[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008020130A2 - Utilisation d'un système d'imagerie par fluorescence confocale fibré in vivo in situ, système et procédé d'imagerie par fluorescence confocale fibrés in vivo in situ - Google Patents

Utilisation d'un système d'imagerie par fluorescence confocale fibré in vivo in situ, système et procédé d'imagerie par fluorescence confocale fibrés in vivo in situ Download PDF

Info

Publication number
WO2008020130A2
WO2008020130A2 PCT/FR2007/001371 FR2007001371W WO2008020130A2 WO 2008020130 A2 WO2008020130 A2 WO 2008020130A2 FR 2007001371 W FR2007001371 W FR 2007001371W WO 2008020130 A2 WO2008020130 A2 WO 2008020130A2
Authority
WO
WIPO (PCT)
Prior art keywords
probe
imaging
tissue
fiber
endoscope
Prior art date
Application number
PCT/FR2007/001371
Other languages
English (en)
Other versions
WO2008020130A3 (fr
Inventor
Luc Thiberville
Charlotte Cave
Véronique DENTAN
Nicolas Boularot
Geneviève Bourg-Heckly
Eric Peltier
Original Assignee
Mauna Kea Technologies
Universite De Rouen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mauna Kea Technologies, Universite De Rouen filed Critical Mauna Kea Technologies
Priority to US12/377,819 priority Critical patent/US8923955B2/en
Publication of WO2008020130A2 publication Critical patent/WO2008020130A2/fr
Publication of WO2008020130A3 publication Critical patent/WO2008020130A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/267Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
    • A61B1/2676Bronchoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • A61B1/2736Gastroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0068Confocal scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy

Definitions

  • the present invention relates to a use of a confocal fiber fluorescence imaging system in vivo in situ. It also relates to a confocal fluorescence imaging system and method in vivo in situ fiber.
  • Imaging systems based on fluorescence microscopy technology including a fibered probe. These systems, first commercialized for use on animals, were then applied to clinical research. The first field of application was in vivo imaging in the field of gastroenterology. These systems, used in combination with an endoscope, allow the user to obtain microscopic information supplementing the macroscopic data provided by the endoscope.
  • the clinical field of application has expanded to the field of pneumology. Compared to gastroenterology, this field of application has the advantage of being already familiar with fluorescence imaging, and particularly of autofluorescence because of the optical properties of the tissues of the bronchial tree.
  • An object of the invention is to propose a new use of a confocal fiber fluorescence imaging system to observe and image in vivo in situ the contents and the walls of the pulmonary alveoli located at a distance from the vision of bronchial endoscopes.
  • Another object of the invention is to provide a confocal fiber fluorescence imaging system for imaging in vivo in situ the contents and pulmonary alveolar walls located at a distance from direct endoscopic vision.
  • an aim of the invention is to propose a confocal fiber fluorescence imaging method making it possible to image in vivo in situ the contents and the pulmonary alveolar walls situated at a distance from the endoscopic vision.
  • the invention thus proposes a use of a confocal fiber fluorescence imaging system in vivo in situ comprising a fibered probe for observing the contents and the alveolar walls located at a distance from the distal end of the endoscope.
  • the use according to the invention makes it possible to image a tissue or a cell situated at a distance from the distal end of the endoscope.
  • an alveolus refers to the pulmonary alveolar system comprising the respiratory bronchiole, the alveolar duct and the pulmonary alveolar sacs themselves.
  • the current in vivo fluorescence fiber imaging systems are used to perform imaging of a tissue with which the distal end of the probe is in contact. These systems are currently used to perform imaging of a tissue, with which the probe is in contact, with an axial resolution of 15 to 20 microns. In other words, the current systems make it possible to perform imaging of a tissue, with which the probe is in contact, to a depth of 0 to 15 ⁇ m. It is necessary in the present use of confocal fiber fluorescence imaging systems that the tip of the probe is in contact with the tissue to be imaged.
  • the distal end of the probe in contact with a tissue located near or in contact with the cell that is to be imaged.
  • the subject fabric may for example be the wall of a cell located near or in contact with the cell or the tissue that is to be imaged.
  • an in vivo fluorescence imaging system comprising an endoscope provided with an operating channel in which is inserted a fibered probe comprising a plurality of fibers, characterized in that the fiber probe is movable longitudinally between a retracted position and at least one extended position outside the endoscope.
  • a system allows to reach parts of a body that current systems such as bronchial endoscopes can not imaged given their size.
  • the system according to the invention implements a miniaturized fibered probe placed in the operating channel of an endoscope. This probe has a smaller section than the section of the endoscope.
  • the endoscope is introduced into the body of a subject as far as the section of the endoscope allows.
  • the fibered probe present in the operating channel of the endoscope is moved longitudinally to reach an imaging position beyond the distal vision of the endoscope.
  • the system according to the invention may comprise means for evaluating at least one position of the distal end of the probe.
  • the fibered probe being movable longitudinally to an extended position located outside the endoscope, the distal end of this probe is no longer viewable by the endoscope. His position can not be evaluated by endoscopic vision. In this case, the operator has no control over the length of insertion of the probe into the lung beyond the distal end of the endoscope, which can present dangers for the subject receiving the endoscope and the endoscope. probe. It is important to evaluate the position of the distal end of the probe to reduce the risk of injury to the subject.
  • the evaluation means may comprise at least one scale carried by the probe on the side of its distal end, this graduation being visible by the endoscopist and indicating an extended position.
  • This graduation can be performed at a known distance from the distal end of the fiber determined according to the part of the body to be imaged.
  • This method of identification is not exclusive of any other method that would make it possible to know the position of the distal end of the probe in the bronchial tree, either from data obtained in real time, or from a model 3D adjusted to the particular case of the subject observed.
  • At least one extended position may be chosen to correspond to a maximum position not to be exceeded.
  • This extended position can be determined according to the imaging performed and the part of the body imaged. This graduation can be performed at a known distance from the distal end of the fiber determined according to the part of the body whose imaging is performed.
  • at least one extended position may be chosen to correspond to an image-taking start position, depending on the imaged body portion and the imaging performed.
  • the system according to the invention can be coupled to a spectroscopic unit performing a spectral analysis of the fluorescence signal captured by at least one fiber.
  • the spectroscopy unit provides spectral data for the fluorescence signal captured by the fibered probe. These spectral data can complete the realized image, by information concerning the nature of the imaged objects.
  • the spectral analysis makes it possible to know the type of fluorophore at the origin of the detected signal (thus to what type of tissue it is connected). In other cases, this analysis provides information on the immediate environment of the fluorophore
  • the confocal imaging fiber system may further comprise a hollow conduit introduced inside the endoscope and arranged to receive the fiber optic probe, this hollow conduit being able to be pushed beyond from the distal end of the endoscope.
  • This hollow conduit which acts as an intermediate catheter, and the fibered optical probe, can advantageously cooperate to provide a suction piston effect at the distal end of the hollow conduit, when said fiber optic probe is retracted inside said hollow duct.
  • an imaging method by an in situ in vivo fiber confocal fluorescence imaging system comprising an endoscope provided with an operator channel receiving a fibered imaging probe, said method comprising the following steps:
  • the method according to the invention advantageously makes it possible to perform the imaging of a cell by the use of a fibered probe and thus to obtain the image of an area that current methods do not allow to achieve.
  • the method according to the invention may advantageously comprise a step of locating an extension position corresponding to a start of the zone to be imaged.
  • This position may correspond to the position from which the operator can hope to reach the cells to be imaged.
  • Such a registration facilitates and accelerates the realization of the imagery. Indeed, the introduction of the probe into the cell can be performed relatively quickly to this position while taking care not to injure the subject on which the imaging is performed.
  • the method according to the invention may comprise a step of locating a maximum extension position not to be exceeded, making it possible to minimize the risk of injury to the subject on which the imaging is performed, by an excessive extension of the probe.
  • the extension positions may have been determined according to the imaging to be performed and the cell image. They may be determined by a relative distance from the distal end of the probe relative to the distal end of the endoscope. In the context of, for example, a pulmonary alveolus in adult humans, experiments have shown that for the position corresponding to an imaging start of the cell, the distal end of the probe is at a distance of 2.5 cm from the distal end of the endoscope. For the maximum extension position this distance is 5.5 cm. Thanks to these markings, the method according to the invention makes it possible to have a control on the position of the distal end of the probe.
  • the cell may be a human pulmonary alveolus of the adult or the child, in spontaneous ventilation or mechanical ventilation.
  • the method according to the invention is implemented in a confocal imaging fiber system provided with an intermediate catheter, it then further comprises an anchoring and visualization step, during which an inserted hollow conduit is displaced. in the endoscope and acting as an operator channel for a fibered optical probe, until the distal end of this hollow conduit contacts a tissue Biological examination to examine, this hollow conduit being pushed beyond the distal end of said endoscope.
  • This method according to the invention may further comprise a step of aspiration of biological material, following the anchoring and visualization step, during which the fiberoptic optical probe is retracted inside the hollow conduit. , so as to provide a suction piston effect at the distal end of said hollow conduit.
  • FIG. 1 is a schematic representation of a use of a spectroscopic unit coupled to the system according to the invention
  • FIG. 2 is a schematic representation of a fibered probe used in the system according to the invention
  • FIG. 3 is a schematic representation of the bronchial tree of a subject
  • FIG. 4 is an image of a cell obtained in autofluorescence with the system according to the invention.
  • FIG. 5 is a representation of the spectra obtained by a spectroscopic unit coupled to the system according to the invention.
  • FIG. 6 illustrates a particular configuration of a confocal imaging fiber system according to the invention.
  • the system is composed of three main elements: a laser optoelectronic unit, a series of miniaturized probes composed of tens of thousands of optical fibers, and a computer image processing program which controls the system and acquires the signals fluorescence captured by the fibered probe.
  • a laser source emitting at a wavelength of 488 nm scans in real time the proximal surface of the optical fiber guide through scanning mirrors. Thus, the excitation light spot is focused from fiber to fiber sequentially.
  • This excitation signal conveyed to the distal portion of the optical fibers is then absorbed in depth by the fluorophores, exogenous or endogenous, depending on the case present in the fabric probed.
  • the fluorophores then emit in response a signal at another wavelength (fluorescence), which is reinjected into the optical fibers of the image guide in the opposite way.
  • Fluorescence Another wavelength
  • Each fiber filters the light spatially to give the fibered probe its high-resolution imaging character. Once filtered back light is focused on a detector that allows via its electronics to convert the fluorescence photons into a digital signal.
  • the data is sent to the processor provided for the processing and generation of cell images. This process is performed in real time so that the operator has the result of what he observes on his display screen at any time during the tissue observation procedure.
  • Signal processing reconstructs the tissue image from "raw" data corresponding to the light signals conveyed by the optical fibers. In order to obtain a most legible image and the most faithful to reality, it is necessary to perform a calibration of the device in two steps:
  • the imaging system according to the invention is used for bronchopulmonary imaging in vivo, and more particularly of alveoli, and benefits from the autofluorescence properties of the lungs and therefore the endogenous fluorophores of the lungs and more particularly cells. It is therefore not necessary to apply an exogenous fluorophore to collect a fluorescence signal.
  • the fluorescence signal may be related to the presence of various fluorescent molecules, listed in the table below. Although 488nm is not the optimal excitation wavelength for these components, however, it is possible to detect the signal from these various fluorophores.
  • FIG. 1 is a representation of a use of a spectroscopic unit coupled to the system according to the invention.
  • the fluorescence signal 10 picked up by an optical fiber is separated into two fluorescence signals 101 and 102 by a beamsplitter 11.
  • the fluorescence signal 102 is sent by the wave separator 11 to a detector 16 then that the fluorescence signal 101 is sent to a module 12 provided for collecting the signals sent by each optical fiber of the fibered probe.
  • the collection of optical signals is then sent to the spectroscopic unit 13 connected to a computer unit 14 comprising control software of the spectroscopic unit 13.
  • the spectroscopic unit makes it possible to provide information on the nature of the fluorescent molecules in addition to their location in space, brought by the image.
  • the acquisition of the image and spectra can be synchronous.
  • a sequence of images acquired on an imaged zone is completed by a spectrum acquired on a volume included in that used to produce the image.
  • the synchronization of the acquisition of images and spectra is performed by a synchronization signal 15.
  • the imaging system comprises an endoscope and more particularly a bronchial endoscope comprising an operating channel of 2 mm section.
  • the probe used shown diagrammatically in FIG. 2, is a S type fiber probe of diameter 1.4 mm which does not have an optical element at its distal end 21.
  • This probe 20 comprises at its distal end 21 a ferrule 22, in order to make it waterproof and non-aggressive for fabrics.
  • Such a probe allows easy insertion into the operating channel of the bronchoscopic endoscope, because it is compatible with the size of the endoscope operator channels, and has little space.
  • the following table summarizes the properties of this probe.
  • the respiratory apparatus 30, shown in FIG. 3, is divided into two parts: one going from the nose to the larynx 31, and the other consisting of the trachea 32, dividing itself into two bronchial strains, called primary bronchi. 33, then in a dichotomous manner in numerous branches constituting the secondary bronchi 34 and the tertiary bronchi 35 and culminating in the respiratory bronchioles 36 and then in the alveolar systems 37.
  • the bronchoscope is introduced into the trachea and then follows its course along the bronchial tree.
  • the explored territory extends to the third or fourth sub-segmental division. Only the bronchi can be visualized directly through the bronchial endoscope.
  • a bronchoscope as thin as possible of the operator channel sufficient for the insertion of the probe is used for the imaging of the cells. It is thus possible to limit the insertion distance of the probe beyond the endoscope and thus to ensure better safety for the patient.
  • An endoscope 4.3 mm outer diameter and length 60 cm was used for the endoalveolar exploration protocol. When the latter can no longer progress because of its diameter, the S-type fiber probe 20 is then pushed beyond the endoscope until it reaches the alveoli, while performing confocal fibro-fluorescence imaging of its progression. , allowing successively recognize the terminal and respiratory bronchiole by the existence of concentric tightening and finally the alveolar sac.
  • the insertion distance of the probe must be known in order to estimate the risk of reaching the pleura in the periphery. lungs, which represents a theoretical risk of pneumothorax (perforation of the pleura).
  • graduations have been added to the design of the previously described probe. Experiments on cadavers have validated the positions of the two graduations: the first is 2.5cm from the end and the second to 5cm. The area between the graduations represents the area for which the alveolar area is usually reached and can be imaged. If no cell image is obtained before the second graduation of the probe, then the territory is not explored, the probe is removed. When the probe is in the alveolar territory, a dynamic sequence and a spectrum are recorded.
  • FIG. 4 is a representation of a cell imaged by fluorescence with the system according to the invention.
  • Figure 4 it can be seen that several tissue planes are displayed.
  • the diameter of a cell being of the order of 300 .mu.m, it follows that the fibered probe collects the signal at least up to 300 .mu.m in the alveolar tissue.
  • the system according to the invention thus makes it possible to image the contents and the walls of the alveolar bag in which the fibered probe has been introduced.
  • FIG. 5 represents the spectrum 51 of the fluorescence signals captured by the fibered probe. Note that the two spectra are shifted in wavelength, this bias is related to the instrumentation and exists for both spectra.
  • Figure 5 also shows the spectrum 52 of pure elastin. The exploitation of the data from the spectroscopic unit allowed us to highlight that a major component of the fluorescence signal was related to the presence of elastin. A finer analysis will identify other fluorophores contributing. It is well known that elastin is present in cell walls. There is therefore agreement between the type of object observed in the images and the location of the fluorophore.
  • a confocal imaging fiber system according to the invention may also be equipped with an intermediate catheter, as shown in FIG.
  • a fibered optical probe 52 is disposed in a hollow conduit constituting an intermediate catheter 51 itself inserted into the endoscope 50.
  • This intermediate catheter 51 then acts as an operating channel function for the optical probe 52.
  • the intermediate catheter 51 is moved from the operator channel to contact the biological tissue 53 to be examined.
  • the fibered probe 52 flush with the outlet of the intermediate catheter 51 is then in close proximity or in contact with the surface of the biological tissue 53, and a visualization of this tissue is performed.
  • a second mode (II) of use after visualization, the optical probe 52 is retracted while the intermediate catheter 51 is held against the biological tissue 53. This retraction provides a piston effect that allows aspiration of biological material from the tissue 53, inside the intermediate catheter 51. This feature thus allows easy removal of biological material directly on the viewing site.
  • the positioning of the intermediate catheter 51 against the biological tissue 53 can be carried out using a graduation registration technique as described above, or else by using three-dimensional representation techniques of the body's anatomy and examined organs implementing current imaging and tomography procedures.
  • the invention is not limited to the example which has just been described and many adjustments can be made to these examples without departing from the scope of the invention, such as imaging distal bronchiole and its content, and the analysis of some cells contained in distal lung spaces exhibiting fluorescent properties.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pulmonology (AREA)
  • Otolaryngology (AREA)
  • Physiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Endoscopes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

La présente invention concerne une nouvelle utilisation d'un système d'imagerie par fluorescence confocale fibre in vivo in situ comprenant une sonde fibrée, pour imager un tissu ou une alvéole située à distance de la vision distale d'un endoscope bronchique. La présente invention concerne aussi un système d'imagerie par fluorescence in vivo comprenant un endoscope muni d'un canal opérateur comprenant une sonde fibrée (20) déplaçable longitudinalement entre une position rétractée et au moins une position étendue à l'extérieur de l'endoscope. La sonde (20) comprend également des graduations d'évaluation de l'extrémité distale (21) de la sonde (20). Le système d'imagerie selon l'invention peut aussi être pourvu d'un cathéter intermédiaire recevant la sonde optique fibrée et inséré dans un endoscope. Ce cathéter intermédiaire permet d'assurer à la fois une fonction d'ancrage sur un tissu biologique et une fonction d'aspiration de matériau biologique.

Description

« Utilisation d'un système d'imagerie par fluorescence confocale fibre in vivo in situ, système et procédé d'imagerie par fluorescence confocale fibres in vivo in situ »
La présente invention concerne une utilisation d'un système d'imagerie par fluorescence confocale fibre in vivo in situ. Elle vise également un système et un procédé d'imagerie par fluorescence confocale fibres in vivo in situ.
Actuellement il existe des systèmes d'imagerie basés sur la technologie de microscopie de fluorescence comprenant une sonde fibrée. Ces systèmes, commercialisés d'abord pour une utilisation sur l'animal ont ensuite été appliqués à la recherche clinique. Le premier domaine d'application a été l'imagerie in vivo dans le domaine de la gastro- entérologie. Ces systèmes, utilisés en combinaison avec un endoscope, permettent à l'utilisateur d'obtenir une information microscopique complétant les données macroscopiques fournies par l'endoscope.
Le champ d'application clinique s'est alors élargi au domaine de la pneumologie. Par rapport à la gastro-entérologie, ce domaine d'application présente l'avantage d'être déjà familier de l'imagerie de fluorescence, et particulièrement d'autofluorescence en raison des propriétés optiques des tissus de l'arbre bronchique.
Cependant, les systèmes fibres d'imagerie in vivo par fluorescence existants ont une faible résolution. Ces systèmes sont utilisés pour imager un tissu in vivo in situ à l'aide d'un endoscope en introduisant la sonde fibrée au travers du conduit opérateur de l'endoscope et en mettant l'extrémité distale de la sonde en contact avec ce tissu sous contrôle de la vue. Ces systèmes ne sont donc pas utilisés pour observer un tissu ou une alvéole situés à distance, c'est à dire en dehors de la vision directe de l'endoscope.
D'autres systèmes d'imagerie in vivo tels que les endoscopes bronchiques, permettent aujourd'hui l'exploration de l'arbre bronchique jusqu'à la cinquième division sous segmentaire. Cependant, ces systèmes d'imagerie ne permettent pas de prolonger la visualisation au-delà. Les alvéoles, présentes en bout de l'arbre bronchique, sont donc inaccessibles. Or, certaines pathologies, par exemple les pathologies alvéolaires ou interstitielles qu'elles soient diffuses ou focales ainsi que les nodules périphériques, ne peuvent être caractérisés que par une description anatomique des territoires alvéolaires et bronchio-alvéolaires. Pour obtenir une visualisation de la microarchitecture de ces régions, il est nécessaire de pratiquer des biopsies pulmonaires distales par endoscopie ou par chirurgie, ces méthodes étant particulièrement invasives.
Un but de l'invention est de proposer une nouvelle utilisation d'un système d'imagerie par fluorescence confocale fibre pour observer et imager in vivo in situ le contenu et les parois des alvéoles pulmonaires situées à distance de la vision des endoscopes bronchiques. Un autre but de l'invention est de proposer un système d'imagerie par fluorescence confocale fibre permettant d'imager in vivo in situ le contenu et les parois alvéolaires pulmonaires situées à distance de la vision endoscopique directe.
Enfin un but de l'invention est de proposer un procédé d'imagerie par fluorescence confocale fibre permettant d'imager in vivo in situ le contenu et les parois alvéolaires pulmonaires situées à distance de la vision endoscopique.
L'invention propose ainsi une utilisation d'un système d'imagerie par fluorescence confocale fibre in vivo in situ comprenant une sonde fibrée pour observer le contenu et les parois alvéolaires situées à distance de l'extrémité distale de l'endoscope. L'utilisation selon l'invention permet d'imager un tissu ou une alvéole situé à distance de l'extrémité distale de l'endoscope.
Dans la présente description, une alvéole désigne le système alvéolaire pulmonaire comprenant la bronchiole respiratoire, le canal alvéolaire et les sacs alvéolaires pulmonaires proprement dits.
En effet, les systèmes actuels d'imagerie par fluorescence fibres in vivo sont utilisés pour réaliser une imagerie d'un tissu avec lequel l'extrémité distale de la sonde est en contact. Ces systèmes sont actuellement utilisés pour réaliser l'imagerie d'un tissu, avec lequel la sonde est en contact, avec une résolution axiale de 15 à 20 μm. Autrement dit, les systèmes actuels permettent de réaliser une imagerie d'un tissu, avec lequel la sonde est en contact, sur une profondeur de 0 à 15 μm. Il est nécessaire dans l'utilisation actuelle des systèmes d'imagerie par fluorescence confocale fibres que l'extrémité de Ia sonde soit en contact avec le tissu à imager. Cependant, lors d'une imagerie in vivo in situ d'un système alvéolaire pulmonaire à l'aide du système confocal fibre en fluorescence, il a été constaté de façon très surprenante que les images prises permettent une observation des tissus et d'objets situés jusqu'à environ 300 μm de l'extrémité distale de la sonde fibrée. Ce résultat inattendu et inexplicable à ce jour, à montré, d'une part qu'il n'est pas nécessaire de mettre l'extrémité distale de la sonde fibrée en contact avec l'ensemble d'un tissu pour prendre une image de ce tissu, d'autre part qu'il existe une possibilité de réaliser une imagerie de l'intérieur d'une alvéole d'un corps. Il suffit de mettre l'extrémité distale de la sonde en contact avec un tissu situé à proximité ou en contact avec le tissu que l'on veut imager. D'une manière similaire, pour imager une alvéole, il suffit de mettre l'extrémité distale de la sonde en contact avec un tissu situé à proximité ou en contact avec l'alvéole que l'on veut imager. Le tissu en question peut par exemple être la paroi d'une alvéole située à proximité ou en contact avec l'alvéole ou le tissu que l'on veut imager.
Dans une application particulière de l'utilisation selon l'invention, il est possible de réaliser l'imagerie du contenu et des parois d'une alvéole pulmonaire. Une telle imagerie peut en outre bénéficier des propriétés d'autofluorescence des poumons et, plus particulièrement des alvéoles. Dans ce cas, contrairement à une utilisation dans le tube digestif, il n'est pas nécessaire d'appliquer un fluorophore exogène sur le tissu pour recueillir un signal de fluorescence. Une telle utilisation peut donc bénéficier des fluorophores endogènes des poumons et des alvéoles.
Selon un autre aspect de l'invention, il est proposé un système d'imagerie par fluorescence in vivo comprenant un endoscope muni d'un canal opérateur au sein duquel est insérée une sonde fibrée comportant une pluralité de fibres caractérisé en ce que la sonde fibrée est déplaçable longitudinalement entre une position rétractée et au moins une position étendue à l'extérieur de l'endoscope. Un tel système permet d'atteindre des parties d'un corps que les systèmes actuels tels que des endoscopes bronchiques ne peuvent pas imager compte tenu de leur encombrement. En effet, le système selon l'invention met en œuvre une sonde fibrée miniaturisée placée dans le canal opérateur d'un endoscope. Cette sonde présente une section plus petite que la section de l'endoscope. L'endoscope est introduit dans le corps d'un sujet aussi loin que la section de l'endoscope le permet. Ensuite, la sonde fibrée présente dans le canal opérateur de l'endoscope est déplacée longitudinalement pour atteindre une position d'imagerie au-delà de la vision distale de l'endoscope. Ce qui permet au système selon l'invention de réaliser une imagerie d'une partie d'un corps d'un sujet que les systèmes actuels ne peuvent pas atteindre et par conséquent imager.
Avantageusement, le système selon l'invention peut comprendre des moyens d'évaluation d'au moins une position de l'extrémité distale de la sonde. La sonde fibrée étant déplaçable longitudinalement vers une position étendue située à l'extérieur de l'endoscope, l'extrémité distale de cette sonde n'est plus visualisable par l'endoscope. Sa position ne peut donc pas être évaluée par la vision endoscopique. Dans ce cas l'opérateur n'a pas de contrôle de la longueur d'insertion de la sonde dans le poumon au delà de l'extrémité distale de l'endoscope ce qui peut présenter des dangers pour le sujet recevant l'endoscope et la sonde. Il est important alors d'évaluer la position de l'extrémité distale de la sonde pour diminuer les risques de blessures du sujet.
Les moyens d'évaluation peuvent comprendre au moins une graduation portée par la sonde du côté de son extrémité distale, cette graduation étant visible par l'endoscopiste et indiquant une position étendue. Ainsi l'opérateur peut avoir un contrôle sur la longueur d'insertion de l'extrémité distale de la sonde. Cette graduation peut être réalisée à une distance connue de l'extrémité distale de la fibre déterminée en fonction de la partie du corps à imager. Cette méthode de repérage n'est pas exclusive de tout autre procédé qui permettrait de connaître la position de l'extrémité distale de la sonde dans l'arbre bronchique, soit à partir de données obtenues en temps réel, soit à partir d'un modèle 3D ajusté au cas particulier du sujet observé.
Avantageusement, au moins une position étendue peut être choisie pour correspondre à une position maximale à ne pas dépasser. Cette position étendue peut être déterminée en fonction de l'imagerie effectuée et de la partie du corps imagé. Cette graduation peut être réalisée à une distance de connue de l'extrémité distale de la fibre déterminée en fonction de la partie du corps dont l'imagerie est réalisée. D'une manière similaire, au moins une position étendue peut être choisie pour correspondre à une position de début de prise d'image, en fonction de la partie du corps imagé et de l'imagerie effectuée.
Avantageusement, le système selon l'invention peut être couplé à une unité spectroscopique réalisant une analyse spectrale du signal de fluorescence capté par au moins une fibre. L'unité de spectroscopie fournit des données spectrales concernant le signal de fluorescence capté par la sonde fibrée. Ces données spectrales peuvent compléter l'image réalisée, par des informations concernant la nature des objets imagés. L'analyse spectrale permet de connaître le type de fluorophore à l'origine du signal détecté (donc à quel type de tissu il est relié). Dans d'autres cas, cette analyse permet de donner des renseignements sur l'environnement immédiat du fluorophore
(pH, activité enzymatique, présence de lipides, présence d'ions...).
Dans une configuration particulière de l'invention, le système fibre d'imagerie confocale peut en outre comprendre un conduit creux introduit à l'intérieur de l'endoscope et agencé pour recevoir la sonde optique fibrée, ce conduit creux pouvant être poussé au-delà de l'extrémité distale de l'endoscope.
Ce conduit creux, qui fait fonction de cathéter intermédiaire, et la sonde optique fibrée, peuvent avantageusement coopérer pour procurer un effet de piston d'aspiration à l'extrémité distale du conduit creux, lorsque ladite sonde optique fibrée est rétractée à l'intérieur dudit conduit creux.
Selon un autre aspect de l'invention, il est proposé un procédé d'imagerie par un système d'imagerie par fluorescence confocale fibre in vivo in situ comprenant un endoscope muni d'un canal opérateur recevant une sonde fibrée d'imagerie, ce procédé comprenant les étapes suivantes :
- introduction de l'endoscope jusqu'à blocage en distalité. Le blocage est du aux diamètres relatifs des bronches et de l'endoscope ; - introduction de la sonde dans l'alvéole par extension à l'extérieur du canal opérateur jusqu'à ce que les images d'alvéoles apparaissent à l'écran, et avant qu'une distance connue graduée sur la sonde ne soit atteinte. Le procédé selon l'invention permet avantageusement de réaliser l'imagerie d'une alvéole par l'utilisation d'une sonde fibrée et ainsi d'obtenir l'image d'une zone que les procédés actuels ne permettent pas de réaliser.
Le procédé selon l'invention peut avantageusement comprendre une étape de repérage d'une position d'extension correspondant à un début de zone à imager. Cette position peut correspondre à la position à partir de laquelle l'opérateur peut espérer atteindre les alvéoles à imager. Un tel repérage facilite et accélère la réalisation de l'imagerie. En effet, l'introduction de la sonde dans l'alvéole peut être réalisée relativement rapidement jusqu'à cette position tout en prenant soin à ne pas blesser le sujet sur lequel l'imagerie est réalisée.
Avantageusement, le procédé selon l'invention peut comprendre une étape de repérage d'une position d'extension maximale à ne pas dépasser, permettant de minimiser les risques de blessure du sujet sur lequel l'imagerie est réalisée, par une extension abusive de la sonde.
Les positions d'extension, décrites ci-dessus, peuvent avoir été déterminées en fonction de l'imagerie à réaliser et de l'alvéole imagée. Elles peuvent être déterminée par une distance relative de l'extrémité distale de la sonde par rapport à l'extrémité distale de l'endoscope. Dans le cadre par exemple d'une alvéole pulmonaire chez l'homme adulte, des expériences ont montré que pour la position correspondant à un début d'imagerie de l'alvéole, l'extrémité distale de la sonde se trouve à une distance de 2.5 cm de l'extrémité distale de l'endoscope. Pour la position d'extension maximale cette distance est de 5,5 cm. Grâce à ces repérages, le procédé selon l'invention permet d'avoir un contrôle sur la position de l'extrémité distale de la sonde.
Dans un mode de réalisation du procédé selon l'invention, l'alvéole peut être une alvéole pulmonaire humaine de l'adulte ou de l'enfant, en ventilation spontanée ou sous ventilation mécanique. Lorsque le procédé selon l'invention est mis en œuvre dans un système fibre d'imagerie confocale pourvu d'un cathéter intermédiaire, il comprend alors en outre une étape d'ancrage et de visualisation, au cours de laquelle on déplace un conduit creux inséré dans l'endoscope et faisant fonction de canal opérateur pour une sonde optique fibrée, jusqu'à ce que l'extrémité distale de ce conduit creux entre en contact avec un tissu biologique à examiner, ce conduit creux étant poussé au-delà de l'extrémité distale dudit endoscope.
Ce procédé selon l'invention peut en outre comprendre une étape d'aspiration de matériau biologique, à la suite de l'étape d'ancrage et de visualisation, au cours de laquelle on rétracte la sonde optique fibrée à l'intérieur du conduit creux, de façon à procurer un effet de piston d'aspiration à l'extrémité distale dudit conduit creux.
D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée d'un mode de mise en œuvre nullement limitatif, et des dessins annexés sur lesquels :
- la figure 1 est une représentation schématique d'une utilisation d'une unité spectroscopique couplée au système selon l'invention ;
- la figure 2 est une représentation schématique d'une sonde fibrée utilisée dans le système selon l'invention ; - la figure 3 est une représentation schématique de l'arbre bronchique d'un sujet ;
- la figure 4 est une image d'une alvéole obtenue en autofluorescence avec le système selon l'invention ;
- la figure 5 est une représentation des spectres obtenus par une unité spectroscopique couplée au système selon l'invention ; et
- la figure 6 illustre une configuration particulière d'un système fibre d'imagerie confocale selon l'invention.
On va maintenant décrire, en référence aux figures précitées, un exemple d'un système d'imagerie par fluorescence fibrée confocale. Dans l'exemple décrit le système est composé de trois éléments principaux : une unité optoélectronique laser, une série de sondes miniaturisées composées de dizaines de milliers de fibres optiques, et un programme informatique de traitement d'image qui contrôle le système et acquiert les signaux de fluorescence captés par la sonde fibrée. Une source laser émettant à une longueur d'onde de 488 nm balaye en temps réel la surface proximale du guide de fibres optiques par l'intermédiaire de miroirs de balayage. Ainsi, le spot lumineux d'excitation est focalisé de fibre en fibre séquentiellement. Ce signal d'excitation véhiculé jusqu'à la partie distale des fibres optiques est alors absorbé en profondeur, par les fluorophores, exogènes ou endogènes suivant les cas présent dans le tissu sondé. Les fluorophores émettent alors en réponse un signal à une autre longueur d'onde (la fluorescence), qui est réinjecté dans les fibres optiques du guide d'image en suivant le chemin inverse. Chaque fibre filtre la lumière spatialement permettant de donner à la sonde fibrée son caractère d'imagerie à haute résolution. Une fois filtrée la lumière retour est focalisée sur un détecteur qui permet via son électronique de convertir les photons de fluorescence en un signal numérique. Les données sont envoyées jusqu'au processeur prévu pour le traitement et la génération des images de cellules. Ce processus est effectué en temps réel si bien que l'opérateur a le résultat de ce qu'il observe sur son écran de visualisation à tout moment de la procédure d'observation du tissu.
Le traitement de signal permet de reconstruire l'image du tissu à partir des données « brutes » correspondant aux signaux lumineux acheminés par les fibres optiques. Afin d'obtenir une image la plus lisible et la plus fidèle à la réalité, il faut effectuer une calibration de l'appareil en deux étapes :
1. mesurer l'émission propre de chaque fibre (autofluorescence ou diffusion Raman) afin de la soustraire au signal reçu, et
2. calculer le niveau de taux d'injection/transmission de chaque fibre afin d'homogénéiser la réponse des fibres sur la totalité du guide d'image. Une fois la calibration effectuée, avantageusement de manière automatique, le système d'imagerie par fluorescence confocale fibre selon l'invention est prêt à être utilisé. L'opérateur peut alors voir les images qu'il acquiert en temps réel à raison de 12 images par secondes sur un écran d'ordinateur, avec un contraste accentué et des distorsions spatiales éliminées pour une meilleure qualité d'image.
Dans l'exemple décrit ici, le système d'imagerie selon l'invention est utilisé pour l'imagerie bronchopulmonaire in vivo, et plus particulièrement d'alvéoles, et bénéficie des propriétés d'autofluorescence des poumons et donc des fluorophores endogènes des poumons et plus particulièrement des alvéoles. Il n'est donc pas nécessaire d'appliquer un fluorophore exogène pour recueillir un signal de fluorescence.
Cependant, le signal de fluorescence peut être lié à la présence de diverses molécules fluorescentes, listées dans le tableau ci-après. Bien que 488nm ne soit pas la longueur d'onde d'excitation optimale pour ces composants, il est cependant possible de détecter du signal provenant de ces divers fluorophores.
Figure imgf000011_0001
Une image seule, correspondant à une unique valeur d'intensité de signal par pixel, ne suffit pas à donner une information sur la nature du composant imagé. Les divers composés présents peuvent en revanche être discriminés par spectroscopie. La figure 1 est une représentation d'une utilisation d'une unité spectroscopique couplée au système selon l'invention. Le signal de fluorescence 10 capté par une fibre optique est séparé en deux signaux de fluorescence 101 et 102 par un séparateur d'onde (beamsplitter) 11. Le signal de fluorescence 102 est envoyé par le séparateur d'onde 11 vers un détecteur 16 alors que le signal de fluorescence 101 est envoyé vers un module 12 prévu pour collecter les signaux envoyés par chaque fibre optique de la sonde fibrée. La collection de signaux optiques est envoyée ensuite à l'unité spectroscopique 13 connecté à une unité informatique 14 comprenant un logiciel de contrôle de l'unité spectroscopique 13. L'unité spectroscopique permet d'apporter une information sur la nature des molécules fluorescentes en plus de leur localisation dans l'espace, apportée par l'image.
L'acquisition de l'image et des spectres peut être synchrone. Une séquence d'images acquises sur une zone imagée est complétée par un spectre acquis sur un volume inclus dans celui utilisé pour réaliser l'image. La synchronisation de l'acquisition des images et des spectres est réalisée par un signal de synchronisation 15.
Dans l'exemple décrit ici, le système d'imagerie comprend un endoscope et plus particulièrement un endoscope bronchique comprenant un canal opérateur de section 2 mm. La sonde utilisée, représentée schématiquement en figure 2, est une sonde fibrée 20 de type S de diamètre 1.4 mm ne possédant pas d'élément optique en son extrémité distale 21. Cette sonde 20 comporte en son extrémité distale 21 une férule 22, afin de rendre celle-ci étanche et non agressive pour les tissus. Une telle sonde permet une insertion facile dans le canal opérateur de l'endoscope bronchique, car elle est compatible avec la taille des canaux opérateurs des endoscopes, et présente peu d'encombrement. Le tableau suivant récapitule les propriétés de cette sonde.
Figure imgf000012_0001
L'appareil respiratoire 30, représenté en figure 3, se divise en deux parties : l'une allant du nez au larynx 31, et l'autre constituée de la trachée 32, se divisant elle-même en deux bronches souches, appelées bronches primaires 33, puis de façon dichotomique en de nombreuses ramifications constituant les bronches secondaires 34 et les bronches tertiaires 35 et aboutissant aux bronchioles respiratoires 36 puis aux systèmes alvéolaires 37.
Après anesthésie locale ou générale du sujet, le bronchoscope est introduit dans la trachée puis suit son parcours le long de l'arbre bronchique. Le territoire exploré s'étend jusqu'à la troisième ou quatrième division sous- segmentaire. Seules les bronches peuvent être visualisées directement au travers de l'endoscope bronchique.
Un bronchoscope le plus fin possible de canal opérateur suffisant pour l'insertion de la sonde est utilisé pour l'imagerie des alvéoles. Il est ainsi possible de limiter la distance d'insertion de la sonde au-delà de l'endoscope et donc d'assurer une meilleure sécurité pour le patient. Un endoscope de 4,3 mm de diamètre extérieur et de longueur 60 cm a été utilisé pour le protocole d'exploration endoalvéolaire. Lorsque celui-ci ne peut plus progresser en raison de son diamètre, la sonde fibrée 20 de type S est alors poussée au-delà de l'endoscope jusqu'à atteindre les alvéoles, tout en réalisant une imagerie en fluorescence confocale fibrée de sa progression, permettant de reconnaître successivement la bronchiole terminale puis respiratoire par l'existence de resserrements concentriques et enfin les sac alvéolaires.
Malgré la visualisation de cette progression, quand la sonde est sortie de l'endoscope et poussée jusqu'à atteindre les alvéoles, la distance d'insertion de la sonde doit être connue afin d'estimer les risques d'atteinte de la plèvre en périphérie des poumons, ce qui représente un risque théorique de pneumothorax (perforation de la plèvre). Pour répondre à cette problématique de repérage, des graduations ont été ajoutées au design de la sonde précédemment décrite. Des expériences sur cadavres ont validé les positions des deux graduations : la première est à 2.5cm de l'extrémité et la deuxième à 5cm. La zone située entre les graduations représente la zone pour laquelle le secteur alvéolaire est habituellement atteint et peut être imagé. Si aucune image d'alvéole n'est obtenue avant la deuxième graduation de la sonde, alors le territoire n'est pas exploré, la sonde est retirée. Lorsque la sonde est dans le territoire alvéolaire, une séquence dynamique et un spectre sont enregistrés.
La figure 4 est une représentation d'une alvéole imagée par fluorescence avec le système selon l'invention. Sur la figure 4, on peut constater que plusieurs plans de tissu sont visualisés. Or, le diamètre d'une alvéole étant de l'ordre de 300μm, on en déduit que la sonde fibrée collecte du signal au moins jusqu'à 300μm dans le tissu alvéolaire. Le système selon l'invention permet donc d'imager le contenu et les parois du sac alvéolaire dans lequel la sonde fibrée a été introduite.
La figure 5 représente le spectre 51 des signaux de fluorescence captés par la sonde fibrée. On notera que les deux spectres sont décalés en longueur d'onde, ce biais est lié à l'instrumentation et existe pour les deux spectres. La figure 5 représente également le spectre 52 de l'élastine pure. L'exploitation des données issues de l'unité spectroscopique a permis de mettre en évidence qu'une composante majeure du signal de fluorescence était liée à la présence d'élastine. Une analyse plus fine permettra d'identifier les autres fluorophores apportant leur contribution. Il est bien connu que l'élastine est présente dans les parois des alvéoles. Il y a donc concordance entre le type d'objet observé sur les images et la localisation du fluorophore. Un système fibre d'imagerie confocale selon l'invention peut aussi être équipé d'un cathéter intermédiaire, comme l'illustre la figure 6.
Dans cette configuration, une sonde optique fibrée 52 est disposée dans un conduit creux constituant un cathéter intermédiaire 51 lui-même inséré dans l'endoscope 50. Ce cathéter intermédiaire 51 fait alors en fonction de canal opérateur pour la sonde optique 52.
Dans un premier mode (I) d'utilisation, le cathéter intermédiaire 51 est déplacé à partir du canal opérateur jusqu'à entrer en contact avec le tissu biologique 53 à examiner. La sonde fibrée 52 affleurant la sortie du cathéter intermédiaire 51 est alors à proximité immédiate ou en contact avec la surface du tissu biologique 53, et une visualisation de ce tissu est réalisée.
Dans un second mode (II) d'utilisation, après visualisation, la sonde optique 52 est rétractée alors que le cathéter intermédiaire 51 est maintenu contre le tissu biologique 53. Cette rétraction procure un effet de piston qui permet une aspiration de matériau biologique issu du tissu 53, à l'intérieur du cathéter intermédiaire 51. Cette fonctionnalité permet ainsi un prélèvement aisé de matériau biologique directement sur le site de visualisation.
Il est à noter que le positionnement du cathéter intermédiaire 51 contre le tissu biologique 53 peut être effectué en utilisant une technique de repérage par graduation telle que décrite ci-dessus, ou encore en utilisant des techniques de représentation tridimensionnelle de l'anatomie du corps et des organes examinés mettant en œuvre des procédés actuels d'imagerie et de tomographie. Bien sûr, l'invention n'est pas limitée à l'exemple qui vient d'être décrit et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention, comme par exemple l'imagerie de la bronchiole distale et son contenu, et l'analyse de certaines cellules contenues dans les espaces pulmonaires distaux présentant des propriétés de fluorescence.

Claims

REVENDICATIONS
1. Procédé pour réaliser une image d'un tissu, notamment d'un tissu d'un corps alvéolaire, caractérisé en ce qu'il comprend une collecte d'un signal lumineux émis par au moins une partie dudit tissu, par une sonde optique (20) d'imagerie par fluorescence comprenant une pluralité de fibres optiques contribuant à ladite collecte et dont une extrémité distale (21) est disposée à distance dudit tissu, ladite imagerie étant rendue confocale au niveau d'une extrémité proximale de la dite sonde.
2. Procédé selon la revendication 1, caractérisé en ce que le signal lumineux comprend un signal de fluorescence émis par au moins un fluorophore exogène.
3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le signal lumineux comprend un signal de fluorescence émis par un fluorophore endogène.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le tissu est un tissu d'une alvéole pulmonaire.
5. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le tissu est un tissu d'une bronchiole distale.
6. Système fibre d'imagerie par fluorescence confocale in vivo in situ comprenant un endoscope muni d'un canal opérateur dans lequel est insérée une sonde optique fibrée (20), caractérisé en ce que ladite sonde fibrée (20) est déplaçable longitudinalement entre une position rétractée et au moins une position étendue dans laquelle une extrémité distale de ladite sonde se trouve à l'extérieur du canal opérateur, ladite sonde comprenant une pluralité de fibres optiques réalisant l'imagerie d'un tissu, ladite imagerie étant rendue confocale par des moyens de traitement disposés au niveau d'une extrémité proximale de ladite sonde.
7. Système selon la revendication 6, caractérisé en ce qu'il comprend des moyens d'évaluation d'au moins une position de l'extrémité distale (21) de la sonde.
8. Système selon la revendication I1 caractérisé en ce que les moyens d'évaluation comprennent au moins une graduation portée par la sonde (20) du côté de son extrémité distale (21), ladite graduation étant visible par l'endoscope et indiquant une position étendue.
9. Système selon l'une quelconque des revendications 6 à 8, caractérisé en ce qu'il comprend en outre des moyens de repérage d'au moins une position étendue choisie pour correspondre à une position maximale à ne pas dépasser.
lO.Système selon l'une quelconque des revendications 6 à 9, caractérisé en ce qu'il comprend en outre des moyens de repérage d'au moins une position étendue choisie pour correspondre à une position de début de visualisation.
11. Système selon l'une quelconque des revendications 6 à 10, caractérisé en ce qu'il peut être couplé à une unité de spectroscopie (13) réalisant une analyse spectrale du signal de fluorescence capté par au moins une fibre.
12. Système selon l'une quelconque des revendications 6 à 11, caractérisé en ce qu'il comprend en outre un conduit creux (51) introduit à l'intérieur de l'endoscope (50) et agencé pour recevoir la sonde optique fibrée (52), ce conduit creux (51) pouvant être poussé au-delà de l'extrémité distale dudit endoscope (50).
13. Système selon la revendication 12, caractérisé en ce que le conduit creux (51) et la sonde optique fibrée (52) coopèrent pour procurer un effet de piston d'aspiration à l'extrémité distale dudit conduit creux (51), lorsque ladite sonde optique fibrée (52) est rétractée à l'intérieur dudit conduit creux (51).
PCT/FR2007/001371 2006-08-17 2007-08-16 Utilisation d'un système d'imagerie par fluorescence confocale fibré in vivo in situ, système et procédé d'imagerie par fluorescence confocale fibrés in vivo in situ WO2008020130A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/377,819 US8923955B2 (en) 2006-08-17 2007-08-16 Use of a system for imaging by fiber-optic confocal fluorescence in vivo in situ, system and method for imaging by fiber-optic confocal fluorescence in vivo in situ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0607344A FR2904927B1 (fr) 2006-08-17 2006-08-17 Utilisation d'un systeme d'imagerie par fluorescence confocale fibre in vivo in situ, systeme et procede d'imagerie par fluorescence confocale fibres in vivo in situ
FR0607344 2006-08-17

Publications (2)

Publication Number Publication Date
WO2008020130A2 true WO2008020130A2 (fr) 2008-02-21
WO2008020130A3 WO2008020130A3 (fr) 2008-04-10

Family

ID=37667533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/001371 WO2008020130A2 (fr) 2006-08-17 2007-08-16 Utilisation d'un système d'imagerie par fluorescence confocale fibré in vivo in situ, système et procédé d'imagerie par fluorescence confocale fibrés in vivo in situ

Country Status (3)

Country Link
US (1) US8923955B2 (fr)
FR (1) FR2904927B1 (fr)
WO (1) WO2008020130A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010063A1 (fr) 2009-07-20 2011-01-27 Universite Paris Sud Sonde a aiguille fibree tranchante pour le diagnostic optique en profondeur de tumeurs par fluorescence endogene.
WO2012136958A2 (fr) 2011-04-08 2012-10-11 The University Court Of The University Of Edinburgh Sondes d'imagerie optique
CN110755019A (zh) * 2019-10-18 2020-02-07 精微视达医疗科技(武汉)有限公司 一种具备id识别功能的共聚焦探头连接器及共聚焦系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104644110A (zh) * 2015-02-06 2015-05-27 吉林大学 一种微型共聚焦激光显微内镜
CN109310296A (zh) 2016-04-06 2019-02-05 爱丁堡大学董事会 内窥镜成像装置及方法
GB201707239D0 (en) 2017-05-05 2017-06-21 Univ Edinburgh Optical system and method
KR102633654B1 (ko) 2021-09-29 2024-02-06 한국과학기술연구원 광섬유 기반의 센서 모듈 및 이를 구비한 변형 센서 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037204A1 (fr) * 1998-01-26 1999-07-29 Massachusetts Institute Of Technology Imagerie endoscopique par fluorescence
WO1999044089A1 (fr) * 1998-02-26 1999-09-02 The General Hospital Corporation Microscopie confocale avec codage multispectral
WO2000042910A1 (fr) * 1999-01-26 2000-07-27 Newton Laboratories, Inc. Systeme d'imagerie a autofluorescence pour endoscopie
WO2003060493A1 (fr) * 2001-12-28 2003-07-24 Mauna Kea Technologies Appareillage de spectroscopie d'autofluorescence subsurfacique
WO2004008952A1 (fr) * 2002-07-18 2004-01-29 Mauna Kea Technologies Procede et appareillage d'imagerie de fluorescence haute resolution par fibre optique et notamment d’imagerie confocale
WO2006004743A2 (fr) * 2004-06-28 2006-01-12 University Of Washington Scanneur a fibre optique utilise pour l'imagerie optique multimodale

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5784162A (en) * 1993-08-18 1998-07-21 Applied Spectral Imaging Ltd. Spectral bio-imaging methods for biological research, medical diagnostics and therapy
US6485413B1 (en) * 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US5590660A (en) * 1994-03-28 1997-01-07 Xillix Technologies Corp. Apparatus and method for imaging diseased tissue using integrated autofluorescence
US6296608B1 (en) * 1996-07-08 2001-10-02 Boston Scientific Corporation Diagnosing and performing interventional procedures on tissue in vivo
US5845646A (en) * 1996-11-05 1998-12-08 Lemelson; Jerome System and method for treating select tissue in a living being
US6174291B1 (en) * 1998-03-09 2001-01-16 Spectrascience, Inc. Optical biopsy system and methods for tissue diagnosis
US6462770B1 (en) * 1998-04-20 2002-10-08 Xillix Technologies Corp. Imaging system with automatic gain control for reflectance and fluorescence endoscopy
AU3970799A (en) * 1998-05-04 1999-11-23 Board Of Regents Combined fluorescence and reflectance spectroscopy
US7004173B2 (en) * 2000-12-05 2006-02-28 Lumend, Inc. Catheter system for vascular re-entry from a sub-intimal space
US8046057B2 (en) * 2001-04-11 2011-10-25 Clarke Dana S Tissue structure identification in advance of instrument
US20030055315A1 (en) * 2001-09-14 2003-03-20 Gatto Dominick L. Method and apparatus for endoscope system
US6972018B2 (en) * 2002-06-28 2005-12-06 Gynecare A Division Of Ethicon, Inc. Apparatus and method for transcervical sterilization by application of ultrasound
US8626257B2 (en) * 2003-08-01 2014-01-07 Dexcom, Inc. Analyte sensor
US20050059894A1 (en) * 2003-09-16 2005-03-17 Haishan Zeng Automated endoscopy device, diagnostic method, and uses
US7848791B2 (en) * 2005-02-10 2010-12-07 Lightlab Imaging, Inc. Optical coherence tomography apparatus and methods
WO2006122061A1 (fr) * 2005-05-06 2006-11-16 Acumen Medical, Inc. Catheters orientables a forme complexe et procedes de fabrication desdits catheters
EP1931237A2 (fr) * 2005-09-14 2008-06-18 Neoguide Systems, Inc. Procédés et appareil pour effectuer des procédures transluminales et autres
US8129105B2 (en) * 2006-04-13 2012-03-06 Ralph Zuckerman Method and apparatus for the non-invasive measurement of tissue function and metabolism by determination of steady-state fluorescence anisotropy
US9226648B2 (en) * 2006-12-21 2016-01-05 Intuitive Surgical Operations, Inc. Off-axis visualization systems
US20080262308A1 (en) * 2007-02-27 2008-10-23 Percutaneaus Systems, Inc. Method and system for performing continuous flow endoscopy
US20080221388A1 (en) * 2007-03-09 2008-09-11 University Of Washington Side viewing optical fiber endoscope
US9226731B2 (en) * 2007-05-21 2016-01-05 The Board Of Regents Of The University Of Texas System Optically guided needle biopsy system using multi-modal spectroscopy in combination with a transrectal ultrasound probe
US20100113906A1 (en) * 2008-11-06 2010-05-06 Prescient Medical, Inc. Hybrid basket catheters
US8323181B2 (en) * 2011-02-17 2012-12-04 Apurba Mukherjee Endoscope with variable incident light and laser source platform

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037204A1 (fr) * 1998-01-26 1999-07-29 Massachusetts Institute Of Technology Imagerie endoscopique par fluorescence
WO1999044089A1 (fr) * 1998-02-26 1999-09-02 The General Hospital Corporation Microscopie confocale avec codage multispectral
WO2000042910A1 (fr) * 1999-01-26 2000-07-27 Newton Laboratories, Inc. Systeme d'imagerie a autofluorescence pour endoscopie
WO2003060493A1 (fr) * 2001-12-28 2003-07-24 Mauna Kea Technologies Appareillage de spectroscopie d'autofluorescence subsurfacique
WO2004008952A1 (fr) * 2002-07-18 2004-01-29 Mauna Kea Technologies Procede et appareillage d'imagerie de fluorescence haute resolution par fibre optique et notamment d’imagerie confocale
WO2006004743A2 (fr) * 2004-06-28 2006-01-12 University Of Washington Scanneur a fibre optique utilise pour l'imagerie optique multimodale

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010063A1 (fr) 2009-07-20 2011-01-27 Universite Paris Sud Sonde a aiguille fibree tranchante pour le diagnostic optique en profondeur de tumeurs par fluorescence endogene.
US9179845B2 (en) 2009-07-20 2015-11-10 Université Paris-Sud Sharp fibrous needle probe for the in-depth optical diagnostics of tumours by endogenous fluorescence
WO2012136958A2 (fr) 2011-04-08 2012-10-11 The University Court Of The University Of Edinburgh Sondes d'imagerie optique
US9549997B2 (en) 2011-04-08 2017-01-24 The University Court Of The University Of Edinburgh Optical imaging probes
US10434191B2 (en) 2011-04-08 2019-10-08 The University Court Of The University Of Edinburgh Optical imaging probes
CN110755019A (zh) * 2019-10-18 2020-02-07 精微视达医疗科技(武汉)有限公司 一种具备id识别功能的共聚焦探头连接器及共聚焦系统
CN110755019B (zh) * 2019-10-18 2024-01-09 精微视达医疗科技(三亚)有限公司 一种具备id识别功能的共聚焦系统

Also Published As

Publication number Publication date
FR2904927A1 (fr) 2008-02-22
US20120035484A1 (en) 2012-02-09
US8923955B2 (en) 2014-12-30
WO2008020130A3 (fr) 2008-04-10
FR2904927B1 (fr) 2018-05-18

Similar Documents

Publication Publication Date Title
US10874333B2 (en) Systems and methods for diagnosis of middle ear conditions and detection of analytes in the tympanic membrane
EP2456354B1 (fr) Sonde a aiguille fibree tranchante pour le diagnostic optique en profondeur de tumeurs par fluorescence endogene.
Huang et al. Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy
US8285015B2 (en) Simultaneous acquisition of differing image types
US20150087902A1 (en) Phase Contrast Microscopy With Oblique Back-Illumination
WO2008020130A2 (fr) Utilisation d'un système d'imagerie par fluorescence confocale fibré in vivo in situ, système et procédé d'imagerie par fluorescence confocale fibrés in vivo in situ
US10524647B2 (en) Smartphone endoscope system
CA2472197A1 (fr) Appareil et procede d'examen spectroscopique du colon
Glover et al. The status of advanced imaging techniques for optical biopsy of colonic polyps
Thong et al. Review of confocal fluorescence endomicroscopy for cancer detection
Vercauteren et al. Multicolor probe-based confocal laser endomicroscopy: a new world for in vivo and real-time cellular imaging
EP0850012A1 (fr) Imagerie endoscopique pour la detection de lesions cancereuses
Viellerobe et al. Mauna Kea technologies’ F400 prototype: a new tool for in vivo microscopic imaging during endoscopy
US20220330792A1 (en) Cell-collecting falloposcope and method for ovarian cancer detection
Rivera-Fernández et al. Multispectral light source for endoscopic procedures
US20220240782A1 (en) Devices, systems, and methods for imaging in certain endoscopic environments
Murukeshan et al. Integrated simultaneous dual-modality imaging endospeckle fluoroscope system for early colon cancer diagnosis
Loshchenov et al. Multimodal fluorescence imaging navigation for surgical guidance of malignant tumors in photosensitized tissues of neural system and other organs
US20210244346A1 (en) Cell-collecting falloposcope and method for ovarian cancer detection
WO2023205631A2 (fr) Systèmes et procédés de distribution, de collecte et de détection de lumière basée sur une capsule multimodale
WO2024121522A1 (fr) Système d'imagerie pour système endoscopique médical supprimant le nid d'abeilles dans les images des fibres optiques multicoeurs
Qiu et al. Diagnostic imaging of esophageal epithelium with clinical endoscopic polarized scanning spectroscopy instrument
Waterhouse Novel Optical Endoscopes for Early Cancer Diagnosis and Therapy
Qiu et al. Endoscopic Polarized Scanning Spectroscopic Imaging of Barrett’s Esophagus In Vivo
Thiberville et al. In vivo confocal microendoscopy: from the proximal bronchus down to the pulmonary acinus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07823423

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07823423

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12377819

Country of ref document: US