[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008146112A1 - Procédé et appareil pour la réduction directe de minerais de fer à l'aide d'un gaz de synthèse - Google Patents

Procédé et appareil pour la réduction directe de minerais de fer à l'aide d'un gaz de synthèse Download PDF

Info

Publication number
WO2008146112A1
WO2008146112A1 PCT/IB2008/001203 IB2008001203W WO2008146112A1 WO 2008146112 A1 WO2008146112 A1 WO 2008146112A1 IB 2008001203 W IB2008001203 W IB 2008001203W WO 2008146112 A1 WO2008146112 A1 WO 2008146112A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
pressure
dri
process according
reducing gas
Prior art date
Application number
PCT/IB2008/001203
Other languages
English (en)
Inventor
Jorge Octavio Becerra-Novoa
Pablo-Enrique Duarte-Escareno
Eugenio Zendejas-Martinez
Original Assignee
Hyl Technologies, S.A. De C.V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyl Technologies, S.A. De C.V filed Critical Hyl Technologies, S.A. De C.V
Priority to CN200880017379XA priority Critical patent/CN101755056B/zh
Priority to UAA200913453A priority patent/UA97275C2/ru
Priority to US12/601,984 priority patent/US20100162852A1/en
Publication of WO2008146112A1 publication Critical patent/WO2008146112A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/24Increasing the gas reduction potential of recycled exhaust gases by shift reactions
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/28Increasing the gas reduction potential of recycled exhaust gases by separation
    • C21B2100/282Increasing the gas reduction potential of recycled exhaust gases by separation of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/42Sulphur removal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/64Controlling the physical properties of the gas, e.g. pressure or temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Definitions

  • the invention relates to the direct reduction of iron ores in a reduction system comprising a direct reduction process for producing direct-reduced-iron (DRI) and a gasification process for producing hydrogen and carbon monoxide produced by partial oxidation of a hydrocarbon source.
  • DRI direct-reduced-iron
  • Direct reduction of iron ores for producing pre-reduced metallized materials useful for the production of steel is becoming more and more widespread in the steel industry.
  • Some of the advantages of direct reduction plants are that the production capacity may be relatively small as compared with pig iron production in coke-fed blast furnaces and that the metallic iron is produced in solid form with low sulfur and silicon content and that the DRI may be easily melted in electric-arc furnaces.
  • the reducing agents utilized in the direct reduction plants are hydrogen and carbon monoxide, most typically produced by reformation of natural gas and therefore, these plants have been built in areas where natural gas is available and at relatively low price.
  • Hydrogen and carbon monoxide can also be produced by partial oxidation of hydrocarbons other than natural gas, for example heavier gases such as propane, butane, etc, oil and coal.
  • hydrocarbons other than natural gas for example heavier gases such as propane, butane, etc, oil and coal.
  • One of the disadvantages of utilizing heavy hydrocarbons is the need of sulfur and other acid gases removal and also that the gasification processes normally operate at relatively higher pressure levels as compareB with the pressure of the direct reduction processes.
  • Jahnke does not teach nor even recognize the possibility of having a single absorption unit wherein the acid-gas content is removed from a combined stream of both the syngas produced in the gasif ⁇ er and the recycle reducing gas from the reduction reactor as in the present invention.
  • the direct reduction process of the present invention operates with a single absorption unit at the pressure range of the partial oxidation process and by this offers a number of previously unrecognized advantages over the prior art.
  • the objects of the invention are generally achieved by providing a method for producing DRI utilizing a synthesis gas produced preferably by partial oxidation of hydrocarbons, wherein the pressure level of the expended reducing gas effluent from the DRI reactor (top gas) is increased by a compressor to the pressure level of the syngas and the recycle top gas is combined with the make-up syngas and treated in a single acid-gas absorption unit thus forming a combined stream of cleaned reducing gas which is expanded in a turbine for lowering its pressure to the pressure level of the DRI reactor and using the turbine to drive the compressor and thereafter the combined stream is then heated to a temperature preferably above 950°C and used in the DRI reactor for producing said DRI.
  • Figure 1 is a schematic process diagram of the combination of a hydrocarbon gasification plant and a direct reduction plant (having a moving bed reduction reactor) according to a preferred embodiment of the invention.
  • a hydrocarbon gasification plant having a moving bed reduction reactor
  • the integrated system for reduction of iron oxides comprises a hydrocarbon gasification plant 10 and a direct reduction plant 12.
  • the reduction plant 12 comprises a reduction reactor 14 having an upper reduction zone 16 and a lower discharge zone 20.
  • Particulate solid iron ores 18 in the form of lumps or pellets are contacted in the reduction zone 16 with a high-temperature reducing gas from pipe 64).
  • This first stream of good quality high-temperature reducing gas in pipe 64 mainly is comprised of hydrogen and carbon monoxide which react with the iron ores to produce direct reduced iron (DRI) 22.
  • the DRI is discharged from said reactor 14 through the lower discharge zone 20. Depending on the type of subsequent utilization of the DRI, it may be discharged hot or cold.
  • the lower discharge zone 20 of reactor 14 may optionally have means, well known in the art, for circulating a stream of cooling gas for cooling down said DRI to a temperature level below about 100°C before its discharge from said reactor. See for example the cooling/discharge zone 14 with an associated cooling gas loop shown in US patent no. 4,524, 030.
  • Spent reducing gas exits as an effluent from the reduction zone 16 at a temperature in the range from about 300°C to about 500°C via pipe 24 (for upgrading in a recycle circuit and return back to the reduction zone 16).
  • Such recycle reducing gas initially passes (as the second stream) through a heat exchanger 26 (where its sensible heat is used to preheat the downstream upgraded portion of the reducing gas just prior to being recycled back as said first stream into the reduction zone 16).
  • the spent reducing gas now partially cooled, flows on through pipe 28 into a cooler/scrubber 30, and is there cleaned and cooled down to ambient temperature by direct contact with water 32.
  • the spent reducing gas effluent from the reduction zone 16 contains significant amounts of water and carbon dioxide (produced as by-products from the reactions of hydrogen and carbon monoxide with the iron oxide content of the iron ore 18).
  • the upgrading of the reducing gas effluent begins in the cooler/scrubber 30, where the water produced by the hydrogen reduction reaction condenses and is extracted from the system through pipe 34 along with the cooling water 32.
  • a minor portion of the cleaned and dewatered spent gas is purged from the recycle circuit through pipe 82 having a pressure control valve 84 (for pressure control of, and for maintaining a N 2 concentration below 13% by volume in, the recycle circuit).
  • the purged gas may be advantageously utilized as fuel in burner 86 for the gas heater 58 and optionally if needed may also be supplemented with some syngas from gasifier 90 via pipes 46 and 45.
  • the remaining portion of the cleaned and dewatered reducing effluent gas is then transferred to compressor 38 through pipe 36 (as the third stream), wherein its pressure is raised to a level suitable for further treatment prior to its ultimate recycling to reactor 14.
  • an additional recycle gas compressor 42 in serial arrangement with compressor 38, may be required to increase the pressure of the recycle reducing gas in pipe 44 up to the pressure level of the CO 2 removal column unit 48.
  • Such supplemental compressor 42 may be driven by a motor 43.
  • the CO 2 removal unit 48 simultaneously serves both the normally relatively low pressure recycle reducing gas and also the syngas necessarily produced at high pressure by the gasifier 90.
  • the gasifier 90 fossil fuels such as coal, refinery residues and biomass are partially oxidized with oxygen 92 and steam 94.
  • the resulting syngas contains H 2 , CO, CO 2 , H 2 O, CH 4 , and S (in the form of H 2 S and/or COS, CS 2 , mercaptans), and dust.
  • This syngas exits through pipe 96 and is cooled and cleaned in a dedicated scrubbing system 98.
  • the gasification waste by-products exit the gasifier 90 by discharge pipe 112.
  • the composition of the syngas exiting via pipe 100 may optionally be adjusted to increase the hydrogen content by a gas shifting reaction to obtain a H 2 /CO ratio of 2 to 3 (measured by % volume) in a shifter unit 102.
  • Steam may be supplied as the reactant for trie shift reaction through pipe 104 in amounts metered by a flow control valve 106.
  • the shifted syngas is then passed through pipe 108 to another cooler/scrubber 110.
  • the clean syngas then flows through pipe 46 while still at a gasification system pressure typically in the range of 20 to 40 bars absolute.
  • This high pressure syngas being supplied as make-up reducing gas, combines with the recycle reducing gas at like pressure in pipe 44.
  • the resulting supplemented recycle reducing gas flows via pipe 47 (as the fourth stream) of for subsequent further upgrading in a CO 2 absorption unit 48 (where acid-gases, e.g. sulphur compounds and carbon dioxide, are removed from the combined reducing gas stream).
  • the CO 2 removal unit preferably is a conventional amine solution-based absorption system, comprising an absorption column 49 and stripping column 72 with related facilities, such as heat exchangers and steam re-boiler 74 (where steam 76 heats the amine solution received from the absoption column 49 via pipe 70 to eliminate CO 2 and sulphur-containing gases by discharge through outlet pipe 78).
  • the regenerated amine solution is returned via pipe 80 and reused in the absorption column 49.
  • the upgraded recycle reducing gas stream flowing through pipe 50 is then depressurized in a gas expansion turbine 52, which is used to drive the compressor 38 (thus achieving an overall mechanical energy synergy between the gasification and the reduction systems).
  • the upgraded reducing gas stream now typically at a lower pressure in the range of 6 to 10 bars absolute, passes on via pipe 54 (as the fifth stream) to be preheated in heat exchanger 26 and then further passes on through pipe 56 into gas heater 58; where its temperature is raised to levels above about 800 0 C.
  • higher temperatures are desirable for faster and more efficient reactions, but are limited by undesirable agglomeration of the ores and DRI preventing the free flow of particles in and from the reactor 14.
  • an oxygen-containing gas 62 at a rate regulated by flow control valve 63, is mixed with the hot reducing gas from pipe 60 to carry out a controlled partial combustion to raise the temperature of the reducing gas to a higher desired level, prior to the upgraded recycle reducing gas being fed by pipe 64 (as the first stream) into the reduction zone 16 for effecting the direct reduction of iron ores 18.
  • the reducing gas entering the reduction zone 16 preferably has a composition characterized by a ratio of H 2 /CO in the range from 1.5 to 4.0 in volume percent and at a pressure in the range from about 2 to about 7 bars absolute and at a temperature in the range from about 83O 0 C to about 1020 0 C.
  • the process of the invention offers a number of advantages over the prior art. For example, it requires less steam (thermal energy) for regenerating the amine solution utilized in the absorption unit 48.
  • steam thermal energy
  • the steam can be generated by using waste energy from the syngas process in lieu of being produced in external boilers.
  • the mechanical energy in the DR process is particularly improved, since the pressurized syngas from the gasifier is used to drive the recycling of the reducing gas. This is in addition to the known practice of preheating the recycle reducing gas using available energy from the top gas in a heat exchanger, before being further heated up in the gas heater.
  • the thermal energy of the top gas can be used for low-pressure steam generation, which can be used in the CO 2 removal system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Industrial Gases (AREA)

Abstract

L'invention concerne une installation de réduction directe pour la production d'un produit métallisé (DRI) par la réduction de minerais de fer sous forme de blocs ou de boulettes, le gaz réducteur utilisé dans le réacteur DRI contenant des gaz acides tels que des composés de soufre et du dioxyde de carbone. Les gaz réducteurs d'appoint sont typiquement produits par oxydation partielle d'hydrocarbures (gaz de synthèse) à haute pression, tandis que le réacteur DRI est habituellement actionné à une pression inférieure. Le niveau de pression de l'effluent de gaz réducteur provenant du réacteur DRI (gaz supérieur), après refroidissement et déshydratation, est augmenté jusqu'au niveau de pression du gaz de synthèse et le gaz réducteur de recyclage résultant est ensuite combiné avec le gaz de synthèse d'appoint et traité dans une unité d'absorption de gaz-acide unique formant un courant combiné d'un gaz réducteur affiné propre qui est ensuite détendu dans une turbine pour diminuer la pression du gaz réducteur combiné jusqu'au niveau de pression du réacteur DRI, puis est chauffé à une température de préférence au-dessus de 950°C et utilisé dans le réacteur DRI pour produire ledit DRI. Le compresseur pour élever la pression du gaz de recyclage initialement froid utilise de l'énergie provenant de la turbine de détente (utilisée pour diminuer la pression du gaz réducteur combiné haute pression).
PCT/IB2008/001203 2007-05-25 2008-05-14 Procédé et appareil pour la réduction directe de minerais de fer à l'aide d'un gaz de synthèse WO2008146112A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200880017379XA CN101755056B (zh) 2007-05-25 2008-05-14 利用合成气直接还原铁矿石的方法和设备
UAA200913453A UA97275C2 (ru) 2007-05-25 2008-05-14 СПОСОБ ПРОИЗВОДСТВА ЖЕЛЕЗА ПРЯМОГО ВОССТАНОВЛЕНИЯ В восстановительном РЕАКТОРе
US12/601,984 US20100162852A1 (en) 2007-05-25 2008-05-14 Method and apparatus for the direct reduction of iron ores utilizing syngas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US93180007P 2007-05-25 2007-05-25
US60/931,800 2007-05-25

Publications (1)

Publication Number Publication Date
WO2008146112A1 true WO2008146112A1 (fr) 2008-12-04

Family

ID=39717784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2008/001203 WO2008146112A1 (fr) 2007-05-25 2008-05-14 Procédé et appareil pour la réduction directe de minerais de fer à l'aide d'un gaz de synthèse

Country Status (4)

Country Link
US (1) US20100162852A1 (fr)
CN (1) CN101755056B (fr)
UA (1) UA97275C2 (fr)
WO (1) WO2008146112A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUD20100177A1 (it) * 2010-09-29 2012-03-30 Danieli Off Mecc Procedimento ed apparato per la produzione di ferro di riduzione diretta utilizzando una sorgente di gas riducente comprendente idrogeno e monossido di carbonio
AT510565B1 (de) * 2011-06-21 2012-05-15 Siemens Vai Metals Tech Gmbh Vorrichtung zur regelung von prozessgasen in einer anlage zur herstellung von direkt reduzierten metallerzen
AT511888A1 (de) * 2011-09-13 2013-03-15 Siemens Vai Metals Tech Gmbh System zur energieoptimierung in einer anlage zur herstellung von direkt reduzierten metallerzen
WO2014100059A3 (fr) * 2012-12-18 2014-08-21 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Intégration de membrane de transport d'oxygène à un procédé dri à base de charbon
US10337076B2 (en) * 2014-02-10 2019-07-02 Primetals Technologies Austria GmbH Pneumatic ore charging

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140054314A (ko) * 2011-08-20 2014-05-08 에이치와이엘 테크놀로지즈, 에스.에이. 데 씨.브이. 석탄으로부터 유도된 가스를 이용하여 직접환원철을 제조하는 방법
EP2628805A1 (fr) * 2012-02-14 2013-08-21 Siemens VAI Metals Technologies GmbH Procédé et dispositif de réduction de matières de départ contenant de l'oxyde de fer dans un agrégat de réduction haute pression
US8709131B2 (en) 2012-02-15 2014-04-29 Midrex Technologies, Inc. Method and system for the production of direct reduced iron using a synthesis gas with a high carbon monoxide content
KR20140115350A (ko) * 2012-02-15 2014-09-30 미드렉스 테크놀리지스, 인코오포레이티드 높은 일산화탄소 함유량을 갖는 합성가스를 이용하는 직접환원철의 제조방법 및 그 시스템
US10065857B2 (en) 2013-03-12 2018-09-04 Midrex Technologies, Inc. Systems and methods for generating carbon dioxide for use as a reforming oxidant in making syngas or reformed gas
WO2016118474A1 (fr) * 2015-01-20 2016-07-28 Midrex Technologies, Inc. Procédés et systèmes de production de fer métallique à teneur élevée en carbone en utilisant du gaz de cokerie
CN109136441B (zh) * 2018-08-25 2021-01-08 张英华 一种海绵铁和铁粉的制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2547685A (en) * 1947-11-25 1951-04-03 Brassert & Co Reduction of metallic oxides
US3767379A (en) * 1971-12-23 1973-10-23 Texaco Development Corp Ore reduction process using recirculated cooled gas
US3844766A (en) * 1973-12-26 1974-10-29 Midland Ross Corp Process for reducing iron oxide to metallic sponge iron with liquid or solid fuels
US4246024A (en) * 1979-10-31 1981-01-20 Grupo Industrial Alfa, S.A. Method for the gaseous reduction of metal ores using reducing gas produced by gasification of solid or liquid fossil fuels
GB2150591A (en) * 1983-12-02 1985-07-03 Skf Steel Eng Ab Method and plant for reducing oxidic material
US4889323A (en) * 1986-08-07 1989-12-26 Voest-Alpine Aktiengesellschaft Mill arrangement with primary gas mixing means
US5871560A (en) * 1994-06-23 1999-02-16 Voest-Alpine Industrieanlagenbau Gmbh Process and plant for the direct reduction of iron-oxide-containing materials
WO2004101829A2 (fr) * 2003-05-15 2004-11-25 Hylsa, S.A. De C.V. Procede et appareil pour ameliorer l'utilisation de sources d'energie primaire dans des usines siderurgiques integrees

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033456A (en) * 1998-02-06 2000-03-07 Texaco Inc. Integration of partial oxidation process and direct reduction reaction process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2547685A (en) * 1947-11-25 1951-04-03 Brassert & Co Reduction of metallic oxides
US3767379A (en) * 1971-12-23 1973-10-23 Texaco Development Corp Ore reduction process using recirculated cooled gas
US3844766A (en) * 1973-12-26 1974-10-29 Midland Ross Corp Process for reducing iron oxide to metallic sponge iron with liquid or solid fuels
US4246024A (en) * 1979-10-31 1981-01-20 Grupo Industrial Alfa, S.A. Method for the gaseous reduction of metal ores using reducing gas produced by gasification of solid or liquid fossil fuels
GB2150591A (en) * 1983-12-02 1985-07-03 Skf Steel Eng Ab Method and plant for reducing oxidic material
US4889323A (en) * 1986-08-07 1989-12-26 Voest-Alpine Aktiengesellschaft Mill arrangement with primary gas mixing means
US5871560A (en) * 1994-06-23 1999-02-16 Voest-Alpine Industrieanlagenbau Gmbh Process and plant for the direct reduction of iron-oxide-containing materials
WO2004101829A2 (fr) * 2003-05-15 2004-11-25 Hylsa, S.A. De C.V. Procede et appareil pour ameliorer l'utilisation de sources d'energie primaire dans des usines siderurgiques integrees

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9328395B2 (en) 2010-09-29 2016-05-03 Danieli & C. Officine Meccaniche Spa Method and apparatus for producing direct reduced iron utilizing a source of reducing gas comprising hydrogen and carbon monoxide
AU2011309835B2 (en) * 2010-09-29 2017-05-04 Danieli & C. Officine Meccaniche Spa Method and apparatus for producing direct reduced iron utilizing a source of reducing gas comprising hydrogen and carbon monoxide
JP2013544960A (ja) * 2010-09-29 2013-12-19 ダニエリ アンド シー.オフィス メカニケ エスピーエー 水素および一酸化炭素を含有した還元ガスを供給源として用いて直接還元鉄を製造する方法並びに装置
EP2622106A1 (fr) 2010-09-29 2013-08-07 Danieli & C. Officine Meccaniche SpA Procédé et appareil pour produire du fer réduit direct à l'aide d'une source de gaz réducteur comprenant de l'hydrogène et du monoxyde de carbone
WO2012042352A1 (fr) 2010-09-29 2012-04-05 Danieli & C. Officine Meccaniche Spa Procédé et appareil pour produire du fer réduit direct à l'aide d'une source de gaz réducteur comprenant de l'hydrogène et du monoxyde de carbone
ITUD20100177A1 (it) * 2010-09-29 2012-03-30 Danieli Off Mecc Procedimento ed apparato per la produzione di ferro di riduzione diretta utilizzando una sorgente di gas riducente comprendente idrogeno e monossido di carbonio
AT510565A4 (de) * 2011-06-21 2012-05-15 Siemens Vai Metals Tech Gmbh Vorrichtung zur regelung von prozessgasen in einer anlage zur herstellung von direkt reduzierten metallerzen
AT510565B1 (de) * 2011-06-21 2012-05-15 Siemens Vai Metals Tech Gmbh Vorrichtung zur regelung von prozessgasen in einer anlage zur herstellung von direkt reduzierten metallerzen
CN103608089A (zh) * 2011-06-21 2014-02-26 西门子Vai金属科技有限责任公司 对用来制造直接还原的金属矿石的设备中的过程气体进行调节的装置
US9400139B2 (en) 2011-06-21 2016-07-26 Primetals Technologies Austria GmbH Device for the closed-loop control of process gases in a plant for producing directly reduced metal ores
WO2013037634A1 (fr) * 2011-09-13 2013-03-21 Siemens Vai Metals Technologies Gmbh Système pour l'optimisation énergétique dans une installation pour la production de minerais métalliques directement réduits
KR20140066154A (ko) * 2011-09-13 2014-05-30 지멘스 브이에이아이 메탈스 테크놀로지스 게엠베하 직접 환원 금속 광석을 생산하기 위한 플랜트에서의 에너지 최적화를 위한 시스템
AT511888B1 (de) * 2011-09-13 2013-06-15 Siemens Vai Metals Tech Gmbh Vorrichtung zur energieoptimierung in einer anlage zur herstellung von direkt reduzierten metallerzen
US9534264B2 (en) 2011-09-13 2017-01-03 Primetals Technologies Austria GmbH System for energy optimization in a plant for producing direct-reduced metal ores
RU2609116C2 (ru) * 2011-09-13 2017-01-30 Прайметалз Текнолоджиз Аустриа ГмбХ Система энергетической оптимизации установки для получения металлов прямым восстановлением руд
AT511888A1 (de) * 2011-09-13 2013-03-15 Siemens Vai Metals Tech Gmbh System zur energieoptimierung in einer anlage zur herstellung von direkt reduzierten metallerzen
KR101961410B1 (ko) 2011-09-13 2019-03-22 프리메탈스 테크놀로지스 오스트리아 게엠베하 직접 환원 금속 광석을 생산하기 위한 플랜트에서의 에너지 최적화를 위한 시스템
WO2014100059A3 (fr) * 2012-12-18 2014-08-21 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Intégration de membrane de transport d'oxygène à un procédé dri à base de charbon
US10337076B2 (en) * 2014-02-10 2019-07-02 Primetals Technologies Austria GmbH Pneumatic ore charging

Also Published As

Publication number Publication date
CN101755056A (zh) 2010-06-23
UA97275C2 (ru) 2012-01-25
US20100162852A1 (en) 2010-07-01
CN101755056B (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
US20100162852A1 (en) Method and apparatus for the direct reduction of iron ores utilizing syngas
RU2515325C2 (ru) Способ и устройство для получения сырьевого синтез-газа
US7608129B2 (en) Method and apparatus for producing direct reduced iron
KR101587199B1 (ko) 직접 환원철 생산 공정
EP1984530B1 (fr) Procede de reduction directe d'oxydes de fer en fer metallique utilisant du gaz de four a coke
EP2798293B1 (fr) Procédé pour la production de fonte dans un haut-fourneau avec recyclage de gaz de gueulard
US5676732A (en) Method for producing direct reduced iron utilizing a reducing gas with a high content of carbon monoxide
CN104245963B (zh) 利用焦炉气制备直接还原铁(dri)的方法和设备
US4363654A (en) Production of reducing gas for furnace injection
WO2011012964A2 (fr) Procédé de production de fer préréduit aux émissions limitées de co2
WO2009037587A2 (fr) Procédé et appareil pour la réduction directe des minerais de fer au moyen d'un gaz issu d'un four de fusion-gazéificateur
CN108474048B (zh) 通过使用合成气来生产高碳dri的方法和系统
JP2013544960A (ja) 水素および一酸化炭素を含有した還元ガスを供給源として用いて直接還元鉄を製造する方法並びに装置
EP2961854A2 (fr) Procédé de réduction direct avec amélioration de la qualité du produit et du rendement du gaz de transformation
US9605326B2 (en) Method and system for operating a blast furnace with top-gas recycle and a fired tubular heater
WO2017046653A1 (fr) Procédé et appareil pour la réduction directe de minerais de fer au moyen de gaz dérivé du charbon ou de gaz de synthèse, présentant un rendement énergétique amélioré
EP3494238B1 (fr) Procédé et appareil de production de minerai de fer préréduit au moyen d'un prétraitement catalytique d'hydrocarbures en tant que source de gaz réducteur
WO2013064870A1 (fr) Procédé de fabrication de fer de réduction directe (dri) avec moins d'émissions de co2 dans l'atmosphère
EP0018235B1 (fr) Production de gaz réducteur destiné à l'injection dans un four
JPS6358202B2 (fr)
RU2630118C1 (ru) Способ переработки углеродсодержащего сырья в реакторе с расплавом металла
CN112850643B (zh) 一种高效的二氧化碳转化方法
KR101150021B1 (ko) 석탄과 철광석을 이용한 액체 화학물질과 선철 생산 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880017379.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08750944

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6896/CHENP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12601984

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08750944

Country of ref document: EP

Kind code of ref document: A1