the engine.
- an EGR valve is opened so that the EGR valve is adjusted to a preset value set in advance by the engine speed and the engine load. It is known that the degree is controlled by a control value such as a step value corresponding to the set value or a duty value.
- Patent Document 1 Japanese Patent Application Publication No. 2000-199454 Disclosure of the Invention
- the EGR valve opening is managed by the map of the operating conditions, and in each operating region, the EGR valve opening-combustion state (such as engine speed fluctuation etc.) Since it is necessary to look at the correlation and the EGR rate will be confirmed later, there is a problem that the adaptation including the management of the EGR rate requires a large number of steps.
- a control device for an internal combustion engine having EGR control comprises means for obtaining a target EGR rate based on the state of the internal combustion engine, means for obtaining an intake air amount of the engine, A means for obtaining a target EGR recirculation amount from the intake air amount and the target EGR rate, a means for determining an opening degree of a basic EGR valve based on the target EGR recirculation amount, and a return at the critical pressure from the opening degree of the EGR valve.
- a means for obtaining a flow rate a means for computing a differential pressure between an exhaust pressure and an air suction pressure, a means for obtaining an actual EGR recirculation amount of the differential pressure from the relationship between the valve opening degree of the EGR and the recirculation amount;
- Means for determining the opening degree of the EGR valve from the valve opening degree and the reflux amount correction amount, and the EGR valve opening degree is feedback-controlled based on the difference between the target EGR flow amount and the actual EGR return amount. It is characterized by
- control device of an internal combustion engine having EGR control according to the present invention is characterized in that the means for obtaining the target EGR includes factors related to external EGR and internal EGR.
- the means for determining the relationship between the actual EGR return amount under the differential pressure includes: a table of valve opening degree and return amount; It is characterized in that it is provided for at least one or more differential pressure. Further, in addition to the above features, the control device for an internal combustion engine having EGR control according to the present invention determines the correction amount of the amount of recirculation based on the difference between the target amount of EGR recirculation and the actual amount of EGR recirculation.
- the means includes means for determining a factor related to the correction sensitivity, and means for integrating the factor related to the correction sensitivity to the EGR basic opening degree, and a new real EG based on the integrated EGR basic opening degree.
- the apparatus is characterized in that the amount of R reflux is determined, and the integration is performed until the difference between the target EGR reflux and the actual EGR reflux becomes equal to or less than a predetermined value.
- the factor relating to the correction sensitivity is that a difference between the target EGR return amount and the actual EGR return amount is 0. It is characterized in that it is a table in which a dead zone is set in the vicinity of. Further, in the control device for an internal combustion engine having EGR control according to the present invention, in addition to the above features, the factor relating to the front correction sensitivity is that the correction amount in the closing direction of the EGR valve is the correction amount in the opening direction. It is characterized in that the table is set larger.
- feedback control of the EGR valve opening degree is performed based on the difference between the target EGR recirculation amount and the actual EGR recirculation amount. It is characterized in that one multiplied by the gain is added once. Further, in addition to the above features, in the control device for an internal combustion engine having EGR control according to the present invention, the feedback control of the EGR valve opening is performed when the EGR valve reaches the maximum opening. It is characterized by stopping.
- the present invention controls ignition by the EGR rate by managing the EGR amount with the EGR rate. Correction of angle map and calculation of actual EGR rate with intake pipe pressure enable EGR rate feedback etc. Also, even after the pressure difference before and after the EGR valve reaches the critical pressure, feedback control is performed so that the actual EGR return amount approaches the target EGR return amount by correction according to the pressure difference between the intake pipe pressure and the exhaust pressure. , Enables precise control of the EGR valve opening.
- FIG. 1 is a block diagram of an example of an internal combustion engine provided with EGR control means according to the invention.
- FIG. 2 is a block diagram showing an outline of the EGR control means according to the present invention.
- FIG. 3 is a main part related to control of an engine equipped with a control device for an internal combustion engine provided with the EGR control means according to the present invention.
- FIG. 4 is an example of an internal configuration of a control device for an internal combustion engine provided with the E G R control means according to the present invention.
- FIG. 5 is an example showing details of blocks 20 1 to 2 10 of FIG.
- FIG. 6 is an example showing the blocks 2 1 1 to 2 1 3 of FIG. 2 in detail.
- FIG. 7 is an example showing the blocks 2 1 4 of FIG. 2 in detail.
- FIG. 8 is an example showing the setting of block 702 in FIG.
- Fig. 9 is an example showing the setting of block 7 in Fig. 7.
- FIG. 10 is an example showing the setting of block 702 in FIG.
- FIG. 11 is an example showing the block of block 214 in FIG. 2 in detail.
- FIG. 12 is an example showing the block 215 of FIG. 2 in detail.
- FIG. 13 is an example showing each variable behavior at the time of the control of the control device for an internal combustion engine provided with the EGR control means according to the present invention.
- FIG. 14 is an example of a detailed flow chart of the fuel calculation relationship of the control block diagram of FIG. 1 of the present invention.
- FIG. 15 is an example of a detailed flow chart of the ignition timing calculation relationship of the control block diagram of FIG. 1 of the present invention.
- Figure 16 is a detailed flow chart of blocks 20 1 to 2 1 0 of Figure 2 of the present invention. It is an example.
- FIG. 17 is an example of a detailed flowchart of blocks 21-11 of FIG. 2 of the present invention.
- FIG. 18 is an example of a detailed flow chart of the block of FIG. 7 of the present invention.
- FIG. 19 is an example of a detailed flow chart of the block of FIG. 11 of the present invention. Explanation of sign
- FIG. 1 is a block diagram showing an example of a control device of an internal combustion engine provided with an EGR control means according to the present invention.
- a block 101 is an engine rotational speed calculating means, and the number of pulses per unit time of the pulse signal which is an electric signal from the crank angle sensor set at a predetermined crank angle position of the engine. The number of revolutions per unit time of the engine is calculated by calculation processing.
- Block 1 02 calculates the basic fuel required by the engine from the engine speed and engine load calculated in block 1 0 1.
- the output of the intake pipe pressure sensor installed in the intake pipe is calculated and converted to the intake pipe pressure. Or, let's use a representative of the amount of intake air of the engine measured with a thermal air flow meter etc.
- the engine rotational speed calculated in block 101 and the engine load described above are used to map the correction factor in each operating region of the engine to the basic fuel calculated in block 102. calculate.
- the optimum basic ignition timing in each region of the engine is obtained and calculated based on the engine speed and the engine load.
- a block 105 is a valve set in the intake pipe, and detects the degree of opening of a throttle throttle valve that adjusts the amount of intake air of the engine, and determines the state of the engine desired by the driver. The state to be determined is whether it is idle or not, and whether it is acceleration or deceleration. Block 106 corrects the optimal basic ignition timing retrieved in block 104 according to the state of the engine determined in block 100.
- a block 107 determines the optimum target air-fuel ratio in each region of the engine by map search or the like based on the engine speed and the engine load.
- the feedback control coefficient (air-fuel ratio feedback coefficient) by PID control is calculated by the output of the oxygen concentration sensor set in the exhaust pipe so that the target air-fuel ratio determined in block 107 is obtained. Do.
- the block 109 calculates the optimum E G R opening based on the above-mentioned engine speed, the above-mentioned engine load, throttle throttle valve opening, intake air temperature, engine coolant temperature at startup, and the like.
- Block 1 10 0 corrects the basic fuel calculated in block 1 0 2 according to the basic fuel correction coefficient, the engine coolant temperature, and the air-fuel ratio feedback coefficient.
- Blocks 11 1 to 1 14 are fuel injection means for supplying the amount of fuel corrected in block 1 10 to the engine.
- Blocks 115-15 are ignition means for igniting the fuel mixture that has flowed into the cylinder in accordance with the required ignition timing of the engine corrected by the block 106 described above.
- FIG. 2 is a block diagram showing an outline of the EGR control means of the internal combustion engine according to the present invention.
- Block 201 retrieves the target EGR rate from the map based on the detected engine speed and engine load (throttle opening).
- detect The internal EGR rate is retrieved from the map based on the selected engine speed and engine load.
- Block 203 calculates the air flow rate drawn into the engine from the detected intake pipe pressure and engine speed. From the intake air amount, an actual EGR recirculation amount, which will be described later, is subtracted by an adder 204 to calculate the actual intake air amount.
- block 203 and adder 204 are not required.
- a target EGR return flow rate base value is calculated from the target EGR rate and the actual intake air amount.
- the exhaust gas residual amount is calculated from the internal EGR rate and the actual intake air amount.
- the target EGR reflux base value and the exhaust gas residual amount are respectively subjected to weighted averaging, and the adder 209 calculates a difference to calculate the target EGR reflux.
- the basic EGR opening is calculated from the target EGR recirculation amount described above.
- an EGR opening degree CPU command value is calculated from the basic EGR opening degree described above and the critical pressure extra-reflux amount correction value described later.
- the block 21 searches the exhaust pressure by the map based on the engine speed and the engine load.
- the intake pipe pressure is subtracted from the exhaust pressure by the adder 212 to calculate the differential pressure between the exhaust pressure and the intake pipe pressure.
- the actual EGR recirculation amount is calculated from the EGR opening degree CPU instruction value in accordance with the differential pressure.
- FIG. 3 shows a main part related to control of an engine equipped with a control device for an internal combustion engine provided with the EGR control means according to the present invention.
- the thermal air flowmeter 30 la which measures the amount of air intake by the engine, is connected to the intake pipe 304 by bypassing the throttle throttle valve 302 outside the engine body 301 and measuring the amount of air intake by the engine.
- Idle speed control valve 303 which controls the engine rotation speed by controlling the flow passage area of the flow passage
- intake pipe pressure sensor 305 which detects the pressure in the intake pipe 304
- fuel required by the engine The fuel injection valve 306 for supplying fuel, the crank angle sensor 307 set at a predetermined crank angle position of the engine, the spark plug for igniting the mixture of fuel supplied into the engine cylinder from the engine control device 3 1 2 Ignition energy based on the ignition signal of
- the ignition module 308 that supplies the engine torque
- the water temperature sensor 309 that detects the engine coolant temperature
- the oxygen concentration sensor that detects the oxygen concentration in the exhaust gas.
- the main engine switch for engine operation and shutdown is a key switch 31 1 1.
- a part of exhaust gas is returned to the intake pipe 304 EGR valve 3 1 3.
- Engine accessories are controlled.
- the gin controller 3 1 2 is shown.
- the intake pipe pressure sensor 305 is integrated with an intake air temperature sensor that measures the temperature of the intake air.
- the oxygen concentration sensor 310 outputs a signal proportional to the exhaust air-fuel ratio.
- the exhaust gas on the ratchet side Z lean side with respect to the theoretical air-fuel ratio is used. It may be one that outputs a signal.
- the intake pipe pressure is detected and used as the fuel control parameter of the internal combustion engine in the present embodiment, the intake air amount may be detected and used by a thermal air flow meter.
- FIG. 4 shows an example of the internal configuration of a control device for an internal combustion engine provided with EGR control means according to the present invention.
- an I / O unit 402 which functions as an interface for converting the electric signals of the sensors installed in the engine into signals for digital arithmetic processing.
- Signals from a water temperature sensor 404, a crank angle sensor 405, an oxygen concentration sensor 406, an intake pipe pressure sensor 407, a throttle opening sensor 408, and an information switch SW409 are input to the / O unit 402.
- a hot-wire air flow meter 403 is provided.
- the output signal from the CPU 40 1 is via the dry flow 4 1 0 to the fuel injection valve 4 1 1 to 4 14, the ignition coil 4 1 5 to 4 1 8, to the idle speed control (ISC) valve. It is sent to the I 2 C opening command value 4 1 9, E GR opening command value 420 to E GR valve.
- ISC idle speed control
- FIG. 5 is a detailed representation of the blocks 20 1 to 2 10 of FIG.
- a block 501 retrieves a target EGR rate EGRR from the engine speed and the engine load, or from the engine speed and the throttle opening degree, according to a previously set target EGR rate map.
- the intake air pressure QAR is multiplied by a constant to calculate the intake air amount QAR.
- the intake pipe pressure also rises, so the actual EGR recirculation amount EGRGER described later is subtracted from the calculated intake air amount QAR to be described later to calculate the actual intake air amount QER Do.
- the intake air amount QAR is calculated from the intake pipe pressure.
- the blocks 502 and 503 are unnecessary, and the measured intake
- the amount of air QAR is directly used as the actual amount of intake air QER, but the intake pipe pressure as an engine load used by other blocks is an engine obtained by dividing the amount of intake air QAR by the engine speed N e
- the load T p will be used.
- the actual intake air amount QER is switched by the block 506 switch block by setting “1” or “0” to the D jetrono L jetro determination software SW of the block 505.
- the target EGR return amount base value calculation unit of block 507 calculates a target EGR return amount base value EGRGE B from the target EGR rate EGRR and the actual intake air amount QER.
- the number 1 represents the basic equation of the EGR rate.
- a block 508 retrieves an internal EGR rate EG R I NR from the engine speed and the engine load, or from the engine speed and the throttle opening degree, according to a preset internal EGR rate map.
- the internal EGR is considered, if only the external EGR is desired to be managed, it can be coped with by setting the data of the block 508 map to zero.
- R is the amount of intake air Q a is the amount of actual intake air QER
- the equations shown in blocks 5.0, 9, and 9 of FIG. 5 are obtained, and the exhaust gas residual amount EGR I NM is calculated by this equation.
- the weighted average weight is applied to the above-mentioned exhaust gas residual amount EGR I NM from the value obtained by applying the weighted average to the target EGR reflux amount base value EGRGEB described above using the weighted average weight KE GRGE. Calculate the target EGR reflux amount EGRGE by subtracting the weighted average value using KEGR IN.
- a block 513 is a basic EGR opening degree operation unit.
- the basic EGR opening degree EGRSTDB is retrieved from the above-mentioned target EGR return amount EG RGE by a table. Note that the table is previously determined on the assumption that a differential pressure DP 1 PM between an exhaust pressure and an intake pipe pressure described later is in a critical pressure state.
- the block 601 searches the exhaust pressure PME XT from the engine rotational speed and the engine load or the engine rotational speed and the throttle opening according to the preset exhaust pressure map.
- the intake pipe pressure is subtracted from the retrieved exhaust pressure PMEXT by the adder 602, and the differential pressure DP 1 PM of the exhaust pressure and the intake pressure is calculated.
- a block 603 is a real EGR return amount calculation unit, in which at least two or more flow rate characteristic tables of the EGR valve opening degree and the return amount are provided according to the above-mentioned differential pressure DP 1 PM. Based on the command value EGR S TD, search the table for the actual EGR recirculation amount EGRGER.
- the number 2 represents the basic equation of the EGR recirculation amount. [Number 2]
- EGR_A EGR opening area
- the above equation (1) is a relationship between the pressure difference between the exhaust pressure and the intake pipe pressure and the EGR recirculation amount.
- the equation (2) is a equation which calculates the EGR recirculation amount by modifying the equation (1).
- the above equation (2) represents that the EGR recirculation amount can be obtained from the difference between the EGR opening area, the coefficient, and the exhaust pressure and the pressure difference between the exhaust pressure and the intake pipe pressure.
- the equation (3) above incorporates the nonlinear characteristics. This is realized by the plurality of flow rate characteristic tables of the actual EGR reflux amount calculation unit 603.
- the above-mentioned actual EGR return amount calculation unit 603 is configured to include a plurality of flow rate characteristic tables according to the differential pressure DP 1 PM, the plurality of tapes are replaced by maps. You can also configure it to replace it with an approximate expression from experimental values.
- the above equation (3) represents the calculation of the EGR reflux amount when the difference (differential pressure) between the exhaust pressure and the intake pipe pressure is smaller than the critical pressure.
- FIG. 7 shows in detail an example of the critical pressure extra-reflux amount correction operation unit of block 214 in FIG.
- the adder 701 subtracts the above-mentioned actual EGR recirculation amount EGRGER from the above-mentioned target EGR recirculation amount EGRGE, to calculate the critical pressure flow difference def g e r.
- cr i i is retrieved from the EGR critical pressure correction table with the above-mentioned critical pressure flow difference de f g e r.
- the adder 703 adds the previous value of the critical pressure extra-recirculation correction amount EGRCR I and the cr i i to calculate the critical pressure extra-reflow correction amount EGRCR I.
- the critical pressure flow difference difference defger is set to zero at switch 705, and the critical pressure extra-recirculation amount correction amount EGRCR I is set to zero at switch 704 and critical immediately.
- the overpressure correction is set to 0 (disabled).
- the vertical axis is the crii
- the horizontal axis is the critical pressure flow difference defger
- the right half of the figure is the area where the defger is positive and represents the open side of the EGR valve.
- the half is the area where the defger is negative, and represents the closing side of the EGR valve.
- set dead zones with crii equal to 0 and prevent chattering near the target in a region where .defger is small (a region where the difference between the target EGR recirculation amount and the actual EGR recirculation amount is small).
- Fig. 8 shows an example in which the EGR critical pressure outside correction table is set such that crii is point symmetric on the positive side and negative side of the defer with respect to the critical pressure flow difference defger.
- Fig. 9 shows an example where the table is set by making the inclination of crii steeper on the minus side of defer as compared with Fig. 8. By doing this, the crii on the closing side of the EGR valve is enlarged. Misfires are prevented by accelerating the closing operation of the EGR valve outside the critical pressure.
- FIG. 10 shows an example in which the EGR critical pressure correction table is set so that cr i i changes stepwise. Thus, the dead zone can be set stepwise.
- FIG. 11 shows in detail another example of the critical pressure extra-reflux amount correction operation unit of the block 214 of FIG.
- Block 1 120 searches a table of gain reference value GA I N S TD from the critical pressure flow difference de f g e r described above.
- Switch 1 1 03 is the open side gain OPGA I N of block 1 1 04 and the close side gain C L G A 1 of block 1 1 05
- I Output NHOS The gain on the open side and the gain on the close side are set by the ROM constant etc., and the close side gain is set large to prevent misfires.
- a multiplier 1106 multiplies the gain reference value GA I NSTD by the gain correction GAI NHOS, and further multiplies the critical pressure flow difference defger in the multiplier 1 1 0 7 to correct the critical pressure extra-recirculation amount. Calculate the quantity EGR CRI.
- Fig.12 shows in detail an example of the EGR opening CPU command value calculation unit 215 of Fig.2. It is a thing.
- the adder 1201 adds the basic EGR opening degree EGRSTD.B and the above-mentioned critical pressure extra-recirculation amount correction amount EGRCR I.
- Block 1 202 limits the upper and lower limits defined by a constant or the like to the above added value, and outputs the EGR opening degree CPU command value E GRS TD.
- FIG. 13 is an example showing each variable behavior at the time of operation of a control device for an internal combustion engine provided with the EGR control means according to the present invention.
- Ch 1 130 1 is throttle opening
- Ch 1 302 is engine speed
- Ch 1 305 is intake air amount
- Ch 1 306 is intake pipe pressure
- Ch 1 308 is EG R
- the opening command value and chart 1 3 1 1 show the behavior of the EGR valve opening.
- Section 1 303 is a transient section of the throttle opening, and chart 1 308 shows the EGR opening command value corrected by the method of the present invention.
- 1 307 is a point at which the intake pipe pressure reaches a critical pressure, and as shown in chart 1 308 at this boundary, the EGR opening degree is larger than that in the absence of the control of the present invention. Since the command value can be increased, as indicated by the chart 1 3 1 1, when the control of the present invention is present, the degree of opening of the EGR valve can be increased as compared with the case without the control.
- FIG. 14 shows an example of a flowchart of fuel calculation in a control device for an internal combustion engine provided with the EGR control means according to the present invention shown in FIG.
- Step 1401 calculates the engine speed based on the signal from the crank angle sensor.
- Step 1 402 reads the engine load.
- the engine load is obtained by dividing the suction negative pressure or the amount of intake air by the engine speed.
- Step 1403 calculates the basic fuel amount.
- a correction coefficient of a basic fuel amount is searched based on the engine speed and the engine load.
- Step 1 405 retrieves the required target air-fuel ratio.
- Step 1406 reads the output of the oxygen concentration sensor, and step 1407 performs air-fuel ratio feedback based on the output of the oxygen concentration sensor so that the air-fuel ratio becomes the target air-fuel ratio, and calculates an air-fuel ratio feedback coefficient.
- Step 1408 calculates an EGR opening degree command value from the engine speed and the engine load.
- step 1409 the air-fuel ratio feedback coefficient is applied to the basic fuel amount.
- step 1410 the basic fuel amount corrected as described above is set to the fuel injection means.
- FIG. 15 is an example of a detailed flowchart of the ignition timing calculation relationship of the control block diagram of FIG. Read the engine speed and the engine load in step 1501.
- step 1502 a basic ignition timing is retrieved based on the engine speed and the engine load.
- step 1 503 reads the throttle opening, and step 1 504 determines the engine state for acceleration / deceleration and idle judgment.
- step 1505 the ignition correction amount is calculated based on the condition determined above, and is reflected to the basic ignition timing, and set in the ignition means in step 1506.
- the fuel calculation and the ignition timing calculation are performed at different interrupt cycles in FIGS. 14 and 15, they may be performed at the same timing. Also, although it has been interrupted for a fixed time, it may be carried out at a timing synchronized with the rotation angle of the engine.
- FIG. 16 is an example of a detailed flow chart of blocks 201 to 210 of FIG. Step 1
- the intake air amount is calculated from the engine speed and the intake pipe pressure. Also, the amount of intake air measured by a thermal air flow meter may be used as it is.
- step 1603 calculate the engine load by dividing the intake air amount by the engine speed.
- Step 1604 searches for the target EGR rate by engine speed and engine load or engine speed and throttle opening.
- Step 1 Search internal EGR rate by engine speed and engine load at 605.
- the actual amount of EGR recirculation is read, and in step 1607, the amount of intake air is subtracted from the amount of actual EGR recirculation to calculate the actual amount of intake air.
- step 1 608 the target EGR return amount base value is calculated using the target EGR ratio and the actual intake air amount.
- step 1 609 calculates the residual amount of exhaust gas from the internal EGR rate and the actual intake air amount.
- Step 1 6 1 Basic based on the target EGR recirculation amount
- FIG. 17 is an example of a detailed flowchart of blocks 2 1 1 to 2 1 3 of FIG. Step 1 Read the engine speed, engine load and intake pipe pressure at 70 1.
- step 1702 search exhaust pressure by engine speed and engine load.
- step 1703 the pressure difference is calculated by subtracting the intake pipe pressure from the exhaust pressure described above.
- step 1704 the actual EGR recirculation amount is calculated from the differential pressure and the EGR opening degree CPU command value.
- FIG. 18 is an example of a detailed flowchart of the critical pressure extra-reflux amount correction operation unit of FIG. Step 1
- the critical pressure outside flow rate difference is output as ⁇ . If the target EGR rate ⁇ 0, the aforementioned target EGR return amount is read in step 1803, and the aforementioned actual EGR return amount is read in step 1804, and the aforementioned target EGR return amount is read in step 1805.
- the actual EGR recirculation amount is subtracted to calculate the critical pressure outside flow difference.
- a table outside the critical pressure correction amount is retrieved based on the above critical pressure external flow rate difference.
- step 1807 it is judged again whether or not the target EGR rate ⁇ 0. If the target EGR rate ⁇ 0, in step 1 808, the critical pressure outside correction amount is output as 0. If the target EGR rate ⁇ 0, in step 1 809, calculation is performed by feeding back the critical pressure correction amount using the previous critical pressure correction amount and the aforementioned gain.
- FIG. 19 is an example of a detailed flowchart of the critical pressure extra-reflux amount correction operation unit of FIG. Step 1 90 1 Read the above-mentioned target EGR reflux, read step 1 90 2 Read the above-mentioned actual EGR reflux, Subtract the actual EGR reflux from the above-mentioned target EGR reflux at step 1 903 Calculate the outflow difference.
- step 1904 a gain reference value is retrieved based on the above-mentioned critical pressure outside flow rate difference.
- step 1 905 it is judged whether the critical pressure outside flow rate difference is 0 or more, and if it is not 0 or more, the gain correction value selects the close side gain in step 1 906, and if it is 0 or more, step 1 907 Select the open side gain. Note that both the closing gain and the opening gain are set by the ROM constant etc., and the closing gain is set large to prevent a misfire.
- step 1 908 it is determined whether the target EGR rate ⁇ 0. If the target EGR rate ⁇ 0, in step 1 909, the critical pressure outside correction amount is set to 0. If the target EGR rate ⁇ 0, the critical pressure outside flow rate difference, the gain reference value, and the gain correction value are respectively multiplied in step 1 9 10 to calculate the critical pressure outside correction amount.
- the present invention manages the EGR amount by the EGR rate, corrects the ignition advance map by the EGR rate, calculates the actual EGR rate by the intake pipe pressure, and outputs the EGR rate feedback. Can be expected to be possible. Also, even after the pressure difference before and after the EGR valve reaches the critical pressure, feedback control is performed so that the actual EGR return amount approaches the target EGR return flow rate by correction according to the pressure difference between the intake pipe pressure and the exhaust pressure. It becomes possible to control the opening degree of the EGR valve with high accuracy. Further, when the EGR valve is changed, it is possible to cope with only the change of the valve characteristic data, and there is no need to change the control logic, so it can be said that the control logic of the present invention has high versatility.
- the present invention is not limited to the above-mentioned embodiment. Further, each component is not limited to the above configuration as long as the characteristic functions of the present invention are not impaired.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
本発明の目的は、内燃機関のEGR制御において、EGR還流量を精度よく算定する制御装置を提供すること。エンジンの吸入空気量と内燃機関の状態に基づいた目標EGR率より得た目標EGR還流量と実EGR還流量の差分に基づいて還流量補正量を求める手段と、基本EGRバルブの開度と前記還流量補正量からEGRバルブの開度を求める手段とを備えて、前記目標EGR還流量と実EGR還流量の差分によりEGRバルブ開度を帰還制御することを特徴とするEGR制御を有した内燃機関の制御装置。
Description
明細書
EGR率管理による EGR制御装置 技術分野
本発明は、 内燃機関の EG R還流量の制御、 特に、 エンジンの状態に応じた目 標 EG R率に基づいて EG R還流量を制御する内燃機関の制御装置に関する。 背景技術
内燃機関の EGR制御装置として、 例えば下記の特許文献 1に記載されてい るとおり、 内燃機関の運転状態である機関回転数と機関負荷とによって予め設定 した設定値に調整するように、 EGRバルブ開度を前記設定値に対応するステツ プ値ゃデユーティ値などの制御量により制御するものが知られている。
特許文献 1 :特開 2000— 1 99454号公報 発明の開示
しかし、 上記の従来の方法は、 EGRバルブ開度を運転条件のマップによって 管理しており、各運転領域で EG Rバルブ開度—燃焼状態 (エンジン回転数変動な ど)一 NO X排出量の相関を見る必要があり、 EGR率をその後で確認することに なるため、 EGR率の管理を含めた適合に多大なステップ数を要するという課題 があった。
上記の課題を解決するために、 本発明の EGR制御を有した内燃機関の制御装 置は、 内燃機関の状態に基づいて目標 EGR率を求める手段と、 エンジンの吸入 空気量を得る手段と、 前記吸入空気量と前記目標 EGR率より目標 EGR還流量 を得る手段と、 前記目標 EGR還流量に基づいて基本 EGRバルブの開度を求め る手段と、 EGRバルブの開度から臨界圧時の還流量を求める手段と、 排圧と吸 気管圧力の差圧を演算する手段と、 前記 E G Rのバルブ開度と還流量の関係から 前記差圧下の実 E G R還流量を求める手段と、 前記目標 E G R還流量と前記実 E GR還流量の差分に基づいて還流量補正量を求める手段と、 前記基本 EG Rバル
ブの開度と前記還流量補正量から前記 EG Rバルブの開度を求める手段とを備え て、 前記目標 EG R還流量と前記実 EG R還流量の差分により EGRバルブ開度 を帰還制御することを特徴とする。
また、 本発明の EGR制御を有した内燃機関の制御装置は、 上記の特徴に加え て、 前記目標 EGRを求める手段は、 外部 EGR及び内部 EGRの係る要因を含 むことを特徴とする。
また、 本発明の EG R制御を有した内燃機関の制御装置は、 上記の特徴に加え て、 前記差圧下の実 EG R還流量の関係を求める手段は、 バルブ開度と還流量の テーブルを少なくとも 1つ以上の差圧に対して備えていることを特徴とする。 また、 本発明の EG R制御を有した内燃機関の制御装置は、 上記の特徴に加え て、 前記目標 EGR還流量と前記実 EGR還流量の差分に基づいて前記還流量補 正量を求める前記手段は、 補正感度に係る要因を定める手段と、 前記補正感度に 係る要因を EG R基本開度に積算する手段を備えて、 前記積算された EG R基本 開度に基づいて更に新たなる実 EG R還流量を求めて、 前記目標 EG R還流量と 前記実 EG R還流量の差分が 0もしくは所定の値以下となるまで前記積算してい くことを特徴とする。
また、 本発明の EG R制御を有した内燃機関の制御装置は、 上記の特徴に加え て、 前記補正感度に係る要因は、 前記目標 EG R還流量と前記実 EG R還流量の 差分が 0の近傍において、 不感帯を設定したテーブルであることを特徴とする。 また、 本発明の EG R制御を有した内燃機関の制御装置は、 上記の特徴に加え て、 前設補正感度に係る要因は、 EGRバルブが閉方向への補正量が開方向への 補正量より大きく設定したテーブルであることを特徴とする。
また、 本発明の EG R制御を有した内燃機関の制御装置は、 上記の特徴に加え て、 前記 EGRバルブ開度の帰還制御は、 前記目標 EGR還流量と前記実 EGR 還流量の前記差分にゲインを乗じたものを一回加算することを特徴とする。 また、 本発明の EG R制御を有した内燃機関の制御装置は、 上記の特徴に加え て、 前記 EG Rバルブ開度の帰還制御は、 前記 EG Rバルブが最大開度に達した 時には帰還を停止することを特徴とする。
本発明は、 EGR量を EGR率で管理することにより、 EGR率による点火進
角マップの補正や、 吸気管圧力で実 EG R率を計算し、 EGR率フィードバック などを可能とする。 また、 EGRバルブ前後の圧力差が臨界圧に達した後も吸気 管圧力と排圧の差圧に応じた補正により、 目標とする EGR還流量に実際の EG R還流量を近づけるようフィードバック制御し、 EGRバルブ開度を精度良く制 御することを可能とする。 図面の簡単な説明
図 1は、 発明に係る EG R制御手段を備えた内燃機関の一例のプロック図であ る。
図 2は、 本発明に係る EG R制御手段の概要を示すブロック図である。
図 3は、 本発明に係る EG R制御手段を備えた内燃機関の制御装置が搭載され たェンジンの制御に係る主要部である。
図 4は、 本発明に係る E G R制御手段を備えた内燃機関の制御装置の内部構成 の一例である。
図 5は、図 2のブロック 20 1〜 2 1 0のブロックを詳細に表した一例である。 図 6は、図 2のブロック 2 1 1〜 2 1 3のブロックを詳細に表した一例である。 図 7は、 図 2のブロック 2 1 4のブロックを詳細に表した一例である。
図 8は、 図 7のブロック 702の設定を表した一例である。
図 9は、 図 7のブロック 7◦ 2の設定を表した一例である。
図 1 0は、 図 7のブロック 702の設定を表した一例である。
図 1 1は、 図 2のブロック 2 14のブロックを詳細に表した一例である。
図 1 2は、 図 2のプロック 2 1 5のブロックを詳細に表した一例である。
図 1 3は、 本発明に係る EGR制御手段を備えた内燃機関の制御装置のォペレ ーシヨン時における各変数挙動を表した一例である。
図 1 4は、 本発明の図 1の制御ブロック図の燃料計算関係の詳細なフローチヤ 一トの一例である。
図 1 5は、 本発明の図 1の制御プロック図の点火時期計算関係の詳細なフロー チヤ一トの一例である。
図 1 6は、 本発明の図 2のブロック 20 1〜 2 1 0の詳細なフローチヤ一トの
一例である。
図 1 7は、 本発明の図 2のブロック 2 1 1〜 2 1 3の詳細なフローチヤ一トの 一例である。
図 1 8は、 本発明の図 7のプロックの詳細なフローチヤ一トの一例である。 図 1 9は、 本発明の図 1 1のブロックの詳細なフローチヤ一トの一例である。 符号の説明
1 0 9 E G R制御手段
2 0 5 目標 E G R還流量ベース値演算部
2 0 6 排ガス残留量演算部
2 1 0 基本 E G R開度演算部
2 1 3 実 E G R還流量演算部
2 1 4 臨界圧外還流量補正演算部
2 1 5 £ 0 1 開度〇? ;指令値演算部
3 0 5 吸気管圧力センサ
3 0 6 インジェクタ
3 1 0 酸素濃度センサ
3 1 2 エンジン制御装置
3 1 3 E G Rバルブ 発明を実施するための最良の形態
本発明の実施例を、 以下、 図を参照して説明する。
図 1は、 本発明に係る E G R制御手段を備えた内燃機関の制御装置の一例を示 すブロック図である。 ブロック 1 0 1は、 エンジン回転数計算手段であり、 ェン ジンの所定のクランク角度位置に設定されたクランク角度センサからの電気的信 号であるパルス信号の単位時間当たりの入力数を力ゥントする演算処理により、 エンジンの単位時間当りの回転数を計算する。
ブロック 1 0 2は、 ブロック 1 0 1で演算されたエンジンの回転数とエンジン 負荷からエンジンの要求する基本燃料を計算する。 エンジン負荷としては、 吸気 管に設置された吸気管圧力センサの出力を演算処理して吸気管圧力に変換したも
のを用いるか、 または、 熱式空気流量計等で計測されたエンジンの吸入空気量で 代表させてもよレ、。
ブロック 1 0 3は、 ブロック 1 0 1で演算されたエンジンの回転数と前記のェ ンジン負荷により、 ブロック 1 0 2で計算された基本燃料に対するエンジンの各 運転領域における補正係数をマップにより得て計算する。 ブロック 1 0 4は、 前 記エンジン回転数と前記エンジン負荷により、 エンジンの各領域における最適の 基本点火時期をマップにより得て計算する。
ブロック 1 0 5は、 吸気管に設定された弁であって、 エンジンの吸入空気量を 調節するスロットル絞り弁の開度を検出し、 運転者が望むエンジンの状態を判定 する。 判定される状態は、 アイ ドル状態であるか否か、 加減速状態であるか否か である。ブロック 1 0 6は、ブロック 1 0 4で検索された最適の基本点火時期を、 ブロック 1 0 5で判定されたエンジンの状態に応じて補正する。
ブロック 1 0 7は、 前記のエンジン回転数と前記のエンジン負荷によりェンジ ンの各領域における最適の目標空燃比をマップ検索等で決定する。 ブロック 1 0 8は、 ブロック 1 0 7で決定された目標空燃比となるように、 排気管に設定され た酸素濃度センサの出力により、 P I D制御による帰還制御係数 (空燃比フィー ドバック係数) を計算する。
ブロック 1 0 9は、 前記のエンジン回転数、 前記のエンジン負荷、 スロッ トル 絞り弁の開度、 吸気温度、 始動時エンジン冷却水温等により、 最適の E G R開度 を計算する。 ブロック 1 1 0は、 ブロック 1 0 2で計算された基本燃料に対し、 前記の基本燃料補正係数、 前記のエンジン冷却水温、 前記の空燃比フィードバッ ク係数により補正を施す。
ブロック 1 1 1〜1 1 4は、 前記のブロック 1 1 0で補正された燃料量をェン ジンに供給する燃料噴射手段である。 ブロック 1 1 5〜1 1 8は、 前記のブロッ ク 1 0 6で補正されたエンジンの要求点火時期に応じてシリンダに流入した燃料 混合気を点火する点火手段である。
図 2は、 本発明に係る内燃機関の E G R制御手段の概要を示すブロック図であ る。 ブロック 2 0 1は、 検出されたエンジン回転数、 エンジン負荷 (スロットル 開度) により、 マップから目標 E G R率を検索する。 ブロック 2 0 2では、 検出
されたエンジン回転数とエンジン負荷により、 マップから内部 EGR率を検索す る。 ブロック 203は、 検出された吸気管圧力とエンジン回転数からエンジンに 吸入する空気流量を計算する。 この吸入空気量から、 後述する実 EGR還流量を 加算器 204で減算し、 実吸入空気量を計算する。 熱式空気流量計で吸入空気量 を計測する場合は、 ブロック 203と加算器 204は必要とされない。
ブロック 205では、 前記の目標 EGR率と実吸入空気量から、 目標 EGR還 流量ベース値を演算する。 ブロック 206では、 前記の内部 EG R率、 実吸入空 気量から、排ガス残留量を演算する。プロック 20 7及び、ブロック 208では、 前記目標 EG R還流量ベース値、 排ガス残留量にそれぞれ加重平均を施し、 加算 器 209で差分を取り、 目標 EG R還流量を計算する。 ブロック 2 1 0では、 前 記の目標 EGR還流量から基本 EGR開度を演算する。 ブロック 2 1 5では、 前 記の基本 EGR開度と、 後述する臨界圧外還流量補正値から、 EGR開度 CPU 指令値を演算する。
ブロック 2 1 1は、 前記のエンジン回転数と前記のエンジン負荷により、 マツ プにより排圧を検索する。 前記の排圧から前記の吸気管圧力を加算器 2 1 2で減 算し、 排圧と吸気管圧力の差圧を計算する。 ブロック 2 1 3では、 前記の差圧に 応じて、 前記 EGR開度 C PU指令値から実 EGR還流量を演算する。 ブロック
2 14では、 前記の目標 EGR率に応じて、 前記の目標 EGR還流量と前記実 E
GR還流量から、 前記の臨界圧外還流量補正値を演算する。
図 3は、 本発明に係る EGR制御手段を備えた内燃機関の制御装置が搭載され たェンジンの制御に係る主要部を示している。
図 3には、 エンジン本体 30 1の外、 エンジンの吸入する空気量を計測する熱 式空気流量計 30 la、 吸入する空気量をスロッ トル絞り弁 302をバイパスし て吸気管 304へ接続された流路の流路面積を制御することによりエンジンのァ ィ ドル時の回転数を制御するアイ ドルスピードコントロールバルブ 303、 吸気 管 304内の圧力を検出する吸気管圧力センサ 305、 エンジンの要求する燃料 を供給する燃料噴射弁 306、 エンジンの所定のクランク角度位置に設定された クランク角度センサ 307、 エンジンのシリンダ内に供給された燃料の混合気に 点火する点火栓に、 エンジン制御装置 3 1 2からの点火信号に基づいて点火エネ
ルギを供給する点火モジュール 308、 エンジンのシリンダブ口ックに設定され エンジンの冷却水温を検出する水温センサ 309、 エンジンの排気管に設定され 排気ガス中の酸素濃度を検出する酸素濃度センサ 3 1 0、 エンジンの運転 ·停止 のメインスィツチであるィダニッションキースィツチ 3 1 1、 排気ガスの一部を 吸気管 304内へ戻す EGRバルブ 3 1 3、 エンジンの各補器類を制御するェン ジン制御装置 3 1 2が示されている。 なお、 吸気管圧力センサ 305は、 吸気の 温度を計測する吸気温センサが一体化されている。
酸素濃度センサ 3 1 0は、 本実施例では、 排気空燃比に対して比例的な信号を 出力するものを用いているが、 理論空燃比に対して排気ガスがリツチ側 Zリーン 側の 2つの信号を出力するものでもよい。 なお、 本実施例では内燃機関の燃料制 御のパラメータとして、 吸気管圧力を検出して用いているが、 熱式空気流量計で 吸入空気量を検出して用いることもできる。
図 4は、 本発明に係る EG R制御手段を備えた内燃機関の制御装置の内部構成 の一例を示す。 CPU40 1の内部には、 エンジンに設置された各センサの電気 的信号をデジタル演算処理用の信号に変換するインタ一フェイスとして機能する I /O部 402が設定されており、 本実施例の I /O部 402には、 水温センサ 404、 クランク角センサ 405、 酸素濃度センサ 406、 吸気管圧力センサ 4 07、 スロッ トル開度センサ 408、 イダニッシヨン SW40 9から信号が入力 される。 なお、 熱式空気流量計等で吸入空気量を計測するシステムにおいては、 熱線式空気流量計 403が設けられる。
CPU 40 1からの出力信号は、 ドライノく 4 1 0を介して、 燃料噴射弁 4 1 1 〜 4 14、 点火コイル 4 1 5〜4 1 8、 アイ ドルスピードコント口ール ( I S C ) バルブへの I s C開度指令値 4 1 9、 E GRバルブへの EG R開度指令値 420 へ送られる。
図 5は、図 2のブロック 20 1〜 2 1 0のブロックを詳細に表したものである。 ブロック 50 1は、 予め設定した目標 EGR率マップによりエンジン回転数とェ ンジン負荷、 またはエンジン回転数とスロットル開度から目標 EGR率 EGRR を検索する。プロック 502では、吸気管圧力とエンジン回転数と定数を乗じて、 吸入空気量 Q A Rを演算する。
EGRバルブが開いて EGR還流が始まると、 吸気管圧力も上昇するため、 演 算した吸入空気量 QARから後述する実 EGR還流量 EGRGERを加算器 50 3で減算し、 実吸入空気量 QERを計算する。 なお、 本実施例では、 吸気管圧力 から吸入空気量 Q A Rを計算しているが、 熱式空気流量計等で吸入空気量を計測 するシステムでは、 ブロック 502、 503は不要であり、 計測した吸入空気量 QARを実吸入空気量 QERとして直接使用するが、 他のプロックで使用される エンジン負荷としての吸気管圧力は、 プロック 504で吸入空気量 QARをェン ジン回転数 N eで除したエンジン負荷 T pを用いることとなる。
本実施例では、 前記の実吸入空気量 QERは、 ブロック 505の Dジェトロノ Lジェトロ判定ソフト SWに" 1"または" 0"を設定してプロック 506のスィッ チブロックで切替える。 ブロック 507の目標 EG R還流量ベース値演算部は、 前記の目標 EGR率 EGRRと前記の実吸入空気量 QERから目標 EGR還流量 ベース値 EGRGE Bを演算する。
数 1は、 EGR率の基本式を表している。
[数 1]
EGRR = ~^- Qa + Ge
Ge EGR還流量
QA 吸入空気暈 数 1を EGR還流量 G eの式に変形し、 G eを目標 E G R率 E G R Rとし、 吸 入空気量 Q aを実吸入空気量 QERとすると、 図 5のブロック 507内に示した 式が得られ、 この式により、 目標 EGR還流量ベース値を演算する。
ブロック 508は、 予め設定した内部 EGR率マップによりエンジン回転数と エンジン負荷、 またはエンジン回転数とスロッ トル開度から内部 EG R率 EG R I NRを検索する。
なお、 本実施例では、 内部 EG Rを考慮しているが、 外部の EG Rだけを管理 したい場合は、 プロック 508マップのデータを 0設定することで対応できる。 前記の数 1を EGR還流量 G eの式に変形し、 G eを內部 EGR率 EGR I N
Rとし、 吸入空気量 Q aを実吸入空気量 QERとすると、 図 5のブロック 5.0,, 9, 内に示した式が得られ、 この式により、 排ガス残留量 EGR I NMを演算する。 加算器 5 1 0では、 前記した目標 EGR還流量ベース値 EGRGEBに対し、 加重平均重み K E GRGEを用いて加重平均を施した値から、 前記した排ガス残 留量 EGR I NMに対し、 加重平均重み KEGR I Nを用いて加重平均を施した 値を減算し、 目標 EGR還流量 EGRGEを計算する。 ブロック 5 1 3は基本 E GR開度演算部であり、 ここでは、 前記の目標 EG R還流量 EG RGEからテー ブルにより基本 EGR開度 EGRSTDBを検索する。 なお、 前記テーブルは、 後述の排圧と吸気管圧力の差圧 DP 1 PMが臨界圧状態であるとして予め定める。 図 6は、図 2のブロック 2 1 1〜 2 14のブロックを詳細に表したものである。 ブロック 60 1は、 予め設定した排圧マップによりエンジン回転数とエンジン負 荷、 またはエンジン回転数とスロッ トル開度から排圧 PME XTを検索する。 検 索した排圧 PMEXTから吸気管圧力を加算器 602で減算し、 前記の排圧と吸 気管圧力の差圧 D P 1 PMを計算する。 ブロック 603は、 実 EG R還流量演算 部であり、 EGRのバルブ開度と還流量の流量特性テーブルを前記の差圧 D P 1 PMに応じて少なくとも 2つ以上備えておき、 EGR開度 C PU指令値 EGR S TDにから、 実 EGR還流量 EGRGE Rをテーブル検索する。
数 2は、 EGR還流量の基本式を表している。 [数 2]
= f{EGR _A)xKx ( 1 - Pm) (2)
(PI- く臨界圧の時
Ge = g{EGR_A) (3)
EGR_A : EGR開口面積
PI 排圧
Pm 吸気管圧力
上記 (1 ) 式は、 排圧と吸気管圧力の差圧と EGR還流量の関係式であり、 上
記 (2) 式は、 上記 (1) 式を変形して、 EGR還流量を演算する式にしたもの である。
上記 (2) 式は、 EGR開口面積、 係数、 排圧と吸気管圧力の差圧から EGR 還流量を求めることができることを表しており、 上記 (3) 式の非線形な特性を 取り込む形で前記の実 EG R還流量演算部 603の複数の流量特性テーブルで実 現されている。
本実施例では、 前記の実 EG R還流量演算部 603において、 差圧 DP 1 PM に応じて複数の流量特性テーブルを備える構成としているが、 この複数のテープ ルをマップに置き換えるよう構成しても良いし、 実験値からの近似式に置き換え るよう構成してもよレ、。
上記 (3) 式は、 排圧と吸気管圧力の差分 (差圧)が臨界圧より小さいときの E GR還流量の演算を表している。 排圧に対して吸気管圧力を低く していくと、 排 気管と吸気管を結ぶ EG R管内の EG R還流量の流速が音速に達し、 このときの 圧力を臨界圧という。 流速が音速を超えることはないので、 吸気管圧力を更に低 く しても EGR還流量の流速は変わらない。 この場合には、 EGR還流量は EG R開口面積により決定される。
図 7は、 図 2のブロック 2 14の臨界圧外還流量補正演算部の一例を詳細に表 したものである。 加算器 70 1では、 前記の目標 EGR還流量 EGRGEから前 記の実 EGR還流量 EGRGERを減算し、 臨界圧流量差分 d e f g e rを計算 する。 ブロック 702では、 前記の臨界圧流量差分 d e f g e rで、 EGR臨界 圧外補正テーブルから、 c r i iを検索する。 加算器 703では、 臨界圧外還流 量補正量 EGRCR Iの前回値と、 前記 c r i iを加算して臨界圧外還流量補正 量 EGRCR Iを計算する。ただし、前記の目標 EGR率 EGRRが 0の場合は、 スィツチ 705で、 前記の臨界圧流量差分 d e f g e rを 0にし、 スィッチ 70 4で臨界圧外還流量補正量 EGRCR Iを 0にして、 即座に臨界圧外の補正を 0 (無効)とする。
図 8〜図 1 0は、 図 7の EGR臨界圧外補正テーブルの設定例である。 それぞ れ縦軸が前記 c r i i、 横軸が前記の臨界圧流量差分 d e f g e rであり、 図の 右半分は d e f g e rが正の領域であり、 E G Rバルブの開く側を表し、 図の左
半分は d e f g e rが負の領域であり、 E G Rバルブの閉じ側を表す。 また、 . d e f g e rが小さい領域 (目標 E G R還流量と実 E G R還流量の差分が小さい領 域) では、 c r i iを 0として不感帯を設定し、 目標近くでのチャタリングを防 止する。
図 8は、 前記の臨界圧流量差分 d e f g e rに対して、 c r i iが d e f e r のプラス側とマイナス側で点対称どなるように E G R臨界圧外補正テーブルを設 定した例であるが、 このように設定すると、 EGR還流量が多くなる程、 減速時 等で失火を生じる危険がある。
図 9は、 図 8と比較して c r i iの傾きを d e f e rのマイナス側でより急に してテーブルを設定した例であり、 このようにすることで、 EGRバルブの閉じ 側の c r i iを大きく して、 臨界圧外における EG Rバルブの閉じ側の動作を速 くすることで、 失火を防止している。
図 1 0は、 c r i iがステップ的に変化するように、 EGR臨界圧外補正テー ブルを設定した例である。 このように不感帯を段階的に設定することもできる。 図 1 1は、 図 2のプロック 2 1 4の臨界圧外還流量補正演算部の他の例を詳細 に表したものである。 加算器 1 1 0 1では、 前記の目標 EGR還流量 EGRGE から前記の実 EGR還流量 EGRGERを減算し、 臨界圧流量差分 d e f g e r を演算する。 ブロック 1 1 02は、 前記の臨界圧流量差分 d e f g e rからゲイ ン基準値 GA I N S TDをテーブル検索する。 スィッチ 1 1 03は、 ブロック 1 1 04の開側ゲイン OPGA I Nと、 ブロック 1 1 05の閉側ゲイン C L G A I
Nを、 前記の臨界圧流量差分 d e f g e rの正負により切替え、 ゲイン補正 G A
I NHOSを出力する。 なお、 開側ゲインと閉側ゲインは、 ROM定数などによ つて設定される値とし、 失火を防ぐために閉側ゲインを大きく設定する。
乗算器 1 1 06は、 前記のゲイン基準値 GA I NSTDに前記のゲイン補正 G A I NHOSを乗じ、 更に乗算器 1 1 0 7で、 前記の臨界圧流量差分 d e f g e rを乗じて臨界圧外還流量補正量 EGR CR Iを演算する。
ただし、 前記の目標 EGR率 EGRRが 0のときは、 スィッチ 1 1 08で臨界 圧外還流量補正量 EGRCR Iを 0として、 補正を無効とする。
図 1 2は、 図 2の EG R開度 CPU指令値演算部 2 1 5の一例を詳細に表した
ものである。 加算器 1 20 1は、 前記の基本 EGR開度 EGRSTD.Bと-前記の 臨界圧外還流量補正量 EGRCR Iを加算する。 ブロック 1 202は、 前記の加 算値に定数等で定める上下限値の制限を施し、 E G R開度 C P U指令値 E GRS TDを出力する。
図 1 3は、 本発明に係る EGR制御手段を備えた内燃機関の制御装置のォペレ ーション時における各変数挙動を表した一例である。 チヤ一ト 1 30 1はスロッ トル開度、チヤ一ト 1 302はエンジン回転数、チヤ一ト 1 305は吸入空気量、 チヤ一ト 1 306は吸気管圧力、 チヤ一ト 1 308は EG R開度指令値、 チヤ一 ト 1 3 1 1は EG R弁開度の挙動を示す。
区間 1 303はスロットル開度の過渡区間であり、 チャート 1 308は本発明 の手法で補正された EGR開度指令値を示す。 1 307は吸気管圧力が臨界圧に 達する点であり、 この点を境として、 チャート 1 308に示すように、 本発明の 制御がある場合には、 ない場合と比較して、 EGR開度の指令値を大きくできる ので、 チヤ一ト 1 3 1 1に示すように、 本発明の制御がある場合には、 ない場合 と比較して、 EGR弁の開度を大きくすることができる。
図 1 4は、 図 1に示した本発明に係る EGR制御手段を備えた内燃機関の制御 装置における燃料計算のフローチャートの一例を示す。
ステップ 140 1は、 クランク角度センサからの信号に基づいてエンジン回転 数を計算する。 ステップ 1 402はエンジン負荷を読み込む。 本実施例では、 吸 気管負圧または吸入空気量をエンジン回転数で除したものをエンジン負荷として いる。 ステップ 1403は基本燃料量を計算する。 ステップ 1404では、 前記 エンジン回転数と前記エンジン負荷により基本燃料量の補正係数を検索する。 ス テツプ 1 405は、 要求される目標空燃比を検索する。 ステップ 1406は酸素 濃度センサの出力を読込み、 ステップ 140 7は、 空燃比が前記目標空燃比とな るように、 前記酸素濃度センサ出力に基づき空燃比フィードバックを行い、 空燃 比フィードバック係数を計算する。 ステップ 1408は、 前記エンジン回転数と 前記エンジン負荷等から EG R開度指令値を計算する。 ステップ 1409で前記 空燃比フィードバック係数を前記基本燃料量に施す。 ステップ 14 10では、 前 記補正を施された基本燃料量を燃料噴射手段にセッ トする。
図 1 5は、 図 1の制御プロック図の点火時期計算関係の詳細なフローチヤ一ト の一例である。 ステップ 1 50 1でエンジン回転数、 エンジン負荷を読み込む。 ステップ 1 502で前記エンジン回転数及びエンジン負荷に基づいて基本点火時 期を検索する。 ステップ 1 503でスロッ トル開度を読込み、 ステップ 1 504 で加減速及びアイ ドル判定のエンジンの状態判定を行う。 ステップ 1 505で前 記判定された状態に基づく点火補正量を計算し、 基本点火時期への反映を行い、 ステップ 1 506で点火手段へセットする。 なお、 図 14及び図 1 5で燃料計算 と点火時期計算が異なる割り込み周期で計算される例としたが、 同じタイミング でも良い。 また一定時間割り込みとしているが、 エンジンの回転角度に同期した タイミングで実施してもよレ、。
図 1 6は、 図 2のブロック 20 1〜 2 1 0の詳細なフローチヤ一トの一例であ る。 ステップ 1 60 1でエンジン回転数、 スロッ トル開度、 吸気管圧力を読み込 む。ステップ 1 602でエンジン回転数と吸気管圧力から吸入空気量を計算する。 また、 熱式空気流量計で測定された吸入空気量をそのまま用いても良い。 ステツ プ 1 603で吸入空気量をエンジン回転数で除したエンジン負荷を計算する。 ス テツプ 1 604でエンジン回転数とエンジン負荷または、 エンジン回転数とスロ ットル開度で目標 EGR率を検索する。 ステップ 1 605でエンジン回転数とェ ンジン負荷で内部 EGR率を検索する。 ステップ 1 606で実 EGR還流量を読 み込み、 ステップ 1 6 07で、 前記吸入空気量と、 実 EGR還流量を減算し、 実 吸入空気量を演算する。 なお、 前述したが、 熱式空気流量計等で吸入空気量を計 測するシステムでは、 本ステップ 1 602、 1 606〜 1 60 7は必要ない。 ス テツプ 1 608で前記目標 EG R率と、 実吸入空気量で目標 EG R還流量ベース 値を演算する。 ステップ 1 609で前記内部 EGR率と、 実吸入空気量で排ガス 残留量を演算する。 ステップ 1 6 1 0で前記目標 EGR還流量ベース値に加重平 均を施した値から、 前記排ガス残留量に加重平均を施した値を減算し、 目標 EG
R還流量を計算する。 ステップ 1 6 1 1で前記目標 EGR還流量に基づいて基本
EGR開度を演算する。
図 1 7は、 図 2のブロック 2 1 1〜 2 1 3の詳細なフローチヤ一トの一例であ る。ステップ 1 70 1でエンジン回転数、エンジン負荷、吸気管圧力を読み込む。
ステップ 1 702でエンジン回転数とエンジン負荷で排圧を検索する。 ステップ 1 703で前述の排圧から吸気管圧力を減算して差圧を計算する。 ステップ 1 7 04で前記差圧と EGR開度 CPU指令値から実 E G R還流量を演算する。
図 1 8は、 図 7の、 臨界圧外還流量補正演算部の詳細なフローチャートの一例 である。 ステップ 1 80 1で、 目標 EGR率≠0か否かを判断し、 もし目標 EG R率 0でなければ、 ステップ 1 802で臨界圧外流量差分を◦として出力する。 もし目標 EG R率≠0であればステップ 1 803で前述の目標 EG R還流量を読 み込み、 ステップ 1 804で前述の実 EGR還流量を読み込み、 ステップ 1 80 5で前記目標 E G R還流量から前記実 E G R還流量を減算して臨界圧外流量差分 を計算する。 ステップ 1 806で前記臨界圧外流量差分に基づき臨界圧外補正量 をテーブル検索する。 ステップ 1 80 7で、 再度、 目標 EGR率≠0か否かを判 断し、 もし目標 EGR率≠0でなければ、 ステップ 1 808で臨界圧外補正量を 0として出力する。 もし目標 EGR率≠0であればステップ 1 809で、 前回の 臨界圧外補正量と前述のゲインで臨界圧外補正量をフィードバックして演算する。 図 1 9は、 図 1 1の臨界圧外還流量補正演算部の詳細なフローチャートの一例 である。 ステップ 1 90 1で前述の目標 EGR還流量を読込み、 ステップ 1 90 2で前述の実 EG R還流量を読込み、 ステップ 1 903で前記目標 EG R還流量 から実 EGR還流量を減算し、 臨界圧外流量差分を計算する。 ステップ 1 904 で前記臨界圧外流量差分に基づきゲイン基準値を検索する。 ステップ 1 905で 前記臨界圧外流量差分が 0以上か否かを判断し、 0以上でなければステップ 1 9 06でゲイン補正値は閉側ゲインを選択し、 0以上であればステップ 1 907で 開側ゲインを選択する。 なお、 閉側ゲイン、 開側ゲインは共に ROM定数などで 設定されるものとし、 失火を防ぐために閉側ゲインを大きく設定する。 ステップ 1 908で目標 EGR率≠0か否かを判断し、 もし目標 EGR率≠0でなければ、 ステップ 1 909で臨界圧外補正量を 0とする。 もし目標 EGR率≠0であれば ステップ 1 9 10で前記の臨界圧外流量差分、 ゲイン基準値、 ゲイン補正値をそ れぞれ乗じて臨界圧外補正量を演算する。
本発明は、 EGR量を EGR率で管理することにより、 EGR率による点火進 角マップの補正や、 吸気管圧力で実 EGR率を計算し、 EGR率フィードバック
などが可能となることが期待できる。 また、 E G Rバルブ前後の圧力差が臨界圧 に達した後も吸気管圧力と排圧の差圧に応じた補正により、 目標とする E G R還 流量に実際の E G R還流量を近づけるようフィードバック制御し、 E G Rバルブ 開度を精度良く制御することが可能となる。また、 E G Rバルブを変更した場合、 バルブ特性データのみの変更で対応可能であり、 制御ロジックを変更する必要が 無いため、 本発明の制御ロジックの汎用性が高いと言える。
以上、 本発明の一実施形態について、 詳述したが、 本発明は、 前記実施形態に 限定されるものではない。 また、 本発明の特徴的な機能を損なわない限り、 各構 成要素は上記構成に限定されるものではない。
Claims
1. 内燃機関の状態に基づいて目標 EGR率を求める手段と、
エンジンの吸入空気量を得る手段と、
前記吸入空気量と前記目標 EGR率より目標 EGR還流量を得る手段と、 前記目標 EG R還流量に基づいて基本 EG Rバルブの開度を求める手段と、 EGRバルブの開度から臨界圧時の還流量を求める手段と、
排圧と吸気管圧力の差圧を演算する手段と、
前記 EGRのバルブ開度と還流量の関係から前記差圧下の実 EGR還流量を求め る手段と、
前記目標 E G R還流量と前記実 E G R還流量の差分に基づいて還流量補正量を求 める手段と、
前記基本 E G Rバルブの開度と前記還流量補正量から前記 E G Rバルブの開度を 求める手段とを備えて、
前記目標 E GR還流量と前記実 EGR還流量の差分により EGRバルブ開度を帰 還制御することを特徴とする E G R制御を有した内燃機関の制御装置。
2. 請求項 1に記載された制御装置において、 前記目標 EGRを求める手段は、 外部 EGR及び内部 EGRの係る要因を含むことを特徴とする内燃機関の制御装 置。
3. 請求項 1に記載された制御装置において、 前記差圧に対して EG Rのバルブ 開度と還流量の関係を求める手段は、 バルブ開度と還流量のテーブルを少なく と も 1つ以上の差圧に対して備えていることを特徴とする内燃機関の制御装置。
4. 請求項 1に記載された制御装置において、 前記目標 EGR還流量と前記実 E GR還流量の差分に基づいて前記還流量補正量を求める前記手段は、 補正感度に 係る要因を定める手段と、 前記補正感度に係る要因を EGR基本開度に積算する 手段を備えて、 前記積算された EG R基本開度に基づいて更に新たなる実 EG R 還流量を求めて、 前記目標 EG R還流量と前記実 EG R還流量の差分が 0もしく は所定の値以下となるまで前記積算していくことを特徴とする内燃機関の制御装 置。
5. 請求項 2に記載された制御装置において、 前記補正感度に係 ¾窭 '因は、 前記 目標 EG R還流量と前記実 EG R還流量の差分が 0の近傍において、 不感帯を設 定したテーブルであることを特徴とする E G R制御を有した内燃機関の制御装置。
6. 請求項 2に記載された制御装置において、 前設補正感度に係る要因は、 EG Rバルブが閉方向への補正量が開方向への補正量より大きく設定したテーブルで あることを特徴とする E G R制御を有した内燃機関の制御装置。
7. 請求項 1に記載された制御装置において、 前記 EGRバルブ開度の帰還制御 は、 前記目標 EG R還流量と前記実 EG R還流量の前記差分にゲインを乗じたも のを一回加算することを特徴とする EG R制御を有した内燃機関の制御装置。
8. 請求項 1に記載された制御装置において、 前記 EGRバルブ開度の帰還制御 は、 前記 E G Rバルブが最大開度に達した時には帰還を停止することを特徴とす る E G R制御を有した内燃機関の制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009519339A JPWO2008153198A1 (ja) | 2007-06-12 | 2008-06-12 | Egr率管理によるegr制御装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007-155600 | 2007-06-12 | ||
JP2007155600 | 2007-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008153198A1 true WO2008153198A1 (ja) | 2008-12-18 |
Family
ID=40129794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/061168 WO2008153198A1 (ja) | 2007-06-12 | 2008-06-12 | Egr率管理によるegr制御装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2008153198A1 (ja) |
WO (1) | WO2008153198A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012246763A (ja) * | 2011-05-25 | 2012-12-13 | Hitachi Automotive Systems Ltd | 内燃機関のegr制御装置 |
CN107131062A (zh) * | 2016-02-26 | 2017-09-05 | 罗伯特·博世有限公司 | 用于运行带有废气再循环部的内燃机的方法和装置 |
CN109838315A (zh) * | 2017-11-29 | 2019-06-04 | 长城汽车股份有限公司 | 开度调节方法、开度调节装置及车辆 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114144578B (zh) * | 2019-11-15 | 2023-09-19 | 日产自动车株式会社 | Egr系统的实际egr率的推定方法以及egr系统 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09317535A (ja) * | 1996-05-28 | 1997-12-09 | Mitsubishi Motors Corp | 内燃エンジンの燃焼変動制御装置 |
JPH10213017A (ja) * | 1997-01-31 | 1998-08-11 | Unisia Jecs Corp | Egrバルブの制御装置 |
JPH11132049A (ja) * | 1997-10-24 | 1999-05-18 | Nissan Motor Co Ltd | Egr制御装置付内燃機関の過給圧制御装置 |
JP2002030963A (ja) * | 2000-07-18 | 2002-01-31 | Mazda Motor Corp | ディーゼルエンジンの制御装置 |
JP2002276397A (ja) * | 2001-03-23 | 2002-09-25 | Honda Motor Co Ltd | 内燃機関の制御装置 |
JP2005009437A (ja) * | 2003-06-20 | 2005-01-13 | Toyota Motor Corp | 多気筒内燃機関の制御装置 |
JP2006132499A (ja) * | 2004-11-09 | 2006-05-25 | Nissan Motor Co Ltd | 流量算出装置 |
JP2007100524A (ja) * | 2005-09-30 | 2007-04-19 | Honda Motor Co Ltd | 内燃機関の制御装置 |
JP2007113498A (ja) * | 2005-10-20 | 2007-05-10 | Denso Corp | 排気ガス還流制御装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3214336B2 (ja) * | 1996-02-23 | 2001-10-02 | 日産自動車株式会社 | 内燃機関用egr制御装置 |
JP4168792B2 (ja) * | 2003-03-12 | 2008-10-22 | トヨタ自動車株式会社 | 失火発生時に混合気を再燃焼させる機能を備えた内燃機関、および内燃機関の制御方法 |
JP4150649B2 (ja) * | 2003-09-12 | 2008-09-17 | トヨタ自動車株式会社 | 内燃機関の排気再循環装置 |
-
2008
- 2008-06-12 WO PCT/JP2008/061168 patent/WO2008153198A1/ja active Application Filing
- 2008-06-12 JP JP2009519339A patent/JPWO2008153198A1/ja active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09317535A (ja) * | 1996-05-28 | 1997-12-09 | Mitsubishi Motors Corp | 内燃エンジンの燃焼変動制御装置 |
JPH10213017A (ja) * | 1997-01-31 | 1998-08-11 | Unisia Jecs Corp | Egrバルブの制御装置 |
JPH11132049A (ja) * | 1997-10-24 | 1999-05-18 | Nissan Motor Co Ltd | Egr制御装置付内燃機関の過給圧制御装置 |
JP2002030963A (ja) * | 2000-07-18 | 2002-01-31 | Mazda Motor Corp | ディーゼルエンジンの制御装置 |
JP2002276397A (ja) * | 2001-03-23 | 2002-09-25 | Honda Motor Co Ltd | 内燃機関の制御装置 |
JP2005009437A (ja) * | 2003-06-20 | 2005-01-13 | Toyota Motor Corp | 多気筒内燃機関の制御装置 |
JP2006132499A (ja) * | 2004-11-09 | 2006-05-25 | Nissan Motor Co Ltd | 流量算出装置 |
JP2007100524A (ja) * | 2005-09-30 | 2007-04-19 | Honda Motor Co Ltd | 内燃機関の制御装置 |
JP2007113498A (ja) * | 2005-10-20 | 2007-05-10 | Denso Corp | 排気ガス還流制御装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012246763A (ja) * | 2011-05-25 | 2012-12-13 | Hitachi Automotive Systems Ltd | 内燃機関のegr制御装置 |
CN107131062A (zh) * | 2016-02-26 | 2017-09-05 | 罗伯特·博世有限公司 | 用于运行带有废气再循环部的内燃机的方法和装置 |
CN107131062B (zh) * | 2016-02-26 | 2022-04-01 | 罗伯特·博世有限公司 | 用于运行带有废气再循环部的内燃机的方法和装置 |
CN109838315A (zh) * | 2017-11-29 | 2019-06-04 | 长城汽车股份有限公司 | 开度调节方法、开度调节装置及车辆 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2008153198A1 (ja) | 2010-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4321294B2 (ja) | 内燃機関のシリンダ吸入空気量算出装置 | |
US7100375B2 (en) | System for limiting rotational speed of a turbocharger | |
EP1024272A1 (en) | Control method for turbocharged diesel engines having exhaust gas recirculation | |
EP2317106A1 (en) | Internal combustion engine control device | |
JP2001115865A (ja) | 内燃機関の制御装置 | |
JP2008510101A (ja) | パイロット点火エンジンにおける燃料量調節 | |
JP2011137469A (ja) | 適応エンジン制御 | |
US9938912B2 (en) | Control device for internal combustion engine | |
CN110645110B (zh) | 内燃机控制装置 | |
JP4377907B2 (ja) | 内燃機関の空気量演算装置および燃料制御装置 | |
WO2008153198A1 (ja) | Egr率管理によるegr制御装置 | |
JPH11229936A (ja) | 内燃機関の運転方法および装置 | |
JPH09287507A (ja) | 内燃機関のスロットル弁制御装置 | |
JP3985746B2 (ja) | 内燃機関の制御装置 | |
JP6545290B2 (ja) | 制御装置 | |
JP5216787B2 (ja) | エンジンの制御装置 | |
JP6335432B2 (ja) | エンジンの制御装置 | |
JP4734312B2 (ja) | 内燃機関の制御装置 | |
US20090084351A1 (en) | Idle speed control method for controlling the idle speed of an engine with a continuous variable event and lift system and a fuel control system using the method | |
JPH09317568A (ja) | ディーゼルエンジンの異常検出装置 | |
JP4375123B2 (ja) | 直噴式内燃機関の燃料噴射制御装置 | |
JPH0235863B2 (ja) | ||
JPH1026049A (ja) | 内燃機関の吸・排気系圧力推定装置 | |
JP7539578B2 (ja) | 内燃機関の制御装置 | |
JP2012246763A (ja) | 内燃機関のegr制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08777351 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009519339 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08777351 Country of ref document: EP Kind code of ref document: A1 |