[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008023484A1 - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
WO2008023484A1
WO2008023484A1 PCT/JP2007/060767 JP2007060767W WO2008023484A1 WO 2008023484 A1 WO2008023484 A1 WO 2008023484A1 JP 2007060767 W JP2007060767 W JP 2007060767W WO 2008023484 A1 WO2008023484 A1 WO 2008023484A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
crystal panel
lens
crystal display
Prior art date
Application number
PCT/JP2007/060767
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Yamamoto
Iori Aoyama
Masumi Kubo
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008023484A1 publication Critical patent/WO2008023484A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side

Definitions

  • the present invention relates to a liquid crystal display device including a liquid crystal panel and a backlight unit.
  • liquid crystal display devices have adopted a method in which a light source is disposed on the back side of a liquid crystal panel and the liquid crystal panel is irradiated with light from the light source, a so-called knock light method.
  • Such backlight type systems are roughly classified into an edge light type and a direct type.
  • a light source lamp such as a cold cathode fluorescent tube (CCFT) is mounted along the side edge of a flat light guide plate made of acrylic resin with excellent light transmission, and the light source lamp The light from is subjected to multiple reflection within the light guide plate.
  • the light guide plate is not used in the direct type.
  • the edge light type backlight system has become mainstream because it is easy to reduce the thickness.
  • a configuration shown in FIG. 13 is generally known as a liquid crystal display device equipped with an edge light type backlight system.
  • a liquid crystal panel 103 sandwiched between polarizing plates 101 and 102 is provided, and a light guide plate 110 made of a substantially rectangular plate-like PMMA (polymethylmetatalylate) or the like is disposed on the lower surface side thereof.
  • a diffusion film (diffusion layer) 121 is provided on the upper surface (light output surface) of the light guide plate 110.
  • a scattering / reflecting pattern portion 111 for efficiently scattering and reflecting the light introduced into the light guide plate 110 so as to be uniform in the direction of the liquid crystal panel 103. It is provided by printing or other means!
  • a light source lamp 113 is attached to the light guide plate 110 along the side end portion. Further, the light source lamp 113 that allows light from the light source lamp 113 to enter the light guide plate 110 efficiently.
  • a high-reflectance lamp reflector 114 is provided so as to cover the back side of the lamp.
  • the scattering reflection pattern 111 is made of white titanium dioxide (TiO 2) powder that is transparent.
  • a mixture mixed with a solution such as an adhesive is formed by, for example, printing a dot pattern on the lower surface of the light guide plate 110 and drying it.
  • the scattering reflection pattern portion 111 imparts directivity to the light incident on the light guide plate 110 and guides the light toward the light exit surface side. .
  • a liquid crystal panel 203 and a backlight system 210 for irradiating the liquid crystal panel 203 with light from the back side are provided.
  • the directivity of the knocklight can be increased by reducing the size of the opening of the light shielding portion 230.
  • Patent Document 1 Japanese Patent Publication “JP 2005-43907 (Publication Date: February 17, 2005)”
  • Patent Document 2 Japanese Patent Publication “Japanese Patent Laid-Open No. 2001-113538 (Publication Date: April 24, 2001)”
  • the viewing angle characteristic is poor.
  • This problem is caused by light vertically incident on the liquid crystal panel 303 from the backlight (referred to as vertical light), light obliquely incident on the liquid crystal panel 303 (referred to as oblique light), force S, and passing through the liquid crystal layer.
  • vertical light light
  • oblique light light obliquely incident on the liquid crystal panel 303
  • force S passing through the liquid crystal layer.
  • the incident angle to the liquid crystal molecules is different between vertical light and oblique light. That is, the phase difference given by the liquid crystal layer is different between vertical light and oblique light, and the amount of leakage light from the polarizing plate is different, resulting in the above problem. Since the light is blocked not by the liquid crystal but by the polarizing plate, if the phase difference is different between the vertical light and the oblique light, the amount of leakage from the polarizing plate is different.
  • the normalized luminance is a luminance corresponding to each gradation based on the maximum luminance.
  • Each line shows the normalized luminance plotted every 32 gradations.
  • a black circle ( ⁇ ) indicates a normalized luminance corresponding to the gradation 159, and a luminance corresponding to the gradation 159 / a luminance corresponding to the gradation 255.
  • the polarizing plate 301 disposed on the front side of the liquid crystal panel 303 is often subjected to anti-reflection (AG: Anti Glare) treatment, so that it enters the liquid crystal panel 303 vertically. Since both light and obliquely incident light are diffused on the surface of the polarizing plate 301, the contrast in the front direction is reduced.
  • AG Anti Glare
  • the present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a liquid crystal display device capable of preventing a difference in display characteristics due to a difference in observation direction. Nimes ⁇ ⁇ .
  • a liquid crystal display device of the present invention includes a liquid crystal panel, a backlight unit that irradiates light from the back side to the front side of the liquid crystal panel, and the liquid crystal
  • a plurality of first lenses that are provided on the front side of the panel and have a function of condensing and diffusing part of the light from the liquid crystal panel to the outside are arranged in parallel on the same plane.
  • a light-shielding layer provided on the front side of the first lens layer and having an opening on each optical axis of the first lens.
  • the first lens layer in which a plurality of first lenses are arranged side by side on the same plane is provided, and the first lens layer On the front side, a light shielding layer having an opening on each optical axis of the first lens is provided.
  • the light emitted from the backlight unit passes through the liquid crystal panel, is condensed by the first lens layer, and is emitted to the outside.
  • the opening of the light shielding layer is provided on each optical axis of the first lens, the light passing through the opening of the light shielding layer is derived from light substantially perpendicular to the liquid crystal panel.
  • the light incident obliquely on the liquid crystal panel is the liquid crystal panel force.
  • This obliquely emitted light hits the light shielding layer and blocks light. It does not come out on the front side of the layer, or comes out on the front side of the light shielding layer.
  • liquid crystal display device that can prevent a difference in display characteristics due to a difference in observation direction.
  • the light-shielding layer can prevent external light from entering the liquid crystal panel also in the present invention, and prevents a decrease in contrast in a bright place due to light reflected from, for example, pixel electrodes of the liquid crystal panel. can do.
  • the liquid crystal projection television disclosed in Patent Document 2 is common in that a lenticular lens is provided with a striped light shielding layer.
  • the light shielding layer of the present invention is different from the light shielding layer disclosed in Patent Document 2 in that the main purpose is to shield light emitted obliquely from the liquid crystal panel.
  • the light shielding layer has a light absorption property. Yes.
  • the light incident obliquely on the liquid crystal panel is the liquid crystal panel force that is emitted obliquely as leakage light, and is emitted obliquely.
  • the light hits the light shielding layer and hardly appears on the front side of the light shielding layer. At this time, the light striking the light shielding layer is originally leaked light, so it is preferable to eliminate it.
  • the light shielding layer has light absorptivity, the light hitting the light shielding layer is absorbed in the light shielding layer as it is without being reflected. Therefore, the force S is used to extinguish the light hitting the light shielding layer.
  • a diffusion layer for diffusing light is provided on the front side of the light shielding layer.
  • the light that has passed through the opening of the light shielding layer is light that has passed through the first lens layer.
  • the present invention since a diffusion layer for diffusing light is provided on the front side of the light shielding layer, the light that has passed through the opening of the light shielding layer is diffused by the diffusion layer and is thus converted into the lens layer. It spreads in directions other than the diffused direction. Therefore, the display does not become insufficient when viewed from any direction.
  • the first lens layer has a striped convex surface, and each of the first lenses is an aspheric lens having the convex surface. Yes.
  • the light in the left-right direction of the display surface can be narrowed, so that no difference occurs in display characteristics due to a difference in observation direction in the left-right direction.
  • the opening of the light shielding layer is formed in a stripe shape along the convex surface of the aspheric lens.
  • a plurality of second lenses that guide light from the backlight unit to the liquid crystal panel are arranged in parallel between the liquid crystal panel and the backlight unit. It ’s preferable to have 2 lens layers!
  • the light emitted from the backlight unit is collected by the second lens layer and then incident on the liquid crystal panel. Accordingly, less of the light emitted from the backlight unit is incident obliquely on the liquid crystal panel. As a result, it is possible to reduce light emitted from the liquid crystal panel obliquely as leakage light.
  • a plurality of second lenses that guide light from the backlight unit to the liquid crystal panel are provided on the same plane between the liquid crystal panel and the backlight unit.
  • a second lens layer arranged side by side,
  • the first lens layer and the second lens layer each have a stripe-like convex surface, and the first lens and the second lens are each composed of an aspheric lens having the convex surface, It is preferable that the stripe-shaped convex ridge line in the first lens layer and the stripe-shaped convex ridge line in the second lens layer are perpendicular to each other! /.
  • the light from the backlight unit is condensed in the second lens layer, for example, in the direction orthogonal to the horizontal direction of the liquid crystal panel, while the liquid crystal is condensed in the first lens layer.
  • Light emitted from the liquid crystal panel can be condensed in the left-right direction of the panel.
  • each of the first lenses is a microlens, and the opening of the light shielding layer is formed in a circular shape that matches the shape of the microlens. .
  • the backlight unit includes a light source arranged immediately below the liquid crystal panel.
  • a light source arranged immediately below the liquid crystal panel.
  • an operation mode of the liquid crystal panel is a vertical alignment mode.
  • the liquid crystal of the vertical alignment mode is better than the TN mode or the horizontal alignment mode.
  • each of the second lenses is a microlens. This makes it possible to use a microlens as the second lens layer.
  • FIG. 1 is a cross-sectional view showing an embodiment of a liquid crystal display device according to the present invention.
  • FIG. 2 is a cross-sectional view of the main part showing the configuration of the back side of the liquid crystal panel in the liquid crystal display device.
  • FIG. 3 is a sectional view showing a configuration of a lenticular lens and a light shielding layer in the liquid crystal display device.
  • FIG. 4 is a plan view showing a configuration of a microlens array as a first lens layer and a light shielding layer in the liquid crystal display device.
  • FIG. 5 is a cross-sectional view showing the principle of viewing angle improvement by a lenticular lens and a light shielding layer in the liquid crystal display device.
  • FIG. 6 is a graph showing luminance (gamma) viewing angle characteristics in the horizontal direction in the liquid crystal display device.
  • FIG. 7 is a graph showing the relationship between the luminance corresponding to the front gradation and the luminance corresponding to the oblique gradation at a viewing angle of 45 degrees in the left-right direction in the liquid crystal display device.
  • FIG. 8 shows the viewing angle characteristics of black luminance in the horizontal direction in the liquid crystal display device. It is a graph.
  • Table (a) shows the case of using liquid crystal in the vertical alignment (VA) mode.
  • Table (b) shows the above relationship when using FFS mode liquid crystal, and graph (c) plots the data in Tables (a) and (b)! /, The
  • FIG. 13 is a cross-sectional view showing a configuration of a conventional general liquid crystal display device.
  • FIG. 15 A sectional view showing the principle of viewing angle characteristics in a conventional liquid crystal display device.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the liquid crystal display device 10.
  • the liquid crystal display device 10 of the present embodiment includes a liquid crystal panel 1 for displaying an image, and on the back side of the liquid crystal panel 1, the back side of the liquid crystal panel 1 is provided.
  • the light collecting sheet 2 is not always necessary in the present invention.
  • a lenticular lens 4 as a first lens layer in which a plurality of lenses are arranged in parallel to guide light from the liquid crystal panel 1 to the outside is provided on the front side of the liquid crystal panel 1.
  • a light shielding layer 5 having an opening 5 a on each optical axis of the lens is provided, and light is diffused on the front side of the light shielding layer 5.
  • a diffusion layer 6 is provided.
  • the lenticular lens 4 and the light-shielding layer 5 guide light vertically incident on the liquid crystal panel 1 (vertical light) to the outside of the liquid crystal display device 10, while light obliquely incident on the liquid crystal panel 1 (oblique light). It plays a role of selecting light transmission and blocking so as not to leave the liquid crystal display device 10 outside!
  • the liquid crystal panel 1 is a transmissive type, and the backlight 3 is used as a light source.
  • the liquid crystal panel 1 includes a liquid crystal cell 11 having a liquid crystal sandwiched between a pair of translucent substrates, and a liquid crystal panel upper polarizing plate 12 and a liquid crystal panel lower polarizing plate 13 provided on the front and back of the liquid crystal senor 11. ing.
  • the surface of the polarizing plate 12 on the liquid crystal panel is subjected to diffusion treatment such as AG (Anti Glare) treatment to the extent that the condensing degree is not greatly disturbed. It is also possible to apply.
  • AG Anti Glare
  • liquid crystal mode and the cell structure of the liquid crystal cell 11 of the liquid crystal panel 1 are arbitrary.
  • the driving mode of the liquid crystal panel 1 is also arbitrary. That is, as the liquid crystal panel 1, any liquid crystal panel that can display characters, images, or moving images can be used. Further, the liquid crystal panel 1 may be a panel capable of color display or a panel dedicated to monochrome display. Therefore, in FIG. 1, the detailed structure of the liquid crystal panel 1 is not shown, and the description thereof is also omitted.
  • the backlight 3 includes a reflection sheet 31, a light source 32, and a diffusion sheet 33 in order from the bottom.
  • the backlight 3 employs a direct-type backlight system in which a light source 32 is disposed directly below the liquid crystal panel 1, and the light source 32 includes a cold cathode tube (CCFT) or a cold cathode fluorescent tube (CCFT).
  • CCFT cold cathode tube
  • CCFT cold cathode fluorescent tube
  • LED Light Emitting Diode
  • the present invention is not necessarily limited thereto, and for example, an edge light type backlight system in which the light source 32 is provided on the end surface of the backlight 3 may be used.
  • the light collecting sheet 2 includes a bowl-shaped lenticular lens 21 and a reflector 22 provided on the backlight 3 side, as shown in FIG.
  • the reflector 22 is provided with an opening 22a on each optical axis of a plurality of lenses provided in the lenticular lens 21. ing.
  • the light emitted from the light source 32 of the backlight 3 passes through the diffusion sheet 33, passes through the opening 22a of the reflector 22, and by the respective lenses of the lenticular lens 21, the liquid crystal panel is substantially perpendicular to the backlight 3. 1 is irradiated.
  • the reflected light reflected by the reflector 22 is reflected by the reflector sheet 31, and again passes through the diffuser sheet 33, through the opening 22a of the reflector 22, and the lens (second second lens).
  • the liquid crystal panel 1 is irradiated substantially perpendicularly to the backlight 3 by the lens. Therefore, the amount of vertical light emitted from the lenticular lens 21 to the liquid crystal panel 1 increases.
  • the condensing sheet 2 plays a role of improving the display brightness by increasing the vertical light that the lenticular lens 4 and the light shielding layer 5 guide to the outside of the liquid crystal display device 10.
  • the directivity of the backlight 3 can be increased.
  • a microlens can be used as the light collecting sheet 2.
  • the opening of the reflector 22 is formed in a circular shape that matches the shape of the microlens.
  • the lenticular lens 4 is formed of a bowl-shaped lens with the flat surface facing the front side.
  • the lenticular lens 4 has a striped convex surface as shown in FIG.
  • the lenticular lens 4 has a force obtained by arranging a plurality of aspherical lenses 4a (first lenses) having one of the convex surfaces.
  • Each aspherical lens 4a has a maximum height of, for example, 110, a minimum height of, for example, 75 m, and the width of one convex surface, for example, lOO ⁇ m (98 111 in FIG. 3).
  • the refractive index is 1.5, for example.
  • a light shielding layer 5 is provided on the front side of the lenticular lens 4.
  • the light shielding layer 5 allows only light passing through the opening 5a to pass through and blocks other light.
  • the opening 5a of the light shielding layer 5 is provided on the optical axis of the aspherical lens 4a, and the force and the focal point of the aspherical lens 4a are located substantially at the center of the opening 5a. Therefore, the opening 5a is formed in a stripe shape like the convex surface of the aspherical lens 4a. Yes.
  • the width of the opening 5a is 30 m (29 m in FIG. 3)
  • the width of the light-shielding portion 5b is 70 mm (69 ⁇ m in FIG. 3), for example!
  • the first lens layer has a force S that is a lenticular lens 4 in which a plurality of aspherical lenses 4a having one of the convex surfaces are arranged, but is not limited thereto.
  • a microlens array 40 in which a plurality of spherical microlenses 40a are arranged can be formed.
  • the viewing angle characteristics can be improved in the direction orthogonal to the left-right direction as well as the left-right direction with respect to the display surface.
  • the opening 5a is inevitably replaced with a circular opening 5a ′ matching the shape of the microlens 40a.
  • a diffusion layer 6 is provided on the front side of the light shielding layer 5.
  • the diffusion layer 6 diffuses the light that has passed through the opening 5a of the light shielding layer 5 radially. Therefore, the viewing angle is widened.
  • the light that is vertically incident on the liquid crystal panel 1 and is emitted vertically from the liquid crystal panel 1 passes through the opening 5 a of the light shielding layer 5 through the lenticular lens 4.
  • the light on the optical axis travels on the optical axis as it is, and the light incident on the end of the aspherical lens 4a is refracted and passes through the opening 5a. That is, since the focal line of the aspherical lens 4a having a condensing function exists in the approximate center of the opening 5a, only light emitted substantially vertically from the liquid crystal panel 1 can pass through the opening 5a of the light shielding layer 5.
  • the aspherical lens 4a is replaced with the microlens 4Oa, it is positioned approximately at the center of the focal force opening 5a ′ of the microlens 40a.
  • the aperture ratio of the opening 5a is a small force. Display change The force S is reduced, that is, the viewing angle characteristics are improved. Conversely, a larger aperture ratio can improve the display brightness. Therefore, the aperture ratio, lens shape, lens refractive index, etc. should be designed to optimize viewing angle characteristics and brightness.
  • the viewing angle characteristics of the liquid crystal display device 10 are remarkably improved as compared with FIG. 16 at any gradation, and the normalized luminance is ⁇ 80 °.
  • ⁇ View angle ⁇ 80 ° shows almost horizontal characteristics.
  • the normalized luminance is the luminance corresponding to each gradation based on the maximum luminance.
  • each line shows the normalized brightness plotted every 32 gradations!
  • the front gradation is the gradation that the observer perceives when viewing the display surface of the liquid crystal display device 10 from the front, that is, from a viewing angle of 0 °, and is the gradation that the liquid crystal display device 10 is trying to display. equal.
  • the oblique gradation is a gradation that is perceived when an observer views the display surface of the liquid crystal display device 10 with a viewing angle greater than 0 ° and less than 90 °.
  • Luminance is 0.7 ⁇ ; 1. Ocd / m 2 , 20 ° ⁇ viewing angle ⁇ ⁇ 20 °, which is higher than black luminance of about 0.6 cd / m 2 , In this configuration, the black brightness is almost constant at 0.4 cd / m 2 at all viewing angles ⁇ ! /.
  • Fig. 9 shows the chromaticity change characteristics in the Macbeth chart. From the first dark skin to the 18th cyan from the left is a chromatic color, and the 19th white force is also 24. The first black is achromatic, and the rightmost value is the average value.
  • Table (a) in Fig. 10 shows data indicating the relationship between the maximum incident angle of the backlight to the liquid crystal panel 1 and the front contrast (CR) when using vertically aligned (VA) liquid crystal.
  • Table (b) in Fig. 10 shows data showing the relationship between the maximum incident angle of the backlight to the liquid crystal panel 1 and the front contrast (CR) when the FFS (Fringe Field Switching) mode liquid crystal is used.
  • Graph (c) in Fig. 10 plots the data in tables (a) and (b).
  • the FFS (Fringe Field Switching) mode corresponds to the horizontal alignment mode, and is a technique that approximates the IPS (In-plane Switching) mode.
  • the light shielding mask 52 in front of the light source 51, the light shielding mask 52, the liquid crystal panel 53, and the luminance meter 54 are arranged in this order.
  • the light source 51 is a backlight used in a normal liquid crystal panel.
  • the light shielding mask 52 has a circular opening having a diameter d2 (mm). Further, the light shielding mask 52 and the liquid crystal panel 53 are separated by a distance L (mm).
  • the luminance of the light spot S having a diameter dl (mm) formed on the liquid crystal panel 53 is measured by the luminance meter 54.
  • a measurement system for measurement was constructed.
  • the backlight maximum incident angle is represented by an angle ⁇ shown in FIG. That is, the maximum incidence angle ⁇ is the angle formed by the line segment connecting the right end of the circular opening and the left end of the light spot S with respect to the normal line on the display surface of the liquid crystal panel 53 in FIG. Therefore, the backlight maximum incident angle ⁇ can be expressed by the following equation (1).
  • the backlight maximum incident angle ⁇ can be adjusted.
  • the light use efficiency is obtained based on whether the lenticular lens 4 is present or not at each concentration of the backlight 3.
  • Light utilization efficiency (%) (light flux in all directions with lenticular lens) X 100 /
  • liquid crystal panel with a lenticular lens is a panel with an improved viewing angle
  • the panel without a lenticular lens is a conventional panel.
  • each light collection degree of the backlight 3 is an angle (with respect to the front direction) that is 10% of the front luminance.
  • the polar angle) is defined as the backlight concentration.
  • the lenticular lens 4 in which a plurality of aspheric lenses 4a are arranged in parallel on the same plane is provided on the front side of the liquid crystal panel 1.
  • a light shielding layer 5 having an opening 5a on the optical axis of each aspheric lens 4a is provided.
  • the light emitted from the backlight 3 passes through the liquid crystal panel 1 and is collected by the lenticular lens 4 and emitted to the outside.
  • the opening 5a is provided on the optical axis of the aspheric lens 4a, the light passing through the opening 5a is light substantially perpendicular to the liquid crystal panel 1.
  • the oblique light is emitted obliquely from the liquid crystal panel 1 as leakage light. This obliquely emitted light strikes the light shielding layer 5 and It does not come out on the front side.
  • liquid crystal display device 10 that can prevent a difference in display characteristics due to a difference in observation direction.
  • the light shielding layer 5 can prevent external light from entering the liquid crystal panel 1. As a result, when the liquid crystal panel 1 is used in a bright place, it is possible to prevent a decrease in contrast due to reflected light from, for example, a pixel electrode (not shown) of the liquid crystal panel 1.
  • the oblique light is not necessarily blocked by the light shielding layer 5, but is originally leaked light.
  • the light shielding layer 5 since the light shielding layer 5 has light absorptivity, the light striking the light shielding layer 5 is absorbed by the light shielding layer 5 as it is without being reflected. Therefore, the light hitting the light shielding layer 5 can be extinguished.
  • a photosensitive black resin is applied to the flat surface opposite to the lens of the lenticular lens 4 and exposed from the lenticular lens 4 side.
  • a self-alignment method for forming the opening 5a and the light shielding portion 5b.
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-113538
  • a photosensitive resin is applied to the flat surface opposite to the lens of the lenticular lens, and the presence or absence of adhesiveness between the exposed portion and the non-exposed portion of the photosensitive resin is used. More specifically, the light-shielding pattern is formed by transferring the black transfer layer or adhering black powder to the non-exposed portion having adhesiveness.
  • the light that has passed through the opening 5a is light that has passed through the lenticular lens 4
  • the display when viewed from a direction other than the direction in which the light is diffused may be insufficient.
  • the diffusion layer 6 that diffuses light is provided on the front side of the light shielding layer 5, so that the light that has passed through the opening 5 a is diffused by the diffusion layer 6. It spreads in an oblique direction. Therefore, the oblique component of the light that has passed through the opening 5a increases, so if the display is insufficient when viewed from any direction, it will not be possible!
  • the lenticular lens 4 is configured by arranging the aspherical lenses 4a having convex surfaces in a stripe shape. As a result, for example, the light in the left-right direction can be narrowed down, so that there is no difference in display characteristics due to the difference in the observation direction in the left-right direction.
  • the opening 5a is formed corresponding to the aspherical lens 4a, and is formed in a stripe shape like the aspherical lens 4a. Is preferred.
  • a plurality of aspherical lenses that guide the light from the backlight 3 to the liquid crystal panel 1 are arranged in parallel between the liquid crystal panel 1 and the backlight 3.
  • the lenticular lens 21 is provided!
  • the light emitted from the backlight 3 is collected by the lenticular lens 21 and then enters the liquid crystal panel 1. Therefore, of the light emitted from the backlight 3, less light is incident on the liquid crystal panel 1 at an angle. As a result, it is possible to reduce the light emitted from the liquid crystal panel 1 as leakage light obliquely.
  • the microlens array 40 is composed of the microlenses 40a, and the opening 5a ′ of the light shielding layer 5 is matched to the shape of the microlens 40a. It is preferably formed in a circular shape. As a result, not only left and right direction In all oblique directions, there will be no difference in display characteristics due to differences in observation direction.
  • the knocklight 3 includes a direct light source 32.
  • the force S can prevent the difference in display characteristics from occurring due to the difference in the observation direction.
  • the operation mode of the liquid crystal panel 1 is a vertical alignment mode.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention.
  • the ridge lines of the stripe-shaped convex surface of the lenticular lens 21 constituting the light sheet 2 are orthogonal to each other.
  • the light spread in the left-right direction can be substantially cut by the light shielding layer 5 and can be condensed by the lenticular lens 21 in the up-down direction.
  • the viewing angle characteristics are improved.
  • the lenticular lens 4 is arranged in a direction diffusing in the left-right direction, that is, in a lenticular lens 4 stripe shape. It is preferable to place the convex ridge line in the vertical direction of the display screen. In order to improve the light utilization efficiency, it is preferable to condense the backlight light in the left-right direction.
  • each aspherical lens 4a of the lenticular lens 4 and each lens of the lenticular lens 21 are each composed of an aspherical lens having a convex surface.
  • the ridgeline of the convex surface and the ridgeline of the striped convex surface in the lenticular lens 21 are assumed to be perpendicular to each other by the force S.
  • the lenticular lens 21 condenses the light from the backlight 3 in a direction perpendicular to the left-right direction of the liquid crystal panel 1, for example, while the lenticular lens 4 condenses the liquid crystal.
  • the light emitted from the liquid crystal panel 1 can be collected in the horizontal direction of the panel 1.
  • the liquid crystal display device of the present invention is provided on the front side of the liquid crystal panel, the backlight unit that irradiates light from the back side to the front side of the liquid crystal panel, and the liquid crystal panel.
  • a first lens layer in which a plurality of lenses are arranged in parallel on the same plane to guide light from the liquid crystal panel to the outside; and the front side of the first lens layer.
  • a light shielding layer having an opening on the optical axis of each lens.
  • the present invention can be applied to a liquid crystal display device including a liquid crystal panel and a backlight unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

A liquid crystal display comprises a liquid crystal panel (1), a backlight (3) for emitting light passing from the rear surface to the front surface of the liquid crystal panel (1), a lenticular lens (4) installed on the front surface side of the liquid crystal panel (1) and formed by arranging aspherical lenses (4a) parallel on the same plane for condensing the light from the liquid crystal panel (1) and guiding it to the outside, and a light shielding layer (5) installed on the front surface of the lenticular lens (4) and having openings (5a) formed in the aspherical lenses (4a) along their respective optical axes. Consequently, the liquid crystal display in which the display characteristics vary with the viewing direction can be provided.

Description

明 細 書  Specification
液晶表示装置  Liquid crystal display
技術分野  Technical field
[0001] 本発明は、液晶パネルとバックライトユニットとを備えた液晶表示装置に関するもの である。  [0001] The present invention relates to a liquid crystal display device including a liquid crystal panel and a backlight unit.
背景技術  Background art
[0002] 近年、液晶表示装置におレ、ては、液晶パネルの背面側に光源を配設し、この光源 からの光で液晶パネルを照射する方式、いわゆる、ノ ックライト方式が採用されてい る。このようなバックライト方式のシステムとしては、大別してエッジライト方式と、直下 型方式とがある。エッジライト方式では、冷陰極管(CCFT : Cold Cathode fluorescent Tube )等の光源ランプを、光透過性に優れたアクリル樹脂等からなる平板状の導光 板の側端部に沿って取付け、光源ランプからの光を導光板内で多重反射させる。一 方、直下型方式では、導光板を用いない。最近では、薄型化が容易なことから、エツ ジライト方式のバックライトシステムが主流となってきている。  In recent years, liquid crystal display devices have adopted a method in which a light source is disposed on the back side of a liquid crystal panel and the liquid crystal panel is irradiated with light from the light source, a so-called knock light method. . Such backlight type systems are roughly classified into an edge light type and a direct type. In the edge light system, a light source lamp such as a cold cathode fluorescent tube (CCFT) is mounted along the side edge of a flat light guide plate made of acrylic resin with excellent light transmission, and the light source lamp The light from is subjected to multiple reflection within the light guide plate. On the other hand, the light guide plate is not used in the direct type. Recently, the edge light type backlight system has become mainstream because it is easy to reduce the thickness.
[0003] エッジライト方式のバックライトシステムが搭載された液晶表示装置としては、例えば 図 13に示す構成が一般的に知られている。この構成においては、偏光板 101 · 102 に挟まれた液晶パネル 103が設けられ、その下面側に、略長方形板状の PMMA ( ポリメチルメタタリレート)等からなる導光板 110が配設されており、該導光板 110の上 面(光出射面)に拡散フィルム(拡散層) 121が設けられている。  For example, a configuration shown in FIG. 13 is generally known as a liquid crystal display device equipped with an edge light type backlight system. In this configuration, a liquid crystal panel 103 sandwiched between polarizing plates 101 and 102 is provided, and a light guide plate 110 made of a substantially rectangular plate-like PMMA (polymethylmetatalylate) or the like is disposed on the lower surface side thereof. In addition, a diffusion film (diffusion layer) 121 is provided on the upper surface (light output surface) of the light guide plate 110.
[0004] さらに、この導光板 110の下面に、導光板 110に導入された光を効率よく液晶パネ ノレ 103の方向に均一となるように散乱して反射させるための散乱反射パターン部 11 1が印刷等によって設けられて!/、ると共に、散乱反射パターン部 111の下方に反射フ  [0004] Further, on the lower surface of the light guide plate 110, there is a scattering / reflecting pattern portion 111 for efficiently scattering and reflecting the light introduced into the light guide plate 110 so as to be uniform in the direction of the liquid crystal panel 103. It is provided by printing or other means!
[0005] また、上記導光板 110には、側端部に沿って光源ランプ 1 13が取り付けられており 、さらに、光源ランプ 113の光を効率よく導光板 110中に入射させるベぐ光源ランプ 113の背面側を覆うようにして高反射率のランプリフレクタ 114が設けられている。 In addition, a light source lamp 113 is attached to the light guide plate 110 along the side end portion. Further, the light source lamp 113 that allows light from the light source lamp 113 to enter the light guide plate 110 efficiently. A high-reflectance lamp reflector 114 is provided so as to cover the back side of the lamp.
[0006] 上記散乱反射パターン部 111は、白色である二酸化チタン (TiO )粉末を透明な 接着剤等の溶液に混合した混合物を、導光板 110の下面に例えばドットパターン印 刷し、乾燥して形成したものである。すなわち、散乱反射パターン部 111は、高輝度 化を図るための一手段として、導光板 110内に入射した光に指向性を付与し、光出 射面側へと光を導くようになつている。 [0006] The scattering reflection pattern 111 is made of white titanium dioxide (TiO 2) powder that is transparent. A mixture mixed with a solution such as an adhesive is formed by, for example, printing a dot pattern on the lower surface of the light guide plate 110 and drying it. In other words, as one means for increasing the brightness, the scattering reflection pattern portion 111 imparts directivity to the light incident on the light guide plate 110 and guides the light toward the light exit surface side. .
[0007] ところで、このような液晶表示装置では、薄型で低消費電力、かつ、高輝度であるこ とが市場ニーズとして強く要請されている。それに伴い、液晶表示装置に搭載される ノ ックライトシステムも、薄型で低消費電力、かつ、高輝度であることが要求されてい  [0007] By the way, in such a liquid crystal display device, there is a strong demand as a market need to be thin, low power consumption, and high luminance. Along with this, the knock light system mounted on the liquid crystal display device is also required to be thin, low power consumption and high brightness.
[0008] 特に、最近、 目覚まし!/、発展をみるカラー液晶表示装置にお!/、ては、液晶パネル の光透過率がモノクロ対応の液晶パネルに比べ格段に低ぐそのため、ノ ックライト システムの輝度向上を図ることが、装置自体の低消費電力を得るために必須の課題 となっている。 [0008] In particular, the recent awakening! / In the development of color liquid crystal display devices! / The light transmittance of liquid crystal panels is much lower than that of monochrome-compatible liquid crystal panels. Improving brightness is an essential issue in order to obtain low power consumption of the device itself.
[0009] そこで、例えば、特許文献 1に開示された液晶表示装置では、図 14に示すように、 液晶パネル 203と、この液晶パネル 203に背面側から光を照射するバックライトシス テム 210とを備え、このバックライトシステム 210の前面側に、光源 213からの光を液 晶ノ ネル 203へと導くレンズ層 220力 S設けられ、かつ該レンズ層 220の焦点面近傍 に開口をもつ遮光部 230を有して!/、る。  Therefore, for example, in the liquid crystal display device disclosed in Patent Document 1, as shown in FIG. 14, a liquid crystal panel 203 and a backlight system 210 for irradiating the liquid crystal panel 203 with light from the back side are provided. A light-blocking portion 230 provided on the front side of the backlight system 210 and having a lens layer 220 force S for guiding the light from the light source 213 to the liquid crystal node 203 and having an opening near the focal plane of the lens layer 220. Have! /
[0010] これにより、遮光部 230の開口の大きさを小さくすることにより、ノ ックライトの指向性 を強くすることが可能になっている。  [0010] With this, the directivity of the knocklight can be increased by reducing the size of the opening of the light shielding portion 230.
特許文献 1 :日本国公開特許公報「特開 2005— 43907号公報 (公開日: 2005年 2 月 17日)」  Patent Document 1: Japanese Patent Publication “JP 2005-43907 (Publication Date: February 17, 2005)”
特許文献 2 :日本国公開特許公報「特開 2001— 113538号公報 (公開日: 2001年 4 月 24日)」  Patent Document 2: Japanese Patent Publication “Japanese Patent Laid-Open No. 2001-113538 (Publication Date: April 24, 2001)”
発明の開示  Disclosure of the invention
[0011] しかしながら、上記従来の液晶表示装置においても、図 15に示すように、液晶パネ ノレ 303に斜めに入射した光が存在すると、観測方位の違いで表示特性に差が発生 するとレ、う問題点を有して!/、る。  However, even in the above conventional liquid crystal display device, as shown in FIG. 15, if light obliquely incident on the liquid crystal panel 303 is present, a difference in display characteristics occurs due to a difference in observation direction. Has a problem!
[0012] 具体的には、図 16に示すように、上記液晶パネル 303に斜めに入射した光が存在 すると、視野角 Θの大きい領域において、視野角 Θの小さい領域よりも規格化輝度 が大きくなる。ここで、上記領域とは、液晶パネル 303の表示を眺める視点が存在す る空間的範囲を意味する。この結果、正面方向から見た場合にはコントラストが高い のに対して、斜め方向から見たときには表示が白っぽく見え(白浮きなどと呼ばれる) 、コントラストが低くなるという現象が生じる。すなわち、視野角特性が悪いということに なる。 More specifically, as shown in FIG. 16, there is light incident obliquely on the liquid crystal panel 303. Then, the normalized luminance is larger in the region where the viewing angle Θ is large than in the region where the viewing angle Θ is small. Here, the above-mentioned area means a spatial range where a viewpoint for viewing the display on the liquid crystal panel 303 exists. As a result, the contrast is high when viewed from the front direction, whereas the display appears whitish when viewed from the oblique direction (referred to as floating white) and the contrast is lowered. That is, the viewing angle characteristic is poor.
[0013] この問題は、バックライトから液晶パネル 303に垂直に入射した光(垂直光と呼ぶ) と、液晶パネル 303に斜めに入射した光 (斜め光と呼ぶ)と力 S、液晶層を通過する際 に、特に、黒表示及び低階調表示において、垂直光と斜め光とで液晶分子への入射 角度が異なることに起因している。すなわち、垂直光と斜め光とで、液晶層により与え られる位相差が異なってしまい、偏光板からの漏れ光の量に差が発生する結果、上 記の問題が発生する。光の遮断は液晶ではなく偏光板でされるので、垂直光と斜め 光とで位相差が異なると、偏光板からの漏れ量が異なる結果となる。  [0013] This problem is caused by light vertically incident on the liquid crystal panel 303 from the backlight (referred to as vertical light), light obliquely incident on the liquid crystal panel 303 (referred to as oblique light), force S, and passing through the liquid crystal layer. This is because, in particular, in black display and low gradation display, the incident angle to the liquid crystal molecules is different between vertical light and oblique light. That is, the phase difference given by the liquid crystal layer is different between vertical light and oblique light, and the amount of leakage light from the polarizing plate is different, resulting in the above problem. Since the light is blocked not by the liquid crystal but by the polarizing plate, if the phase difference is different between the vertical light and the oblique light, the amount of leakage from the polarizing plate is different.
[0014] なお、上記図 16において、上記規格化輝度とは、最大輝度を基準とした各階調に 相当する輝度である。各線は、 32階調毎にプロットした規格化輝度を示している。例 えば、階調 255の場合は、階調 255に相当する輝度/階調 255に相当する輝度 = 1 00となる。一方、同図において、例えば、黒丸(譬)は階調 159に相当する規格化輝 度を示すものであり、階調 159に相当する輝度/階調 255に相当する輝度を示すも のである。  In FIG. 16, the normalized luminance is a luminance corresponding to each gradation based on the maximum luminance. Each line shows the normalized luminance plotted every 32 gradations. For example, in the case of gradation 255, the luminance corresponding to gradation 255 / luminance corresponding to gradation 255 = 100. On the other hand, in the figure, for example, a black circle (譬) indicates a normalized luminance corresponding to the gradation 159, and a luminance corresponding to the gradation 159 / a luminance corresponding to the gradation 255.
[0015] 近年では、液晶パネル 303の前面側に配される偏光板 301に反射防止のための 光散乱 (AG :Anti Glare)処理を施す場合が多いことから、液晶パネル 303に垂直に 入射した光及び斜めに入射した光の両方が偏光板 301の表面で拡散されるので、 正面方向のコントラストまで減じられることになる。  In recent years, the polarizing plate 301 disposed on the front side of the liquid crystal panel 303 is often subjected to anti-reflection (AG: Anti Glare) treatment, so that it enters the liquid crystal panel 303 vertically. Since both light and obliquely incident light are diffused on the surface of the polarizing plate 301, the contrast in the front direction is reduced.
[0016] 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、観測方 位の違いで表示特性に差が発生することを防止し得る液晶表示装置を提供すること にめ ·ο。  The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a liquid crystal display device capable of preventing a difference in display characteristics due to a difference in observation direction. Nimes · ο.
[0017] 本発明の液晶表示装置は、上記課題を解決するために、液晶パネルと、上記液晶 パネルの背面側から前面側に向けて光を照射するバックライトユニットと、上記液晶 パネルの前面側に設けられ、該液晶パネルからの光の一部を集光し外部へと拡散さ せる機能を 1つ 1つが有した複数の第 1のレンズを同一平面上に並設してなる第 1の レンズ層と、上記第 1のレンズ層の前面側に設けられ、上記第 1のレンズの各光軸上 に開口部を有する遮光層とを含むことを特徴としている。 In order to solve the above problems, a liquid crystal display device of the present invention includes a liquid crystal panel, a backlight unit that irradiates light from the back side to the front side of the liquid crystal panel, and the liquid crystal A plurality of first lenses that are provided on the front side of the panel and have a function of condensing and diffusing part of the light from the liquid crystal panel to the outside are arranged in parallel on the same plane. And a light-shielding layer provided on the front side of the first lens layer and having an opening on each optical axis of the first lens.
[0018] 上記の発明によれば、液晶パネルの前面側には、複数の第 1のレンズを同一平面 上に並設してなる第 1のレンズ層が設けられ、かつ第 1のレンズ層の前面側には、第 1のレンズの各光軸上に開口部を有する遮光層が設けられている。  [0018] According to the above invention, on the front side of the liquid crystal panel, the first lens layer in which a plurality of first lenses are arranged side by side on the same plane is provided, and the first lens layer On the front side, a light shielding layer having an opening on each optical axis of the first lens is provided.
[0019] このため、バックライトユニットから出射された光は液晶パネルを通り、第 1のレンズ 層により集光されて外部に出射される。このとき、遮光層の開口部は、第 1のレンズの 各光軸上に設けられているので、この遮光層の開口部を通る光は、液晶パネルに略 垂直な光に由来している。  For this reason, the light emitted from the backlight unit passes through the liquid crystal panel, is condensed by the first lens layer, and is emitted to the outside. At this time, since the opening of the light shielding layer is provided on each optical axis of the first lens, the light passing through the opening of the light shielding layer is derived from light substantially perpendicular to the liquid crystal panel.
[0020] 一方、バックライトユニットから出射された光のうち、液晶パネルに斜めに入射した 光は液晶パネル力 斜めに漏洩光として出射される力 この斜めに出射された光は 遮光層に当たり、遮光層の前面側に出てくることがない、あるいは遮光層の前面側に 出てくることが非常に制限される。  On the other hand, of the light emitted from the backlight unit, the light incident obliquely on the liquid crystal panel is the liquid crystal panel force. The force emitted obliquely as leakage light. This obliquely emitted light hits the light shielding layer and blocks light. It does not come out on the front side of the layer, or comes out on the front side of the light shielding layer.
[0021] この結果、斜めから液晶パネルを見た場合に、従来存在していた漏洩光がなくなる 、あるいは非常に少なくなるので、従来のような斜め方向から見たときには表示が白 っぽく見え、コントラストが低くなるという課題が解決される。また、正面方向から見た 場合のコントラストと、斜め方向から見たときのコントラストとが均一化される。  [0021] As a result, when the liquid crystal panel is viewed from an oblique direction, the existing leaked light is eliminated or extremely reduced, so that the display looks whitish when viewed from an oblique direction as in the prior art. The problem of low contrast is solved. Further, the contrast when viewed from the front direction and the contrast when viewed from the oblique direction are made uniform.
[0022] したがって、観測方位の違いで表示特性に差が発生することを防止し得る液晶表 示装置を提供することができる。  Accordingly, it is possible to provide a liquid crystal display device that can prevent a difference in display characteristics due to a difference in observation direction.
[0023] なお、遮光層により、本発明においても、外光の液晶パネルへの入射を防止するこ とができ、液晶パネルの例えば画素電極からの反射光による明所でのコントラストの 低下を防止することができる。この点、例えば、特許文献 2に開示する液晶プロジェク シヨン用テレビにも、レンチキュラーレンズにストライプ状の遮光層が設けられている 点で共通する。しかし、本発明の遮光層は、液晶パネルから斜めに出射する光を遮 蔽することを主目的としている点で、特許文献 2に開示する遮光層とは異なる。  It should be noted that the light-shielding layer can prevent external light from entering the liquid crystal panel also in the present invention, and prevents a decrease in contrast in a bright place due to light reflected from, for example, pixel electrodes of the liquid crystal panel. can do. For example, the liquid crystal projection television disclosed in Patent Document 2 is common in that a lenticular lens is provided with a striped light shielding layer. However, the light shielding layer of the present invention is different from the light shielding layer disclosed in Patent Document 2 in that the main purpose is to shield light emitted obliquely from the liquid crystal panel.
[0024] また、本発明の液晶表示装置では、前記遮光層は、光吸収性を有することが好まし い。 In the liquid crystal display device of the present invention, it is preferable that the light shielding layer has a light absorption property. Yes.
[0025] すなわち、上述したように、ノ ックライトユニットから出射された光のうち、液晶パネル を斜めに入射したものは液晶パネル力 斜めに漏洩光として出射される力 S、この斜め に出射された光は遮光層に当たり、遮光層の前面側にほとんど出てくることがない。 このとき、遮光層に当たった光は、本来、漏洩光であるので、消滅させる方が好まし い。  That is, as described above, among the light emitted from the knocklight unit, the light incident obliquely on the liquid crystal panel is the liquid crystal panel force that is emitted obliquely as leakage light, and is emitted obliquely. The light hits the light shielding layer and hardly appears on the front side of the light shielding layer. At this time, the light striking the light shielding layer is originally leaked light, so it is preferable to eliminate it.
[0026] この点、本発明では、遮光層は光吸収性を有するので、遮光層に当たった光は、 反射されずにそのまま遮光層に吸収される。したがって、遮光層に当たった光を消滅 させること力 Sでさる。  In this regard, in the present invention, since the light shielding layer has light absorptivity, the light hitting the light shielding layer is absorbed in the light shielding layer as it is without being reflected. Therefore, the force S is used to extinguish the light hitting the light shielding layer.
[0027] また、本発明の液晶表示装置では、前記遮光層の前面側には、光を拡散させる拡 散層が設けられてレ、ることが好ましレ、。  In the liquid crystal display device of the present invention, it is preferable that a diffusion layer for diffusing light is provided on the front side of the light shielding layer.
[0028] すなわち、遮光層の開口部を通過した光は、第 1のレンズ層を通した光であるのでThat is, the light that has passed through the opening of the light shielding layer is light that has passed through the first lens layer.
、レンズ層により拡散される方向以外の成分の光が少ない。したがって、レンズ層によ り拡散される方向以外の方向から見たときの表示が不十分となる可能性がある。 There is little light of components other than the direction diffused by the lens layer. Therefore, there is a possibility that the display is insufficient when viewed from a direction other than the direction diffused by the lens layer.
[0029] この点、本発明では、遮光層の前面側には、光を拡散させる拡散層が設けられて いるので、遮光層の開口部を通過した光は、拡散層により拡散されてレンズ層により 拡散された方向以外にも広がる。したがって、どの方向から見た場合でも表示が不十 分となるということがない。 In this respect, in the present invention, since a diffusion layer for diffusing light is provided on the front side of the light shielding layer, the light that has passed through the opening of the light shielding layer is diffused by the diffusion layer and is thus converted into the lens layer. It spreads in directions other than the diffused direction. Therefore, the display does not become insufficient when viewed from any direction.
[0030] また、どの方向から見た場合の表示においても、液晶パネルを垂直に通過してきた 光が元になつて!/、るので、コントラストの高!/、表示となって!/、る。 [0030] In addition, when viewed from any direction, the light passing vertically through the liquid crystal panel is based on the original! /, So the contrast is high! /, And the display is! / .
[0031] また、本発明の液晶表示装置では、前記第 1のレンズ層はストライプ状の凸面を有 し、上記第 1のレンズのそれぞれは、当該凸面を有する非球面レンズであることが好 ましい。 In the liquid crystal display device of the present invention, it is preferable that the first lens layer has a striped convex surface, and each of the first lenses is an aspheric lens having the convex surface. Yes.
[0032] これにより、例えば表示面の左右方向についての光を絞ることができるので、左右 方向について、観測方位の違いで表示特性に差が発生することがなくなる。  [0032] Thereby, for example, the light in the left-right direction of the display surface can be narrowed, so that no difference occurs in display characteristics due to a difference in observation direction in the left-right direction.
[0033] また、本発明の液晶表示装置では、前記遮光層の開口部は、上記非球面レンズの 凸面に各々沿って、ストライプ状に形成されて!/、ることが好ましレ、。  In the liquid crystal display device of the present invention, it is preferable that the opening of the light shielding layer is formed in a stripe shape along the convex surface of the aspheric lens.
[0034] これにより、例えば左右方向について、バックライトユニットから出射された光のうち 、液晶パネルに斜めに入射した光は液晶パネルから斜めに漏洩光として出射される[0034] Thereby, for example, in the left-right direction, out of the light emitted from the backlight unit The light incident obliquely on the liquid crystal panel is emitted as leaked light obliquely from the liquid crystal panel.
1S この斜めに出射された光は遮光層に当たり、遮光層の前面側に出てくることがな い。したがって、左右方向について、観測方位の違いで表示特性に差が発生するこ とがなくなる。 1S This obliquely emitted light hits the light shielding layer and does not come out to the front side of the light shielding layer. Therefore, there is no difference in display characteristics due to differences in observation direction in the left-right direction.
[0035] また、本発明の液晶表示装置では、前記液晶パネルと前記バックライトユニットとの 間に、該バックライトユニットからの光を液晶パネルへと導く複数の第 2のレンズを並 設した第 2のレンズ層が設けられて!/、ることが好ましレ、。  [0035] Further, in the liquid crystal display device of the present invention, a plurality of second lenses that guide light from the backlight unit to the liquid crystal panel are arranged in parallel between the liquid crystal panel and the backlight unit. It ’s preferable to have 2 lens layers!
[0036] これにより、バックライトユニットから出射された光は、第 2のレンズ層にて集光された 後、液晶パネルに入射される。したがって、バックライトユニットから出射された光のう ち、液晶パネルに斜めに入射されるものが少なくなる。この結果、液晶パネルから斜 めに漏洩光として出射される光を少なくすることができる。  Thereby, the light emitted from the backlight unit is collected by the second lens layer and then incident on the liquid crystal panel. Accordingly, less of the light emitted from the backlight unit is incident obliquely on the liquid crystal panel. As a result, it is possible to reduce light emitted from the liquid crystal panel obliquely as leakage light.
[0037] また、本発明の液晶表示装置では、前記液晶パネルと前記バックライトユニットとの 間に、該バックライトユニットからの光を液晶パネルへと導く複数の第 2のレンズを同 一平面上に並設してなる第 2のレンズ層が設けられていると共に、  In the liquid crystal display device of the present invention, a plurality of second lenses that guide light from the backlight unit to the liquid crystal panel are provided on the same plane between the liquid crystal panel and the backlight unit. And a second lens layer arranged side by side,
前記第 1のレンズ層及び上記第 2のレンズ層は、それぞれストライプ状の凸面を有し 、前記第 1のレンズおよび上記第 2のレンズは、上記凸面を有する非球面レンズから なっており、上記第 1のレンズ層におけるストライプ状の凸面の稜線と上記第 2のレン ズ層におけるストライプ状の凸面の稜線とは、互いに直交して!/、ることが好まし!/、。  The first lens layer and the second lens layer each have a stripe-like convex surface, and the first lens and the second lens are each composed of an aspheric lens having the convex surface, It is preferable that the stripe-shaped convex ridge line in the first lens layer and the stripe-shaped convex ridge line in the second lens layer are perpendicular to each other! /.
[0038] これにより、第 2のレンズ層にて、例えば、液晶パネルの左右方向とは直交する方 向についてバックライトユニットからの光を集光させる一方、第 1のレンズ層にて、液 晶パネルの左右方向について液晶パネルからの出射光を集光させることができる。  [0038] Thereby, the light from the backlight unit is condensed in the second lens layer, for example, in the direction orthogonal to the horizontal direction of the liquid crystal panel, while the liquid crystal is condensed in the first lens layer. Light emitted from the liquid crystal panel can be condensed in the left-right direction of the panel.
[0039] また、本発明の液晶表示装置では、前記第 1のレンズは、それぞれマイクロレンズ であり、前記遮光層の開口部は、マイクロレンズの形状に合わせた円形に形成されて いることが好ましい。  In the liquid crystal display device of the present invention, it is preferable that each of the first lenses is a microlens, and the opening of the light shielding layer is formed in a circular shape that matches the shape of the microlens. .
[0040] これにより、左右方向だけでなぐ全ての斜め方向において、観測方位の違いで表 示特性に差が発生することがなくなる。  [0040] Thereby, in all the oblique directions not only in the left-right direction, there is no difference in display characteristics due to the difference in observation direction.
[0041] また、本発明の液晶表示装置では、前記バックライトユニットは、前記液晶パネルの 直下に配置された光源を備えて!/、ることが好ましレ、。 [0042] これにより、直下型光源を備えたバックライトユニットを有する液晶表示装置におい て、観測方位の違レ、で表示特性に差が発生することを防止することができる。 [0041] In the liquid crystal display device of the present invention, it is preferable that the backlight unit includes a light source arranged immediately below the liquid crystal panel. Thus, in a liquid crystal display device having a backlight unit having a direct light source, it is possible to prevent a difference in display characteristics due to a difference in observation direction.
[0043] また、本発明の液晶表示装置では、前記液晶パネルの動作モードは、垂直配向モ ードであることが好ましい。 [0043] In the liquid crystal display device of the present invention, it is preferable that an operation mode of the liquid crystal panel is a vertical alignment mode.
[0044] これにより、 TNモードや水平配向モードに比べて、垂直配向モードの液晶の方が[0044] As a result, the liquid crystal of the vertical alignment mode is better than the TN mode or the horizontal alignment mode.
、観測方位の違いで表示特性に差が発生することを防止することができ、コントラスト を高めることができること力 実験により、確認できている。 It has been confirmed by power experiments that it is possible to prevent differences in display characteristics due to differences in observation direction and to improve contrast.
[0045] また、本発明の液晶表示装置では、前記第 2のレンズは、それぞれマイクロレンズ であることが好ましい。これにより、第 2のレンズ層としてマイクロレンズを使用すること が可能となる。 In the liquid crystal display device of the present invention, it is preferable that each of the second lenses is a microlens. This makes it possible to use a microlens as the second lens layer.
[0046] 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分か るであろう。また、本発明の利点は、添付図面を参照した次の説明によって明白にな るであろう。  [0046] Other objects, features, and advantages of the present invention will be fully understood from the following description. The advantages of the present invention will become apparent from the following description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0047] [図 1]本発明における液晶表示装置の実施の一形態を示す断面図である。  FIG. 1 is a cross-sectional view showing an embodiment of a liquid crystal display device according to the present invention.
[図 2]上記液晶表示装置における液晶パネルの背面側の構成を示す要部断面図で ある。  FIG. 2 is a cross-sectional view of the main part showing the configuration of the back side of the liquid crystal panel in the liquid crystal display device.
[図 3]上記液晶表示装置におけるレンチキュラーレンズ及び遮光層の構成を示す断 面図である。  FIG. 3 is a sectional view showing a configuration of a lenticular lens and a light shielding layer in the liquid crystal display device.
[図 4]上記液晶表示装置における第 1のレンズ層としてのマイクロレンズアレイ、及び 遮光層の構成を示す平面図である。  FIG. 4 is a plan view showing a configuration of a microlens array as a first lens layer and a light shielding layer in the liquid crystal display device.
[図 5]上記液晶表示装置におけるレンチキュラーレンズ及び遮光層による視野角改 善の原理を示す断面図である。  FIG. 5 is a cross-sectional view showing the principle of viewing angle improvement by a lenticular lens and a light shielding layer in the liquid crystal display device.
[図 6]上記液晶表示装置における左右方向の輝度 (ガンマ)視野角特性を示すグラフ である。  FIG. 6 is a graph showing luminance (gamma) viewing angle characteristics in the horizontal direction in the liquid crystal display device.
[図 7]上記液晶表示装置における左右方向の視野角 45度における、正面階調相当 の輝度と斜め階調相当の輝度との関係を示すグラフである。  FIG. 7 is a graph showing the relationship between the luminance corresponding to the front gradation and the luminance corresponding to the oblique gradation at a viewing angle of 45 degrees in the left-right direction in the liquid crystal display device.
[図 8]上記液晶表示装置における左右方向についての黒輝度の視野角特性を示す グラフである。 FIG. 8 shows the viewing angle characteristics of black luminance in the horizontal direction in the liquid crystal display device. It is a graph.
園 9]上記液晶表示装置における左右方向についての色度変化特性を示すグラフで ある。 9] This is a graph showing the chromaticity change characteristic in the left-right direction in the liquid crystal display device.
園 10]バックライトから液晶パネルへ入射する光の最大入射角と正面コントラスト(CR )との関係を示す図であり、表(a)は垂直配向(VA)モードの液晶を用レ、た場合の上 記関係を示し、表 (b)は、 FFSモードの液晶を用いた場合の上記関係を示し、グラフ (c)には表 (a) (b)の各データがプロットされて!/、る。 10] This figure shows the relationship between the maximum incident angle of light incident on the liquid crystal panel from the backlight and the front contrast (CR). Table (a) shows the case of using liquid crystal in the vertical alignment (VA) mode. Table (b) shows the above relationship when using FFS mode liquid crystal, and graph (c) plots the data in Tables (a) and (b)! /, The
園 11]バックライトの各集光度と液晶パネルの光利用効率との関係を示す図であり、 グラフ(b)は、バックライトの集光度の定義を示し、グラフ(c)は、表(a)の数値に基づ いて、バックライトの集光度と液晶パネルの光利用効率との関係を示している。 11] It is a diagram showing the relationship between each light concentration of the backlight and the light utilization efficiency of the liquid crystal panel. Graph (b) shows the definition of the light concentration of the backlight, and graph (c) shows the table (a ) Shows the relationship between the concentration of the backlight and the light utilization efficiency of the liquid crystal panel.
園 12]本発明における液晶表示装置の変形例を示すものであり、液晶表示装置の構 成を示す分解斜視図である。 12] An exploded perspective view showing a configuration of the liquid crystal display device according to a modification of the liquid crystal display device of the present invention.
[図 13]従来の一般的な液晶表示装置の構成を示す断面図である。  FIG. 13 is a cross-sectional view showing a configuration of a conventional general liquid crystal display device.
園 14]従来の他の液晶表示装置の構成を示す断面図である。 14] A cross-sectional view showing the configuration of another conventional liquid crystal display device.
園 15]従来の液晶表示装置における視野角特性の原理を示す断面図である。 園 16]従来の液晶表示装置における左右方向の視野角に対する輝度 (ガンマ)特性 園 17]バックライト最大入射角と正面コントラスト(CR)との関係を示すデータを取得 する公知の測定方法を示す模式図である。 15] A sectional view showing the principle of viewing angle characteristics in a conventional liquid crystal display device. 16] Luminance (gamma) characteristics with respect to the viewing angle in the horizontal direction in a conventional liquid crystal display device 17] Model showing a known measurement method for obtaining data indicating the relationship between the maximum backlight incident angle and front contrast (CR) FIG.
符号の説明 Explanation of symbols
1 凇晶パネノレ  1 Hakuho Panenore
2 集光シート(第 2のレンズ層)  2 Light collecting sheet (second lens layer)
3 ノ ックライト(バックライトユニット)  3 Knocklight (backlight unit)
4 レンチキュラーレンズ(第 1のレンズ層)  4 Lenticular lens (first lens layer)
4a 非球面レンズ(第 1のレンズ)  4a Aspherical lens (first lens)
5 遮光層  5 Shading layer
5a 開口部  5a opening
5a' 開口部 5b 遮光部 5a 'opening 5b Shading part
6 拡散層  6 Diffusion layer
10 液晶表示装置  10 Liquid crystal display
11 液晶セノレ  11 LCD Senor
12 液晶パネル上偏光板  12 Polarizing plate on LCD panel
13 液晶パネル下偏光板  13 LCD panel bottom polarizing plate
21 レンチキュラーレンズ  21 Lenticular lens
22 反射体  22 Reflector
22a 開口部  22a opening
31 反射シート  31 Reflective sheet
32 光源 (直下型光源)  32 light source (direct light source)
33 拡散シート  33 Diffusion sheet
40 マイクロレンズアレイ(第 1の !·ノンズ層)  40 microlens array (first! · Nons layer)
40a マイクロレンズ  40a micro lens
Θ 視野角  Θ Viewing angle
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0049] 本発明の一実施形態について図 1ないし図 12に基づいて説明すれば、以下の通り である。  [0049] One embodiment of the present invention is described below with reference to Figs.
[0050] 本実施の形態の液晶表示装置 10の構成について、図 1に基づいて説明する。図 1 は、上記液晶表示装置 10の概略構成を示す断面図である。  [0050] The configuration of the liquid crystal display device 10 of the present embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view showing a schematic configuration of the liquid crystal display device 10.
[0051] 本実施の形態の液晶表示装置 10は、図 1に示すように、画像を表示する液晶パネ ノレ 1を備えており、液晶パネル 1の背面側には、この液晶パネル 1の背面側から前面 側に光を照射するバックライトユニットとしてのバックライト 3と、上記液晶パネル 1とバ ックライト 3との間に設けられた第 2のレンズ層としての集光シート 2とを有している。な お、集光シート 2は、本発明では、必ずしも必要なものではない。  [0051] As shown in FIG. 1, the liquid crystal display device 10 of the present embodiment includes a liquid crystal panel 1 for displaying an image, and on the back side of the liquid crystal panel 1, the back side of the liquid crystal panel 1 is provided. A backlight 3 as a backlight unit for irradiating light from the front side to the front side, and a condensing sheet 2 as a second lens layer provided between the liquid crystal panel 1 and the backlight 3. . The light collecting sheet 2 is not always necessary in the present invention.
[0052] 一方、液晶パネル 1の前面側には、液晶パネル 1からの光を外部へと導くために複 数のレンズを並設した第 1のレンズ層としてのレンチキュラーレンズ 4が少なくとも設け られている。 [0053] また、上記レンチキュラーレンズ 4の前面側には、上記レンズの各光軸上に開口部 5aを有する遮光層 5が設けられており、さらに、遮光層 5の前面側には光を拡散させ る拡散層 6が設けられている。 On the other hand, at least a lenticular lens 4 as a first lens layer in which a plurality of lenses are arranged in parallel to guide light from the liquid crystal panel 1 to the outside is provided on the front side of the liquid crystal panel 1. Yes. Further, on the front side of the lenticular lens 4, a light shielding layer 5 having an opening 5 a on each optical axis of the lens is provided, and light is diffused on the front side of the light shielding layer 5. A diffusion layer 6 is provided.
[0054] 上記レンチキュラーレンズ 4および遮光層 5は、液晶パネル 1に垂直に入射した光( 垂直光)を液晶表示装置 10の外部へ導く一方、液晶パネル 1に斜めに入射した光( 斜め光)を液晶表示装置 10の外部へ出さないようにするという、光の透過および遮断 を選択する役割を担って!/、る。  [0054] The lenticular lens 4 and the light-shielding layer 5 guide light vertically incident on the liquid crystal panel 1 (vertical light) to the outside of the liquid crystal display device 10, while light obliquely incident on the liquid crystal panel 1 (oblique light). It plays a role of selecting light transmission and blocking so as not to leave the liquid crystal display device 10 outside!
[0055] 上記液晶パネル 1は、透過型であり、光源として上記バックライト 3が用いられる。液 晶パネル 1は、一対の透光性基板間に液晶を挟持した液晶セル 11と、この液晶セノレ 11の表裏に設けられた液晶パネル上偏光板 12及び液晶パネル下偏光板 13とを有 している。液晶パネル上偏光板 12については、レンチキュラーレンズ 4と液晶パネル 1のパターンとによる干渉を避けるために、集光度を大きく乱さない程度に、表面に例 えば AG (Anti Glare)処理等の拡散処理を施すことも可能である。  The liquid crystal panel 1 is a transmissive type, and the backlight 3 is used as a light source. The liquid crystal panel 1 includes a liquid crystal cell 11 having a liquid crystal sandwiched between a pair of translucent substrates, and a liquid crystal panel upper polarizing plate 12 and a liquid crystal panel lower polarizing plate 13 provided on the front and back of the liquid crystal senor 11. ing. In order to avoid interference between the lenticular lens 4 and the pattern of the liquid crystal panel 1, the surface of the polarizing plate 12 on the liquid crystal panel is subjected to diffusion treatment such as AG (Anti Glare) treatment to the extent that the condensing degree is not greatly disturbed. It is also possible to apply.
[0056] なお、液晶パネル 1の液晶セル 11の液晶モードやセル構造は任意である。また、 液晶パネル 1の駆動モードも任意である。すなわち、液晶パネル 1としては、文字、画 像、又は動画を表示できる任意の液晶パネルを用いることができる。さらに、液晶パ ネル 1は、カラー表示可能なパネルであっても良いし、モノクロ表示専用のパネルで あっても良い。したがって、図 1においては液晶パネル 1の詳細な構造を図示せず、 その説明も省略する。  Note that the liquid crystal mode and the cell structure of the liquid crystal cell 11 of the liquid crystal panel 1 are arbitrary. The driving mode of the liquid crystal panel 1 is also arbitrary. That is, as the liquid crystal panel 1, any liquid crystal panel that can display characters, images, or moving images can be used. Further, the liquid crystal panel 1 may be a panel capable of color display or a panel dedicated to monochrome display. Therefore, in FIG. 1, the detailed structure of the liquid crystal panel 1 is not shown, and the description thereof is also omitted.
[0057] 上記バックライト 3は、図 2に示すように、下から順に反射シート 31と光源 32と拡散 シート 33とを有している。本実施の形態では、バックライト 3は、光源 32を液晶パネル 1の直下に配置した直下型バックライトシステムを採用しており、光源 32としては、冷 陰極管(CCFT : Cold Cathode fluorescent Tube )や LED (Light Emitting Diode)を 用いること力 Sできる。また、必ずしもこれに限らず、例えば、光源 32をバックライト 3の 端面に設けたエッジライト方式のバックライトシステムとすることも可能である。  As shown in FIG. 2, the backlight 3 includes a reflection sheet 31, a light source 32, and a diffusion sheet 33 in order from the bottom. In the present embodiment, the backlight 3 employs a direct-type backlight system in which a light source 32 is disposed directly below the liquid crystal panel 1, and the light source 32 includes a cold cathode tube (CCFT) or a cold cathode fluorescent tube (CCFT). Uses LED (Light Emitting Diode). In addition, the present invention is not necessarily limited thereto, and for example, an edge light type backlight system in which the light source 32 is provided on the end surface of the backlight 3 may be used.
[0058] 一方、上記集光シート 2は、同図に示すように、蒲鋅状のレンチキュラーレンズ 21と 、バックライト 3側に設けられた反射体 22とからなっている。この反射体 22には、レン チキユラ一レンズ 21に設けられた複数のレンズの各光軸上に開口部 22aが設けられ ている。これにより、バックライト 3の光源 32から出射された光は、拡散シート 33を通し て反射体 22の開口部 22aを通してレンチキュラーレンズ 21の各レンズにより、バック ライト 3に対して略垂直に上記液晶パネル 1に照射される。 On the other hand, the light collecting sheet 2 includes a bowl-shaped lenticular lens 21 and a reflector 22 provided on the backlight 3 side, as shown in FIG. The reflector 22 is provided with an opening 22a on each optical axis of a plurality of lenses provided in the lenticular lens 21. ing. As a result, the light emitted from the light source 32 of the backlight 3 passes through the diffusion sheet 33, passes through the opening 22a of the reflector 22, and by the respective lenses of the lenticular lens 21, the liquid crystal panel is substantially perpendicular to the backlight 3. 1 is irradiated.
[0059] また、反射体 22にて反射された反射光は、反射シート 31にて反射され、再度、拡 散シート 33を通して反射体 22の開口部 22aを通してレンチキュラーレンズ 21のレン ズ (第 2のレンズ)により、バックライト 3に対して略垂直に上記液晶パネル 1に照射さ れる。したがって、レンチキュラーレンズ 21から液晶パネル 1に照射される垂直光の 量が多くなる。 [0059] The reflected light reflected by the reflector 22 is reflected by the reflector sheet 31, and again passes through the diffuser sheet 33, through the opening 22a of the reflector 22, and the lens (second second lens). The liquid crystal panel 1 is irradiated substantially perpendicularly to the backlight 3 by the lens. Therefore, the amount of vertical light emitted from the lenticular lens 21 to the liquid crystal panel 1 increases.
[0060] このように、集光シート 2は、レンチキュラーレンズ 4および遮光層 5が液晶表示装置 10の外部へ導く垂直光を増加させ、表示の輝度を向上させる役割を担っている。  As described above, the condensing sheet 2 plays a role of improving the display brightness by increasing the vertical light that the lenticular lens 4 and the light shielding layer 5 guide to the outside of the liquid crystal display device 10.
[0061] なお、反射シート 31の開口部 22aの面積を小さくするほど、バックライト 3の指向性 を強くすること力 Sできる。また、集光シート 2としてマイクロレンズを使用することも可能 である。この場合、反射体 22の開口部は、マイクロレンズの形状に合わせた円形に 形成される。  [0061] Note that, as the area of the opening 22a of the reflection sheet 31 is reduced, the directivity of the backlight 3 can be increased. Further, a microlens can be used as the light collecting sheet 2. In this case, the opening of the reflector 22 is formed in a circular shape that matches the shape of the microlens.
[0062] 次に、液晶パネル 1の前面側に設けられた上記レンチキュラーレンズ 4について説 明する。  Next, the lenticular lens 4 provided on the front side of the liquid crystal panel 1 will be described.
[0063] 上記レンチキュラーレンズ 4は、図 1に示すように、蒲鋅状レンズからなっており、フ ラット面を前面側に向けている。このレンチキュラーレンズ 4は、図 3に示すように、スト ライプ状の凸面を有している。すなわち、レンチキュラーレンズ 4は、この凸面の 1つを 備えた非球面レンズ 4a (第 1のレンズ)を複数並べたもの力、らなっている。各非球面レ ンズ 4aの大きさは、最大高さが例えば 110 であり、最小高さが例えば 75 mで あり、 1つの凸面の幅が例えば lOO ^ m (図 3では 98 111)となっている。屈折率は例 えば 1. 5である。  [0063] As shown in Fig. 1, the lenticular lens 4 is formed of a bowl-shaped lens with the flat surface facing the front side. The lenticular lens 4 has a striped convex surface as shown in FIG. In other words, the lenticular lens 4 has a force obtained by arranging a plurality of aspherical lenses 4a (first lenses) having one of the convex surfaces. Each aspherical lens 4a has a maximum height of, for example, 110, a minimum height of, for example, 75 m, and the width of one convex surface, for example, lOO ^ m (98 111 in FIG. 3). Yes. The refractive index is 1.5, for example.
[0064] また、このレンチキュラーレンズ 4の前面側には、遮光層 5が設けられている。遮光 層 5は、開口部 5aを通過する光のみ通し、それ以外の光は遮断するようになっている 。この遮光層 5の開口部 5aは、上記非球面レンズ 4aの光軸上に設けられており、力、 つ非球面レンズ 4aの焦点は開口部 5aの略中央に位置するものとなっている。したが つて、この開口部 5aは、非球面レンズ 4aの凸面と同様に、ストライプ状に形成されて いる。開口部 5aの幅は例えば 30 m (図 3では 29 m)であり、遮光部 5bの幅は例 えば 70〃 m (図 3では 69 μ m)となって!/、る。 Further, a light shielding layer 5 is provided on the front side of the lenticular lens 4. The light shielding layer 5 allows only light passing through the opening 5a to pass through and blocks other light. The opening 5a of the light shielding layer 5 is provided on the optical axis of the aspherical lens 4a, and the force and the focal point of the aspherical lens 4a are located substantially at the center of the opening 5a. Therefore, the opening 5a is formed in a stripe shape like the convex surface of the aspherical lens 4a. Yes. For example, the width of the opening 5a is 30 m (29 m in FIG. 3), and the width of the light-shielding portion 5b is 70 mm (69 μm in FIG. 3), for example!
[0065] なお、本実施の形態では、第 1のレンズ層は、上記凸面の 1つを備えた非球面レン ズ 4aを複数並べたレンチキュラーレンズ 4となっている力 S、必ずしもこれに限らず、例 えば、図 4に示すように、球面状のマイクロレンズ 40aを複数並べたマイクロレンズァ レイ 40とすることが可能である。これにより、表示面に関して左右方向だけでなぐ左 右方向に直交する方向についても、視野角特性を向上させることが可能である。また 、このときには、遮光層 5についても、開口部 5aは、必然的に、マイクロレンズ 40aの 形状に合わせた円形の開口部 5a 'に置き換わる。  In the present embodiment, the first lens layer has a force S that is a lenticular lens 4 in which a plurality of aspherical lenses 4a having one of the convex surfaces are arranged, but is not limited thereto. For example, as shown in FIG. 4, a microlens array 40 in which a plurality of spherical microlenses 40a are arranged can be formed. As a result, the viewing angle characteristics can be improved in the direction orthogonal to the left-right direction as well as the left-right direction with respect to the display surface. Further, at this time, also in the light shielding layer 5, the opening 5a is inevitably replaced with a circular opening 5a ′ matching the shape of the microlens 40a.
[0066] 次に、図 1に示すように、上記遮光層 5の前面側には、拡散層 6が設けられている。  Next, as shown in FIG. 1, a diffusion layer 6 is provided on the front side of the light shielding layer 5.
この拡散層 6は、遮光層 5の開口部 5aを通過してきた光を放射状に拡散させる。した がって、視野角が広がることになる。  The diffusion layer 6 diffuses the light that has passed through the opening 5a of the light shielding layer 5 radially. Therefore, the viewing angle is widened.
[0067] 上記構成の液晶表示装置 10における作用効果について、図 5に基づいて説明す  [0067] The effects of the liquid crystal display device 10 having the above configuration will be described with reference to FIG.
[0068] 図 5に示すように、液晶パネル 1に垂直に入射しかつ液晶パネル 1から垂直に出射 した光は、レンチキュラーレンズ 4を通して遮光層 5の開口部 5aを通過する。このとき 、光軸上の光はそのまま光軸上に進むと共に、非球面レンズ 4aの端部に入射した光 は屈折され、開口部 5aを通過する。すなわち、集光機能を有する非球面レンズ 4aの 焦線が開口部 5aの略中央に存在するので、液晶パネル 1から略垂直に出射した光 のみが、遮光層 5の開口部 5aを通過できる。なお、非球面レンズ 4aをマイクロレンズ 4 Oaに置き換えた場合には、マイクロレンズ 40aの焦点力 開口部 5a'の略中央に位 。 As shown in FIG. 5, the light that is vertically incident on the liquid crystal panel 1 and is emitted vertically from the liquid crystal panel 1 passes through the opening 5 a of the light shielding layer 5 through the lenticular lens 4. At this time, the light on the optical axis travels on the optical axis as it is, and the light incident on the end of the aspherical lens 4a is refracted and passes through the opening 5a. That is, since the focal line of the aspherical lens 4a having a condensing function exists in the approximate center of the opening 5a, only light emitted substantially vertically from the liquid crystal panel 1 can pass through the opening 5a of the light shielding layer 5. When the aspherical lens 4a is replaced with the microlens 4Oa, it is positioned approximately at the center of the focal force opening 5a ′ of the microlens 40a.
[0069] これに対して、液晶パネル 1に斜めに入射しかつ液晶パネル 1から斜めに出射した 光は、レンチキュラーレンズ 4を通過したときに、遮光層 5の遮光部 5bにて遮光される 。この結果、液晶パネル 1に斜めに入射しかつ液晶パネル 1から斜めに出射した光は 、遮光層 5の前面側に出射されない。  On the other hand, light incident on the liquid crystal panel 1 obliquely and emitted obliquely from the liquid crystal panel 1 is shielded by the light shielding portion 5b of the light shielding layer 5 when passing through the lenticular lens 4. As a result, the light incident on the liquid crystal panel 1 obliquely and emitted obliquely from the liquid crystal panel 1 is not emitted to the front side of the light shielding layer 5.
[0070] なお、開口部 5aの開口率、すなわち開口部 5aの幅/ (開口部 5aの幅 +遮光部 5b の幅)は、小さい方力 斜め光の遮光性が高まるので、視野角に依存した表示変化 力 S小さくなる、つまり視野角特性が向上する。逆に、開口率が大きい方が、表示の輝 度を向上させること力 Sできる。したがって、視野角特性と輝度とを最適化するように、 開口率、レンズの形状、およびレンズの屈折率などを設計するとよい。 [0070] Note that the aperture ratio of the opening 5a, that is, the width of the opening 5a / (the width of the opening 5a + the width of the light shielding portion 5b) is a small force. Display change The force S is reduced, that is, the viewing angle characteristics are improved. Conversely, a larger aperture ratio can improve the display brightness. Therefore, the aperture ratio, lens shape, lens refractive index, etc. should be designed to optimize viewing angle characteristics and brightness.
[0071] この結果、液晶表示装置 10の視野角特性は、図 6に示すように、いずれの階調の 輝度においても、図 16と比較して著しく改善され、規格化輝度は、—80° ≤視野角 Θ≤80° において略水平な特性を示すものとなる。なお、図 6において、規格化輝 度とは、最大輝度を基準とした各階調に相当する輝度である。また、各線は、 32階調 毎にプロットした規格化輝度を示して!/、る。  As a result, as shown in FIG. 6, the viewing angle characteristics of the liquid crystal display device 10 are remarkably improved as compared with FIG. 16 at any gradation, and the normalized luminance is −80 °. ≤View angle Θ≤80 ° shows almost horizontal characteristics. In FIG. 6, the normalized luminance is the luminance corresponding to each gradation based on the maximum luminance. Also, each line shows the normalized brightness plotted every 32 gradations!
[0072] ここで、図 7に、例えば、視野角 Θ =45° における正面階調と斜め階調との関係を 示す。正面階調とは、観察者が液晶表示装置 10の表示面を真正面、すわわち視野 角 0° から見たときに知覚する階調であり、液晶表示装置 10が表示しょうとしている 階調に等しい。一方、斜め階調とは、観察者が液晶表示装置 10の表示面を 0° より 大きく 90° 未満の視野角で見たときに知覚する階調である。  Here, FIG. 7 shows the relationship between the front gradation and the oblique gradation at, for example, a viewing angle Θ = 45 °. The front gradation is the gradation that the observer perceives when viewing the display surface of the liquid crystal display device 10 from the front, that is, from a viewing angle of 0 °, and is the gradation that the liquid crystal display device 10 is trying to display. equal. On the other hand, the oblique gradation is a gradation that is perceived when an observer views the display surface of the liquid crystal display device 10 with a viewing angle greater than 0 ° and less than 90 °.
[0073] 図 7に示す結果から、従来では、斜め階調の輝度と正面階調の輝度とを比べると斜 め階調の輝度が大きかったのに対して、本実施の形態では、斜め階調の輝度と正面 階調の輝度との比が 1 : 1となることがわかる。このことは、いわゆる白浮きが防止され ることを示している。  [0073] From the results shown in Fig. 7, in the conventional case, the luminance of the oblique gradation is larger than the luminance of the oblique gradation and the luminance of the front gradation. It can be seen that the ratio of the tone brightness to the front tone brightness is 1: 1. This indicates that so-called whitening is prevented.
[0074] また、黒輝度の視野角特性を見ると、図 8に示すように、従来では、—70° ≤視野 角 Θ≤—20° 、及び 20° ≤視野角 Θ≤70° において、黒輝度が 0. 7〜; 1. Ocd/ m2というように、 20° ≤視野角 Θ≤20° の黒輝度略 0. 6cd/m2に比べて高い 値を示しているのに対して、本構成では、全視野角 Θにおいて、黒輝度が 0. 4cd/ m2のほぼ一定直になつて!/、る。 [0074] In addition, when viewing the viewing angle characteristics of black luminance, as shown in Fig. 8, in the past, when the black angle was -70 ° ≤ viewing angle Θ ≤ -20 ° and 20 ° ≤ viewing angle Θ ≤ 70 °, Luminance is 0.7 ~; 1. Ocd / m 2 , 20 ° ≤ viewing angle Θ ≤ 20 °, which is higher than black luminance of about 0.6 cd / m 2 , In this configuration, the black brightness is almost constant at 0.4 cd / m 2 at all viewing angles Θ! /.
[0075] また、色度変化特性についても、図 9に示すように、従来では、視野角 Θ =45° に おける各色の色度変化について、 u' v色度座標における色差 Δ ιι' ν'が大きいもの が存在するのに対して、本構成では、色差 Δ ιι' ν'は 0. 01以下というように、小さい 値となっている。  As for the chromaticity change characteristics, as shown in FIG. 9, in the past, the chromaticity change of each color at the viewing angle Θ = 45 °, the color difference Δ uι v ′ in the u ′ v chromaticity coordinates In contrast, there are some with a large color difference, but in this configuration, the color difference Δ ιι 'ν' is a small value, such as 0.01 or less.
[0076] なお、図 9はマクベスチャートにおける色度変化特性を示し、左から 1番目の dark skinから 18番目のシアン(cyan)までが有彩色であり、 19番目の白(white)力も 24 番目の黒 (black)までが無彩色であり、一番右に示した値は平均値である。 [0076] Fig. 9 shows the chromaticity change characteristics in the Macbeth chart. From the first dark skin to the 18th cyan from the left is a chromatic color, and the 19th white force is also 24. The first black is achromatic, and the rightmost value is the average value.
[0077] 次に、液晶表示モードの種類と正面コントラストとの関係について、図 10に基づい て説明する。図 10の表(a)は、垂直配向(VA:Vertically Aligned)モードの液晶を用 いた場合の液晶パネル 1へのバックライト最大入射角と正面コントラスト(CR)との関 係を示すデータを示し、図 10の表(b)は、 FFS (Fringe Field Switching)モードの液 晶を用いた場合の液晶パネル 1へのバックライト最大入射角と正面コントラスト(CR) との関係を示すデータを示し、図 10のグラフ(c)には、表(a) (b)の各データがプロッ トされている。なお、 FFS (Fringe Field Switching)モードは、水平配向モードに該当 するものであり、 IPS (In-plane Switching)モードに近似した技術である。 Next, the relationship between the type of liquid crystal display mode and the front contrast will be described with reference to FIG. Table (a) in Fig. 10 shows data indicating the relationship between the maximum incident angle of the backlight to the liquid crystal panel 1 and the front contrast (CR) when using vertically aligned (VA) liquid crystal. Table (b) in Fig. 10 shows data showing the relationship between the maximum incident angle of the backlight to the liquid crystal panel 1 and the front contrast (CR) when the FFS (Fringe Field Switching) mode liquid crystal is used. Graph (c) in Fig. 10 plots the data in tables (a) and (b). The FFS (Fringe Field Switching) mode corresponds to the horizontal alignment mode, and is a technique that approximates the IPS (In-plane Switching) mode.
[0078] なお、図 17に示すように、バックライト最大入射角と正面コントラスト(CR)との関係 を示すデータを取得する測定を行った。すなわち、光源 51の前に、遮光マスク 52、 液晶パネル 53および輝度計 54を、この順に配置した。光源 51は、通常の液晶パネ ルで使用されるバックライトである。遮光マスク 52には、直径 d2 (mm)の円形開口部 が形成されている。また、遮光マスク 52と液晶パネル 53とは、距離 L (mm)だけ離れ ている。 Note that, as shown in FIG. 17, measurement was performed to acquire data indicating the relationship between the maximum incident angle of the backlight and the front contrast (CR). That is, in front of the light source 51, the light shielding mask 52, the liquid crystal panel 53, and the luminance meter 54 are arranged in this order. The light source 51 is a backlight used in a normal liquid crystal panel. The light shielding mask 52 has a circular opening having a diameter d2 (mm). Further, the light shielding mask 52 and the liquid crystal panel 53 are separated by a distance L (mm).
[0079] こうして、遮光マスク 52を通過した光源 51の光が液晶パネル 53を照射したときに、 液晶パネル 53に形成される直径 dl (mm)の光スポット Sの輝度を、輝度計 54によつ て測定する測定系を構成した。  Thus, when the light from the light source 51 that has passed through the light shielding mask 52 illuminates the liquid crystal panel 53, the luminance of the light spot S having a diameter dl (mm) formed on the liquid crystal panel 53 is measured by the luminance meter 54. A measurement system for measurement was constructed.
[0080] 上記バックライト最大入射角は、図 17に示す角度 Θで表される。すなわち、ノ ククラ イト最大入射角 Θは、図 17において円形開口部の右端と光スポット Sの左端とを結ぶ 線分が、液晶パネル 53の表示面における法線に対してなす角度である。したがって 、バックライト最大入射角 Θを下記の式(1)によって表すことができる。  The backlight maximum incident angle is represented by an angle Θ shown in FIG. That is, the maximum incidence angle Θ is the angle formed by the line segment connecting the right end of the circular opening and the left end of the light spot S with respect to the normal line on the display surface of the liquid crystal panel 53 in FIG. Therefore, the backlight maximum incident angle Θ can be expressed by the following equation (1).
[0081] tan 0 = (dl + d2) /2L  [0081] tan 0 = (dl + d2) / 2L
Θ =tan_ 1{ (dl + d2) /2L} (1) Θ = tan _ 1 {(dl + d2) / 2L} (1)
上記距離 Lを変化させることによって、バックライト最大入射角 Θを調整することがで きる。  By changing the distance L, the backlight maximum incident angle Θ can be adjusted.
[0082] 図 10に示すように、液晶パネル 1へのバックライト最大入射角が同じ場合には、 VA モードの方が正面コントラストは高いことがわかる。また、液晶パネル 1へのバックライ ト最大入射角が小さくなると、つまりバックライト 3の集光度を高めていくと VAモードの 方がより効果的に正面コントラストが向上することがわかる。これらのことから、本実施 の形態のような集光 ·拡散方式では、液晶パネル 1の液晶としては VAモードを使用 すること力 S望ましレヽと考えられる。 As shown in FIG. 10, when the maximum backlight incident angle on the liquid crystal panel 1 is the same, it can be seen that the front contrast is higher in the VA mode. Also, the backlight to the LCD panel 1 It can be seen that the front contrast is more effectively improved in the VA mode when the maximum incident angle is reduced, that is, when the concentration of the backlight 3 is increased. For these reasons, in the condensing and diffusing method as in the present embodiment, it is considered that the use of the VA mode as the liquid crystal of the liquid crystal panel 1 is desirable.
[0083] 次に、バックライト 3の集光度と液晶パネル 1の光利用効率との関係について、図 11 に基づいて説明する。 Next, the relationship between the degree of light collection of the backlight 3 and the light use efficiency of the liquid crystal panel 1 will be described with reference to FIG.
[0084] すなわち、図 11の表(a)に示すように、バックライト 3の各集光度において、レンチキ ユラ一レンズ 4が存在する場合と存在しない場合とから光利用効率を求める。  That is, as shown in the table (a) of FIG. 11, the light use efficiency is obtained based on whether the lenticular lens 4 is present or not at each concentration of the backlight 3.
[0085] ここで、光利用効率(%)は、 [0085] Here, the light utilization efficiency (%) is
光利用効率(%) = (レンチキュラーレンズ有りの場合の全方位の光束量) X 100/  Light utilization efficiency (%) = (light flux in all directions with lenticular lens) X 100 /
(レンチキュラーレンズ無しの場合の全方位の光束量)  (Amount of luminous flux in all directions without lenticular lens)
にて算出する。  Calculate with
[0086] なお、レンチキュラーレンズ有りの液晶パネルは、視野角を改善したパネルであり、 レンチキュラーレンズ無しのパネルは、従来型のパネルである。  Note that the liquid crystal panel with a lenticular lens is a panel with an improved viewing angle, and the panel without a lenticular lens is a conventional panel.
[0087] また、バックライト 3の各集光度は、本実施の形態では、図 11のグラフ(b)に示すよ うに、正面輝度に対して 10%の輝度になる角度(正面方向に対してなす極角)をバッ クライト集光度と定義している。すなわち、集光度の数値が小さいほど、集光の程度 が高ぐバックライト 3から出射される光の光束が細く絞られていることを表す。  [0087] Further, in the present embodiment, as shown in the graph (b) of FIG. 11, each light collection degree of the backlight 3 is an angle (with respect to the front direction) that is 10% of the front luminance. The polar angle) is defined as the backlight concentration. In other words, the smaller the numerical value of the degree of condensing, the narrower the light flux of the light emitted from the backlight 3 with the higher degree of condensing.
[0088] この結果、図 11 (c)に示すように、バックライト 3の集光の程度が高いほど、液晶パ ネル 1の光利用効率が高まることが分かる。  As a result, as shown in FIG. 11 (c), it can be seen that the higher the degree of condensing of the backlight 3, the higher the light utilization efficiency of the liquid crystal panel 1.
[0089] このように、本実施の形態の液晶表示装置 10では、液晶パネル 1の前面側には、 複数の非球面レンズ 4aを同一平面上に並設してなるレンチキュラーレンズ 4が設けら れ、かつレンチキュラーレンズ 4の前面側には、各非球面レンズ 4aの光軸上に開口 部 5aを有する遮光層 5が設けられている。  As described above, in the liquid crystal display device 10 of the present embodiment, the lenticular lens 4 in which a plurality of aspheric lenses 4a are arranged in parallel on the same plane is provided on the front side of the liquid crystal panel 1. On the front side of the lenticular lens 4, a light shielding layer 5 having an opening 5a on the optical axis of each aspheric lens 4a is provided.
[0090] このため、バックライト 3から出射された光は液晶パネル 1を通り、レンチキュラーレン ズ 4により集光されて外部に出射される。このとき、開口部 5aは、非球面レンズ 4aの 光軸上に設けられているので、この開口部 5aを通る光は、液晶パネル 1に略垂直な 光である。 [0091] 一方、バックライト 3から出射された光のうち、前記斜め光は液晶パネル 1から斜め に漏洩光として出射される力 この斜めに出射された光は遮光層 5に当たり、遮光層 5の前面側に出てくることがない。 For this reason, the light emitted from the backlight 3 passes through the liquid crystal panel 1 and is collected by the lenticular lens 4 and emitted to the outside. At this time, since the opening 5a is provided on the optical axis of the aspheric lens 4a, the light passing through the opening 5a is light substantially perpendicular to the liquid crystal panel 1. On the other hand, of the light emitted from the backlight 3, the oblique light is emitted obliquely from the liquid crystal panel 1 as leakage light. This obliquely emitted light strikes the light shielding layer 5 and It does not come out on the front side.
[0092] この結果、斜めから液晶パネル 1を見た場合に、従来存在していた漏洩光がほとん どなくなるので、従来のような斜め方向から見たときには表示が白っぽく見え、コントラ ストが低くなるという課題が解決される。また、表示面を正面方向から見た場合のコン トラストと、斜め方向から見たときのコントラストとが均一化される。  [0092] As a result, when the liquid crystal panel 1 is viewed obliquely, there is almost no leakage light that has been present in the past, so when viewed from an oblique direction as in the prior art, the display appears whitish and the contrast is reduced. The problem is solved. In addition, the contrast when the display surface is viewed from the front and the contrast when viewed from the oblique direction are made uniform.
[0093] したがって、観測方位の違いで表示特性に差が発生することを防止し得る液晶表 示装置 10を提供することができる。  Accordingly, it is possible to provide the liquid crystal display device 10 that can prevent a difference in display characteristics due to a difference in observation direction.
[0094] なお、遮光層 5により、外光の液晶パネル 1への入射を防止することができる。した 力つて、液晶パネル 1を明所で使用したときに、液晶パネル 1の例えば図示しない画 素電極からの反射光によるコントラストの低下を防止することができる。  It should be noted that the light shielding layer 5 can prevent external light from entering the liquid crystal panel 1. As a result, when the liquid crystal panel 1 is used in a bright place, it is possible to prevent a decrease in contrast due to reflected light from, for example, a pixel electrode (not shown) of the liquid crystal panel 1.
[0095] ところで、バックライト 3から出射された光のうち、斜め光は遮光層 5で遮られるとはい え、本来、漏洩光であるので、消滅させる方が好ましい。この点、本実施の形態では 、遮光層 5は光吸収性を有するので、遮光層 5に当たった光は、反射されずにそのま ま遮光層 5に吸収される。したがって、遮光層 5に当たった光を消滅させることができ  By the way, among the light emitted from the backlight 3, the oblique light is not necessarily blocked by the light shielding layer 5, but is originally leaked light. In this regard, in the present embodiment, since the light shielding layer 5 has light absorptivity, the light striking the light shielding layer 5 is absorbed by the light shielding layer 5 as it is without being reflected. Therefore, the light hitting the light shielding layer 5 can be extinguished.
[0096] なお、光吸収性を有する遮光層 5の形成方法として、レンチキュラーレンズ 4のレン ズと反対側の平坦面に感光性の黒色樹脂を塗布し、レンチキュラーレンズ 4側から露 光することによって、開口部 5aおよび遮光部 5bを形成するセルフアラインメント方式 を採用すること力できる。 [0096] As a method of forming the light-shielding light-shielding layer 5, a photosensitive black resin is applied to the flat surface opposite to the lens of the lenticular lens 4 and exposed from the lenticular lens 4 side. In addition, it is possible to employ a self-alignment method for forming the opening 5a and the light shielding portion 5b.
[0097] また、前記特許文献 2 (特開 2001— 113538号公報)に記載された方法を用いるこ ともできる。この方法では、レンチキュラーレンズのレンズと反対側の平坦面に感光性 樹脂を塗布し、感光性樹脂の露光部と非露光部とでの粘着性の有無を利用する。よ り具体的には、粘着性を有する非露光部に、黒色の転写層を転写したり、あるいは、 黒色粉体を付着させることによって、遮光パターンを形成する。  [0097] The method described in Patent Document 2 (Japanese Patent Laid-Open No. 2001-113538) can also be used. In this method, a photosensitive resin is applied to the flat surface opposite to the lens of the lenticular lens, and the presence or absence of adhesiveness between the exposed portion and the non-exposed portion of the photosensitive resin is used. More specifically, the light-shielding pattern is formed by transferring the black transfer layer or adhering black powder to the non-exposed portion having adhesiveness.
[0098] 一方、開口部 5aを通過した光は、レンチキュラーレンズ 4を通した光であるので、レ ンズ層により拡散される方向以外の方向の光が少ない。したがって、レンズ層により 拡散される方向以外の方向から見たときの表示が不十分となる可能性がある。 On the other hand, since the light that has passed through the opening 5a is light that has passed through the lenticular lens 4, there is little light in a direction other than the direction diffused by the lens layer. Therefore, depending on the lens layer The display when viewed from a direction other than the direction in which the light is diffused may be insufficient.
[0099] この点、本実施の形態では、遮光層 5の前面側には、光を拡散させる拡散層 6が設 けられているので、開口部 5aを通過した光は、拡散層 6により拡散されて斜め方向に も広がる。したがって、開口部 5aを通過した光の斜め方向成分が増加するので、どの 方向から見た場合でも表示が不十分となるとレ、うことがな!/、。 In this regard, in the present embodiment, the diffusion layer 6 that diffuses light is provided on the front side of the light shielding layer 5, so that the light that has passed through the opening 5 a is diffused by the diffusion layer 6. It spreads in an oblique direction. Therefore, the oblique component of the light that has passed through the opening 5a increases, so if the display is insufficient when viewed from any direction, it will not be possible!
[0100] また、どの方向から見た場合の表示においても、液晶パネル 1を垂直に通過してき た光であるので、コントラストの高!/、表示となって!/、る。 [0100] Also, when viewed from any direction, since the light has passed vertically through the liquid crystal panel 1, the contrast is high! / And the display is! /.
[0101] また、本実施の形態の液晶表示装置 10では、凸面を有する非球面レンズ 4aをスト ライプ状に並べることによって、レンチキュラーレンズ 4を構成している。これにより、例 えば左右方向についての光を絞ることができるので、左右方向について、観測方位 の違いで表示特性に差が発生することがなくなる。 [0101] Further, in the liquid crystal display device 10 of the present embodiment, the lenticular lens 4 is configured by arranging the aspherical lenses 4a having convex surfaces in a stripe shape. As a result, for example, the light in the left-right direction can be narrowed down, so that there is no difference in display characteristics due to the difference in the observation direction in the left-right direction.
[0102] また、本実施の形態の液晶表示装置 10では、開口部 5aは、非球面レンズ 4aに対 応して形成され、かつ、非球面レンズ 4aと同様にストライプ状に形成されていることが 好ましい。 [0102] In addition, in the liquid crystal display device 10 of the present embodiment, the opening 5a is formed corresponding to the aspherical lens 4a, and is formed in a stripe shape like the aspherical lens 4a. Is preferred.
[0103] これにより、例えば左右方向について、ノ ックライト 3から出射された光のうち、斜め 光は液晶パネル 1から斜めに漏洩光として出射された後、遮光層 5に当たるので、遮 光層 5の前面側に出てくることがない。したがって、左右方向について、観測方位の 違いで表示特性に差が発生することがなくなる。  [0103] Thereby, for example in the left-right direction, out of the light emitted from the knock light 3, the oblique light is obliquely emitted from the liquid crystal panel 1 as leaked light and then strikes the light shielding layer 5, so that the light shielding layer 5 It does not come out on the front side. Therefore, there will be no difference in display characteristics due to the difference in observation direction in the left-right direction.
[0104] また、本実施の形態の液晶表示装置 10では、液晶パネル 1とバックライト 3との間に 、このバックライト 3からの光を液晶パネル 1へと導く複数の非球面レンズを並設したレ ンチキユラ一レンズ 21が設けられて!/、ること力 S好ましレ、。  Further, in the liquid crystal display device 10 of the present embodiment, a plurality of aspherical lenses that guide the light from the backlight 3 to the liquid crystal panel 1 are arranged in parallel between the liquid crystal panel 1 and the backlight 3. The lenticular lens 21 is provided!
[0105] これにより、バックライト 3から出射された光は、レンチキュラーレンズ 21にて集光さ れた後、液晶パネル 1に入射される。したがって、バックライト 3から出射された光のう ち、液晶パネル 1に斜めに入射される光が少なくなる。この結果、液晶パネル 1から斜 めに漏洩光として出射される光を少なくすることができる。  Thus, the light emitted from the backlight 3 is collected by the lenticular lens 21 and then enters the liquid crystal panel 1. Therefore, of the light emitted from the backlight 3, less light is incident on the liquid crystal panel 1 at an angle. As a result, it is possible to reduce the light emitted from the liquid crystal panel 1 as leakage light obliquely.
[0106] また、本実施の形態の液晶表示装置 10では、マイクロレンズアレイ 40は、マイクロ レンズ 40aからなつていると共に、遮光層 5の開口部 5a'は、マイクロレンズ 40aの形 状に合わせた円形に形成されていることが好ましい。これにより、左右方向だけでなく 、全ての斜め方向において、観測方位の違いで表示特性に差が発生することがなく なる。 Further, in the liquid crystal display device 10 of the present embodiment, the microlens array 40 is composed of the microlenses 40a, and the opening 5a ′ of the light shielding layer 5 is matched to the shape of the microlens 40a. It is preferably formed in a circular shape. As a result, not only left and right direction In all oblique directions, there will be no difference in display characteristics due to differences in observation direction.
[0107] また、本実施の形態の液晶表示装置 10では、ノ ックライト 3は、直下型の光源 32を 備えていることが好ましい。これにより、直下型の光源 32を備えたバックライト 3を有す る液晶表示装置 10において、観測方位の違いで表示特性に差が発生することを防 止すること力 Sでさる。  In addition, in the liquid crystal display device 10 of the present embodiment, it is preferable that the knocklight 3 includes a direct light source 32. As a result, in the liquid crystal display device 10 having the backlight 3 with the direct light source 32, the force S can prevent the difference in display characteristics from occurring due to the difference in the observation direction.
[0108] また、本実施の形態の液晶表示装置 10では、液晶パネル 1の動作モードは、垂直 配向モードであることが好ましレ、。  [0108] In the liquid crystal display device 10 of the present embodiment, it is preferable that the operation mode of the liquid crystal panel 1 is a vertical alignment mode.
[0109] これにより、 TNモードや水平配向モードの液晶に比べて、垂直配向モードの液晶 の方が、観測方位の違いで表示特性に差が発生することを防止することができ、コン トラストを高めることができる。  [0109] As a result, it is possible to prevent the vertical alignment mode liquid crystal from causing a difference in display characteristics due to the difference in the observation azimuth compared to the TN mode or horizontal alignment mode liquid crystal. Can be increased.
[0110] なお、本発明は、上記の実施の形態に限定されるものではなぐ本発明の範囲内で 種々の変更が可能である。例えば、上記実施の形態では、集光シート 2のレンチキュ ラーレンズ 21の凸面の方向性について説明をしなかった力 例えば、図 12に示すよ うに、レンチキュラーレンズ 4のストライプ状の凸面の稜線と、集光シート 2を構成する レンチキュラーレンズ 21のストライプ状の凸面の稜線とを、互いに直交させることが好 ましい。  It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. For example, in the above embodiment, the force that did not explain the directionality of the convex surface of the lenticular lens 21 of the light collecting sheet 2. For example, as shown in FIG. It is preferable that the ridge lines of the stripe-shaped convex surface of the lenticular lens 21 constituting the light sheet 2 are orthogonal to each other.
[0111] これにより、左右方向については、左右方向に広がった光を遮光層 5によって、略 カットすることができ、上下方向については、レンチキュラーレンズ 21にて集光するこ とができる。この結果、液晶パネル 1から出てくる光は集光されたもののみになるため 視野角特性が向上する。  Thereby, in the left-right direction, the light spread in the left-right direction can be substantially cut by the light shielding layer 5 and can be condensed by the lenticular lens 21 in the up-down direction. As a result, since the light emitted from the liquid crystal panel 1 is only collected light, the viewing angle characteristics are improved.
[0112] なお、通常は、上下方向よりも左右方向の視野角特性が重要であるため、レンチキ ユラ一レンズ 4は左右方向に拡散する向きに配置する、すなわち、レンチキュラーレン ズ 4のストライプ状の凸面の稜線を表示画面の上下方向に合わせて配置するのが好 ましい。また、光利用効率を向上させるためには、バックライト光を左右方向も集光さ せることが好ましい。  [0112] Normally, since the viewing angle characteristic in the left-right direction is more important than the up-down direction, the lenticular lens 4 is arranged in a direction diffusing in the left-right direction, that is, in a lenticular lens 4 stripe shape. It is preferable to place the convex ridge line in the vertical direction of the display screen. In order to improve the light utilization efficiency, it is preferable to condense the backlight light in the left-right direction.
[0113] このように、本実施の形態の液晶表示装置 10では、液晶パネル 1とバックライト 3と の間に、バックライト 3からの光を液晶パネル 1へと導く複数のレンズを同一平面上に 並設してなるレンチキュラーレンズ 21が設けられていると共に、レンチキュラーレンズ 4の各非球面レンズ 4a及びレンチキュラーレンズ 21の各レンズはそれぞれ凸面を有 する非球面レンズからなっており、レンチキュラーレンズ 4における縞状の凸面の稜線 とレンチキュラーレンズ 21における縞状の凸面の稜線とは、互いに直交しているとす ること力 Sでさる。 As described above, in the liquid crystal display device 10 according to the present embodiment, a plurality of lenses that guide light from the backlight 3 to the liquid crystal panel 1 are arranged on the same plane between the liquid crystal panel 1 and the backlight 3. In A lenticular lens 21 is provided in parallel, and each aspherical lens 4a of the lenticular lens 4 and each lens of the lenticular lens 21 are each composed of an aspherical lens having a convex surface. The ridgeline of the convex surface and the ridgeline of the striped convex surface in the lenticular lens 21 are assumed to be perpendicular to each other by the force S.
[0114] これにより、レンチキュラーレンズ 21にて、例えば、液晶パネル 1の左右方向とは直 交する方向にっレ、てバックライト 3からの光を集光させる一方、レンチキュラーレンズ 4 にて、液晶パネル 1の左右方向について液晶パネル 1からの出射光を集光させること ができる。  Thereby, the lenticular lens 21 condenses the light from the backlight 3 in a direction perpendicular to the left-right direction of the liquid crystal panel 1, for example, while the lenticular lens 4 condenses the liquid crystal. The light emitted from the liquid crystal panel 1 can be collected in the horizontal direction of the panel 1.
[0115] 本発明の液晶表示装置は、以上のように、液晶パネルと、上記液晶パネルの背面 側から前面側に向けて光を照射するバックライトユニットと、上記液晶パネルの前面 側に設けられ、該液晶パネルからの光を外部へと導くために複数のレンズを同一平 面上に並設してなる第 1のレンズ層と、上記第 1のレンズ層の前面側に設けられ、上 記各レンズの光軸上に開口部を有する遮光層とを含むものである。  As described above, the liquid crystal display device of the present invention is provided on the front side of the liquid crystal panel, the backlight unit that irradiates light from the back side to the front side of the liquid crystal panel, and the liquid crystal panel. A first lens layer in which a plurality of lenses are arranged in parallel on the same plane to guide light from the liquid crystal panel to the outside; and the front side of the first lens layer. And a light shielding layer having an opening on the optical axis of each lens.
[0116] それゆえ、観測方位の違いで表示特性に差が発生することを防止し得る液晶表示 装置を提供すると!/、う効果を奏する。  [0116] Therefore, it is possible to provide a liquid crystal display device that can prevent a difference in display characteristics due to a difference in observation direction.
[0117] 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あく までも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限 定して狭義に解釈されるべきものではなぐ本発明の精神と次に記載する請求の範 囲内にお!/、て、レ、ろ!/、ろと変更して実施することができるものである。  [0117] The specific embodiments or examples made in the detailed description section of the invention are to clarify the technical contents of the present invention, and are limited to such specific examples. Therefore, the present invention should not be interpreted in a narrow sense, and can be carried out with modifications within the spirit of the present invention and within the scope of the following claims! .
産業上の利用可能性  Industrial applicability
[0118] 本発明は、液晶パネルとバックライトユニットとを備えた液晶表示装置に適用できる The present invention can be applied to a liquid crystal display device including a liquid crystal panel and a backlight unit.

Claims

請求の範囲 The scope of the claims
[1] 液晶パネルと、  [1] LCD panel,
上記液晶パネルの背面側から前面側に向けて光を照射するバックライトユニットと、 上記液晶パネルの前面側に設けられ、該液晶パネルからの光の一部を集光し外部 へと拡散させる機能を 1つ 1つが有した複数の第 1のレンズを同一平面上に並設して なる第 1のレンズ層と、  A backlight unit that emits light from the back side to the front side of the liquid crystal panel, and a function that is provided on the front side of the liquid crystal panel and collects a part of the light from the liquid crystal panel and diffuses it to the outside A first lens layer formed by juxtaposing a plurality of first lenses each having the same on the same plane;
上記第 1のレンズ層の前面側に設けられ、上記第 1のレンズの各光軸上に開口部 を有する遮光層とを含む液晶表示装置。  A liquid crystal display device comprising: a light shielding layer provided on the front side of the first lens layer and having an opening on each optical axis of the first lens.
[2] 前記遮光層は、光吸収性を有している請求項 1記載の液晶表示装置。  2. The liquid crystal display device according to claim 1, wherein the light shielding layer has a light absorption property.
[3] 前記遮光層の前面側には、光を拡散させる拡散層が設けられている請求項 1記載 の液晶表示装置。 3. The liquid crystal display device according to claim 1, wherein a diffusion layer for diffusing light is provided on the front side of the light shielding layer.
[4] 前記第 1のレンズ層はストライプ状の凸面を有し、上記第 1のレンズのそれぞれは、 当該凸面の 1つを有する非球面レンズである請求項 1記載の液晶表示装置。  4. The liquid crystal display device according to claim 1, wherein the first lens layer has a striped convex surface, and each of the first lenses is an aspherical lens having one of the convex surfaces.
[5] 前記遮光層の開口部は、上記非球面レンズの凸面に各々沿って、ストライプ状に 形成されて!/、る請求項 4記載の液晶表示装置。 5. The liquid crystal display device according to claim 4, wherein the opening of the light shielding layer is formed in a stripe shape along each convex surface of the aspheric lens.
[6] 前記液晶パネルと前記バックライトユニットとの間に、該バックライトユニットからの光 を液晶パネルへと導く複数の第 2のレンズを並設した第 2のレンズ層が設けられてい る請求項 1記載の液晶表示装置。 [6] A second lens layer in which a plurality of second lenses for guiding light from the backlight unit to the liquid crystal panel is provided in parallel between the liquid crystal panel and the backlight unit. Item 1. A liquid crystal display device according to item 1.
[7] 前記液晶パネルと前記バックライトユニットとの間に、該バックライトユニットからの光 を液晶パネルへと導く複数の第 2のレンズを同一平面上に並設してなる第 2のレンズ 層が設けられていると共に、 [7] A second lens layer in which a plurality of second lenses for guiding light from the backlight unit to the liquid crystal panel are arranged in parallel on the same plane between the liquid crystal panel and the backlight unit. Is provided,
前記第 1のレンズ層及び上記第 2のレンズ層は、それぞれストライプ状の凸面を有し Each of the first lens layer and the second lens layer has a striped convex surface.
、前記第 1のレンズおよび上記第 2のレンズは、それぞれ上記凸面の 1つを有する非 球面レンズからなっており、 The first lens and the second lens are each composed of an aspheric lens having one of the convex surfaces,
上記第 1のレンズ層におけるストライプ状の凸面の稜線と上記第 2のレンズ層にお けるストライプ状の凸面の稜線とは、互いに直交していることを特徴とする請求項 1記 載の液晶表示装置。  2. The liquid crystal display according to claim 1, wherein the ridge line of the striped convex surface in the first lens layer and the ridge line of the striped convex surface in the second lens layer are orthogonal to each other. apparatus.
[8] 前記第 1のレンズは、それぞれマイクロレンズであり、 前記遮光層の開口部は、マイクロレンズの形状に合わせた円形に形成されている 請求項 1記載の液晶表示装置。 [8] Each of the first lenses is a microlens, 2. The liquid crystal display device according to claim 1, wherein the opening of the light shielding layer is formed in a circular shape that matches the shape of the microlens.
前記バックライトユニットは、前記液晶パネルの直下に配置された光源を備えてレ、る 請求項 1記載の液晶表示装置。  The liquid crystal display device according to claim 1, wherein the backlight unit includes a light source arranged immediately below the liquid crystal panel.
前記液晶パネルの動作モードは、垂直配向モードである請求項 1記載の液晶表示 装置。  2. The liquid crystal display device according to claim 1, wherein an operation mode of the liquid crystal panel is a vertical alignment mode.
前記第 2のレンズは、それぞれマイクロレンズである請求項 6記載の液晶表示装置 前記開口部は、前記第 1のレンズの各焦点または各焦線に位置している請求項 1 記載の液晶表示装置。  7. The liquid crystal display device according to claim 6, wherein each of the second lenses is a microlens. The liquid crystal display device according to claim 1, wherein the opening is located at each focal point or each focal line of the first lens. .
前記第 1のレンズ層は、ストライプ状の凸面を有し、前記第 1のレンズのそれぞれは 、当該凸面の 1つを有する非球面レンズであり、  The first lens layer has a striped convex surface, and each of the first lenses is an aspherical lens having one of the convex surfaces,
上記凸面の稜線は、上記液晶パネルの表示面の上下方向に配列している請求項 The ridge line of the convex surface is arranged in the vertical direction of the display surface of the liquid crystal panel.
1記載の液晶表示装置。 The liquid crystal display device according to 1.
前記液晶パネルと前記バックライトユニットとの間に、該バックライトユニットからの光 を液晶パネルへと導く複数の第 2のレンズを同一平面上に並設してなる第 2のレンズ 層が設けられていると共に、  Between the liquid crystal panel and the backlight unit, there is provided a second lens layer in which a plurality of second lenses for guiding light from the backlight unit to the liquid crystal panel are arranged in parallel on the same plane. And
上記第 2のレンズ層は、ストライプ状の凸面を有し、前記第 2のレンズのそれぞれは 、当該凸面の 1つを有する非球面レンズであり、  The second lens layer has a stripe-like convex surface, and each of the second lenses is an aspheric lens having one of the convex surfaces,
前記第 1のレンズ層のストライプ状の凸面の稜線と、上記第 2のレンズ層のストライプ 状の凸面の稜線とは、互いに直交している請求項 13記載の液晶表示装置。  14. The liquid crystal display device according to claim 13, wherein the stripe-shaped convex ridge line of the first lens layer and the stripe-shaped convex ridge line of the second lens layer are orthogonal to each other.
PCT/JP2007/060767 2006-08-24 2007-05-28 Liquid crystal display WO2008023484A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-228385 2006-08-24
JP2006228385 2006-08-24

Publications (1)

Publication Number Publication Date
WO2008023484A1 true WO2008023484A1 (en) 2008-02-28

Family

ID=39106577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060767 WO2008023484A1 (en) 2006-08-24 2007-05-28 Liquid crystal display

Country Status (1)

Country Link
WO (1) WO2008023484A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015038A (en) 2008-07-04 2010-01-21 Nitto Denko Corp Liquid crystal display device
WO2010110432A1 (en) * 2009-03-27 2010-09-30 日東電工株式会社 Liquid crystal display device
CN102879944A (en) * 2012-09-19 2013-01-16 京东方科技集团股份有限公司 Liquid crystal display panel, manufacturing method thereof and display device
CN104516148A (en) * 2015-01-12 2015-04-15 京东方科技集团股份有限公司 Display substrate, preparation method of display substrate and display device
CN105572959A (en) * 2016-03-01 2016-05-11 京东方科技集团股份有限公司 Liquid crystal display panel and display device
WO2016077309A3 (en) * 2014-11-12 2016-07-21 Corning Incorporated Contrast enhancement sheet and display device comprising the same
CN112599573A (en) * 2020-12-10 2021-04-02 武汉华星光电半导体显示技术有限公司 Display panel and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258698A (en) * 1998-03-11 1999-09-24 Omron Corp Image display device and light diffusion sheet
JP2001116917A (en) * 1999-10-18 2001-04-27 Hitachi Ltd Member to improve image quality and image display device using the same
JP2001305315A (en) * 2000-02-14 2001-10-31 Fuji Photo Film Co Ltd Light diffusing plate, liquid crystal display device and rear projector device
JP2002174703A (en) * 2000-12-08 2002-06-21 Toppan Printing Co Ltd Lens array sheet and transmission type screen
JP2005043907A (en) * 2004-08-30 2005-02-17 Toppan Printing Co Ltd Liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258698A (en) * 1998-03-11 1999-09-24 Omron Corp Image display device and light diffusion sheet
JP2001116917A (en) * 1999-10-18 2001-04-27 Hitachi Ltd Member to improve image quality and image display device using the same
JP2001305315A (en) * 2000-02-14 2001-10-31 Fuji Photo Film Co Ltd Light diffusing plate, liquid crystal display device and rear projector device
JP2002174703A (en) * 2000-12-08 2002-06-21 Toppan Printing Co Ltd Lens array sheet and transmission type screen
JP2005043907A (en) * 2004-08-30 2005-02-17 Toppan Printing Co Ltd Liquid crystal display device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015038A (en) 2008-07-04 2010-01-21 Nitto Denko Corp Liquid crystal display device
WO2010110432A1 (en) * 2009-03-27 2010-09-30 日東電工株式会社 Liquid crystal display device
JP2010250311A (en) * 2009-03-27 2010-11-04 Nitto Denko Corp Liquid crystal device
US9041881B2 (en) 2009-03-27 2015-05-26 Nitto Denko Corporation Liquid crystal display device
CN102879944A (en) * 2012-09-19 2013-01-16 京东方科技集团股份有限公司 Liquid crystal display panel, manufacturing method thereof and display device
EP2711767A1 (en) * 2012-09-19 2014-03-26 Boe Technology Group Co. Ltd. Liquid crystal display device and method of fabricating the same
JP2014063136A (en) * 2012-09-19 2014-04-10 Boe Technology Group Co Ltd Liquid crystal display and method for manufacturing the same
US10379394B2 (en) 2012-09-19 2019-08-13 Boe Technology Group Co., Ltd. Liquid crystal display device and method of fabricating the same
WO2016077309A3 (en) * 2014-11-12 2016-07-21 Corning Incorporated Contrast enhancement sheet and display device comprising the same
CN104516148A (en) * 2015-01-12 2015-04-15 京东方科技集团股份有限公司 Display substrate, preparation method of display substrate and display device
CN105572959A (en) * 2016-03-01 2016-05-11 京东方科技集团股份有限公司 Liquid crystal display panel and display device
WO2017148021A1 (en) * 2016-03-01 2017-09-08 京东方科技集团股份有限公司 Liquid crystal display panel and display device
US10222648B2 (en) 2016-03-01 2019-03-05 Boe Technology Group Co., Ltd. Liquid crystal display panel and display device
CN112599573A (en) * 2020-12-10 2021-04-02 武汉华星光电半导体显示技术有限公司 Display panel and display device
CN112599573B (en) * 2020-12-10 2023-10-31 武汉华星光电半导体显示技术有限公司 Display panel and display device

Similar Documents

Publication Publication Date Title
JP3860558B2 (en) Display panel, liquid crystal display panel, and liquid crystal display device
JP3873835B2 (en) Liquid crystal display device and electronic device
JP3573938B2 (en) Forward illumination device and reflection type liquid crystal display device having the same
JP3613065B2 (en) Liquid crystal display
US8284346B2 (en) Backlight unit and liquid crystal display device including the same
US20170023724A1 (en) Optical Module And Reflective Display Apparatus
US7154572B2 (en) Liquid crystal display device
US9500800B2 (en) Light source device and display device
JP2011100051A (en) Liquid crystal display device
WO2008023484A1 (en) Liquid crystal display
GB2427676A (en) Prism Sheet and Backlight Unit Using The Same
US20100085511A1 (en) Display device
WO2016194716A1 (en) Edge-lit backlight device and liquid crystal display device
JP2005148440A (en) Illumination light control sheet and display device using the same
KR20090086759A (en) Prism sheet having lengthwise wave patterned prisms with improved front brightness, back light unit having the prism sheet, and liquid crystal display device having the back light unit
JP4218294B2 (en) Display device
CN112666752A (en) Backlight module assembly, liquid crystal display and automobile
US20120039078A1 (en) Lighting device and displaying device
JP7161687B2 (en) Optical structure and display device
KR101571344B1 (en) Bottom case and backlight assembly having the same
US20110037923A1 (en) Light condensing film, backlight module and liquid crystal display
JP4506358B2 (en) Liquid crystal display
JP5782867B2 (en) Surface light source device, transmissive display device
KR100837305B1 (en) Optical sheet, backlight unit and liquid crystal display device using the same
JP2008185747A (en) Optical sheet, backlight unit using same, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07744201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP