[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008015041A1 - Verfahren zur verbesserung der fahreigenschaften eines hybridantriebs - Google Patents

Verfahren zur verbesserung der fahreigenschaften eines hybridantriebs Download PDF

Info

Publication number
WO2008015041A1
WO2008015041A1 PCT/EP2007/055525 EP2007055525W WO2008015041A1 WO 2008015041 A1 WO2008015041 A1 WO 2008015041A1 EP 2007055525 W EP2007055525 W EP 2007055525W WO 2008015041 A1 WO2008015041 A1 WO 2008015041A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
electric motor
internal combustion
combustion engine
hybrid drive
Prior art date
Application number
PCT/EP2007/055525
Other languages
English (en)
French (fr)
Inventor
Martin Streib
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2008015041A1 publication Critical patent/WO2008015041A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a method for controlling a hybrid drive and a
  • Hybrid drive which is set up to carry out the method according to the invention and a computer program for carrying out the method.
  • Such methods, hybrid drives and computer programs are used in particular in the field of automotive engineering.
  • Hybrid drives usually have at least one internal combustion engine and at least one electric machine.
  • the at least one electric machine and / or the at least one internal combustion engine can be individually switched on and off during operation.
  • an additional energy store is usually provided, which is usually one or more batteries and / or accumulators. From the energy storage, the electric machine is supplied with electrical energy. Conversely, from the
  • hybrid drives are known from the state of the art and the commercial use already taking place today.
  • so-called parallel hybrids, serial hybrids and branched hybrids are often distinguished.
  • These different types of hybrids may be in different operating states as needed (eg, vehicle speed, accelerator pedal signal, etc.) are operated, so that usually an optimal distribution of the load between the electric machine and the internal combustion engine is ensured.
  • the state of charge of the battery is always taken into account.
  • the internal combustion engine can be disconnected from the drive train, for example, via a separating clutch in this deactivated state.
  • the drive is then purely electric motor in this operating conditions.
  • this electromotive drive if by the driver and / or environmental conditions only a small
  • Frequency spectrum modulated, which is predetermined by the working cycles of the internal combustion engine. These vibrations are transmitted via engine mounts and powertrain in a damped form on the body and tell the driver both acoustically and by felt vibrations (haptics).
  • an electric motor usually has a virtually uniform torque output. This is in principle a comfort advantage over the internal combustion engine.
  • this advantage can be disadvantageous in a hybrid vehicle, namely when, when switching from an operating state to a second operating state, for example from pure electric driving to driving with
  • Combustion engine without the driver understandable reason (ie usually without the driver has initiated this switching itself) abruptly the acoustic and perceived perception, ie the driving characteristics and / or driving behavior of the motor vehicle to change. Only in direct comparison between the "quiet” electrical operation and the operation of the internal combustion engine becomes clear how “loud” the combustion engine is.
  • Vehicles with hybrid drives improved.
  • the difference that can be heard and felt by the driver between driving with different uses of an internal combustion engine is thereby reduced.
  • a hybrid drive is proposed, which is set up to carry out the method according to the invention in accordance with one of the embodiments described below, as well as a
  • the hybrid drive has at least one internal combustion engine and at least one electric machine with at least one electric motor function and at least one generator function.
  • at least one internal combustion engine and at least one electric machine with at least one electric motor function and at least one generator function.
  • Hybrid drive can be used in one of the configurations described above.
  • a basic idea of the invention is that the hybrid drive is operated such that at least one modulation operating state is provided.
  • at least one operating variable of the at least one electric motor function in particular an electric motor torque and / or an electric motor speed and / or an electric motor power, is modulated with a predetermined frequency spectrum.
  • this modulation may be accomplished by modulating an electric motor current having at least one modulation amplitude and at least one modulation frequency (which may be a single modulation frequency)
  • Modulation frequency or can also be a modulation frequency spectrum take place.
  • a changed acoustics and / or changed haptics can be compensated for changes in the operation of the at least one internal combustion engine.
  • This can be used, for example, when the at least one modulation operating state comprises at least one electrical operating state in which the at least one internal combustion engine is not operated or only reduced. In this case, it is then possible to determine, for example, one (or more) "virtual rotational speed" for the at least one internal combustion engine.
  • the frequency spectrum of the modulation of the at least one operating variable of the at least one electric motor function can then preferably be selected according to this virtual speed.
  • this virtual speed can correspond to the speed with which the at least one internal combustion engine would have to be operated in order to operate the hybrid drive exclusively by means of the at least one internal combustion engine with unchanged instantaneous drive properties of the hybrid drive.
  • the virtual speed can also correspond to the speed at which the at least one internal combustion engine would have to be operated if it were switched on in the current driving situation.
  • the current driving situation is essentially defined by the present total torque request (the total torque must be applied by the at least one internal combustion engine in conjunction with the at least one electric motor function) and the current vehicle speed, or, at
  • Parallel hybrid a transmission input speed, which in turn depends on the currently set transmission ratio.
  • a modulation frequency or a modulation spectrum of the at least one electric motor function directly from the virtual speed of the at least one internal combustion engine calculated in this way, since constructive properties of the at least one internal combustion engine additionally have to be taken into account.
  • the number of cylinders and / or the number of cycles of the at least one internal combustion engine should be taken into account.
  • the angular frequency of the imprinted is calculated
  • the factor 1 A is due to the fact that the engine requires two revolutions until all cylinders have completed a stroke.
  • the thus calculated modulation frequency is impressed on the at least one electric motor function. Since the torque is usually proportional to the injected current in the electric motor, a ripple of the torque output is effected by this impressed modulation, so that at a suitable modulation amplitude and / or
  • Modulation frequency the behavior of the at least one electric motor function is similar to the behavior of the at least one internal combustion engine.
  • an acoustically and / or haptic perceptible vibration is transmitted to the body in purely electrical operation.
  • the driver no longer perceives the difference between electrical operation and operation with an internal combustion engine or only reduces it.
  • the modulation amplitude and / or the modulation frequency is preferably not a fixed value, but above all depends on the speed and the average output torque or the engine load. The tendency is
  • Modulation amplitude is greater at high load than at low load and at low speed higher than at high speed.
  • corresponding modulation frequencies and / or modulation amplitudes for predetermined operating states of the hybrid drive can be stored in a table (for example an electronic table, for example a look-up table) and retrieved as needed.
  • modulation amplitude and / or modulation frequency can be selected or calculated accordingly to simulate as well as possible the acoustic behavior and / or vibration behavior of the at least one internal combustion engine by means of at least one electric motor function.
  • the modulation can be selected such that the hybrid drive in all operating states at least substantially constant
  • Torque ripple and thus has a substantially same ride.
  • the at least one electric motor function can also be modulated in hybrid driving by impressing a current modulation and thus a torque modulation The amplitude of the modulation is greater, the smaller the proportion of the internal combustion engine in the total torque.
  • the described concept of the modulation of the at least one operating variable of the at least one electric motor function can also be used for vibration damping.
  • the at least one modulation operating state may include, for example, at least one damping operating state in which an active vibration damping of vibrations of the at least one internal combustion engine is brought about by the modulation of the at least one operating variable of the at least one electric motor function.
  • This refinement can be used in particular when the at least one damping operating state comprises at least one charging operating state in which at least one energy store, in particular one, is provided by the at least one generator function
  • Energy storage for example, a battery and / or capacitors used by the at least one electric machine with the at least one generator function is operated as a generator. Due to the increased load of the at least one internal combustion engine generates a greater torque ripple compared to an operation without charging the at least one energy storage. This increased torque
  • Ripple in the generator mode which in turn makes acoustically and / or haptically noticeable to the driver, can be compensated according to the described embodiment of the invention in the damping operating state, for example, that the modulation of at least one operating size of at least one Electric motor function is adjusted accordingly.
  • a phase shift of a current modulation of the at least one electric motor function can take place, preferably by 180 degrees. With a suitable choice of the amplitude and phase shift then takes place destructive interference between the at least one of the at least one electric motor function and that of the at least one
  • the described concept of the modulation of the at least one operating variable of the at least one electric motor function is also for a general one
  • one or more vibration sensors may be provided, for example on a vehicle body and / or fittings or a steering wheel of the
  • the modulation of the at least one operating variable of the at least one electric motor function can then be carried out according to the usual calculation methods
  • Vibration damping take place and the at least one electric motor function are modulated accordingly.
  • Figure 1 shows a first embodiment of a hybrid drive according to the invention in parallel hybrid arrangement
  • Figure 2 shows a second embodiment of a hybrid drive in a branched arrangement
  • FIGS. 1 and 2 show two different exemplary embodiments of hybrid drives 110, which are intended to illustrate that the idea according to the invention can basically be used in all possible hybrid arrangements.
  • FIG. 1 shows a hybrid drive 110 in parallel hybrid
  • the hybrid drive 110 has an internal combustion engine 112 which is fueled by a fuel tank 114. On the output side, the internal combustion engine 112 is connected to an electric machine 118 via a first coupling element 116. This electric machine 118 simultaneously assumes an electric motor function 120 and a generator function 122 in the parallel hybrid arrangement according to FIG.
  • the electric motor function 120 is used, for example, in hybrid driving or purely electric driving.
  • the electric machine 118 is connected on the output side via a second coupling element 124 with a gear 126.
  • it can be a continuous variable transmission (English: Continuous Variable Transmission, CVT) or an electric continuous variable transmission (English: Electric CVT).
  • This transmission 126 is in turn connected to the output side with an axle gear 128, via which one or more drive wheels 130 are driven.
  • the electric motor function 120 draws electrical energy from an energy store 132, which is shown here in the form of a battery.
  • energy store 132 which is shown here in the form of a battery.
  • other types of energy storage 132 may be provided, such as capacitors.
  • the electric machine 118 can also be operated in generator mode, the generator function 122 being used in this operating state.
  • This generator operation occurs, for example, during braking energy recuperation, in which kinetic energy is used via the generator function 122 and an electrical converter 134 in order to charge the energy store 132.
  • a drive of the generator function 122 via the internal combustion engine 112 is also possible.
  • a load controller 136 and a motor control device 138 are shown as components of the hybrid drive 110 in Figure 1. Both components 136, 138 can be realized, for example, with the aid of one or more microcomputer systems, for example one or more embedded systems. Such systems are known from the prior art, which are modified according to the invention in the present embodiment.
  • the load controller 136 essentially serves to provide load sharing between the engine 112 and the electric machine 118
  • the engine controller 138 serves to control the engine 112.
  • Both systems process demand quantities and actual quantities, such as current vehicle speed, speeds, torques, and / or the (eg by pressing an accelerator pedal) transmitted driver request. Accordingly, the load distribution between electric machine 118 and engine 112 is adjusted, i. H.
  • Various operating states of the internal combustion engine 112 are selected.
  • a possible operating state is, for example, the operating state already described above, in which the internal combustion engine 112 is switched off and, for example after opening of the first clutch element 116, the drive of the motor vehicle is completely taken over by the electric motor function 120.
  • Another possible operating state is the generator operation described above, in which the generator function 112 is used for charging the energy store 132.
  • This generator operation can in turn be subdivided into different operating states, depending on whether, for example, a braking energy recuperation takes place (opened first coupling element 116) or whether a drive of the generator function 122 takes place with the first coupling element 116 closed via the internal combustion engine 112.
  • a braking energy recuperation takes place (opened first coupling element 116) or whether a drive of the generator function 122 takes place with the first coupling element 116 closed via the internal combustion engine 112.
  • FIG. 2 shows an exemplary embodiment of a hybrid drive 110 in a so-called branched arrangement.
  • an internal combustion engine 112 powered by a fuel tank 114 and an electric machine 118 are also provided again.
  • the Electric motor function 120 and the generator function 122 are separated.
  • the internal combustion engine 112 is connected with its output shaft initially to a transmission element 140, which is usually (which is assumed below) is a planetary gear.
  • the transmission element 140 is in turn connected to the drive of the electric motor function 120, whose output is in turn connected to the axle gear 128.
  • the transmission element 140 is connected to the drive of the generator function 122, via which the energy store 132 can be charged by means of the electrical converter 134.
  • the electric motor function 120 can draw electrical energy directly from the electrical energy storage 132.
  • a load controller 136 and a motor control device 138 are provided.
  • the function of these components 136, 138 essentially corresponds to the function as described with reference to FIG.
  • the load controller 136 analogously to the above description, an adjustment of the operating conditions and a load distribution between the electric motor function 120 and the internal combustion engine 112.
  • the transmission element 140 which is usually an adjustable transmission, is usually controlled by the load controller 136 , so that, for example, the transmission ratio of the transmission another adjustable
  • the two hybrid drives 110 according to the exemplary embodiments in FIGS. 1 and 2 are merely exemplary representations of hybrid drives 110 in which the invention can be implemented. An example of the operation is shown in FIG.
  • the process steps shown are preferably (but not necessarily) carried out in the order shown, but also additional, not shown, process steps can be performed. Also, individual can
  • Procedural steps are repeated or performed in parallel time.
  • the illustrated method according to FIG. 3 can be implemented, for example, in the form of a computer program, usually realized by corresponding program code, this computer program preferably being executed on a microcomputer, for example on the load controller 136 and / or the engine control unit 138 is executed.
  • the illustrated method steps usually proceed in addition to the usual method steps, which are provided, for example, in the load controller 136 and / or in the engine control unit 138 in order to ensure the usual operation of the hybrid drive 110 known from the prior art.
  • a first method step 310 different operating parameters are read into the method. For example, this may be an actual vehicle speed and / or a current acceleration request. This reading according to step 310 already takes place in conventional
  • Hybrid drives 110 in order to make a corresponding motor control, for example, to calculate a corresponding torque can.
  • sensor signals of at least one (not shown in the figures) vibration sensor for receiving vehicle vibrations can be read.
  • step 312 a corresponding determination of an operating state then takes place in the load controller 136.
  • This step is also known in principle from conventional hybrid drives 110.
  • a load distribution between the engine 112 and electric motor function 120 takes place. For example, this can
  • Operating state determination based on the read in step 310 operating parameters by using on predetermined operating conditions is used.
  • predetermined operating conditions for example, stored in a table operating state parameters.
  • a suitable modulation of at least one operating variable of the at least one electric motor function 120 is determined from this virtual rotational speed.
  • this is a modulation of an electric motor current of the electric motor function 120.
  • different modulation parameters can be read which preferably have known engine properties, in particular properties of the internal combustion engine 112 include.
  • modulation parameters can be stored, for example, in a table, in particular a look-up table, and contain, for example for the operating state and the determined virtual speed, optimal modulation frequencies (or modulation frequency spectra), modulation phases and / or modulation amplitudes.
  • the optimum modulation determined in this way for the respective operating state is then used in method step 318 in order to correspondingly control the electric motor function 120.
  • This control can be carried out directly, for example, by the load controller 136, or a transfer of the modulation information to a separate control of the electric motor function 120, not shown in FIGS. 1 and 2, can take place. In this way, then the electric motor current with which the electric motor function 120 is operated, be modulated accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Es wird ein Verfahren zur Steuerung eines Hybridantriebs (110) vorgeschlagen. Der Hybridantrieb (110) umfasst mindestens einen Verbrennungsmotor (112) und mindestens eine Elektromaschine (118) mit mindestens einer Elektromotorfunktion (120) und mindestens einer Generatorfunktion (122). Das Verfahren ist derart ausgestaltet, dass mindestens ein Modulations-Betriebszustand des Hybridantriebs (110) vorgesehen ist, in welchem mindestens eine Betriebsgröße der mindestens einen Elektromotorfunktion (120), insbesondere ein Elektromotor-Drehmoment und/oder eine Elektromotor-Drehzahl und/oder eine Elektromotor-Leistung, mit einem vorgegebenen Frequenz spektrum moduliert wird. Diese Modulation kann insbesondere dadurch bewerkstelligt werden, dass ein Elektromotorstrom mit mindestens einer Modulationsamplitude mit mindestens einer Modulationsfrequenz und mindestens einer Modulationsphase erfolgt. Dies dient einer aktiven Schwingungsdämpfung.

Description

Beschreibung
Titel
Verfahren zur Verbesserung der Fahreigenschaften eines Hybridantriebs
Die Erfindung betrifft ein Verfahren zur Steuerung eines Hybridantriebs sowie einen
Hybridantrieb, welcher eingerichtet ist, um das erfindungsgemäße Verfahren durchzuführen und ein Computerprogramm zur Durchführung des Verfahrens. Derartige Verfahren, Hybridantriebe und Computerprogramme werden insbesondere im Bereich der Kraftfahrzeugtechnik eingesetzt.
Stand der Technik
Aus dem Stand der Technik sind verschiedene Arten von Kraftfahrzeugen mit Hybridantrieben bekannt. Hybridantriebe weisen üblicherweise mindestens einen Verbrennungsmotor und mindestens eine Elektromaschine auf. Üblicherweise kann dabei die mindestens eine Elektromaschine und/oder der mindestens eine Verbrennungsmotor während des Betriebes individuell zu- und abgeschaltet werden. Weiterhin ist zumeist ein zusätzlicher Energiespeicher vorgesehen, bei welchem es sich üblicherweise um eine oder mehrere Batterien und/oder Akkumulatoren handelt. Aus dem Energiespeicher wird die Elektromaschine mit elektrischer Energie versorgt. Umgekehrt kann aus der
Elektromaschine elektrische Energie rückgewonnen werden und, beispielsweise bei einer so genannten Bremsenergie-Rekuperation, wieder dem Energiespeicher zugeführt werden.
Aus dem Stand der Technik und dem bereits heute erfolgenden kommerziellen Einsatz sind verschiedene Konzepte von Hybridantrieben bekannt. So werden in der Praxis häufig so genannte Parallel-Hybride, serielle Hybride und verzweigte Hybride unterschieden. Diese verschiedenen Arten von Hybriden können, je nach Bedarf (zum Beispiel Fahrzeuggeschwindigkeit, Gaspedalsignal etc.) in unterschiedlichen Betriebszuständen betrieben werden, so dass üblicherweise eine optimale Verteilung der Last zwischen Elektromaschine und Verbrennungsmotor gewährleistet ist. Dabei wird in der Regel auch stets der Ladezustand der Batterie berücksichtigt.
So existieren beispielsweise Betriebszustände, in welchen der Verbrennungsmotor vollständig abgeschaltet ist. Je nach Hybridkonzept kann in diesem abgeschalteten Zustand der Verbrennungsmotor beispielsweise über eine Trennkupplung vom Antriebsstrang getrennt werden. Der Antrieb erfolgt in diesem Betriebszuständen dann rein elektromotorisch. Vorzugsweise erfolgt dieser elektromotorische Antrieb, wenn durch den Fahrer und/oder Umgebungsbedingungen lediglich eine geringe
Antriebsleistung gefordert wird. Dieser Betriebszustand erweist sich aufgrund des vergleichsweise guten Wirkungsgrades des Elektromotors in der Praxis als besonders energie- und abgaseffizient.
Der Wechsel zwischen verschiedenen Betriebszuständen, beispielsweise
Betriebszuständen mit laufendem Verbrennungsmotor und Betriebszuständen mit reinem elektrischen Fahren, ist in der Regel auch für den Fahrer eines Kraftfahrzeugs akustisch und/oder haptisch wahrnehmbar. Dies ist dadurch bedingt, dass der Verbrennungsmotor prinzipbedingt eine Drehungleichförmigkeit aufweist. Das abgegebene Drehmoment ist mit einer Drehzahl-proportionalen Frequenz (in der Regel sogar einem ganzen
Frequenzspektrum) moduliert, welche durch die Arbeitstakte des Verbrennungsmotors vorgegeben ist. Diese Schwingungen werden über Motorlager und Antriebsstrang in gedämpfter Form auch auf die Karosserie übertragen und teilen sich dem Fahrer sowohl akustisch als auch durch gespürte Vibrationen (Haptik) mit.
Ein Elektromotor verfügt demgegenüber üblicherweise über eine nahezu gleichmäßige Drehmomentabgabe. Dies ist prinzipiell gegenüber dem Verbrennungsmotor ein Komfort- Vorteil. Dieser Vorteil kann aber in einem Hybrid-Fahrzeug zum Nachteil werden, nämlich dann, wenn beim Umschalten von einem Betriebszustand in einen zweiten Betriebszustand, beispielsweise von reinem elektrischen Fahren auf Fahren mit
Verbrennungsmotor, sich ohne für den Fahrer nachvollziehbaren Grund (d. h. in der Regel ohne dass der Fahrer dieses Umschalten selbst initiiert hat) schlagartig die akustische und gefühlte Wahrnehmung, d. h. die Fahreigenschaften und/oder das Fahrverhalten des Kraftfahrzeugs, ändern. Erst im direkten Vergleich zwischen dem "leisen" elektrischen Betrieb und dem Betrieb des Verbrennungsmotors wird deutlich, wie "laut" der Verbrennungsantrieb ist.
Offenbarung der Erfindung
Vorteile der Erfindung
Es wird daher ein Verfahren zur Steuerung eines Hybridantriebs, insbesondere für den Einsatz im Kraftfahrzeugbereich, vorgeschlagen, welches die beschriebenen Nachteile der bekannten Verfahren zumindest weitgehend vermeidet und die Fahreigenschaften von
Kraftfahrzeugen mit Hybridantrieben verbessert. Insbesondere wird dabei der für den Fahrer hör- und spürbare Unterschied zwischen einem Fahren mit unterschiedlichen Nutzungen eines Verbrennungsmotors reduziert. Weiterhin wird ein Hybridantrieb vorgeschlagen, welcher eingerichtet ist, um das erfindungsgemäße Verfahren gemäß einer der im Folgenden beschriebenen Ausgestaltungen durchzuführen, sowie ein
Computerprogramm zur Durchführung des Verfahrens.
Der Hybridantrieb weist mindestens einen Verbrennungsmotor und mindestens eine Elektromaschine mit mindestens einer Elektromotorfunktion und mindestens einer Generatorfunktion auf. Beispielsweise kann ein aus dem Stand der Technik bekannter
Hybridantrieb in einer der oben beschriebenen Konfigurationen eingesetzt werden.
Ein Grundgedanke der Erfindung besteht darin, dass der Hybridantrieb derart betrieben wird, dass mindestens ein Modulations-Betriebszustand vorgesehen ist. In diesem mindestens einen Modulations-Betriebszustand wird mindestens eine Betriebsgröße der mindestens einen Elektromotorfunktion, insbesondere ein Elektromotor-Drehmoment und/oder eine Elektromotor-Drehzahl und/oder eine Elektromotor-Leistung, mit einem vorgegebenen Frequenzspektrum moduliert. Vorzugsweise kann diese Modulation durch Modulation eines Elektromotorstroms mit mindestens einer Modulationsamplitude und mindestens einer Modulationsfrequenz (wobei es sich um eine einzelne
Modulationsfrequenz oder auch um ein Modulationsfrequenzspektrum handeln kann) erfolgen. Auf diese Weise lässt sich eine veränderte Akustik und/oder veränderte Haptik bei Veränderungen des Betriebs des mindestens einen Verbrennungsmotors ausgleichen. Dies kann beispielsweise dann eingesetzt werden, wenn der mindestens eine Modulations-Betriebszustand mindestens einen elektrischen Betriebszustand umfasst, in welchem der mindestens eine Verbrennungsmotor nicht oder nur vermindert betrieben wird. Dabei kann dann beispielsweise eine (oder auch mehrere) "virtuelle Drehzahl" für den mindestens einen Verbrennungsmotor ermittelt werden. Das Frequenzspektrum der Modulation der mindestens einen Betriebsgröße der mindestens einen Elektromotorfunktion kann dann vorzugsweise entsprechend dieser virtuellen Drehzahl gewählt werden. Beispielsweise kann diese virtuelle Drehzahl der Drehzahl entsprechen, mit welcher der mindestens eine Verbrennungsmotor betrieben werden müsste, um bei unveränderten augenblicklichen Antriebseigenschaften des Hybridantriebs den Hybridantrieb ausschließlich mittels des mindestens einen Verbrennungsmotors zu betreiben. Alternativ oder zusätzlich kann die virtuelle Drehzahl auch der Drehzahl entsprechen, mit welcher der mindestens eine Verbrennungsmotor betrieben werden müsste, wenn dieser in der augenblicklichen Fahrsituation eingeschaltet würde. Die aktuelle Fahrsituation ist dabei im Wesentlichen definiert durch den vorliegenden Gesamt-Drehmomentwunsch (das Gesamt-Drehmoment muss aufgebracht werden durch den mindestens einen Verbrennungsmotor in Zusammenwirkung mit der mindestens einen Elektromotorfunktion) und die aktuelle Fahrzeuggeschwindigkeit, bzw., beim
Parallel-Hybrid, eine Getriebeeingangsdrehzahl, welche wiederum vom gerade eingestellten Getriebe-Übersetzungsverhältnis abhängt.
Allerdings lässt sich aus der derart berechneten virtuellen Drehzahl des mindestens einen Verbrennungsmotors in der Regel noch nicht unmittelbar eine Modulationsfrequenz bzw. ein Modulationsspektrum der mindestens einen Elektromotorfunktion ableiten, da zusätzlich noch konstruktive Eigenschaften des mindestens einen Verbrennungsmotors berücksichtigt werden müssen. So sollte insbesondere noch beispielsweise die Zahl der Zylinder und/oder die Taktzahl des mindestens einen Verbrennungsmotors berücksichtigt werden. So berechnet sich beispielsweise die Kreisfrequenz der aufzuprägenden
Modulation aus der zur virtuellen Drehzahl gehörenden Winkelgeschwindigkeit, multipliziert mit der halben Zahl der Zylinder des Verbrennungsmotors. Der Faktor 1A ist dabei dadurch bedingt, dass der Verbrennungsmotor zwei Umdrehungen benötigt, bis alle Zylinder einen Arbeitstakt absolviert haben. Die so berechnete Modulationsfrequenz wird der mindestens einen Elektromotorfunktion aufgeprägt. Da beim Elektromotor das Drehmoment üblicherweise proportional zum eingespeisten Strom ist, wird durch diese aufgeprägte Modulation eine Welligkeit der Momentenabgabe bewirkt, so dass bei geeigneter Modulationsamplitude und/oder
Modulationsfrequenz das Verhalten der mindestens einen Elektromotorfunktion dem Verhalten des mindestens einen Verbrennungsmotors ähnelt. Somit wird auch im rein elektrischen Betrieb eine akustisch und/oder haptisch wahrnehmbare Schwingung auf die Karosserie übertragen. Der Fahrer nimmt dadurch den Unterschied zwischen elektrischem Betrieb und Betrieb mit Verbrennungsmotor nicht mehr oder nur noch verringert wahr.
Die Modulationsamplitude und/oder die Modulationsfrequenz ist dabei vorzugsweise kein fest vorgegebener Wert, sondern hängt vor allem auch von der Drehzahl und dem mittleren abgegebenen Drehmoment bzw. der Motorlast ab. Tendenziell ist die
Modulationsamplitude bei hoher Last größer als bei niedriger Last und bei geringer Drehzahl höher als bei hoher Drehzahl. Beispielsweise können entsprechende Modulationsfrequenzen und/oder Modulationsamplituden für vorgegebenen Betriebszustände des Hybridantriebs in einer Tabelle (beispielsweise einer elektronischen Tabelle, zum Beispiel einer Look-up-Table) abgelegt und bei Bedarf abgerufen werden.
Auch eine Online-Berechnung mit vorgegebenen Algorithmen ist denkbar. Somit kann, beispielsweise abhängig vom geforderten Drehmoment und der virtuellen Drehzahl des Verbrennungsmotors, Modulationsamplitude und/oder Modulationsfrequenz entsprechend gewählt bzw. berechnet werden, um damit mittels der mindestens einen Elektromotorfunktion das akustische Verhalten und/oder Schwingungsverhalten des mindestens einen Verbrennungsmotors möglichst gut nachzubilden.
Die erfindungsgemäße Idee kann auf verschiedene Weisen vorteilhaft weitergebildet werden. So kann beispielsweise die Modulation derart gewählt werden, dass der Hybridantrieb in allen Betriebszuständen eine zumindest im Wesentlichen konstante
Drehmoment- Welligkeit und damit ein im Wesentlichen gleiches Fahrverhalten aufweist.
In Betriebszuständen, in denen der mindestens eine Verbrennungsmotor und die mindestens eine Elektromotorfunktion gleichzeitig betrieben werden ("hybridisches Fahren") findet bei gegebener Fahrsituation eine Entlastung des mindestens einen Verbrennungsmotors statt. Im Vergleich zum Fahren ausschließlich mit Verbrennungsmotor erzeugt aufgrund der Lastabhängigkeit der Drehungleichförmigkeit der mindestens eine Verbrennungsmotor eine geringere Drehmoment- Welligkeit. Um in der gleichen Fahrsituation unabhängig von der Verteilung des Gesamtmoments immer die gleiche Drehmoment- Welligkeit zu erzeugen, kann auch bei hybridischem Fahren die mindestens eine Elektromotorfunktion durch Aufprägen einer Strom- und damit Drehmomentmodulation moduliert werden. Die Amplitude der Modulation ist dabei umso größer, je geringer der Anteil des Verbrennungsmotors am Gesamtdrehmoment ist.
Alternativ oder zusätzlich kann das beschriebene Konzept der Modulation der mindestens einen Betriebsgröße der mindestens einen Elektromotorfunktion auch zur Schwingungsdämpfung genutzt werden. So kann der mindestens eine Modulations- Betriebszustand beispielsweise mindestens einen Dämpfungs-Betriebszustand umfassen, in welchem durch die Modulation der mindestens einen Betriebsgröße der mindestens einen Elektromotorfunktion eine aktive Schwingungsdämpfung von Schwingungen des mindestens einen Verbrennungsmotors herbeigeführt wird. Diese Weiterbildung kann insbesondere dann genutzt werden, wenn der mindestens eine Dämpfungs- Betriebszustand mindestens einen Lade-Betriebszustand umfasst, in welchem durch die mindestens eine Generatorfunktion mindestens ein Energiespeicher, insbesondere eine
Batterie, aufgeladen wird.
Beim Hybridantrieb existieren Betriebszustände, in welchen der mindestens eine Verbrennungsmotor mehr Drehmoment erzeugt, als in der aktuellen Fahrsituation erforderlich ist. Der Überschuss wird dabei zum Laden des mindestens einen
Energiespeichers (zum Beispiel einer Batterie und/oder Kondensatoren) verwendet, indem die mindestens eine Elektromaschine mit der mindestens einen Generatorfunktion generatorisch betrieben wird. Aufgrund der dabei erhöhten Last erzeugt der mindestens eine Verbrennungsmotor eine größere Drehmoment- Welligkeit im Vergleich zu einem Betrieb ohne Laden des mindestens einen Energiespeichers. Diese erhöhte Drehmoment-
Welligkeit im Generatorbetrieb, welche sich wiederum akustisch und/oder haptisch für den Fahrer bemerkbar macht, kann gemäß der beschriebenen Weiterbildung der Erfindung im Dämpfungs-Betriebszustand beispielsweise dadurch ausgeglichen werden, dass die Modulation der mindestens einen Betriebsgröße der mindestens einen Elektromotorfunktion entsprechend angepasst wird. Beispielsweise kann eine Phasenverschiebung einer Strommodulation der mindestens einen Elektromotorfunktion erfolgen, vorzugsweise um 180 Grad. Bei entsprechender Wahl der Amplitude und Phasenverschiebung erfolgt dann eine destruktive Interferenz zwischen den von der mindestens einen Elektromotorfunktion und den von dem mindestens einen
Verbrennungsmotor erzeugten Schwingungen, so dass beispielsweise die durch den Generatorbetrieb erhöhte Welligkeit ganz oder teilweise eliminiert werden kann.
Im übrigen ist das beschriebene Konzept der Modulation der mindestens einen Betriebsgröße der mindestens einen Elektromotorfunktion auch für eine allgemeine
Schwingungsdämpfung in sonstigen Betriebszuständen möglich. So können beispielsweise ein oder mehrere Schwingungssensoren vorgesehen sein, beispielsweise an einer Fahrzeugkarosserie und/oder Armaturen bzw. einem Lenkrad des
Kraftfahrzeugs. Anhand der von diesem mindestens einen Schwingungssensor ermittelten Schwingungen (beispielsweise Frequenzspektrum und/oder Schwingungsamplituden und/oder Phasen) kann dann die Modulation der mindestens einen Betriebsgröße der mindestens einen Elektromotorfunktion nach den üblichen Berechnungsmethoden der
Schwingungsdämpfung erfolgen und die mindestens eine Elektromotorfunktion entsprechend moduliert werden.
Kurze Beschreibung der Zeichnungen
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Figur 1 ein erstes Ausführungsbeispiel eines erfindungsgemäßen Hybridantriebs in Parallelhybrid- Anordnung;
Figur 2 ein zweites Ausführungsbeispiel eines Hybridantriebs in verzweigter Anordnung; und
Figur 3 einen schematischen Ablaufplan eines Ausführungsbeispiels eines erfindungsgemäßen Verfahrens zur Steuerung eines Hybridantriebs. In den Figuren 1 und 2 sind zwei verschiedene Ausfuhrungsbeispiele von Hybridantrieben 110 dargestellt, welche verdeutlichen sollen, dass der erfindungsgemäße Gedanke grundsätzlich in allen möglichen Hybridanordnungen einsetzbar ist.
So zeigt das Ausfuhrungsbeispiel in Figur 1 einen Hybridantrieb 110 in Parallelhybrid-
Anordnung. Der Hybridantrieb 110 weist einen Verbrennungsmotor 112 auf, welcher von einem Kraftstofftank 114 mit Kraftstoff gespeist wird. Abtriebsseitig ist der Verbrennungsmotor 112 über ein erstes Kupplungselement 116 mit einer Elektromaschine 118 verbunden. Diese Elektromaschine 118 übernimmt in der Parallelhybrid- Anordnung gemäß Figur 1 gleichzeitig eine Elektromotorfunktion 120 und eine Generatorfunktion 122.
Die Elektromotorfunktion 120 kommt beispielsweise bei hybridischem Fahren oder rein elektrischem Fahren zum Einsatz. Zu diesem Zweck ist die Elektromaschine 118 abtriebsseitig über ein zweites Kupplungselement 124 mit einem Getriebe 126 verbunden. Beispielsweise kann es sich dabei um ein kontinuierliches variables Getriebe (Englisch: Continuous Variable Transmission, CVT) oder auch um eine elektrisches kontinuierliches variables Getriebe (Englisch: Electric CVT) handeln. Dieses Getriebe 126 ist wiederum abtriebsseitig mit einem Achsgetriebe 128 verbunden, über welches ein oder mehrere Antriebsräder 130 angetrieben werden.
Im elektromotorischen Fahrbetrieb bezieht die Elektromotorfunktion 120 elektrische Energie von einem Energiespeicher 132, welcher hier in Form einer Batterie dargestellt ist. Alternativ oder zusätzlich können auch andere Arten von Energiespeichern 132 vorgesehen sein, beispielsweise Kondensatoren.
Alternativ kann die Elektromaschine 118 auch im Generatorbetrieb betrieben werden, wobei in diesem Betriebszustand die Generatorfunktion 122 zum Einsatz kommt. Dieser Generatorbetrieb tritt beispielsweise bei der Bremsenergie-Rekuperation auf, bei welcher kinetische Energie über die Generatorfunktion 122 und einen elektrischen Konverter 134 genutzt wird, um den Energiespeicher 132 aufzuladen. Auch ein Antrieb der Generatorfunktion 122 über den Verbrennungsmotor 112 ist möglich. Weiterhin sind als Bestandteile des Hybridantriebs 110 in Figur 1 ein Lastregler 136 und ein Motorsteuerungsgerät 138 dargestellt. Beide Komponenten 136, 138 können beispielsweise mit Hilfe eines oder mehrerer Mikrocomputersysteme, beispielsweise eines oder mehrerer eingebetteter Systeme, realisiert werden. Derartige Systeme sind aus dem Stand der Technik bekannt, wobei diese im vorliegenden Ausführungsbeispiel erfindungsgemäß modifiziert werden.
Während der Lastregler 136 im Wesentlichen dazu dient, eine Lastverteilung zwischen Verbrennungsmotor 112 und Elektromaschine 118 zu bewerkstelligen, dient das Motorsteuerungsgerät 138 zur Steuerung des Verbrennungsmotors 112. Beide Systeme verarbeiten Bedarfsgrößen und Ist-Größen, beispielsweise eine aktuelle Fahrzeuggeschwindigkeit, Drehzahlen, Drehmomente und/oder den (beispielsweise durch Betätigen eines Gaspedals) übermittelten Fahrerwunsch. Entsprechend wird die Lastverteilung zwischen Elektromaschine 118 und Verbrennungsmotor 112 eingestellt, d. h. es werden verschiedene Betriebszustände des Verbrennungsmotors 112 gewählt. Ein möglicher Betriebszustand ist beispielsweise dabei der bereits oben beschriebenen Betriebszustand, in welchem der Verbrennungsmotor 112 abgeschaltet wird und, beispielsweise nach Öffnen des ersten Kupplungselements 116, der Antrieb des Kraftfahrzeugs vollständig von der Elektromotorfunktion 120 übernommen wird. Ein weiterer möglicher Betriebszustand ist der oben beschriebene Generatorbetrieb, bei welchem die Generatorfunktion 112 zum Aufladen des Energiespeichers 132 genutzt wird. Dieser Generatorbetrieb kann sich wiederum in verschiedene Betriebszustände unterteilen, je nachdem, ob beispielsweise eine Bremsenergie-Rekuperation stattfindet (geöffnetes erstes Kupplungselement 116), oder ob ein Antrieb der Generatorfunktion 122 bei geschlossenem ersten Kupplungselement 116 über den Verbrennungsmotor 112 erfolgt. Daneben existieren mehrere hybridische Fahrzustände, bei welchen Verbrennungsmotor 112 und Elektromotorfunktion 120 gemeinsam den Antrieb des Kraftfahrzeugs bewerkstelligen.
In Figur 2 ist ein Ausführungsbeispiel eines Hybridantriebs 110 in so genannter verzweigter Anordnung dargestellt. Bei der dargestellten verzweigten Anordnung ist ebenfalls wieder ein Verbrennungsmotor 112, versorgt von einem Kraftstofftank 114, und eine Elektromaschine 118 vorgesehen. Im Gegensatz zur Parallel- Anordnung in Figur 1 sind bei der Elektromaschine 118 im verzweigten Antrieb jedoch die Elektromotorfunktion 120 und die Generatorfunktion 122 getrennt. Dementsprechend ist der Verbrennungsmotor 112 mit seiner Abtriebswelle zunächst mit einem Getriebeelement 140 verbunden, bei welchem es sich üblicherweise (was im Folgenden angenommen wird) um ein Planetengetriebe handelt. Das Getriebeelement 140 ist wiederum mit dem Antrieb der Elektromotorfunktion 120 verbunden, deren Abtrieb wiederum mit dem Achsgetriebe 128 verbunden ist. Weiterhin ist das Getriebeelement 140 mit dem Antrieb der Generatorfunktion 122 verbunden, über welche mittels des elektrischen Konverters 134 der Energiespeicher 132 aufgeladen werden kann. Die Elektromotorfunktion 120 kann elektrische Energie unmittelbar aus dem elektrischen Energiespeicher 132 beziehen.
Wiederum sind auch hier in dem Hybridantrieb 110 gemäß Figur 2 in der verzweigten Anordnung ein Lastregler 136 und ein Motorsteuerungsgerät 138 vorgesehen. Die Funktion dieser Komponenten 136, 138 entspricht im Wesentlichen der Funktion, wie sie anhand von Figur 1 beschrieben wurde. Mittels des Lastreglers 136 erfolgt, analog zur obigen Beschreibung, eine Einstellung der Betriebszustände und eine Lastverteilung zwischen Elektromotorfunktion 120 und Verbrennungsmotor 112. Gleichzeitig wird dabei üblicherweise auch das Getriebeelement 140, bei welchem es sich zumeist um ein einstellbares Getriebe handelt, durch den Lastregler 136 angesteuert, so dass beispielsweise das Übersetzungsverhältnis des Getriebes eine weitere einstellbare
Betriebsgröße darstellt.
Die beiden Hybridantriebe 110 gemäß den Ausführungsbeispielen in den Figuren 1 und 2 sind lediglich beispielhafte Darstellungen von Hybridantrieben 110, in welchen sich die Erfindung realisieren lässt. Als Beispiel der Funktionsweise ist in Figur 3 ein
Ausführungsbeispiel eines erfindungsgemäßen Verfahrens zur Steuerung des Hybridantriebs 110 gemäß einem der oben gezeigten Ausführungsbeispiele dargestellt. Die gezeigten Verfahrensschritte werden vorzugsweise (jedoch nicht notwendigerweise) in der dargestellten Reihenfolge durchgeführt, wobei jedoch auch zusätzliche, nicht dargestellte Verfahrensschritte durchgeführt werden können. Auch können einzelne
Verfahrensschritte wiederholt oder zeitlich parallel durchgeführt werden. Das dargestellte Verfahren gemäß Figur 3 kann beispielsweise in Form eines Computerprogramms, üblicherweise realisiert durch entsprechenden Programmcode, umgesetzt werden, wobei dieses Computerprogramm vorzugsweise auf einem Mikrocomputer, beispielsweise auf dem Lastregler 136 und/oder dem Motorsteuerungsgerät 138, ausgeführt wird. Dabei laufen die dargestellten Verfahrensschritte in der Regel zusätzlich zu den üblichen Verfahrensschritten ab, welche beispielsweise im Lastregler 136 und/oder im Motorsteuerungsgerät 138 vorgesehen sind, um den üblichen, aus dem Stand der Technik bekannten Betrieb des Hybridantriebs 110 zu gewährleisten.
In einem ersten Verfahrensschritt 310 werden dabei verschiedene Betriebsparameter in das Verfahren eingelesen. Beispielsweise kann es sich dabei um eine aktuelle Fahrzeuggeschwindigkeit und/oder eine aktuelle Beschleunigungsanforderung handeln. Dieses Einlesen gemäß dem Schritt 310 erfolgt bereits in herkömmlichen
Hybridantrieben 110, um entsprechend eine Motorsteuerung vornehmen zu können, beispielsweise um ein entsprechendes Drehmoment berechnen zu können. Alternativ oder zusätzlich können in diesem Schritt beispielsweise auch Sensorsignale mindestens eines (in den Figuren nicht dargestellten) Schwingungssensors zur Aufnahme von Fahrzeugschwingungen eingelesen werden.
In Schritt 312 erfolgt dann im Lastregler 136 eine entsprechende Ermittlung eines Betriebszustandes. Auch dieser Schritt ist aus herkömmlichen Hybridantrieben 110 prinzipiell bekannt. Hierbei erfolgt beispielsweise eine Lastverteilung zwischen Verbrennungsmotor 112 und Elektromotorfunktion 120. Beispielsweise kann diese
Betriebszustandsermittlung anhand der in Schritt 310 eingelesenen Betriebsparameter erfolgen, indem auf vorgegebene Betriebszustände (beispielsweise in einer Tabelle hinterlegte Betriebszustandparameter) zurückgegriffen wird. Auch eine kontinuierliche Anpassung der Betriebszustände ist denkbar.
Wie oben beschrieben erfolgt dann, entsprechend den in 310 ermittelten Betriebszustands 110 in Schritt 314 in diesem Ausführungsbeispiel die Ermittlung einer virtuellen Drehzahl des Verbrennungsmotors 112. Anschließend wird in Verfahrensschritt 116 aus dieser virtuellen Drehzahl eine geeignete Modulation mindestens einer Betriebsgröße der mindestens einen Elektromotorfunktion 120 ermittelt. Vorzugsweise handelt es sich dabei um eine Modulation eines Elektromotorstroms der Elektromotorfunktion 120. Zu diesem Zweck können beispielsweise, was in Figur 3 mit Bezugsziffer 318 bezeichnet ist, verschiedene Modulationsparameter eingelesen werden, welche vorzugsweise bekannte Motoreigenschaften, insbesondere Eigenschaften des Verbrennungsmotors 112 beinhalten. Diese Modulationsparameter können beispielsweise in einer Tabelle, insbesondere einer Look-up-Table, hinterlegt sein und beinhalten beispielsweise für den Betriebszustand und die ermittelte virtuelle Drehzahl optimale Modulationsfrequenzen (bzw. Modulationsfrequenzspektren), Modulationsphasen und/oder Modulationsamplituden.
Die auf diese Weise ermittelte optimale Modulation für den jeweiligen Betriebszustand wird anschließend in Verfahrensschritt 318 genutzt, um die Elektromotorfunktion 120 entsprechend anzusteuern. Diese Ansteuerung kann beispielsweise durch den Lastregler 136 direkt erfolgen, oder es kann auch eine Übergabe der Modulationsinformationen an eine separate, in den Figuren 1 und 2 nicht dargestellte Steuerung der Elektromotorfunktion 120 erfolgen. Auf diese Weise kann dann der Elektromotorstrom, mit welchem die Elektromotorfunktion 120 betrieben wird, entsprechend moduliert werden.

Claims

Ansprüche
1. Verfahren zur Steuerung eines Hybridantriebs (110), wobei der Hybridantrieb (110) mindestens einen Verbrennungsmotor (112) und mindestens eine Elektromaschine (118) mit mindestens einer Elektromotorfunktion (120) und mindestens einer Generatorfunktion (122) aufweist, dadurch gekennzeichnet, dass mindestens ein
Modulations-Betriebszustand des Hybridantriebs (110) vorgesehen ist, wobei in dem mindestens einen Modulations-Betriebszustand des Hybridantriebs (110) mindestens eine Betriebsgröße der mindestens einen Elektromotorfunktion (120), insbesondere ein Elektromotordrehmoment und/oder eine Elektromotordrehzahl und/oder eine Elektromotorleistung, mit einem vorgegebenen Frequenzspektrum moduliert wird.
2. Verfahren gemäß dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Modulation durch eine Modulation eines Elektromotorstroms mit mindestens einer Modulationsamplitude, mindestens einer Modulationsfrequenz und mindestens einer Modulationsphase erfolgt.
3. Verfahren gemäß einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine Modulations-Betriebszustand mindestens einen elektrischen Betriebszustand umfasst, wobei in dem mindestens einen elektrischen Betriebszustand der mindestens eine Verbrennungsmotor (112) nicht oder nur vermindert betrieben wird, wobei eine virtuelle Drehzahl für den mindestens einen Verbrennungsmotor (112) ermittelt wird, wobei das Frequenzspektrum der Modulation der mindestens einen Betriebsgröße der mindestens einen Elektromotorfunktion (120) entsprechend der virtuellen Drehzahl gewählt wird.
4. Verfahren gemäß dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die virtuelle Drehzahl nach mindestens einer der folgenden Methoden ermittelt wird:
- die virtuelle Drehzahl entspricht der Drehzahl, mit welcher der mindestens eine Verbrennungsmotor (112) betrieben werden müsste, um bei unveränderten augenblicklichen Antriebseigenschaften des Hybridantriebs (110) den Hybridantrieb (110) ausschließlich mittels des mindestens einen Verbrennungsmotors (112) zu betreiben;
- die virtuelle Drehzahl entspricht der Drehzahl, mit welcher der mindestens eine Verbrennungsmotor (112) betrieben werden müsste, wenn dieser in der augenblicklichen
Fahrsituation zugeschaltet würde.
5. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass weiterhin eine Modulationsamplitude ausgewählt wird.
6. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Modulation derart gewählt wird, dass der Hybridantrieb (110) in allen Betriebszuständen zumindest im Wesentlichen konstante Drehmomentwelligkeit aufweist.
7. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine Modulations-Betriebszustand mindestens einen Dämpfungs- Betriebszustand umfasst, in welchem durch die Modulation der mindestens einen Betriebsgröße der mindestens einen Elektromotorfunktion (120) eine aktive Schwingungsdämpfung von Schwingungen des mindestens einen Verbrennungsmotors
(112) herbeigeführt wird.
8. Verfahren gemäß dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der mindestens eine Dämpfungs-Betriebszustand mindestens einen Lade-Betriebszustand umfasst, in welchem durch die mindestens eine Generatorfunktion (122) mindestens ein
Energiespeicher (132), insbesondere eine Batterie, aufgeladen wird.
9. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mittels mindestens eines Schwingungssensors mindestens eine Schwingung eines den Hybridantrieb (110) beinhaltenden Kraftfahrzeugs ermittelt wird, wobei die
Modulation der mindestens einen Betriebsgröße der mindestens einen Elektromotorfunktion (120) gewählt wird, um diese mindestens eine Schwingung zu dämpfen.
10. Hybridantrieb (110) mit mindestens einem Motorsteuerungsgerät (138) und/oder mindestens einem Lastregler (136), wobei das mindestens eine Motorsteuerungsgerät (138) und/oder der mindestens eine Lastregler (136) eingerichtet sind, um ein Verfahren nach einem der vorhergehenden Verfahrenansprüche durchzuführen.
11. Computerprogramm mit Programmcode zur Durchführung des Verfahrens gemäß einem der vorhergehenden Verfahrensansprüche, wenn das Programm auf einem Computer oder Computer-Netzwerk, insbesondere auf einem Motorsteuerungsgerät (138) und/oder einem Lastregler (136), ausgeführt wird
PCT/EP2007/055525 2006-08-03 2007-06-05 Verfahren zur verbesserung der fahreigenschaften eines hybridantriebs WO2008015041A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006036217A DE102006036217A1 (de) 2006-08-03 2006-08-03 Verfahren zur Verbesserung der Fahreigenschaften eines Hybridantriebs
DE102006036217.9 2006-08-03

Publications (1)

Publication Number Publication Date
WO2008015041A1 true WO2008015041A1 (de) 2008-02-07

Family

ID=38515410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/055525 WO2008015041A1 (de) 2006-08-03 2007-06-05 Verfahren zur verbesserung der fahreigenschaften eines hybridantriebs

Country Status (2)

Country Link
DE (1) DE102006036217A1 (de)
WO (1) WO2008015041A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11420614B2 (en) * 2018-10-29 2022-08-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Anti-jerk engagement

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007043736A1 (de) * 2007-09-13 2009-03-19 Daimler Ag Verfahren und Vorrichtung zum Betreiben eines einen Verbrennungsmotor und einen Elektromotor umfassenden Antriebsstranges eines Kraftfahrzeugs
DE102010022912B4 (de) * 2010-05-31 2015-08-13 Gertrag Ford Transmissions Gmbh Verfahren zum Ansteuern eines Kraftfahrzeug-Antriebsstranges
DE102012204599A1 (de) * 2012-03-22 2013-09-26 Robert Bosch Gmbh Steuervorrichtung zum Ansteuern mindestens eines Aktors für ein Kraftfahrzeug und Verfahren zum Ansteuern mindestens eines Aktors für ein Kraftfahrzeug
AT513529B1 (de) 2012-10-25 2015-05-15 Ivd Prof Hohenberg Gmbh Verfahren zur Drehschwingungsberuhigung in einem Antriebsstrang
DE102013113658B4 (de) 2013-12-06 2022-04-14 Audi Ag Verfahren zum Betreiben eines Triebstranges
DE102016225316A1 (de) 2016-12-16 2018-06-21 Volkswagen Aktiengesellschaft Verfahren zur Schwingungsreduktion in einem Hybridantrieb

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532163A1 (de) * 1995-08-31 1997-03-06 Clouth Gummiwerke Ag System zur aktiven Verringerung von Drehungleichförmigkeiten einer Welle, insbesondere der Triebwelle eines Verbrennungsmotors, und Verfahren hierzu
DE19721298A1 (de) * 1997-05-21 1998-11-26 Mannesmann Sachs Ag Hybrid-Fahrantrieb für ein Kraftfahrzeug
EP1365170A1 (de) * 2002-05-25 2003-11-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Bedämpfung von Drehmomentschwankungen im Antriebsstrang eines Kraftfahrzeugs
US20030229429A1 (en) * 2002-06-05 2003-12-11 Visteon Global Technologies, Inc. Engine engagement control for a hybrid electric vehicle
DE102005015484A1 (de) * 2005-04-05 2006-05-18 Daimlerchrysler Ag Antriebsstrang eines Fahrzeuges und Verfahren zur Steuerung eines Antriebsstranges

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532163A1 (de) * 1995-08-31 1997-03-06 Clouth Gummiwerke Ag System zur aktiven Verringerung von Drehungleichförmigkeiten einer Welle, insbesondere der Triebwelle eines Verbrennungsmotors, und Verfahren hierzu
DE19721298A1 (de) * 1997-05-21 1998-11-26 Mannesmann Sachs Ag Hybrid-Fahrantrieb für ein Kraftfahrzeug
EP1365170A1 (de) * 2002-05-25 2003-11-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Bedämpfung von Drehmomentschwankungen im Antriebsstrang eines Kraftfahrzeugs
US20030229429A1 (en) * 2002-06-05 2003-12-11 Visteon Global Technologies, Inc. Engine engagement control for a hybrid electric vehicle
DE102005015484A1 (de) * 2005-04-05 2006-05-18 Daimlerchrysler Ag Antriebsstrang eines Fahrzeuges und Verfahren zur Steuerung eines Antriebsstranges

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11420614B2 (en) * 2018-10-29 2022-08-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Anti-jerk engagement

Also Published As

Publication number Publication date
DE102006036217A1 (de) 2008-02-07

Similar Documents

Publication Publication Date Title
DE102011111426B4 (de) Verfahren zum Steuern eines Hybridantriebsstrangs, um Batterieleistungs-und Drehmomentreserve für einen Kraftmaschinenstart zu gewährleisten, und Hybridanstriebsstrang mit Steuersystem
DE102007017390B4 (de) Verfahren und System zur Steuerung eines Fahrzeuggetriebes
EP1814754B2 (de) Verfahren zur steuerung eines betriebs eines hybridkraftfahrzeugs sowie hybridfahrzeug
DE102009037195B4 (de) Steuerungssystem und Verfahren zur Drehmomentverwaltung bei einem Hybridfahrzeug, das mit variabler Zylinderabschaltung ausgestattet ist
DE10313338A1 (de) Vorrichtung zum Steuern/Regeln einer Drehmomentschwankung und Computerprogramm
DE102014220998A1 (de) Energiemanagement durch Plug-out-Verfahren für Hybrid-Elektrofahrzeug
DE102015222690A1 (de) Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102011114478A1 (de) Verbesserte Stabilitätssteuerung für einen elektrischen Antriebsstrang
DE102012218017A1 (de) Steuern der Drehmomentwelligkeit in Maschinen mit innerem Permanentmagneten
EP3377378A1 (de) Betreiben einer antriebseinrichtung eines hybridfahrzeuges und hybridfahrzeug
DE102015222692A1 (de) Betreiben einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102005022247A1 (de) Diagnoseverfahren für eine Drehmomentsteuerung eines elektrisch verstellbaren Getriebes
WO2008015041A1 (de) Verfahren zur verbesserung der fahreigenschaften eines hybridantriebs
DE112015002473B4 (de) Hybridfahrzeug und zugehöriges steuerungsverfahren
DE102008054704A1 (de) Verfahren und Vorrichtung zum Betreiben eines Hybridfahrzeuges
DE102014017570B4 (de) Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
EP1966020A1 (de) Verfahren zum betreiben eines hybridfahrzeugs
DE102013113658A1 (de) Verfahren zum Betreiben eines Triebstranges
DE102013106319A1 (de) Fahrzeug und Verfahren zur Leistungsverbesserung bei niedrigen Batteriegrenzen
WO2008015049A1 (de) Vorrichtung zum steuern eines hybridantriebs
DE102007019989A1 (de) Verfahren zum Betreiben eines Hybridantriebs
DE102005044828A1 (de) Verfahren und Vorrichtung zur Ermittlung eines optimalen Betriebspunktes bei Fahrzeugen mit Hybridantrieb
DE102004025460A1 (de) Verfahren zum Betreiben eines Hybridkraftfahrzeugs
WO2012031695A1 (de) Verfahren zur steuerung eines antriebssystems
DE102007014663B4 (de) Verfahren zum Schätzen des Leistungspotenzials der primären Kraftquelle eines Hybridfahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07729904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07729904

Country of ref document: EP

Kind code of ref document: A1