[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008148993A2 - Procede d'assemblage entre une piece en materiau metallique et une piece en materiau composite au moyen d'une fixation - Google Patents

Procede d'assemblage entre une piece en materiau metallique et une piece en materiau composite au moyen d'une fixation Download PDF

Info

Publication number
WO2008148993A2
WO2008148993A2 PCT/FR2008/050792 FR2008050792W WO2008148993A2 WO 2008148993 A2 WO2008148993 A2 WO 2008148993A2 FR 2008050792 W FR2008050792 W FR 2008050792W WO 2008148993 A2 WO2008148993 A2 WO 2008148993A2
Authority
WO
WIPO (PCT)
Prior art keywords
hole
diameter
piece
fastener
composite
Prior art date
Application number
PCT/FR2008/050792
Other languages
English (en)
Other versions
WO2008148993A3 (fr
Inventor
Nicolas Dantou
Stéphane BIANCO
Christian Godenzi
Original Assignee
Airbus France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus France filed Critical Airbus France
Priority to US12/598,005 priority Critical patent/US8656593B2/en
Publication of WO2008148993A2 publication Critical patent/WO2008148993A2/fr
Publication of WO2008148993A3 publication Critical patent/WO2008148993A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P9/00Treating or finishing surfaces mechanically, with or without calibrating, primarily to resist wear or impact, e.g. smoothing or roughening turbine blades or bearings; Features of such surfaces not otherwise provided for, their treatment being unspecified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/14Riveting machines specially adapted for riveting specific articles, e.g. brake lining machines
    • B21J15/147Composite articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • B23P19/06Screw or nut setting or loosening machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P9/00Treating or finishing surfaces mechanically, with or without calibrating, primarily to resist wear or impact, e.g. smoothing or roughening turbine blades or bearings; Features of such surfaces not otherwise provided for, their treatment being unspecified
    • B23P9/02Treating or finishing by applying pressure, e.g. knurling
    • B23P9/025Treating or finishing by applying pressure, e.g. knurling to inner walls of holes by using axially moving tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/562Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits using extra joining elements, i.e. which are not integral with the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/01Aircraft parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/02Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/47Burnishing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49616Structural member making
    • Y10T29/49622Vehicular structural member making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49947Assembling or joining by applying separate fastener
    • Y10T29/49954Fastener deformed after application
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49947Assembling or joining by applying separate fastener
    • Y10T29/49954Fastener deformed after application
    • Y10T29/49956Riveting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53709Overedge assembling means
    • Y10T29/5377Riveter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/49Member deformed in situ
    • Y10T403/4966Deformation occurs simultaneously with assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/75Joints and connections having a joining piece extending through aligned openings in plural members

Definitions

  • the invention relates to a method of assembly between a piece of metal material and a composite material part by means of a fastener of substantially constant section held in a bore made for this purpose in the parts.
  • the invention finds applications when it is necessary to assemble at least one piece of metal material with a piece of composite material, in particular for assemblies subject to significant mechanical stress.
  • the invention is more particularly applicable in the field of aeronautics, in which the assembly method can influence the fatigue life and the safety of the aeronautical structures.
  • the invention also has applications in the field of land vehicles, for assembling parts intended to form light structures.
  • Figure 1.A shows a known method of mounting said interference of a joint between two metal parts which is to provide a bore in the two parts 1 having a diameter iésage 0 to less than a diameter 0fi Xa tio ⁇ attachment which is the diameter of the fastening rod 9.
  • Figure 1B schematically illustrates another example of a known method for generating stresses locally on the surface of the bore in an assembly of metal parts.
  • An expansion method is used by means of an expansion tool 6. The method comprises the following steps:
  • a first bore is made by means of a conventional boring tool 5 in the two metal pieces, the diameter of the bore is chosen so that the diameter of the bore is adapted to the diameter of the bore; expansion tool 6, that is to say the diameter 0 to iésage of the bore should be slightly less than the diameter of the expansion tool.
  • step (2) then passes the expansion tool 6 said burnisher through the bore made in step (1), this tool having an olive-shaped portion with a diameter greater than that of the bore, its passage through the bore drills the latter and generates there residual compressive stresses on the surface of the bore and locally in the material of the two parts.
  • the composite material parts have exceptional properties in terms of resistance to mechanical fatigue and high rigidity while giving a very low mass to the structures. These parts are notably used in the aerospace industry, including in heavily loaded structures. However, the assembly of these composite parts poses specific problems with respect to the case of metal parts. Indeed the composite parts 2 as shown in Figure 1.C consist of structures obtained by lamination of resin impregnated fibers, for example carbon fibers impregnated with an epoxy resin. Such a composite part has advantageous structural properties in the plane of the fiber strata but is sensitive to delamination phenomena in a direction perpendicular to the planes, that is to say in the direction of the bore used for setting the fastening. .
  • the compression forces exerted by the fastening means can cause the phenomenon of delamination at the bore.
  • a bore having a diameter slightly greater than the diameter of the fastener 9 is generally produced so as to leave a sufficient clearance between the wall of the bore hole and the surface of the fastener. 9 to avoid interference.
  • metal and composite parts leads to frequent assembling of metal parts with composite parts. It can be junctions between two panels of different structures or local reinforcements, for example ribs, or metal stiffeners on a composite panel.
  • an assembly is chosen having a clearance between the wall of the holes and a fixing and the assembly is then unfavorable to the metal part in terms of fatigue life, or it is chosen an assembly with interference and such mounting may damage the composite part.
  • the present invention therefore seeks to solve an assembly problem between a metal part and a composite part by means of a fixing without penalizing the fatigue life of the metal part and without damaging the composite part.
  • the present invention provides a method generally for generating only a stress field at the periphery of the fixing hole of the metal part, and locally in the material of the metal part without interference with the composite part, while ensuring alignment. perfect between the fixing holes of the two pieces.
  • the invention therefore relates to a method of assembly between a piece of metal material and a composite material part, the junction between said parts being made by means of a substantially constant section fastening received in a first hole made in the piece of metal material and a second hole made in the composite material part.
  • the method comprises:
  • the method comprises the following steps:
  • the method comprises the following steps:
  • said method comprises the following steps:
  • said method comprises the following steps:
  • the invention also relates to a use of the method as described above for manufacturing an aircraft structure comprising an assembly between at least one composite part and at least one metal part.
  • Figure 1.A a sectional view of an assembly between two metal parts according to the state of the art by a process known as interference mounting
  • Figure 1.B the different stages of an expansion process in an assembly of metal parts of the state of the art
  • Figure 1.C an assembly between two composite pieces of the state of the art
  • FIG. 2 method of assembly between a metal part and a composite part according to a first embodiment of the invention
  • FIG. 3 method of assembly between a metal part and a composite part according to a second embodiment of the invention
  • FIG. 4 method of assembly between a metal part and a composite part according to a third embodiment of the invention
  • Figure 5 assembly method between a metal part and a composite part according to a fourth form of implementation of the invention.
  • the method of the present invention is generally applicable to an assembly between a metal part 1 and a composite part 2 which are separate parts and intended to be held against each other by means of a fastener positioned in a bore made in said parts.
  • the main concept of the invention is to be able to generate before assembly between the metal part and the composite part a stress field on the surface of the bore in the metal part and locally in the material constituting the metal part in the vicinity immediate boring by means of an expansion process without damaging the composite part.
  • the presence of these constraints makes it possible to increase the fatigue life in the metal part and to delay the propagation of cracks. To do this it is imperative that the step of the expansion process is performed without interference with the composite part to avoid creating constraints in the volume of the composite part that would damage the composite part.
  • Another object of the present invention is to obtain a perfect alignment between the hole of the metal part and the hole of the composite part to position the fastener intended to hold the parts together and a centering of the hole of the metal part with respect to the constraint field generated.
  • FIGS 2, 3, 4 and 5 show four forms of implementation of the method of the invention meeting these objectives.
  • the metal part 1 can be made, for example, in an aluminum alloy and the composite part 2 in a composite material comprising fibers held by a resin, for example carbon fibers.
  • the two parts 1, 2, one or the other, or both have holes made by means of a conventional boring tool, having a diameter of 0.degree. subsequently requiring a bore to be adapted to the different steps of the method of the invention.
  • the hole of the metal part is designated by the expression "first hole” and the hole of the composite part by the expression “ second hole ".
  • FIG. 2 shows a cross-section of an assembly between the metal part 1 and the composite part 2 according to a first embodiment of the invention in which the metal part is subjected locally to an expansion method. made by typing.
  • the expansion tool here consists of two parts 401, 402.
  • the expansion method consists in striking the surface of the metal part by means of the two parts 401, 402. The strikes make it possible to locally generate a field of persistent stresses in the material of the metal part.
  • step (2) first of all a second hole 3 is produced in the composite part by means of a conventional boring tool 5.
  • Said hole 3 is made with a specific diameter O2, the latter must be greater at outer diameter 0b an expansion tool so that the expansion tool can pass through the second hole 3 without exerting stress on the inner wall of the second hole 3.
  • step (3) the expansion is carried out by means of the two parts 401, 402 of the expansion tool by strikes, the ends of said parts being placed facing each other, one of the two parts 402 of the tool passing through the second hole 3 of the composite part 2, in an area facing the second hole 3, the other part 401 being positioned on the opposite face of the metal part opposite the second hole 3.
  • the position of the center of the expanded area is determined by the second hole 3.
  • a final bore of the first hole 11 and the second hole 3 is made so that the diameters of the first hole and the second hole are equal, the first hole is possibly made through the second hole.
  • This diameter 0fj na ⁇ is substantially greater than the diameter 0fi Xa tio ⁇ of a fastener 9 so as to leave a gap between the wall of the holes 3, 11 and the surface of the fastener in order to avoid interference between the fastener and the wall of the bore, which has the effect of avoiding generating radial stresses in the bore.
  • the diameter value is chosen so that the stress field generated sufficiently covers the diameter of the material removed during the boring so as not to cause a loss of fatigue life in the metal part.
  • FIG. 3 shows a second embodiment of the invention in which an expansion tool 6 is used to locally generate a residual stress field in the metal part 1.
  • a first hole having a diameter 01 adapted to the diameter of a burnisher 6 used as an expansion tool that is to say say the diameter 01 must be slightly smaller than the diameter of a portion located at the end of the burnisher 6 so that are passing through the hole of the metal part creates stress.
  • the diameter of the burnisher and the diameter of the first hole are smaller than the diameter 02 of the second hole of the composite part so that the passage of the expansion tool through the second hole does not generate constraints.
  • the second hole 3 is bored so that its diameter O 2 is substantially greater than the diameter 0 b of the burnisher 6, so that the latter passes through the second hole can not cause stress within the volume of the composite part.
  • the bore is prepared in the metal piece for expansion by means of a conventional boring tool 13 to obtain a diameter 0 1 adapted for the expansion step.
  • step (2) and step (3) are performed.
  • This stop block has the function of indicating to the boring tool the limit of the bore not to exceed the side of the composite part. This stop block will be removed for the next steps of the process.
  • the expansion step shown in (4) in Fig. 3 is to pass the burnisher 6 through the first hole and the second hole.
  • the burnisher having a diameter greater than the diameter 0 1 of the first hole and smaller than the diameter 02 of the second hole, then exerts a mechanical action by hardening on the inner wall of the first hole, thus creating a residual stress field at the periphery of the first hole while expanding until an expansion diameter 0 exp .
  • a final bore is made of the first hole 11 and the second hole 3 so that the diameters of the first hole and the second hole are perfectly aligned and equal to receive the attachment of substantially constant section.
  • FIG. 4 shows a third embodiment of the invention in which an expansion tool used is a laser beam.
  • the diameter of the beam must be smaller than the diameter 02 in order not to expand the part composite when the laser beam passes through the second hole.
  • the two parts 1, 2 in the initial state (1) each comprise a hole having an initial diameter 0o.
  • the second hole 3 is bored so that its diameter O 2 is substantially greater than the diameter 0 b of the laser beam, so that the latter passes through the second hole can not cause stress within the volume of the composite part.
  • the expansion action shown in Figure 4 in (3) is to send at least one laser beam on the wall of the first hole.
  • the scanning of the laser beam on at least a portion of the first hole wall surfaces exerts a work hardening action similar to that of the burnisher on the inner wall of the first hole and generates a residual stress field on the bore surface
  • the laser firing parameters as a function of the initial diameter O 0 of the second hole so that the step of overdiametering (2) is optional.
  • An example of laser firing conditions is as follows: the wavelength of the laser beam is about 1 ⁇ m, with an energy of 28 J for 25 ns.
  • FIG. 5 shows a fourth embodiment of the invention in which the metal part is prepared before its positioning with the composite part, the residual stress field creation step is then performed in the absence of the composite part.
  • the surface of the metal part is punched in a first step (1) on either side of the bore zone by means of an expansion tool, the zone thus expanded is then detectable by the mark of the punch 8 on the external surfaces of the metal part.
  • the boring is carried out in the two parts in a single step by means of a boring tool 10.
  • the bore starts from the face of the metal part, in the direction of the metal part to the composite part in the expanded zone in order to precisely make the hole in the center of the expanded zone, precisely in the center of the field of the created stresses 15 in step (2).
  • the fastener 9 is positioned in the bore to hold the parts 1, 2 together.
  • the method of the invention makes it possible to locally create residual stresses or not in the volume of the metal part to increase the fatigue life without damaging the composite part, while allowing great flexibility in the different expansion techniques and also the expansion tool without interference with the composite part.
  • a single bore in the metal part and in the composite part provides a perfect alignment between the holes of the two parts. This is particularly interesting in the case where the parts must be assembled by means of a connecting line.
  • the final diameter holes for the assembly step is chosen such that it is substantially greater than the diameter of the fastener, so as to be compatible with the fastening tolerances of the composite part without causing local stresses in the composite part. However, it should not be so high that the removed material does not cause a loss of stress efficiency over the fatigue life in the metal part.
  • the method described above can be used to manufacture any type of aircraft structures or land vehicles having an assembly between at least one composite part and at least one metal part subjected to significant mechanical stresses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Connection Of Plates (AREA)
  • Drilling And Boring (AREA)
  • Insertion Pins And Rivets (AREA)

Abstract

L invention concerne un procédé d assemblage entre une pièce en matériau métallique (1) et une pièce en matériau composite (2), la jonction entre lesdites pièces étant réalisée au moyen d une fixation de section sensiblement constante reçue dans un premier trou réalisé (11) dans la pièce en matériau métallique et un deuxième trou (3) réalisé dans la pièce en matériau composite. Selon l invention, préalablement à l assemblage entre lesdites pièces, le procédé comporte : -une étape d expansion pour générer un champ de contraintes de compression à la périphérie dudit premier trou (11) et localement dans le matériau constituant la pièce en matériau métallique au moyen d un outil d expansion, -une étape d alésage unique pour réaliser ledit premier trou (11) et ledit deuxième trou (3) ayant un diamètre Ofinal sensiblement supérieur au diamètre de la fixation (9) de manière à laisser un interstice entre la paroi interne desdits trous (3, 11) et la surface externe de la fixation (9), -une étape d assemblage pour positionner la fixation (9) dans lesdits trous (3, 11) pour maintenir la pièce métallique et la pièce composite ensemble.

Description

PROCEDE D'ASSEMBLAGE ENTRE UNE PIECE EN MATERIAU METALLIQUE ET UNE PIECE EN MATERIAU COMPOSITE AU MOYEN D'UNE FIXATION
L'invention concerne un procédé d'assemblage entre une pièce en matériau métallique et une pièce en matériau composite au moyen d'une fixation de section sensiblement constante maintenue dans un alésage réalisé à cet effet dans les pièces.
D'une manière générale, l'invention trouve des applications dès lors qu'il est nécessaire d'assembler au moins une pièce en matériau métallique avec une pièce en matériau composite, en particulier pour des assemblages soumis à des sollicitations mécaniques significatives. L'invention trouve plus particulièrement des applications dans le domaine de l'aéronautique, dans lequel le procédé d'assemblage peut influencer la durée de vie en fatigue et la sécurité des structures aéronautiques. L'invention trouve également des applications dans le domaine des véhicules terrestres, pour l'assemblage des pièces destinées à former des structures légères.
Pour la suite de la description, les expressions "pièce en matériau métallique" et "pièce en matériau composite" sont désignées respectivement par les expressions "pièce métallique" et "pièce composite".
Il est connu d'utiliser un procédé d'expansion des alésages et de montage en interférence de fixation pour augmenter la durée de vie en fatigue dans un assemblage entre deux pièces métalliques. Ces procédés d'expansion et d'interférence induisent des contraintes de compression à la surface de l'alésage et localement dans le matériau constituant la pièce. Ces contraintes ont pour effet de retarder l'amorçage et la propagation de fissures de fatigue au voisinage immédiat de l'alésage. Il en résulte une augmentation de la durée de vie en fatigue. Il existe plusieurs procédés d'expansion et ils peuvent être utilisés séparément ou en combinaison. La figure 1.A représente un procédé connu dit de montage en interférence d'un assemblage entre deux pièces métalliques qui consiste à réaliser un alésage dans les deux pièces 1 ayant un diamètre 0aiésage inférieur à un diamètre 0fiXatioπ de fixation qui est le diamètre de la tige de fixation 9. L'insertion de la fixation 9 dans l'alésage génère des contraintes de compression à la périphérie des trous de l'alésage en raison du diamètre 0fiXatioπ de fixation supérieur au diamètre 0aiésage de l'alésage. Les contraintes ainsi créées permettent d'augmenter la durée de vie en fatigue au niveau de ces zones travaillantes, critiques en raison d'initiation de criques dans des zones chargées.
La figure 1.B illustre schématiquement un autre exemple de procédé connu pour générer des contraintes localement à la surface de l'alésage dans un assemblage de pièces métalliques. On utilise un procédé d'expansion au moyen d'un outil d'expansion 6. Le procédé comporte les étapes suivantes :
(1 ) on réalise un premier alésage au moyen d'un outil d'alésage conventionnel 5 dans les deux pièces métalliques, le diamètre de l'alésage est choisi de telle sorte que le diamètre de l'alésage soit adapté au diamètre de l'outil d'expansion 6, c'est-à-dire le diamètre 0aiésage de l'alésage doit être légèrement inférieur au diamètre de l'outil d'expansion.
(2) on fait passer ensuite l'outil d'expansion 6 dit brunissoir au travers de l'alésage réalisé à l'étape (1 ), cet outil présentant une partie en forme d'olive avec un diamètre supérieur à celui de l'alésage, son passage au travers de l'alésage écrouit ce dernier et y génère des contraintes résiduelles de compression à la surface de l'alésage et localement dans le matériau des deux pièces.
(3) on effectue un alésage final pour adapter le diamètre des trous au diamètre de la tige de fixation, puis on pose la fixation pour maintenir l'assemblage des deux pièces.
Les pièces en matériau composite présentent des propriétés exceptionnelles en terme de résistance à la fatigue mécanique et une forte rigidité tout en conférant une très faible masse aux structures. Ces pièces sont notamment mises en œuvre dans l'industrie aéronautique, y compris dans des structures fortement chargées. Cependant, l'assemblage de ces pièces composites pose des problèmes spécifiques par rapport au cas des pièces métalliques. En effet les pièces composites 2 telles que représentées sur la figure 1.C sont constituées de structures obtenues par stratification de fibres imprégnées de résine, par exemple de fibres de carbone imprégnées d'une résine epoxy. Une telle pièce composite présente des propriétés structurales avantageuses dans le plan des strates de fibres mais est sensible à des phénomènes de délamination dans une direction perpendiculaire aux plans, c'est-à-dire dans la direction de l'alésage utilisé pour poser la fixation.
Les efforts de compression exercés par les moyens de fixation peuvent engendrer le phénomène de délaminage au niveau de l'alésage. De manière générale pour éviter ce phénomène de délaminage, on doit minimiser les contraintes qui apparaissent au niveau de la zone de fixation, c'est-à-dire à l'interface entre la paroi de l'alésage et la fixation. Pour cela, et contrairement au cas d'un assemblage métallique, on réalise généralement un alésage ayant un diamètre légèrement supérieur au diamètre de la fixation 9 de manière à laisser un jeu suffisant entre la paroi du trou d'alésage et la surface de la fixation 9 pour éviter les interférences.
Dans les structures aéronautiques, la coexistence des pièces métalliques et composites conduit à de fréquents assemblages de pièces métalliques avec des pièces composites. Il peut s'agir de jonctions entre deux panneaux de structures différentes ou de renforts locaux, par exemple des nervures, ou des raidisseurs métalliques sur un panneau composite.
Dans un tel assemblage, soit il est choisi un assemblage comportant un jeu entre la paroi des trous et une fixation et le montage est alors défavorable à la pièce métallique en terme de durée de vie en fatigue, soit il est choisi un assemblage avec interférence et un tel montage risque d'endommager la pièce composite.
Une solution consisterait à réaliser indépendamment dans la pièce métallique et dans la pièce composite qui sont deux pièces distinctes un trou pour la fixation, puis de générer dans la pièce métallique un champ de contraintes résiduelles en absence de la pièce composite, puis dans un second temps de placer la pièce composite contre la pièce métallique pour l'assemblage. Cette solution n'est pas satisfaisante, en effet dans ce cas, il faut prédéterminer précisément les positions des trous afin qu'ils soient alignés lors de l'assemblage pour le passage de la fixation. Cet alignement n'est pas réalisable industriellement.
La présente invention cherche donc à résoudre un problème d'assemblage entre une pièce métallique et une pièce composite au moyen d'une fixation sans pénaliser la durée de vie en fatigue de la pièce métallique et sans endommager la pièce composite.
La présente invention propose un procédé permettant de manière générale de générer uniquement un champ de contraintes à la périphérie du trou de fixation de la pièce métallique, et localement dans le matériau de la pièce métallique sans interférence avec la pièce composite, tout en garantissant un alignement parfait entre les trous de fixation des deux pièces.
A cet effet, l'invention a donc pour objet un procédé d'assemblage entre une pièce en matériau métallique et une pièce en matériau composite, la jonction entre lesdites pièces étant réalisée au moyen d'une fixation de section sensiblement constante reçue dans un premier trou réalisé dans la pièce en matériau métallique et un deuxième trou réalisé dans la pièce en matériau composite.
Selon l'invention, préalablement à l'assemblage entre lesdites pièces le procédé comporte :
- une étape d'expansion pour générer un champ de contraintes de compression à la périphérie dudit premier trou et localement dans le matériau constituant la pièce en matériau métallique au moyen d'un outil d'expansion,
- une étape d'alésage unique pour réaliser ledit premier trou et ledit deuxième trou ayant une diamètre
Figure imgf000006_0001
sensiblement supérieur au diamètre de la fixation de manière à laisser un interstice entre la paroi interne desdits trous et la surface externe de la fixation,
- une étape d'assemblage pour positionner la fixation dans lesdits trous pour maintenir la pièce métallique et la pièce composite ensemble.
Selon une première forme de mise en œuvre du procédé dans laquelle l'étape d'expansion est réalisée par frappes sur un outil constitué de deux parties, le procédé comporte les étapes suivantes :
- placer la pièce métallique contre la pièce composite,
- réaliser ledit deuxième trou dans la pièce en matériau composite ayant un diamètre 02 sensiblement supérieur au diamètre extérieur 0b dudit outil d'expansion, afin de permettre le passage de l'outil d'expansion sans générer de contraintes à la périphérie dudit deuxième trou,
- réaliser l'étape d'expansion dans la pièce métallique en appliquant les deux parties de l'outil de chaque côté de la pièce métallique sur la surface de la pièce métallique, les extrémités des deux parties de l'outil d'expansion étant placées en regard, l'une des parties traversant ledit deuxième trou de la pièce composite de telle sorte que la zone expansée dans la pièce métallique soit une zone sensiblement en regard du deuxième trou,
- frapper sur les deux parties pour générer le champ de contraintes dans la zone en regard du deuxième trou de la pièce en matériau composite,
- réaliser l'étape d'alésage dans la zone expansée et dans ledit deuxième trou pour obtenir un premier trou et un deuxième trou ayant un même diamètre une diamètre 0finaι,
- réaliser l'étape d'assemblage en positionnant la fixation.
Selon une deuxième forme de mise en œuvre du procédé dans laquelle l'étape d'expansion est réalisée avec un outil d'expansion dit brunissoir, le procédé comporte les étapes suivantes :
- placer la pièce métallique contre la pièce composite,
- réaliser ledit deuxième trou dans la pièce en matériau composite ayant un diamètre 02 sensiblement supérieur au diamètre extérieur 0b de l'outil d'expansion, afin de permettre le passage de l'outil d'expansion sans générer de contraintes à la périphérie dudit deuxième trou,
- réaliser un premier trou dans la pièce métallique en regard dudit deuxième trou, ledit premier trou ayant un diamètre 01 sensiblement inférieur au diamètre de l'outil d'expansion, de telle sorte que le passage dudit outil dans ledit trou génère le champ de contraintes à la périphérie du trou en exerçant une action mécanique par écrouissage sur la paroi interne du trou,
- faire passer ledit outil dans lesdits trous,
- réaliser l'étape d'alésage dans ledit premier trou expansé et dans ledit deuxième trou pour obtenir un premier trou et un deuxième trou ayant un même diamètre une diamètre 0finaι,
- réaliser l'étape d'assemblage en positionnant la fixation (9).
Selon une troisième forme de mise en œuvre du procédé dans laquelle l'étape d'expansion utilise un faisceau laser comme outil d'expansion, ledit procédé comporte les étapes suivantes :
- placer la pièce métallique contre la pièce composite,
- réaliser ledit deuxième trou dans la pièce en matériau composite ayant un diamètre 02 sensiblement supérieur au diamètre extérieur 0b de l'outil d'expansion, afin de permettre le passage de l'outil d'expansion sans générer de contraintes à la périphérie dudit deuxième trou,
- réaliser un premier trou dans la pièce en matériau métallique, le diamètre 01 dudit trou étant sensiblement inférieur au diamètre 02 de la pièce en matériau composite,
- réaliser l'étape d'expansion en envoyant un faisceau laser dans ledit premier trou de part et d'autre de la pièce en matériau métallique, ledit faisceau ayant un diamètre inférieur au diamètre 02 du trou de la pièce composite, le balayage du faisceau laser sur au moins une partie des surfaces de la paroi interne du trou permettant d'exercer une action d'écrouissage dans ledit trou, générant le champ de contraintes à la périphérie dudit premier trou et localement dans le matériau constituant la pièce métallique,
- réaliser l'étape d'alésage dans ledit premier trou expansé et dans ledit deuxième trou pour obtenir un premier trou et un deuxième trou ayant un même diamètre une diamètre 0finaι,
- réaliser l'étape d'assemblage en positionnant la fixation.
Selon une quatrième forme de mise en œuvre du procédé dans laquelle l'étape d'expansion utilise un poinçon comme outil d'expansion, ledit procédé comporte les étapes suivantes :
- poinçonner de part et d'autre la surface de la pièce en matériau métallique au moyen dudit poinçon, ladite zone ainsi expansée étant repérable par les marques de poinçon sur la surface externe de la pièce en matériau métallique,
- placer la pièce en matériau métallique contre la pièce en matériau composite,
- réaliser l'étape d'alésage unique dans le sens de la pièce métallique vers la pièce composite, en plaçant l'extrémité de l'outil d'alésage au centre de la zone expansée repérée sur la surface de la pièce en matériau métallique, pour obtenir un premier trou et un deuxième trou ayant un même diamètre une diamètre ledit premier trou étant centré par rapport au champ de contraintes générés, - réaliser l'étape d'assemblage en positionnant la fixation dans lesdits trous. L'invention concerne également une utilisation du procédé tel que décrit ci-dessus pour fabriquer une structure d'aéronef comportant un assemblage entre au moins une pièce composite et au moins une pièce métallique.
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Celles-ci sont présentées à titre indicatif et nullement limitatif de l'invention. Les figures représentent :
Figure 1.A : une vue en coupe d'un assemblage entre deux pièces métalliques selon l'état de la technique par un procédé dit de montage en interférence,
Figure 1.B : les différentes étapes d'un procédé d'expansion dans un assemblage de pièces métalliques de l'état de la technique,
Figure 1.C : un assemblage entre deux pièce composites de l'état de la technique,
Figure 2 : procédé d'assemblage entre une pièce métallique et une pièce composite selon une première forme de mise en œuvre de l'invention,
Figure 3 : procédé d'assemblage entre une pièce métallique et une pièce composite selon une deuxième forme de mise en œuvre de l'invention,
Figure 4 : procédé d'assemblage entre une pièce métallique et une pièce composite selon une troisième forme de mise en œuvre de l'invention,
Figure 5 : procédé d'assemblage entre une pièce métallique et une pièce composite selon une quatrième forme de mise en œuvre de l'invention.
Le procédé de la présente invention est applicable de manière générale à un assemblage entre une pièce métallique 1 et une pièce composite 2 qui sont des pièces distinctes et destinées à être maintenues l'une contre l'autre au moyen d'une fixation positionné dans un alésage réalisé dans lesdites pièces.
Le concept principal de l'invention est de pouvoir générer préalablement à l'assemblage entre la pièce métallique et la pièce composite un champ de contraintes sur la surface de l'alésage dans la pièce métallique et localement dans le matériau constituant la pièce métallique au voisinage immédiat de l'alésage au moyen d'un procédé d'expansion sans endommager la pièce composite. La présence de ces contraintes permet d'augmenter la durée de vie en fatigue dans la pièce métallique et de retarder la propagation des fissures. Pour ce faire il est impératif que l'étape du procédé d'expansion soit réalisée sans interférence avec la pièce composite afin d'éviter de créer des contraintes dans le volume de la pièce composite qui endommagerait la pièce composite.
Un autre objectif de la présente invention est d'obtenir un alignement parfait entre le trou de la pièce métallique et le trou de la pièce composite pour positionner la fixation destinée à maintenir les pièces ensemble et un centrage du trou de la pièce métallique par rapport au champ de contraintes générées.
Les figures 2, 3, 4 et 5 représentent quatre formes de mise en œuvre du procédé de l'invention répondant à ces objectifs.
La pièce métallique 1 peut être réalisée, à titre d'exemple, dans un alliage d'aluminium et la pièce composite 2 dans un matériau composite comportant des fibres maintenues par une résine, par exemple des fibres de carbone.
D'une façon générale, à l'état initial, les deux pièces 1 , 2, l'une ou l'autre, ou toutes les deux présentent des trous réalisés au moyen d'un outil d'alésage conventionnel, ayant un diamètre 0o nécessitant ultérieurement un alésage pour être adapté aux différentes étapes du procédé de l'invention.
Pour la suite de la description, pour distinguer les trous réalisés dans la pièce métallique et dans la pièce composite, le trou de la pièce métallique est désigné par l'expression "premier trou" et le trou de la pièce composite par l'expression "deuxième trou".
Sur la figure 2 est représentée une coupe de section d'un assemblage entre la pièce métallique 1 et la pièce composite 2 selon une première forme de mise en œuvre de l'invention dans laquelle la pièce métallique est soumise localement à un procédé d'expansion réalisé par frappe.
L'outil d'expansion est constitué ici en deux parties 401 , 402. Le procédé d'expansion consisterait à exercer des frappes sur la surfaces de la pièce métallique au moyen des deux parties 401 , 402. Les frappes permettent de générer localement ainsi un champ de contraintes persistantes dans le matériau de la pièce métallique.
A l'état initial (1 ), aucune des deux pièces ne présente de trous.
A l'étape (2), on réalise tout d'abord un deuxième trou 3 dans la pièce composite au moyen d'un outil d'alésage classique 5. Ledit trou 3 est réalisé avec un diamètre 02 spécifique, ce dernier doit être supérieur au diamètre extérieur 0b d'un outil d'expansion de sorte que l'outil d'expansion puisse passer au travers du deuxième trou 3 sans exercer de contrainte sur la paroi interne du deuxième trou 3.
En troisième étape (3), on réalisé l'expansion au moyen des deux parties 401 , 402 de l'outil d'expansion par frappes, les extrémités desdites parties étant placées en vis-à-vis, une des deux parties 402 de l'outil traversant le deuxième trou 3 de la pièce composite 2, dans une zone en regard du deuxième trou 3, l'autre partie 401 étant positionnée sur la face opposée de la pièce métallique en regard du deuxième trou 3. Ainsi la position du centre de la zone expansée est déterminée par le deuxième trou 3.
En quatrième étape (4), on réalise un alésage final du premier trou 11 et du deuxième trou 3 de sorte que les diamètres du premier trou et du deuxième trou soient égaux, le premier trou est éventuellement réalisé à travers du deuxième trou. Ce diamètre 0fjnaι est sensiblement supérieur au diamètre 0fiXatioπ d'une fixation 9 de manière à laisser un interstice entre la paroi des trous 3, 11 et la surface de la fixation afin d'éviter une interférence entre la fixation et la paroi de l'alésage, ce qui a pour effet d'éviter de générer des contraintes radiales dans l'alésage.
La valeur du diamètre
Figure imgf000011_0001
est choisie de sorte que le champ de contraintes générées couvre suffisamment le diamètre de la matière retirée lors de l'alésage de manière à ne pas engendrer une perte de durée de vie en fatigue dans la pièce métallique.
En figure 3 est représentée une deuxième forme de mise en œuvre de l'invention dans laquelle un outil d'expansion 6 est utilisé pour générer localement un champ de contraintes résiduelles dans la pièce métallique 1.
Dans cette forme de réalisation, il est nécessaire de préparer dans la pièce métallique avant l'étape d'expansion un premier trou ayant un diamètre 01 adapté au diamètre d'un brunissoir 6 utilisé comme outil d'expansion, c'est-à-dire le diamètre 01 doit être légèrement inférieur au diamètre d'une partie située à l'extrémité du brunissoir 6 de telle sorte que sont passage dans le trou de la pièce métallique y crée des contraintes. Par ailleurs le diamètre du brunissoir et le diamètre du premier trou sont inférieurs au diamètre 02 du deuxième trou de la pièce composite de telle sorte que le passage de l'outil d'expansion au travers du deuxième trou ne génère pas de contraintes.
Dans cette deuxième forme de réalisation, on a représenté les deux pièces 1 , 2 à l'état initial (1 ) comportant chacune un trou ayant un diamètre initial 0o.
En (2) on effectue un alésage du deuxième trou 3 de telle sorte que son diamètre 02 soit sensiblement supérieur au diamètre 0b du brunissoir 6 de telle sorte le passage de ce dernier au travers du deuxième trou ne puisse pas engendrer de contraintes au sein du volume de la pièce composite.
En (3) on prépare l'alésage dans la pièce métallique pour l'expansion au moyen d'un outil d'alésage conventionnel 13 permettant d'obtenir un diamètre 01 adapté pour l'étape d'expansion.
Dans une variante de cette deuxième forme de réalisation, on peut inverser l'ordre dans lequel sont réalisées l'étape (2) et l'étape (3).
Avantageusement, avant de procéder à l'alésage du deuxième trou dans l'étape (2), on peut disposer une cale d'arrêt de matériau différent de ceux des pièces entre la pièce métallique et la pièce composite. Cette cale d'arrêt a pour fonction d'indiquer à l'outil d'alésage la limite de l'alésage à ne pas dépasser du côté de la pièce composite. Cette cale d'arrêt sera retirée pour les étapes suivantes du procédé.
L'étape d'expansion représentée en (4) sur la figure 3 consiste à faire passer le brunissoir 6 à travers du premier trou et du deuxième trou. Le brunissoir ayant un diamètre supérieur au diamètre 01 du premier trou et inférieur au diamètre 02 du deuxième trou, exerce alors une action mécanique par écrouissage sur la paroi interne du premier trou, créant ainsi un champ de contraintes résiduelles à la périphérie du premier trou tout en élargissant jusqu'à l'obtention d'un diamètre d'expansion 0exp.
En dernière étape (5), on réalise un alésage final du premier trou 11 et du deuxième trou 3 de sorte que les diamètres du premier trou et du deuxième trou soient parfaitement alignés et égaux pour recevoir la fixation de section sensiblement constante.
En figure 4 est représentée une troisième forme de réalisation de l'invention dans laquelle un outil d'expansion utilisé est un faisceau laser.
Comme dans le cas des deux autres formes de réalisation, le diamètre du faisceau doit être inférieur au diamètre 02 pour ne pas expanser la pièce composite lorsque le faisceau laser passe au travers du deuxième trou.
Dans cette troisième forme de réalisation, les deux pièces 1 , 2 à l'état initial (1 ) comportent chacune un trou ayant un diamètre initial 0o.
En (2) on effectue un alésage du deuxième trou 3 de telle sorte que son diamètre 02 soit sensiblement supérieur au diamètre 0b du faisceau laser de telle sorte le passage de ce dernier au travers du deuxième trou ne puisse pas engendrer de contraintes au sein du volume de la pièce composite.
L'action d'expansion représentée sur la figure 4 en (3) consiste à envoyer au moins un faisceau laser sur la paroi du premier trou. Le balayage du faisceau laser sur au moins une partie des surfaces de la paroi du premier trou exerce une action d'écrouissage similaire à celle du brunissoir sur la paroi interne du premier trou et génère un champ de contraintes résiduelles sur la surface d'alésage
Avantageusement dans cette troisième forme de réalisation de l'invention, il est possible d'adapter les paramètres du tir laser en fonction du diamètre initial 0o du deuxième trou de telle sorte que l'étape de surdiamètrage (2) soit optionnelle. Notamment il est possible de faire varier le diamètre du faisceau laser, ainsi que la valeur de l'angle solide de sa projection pour l'adapter au diamètre du deuxième trou de manière à ne pas l'endommager. Un exemple de conditions de tir laser est le suivant : la longueur d'onde du faisceau laser est d'environ 1 μm, avec une énergie de 28 J pendant 25 ns.
La figure 5 montre une quatrième forme de réalisation de l'invention dans laquelle la pièce métallique est préparée avant son positionnement avec la pièce composite, l'étape de création de champ de contraintes résiduelles est alors effectuée en l'absence de la pièce composite.
On poinçonne dans une première étape (1 ) de part et d'autre la surface de la pièce métallique dans la zone d'alésage au moyen d'un outil d'expansion, la zone ainsi expansée est alors repérable par la marque du poinçon 8 sur les surfaces externes de la pièce métallique.
Dans une seconde étape, on réalise l'alésage dans les deux pièces en une seule étape au moyen d'un outil d'alésage 10. De préférence l'alésage part de la face de la pièce métallique, dans le sens de la pièce métallique vers la pièce composite dans la zone expansée afin de réaliser précisément le trou au centre de la zone expansée, soit précisément au centre du champ des contraintes créées 15 à l'étape (2).
Dans une dernière étape, la fixation 9 est positionnée dans l'alésage pour maintenir ensemble les pièces 1 , 2.
Le procédé de l'invention permet de créer localement des contraintes résiduelles ou non dans le volume de la pièce métallique pour augmenter la durée de vie en fatigue sans endommager la pièce composite, tout en permettant une grande flexibilité au niveau des différentes techniques d'expansion et également de l'outil d'expansion sans interférence avec la pièce composite.
En outre un alésage unique dans la pièce métallique et dans la pièce composite permet d'obtenir un alignement parfait entre les trous des deux pièces. Ceci est particulièrement intéressant dans le cas où les pièces doivent être assemblées au moyen d'une ligne de liaison.
Le diamètre final
Figure imgf000014_0001
des trous pour l'étape d'assemblage est choisi de telle sorte qu'il soit sensiblement supérieur au diamètre de la fixation, de façon à être compatible avec les tolérances de fixation de la pièce composite sans engendrer de contraintes locales dans la pièce composite. Toutefois il ne doit pas être trop élevé de manière à ce que la matière enlevée n'entraîne pas une perte de l'efficacité des contraintes sur la durée de vie en fatigue dans la pièce métallique.
Le procédé décrit ci-dessus peut être utilisé pour fabriquer tout type de structures d'aéronef ou de véhicules terrestres comportant un assemblage entre au moins une pièce composite et au moins une pièce métallique soumis à des sollicitations mécaniques significatives.

Claims

R E V E N D I C A T I O N S
1- Procédé d'assemblage entre une pièce en matériau métallique (1 ) et une pièce en matériau composite (2), la jonction entre lesdites pièces étant réalisée au moyen d'une fixation de section sensiblement constante reçue dans un premier trou (11 ) réalisé dans la pièce en matériau métallique et un deuxième trou (3) réalisé dans la pièce en matériau composite, caractérisé en ce que préalablement à l'assemblage entre lesdites pièces, le procédé comporte :
- une étape d'expansion dans laquelle l'outil d'expansion comporte un diamètre extérieur 0b supérieur au diamètre 01 dudit premier trou (11 ) et inférieur au diamètre 02 dudit deuxième trou (3) de manière à générer uniquement un champ de contraintes de compression à la périphérie dudit premier trou (11 ) et localement dans le matériau constituant la pièce en matériau métallique ;
- une étape d'alésage unique pour réaliser ledit premier trou (11 ) et ledit deuxième trou (3) afin d'obtenir un diamètre
Figure imgf000015_0001
sensiblement supérieur au diamètre de la fixation (9) de manière à laisser un interstice entre la paroi interne desdits trous (3, 11 ) et la surface externe de la fixation (9),
- une étape d'assemblage pour positionner la fixation (9) dans lesdits trous (3, 11 ) pour maintenir la pièce métallique et la pièce composite ensemble.
2 - Procédé selon la revendication 1 , caractérisé en ce que ledit outil d'expansion étant un outil d'expansion dit brunissoir, le procédé comporte les étapes suivantes :
- placer la pièce en matériau métallique (1 ) contre la pièce en matériau composite (2),
- réaliser ledit deuxième trou (3) dans la pièce en matériau composite ayant un diamètre 02 sensiblement supérieur au diamètre extérieur 0b de l'outil d'expansion, afin de permettre le passage du brunissoir sans générer de contraintes à la périphérie dudit deuxième trou (3),
- réaliser un premier trou (11 ) dans la pièce métallique en regard dudit deuxième trou (3), ledit premier trou (11 ) ayant un diamètre 01 sensiblement inférieur au diamètre de l'outil d'expansion, de telle sorte que le passage dudit outil dans ledit trou (11 ) génère le champ de contraintes à la périphérie du trou en exerçant une action mécanique par écrouissage sur la paroi interne du trou (11 ),
- faire passer ledit outil dans lesdits trous (3, 11 ),
- réaliser l'étape d'alésage dans ledit premier trou expansé et dans ledit deuxième trou (3) pour obtenir un premier trou et un deuxième trou ayant un même diamètre final 0finaι,
- réaliser l'étape d'assemblage en positionnant la fixation (9).
3. Procédé selon la revendication 2, caractérisé en ce qu'une cale d'arrêt d'alésage est placée entre la pièce métallique (2) et la pièce composite (1 ) ayant pour fonction d'indiquer la limite d'alésage dudit outil d'alésage avant l'étape de l'alésage du deuxième trou, ladite cale étant ensuite retirée pour l'étape dite d'alésage final et l'étape d'assemblage.
4. Procédé selon la revendication 2, caractérisé en ce que ledit outil d'expansion comporte une partie ayant un diamètre 0b sensiblement supérieur au diamètre 02.
5. Procédé d'assemblage selon la revendication 1 , caractérisé en ce que ledit outil d'expansion étant un faisceau laser (7), ledit procédé comporte les étapes suivantes :
- placer la pièce en matériau métallique (1 ) contre la pièce en matériau composite (2),
- réaliser ledit deuxième trou (3) dans la pièce en matériau composite ayant un diamètre 02 sensiblement supérieur au diamètre 0b du faisceau laser afin de permettre le passage du faisceau laser sans générer de contraintes à la périphérie dudit deuxième trou (3),
- réaliser un premier trou (11 ) dans la pièce en matériau métallique, le diamètre 01 dudit trou étant sensiblement inférieur au diamètre 02 de la pièce en matériau composite,
- envoyer un faisceau laser (7) dans ledit premier trou de part et d'autre de la pièce en matériau métallique, ledit faisceau ayant un diamètre inférieur au diamètre 02 du trou de la pièce composite, le balayage du faisceau laser sur au moins une partie des surfaces de la paroi interne du trou (1 ) permettant d'exercer une action d'écrouissage dans ledit trou, générant le champ de contraintes à la périphérie dudit premier trou (11 ) et localement dans le matériau constituant la pièce métallique, - réaliser l'étape d'alésage dans ledit premier trou expansé et dans ledit deuxième trou (3) pour obtenir un premier trou et un deuxième trou ayant un même diamètre final 0finaι,
- réaliser l'étape d'assemblage en positionnant la fixation (9).
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que la fixation (9) est un boulon ou une vis.
7. Utilisation du procédé selon l'une des revendications précédentes pour fabriquer une structure d'aéronef comportant un assemblage entre au moins une pièce en matériau composite (2) et au moins une pièce en matériau métallique (1 ) au moyen d'une fixation (9).
PCT/FR2008/050792 2007-05-09 2008-05-06 Procede d'assemblage entre une piece en materiau metallique et une piece en materiau composite au moyen d'une fixation WO2008148993A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/598,005 US8656593B2 (en) 2007-05-09 2008-05-06 Method for assembling a part of a metal material and a part of a composite material using a fastener

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0754930A FR2915913B1 (fr) 2007-05-09 2007-05-09 Procede d'assemblage entre une piece en materiau metallique et une piece en materiau composite au moyen d'une fixation.
FR0754930 2007-05-09

Publications (2)

Publication Number Publication Date
WO2008148993A2 true WO2008148993A2 (fr) 2008-12-11
WO2008148993A3 WO2008148993A3 (fr) 2009-01-29

Family

ID=38875312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050792 WO2008148993A2 (fr) 2007-05-09 2008-05-06 Procede d'assemblage entre une piece en materiau metallique et une piece en materiau composite au moyen d'une fixation

Country Status (3)

Country Link
US (1) US8656593B2 (fr)
FR (1) FR2915913B1 (fr)
WO (1) WO2008148993A2 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105540A1 (fr) * 2010-02-26 2011-09-01 三菱重工業株式会社 Procédé de réparation d'une matière composite et matière composite obtenue par ce procédé
US20130260168A1 (en) * 2012-03-29 2013-10-03 General Electric Company Component hole treatment process and aerospace component with treated holes
US9180509B2 (en) * 2013-10-24 2015-11-10 The Boeing Company Cold working holes in a composite and metal stack
EP4098891A1 (fr) 2014-04-14 2022-12-07 Short Brothers Plc Appareil et procédé de formation de structures composites renforcées de fibres
EP2993124B1 (fr) * 2014-09-08 2019-04-03 Airbus Operations GmbH Évitement de fissures sur les connections à vis ou à rivet de composants structurels d'aéronef
FR3043348B1 (fr) * 2015-11-09 2018-03-02 Airbus Operations Bague d'expansion comprenant au moins deux portions cylindriques avec des proprietes mecaniques differentes, procede de fabrication d'une telle bague d'expansion et procede d'expansion a froid utilisant ladite bague d'expansion
FR3043349B1 (fr) * 2015-11-09 2017-10-27 Airbus Operations Sas Bague d'expansion comprenant au moins deux bagues exterieures et procede d'expansion a froid utilisant ladite bague d'expansion
FR3058193B1 (fr) * 2016-10-28 2019-03-22 Airbus Operations Procede d'expansion radiale d'un trou combine a un montage avec interference d'une fixation dans ledit trou et outillage pour sa mise en oeuvre
CN111331540A (zh) * 2020-04-10 2020-06-26 三一重机有限公司 对孔装置
CN112982786B (zh) * 2021-03-09 2022-10-28 山东七星绿色建筑科技有限公司 一种桁架楼层板生产线及生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266991B1 (en) * 2000-04-03 2001-07-31 Albert S. Kuo Coldwork holes with reusable seamless SMA sleeve
US20030024904A1 (en) * 2001-08-01 2003-02-06 Allan H. Clauer System for laser shock processing objects to produce enhanced stress distribution profiles
US6711928B1 (en) * 1998-03-17 2004-03-30 Stresswave, Inc. Method and apparatus for producing beneficial stresses around apertures, and improved fatigue life products made by the method
WO2004048073A1 (fr) * 2002-11-25 2004-06-10 Stresswave, Inc. Plaques filetees formant ecrou et procedes d'installation
US20050220533A1 (en) * 2004-03-31 2005-10-06 Prichard Alan K Methods and systems for joining structures

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129028A (en) * 1977-12-19 1978-12-12 Grumman Aerospace Corporation Method and apparatus for working a hole
US4771627A (en) * 1986-10-29 1988-09-20 Mcdonnell Douglas Corporation Stress-coining apparatus and method
WO2005074600A2 (fr) * 2004-02-02 2005-08-18 Stresswave, Inc. Traitement de joints soudes par points destine a ameliorer la resistance a la fatigue

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6711928B1 (en) * 1998-03-17 2004-03-30 Stresswave, Inc. Method and apparatus for producing beneficial stresses around apertures, and improved fatigue life products made by the method
US6266991B1 (en) * 2000-04-03 2001-07-31 Albert S. Kuo Coldwork holes with reusable seamless SMA sleeve
US20030024904A1 (en) * 2001-08-01 2003-02-06 Allan H. Clauer System for laser shock processing objects to produce enhanced stress distribution profiles
WO2004048073A1 (fr) * 2002-11-25 2004-06-10 Stresswave, Inc. Plaques filetees formant ecrou et procedes d'installation
US20050220533A1 (en) * 2004-03-31 2005-10-06 Prichard Alan K Methods and systems for joining structures

Also Published As

Publication number Publication date
US8656593B2 (en) 2014-02-25
FR2915913A1 (fr) 2008-11-14
WO2008148993A3 (fr) 2009-01-29
FR2915913B1 (fr) 2010-02-26
US20100287776A1 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
WO2008148993A2 (fr) Procede d'assemblage entre une piece en materiau metallique et une piece en materiau composite au moyen d'une fixation
CA2697128C (fr) Agrafage d'epinglage a vis et son utilisation pour la fixation temporaire d'une grille de percage sur des elements a assembler
EP2440795B1 (fr) Famille de dispositifs de fixation à conicité variable
CA2719149C (fr) Procede d'assemblage entre une piece en materiau metallique et une piece en materiau composite
EP1941167B1 (fr) Rivet aveugle et son procede d'enlevement
CA2486875C (fr) Procede de realisation d'une structure stratifiee et avion muni d'une telle structure
EP0126698B1 (fr) Méthode d'assemblage d'un élément annulaire sur un tube métallique en aluminium ou un de ses alliages
FR3046137A1 (fr) Procede d'alignement d'un premier orifice d'une premiere piece avec un deuxieme orifice d'une deuxieme piece et kit pour sa mise en œuvre
US7530487B2 (en) Method of welding onto thin components
EP3037684B1 (fr) Chape avec empochement et/ou relief
EP1943428B1 (fr) Procede et dispositif d'assemblage de deux pieces independantes
FR3055565A1 (fr) Douillage en vis-a-vis pour la reparation de trous de serrage
EP3859170B1 (fr) Boulon comprenant un écrou et au moins une rondelle obtenue par durcissement d'un matériau pâteux, procédé de montage dudit boulon et assemblage comportant au moins un tel boulon
FR2974747A1 (fr) Outil de percage polyvalent, et boite a outils associee
FR3147607A1 (fr) Assemblage comportant au moins une pièce composite et des moyens de fixation
FR3114257A1 (fr) Pièce mécanique à élément de fixation traversant pré-intégré
FR3009743A1 (fr) Procede d'assemblage de pieces utilisant une fixation temporaire apte a se visser
FR2735820A1 (fr) Boulon a rondelle et son procede de fabrication
FR2873769A1 (fr) Fixation a une structure porteuse d'un element de construction comportant au moins une extremite tubulaire
FR3029580A1 (fr) Vis pour moyen d'assemblage de deux pieces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805745

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12598005

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08805745

Country of ref document: EP

Kind code of ref document: A2