[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008013089A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2008013089A1
WO2008013089A1 PCT/JP2007/064222 JP2007064222W WO2008013089A1 WO 2008013089 A1 WO2008013089 A1 WO 2008013089A1 JP 2007064222 W JP2007064222 W JP 2007064222W WO 2008013089 A1 WO2008013089 A1 WO 2008013089A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
amount
compressor
temperature
circuit
Prior art date
Application number
PCT/JP2007/064222
Other languages
French (fr)
Japanese (ja)
Inventor
Manabu Yoshimi
Tadafumi Nishimura
Shinichi Kasahara
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2008013089A1 publication Critical patent/WO2008013089A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication

Definitions

  • the present invention relates to a function for determining the suitability of the amount of refrigerant in the refrigerant circuit of an air conditioner, in particular, by connecting a compressor, a heat source side heat exchanger ⁇ , an expansion mechanism, and a user side heat exchanger.
  • the present invention relates to a function of determining whether or not the amount of refrigerant in a refrigerant circuit of an air conditioner configured is appropriate.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-304388
  • the inventor of the present application uses a relational expression between the refrigerant amount of each part and the operating state quantity of the refrigerant or component equipment flowing through the refrigerant circuit when the refrigerant circuit is divided into a plurality of parts, and A method of calculating the refrigerant amount of each part from the refrigerant flowing through the circuit or the operating state quantity of the component equipment, and using the refrigerant amount of each part obtained by this calculation to determine the suitability of the refrigerant quantity in the refrigerant circuit
  • the suitability of the refrigerant amount in the refrigerant circuit can be determined with high accuracy while suppressing the calculation load (see # 112005-363732).
  • the amount of refrigerant dissolved in the refrigerating machine oil In particular, it is necessary to ascertain as accurately as possible the amount of refrigerant dissolved in the refrigerating machine oil accumulated in the oil reservoir inside the compressor and reflect it in the calculation of the refrigerant amount. In order to accurately grasp the amount of refrigerant dissolved in the refrigerating machine oil accumulated in such an oil reservoir, the oil reservoir It is necessary to detect the pressure and temperature of the accumulated refrigeration oil and use it to calculate the solubility of the refrigerant in the refrigeration oil.
  • the refrigerating machine oil accumulated in the oil reservoir inside the compressor has a temperature distribution in the refrigerating machine oil due to the temperature of the refrigerant in contact with the refrigerating machine oil and the temperature of the wall of the compressor casing that forms the oil reservoir. It is difficult to detect the exact temperature of the refrigerating machine oil accumulated in the oil reservoir, resulting in a large calculation error in the solubility of the refrigerant in the refrigerating machine oil accumulated in the oil reservoir. In particular, it is not possible to improve the accuracy of determining the appropriateness of the refrigerant amount.
  • An object of the present invention is to accurately grasp the amount of refrigerant dissolved in the refrigeration oil inside the compressor, and to determine whether or not the amount of refrigerant in the refrigerant circuit is appropriate.
  • An air conditioner includes a refrigerant circuit configured by connecting a compressor, a heat source side heat exchange, an expansion mechanism, and a use side heat exchanger, and a cooling circuit that flows through the refrigerant circuit.
  • Refrigerant amount determination means for determining the suitability of the refrigerant amount in the refrigerant circuit based on the operation state quantity of the medium or the component device, and a temperature difference between the refrigerant oil in the compressor and the refrigerant in contact with the refrigerant oil.
  • the maximum value is 50 ° C or less.
  • the maximum temperature difference between the refrigeration oil inside the compressor and the refrigerant in contact with the refrigeration oil is 50 ° C or less, so the temperature distribution of the refrigeration oil inside the compressor Will occur.
  • the amount of refrigerant dissolved in the refrigeration oil inside the compressor so that the suitability of the amount of refrigerant in the refrigerant circuit can be determined with high accuracy.
  • An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect of the invention, wherein the compressor has an oil reservoir that can store refrigerating machine oil therein.
  • the refrigerant is in contact with the upper surface of the refrigerating machine oil accumulated in the oil reservoir inside the compressor.
  • the refrigerating machine oil near the oil upper surface approaches the temperature of the refrigerant, and the compressor casing forms the oil reservoir.
  • the refrigeration oil near the wall of the compressor approaches the wall temperature, that is, the ambient temperature outside the compressor.
  • the refrigeration oil accumulated in the oil reservoir has the temperature of the refrigerant in contact with the oil upper surface and the ambient temperature outside the compressor.
  • the temperature distribution corresponding to the temperature difference of It will be closed.
  • the temperature difference between the temperature of the refrigerant in contact with the upper surface of the oil and the temperature of the refrigeration oil near the wall of the compressor casing forming the oil reservoir is substantially 50 ° C or less. Therefore, the amount of refrigerant dissolved in the refrigeration oil inside the compressor can be accurately grasped, and the suitability of the amount of refrigerant in the refrigerant circuit can be determined with high accuracy.
  • An air conditioner according to a third aspect of the present invention is the air conditioner according to the first or second aspect of the invention, wherein the air conditioner is dissolved in the refrigerating machine oil based on the refrigerant flowing through the refrigerant circuit or the operating state quantity of the component equipment.
  • the apparatus further includes a refrigerant quantity calculating means for calculating the refrigerant quantity in the refrigerant circuit including the dissolved refrigerant quantity that is the refrigerant quantity.
  • the refrigerant amount determining means determines whether the refrigerant amount in the refrigerant circuit is appropriate based on the refrigerant amount calculated by the refrigerant amount calculating means.
  • the maximum value of the temperature difference between the refrigeration oil inside the compressor and the refrigerant in contact with the refrigeration oil is 50 ° C or less, for example, the refrigerant flowing through the refrigerant circuit or Even when calculating the amount of dissolved refrigerant based on the temperature of the refrigerant in contact with the refrigeration oil inside the compressor as one of the operating state quantities of the component equipment, the temperature distribution of the refrigeration oil inside the compressor occurs. Therefore, the calculation error of the solubility of refrigerant in the refrigeration oil inside the compressor is reduced. This makes it possible to accurately grasp the amount of refrigerant that has been dissolved and to accurately grasp the amount of refrigerant that is calculated by the refrigerant amount calculation means. Can be determined with high accuracy.
  • the air conditioner according to the fourth invention is the air conditioner according to the third invention. Therefore, the refrigerant quantity calculating means is an operating state quantity including at least the ambient temperature outside the compressor. Based on this, the amount of dissolved refrigerant is calculated.
  • the amount of dissolved refrigerant is calculated based on the amount of operating state that includes at least the ambient temperature outside the compressor. Therefore, some effects of the temperature distribution of the refrigeration oil inside the compressor are further taken into account. For example, the calculation error of the dissolved refrigerant amount can be further reduced as compared with the case where the dissolved refrigerant amount is calculated based only on the temperature of the refrigerant in contact with the refrigerating machine oil inside the compressor. It becomes like this. As a result, the refrigerant amount calculated by the refrigerant amount calculating means can be grasped more accurately. Therefore, the suitability of the refrigerant amount in the refrigerant circuit can be determined with higher accuracy.
  • FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a schematic longitudinal sectional view of a compressor.
  • FIG. 3 is a control block diagram of the air conditioner.
  • FIG. 4 is a flowchart of a test operation mode.
  • FIG. 5 is a flowchart of an automatic refrigerant charging operation.
  • FIG. 6 is a schematic diagram showing the state of refrigerant flowing in the refrigerant circuit in the refrigerant quantity determination operation (illustration of a four-way switching valve and the like is omitted).
  • FIG. 7 is a flowchart of a pipe volume determination operation.
  • FIG. 8 is a Mollier diagram showing the refrigeration cycle of the air conditioner in the pipe volume judgment operation for the liquid refrigerant communication pipe.
  • FIG. 9 is a Mollier diagram showing the refrigeration cycle of the air conditioner in the pipe volume judgment operation for the gas refrigerant communication pipe.
  • FIG. 10 is a flowchart of an initial refrigerant quantity determination operation.
  • FIG. 11 is a flowchart of a refrigerant leak detection operation mode.
  • FIG. 12 is a diagram showing the relationship between the intake and outdoor temperatures and the temperature of the refrigerating machine oil.
  • FIG. 1 is a schematic configuration diagram of an air-conditioning apparatus 1 according to one embodiment of the present invention.
  • the air conditioner 1 is an apparatus used for air conditioning in a room such as a building by performing a vapor compression refrigeration cycle operation.
  • the air conditioner 1 mainly includes an outdoor unit 2 as a single heat source unit, and indoor units 4 and 5 as a plurality of (two in this embodiment) usage units connected in parallel to the outdoor unit 2.
  • the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 are provided as refrigerant communication pipes connecting the outdoor unit 2 and the indoor units 4 and 5.
  • the outdoor unit 2 the indoor units 4, 5, the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 are connected. It is constituted by.
  • an HFC refrigerant such as R407C, R410A, or R134a is sealed in the refrigerant circuit 10 as a refrigerant.
  • the indoor units 4 and 5 are installed by being embedded or suspended in the ceiling of a room such as a building or by hanging on the wall surface of the room.
  • the indoor units 4 and 5 are connected to the outdoor unit 2 via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 and constitute a part of the refrigerant circuit 10.
  • the configuration of the indoor units 4 and 5 will be described. Since the indoor unit 4 and the indoor unit 5 have the same configuration, only the configuration of the indoor unit 4 will be described here, and the configuration of the indoor unit 5 indicates each part of the indoor unit 4 respectively. Instead of the 40's code, the 50's code is used, and the description of each part is omitted.
  • the indoor unit 4 mainly includes an indoor refrigerant circuit 10a (in the indoor unit 5, the indoor refrigerant circuit 10b) that constitutes a part of the refrigerant circuit 10.
  • the indoor refrigerant circuit 10a mainly has an indoor expansion valve 41 as an expansion mechanism and an indoor heat exchange 42 as a use side heat exchanger.
  • the indoor expansion valve 41 is an electric expansion valve connected to the liquid side of the indoor heat exchanger 42 in order to adjust the flow rate of the refrigerant flowing in the indoor refrigerant circuit 10a.
  • the indoor heat exchange is a cross-fin type fin 'and' tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant evaporator during cooling operation. It is a heat exchanger that functions as a refrigerant condenser during heating operation to heat indoor air.
  • the indoor unit 4 sucks indoor air into the unit, exchanges heat with the refrigerant in the indoor heat exchanger 42, and then supplies the indoor fan 43 as a blower fan to be supplied indoors as supply air.
  • the indoor fan 43 is a fan capable of changing the air volume Wr of air supplied to the indoor heat exchanger 42, and in this embodiment, the centrifugal fan or the multiblade fan driven by the motor 43a that also has DC fan motor power.
  • the indoor unit 4 is provided with various sensors. On the liquid side of the indoor heat exchanger 42, a liquid side temperature sensor 44 that detects the temperature of the refrigerant (that is, the refrigerant temperature corresponding to the condensation temperature Tc during heating operation or the evaporation temperature Te during cooling operation) is provided. ing. A gas side temperature sensor 45 for detecting the refrigerant temperature Teo is provided on the gas side of the indoor heat exchanger 42. An indoor temperature sensor 46 for detecting the temperature of indoor air flowing into the unit (that is, the indoor temperature Tr) is provided on the indoor air inlet side of the indoor unit 4.
  • the liquid side temperature sensor 44, the gas side temperature sensor 45, and the room temperature sensor 46 are composed of thermistors.
  • the indoor unit 4 also has an indoor side control unit 47 that controls the operation of each part constituting the indoor unit 4.
  • the indoor control unit 47 includes a microcomputer, a memory, and the like provided for controlling the indoor unit 4, and a remote controller (not shown) for individually operating the indoor unit 4. Control signals etc. can be exchanged with the outdoor unit 2 and control signals etc. can be exchanged with the outdoor unit 2 via the transmission line 8a.
  • the outdoor unit 2 is installed outside a building or the like, and is connected to the indoor units 4 and 5 via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7. Circuit 10 is configured.
  • the outdoor unit 2 mainly has a refrigerant circuit.
  • the outdoor refrigerant circuit 10c constituting a part of the passage 10 is provided.
  • This outdoor refrigerant circuit 10c mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23 as a heat source side heat exchange, an outdoor expansion valve 38 as an expansion mechanism, an accumulator 24, A supercooler 25 as a temperature adjusting mechanism, a liquid side closing valve 26 and a gas side closing valve 27 are provided.
  • the compressor 21 is a compressor whose operating capacity can be varied.
  • the compressor 21 is a capacity type compressor driven by a compressor motor 73 whose rotation speed Rm is controlled by an inverter.
  • the number of the compressors 21 is only one, but is not limited to this, and two or more compressors may be connected in parallel according to the number of indoor units connected.
  • FIG. 2 is a schematic longitudinal sectional view of the compressor 21.
  • the compressor 21 is a hermetic compressor in which a compression element 72 and a compressor motor 73 are incorporated in a compressor casing 71 that is a vertical cylindrical container.
  • the compressor casing 71 has a substantially cylindrical body plate 71a, an upper end plate 71b welded and fixed to the upper end of the body plate 71a, and a lower end plate 71c welded and fixed to the lower end of the body plate 71a. .
  • a compression element 72 is mainly disposed at the upper part, and a compressor motor 73 is disposed below the compression element 72.
  • the compression element 72 and the compressor motor 73 are connected by a shaft 74 arranged so as to extend in the up-down direction within the compressor casing 71.
  • the compressor casing 71 is provided with a suction pipe 81 so as to penetrate the body plate 71a, and a discharge pipe 82 is provided so as to penetrate the upper end plate 71b.
  • the space where the lower suction pipe 81 communicates with the compression element 72 is the low pressure space Q1 into which the low-pressure refrigerant flows into the compressor casing 71 through the suction pipe 81. It has become. Furthermore, in the present embodiment, an oil reservoir 71d is formed in the lower part of the low-pressure space Q1 to store the refrigerating machine oil necessary for lubricating the compressor 21 (particularly, the compression element 72). In this embodiment, ester oil or ether oil that is compatible with the HFC refrigerant is used as the refrigerating machine oil.
  • the compression element 72 is a mechanism for compressing the refrigerant therein, and this embodiment , A scroll-type compression element is employed, and a suction port 72a for sucking the refrigerant in the low pressure space Q1 is formed in the lower part, and a discharge port 72b for discharging the compressed high-pressure refrigerant is formed in the upper part.
  • a suction port 72a for sucking the refrigerant in the low pressure space Q1 is formed in the lower part
  • a discharge port 72b for discharging the compressed high-pressure refrigerant is formed in the upper part.
  • the space where the discharge pipe 82 on the upper side of the compression element 72 communicates is a high-pressure space Q2 into which high-pressure refrigerant flows through the discharge port 72b of the compression element 72.
  • the compression element 72 is not limited to the scroll type compression element as in the present embodiment, and various types of compression elements such as a rotary type can be used.
  • the shaft 74 is formed with an oil passage 74a that opens to the oil reservoir 71d and communicates with the inside of the compression element 72. Refrigerating machine oil collected in the oil reservoir 71d is formed at the lower end of the oil passage 74a. Is provided with a pump element 74b for supplying the pressure to the compression element 72.
  • the compressor motor 73 is disposed in the low pressure space Q1 below the compression element 72, and an annular stator 73a fixed to the inner surface of the compressor casing 71 and a slight gap on the inner peripheral side of the stator 73a. And a rotor 73b accommodated in a freely rotatable manner.
  • a low-pressure refrigerant flows into the low-pressure space Q1 of the compressor casing 71 through the suction pipe 81 and is compressed by the compression element 72 to be high-pressure. Then, the refrigerant flows out from the high-pressure space Q2 of the compressor casing 71 through the discharge pipe 82.
  • the low-pressure refrigerant that has flowed into the low-pressure space Q1 is mainly composed of the refrigerating machine oil accumulated in the oil sump 71d as shown by the arrow drawn with a two-dot chain line indicating the flow of the suction refrigerant in FIG.
  • the gap between the compressor motor 73 and the compressor casing 71 rises through the gap between the stator 73a and the rotor 73b and moves toward the suction port 72a formed at the lower part of the compression element 72. Will flow.
  • the refrigerating machine oil accumulated in the oil reservoir 71d is in contact with the coolant, so that the refrigerating machine oil near the oil upper surface approaches the temperature of the refrigerant, and the compressor forming the oil reservoir 71d Since the refrigeration oil near the wall surface of the lower part of the casing 71 (mainly the lower end plate 71c) approaches the temperature of the wall surface, that is, the ambient temperature outside the compressor 21, the refrigeration oil accumulated in the oil reservoir 71d contains oil. A temperature distribution corresponding to the temperature difference between the temperature of the refrigerant in contact with the oil upper surface of the reservoir 71d and the ambient temperature outside the compressor 21 is generated. However, the refrigerant in contact with the oil upper surface of the oil reservoir 71d is steamed during the cooling operation.
  • the temperature difference from the ambient temperature outside the compressor 21 is within 50 ° C at the maximum. That is, in the air conditioner 1 of the present embodiment, the maximum value of the temperature difference between the refrigerating machine oil accumulated in the oil reservoir 71d inside the compressor 21 and the refrigerant in contact with the refrigerating machine oil is 50 ° C. or less. The temperature distribution of the refrigerating machine oil collected in the oil reservoir 71d inside the compressor 21 is generated.
  • the four-way switching valve 22 is a valve for switching the flow direction of the refrigerant.
  • the outdoor heat exchanger 23 serves as a refrigerant condenser compressed by the compressor 21, and the indoor
  • the heat exchangers 42 and 52 to function as an evaporator for the refrigerant condensed in the outdoor heat exchanger 23
  • the discharge side of the compressor 21 and the gas side of the outdoor heat exchanger 23 are connected and the suction side of the compressor 21 ( Specifically, the accumulator 24) and the gas refrigerant communication pipe 7 side are connected (see the solid line of the four-way selector valve 22 in Fig. 1), and the indoor heat exchangers 42 and 52 are connected to the compressor 21 during heating operation.
  • the discharge side of the compressor 21 and the gas refrigerant communication pipe 7 side and the suction side of the compressor 21 and the gas side of the outdoor heat exchange Can be connected (see the dashed line of the four-way selector valve 22 in FIG. 1).
  • the outdoor heat exchange is a cross-fin type fin 'and' tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant condenser during cooling operation. This is heat exchange that functions as a refrigerant evaporator during heating operation.
  • the outdoor heat exchanger 23 has a gas side connected to the four-way switching valve 22 and a liquid side connected to the liquid coolant communication pipe 6.
  • the outdoor expansion valve 38 is an electric expansion valve connected to the liquid side of the outdoor heat exchanger 23 in order to adjust the pressure and flow rate of the refrigerant flowing in the outdoor refrigerant circuit 10c.
  • the outdoor unit 2 is a blower fan for sucking outdoor air into the unit and exchanging heat with the refrigerant in the outdoor heat exchanger 23 and then discharging it to the outdoor. All outdoor fans 28 are provided.
  • the outdoor fan 28 is a fan capable of changing the air volume Wo of the air supplied to the outdoor heat exchanger ⁇ 23.
  • the outdoor fan 28 is a propeller fan or the like driven by a motor 28a having a DC fan motor power. is there.
  • the accumulator 24 is connected between the four-way switching valve 22 and the compressor 21, and removes excess refrigerant generated in the refrigerant circuit 10 in accordance with fluctuations in the operation load of the indoor units 4 and 5. It is a container that can be stored.
  • the subcooler 25 is a double-pipe heat exchanger, and is provided to cool the refrigerant sent to the indoor expansion valves 41 and 51 after being condensed in the outdoor heat exchanger 23. ing.
  • the supercooler 25 is connected between the outdoor expansion valve 38 and the liquid side closing valve 26.
  • a bypass refrigerant circuit 61 as a cooling source for the subcooler 25 is provided.
  • the part excluding the bypass refrigerant circuit 61 from the refrigerant circuit 10 will be referred to as a main refrigerant circuit for convenience.
  • the bypass refrigerant circuit 61 is provided in the main refrigerant circuit so that a part of the refrigerant sent from the outdoor heat exchanger 23 to the indoor expansion valves 41, 51 is branched from the main refrigerant circuit and returned to the suction side of the compressor 21. It is connected. Specifically, the bypass refrigerant circuit 61 connects a part of the refrigerant sent from the outdoor expansion valve 38 to the indoor expansion valves 41 and 51 so that the positional force between the outdoor heat exchanger and the subcooler 25 also branches. And the junction circuit 61b connected to the suction side of the compressor 21 so as to return to the suction side of the compressor 21 from the outlet of the bypass refrigerant circuit side of the subcooler 25. .
  • the branch circuit 61a is provided with a bypass expansion valve 62 for adjusting the flow rate of the refrigerant flowing through the bypass refrigerant circuit 61.
  • the bypass expansion valve 62 also has an electric expansion valve force.
  • the refrigerant sent from the outdoor heat exchanger 23 to the indoor expansion valves 41 and 51 is cooled by the refrigerant flowing in the bypass refrigerant circuit 61 after being depressurized by the no-pass expansion valve 62 in the supercooler 25. That is, the capacity control of the subcooler 25 is performed by adjusting the opening degree of the bypass expansion valve 62.
  • the liquid side shut-off valve 26 and the gas side shut-off valve 27 are valves provided at connection ports with external devices and pipes (specifically, the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7). .
  • the liquid side closing valve 26 is connected to the outdoor heat exchanger 23.
  • the gas side stop valve 27 is in contact with the four-way selector valve 22. It has been continued.
  • the outdoor unit 2 is provided with various sensors. Specifically, the outdoor unit 2 includes a suction pressure sensor 29 that detects the suction pressure Ps of the compressor 21, a discharge pressure sensor 30 that detects the discharge pressure Pd of the compressor 21, and the compressor 21. A suction temperature sensor 31 for detecting the suction temperature Ts and a discharge temperature sensor 32 for detecting the discharge temperature Td of the compressor 21 are provided. The suction temperature sensor 31 is provided at a position between the accumulator 24 and the compressor 21.
  • the outdoor heat exchanger 23 includes a heat exchange temperature sensor that detects the temperature of the refrigerant flowing in the outdoor heat exchanger 23 (that is, the refrigerant temperature corresponding to the condensation temperature Tc during the cooling operation or the evaporation temperature Te during the heating operation). 33 is provided.
  • a liquid side temperature sensor 34 for detecting the temperature Tco of the refrigerant is provided on the liquid side of the outdoor heat exchanger 23 .
  • a liquid pipe temperature sensor 35 that detects the temperature of the refrigerant (that is, the liquid pipe temperature Tip) is provided at the outlet of the subcooler 25 on the main refrigerant circuit side.
  • the junction circuit 6 lb of the no-pass refrigerant circuit 61 is provided with a bypass temperature sensor 63 for detecting the temperature of the refrigerant flowing through the outlet of the subcooler 25 on the bypass refrigerant circuit side.
  • An outdoor temperature sensor 36 for detecting the temperature of the outdoor air flowing into the unit (that is, the outdoor temperature Ta) is provided on the outdoor air inlet side of the outdoor unit 2.
  • the outdoor temperature sensor 36 detects the temperature of the outdoor air flowing into the unit, so that the outside of various devices such as the compressor 21 provided in the outdoor unit 2 is externally detected. It can be said that this shows the ambient temperature.
  • the suction temperature sensor 31, the discharge temperature sensor 32, the heat exchange temperature sensor 33, the liquid side temperature sensor 34, the liquid pipe temperature sensor 35, the outdoor temperature sensor 36, and the bypass temperature sensor 63 are composed of thermistors.
  • the outdoor unit 2 also has an outdoor control unit 37 that controls the operation of each part constituting the outdoor unit 2.
  • the outdoor control unit 37 includes a microcomputer provided for controlling the outdoor unit 2, an inverter circuit that controls the memory and the compressor motor 73, and the like.
  • Control signals can be exchanged between the control units 47 and 57 via the transmission line 8a. That is, the control unit 8 that controls the overall operation of the air conditioner 1 is configured by the indoor control units 47 and 57, the outdoor control unit 37, and the transmission line 8a that connects the control units 37, 47, and 57. Yes. [0025] ⁇ U ⁇ ⁇ 8 ⁇ , Fig. 3 [As shown, this is connected to receive the detection signals of various sensors 29-36, 44-46, 54-56, 63, Based on these detection signals, etc., various devices and valves 21, 22, 24, 28a, 38, 41, 43a, 51, 53a, 62 are connected so that they can be controlled.
  • control unit 8 is connected to a warning display unit 9 that is an LED or the like for notifying that a refrigerant leak has been detected in the refrigerant leak detection operation described later.
  • FIG. 3 is a control block diagram of the air conditioner 1.
  • Refrigerant communication pipes 6 and 7 are refrigerant pipes that are installed on site when the air conditioner 1 is installed in a building or other location, such as a combination of the installation location or outdoor unit and indoor unit. Depending on the installation conditions, those having various lengths and pipe diameters are used. For this reason, for example, when a new air conditioner is installed, it is necessary to accurately grasp information such as the length of the refrigerant communication pipes 6 and 7 in order to calculate the additional refrigerant charging amount. Although there is information management, the calculation of the refrigerant amount itself is complicated. In addition, when the existing unit is used to update the indoor unit or the outdoor unit, the blueprints such as the length and diameter of the refrigerant communication pipes 6 and 7 may be lost.
  • the refrigerant circuit 10 of the air conditioner 1 is configured by connecting the indoor refrigerant circuits 10a, 10b, the outdoor refrigerant circuit 10c, and the refrigerant communication pipes 6, 7. .
  • the refrigerant circuit 10 can be paraphrased as being composed of a bypass refrigerant circuit 61 and a main refrigerant circuit excluding the bypass refrigerant circuit 61.
  • the air conditioner 1 according to the present embodiment is operated by switching the cooling operation and the heating operation by the four-way switching valve 22 by the control unit 8 including the indoor side control units 47 and 57 and the outdoor side control unit 37.
  • the outdoor unit 2 and the indoor units 4 and 5 are controlled according to the operation load of the indoor units 4 and 5.
  • the operation mode of the air conditioner 1 of the present embodiment is a normal operation mode in which the components of the outdoor unit 2 and the indoor units 4, 5 are controlled in accordance with the operation load of each indoor unit 4, 5.
  • a refrigerant leakage detection operation mode After installing the components of the air conditioner 1 (specifically, only after installing the first device) (For example, after remodeling such as adding or removing components such as indoor units, or after repairing the equipment failure, etc.)
  • a refrigerant leakage detection operation mode in which the presence or absence of refrigerant leakage from the refrigerant circuit 10 is determined.
  • the normal operation mode mainly includes a cooling operation for cooling the room and a heating operation for heating the room.
  • the automatic refrigerant charging operation for charging the refrigerant into the refrigerant circuit 10
  • the pipe volume determination operation for detecting the volume of the refrigerant communication pipes 6 and 7, and after the installation of the components or the refrigerant
  • an initial refrigerant quantity detection operation for detecting the initial refrigerant quantity after the refrigerant is filled in the circuit.
  • the four-way switching valve 22 is in the state indicated by the solid line in FIG. 1, that is, the discharge side of the compressor 21 is the outdoor heat. It is connected to the gas side of the exchanger 23, and the suction side of the compressor 21 is connected to the gas side of the indoor heat exchangers 42 and 52 via the gas side closing valve 27 and the gas refrigerant communication pipe 7. Yes.
  • the outdoor expansion valve 38 is fully opened.
  • the liquid side closing valve 26 and the gas side closing valve 27 are in an open state.
  • the indoor expansion valves 41 and 51 are opened so that the superheat degree SHr of the refrigerant at the outlets of the indoor heat exchangers 42 and 52 (that is, the gas side of the indoor heat exchangers 42 and 52) is constant at the superheat degree target value SHrs.
  • the degree is adjusted! /
  • the degree of superheat SHr of the refrigerant at the outlets of the indoor heat exchangers 42, 52 is the refrigerant temperature value detected by the gas side temperature sensors 45, 55, and the refrigerant temperature sensors 44, 54 also detect the refrigerant temperature value force.
  • a temperature sensor is provided, and the refrigerant temperature value corresponding to the evaporation temperature Te detected by this temperature sensor is subtracted from the refrigerant temperature value detected by the gas side temperature sensors 45 and 55, thereby making it possible to The degree of superheat SHr of the refrigerant at the outlets of the heat exchangers 42 and 52 may be detected. Further, the bypass expansion valve 62 is adjusted in opening degree so that the superheat degree SHb of the refrigerant at the outlet on the bypass refrigerant circuit side of the supercooler 25 becomes the superheat degree target value SHbs.
  • the superheat degree SHb of the refrigerant at the outlet on the bypass refrigerant circuit side of the subcooler 25 is the saturation temperature value corresponding to the evaporation pressure Te, which is the suction pressure Ps of the compressor 21 detected by the suction pressure sensor 29. Is detected by subtracting the saturation temperature value of the refrigerant from the refrigerant temperature value detected by the bypass temperature sensor 63.
  • a temperature sensor is provided at the bypass refrigerant circuit side inlet of the subcooler 25, and the refrigerant temperature value detected by this temperature sensor is detected by the bypass temperature sensor 63.
  • the refrigerant superheat degree SHb at the outlet of the subcooler 25 on the bypass refrigerant circuit side may be detected by subtracting the refrigerant temperature value.
  • a part of the high-pressure liquid refrigerant condensed in the outdoor heat exchange is branched to the bypass refrigerant circuit 61, decompressed by the bypass expansion valve 62, and then returned to the suction side of the compressor 21.
  • a part of the refrigerant passing through the binos expansion valve 62 is evaporated by being reduced to near the suction pressure Ps of the compressor 21.
  • the refrigerant flowing in the direction of the outlet force of the bypass expansion valve 62 of the bypass refrigerant circuit 61 toward the suction side of the compressor 21 passes through the subcooler 25 and from the outdoor heat exchanger 23 on the main refrigerant circuit side. Exchanges heat with high-pressure liquid refrigerant sent to indoor units 4 and 5.
  • the high-pressure liquid refrigerant in a supercooled state is connected to the liquid-side stop valve 26 and the liquid refrigerant communication line. It is sent to indoor units 4 and 5 via pipe 6.
  • the high-pressure liquid refrigerant sent to the indoor units 4 and 5 is decompressed to near the suction pressure Ps of the compressor 21 by the indoor expansion valves 41 and 51 to become a low-pressure gas-liquid two-phase refrigerant and exchanges heat in the room.
  • the heat is exchanged with the indoor air in the indoor heat exchangers 42 and 52 to evaporate and become low-pressure gas refrigerant.
  • This low-pressure gas refrigerant is sent to the outdoor unit 2 via the gas refrigerant communication pipe 7 and flows into the accumulator 24 via the gas side closing valve 27 and the four-way switching valve 22. Then, the low-pressure gas refrigerant that has flowed into the accumulator 24 is again sucked into the compressor 21.
  • the four-way switching valve 22 is in the state indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the indoor heat exchanger 42 via the gas-side closing valve 27 and the gas refrigerant communication pipe 7. 52, and the suction side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23.
  • the degree of opening of the outdoor expansion valve 38 is adjusted to reduce the pressure of the refrigerant flowing into the outdoor heat exchanger 23 to a pressure at which the refrigerant can be evaporated in the outdoor heat exchanger (that is, the evaporation pressure Pe). Further, the liquid side closing valve 26 and the gas side closing valve 27 are opened.
  • the indoor expansion valves 41 and 51 are adjusted in opening degree so that the supercooling degree SCr of the refrigerant at the outlets of the indoor heat exchangers 42 and 52 becomes constant at the supercooling degree target value SCrs.
  • the degree of refrigerant supercooling SCr at the outlets of the indoor heat exchangers 42 and 52 is the saturation temperature value corresponding to the condensation temperature Tc, which is the discharge pressure Pd of the compressor 21 detected by the discharge pressure sensor 30.
  • the refrigerant temperature value is detected by subtracting the refrigerant temperature value detected by the liquid side temperature sensors 44 and 54 from the saturation temperature value of the refrigerant.
  • a temperature sensor that detects the temperature of the refrigerant flowing in each indoor heat exchanger 42, 52 is provided, and the refrigerant corresponding to the condensation temperature Tc detected by this temperature sensor.
  • the subcooling degree SCr of the refrigerant at the outlets of the indoor heat exchangers 42, 52 may be detected by subtracting the temperature value from the refrigerant temperature value detected by the liquid side temperature sensors 44, 54. Further, the bypass expansion valve 62 is closed.
  • the high-pressure gas refrigerant sent to the indoor units 4 and 5 is condensed by exchanging heat with the indoor air in the outdoor heat exchangers ⁇ 42 and 52 to become a high-pressure liquid refrigerant.
  • the pressure is reduced according to the opening degree of the indoor expansion valves 41 and 51.
  • the refrigerant that has passed through the indoor expansion valves 41 and 51 is sent to the outdoor unit 2 via the liquid refrigerant communication pipe 6 and passes through the liquid side closing valve 26, the supercooler 25, and the outdoor expansion valve 38.
  • the pressure is further reduced and then flows into the outdoor heat exchanger 23.
  • the low-pressure gas-liquid two-phase refrigerant flowing into the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied by the outdoor fan 28 to evaporate into a low-pressure gas refrigerant.
  • control unit 8 (more specifically, the indoor side control units 47, 57 functioning as normal operation control means for performing normal operation including cooling operation and heating operation. And the transmission line 8a) connecting the outdoor control unit 37 and the control units 37, 47, and 57.
  • Fig. 4 is a flowchart of the test operation mode.
  • the test operation mode first, the automatic refrigerant charging operation in step S1 is performed, then the pipe volume determination operation in step S2 is performed, and further, the initial refrigerant amount detection operation in step S3 is performed. .
  • the outdoor unit 2 pre-filled with the refrigerant and the indoor units 4 and 5 are installed at a place such as a building and connected via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7.
  • a place such as a building and connected via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7.
  • the refrigerant circuit 10 is additionally filled with a refrigerant that is insufficient in accordance with the volume of the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7.
  • Step S1 Refrigerant automatic charging operation
  • the refrigerant circuit 10 is filled with the refrigerant prefilled in 2.
  • FIG. 5 is a flowchart of the automatic refrigerant charging operation.
  • Step S11 Refrigerant amount judgment operation
  • the refrigerant circuit 10 When an instruction to start the automatic refrigerant charging operation is made, the refrigerant circuit 10 is in a state where the four-way switching valve 22 of the outdoor unit 2 is shown by a solid line in FIG. 1 and the indoor expansion valves 41 of the indoor units 4 and 5 51 and outdoor expansion valve 38 are opened, compressor 21, outdoor fan 28 and indoor fans 4 3, 53 are activated, and all indoor units 4, 5 are forcibly cooled (hereinafter referred to as the total number of indoor units). Driving).
  • the high-pressure gas refrigerant compressed and discharged in the compressor 21 flows through the flow path from the compressor 21 to the outdoor heat exchange functioning as a condenser ( (Refer to the hatched portion in Fig. 6 from the compressor 21 to the outdoor heat exchanger 23), and the outdoor heat exchanger 23 functioning as a condenser is changed from a gas state to a liquid state by heat exchange with the outdoor air. (Refer to the portion corresponding to the outdoor heat exchanger 23 in the hatched and black hatched portions in FIG.
  • High-pressure liquid is present in the flow path including the outdoor expansion valve 38, the part of the subcooler 25 on the main refrigerant circuit side and the liquid refrigerant communication pipe 6 and the flow path from the outdoor heat exchanger 23 to the bypass expansion valve 62.
  • the refrigerant flows (out of the black hatched parts in Fig. 6).
  • FIG. 6 is a schematic diagram showing the state of the refrigerant flowing in the refrigerant circuit 10 in the refrigerant quantity determination operation (illustration of the four-way switching valve 22 and the like is omitted).
  • the following device control is performed to shift to an operation for stabilizing the state of the refrigerant circulating in the refrigerant circuit 10.
  • the indoor expansion valves 41 and 51 are controlled so that the superheat degree SHr of the indoor heat exchangers 42 and 52 functioning as an evaporator becomes constant (hereinafter referred to as superheat degree control).
  • the operation capacity of the compressor 21 is controlled so as to be constant (hereinafter referred to as evaporation pressure control), and the outdoor fan 28 is used for outdoor heat exchange so that the refrigerant condensation pressure Pc in the outdoor heat exchanger 23 is constant.
  • the subcooler is controlled so that the air volume Wo of the outdoor air supplied to the cooler 23 is controlled (hereinafter referred to as condensing pressure control) and the temperature of the refrigerant sent from the supercooler 25 to the indoor expansion valves 41 and 51 is constant.
  • the indoor fan 43, 53 controls the indoor heat exchanger 42 so that the refrigerant evaporating pressure Pe is controlled stably by the above evaporating pressure control.
  • the air volume Wr of the indoor air supplied to No. 52 is kept constant.
  • the evaporation pressure control is performed in the indoor heat exchangers 42 and 52 functioning as an evaporator in a gas-liquid two-phase state force due to heat exchange with the room air, while the phase is changed to a gas state and a low pressure.
  • Inside the indoor heat exchanger ⁇ 42, 52 through which the refrigerant flows see the part corresponding to the indoor heat exchangers 42, 52 in the grid-shaped, hatching and hatched hatching parts in Fig. 6; This is because the amount of refrigerant in (part C) greatly affects the evaporation pressure Pe of the refrigerant.
  • the evaporation pressure Pe of the refrigerant in the indoor heat exchangers 42 and 52 is kept constant, and the evaporation The state of the refrigerant flowing in the vessel part C is stabilized, and a state in which the amount of refrigerant in the evaporator C is changed mainly by the evaporation pressure Pe is created.
  • the refrigerant temperature value (corresponding to the evaporation temperature Te) detected by the liquid side temperature sensors 44, 54 of the indoor heat exchangers 42, 52 is the saturation pressure.
  • the refrigerant temperature value (corresponding to the evaporation temperature Te) detected by the liquid side temperature sensors 44 and 54 of the indoor heat exchangers 42 and 52 becomes constant at the low pressure target value Tes.
  • the operating capacity of the compressor 21 may be controlled.
  • gas refrigerant circulation section D the state of the refrigerant flowing through the indoor heat exchangers 42 and 52 to the compressor 21 (hereinafter referred to as gas refrigerant circulation section D) is also stable, and mainly the refrigerant flow in the gas refrigerant circulation section D.
  • a state is created in which the amount of refrigerant in the gas refrigerant circulation portion D is changed by the evaporation pressure Pe (that is, the suction pressure Ps), which is an operation state amount equivalent to the pressure.
  • Condensation pressure control is performed in the outdoor heat exchanger ⁇ 23 in which high-pressure refrigerant flows while the gas state force changes to a liquid state due to heat exchange with the outdoor air (hatched hatched and blacked out in Fig. 6).
  • the condenser portion A which is also the force that greatly affects the refrigerant condensing pressure Pc. Since the refrigerant condensing pressure Pc in the condenser part A changes greatly due to the influence of the outdoor temperature Ta, the air volume Wo of the indoor air supplied from the outdoor fan 28 to the outdoor heat exchanger 23 is controlled by the motor 28a.
  • the condensation pressure Pc of the refrigerant in the outdoor heat exchanger 23 is made constant, and the state of the refrigerant flowing in the condenser section A is stabilized, and mainly the liquid side of the outdoor heat exchanger 23 (hereinafter referred to as the refrigerant).
  • the refrigerant amount in the condenser A is changed by the degree of supercooling SCo at the outlet of the outdoor heat exchanger 23).
  • the operation state equivalent to the refrigerant condensation pressure Pc in the outdoor heat exchanger 23 is used.
  • the discharge pressure Pd of the compressor 21 detected by the discharge pressure sensor 30 or the temperature of the refrigerant flowing in the outdoor heat exchanger 23 detected by the heat exchange temperature sensor 33 that is, the condensation temperature Tc ) Is used.
  • the outdoor expansion valve 38 from the outdoor heat exchange to the indoor expansion valves 41, 51, the part on the main refrigerant circuit side of the supercooler 25, and the liquid refrigerant communication pipe 6 and the flow from the outdoor heat exchanger 23 to the flow path from the bypass refrigerant circuit 61 to the bypass expansion valve 62, a high-pressure liquid refrigerant flows from the outdoor heat exchanger 23 to the indoor expansion valves 41, 51 and
  • the pressure of the refrigerant in the portion up to the binos expansion valve 62 (refer to the black hatched portion in FIG. 6, hereinafter referred to as the liquid refrigerant circulation section B) is stable, and the liquid refrigerant circulation section B is sealed with the liquid refrigerant. It will be in a stable state.
  • the liquid pipe temperature control is performed in the refrigerant pipe including the liquid refrigerant communication pipe 6 from the subcooler 25 to the indoor expansion valves 41 and 51 (the subcooler in the liquid refrigerant circulation section B shown in FIG. 6). This is to prevent the refrigerant density from changing from 25 to the indoor expansion valves 41 and 51).
  • the capacity control of the subcooler 25 is controlled so that the refrigerant temperature Tip detected by the liquid pipe temperature sensor 35 provided at the outlet of the main refrigerant circuit of the subcooler 25 is constant at the liquid pipe temperature target value Tips.
  • the flow rate of the refrigerant flowing through the bypass refrigerant circuit 61 is increased or decreased to adjust the amount of heat exchanged between the refrigerant flowing through the main refrigerant circuit side of the subcooler 25 and the refrigerant flowing through the bypass refrigerant circuit side. Yes.
  • the flow rate of the refrigerant flowing through the bypass refrigerant circuit 61 is increased or decreased by adjusting the opening degree of the bypass expansion valve 62.
  • liquid pipe temperature control is realized in which the refrigerant temperature in the refrigerant pipe including the liquid refrigerant communication pipe 6 extending from the supercooler 25 to the indoor expansion valves 41 and 51 is constant.
  • the refrigerant heat is filled in the refrigerant circuit 10, and as the amount of refrigerant in the refrigerant circuit 10 gradually increases, the outdoor heat exchange 23
  • the refrigerant temperature Tco at the outlet of the outdoor heat exchanger 23 is changed even when the refrigerant temperature Tco at the outlet of the outdoor heat exchanger 23 changes (that is, the degree of refrigerant supercooling SCo at the outlet of the outdoor heat exchanger 23).
  • the degree of superheat SHr of the refrigerant at the outlet of the indoor heat exchanger 52 is controlled by controlling the opening degree of the indoor expansion valves 41 and 51, so that the gas side of the indoor heat exchangers 42 and 52 (hereinafter referred to as refrigerant amount determination operation).
  • the superheat degree SHr of the refrigerant in the indoor heat exchangers 42 and 52 is made constant at the superheat target value SHrs (that is, the gas refrigerant at the outlets of the indoor heat exchangers 42 and 52 is used).
  • the state of the refrigerant flowing in the evaporator section C is stabilized.
  • the state of the refrigerant circulating in the refrigerant circuit 10 is stabilized, and the distribution of the refrigerant amount in the refrigerant circuit 10 becomes constant.
  • the refrigerant begins to be charged, it is possible to create a state in which the change in the refrigerant amount in the refrigerant circuit 10 mainly appears as a change in the refrigerant amount in the outdoor heat exchanger 23 (hereinafter, this operation is performed). Is the refrigerant quantity determination operation).
  • control unit 8 (more specifically, the indoor side control units 47 and 57, the outdoor side control unit 37, and the control unit 37, which functions as a refrigerant amount determination operation control unit that performs the refrigerant amount determination operation.
  • the transmission line 8a) connecting 47 and 57 is performed as the process of step S11.
  • the component device when the outdoor unit 2 is not prefilled with the refrigerant, the component device abnormally stops when the above-described refrigerant amount determination operation is performed prior to the processing of step S11. It is necessary to charge the refrigerant until the amount of refrigerant is low enough
  • step S12 additional refrigerant charging is performed in the refrigerant circuit 10 while performing the above-described refrigerant amount determination operation.
  • the additional charging of the refrigerant in step S12 is performed by the control unit 8 functioning as the refrigerant amount calculating means.
  • the refrigerant amount in the refrigerant circuit 10 is calculated from the refrigerant flowing through the refrigerant circuit 10 at the time or the operating state quantity of the component equipment.
  • the refrigerant quantity calculating means divides the refrigerant circuit 10 into a plurality of parts, and calculates the refrigerant quantity for each of the divided parts. Thus, the amount of refrigerant in the refrigerant circuit 10 is calculated. More specifically, for each of the divided parts, a relational expression between the refrigerant amount of each part and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is set. By using it, the amount of refrigerant in each part can be calculated. And in this embodiment, a refrigerant circuit
  • FIG. 10 shows a state in which the four-way switching valve 22 is shown by a solid line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23, and the suction side of the compressor 21 is closed to the gas side.
  • the parts up to 3 hereinafter referred to as “high pressure gas pipe part E”), the part of the outdoor heat exchanger 23 (namely, the condenser part A) and the liquid refrigerant circulation part B are supercooled from the outdoor heat exchanger 23.
  • the main refrigerant circuit of the subcooler 25 in the liquid refrigerant circulation part B and the inlet-side half of the main refrigerant circuit side part of the subcooler 25 and the part of the subcooler 25 (hereinafter referred to as the high temperature side liquid pipe part B1). And the part from the subcooler 25 to the liquid side shutoff valve 26 (not shown in FIG.
  • the liquid refrigerant communication pipe 6 in the liquid refrigerant circulation section B (hereinafter referred to as the liquid refrigerant communication pipe section B3) and the liquid refrigerant communication pipe 6 in the liquid refrigerant circulation section B through the indoor expansion valves 41, 51 and the indoor Of the gas refrigerant circulation part D including the heat exchangers 42 and 52 (that is, the evaporator part C), the part up to the gas refrigerant communication pipe 7 (hereinafter referred to as the indoor unit part F), and the gas refrigerant circulation part A part of the gas refrigerant communication pipe 7 in D (hereinafter referred to as gas refrigerant communication pipe part G) and a gas side closing valve 27 (not shown in FIG.
  • the relational expression between the refrigerant amount Mogl in the high-pressure gas pipe E and the operating state quantity of the refrigerant or the component device flowing through the refrigerant circuit 10 is, for example,
  • Mogl Vogl X pd This is expressed as a functional expression obtained by multiplying the volume Vogl of the high-pressure gas pipe E of the outdoor unit 2 by the refrigerant density / 0 d in the high-pressure gas pipe E.
  • the volume Vogl of the high-pressure gas pipe E is a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in advance in the memory of the control unit 8.
  • the density of the refrigerant in the high-pressure gas pipe E can be obtained by converting the discharge temperature Td and the discharge pressure Pd.
  • the relational expression between the refrigerant quantity Mc in the condenser part A and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
  • Mc kcl XTa + kc2 XTc + kc3 X SHm + kc4 XWc
  • the outdoor temperature Ta, the condensation temperature Tc, the compressor discharge superheat SHm, the refrigerant circulation rate Wc, the saturated liquid density pc of the refrigerant in the outdoor heat exchanger 23, and the refrigerant density P at the outlet of the outdoor heat exchanger 23 It is expressed as a function expression of co.
  • the parameters kcl to kc7 in the above relational expression are obtained by regression analysis of the results of tests and detailed simulations, and are stored in the memory of the control unit 8 in advance.
  • the compressor discharge superheat degree S Hm is the refrigerant superheat degree on the discharge side of the compressor.
  • the discharge pressure Pd is converted to the refrigerant saturation temperature value, and the discharge temperature Td force is subtracted from the refrigerant saturation temperature value.
  • the saturated liquid density pc of the refrigerant can be obtained by converting the condensation temperature Tc.
  • the refrigerant density p co at the outlet of the outdoor heat exchanger 23 is obtained by converting the condensation pressure Pc obtained by converting the condensation temperature Tc and the refrigerant temperature Tco.
  • the relational expression between the refrigerant amount Moll in the high-temperature liquid pipe section B1 and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
  • the volume Voll of the high-pressure liquid pipe section B1 is a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in the memory of the control section 8 in advance.
  • the relational expression between the refrigerant quantity Mol2 in the low temperature liquid pipe part B2 and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
  • the refrigerant density p lp in the cryogenic liquid pipe section B2 is the refrigerant density at the outlet of the subcooler 25, and is obtained by converting the condensation pressure Pc and the refrigerant temperature Tip at the outlet of the subcooler 25. It is done.
  • volume Vlp of the liquid refrigerant communication pipe 6 is a refrigerant pipe that is installed locally when the liquid refrigerant communication pipe 6 is installed at the installation location of the air conditioner 1 at a place such as a building.
  • Mr krl XTlp + kr2 X AT + kr3 X SHr + kr4 XWr + kr5
  • the refrigerant temperature Tlp at the outlet of the supercooler 25 the temperature difference ⁇ obtained by subtracting the evaporation temperature Te from the indoor temperature Tr, the superheat degree SHr of the refrigerant at the outlet of the indoor heat exchangers 42 and 52, and the indoor fans 43 and 53 It is expressed as a function expression of the air volume Wr.
  • the parameters krl to kr5 in the above relational expression are obtained by regression analysis of the results of the test and detailed simulation, and are stored in the memory of the control unit 8 in advance.
  • the relational expression of the refrigerant amount Mr is set for each of the two indoor units 4 and 5.
  • the total refrigerant quantity of the indoor unit F is calculated by adding the refrigerant quantity Mr of the indoor unit 4 and the refrigerant quantity Mr of the indoor unit 5. If the indoor unit 4 and the indoor unit 5 have different models and capacities, the relational forces S with different values of the parameters krl to kr5 will be used.
  • volume Vgp of the gas refrigerant communication pipe 7 is the refrigerant installed at the site when the gas refrigerant communication pipe 7 installs the air conditioner 1 at the installation location of the building, etc., like the liquid coolant communication pipe 6.
  • the refrigerant density p gp in the gas refrigerant pipe connecting portion G is equal to the refrigerant density P s on the suction side of the compressor 21 and the outlets of the indoor heat exchangers 42 and 52 (that is, the inlet of the gas refrigerant connecting pipe 7). This is the average value with the density p eo of the refrigerant.
  • the refrigerant density ps is obtained by converting the suction pressure Ps and the suction temperature Ts
  • the refrigerant density p eo is obtained by converting the evaporation pressure Pe and the indoor heat exchangers 42 and 52, which are conversion values of the evaporation temperature Te. It is obtained by converting the outlet temperature Teo.
  • volume Vog2 of the low-pressure gas pipe H in the outdoor unit 2 is a known value of the pre-force that is shipped to the installation location, and is stored in the memory of the controller 8 in advance.
  • Refrigerant amount Mob in nopass circuit section I and refrigerant or component equipment flowing in refrigerant circuit 10 The relational expression with the driving state quantity is, for example,
  • Mob kobl X co + kob2 X ps + kob3 X Pe + kob4
  • the refrigerant density p co at the outlet of the outdoor heat exchanger 23, the refrigerant density p s at the outlet of the subcooler 25 on the bypass circuit side, and the evaporation pressure Pe are expressed as functional expressions.
  • the parameters kobl to kob3 in the above relational expression are obtained by regression analysis of the results of tests and detailed simulations, and are stored in the memory of the control unit 8 in advance.
  • the volume Mob of the bypass circuit part I may be smaller than the other parts, and may be calculated by a simpler relational expression. For example,
  • the volume Vob of the bypass circuit section I is also a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in the memory of the control section 8 in advance.
  • the saturated liquid density pe in the portion on the bypass circuit side of the subcooler 25 can be obtained by converting the suction pressure Ps or the evaporation temperature Te.
  • the relational expression between the refrigerant amount Mcomp in the compressor part J and the operating state quantity of the refrigerant or the component equipment flowing through the refrigerant circuit 10 is, for example,
  • the amount of dissolved refrigerant Mqo that is accumulated in the oil reservoir 71d in the low pressure space Ql in the compressor casing 71 of the compressor 21 and dissolved in the refrigerating machine oil, and the compressor casing 71 of the compressor 21 This is expressed as a function equation obtained by adding the refrigerant amount Mql in the portion other than the oil reservoir 71d in the low pressure space Q1 and the refrigerant amount Mq2 in the high pressure space Q2 in the compressor casing 71 of the compressor 21.
  • the dissolved refrigerant amount Mqo is
  • the refrigerant solubility ⁇ in the refrigerating machine oil is expressed as a function of the pressure and temperature of the refrigerating machine oil accumulated in the oil reservoir 71d.
  • the refrigerant pressure that is, the suction pressure Ps
  • the refrigerating machine oil collected in the oil sump 71d in the compressor 21 by the air conditioner 1 in the present embodiment can be used.
  • the maximum temperature difference with the refrigerant in contact with the refrigerating machine oil is configured to be 50 ° C or less, resulting in a temperature distribution of the refrigerating machine oil accumulated in the oil reservoir 71d inside the compressor 21.
  • the dissolved refrigerant amount Mqo can also calculate a known amount of refrigerating machine oil Moil, suction pressure Ps, and suction temperature Ts force.
  • the volume Voil of the refrigeration oil is calculated by dividing the amount Moil of the refrigeration oil by the density p oil of the refrigeration oil.
  • the density p oil of the refrigerating machine oil is expressed as a function of the temperature of the refrigerating machine oil.
  • the refrigerant temperature that is, the suction
  • Temperature Ts can be used. That is, the density of the refrigerating machine oil can be expressed as a function (that is, oilzfS CTs) of the temperature of the refrigerant (that is, the suction temperature Ts) in the low pressure space Q1 in which the oil reservoir 71d is formed.
  • the refrigerant amount Mql in the low-pressure space Q1 in the compressor casing 71 of the compressor 21 other than the oil reservoir 71d is the known volume Vcomp, the known volume Vq2, and the known amount of refrigeration oil Moil. And the suction temperature Ts.
  • This is calculated by multiplying the volume Vq2 of the high-pressure space Q2 by the refrigerant density pd as the refrigerant density in the high-pressure space Q2.
  • a plurality of outdoor units are connected, a plurality of refrigerant quantities Mogl, Mc, Moll, Mol2, Mog2, Mob, and Mcomp related to the outdoor unit are present.
  • the relational expression of the refrigerant quantity of each part is set corresponding to each of the outdoor units, and the total refrigerant quantity of the outdoor unit is calculated by adding the refrigerant quantity of each part of the plurality of outdoor units. ing.
  • the relational expression for the refrigerant amount of each part with different parameter values is used.
  • the refrigerant flowing through the refrigerant circuit 10 in the refrigerant quantity determination operation or the operating state quantity of the component device is calculated.
  • step S12 Since this step S12 is repeated until the condition for determining whether or not the refrigerant amount is appropriate in step S13, which will be described later, is satisfied, the additional charging of the refrigerant is started and the power is completed until the power is completed.
  • the amount of operating state force when the refrigerant is charged is calculated. More specifically, the refrigerant amount Mo in the outdoor unit 2 and the refrigerant amount Mr in each of the indoor units 4 and 5 necessary for determining whether or not the refrigerant amount is appropriate in step S 13 described later (that is, the refrigerant communication pipe 6,
  • the refrigerant amount of each part of the refrigerant circuit 10 excluding 7 is calculated.
  • the refrigerant amount Mo in the outdoor unit 2 is calculated by adding the refrigerant amounts Mogl, Mc, Moll, Mol2, Mog2, Mob, and Mcomp of each part in the outdoor unit 2 described above.
  • control unit 8 functioning as a refrigerant amount calculating means for calculating the refrigerant amount of each part of the refrigerant circuit 10 from the refrigerant flowing in the refrigerant circuit 10 or the operation state quantity of the component device in the automatic refrigerant charging operation. Then, the process of step S12 is performed.
  • the refrigerant amount in the refrigerant circuit 10 gradually increases.
  • the amount of refrigerant to be filled in the refrigerant circuit 10 after the additional charging of the refrigerant cannot be defined as the refrigerant amount of the refrigerant circuit 10 as a whole.
  • outdoor unit 2 and indoor units 4, 5 If we focus only on that (i.e., the refrigerant circuit 10 excluding the refrigerant communication pipes 6 and 7), the optimum amount of refrigerant in the outdoor unit 2 in the normal operation mode can be known in advance by testing and detailed simulation.
  • step S13 determines whether or not the refrigerant amount value obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amounts Mr of the indoor units 4 and 5 in the automatic refrigerant charging operation has reached the charging target value Ms. This determination is a process for determining whether or not the amount of refrigerant charged in the refrigerant circuit 10 by additional charging of the refrigerant is appropriate.
  • step S13 the additional charging of the refrigerant in which the refrigerant amount value obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amount Mr of the indoor units 4 and 5 is smaller than the charging target value Ms is completed. If not, the process of step S13 is repeated until the filling target value Ms is reached. In addition, when the refrigerant amount value obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amount Mr of the indoor units 4 and 5 reaches the charging target value Ms, the additional charging of the refrigerant is completed and the refrigerant automatic Step S1 as the filling operation process is completed.
  • the charging target value Ms is set to the value of the outdoor unit 2 that is not the outdoor unit 2 and the indoor units 4 and 5.
  • the charging target value Ms is set to the value of the outdoor unit 2 that is not the outdoor unit 2 and the indoor units 4 and 5.
  • the refrigerant amount determination unit functions to determine whether or not the refrigerant amount in the refrigerant circuit 10 in the refrigerant amount determination operation of the automatic refrigerant charging operation is appropriate (that is, whether or not the charging target value Ms has been reached).
  • the control unit 8 performs the process of step S13.
  • Step S2 Pipe volume judgment operation
  • the control unit 8 performs the processing from step S21 to step S25 shown in FIG.
  • FIG. 7 is a flow chart of the pipe volume judgment operation.
  • Step S21 the indoor unit 100% operation and condensation are performed in the same manner as the refrigerant amount judgment operation in step S11 in the above-described automatic refrigerant charging operation.
  • Perform pipe volume judgment operation for liquid refrigerant communication pipe 6 including pressure control, liquid pipe temperature control, superheat control and evaporation pressure control.
  • the refrigerant temperature at the outlet of the main refrigerant circuit of the subcooler 25 in the liquid pipe temperature control is set as the first target value Tlpsl
  • the refrigerant amount judgment operation is performed with the first target value Tlpsl.
  • the stable state is the first state (see the refrigeration cycle indicated by the line including the broken line in Fig. 8).
  • FIG. 8 is a Mollier diagram showing the refrigeration cycle of the air conditioner 1 in the pipe volume determination operation for the liquid refrigerant communication pipe.
  • the refrigerant amount Mlp in the liquid refrigerant communication pipe part B3 in the second state Will decrease compared to the amount of refrigerant in the first state. Then, the refrigerant decreased from the liquid refrigerant communication pipe part B3 moves to the other part of the refrigerant circuit 10.
  • the equipment control conditions other than the liquid pipe temperature control are not changed, so that the refrigerant amount Mogl in the high pressure gas pipe E and the refrigerant in the low pressure gas pipe H Amount Mog2, refrigerant amount Mgp in gas refrigerant communication pipe part G and refrigerant quantity Mcomp in compressor part J are kept almost constant, liquid refrigerant communication pipe part B
  • the refrigerant reduced from 3 moves to the condenser part A, the high temperature liquid pipe part Bl, the low temperature liquid pipe part B2, the indoor unit part F, and the binos circuit part I.
  • the refrigerant amount Mc in the condenser part A, the refrigerant amount Moll in the high temperature liquid pipe part B1, the refrigerant quantity Mol2 in the low temperature liquid pipe part B2, and the indoor unit part F by the amount of refrigerant reduced from the liquid refrigerant communication pipe part B3
  • the refrigerant amount Mr and the refrigerant amount Mob in the bypass circuit section I increase.
  • control unit 8 (more specifically, a chamber functioning as a pipe volume determination operation control means for performing a pipe volume determination operation for calculating the volume Mlp of the liquid refrigerant communication pipe 6. This is performed as the processing of step S21 by the transmission line 8a) connecting the inner control units 47, 57, the outdoor control unit 37, and the control units 37, 47, 57.
  • step S22 the liquid cooling medium is utilized by utilizing the phenomenon that the refrigerant is decreased from the liquid refrigerant communication pipe section B3 and moves to the other part of the refrigerant circuit 10 due to the change from the first state to the second state. Calculate the volume Vlp of connecting pipe 6.
  • the amount of refrigerant that has decreased from the liquid refrigerant communication piping section B3 and moved to the other part of the refrigerant circuit 10 by the pipe volume determination operation described above is defined as the refrigerant increase / decrease amount ⁇ Mlp, and each part between the first and second states If the increase / decrease amount of the refrigerant is A Mc, ⁇ ⁇ 11, ⁇ ⁇ 12, A Mr, and ⁇ Mob (here, the refrigerant amount Mogl, the refrigerant amount Mog2 and the refrigerant amount Mgp are kept almost constant, they are omitted), the refrigerant increase / decrease
  • the quantity ⁇ Mlp is, for example,
  • ⁇ Mlp — ( ⁇ Mc + ⁇ Moll + ⁇ ⁇ 12 + ⁇ Mr + ⁇ Mob)
  • the functional force It is possible to calculate the functional force. Then, by dividing the value of ⁇ Mlp by the refrigerant density change ⁇ pip between the first and second states in the liquid refrigerant communication pipe 6, the volume Vlp of the liquid refrigerant communication pipe 6 can be calculated. It can. Note that although the calculation result of the refrigerant increase / decrease amount ⁇ Mlp is hardly affected, the refrigerant amount Mogl and the refrigerant amount Mog2 may be included in the above-described functional expression.
  • Vlp ⁇ Mlp / ⁇ lp
  • a Mc, ⁇ ⁇ 11, ⁇ ⁇ 12, A Mr, and A Mob are used to calculate the refrigerant amount in the first state and the refrigerant amount in the second state using the relational expressions for each part of the refrigerant circuit 10 described above.
  • the amount of refrigerant in the second state is subtracted from the amount of refrigerant in the first state.
  • the density change amount ⁇ lp is obtained by calculating the refrigerant density at the outlet of the subcooler 25 in the first state and the refrigerant density at the outlet of the subcooler 25 in the second state.
  • Refrigerant density force in two states Obtained by subtracting the refrigerant density in the first state.
  • the volume Vlp of the liquid refrigerant communication pipe 6 can be calculated from the refrigerant flowing through the refrigerant circuit 10 in the first and second states or the operating state quantity of the component equipment using the arithmetic expression as described above.
  • the state is changed so that the second target value Tlps2 in the second state is higher than the first target value Tlpsl in the first state, and the refrigerant in the liquid refrigerant communication pipe section B2 is changed.
  • the amount of refrigerant in the other part is increased by moving the part to the other part, and the volume Vlp of the increased force liquid refrigerant communication pipe 6 is calculated.
  • the second target value Tlps2 in the second state is Change the state so that the temperature is lower than the first target value Tlpsl in 1 state, and move the refrigerant from the other part to the liquid refrigerant communication pipe part B3 to reduce the amount of refrigerant in the other part, From this decrease, the volume Vlp of the liquid refrigerant communication pipe 6 may be calculated.
  • the volume Vlp of the liquid refrigerant communication pipe 6 is calculated from the refrigerant flowing in the refrigerant circuit 10 in the pipe volume determination operation for the liquid refrigerant communication pipe 6 or the operating state quantity of the component equipment.
  • Pipe for the liquid refrigerant communication pipe The process of step S22 is performed by the control unit 8 functioning as a volume calculation means.
  • Step S23, S24 Pipe volume determination operation and volume calculation for gas refrigerant communication pipe
  • Step S23 all indoor units are operated, condensation pressure control, liquid Pipe volume judgment operation for gas refrigerant communication pipe 7 including pipe temperature control, superheat control and evaporation pressure control is performed.
  • the low pressure target value Pes of the suction pressure Ps of the compressor 21 in the evaporation pressure control is set as the first target value Pesl
  • the state in which the refrigerant amount determination operation is stable at the first target value Pesl is set as the first state.
  • FIG. 9 is a Mollier diagram showing the refrigeration cycle of the air conditioner 1 in the pipe volume determination operation for the gas refrigerant communication pipe.
  • the low pressure target value Pes of the suction pressure Ps of the compressor 21 in the evaporation pressure control is the first value. From the first state, which is stable at the standard value Pesl, the conditions for other equipment control, that is, liquid pipe temperature control, condensing pressure control and superheat degree control are not changed (ie, liquid pipe temperature target value Tips and superheat degree Without changing the target value SHrs), the low pressure target value Pes is changed to the second target value Pes2, which is different from the first target value Pesl, to achieve a stable second state (the refrigeration shown only by the solid line in FIG. 9). See cycle).
  • the second target value Pes2 is a pressure lower than the first target value Pesl.
  • the device control conditions other than the evaporation pressure control are changed, so that the refrigerant amount Mogl in the high-pressure gas pipe section E, the high-temperature liquid pipe section Refrigerant amount Moll in B1, refrigerant amount Mol2 in low temperature liquid pipe B2 and liquid Refrigerant communication pipe part B3 Refrigerant quantity Mlp is kept almost constant and gas refrigerant communication pipe part H, condenser section A, indoor unit section F, bypass circuit section I and compressor section J.
  • the refrigerant amount Mog2 in the low-pressure gas pipe part H, the refrigerant quantity Mc in the condenser part A, the refrigerant quantity Mr in the indoor unit part F, and the bypass circuit part I by the amount of refrigerant reduced from the gas refrigerant communication pipe part G
  • the refrigerant amount Mob in the compressor and the refrigerant amount Mcomp in the compressor part J will increase.
  • control unit 8 (more specifically, indoor side) that functions as a pipe volume determination operation control means for performing a pipe volume determination operation for calculating the volume Vgp of the gas refrigerant communication pipe 7. This is performed as the process of step S23 by the control unit 47, 57, the outdoor control unit 37, and the transmission line 8a) connecting the control units 37, 47, 57.
  • step S24 by changing from the first state to the second state, the gas refrigerant communication piping part G force also uses the phenomenon that the refrigerant decreases and moves to the other part of the refrigerant circuit 10 to connect the gas refrigerant. Calculate the volume Vgp of pipe 7.
  • the refrigerant increase / decrease amount ⁇ Mgp is the amount of refrigerant that has decreased and moved to other parts of the refrigerant circuit 10
  • the amount of refrigerant increase / decrease between the first and second states is A Mc, A Mog2, A Mr, A Mob And A Mcomp (here, the refrigerant amount Mogl, the refrigerant amount Moll, the refrigerant amount Mol2 and the refrigerant amount Mlp are omitted because they are kept almost constant)
  • the refrigerant increase / decrease amount ⁇ Mgp is, for example,
  • a Mgp — (A Mc + A Mog2 + A Mr + A Mob + A Mcomp) can be calculated. Then, by dividing the value of ⁇ Mgp by the refrigerant density change ⁇ p gp between the first and second states in the gas refrigerant communication pipe 7, the volume Vgp of the gas refrigerant communication pipe 7 is calculated. can do. It should be noted that the calculation result of the refrigerant increase / decrease amount ⁇ Mgp is hardly affected, but the above-mentioned function formula may include the refrigerant amount Mogl, the refrigerant amount Moll, and the refrigerant amount Mol2.
  • a Mc, A Mog2, A Mr, A Mob, and A Mcomp calculate the refrigerant amount in the first state and the refrigerant amount in the second state using the relational expressions for each part of the refrigerant circuit 10 described above. Further, the amount of refrigerant in the second state is obtained by subtracting the amount of refrigerant in the first state, and the density change amount ⁇ p gp is the amount of refrigerant on the suction side of the compressor 21 in the first state. It is obtained by calculating the average density of the density ps and the refrigerant density p eo at the outlets of the indoor heat exchangers 42 and 52, and subtracting the average density in the first state from the average density in the second state.
  • the volume Vgp of the gas refrigerant communication pipe 7 can be calculated from the refrigerant flowing through the refrigerant circuit 10 in the first and second states or the operation state quantity of the component equipment in the first and second states using the above arithmetic expression.
  • the gas refrigerant communication pipe section is changed so that the second target value Pes2 in the second state is lower than the first target value Pesl in the first state and becomes a pressure.
  • the amount of refrigerant in the other part is increased by moving the refrigerant of G to the other part, and this increased force also calculates the volume Vlp of the gas refrigerant communication pipe 7, but the second target in the second state Change the state so that the value Pes2 is higher than the first target value Pesl in the first state, and move the refrigerant from the other part to the gas refrigerant communication pipe part G.
  • the volume Vlp of the gas refrigerant communication pipe 7 is calculated from this reduced amount. A little.
  • step S24 is performed by the control unit 8 functioning as a calculation means.
  • Step S25 Determination of the Validity of the Pipe Volume Judgment Operation
  • step S25 whether or not the result of the pipe volume determination operation is appropriate, that is, the refrigerant communication pipes 6 and 7 calculated by the pipe volume calculation means. It is determined whether the volume of Vlp and Vgp is reasonable.
  • ⁇ 1 and ⁇ 2 are values that can be varied based on the minimum value and the maximum value of the pipe volume ratio in a feasible combination of the outdoor unit and the indoor unit.
  • step S2 when the volume ratio VlpZVgp satisfies the above numerical range, the processing of step S2 that is applied to the pipe volume determination operation is completed, and when the volume ratio VlpZVgp does not satisfy the above numerical range, The pipe volume determination operation and the volume calculation process in steps S21 to S24 are performed again.
  • step S25 is performed by the control unit 8 functioning as validity determination means for determining whether or not there is.
  • the pipe volume determination operation for the liquid refrigerant communication pipe 6 (steps S21 and S22) is performed first, and then the pipe volume determination operation for the gas refrigerant communication pipe 7 (step S23). S24), but the pipe volume judgment operation for the gas refrigerant communication pipe 7 may be performed first.
  • the pipe volume judgment operation for the gas refrigerant communication pipe 7 may be performed first.
  • step S25 after determining that the result of the pipe volume determination operation in steps S21 to S24 is not valid, the refrigerant communication is performed. Estimate the length of the refrigerant communication pipes 6 and 7 from the pressure loss in the pipes 6 and 7, and move to the process of calculating the volume Vlp and Vgp of the refrigerant communication pipes 6 and 7 from the estimated pipe length and the average volume ratio. Then, the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 may be obtained.
  • the length of the refrigerant communication pipes 6 and 7 has no information on the pipe diameter, etc.
  • the pipe volume judgment operation is performed on the assumption that the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 are unknown.
  • the force described for calculating the volume Vlp and Vgp of the refrigerant communication pipes 6 and 7 When the pipe volume calculation means inputs information such as the diameter of the refrigerant communication pipes 6 and 7, the refrigerant communication pipe If you have the function to calculate the volume Vlp and Vgp of 6 and 7, you can use this function together.
  • the length of the refrigerant communication pipes 6 and 7 is the pipe diameter.
  • the above-mentioned validity judgment means step S25 is used to input the refrigerant If the length of the communication pipes 6 and 7 is sufficient, it may be determined whether or not the information such as the pipe diameter is appropriate.
  • Step S3 Initial refrigerant quantity detection operation
  • FIG. 10 is a flowchart of the initial refrigerant quantity detection operation.
  • Step S31 Refrigerant Amount Determination Operation
  • step S31 the indoor unit 100% operation, condensing pressure control, liquid pipe temperature control, superheat degree control, The refrigerant quantity determination operation including the pressure generation pressure control is performed.
  • control unit 8 functioning as the refrigerant quantity determination operation control means for performing the refrigerant quantity determination operation including the indoor unit total number operation, the condensation pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control, performs the step S. 31 processes are performed.
  • control unit 8 that functions as the refrigerant amount calculation means while performing the refrigerant amount determination operation described above, the refrigerant flowing from the refrigerant circuit 10 in the initial refrigerant amount determination operation in step S32 or the operation state amount of the component device is used.
  • the amount of refrigerant in the refrigerant circuit 10 is calculated using a relational expression between the amount of refrigerant in each part of the refrigerant circuit 10 described above and the operating state amount of the refrigerant flowing through the refrigerant circuit 10 or the constituent devices.
  • the volume Vlp and Vgp of the refrigerant communication pipes 6 and 7 that were unknown after the installation of the components of the air conditioner 1 are calculated and known by the above-described pipe volume determination operation.
  • Refrigerant communication pipes 6 and 7 volumes Vlp and Vgp are multiplied by the refrigerant density to calculate refrigerant amounts Mlp and Mgp in refrigerant communication pipes 6 and 7, and the refrigerant quantities in the other parts are calculated.
  • the initial refrigerant amount of the entire refrigerant circuit 10 can be detected.
  • This initial refrigerant quantity is used as a reference refrigerant quantity Mi for the refrigerant circuit 10 as a reference for determining the presence or absence of leakage from the refrigerant circuit 10 in the refrigerant leakage detection operation described later.
  • the control unit 8 that functions as a refrigerant amount calculating means that calculates the refrigerant amount in each part of the refrigerant circuit 10 from the refrigerant flowing in the refrigerant circuit 10 in the initial refrigerant amount detection operation or the operation state quantity of the constituent devices. Then, the process of step S32 is performed.
  • FIG. 11 is a flowchart of the refrigerant leak detection operation mode.
  • Step S41 Refrigerant amount judgment operation
  • the refrigerant leak detection operation mode is automatically or manually changed from the normal operation mode.
  • the refrigerant quantity judgment operation including the indoor unit total number operation, the condensation pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control is performed.
  • this refrigerant quantity determination operation is performed for each refrigerant leakage detection operation. For example, if the condensation pressure Pc is different, the refrigerant leakage occurs! Even if the refrigerant temperature Tco fluctuates at the outlet of the outdoor heat exchanger 23 due to the difference in temperature, the temperature of the refrigerant in the liquid refrigerant communication pipe 6 is the same as the liquid pipe temperature. Will be kept.
  • control unit 8 functioning as the refrigerant amount determination operation control means for performing the refrigerant amount determination operation including the indoor unit total number operation, the condensation pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control, performs step S41. Is performed.
  • control unit 8 that functions as the refrigerant quantity calculation means while performing the refrigerant quantity determination operation described above, the refrigerant from the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device in the refrigerant leakage detection operation in step S42.
  • the refrigerant amount in the refrigerant circuit 10 is calculated using a relational expression between the refrigerant amount of each part of the refrigerant circuit 10 and the operation state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device.
  • the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 that were unknown after the installation of the components of the air conditioner 1 are calculated by the above-described pipe volume determination operation as in the initial refrigerant amount determination operation. Therefore, the refrigerant volumes Mlp and Mgp in the refrigerant communication pipes 6 and 7 are calculated by multiplying the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 by the density of the refrigerant. By adding the refrigerant amounts of the other parts, the refrigerant amount M of the entire refrigerant circuit 10 can be calculated.
  • the liquid refrigerant communication pipe section Refrigerant amount Mlp in B3 is an outdoor heat exchange regardless of the operating conditions of the refrigerant leak detection operation. Even when the temperature Tco of the refrigerant at the outlet of the vessel 23 fluctuates, it is kept constant.
  • control unit 8 that functions as the refrigerant amount calculating means for calculating the refrigerant amount of each part of the refrigerant circuit 10 from the refrigerant flowing in the refrigerant circuit 10 or the operating state quantity of the component device in the refrigerant leakage detection operation causes the step S42. Is performed.
  • Steps S43, S44 Judgment of appropriateness of refrigerant amount, warning display
  • the refrigerant amount M of the entire refrigerant circuit 10 calculated in step S42 described above is detected through the initial refrigerant amount detection operation in the case where refrigerant leakage from the refrigerant circuit 10 occurs.
  • the reference refrigerant amount MU is also small and no refrigerant leakage from the refrigerant circuit 10 occurs, the value is almost the same as the reference refrigerant amount Mi.
  • step S43 it is determined whether or not refrigerant has leaked. If it is determined in step S43 that no refrigerant leaks from the refrigerant circuit 10, the refrigerant leak detection operation mode is terminated.
  • step S43 if it is determined in step S43 that refrigerant has leaked from the refrigerant circuit 10, the process proceeds to step S44, and a warning is sent to the warning display unit 9 informing that the refrigerant has been detected. After the display, the refrigerant leak detection operation mode is terminated.
  • the refrigerant amount determination means for detecting the presence or absence of refrigerant leakage by determining whether or not the refrigerant amount in the refrigerant circuit 10 is appropriate while performing the refrigerant amount determination operation in the refrigerant leakage detection operation mode.
  • the processing of steps S42 to S44 is performed by the control unit 8 that functions as one refrigerant leakage detection means.
  • the control unit 8 includes the refrigerant amount determination operation means, the refrigerant amount calculation means, the refrigerant amount determination means, the pipe volume determination operation means, the pipe volume calculation means, A refrigerant amount determination system for determining the suitability of the amount of refrigerant charged in the refrigerant circuit 10 by functioning as a validity determination unit and a state quantity storage unit is configured.
  • the air conditioner 1 of the present embodiment has the following features.
  • the refrigerant since the refrigerant is in contact with the oil upper surface of the refrigerating machine oil collected in the oil reservoir 71d formed in the compressor casing 71 of the compressor 21, the refrigerating machine oil near the oil upper surface is obtained. Since the refrigerant temperature approaches the temperature of the refrigerant, and the refrigeration oil near the wall surface of the compressor casing 71 forming the oil reservoir 71d approaches the temperature of the wall surface, that is, the ambient temperature outside the compressor 21, the oil reservoir 71d In the refrigeration oil accumulated in the tank, a temperature distribution corresponding to the temperature difference between the temperature of the refrigerant in contact with the oil upper surface and the ambient temperature outside the compressor 21 is generated.
  • the air conditioner 1 of the present embodiment is configured so that the maximum value of the temperature difference between the refrigerating machine oil inside the compressor 21 and the refrigerant in contact with the refrigerating machine oil is 50 ° C or less.
  • the temperature distribution of the refrigerating machine oil inside the compressor 21 is generated.
  • the refrigerant amount Mqo dissolved in the refrigeration oil inside the compressor 21 can be accurately grasped, so that the suitability of the refrigerant amount in the refrigerant circuit 10 can be determined with high accuracy.
  • the refrigerant amount in the refrigerant circuit 10 can be calculated based on the refrigerant flowing through the refrigerant circuit 10 or the operating state quantity of the component equipment.
  • the suitability of the refrigerant quantity in the refrigerant circuit 10 is determined, and the refrigerant or the component device that flows through the refrigerant circuit 10 when calculating the refrigerant quantity.
  • the dissolved refrigerant quantity Mqo is calculated based on the temperature of the refrigerant in contact with the refrigeration oil inside the compressor 21 (here, the suction temperature Ts).
  • the temperature distribution of the refrigerating machine oil inside the compressor 21 is configured such that the maximum value of the temperature difference between the refrigerating machine oil inside the compressor 21 and the refrigerant in contact with the refrigerating machine oil is 50 ° C or less. Therefore, the temperature of the refrigerant in contact with the refrigeration oil inside the compressor 21 (here, the suction temperature Ts) is the temperature of the refrigeration oil accumulated in the oil reservoir 71d. Even if is used, the amount of refrigerant Mqo dissolved in the refrigeration machine oil inside the compressor 21 can be calculated with high accuracy. However, even in this case, there is some temperature distribution of the refrigerating machine oil inside the compressor 21, and it is desirable to calculate the dissolved refrigerant amount Mqo by further considering the influence of this temperature distribution.
  • the outdoor temperature Ta as the atmospheric temperature outside the compressor 21 that is the cause of the temperature distribution of the refrigeration oil inside the compressor 21 is also used for the calculation of the dissolved refrigerant amount Mqo.
  • the suction temperature Ts and the outdoor temperature are used instead of the suction temperature Ts in the above-described embodiment.
  • intake temperature Ts and outdoor temperature Ta in Fig. 12 and refrigeration oil can be used (intake temperature Ts and outdoor temperature Ta in Fig. 12 and refrigeration oil).
  • T oil, suction temperature Ts, and outdoor temperature Ta may be a function equation using measurement data obtained experimentally in advance or may be a map. Good.
  • the outdoor temperature sensor 36 that detects the outdoor temperature Ta there is a possibility that a deviation may occur between the detected outdoor temperature Ta and the ambient temperature outside the actual compressor 21.
  • a value obtained by correcting the outdoor temperature Ta may be used as the ambient temperature outside the compressor 21.
  • At least one of the operation state quantity of the component equipment for example, the capacity obtained from the operation state of the air conditioner 1, the discharge pressure Pd, and the air volume Wo of the outdoor fan 28 is used. It is possible to correct by using.
  • the amount of dissolved refrigerant Mq is compared with the case where the amount of dissolved refrigerant Mqo is calculated based on only the temperature of the refrigerant in contact with the refrigerating machine oil inside the compressor 21 as in the above embodiment!
  • the calculation error of o can be further reduced.
  • the amount of refrigerant to be calculated can be grasped more accurately, so that the suitability of the amount of refrigerant in the refrigerant circuit 10 can be determined with higher accuracy.
  • the present invention is applied to an air conditioner capable of switching between cooling and heating. May be applied.
  • the example in which the present invention is applied to the air conditioner including one outdoor unit has been described.
  • the present invention is not limited to this, and the air conditioner includes a plurality of outdoor units.
  • the present invention may be applied to an apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A quantity of a refrigerant dissolved in a refrigeration oil in a compressor is accurately grasped and whether a quantity of the refrigerant in a refrigerant circuit is suitable or not is highly accurately judged. An air conditioner (1) is provided with a refrigerant circuit (10) composed by connecting a compressor (21), an outdoor heat exchanger (23), indoor expansion valves (41, 51) and outdoor heat exchangers (42, 52). The air conditioner is also provided with a refrigerant quantity judging means for judging whether a quantity of a refrigerant in the refrigerant circuit (10) is suitable or not, based on an operation-status quantity of the refrigerant flowing in the refrigerant circuit (10) or that of a constitutive apparatus. The maximum difference between the temperature of the refrigeration oil inside the compressor (21) and that of the refrigerant brought into contact with the refrigeration oil is 50°C or below.

Description

明 細 書  Specification
空気調和装置  Air conditioner
技術分野  Technical field
[0001] 本発明は、空気調和装置の冷媒回路内の冷媒量の適否を判定する機能、特に、 圧縮機と熱源側熱交^^と膨張機構と利用側熱交 とが接続されることによって 構成される空気調和装置の冷媒回路内の冷媒量の適否を判定する機能に関する。 背景技術  [0001] The present invention relates to a function for determining the suitability of the amount of refrigerant in the refrigerant circuit of an air conditioner, in particular, by connecting a compressor, a heat source side heat exchanger ^, an expansion mechanism, and a user side heat exchanger. The present invention relates to a function of determining whether or not the amount of refrigerant in a refrigerant circuit of an air conditioner configured is appropriate. Background art
[0002] 従来より、空気調和装置の冷媒回路内の冷媒量の過不足を判定するために、冷凍 サイクル特性のシミュレーションを行い、この演算結果を用いて、冷媒量の過不足を 判定する手法が提案されている (例えば、特許文献 1参照)。  [0002] Conventionally, in order to determine the excess or deficiency of the refrigerant amount in the refrigerant circuit of the air conditioner, there has been a method of simulating refrigeration cycle characteristics and using this calculation result to determine the excess or deficiency of the refrigerant amount. It has been proposed (for example, see Patent Document 1).
特許文献 1:特開 2000— 304388号公報  Patent Document 1: Japanese Patent Laid-Open No. 2000-304388
発明の開示  Disclosure of the invention
[0003] しかし、上述のような冷凍サイクル特性のシミュレーションにより冷媒量の過不足を 判定する手法では、莫大な量の演算が必要であり、通常、空気調和装置に搭載され るマイコン等の安価な演算装置では演算時間が長くなつたり、また、演算そのものが 不可能になるおそれがある。  [0003] However, the above-described method for determining the excess or deficiency of the refrigerant amount by the simulation of the refrigeration cycle characteristics requires a huge amount of calculation, and is usually inexpensive such as a microcomputer mounted on the air conditioner. In a computing device, the computation time may be long, or the computation itself may be impossible.
これに対して、本願発明者は、冷媒回路を複数の部分に分割した場合における各 部分の冷媒量と冷媒回路を流れる冷媒又は構成機器の運転状態量との関係式を用 V、て、冷媒回路を流れる冷媒又は構成機器の運転状態量から各部分の冷媒量を演 算するようにし、この演算によって得られる各部分の冷媒量を用いて、冷媒回路内の 冷媒量の適否を判定する手法を発明し、演算負荷を抑えつつ、冷媒回路内の冷媒 量の適否を高精度に判定できるようにして ヽる (#112005- 363732号参照)。  On the other hand, the inventor of the present application uses a relational expression between the refrigerant amount of each part and the operating state quantity of the refrigerant or component equipment flowing through the refrigerant circuit when the refrigerant circuit is divided into a plurality of parts, and A method of calculating the refrigerant amount of each part from the refrigerant flowing through the circuit or the operating state quantity of the component equipment, and using the refrigerant amount of each part obtained by this calculation to determine the suitability of the refrigerant quantity in the refrigerant circuit In this case, the suitability of the refrigerant amount in the refrigerant circuit can be determined with high accuracy while suppressing the calculation load (see # 112005-363732).
[0004] そして、このような手法を用いて冷媒回路内の冷媒量の適否を判定する場合にお いて、さらに冷媒量の適否の判定精度を向上させようとすると、冷凍機油に溶解する 冷媒量、特に、圧縮機内部の油溜まり部に溜まった冷凍機油に溶解する冷媒量をで きるだけ正確に把握して、冷媒量の演算に反映する必要がある。このような油溜まり 部に溜まった冷凍機油に溶解する冷媒量を正確に把握するためには、油溜まり部に 溜まった冷凍機油の圧力や温度を検知し、これを用いて冷凍機油への冷媒の溶解 度を演算する必要がある。 [0004] Then, when determining the suitability of the refrigerant amount in the refrigerant circuit using such a method, if the accuracy of judging the suitability of the refrigerant amount is further improved, the amount of refrigerant dissolved in the refrigerating machine oil In particular, it is necessary to ascertain as accurately as possible the amount of refrigerant dissolved in the refrigerating machine oil accumulated in the oil reservoir inside the compressor and reflect it in the calculation of the refrigerant amount. In order to accurately grasp the amount of refrigerant dissolved in the refrigerating machine oil accumulated in such an oil reservoir, the oil reservoir It is necessary to detect the pressure and temperature of the accumulated refrigeration oil and use it to calculate the solubility of the refrigerant in the refrigeration oil.
しかし、圧縮機内部の油溜まり部に溜まった冷凍機油には、冷凍機油に接する冷 媒の温度や油溜まり部を形成する圧縮機ケーシングの壁面の温度の影響によって、 冷凍機油に温度分布が生じて一様にならず、油溜まり部に溜まった冷凍機油の正確 な温度を検知することが困難であるため、油溜まり部に溜まった冷凍機油への冷媒 の溶解度の演算誤差が大きくなり、結果的に、冷媒量の適否の判定精度を向上させ ることができない。  However, the refrigerating machine oil accumulated in the oil reservoir inside the compressor has a temperature distribution in the refrigerating machine oil due to the temperature of the refrigerant in contact with the refrigerating machine oil and the temperature of the wall of the compressor casing that forms the oil reservoir. It is difficult to detect the exact temperature of the refrigerating machine oil accumulated in the oil reservoir, resulting in a large calculation error in the solubility of the refrigerant in the refrigerating machine oil accumulated in the oil reservoir. In particular, it is not possible to improve the accuracy of determining the appropriateness of the refrigerant amount.
[0005] 本発明の課題は、圧縮機内部の冷凍機油に溶解する冷媒量を正確に把握し、冷 媒回路内の冷媒量の適否を高精度に判定できるようにすることにある。  [0005] An object of the present invention is to accurately grasp the amount of refrigerant dissolved in the refrigeration oil inside the compressor, and to determine whether or not the amount of refrigerant in the refrigerant circuit is appropriate.
[0006] 第 1の発明にかかる空気調和装置は、圧縮機と熱源側熱交翻と膨張機構と利用 側熱交換器とが接続されることによって構成される冷媒回路と、冷媒回路を流れる冷 媒又は構成機器の運転状態量に基づいて、冷媒回路内の冷媒量の適否を判定する 冷媒量判定手段とを備えており、圧縮機内部の冷凍機油と冷凍機油に接する冷媒と の温度差の最大値が 50°C以下となるように構成されて 、る。  [0006] An air conditioner according to a first aspect of the present invention includes a refrigerant circuit configured by connecting a compressor, a heat source side heat exchange, an expansion mechanism, and a use side heat exchanger, and a cooling circuit that flows through the refrigerant circuit. Refrigerant amount determination means for determining the suitability of the refrigerant amount in the refrigerant circuit based on the operation state quantity of the medium or the component device, and a temperature difference between the refrigerant oil in the compressor and the refrigerant in contact with the refrigerant oil. The maximum value is 50 ° C or less.
この空気調和装置では、圧縮機内部の冷凍機油と冷凍機油に接する冷媒との温 度差の最大値が 50°C以下となるように構成されているため、圧縮機内部の冷凍機油 の温度分布が生じに《なる。これにより、圧縮機内部の冷凍機油に溶解する冷媒量 を正確に把握することができるようになるため、冷媒回路内の冷媒量の適否を高精度 に判定できるようになる。  In this air conditioner, the maximum temperature difference between the refrigeration oil inside the compressor and the refrigerant in contact with the refrigeration oil is 50 ° C or less, so the temperature distribution of the refrigeration oil inside the compressor Will occur. As a result, it becomes possible to accurately grasp the amount of refrigerant dissolved in the refrigeration oil inside the compressor, so that the suitability of the amount of refrigerant in the refrigerant circuit can be determined with high accuracy.
[0007] 第 2の発明にかかる空気調和装置は、第 1の発明にかかる空気調和装置において 、圧縮機には、内部に冷凍機油を溜めることが可能な油溜まり部を有している。冷媒 は、圧縮機内部において、油溜まり部に溜まった冷凍機油の油上面に接している。 この空気調和装置では、油溜まり部に溜まった冷凍機油の油上面に冷媒が接して いるため、油上面付近の冷凍機油は冷媒の温度に近づき、そして、油溜まり部を形 成する圧縮機ケーシングの壁面付近の冷凍機油は壁面の温度、すなわち、圧縮機 外部の雰囲気温度に近づくことから、油溜まり部に溜まった冷凍機油には、油上面に 接する冷媒の温度と圧縮機外部の雰囲気温度との温度差に相当する温度分布が生 じることになる。そして、この空気調和装置では、実質的には、油上面に接する冷媒 の温度と油溜まり部を形成する圧縮機ケーシングの壁面付近の冷凍機油の温度との 温度差が 50°C以下になるように構成されているため、圧縮機内部の冷凍機油に溶 解する冷媒量を正確に把握することができるようになり、冷媒回路内の冷媒量の適否 を高精度に判定できるようになる。 [0007] An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect of the invention, wherein the compressor has an oil reservoir that can store refrigerating machine oil therein. The refrigerant is in contact with the upper surface of the refrigerating machine oil accumulated in the oil reservoir inside the compressor. In this air conditioner, since the refrigerant is in contact with the oil upper surface of the refrigerating machine oil collected in the oil reservoir, the refrigerating machine oil near the oil upper surface approaches the temperature of the refrigerant, and the compressor casing forms the oil reservoir. The refrigeration oil near the wall of the compressor approaches the wall temperature, that is, the ambient temperature outside the compressor.Therefore, the refrigeration oil accumulated in the oil reservoir has the temperature of the refrigerant in contact with the oil upper surface and the ambient temperature outside the compressor. The temperature distribution corresponding to the temperature difference of It will be closed. In this air conditioner, the temperature difference between the temperature of the refrigerant in contact with the upper surface of the oil and the temperature of the refrigeration oil near the wall of the compressor casing forming the oil reservoir is substantially 50 ° C or less. Therefore, the amount of refrigerant dissolved in the refrigeration oil inside the compressor can be accurately grasped, and the suitability of the amount of refrigerant in the refrigerant circuit can be determined with high accuracy.
[0008] 第 3の発明にかかる空気調和装置は、第 1又は第 2の発明にかかる空気調和装置 において、冷媒回路を流れる冷媒又は構成機器の運転状態量に基づいて、冷凍機 油に溶解する冷媒量である溶存冷媒量を含む冷媒回路内の冷媒量を演算する冷媒 量演算手段をさらに備えている。冷媒量判定手段は、冷媒量演算手段によって演算 される冷媒量に基づいて、冷媒回路内の冷媒量の適否を判定する。 [0008] An air conditioner according to a third aspect of the present invention is the air conditioner according to the first or second aspect of the invention, wherein the air conditioner is dissolved in the refrigerating machine oil based on the refrigerant flowing through the refrigerant circuit or the operating state quantity of the component equipment. The apparatus further includes a refrigerant quantity calculating means for calculating the refrigerant quantity in the refrigerant circuit including the dissolved refrigerant quantity that is the refrigerant quantity. The refrigerant amount determining means determines whether the refrigerant amount in the refrigerant circuit is appropriate based on the refrigerant amount calculated by the refrigerant amount calculating means.
この空気調和装置では、圧縮機内部の冷凍機油と冷凍機油に接する冷媒との温 度差の最大値が 50°C以下となるように構成されているため、例えば、冷媒回路を流 れる冷媒又は構成機器の運転状態量の一つとしての圧縮機内部の冷凍機油に接す る冷媒の温度に基づいて溶存冷媒量を演算する際においても、圧縮機内部の冷凍 機油の温度分布が生じに《なっているため、圧縮機内部の冷凍機油への冷媒の溶 解度の演算誤差が小さくなる。これにより、溶存冷媒量を正確に把握することができる ようになるとともに、冷媒量演算手段によって演算される冷媒量も正確に把握すること ができるようになるため、冷媒回路内の冷媒量の適否を高精度に判定できるようにな る。  In this air conditioner, since the maximum value of the temperature difference between the refrigeration oil inside the compressor and the refrigerant in contact with the refrigeration oil is 50 ° C or less, for example, the refrigerant flowing through the refrigerant circuit or Even when calculating the amount of dissolved refrigerant based on the temperature of the refrigerant in contact with the refrigeration oil inside the compressor as one of the operating state quantities of the component equipment, the temperature distribution of the refrigeration oil inside the compressor occurs. Therefore, the calculation error of the solubility of refrigerant in the refrigeration oil inside the compressor is reduced. This makes it possible to accurately grasp the amount of refrigerant that has been dissolved and to accurately grasp the amount of refrigerant that is calculated by the refrigerant amount calculation means. Can be determined with high accuracy.
[0009] 第 4の発明に力かる空気調和装置は、第 3の発明に力かる空気調和装置にお!、て 、冷媒量演算手段は、圧縮機外部の雰囲気温度を少なくとも含む運転状態量に基 づいて、溶存冷媒量を演算する。  [0009] The air conditioner according to the fourth invention is the air conditioner according to the third invention. Therefore, the refrigerant quantity calculating means is an operating state quantity including at least the ambient temperature outside the compressor. Based on this, the amount of dissolved refrigerant is calculated.
この空気調和装置では、圧縮機外部の雰囲気温度を少なくとも含む運転状態量に 基づいて、溶存冷媒量を演算しているため、いくらか生じている圧縮機内部の冷凍 機油の温度分布の影響をさらに考慮することができるようになり、例えば、圧縮機内 部の冷凍機油に接する冷媒の温度のみに基づいて溶存冷媒量を演算する際に比 ベて、溶存冷媒量の演算誤差をさらに小さくすることができるようになる。これにより、 冷媒量演算手段によって演算される冷媒量をさらに正確に把握することができるよう になるため、冷媒回路内の冷媒量の適否をさらに高精度に判定できるようになる。 図面の簡単な説明 In this air conditioner, the amount of dissolved refrigerant is calculated based on the amount of operating state that includes at least the ambient temperature outside the compressor. Therefore, some effects of the temperature distribution of the refrigeration oil inside the compressor are further taken into account. For example, the calculation error of the dissolved refrigerant amount can be further reduced as compared with the case where the dissolved refrigerant amount is calculated based only on the temperature of the refrigerant in contact with the refrigerating machine oil inside the compressor. It becomes like this. As a result, the refrigerant amount calculated by the refrigerant amount calculating means can be grasped more accurately. Therefore, the suitability of the refrigerant amount in the refrigerant circuit can be determined with higher accuracy. Brief Description of Drawings
[0010] [図 1]本発明の一実施形態に力かる空気調和装置の概略構成図である。  FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.
[図 2]圧縮機の概略縦断面図である。  FIG. 2 is a schematic longitudinal sectional view of a compressor.
[図 3]空気調和装置の制御ブロック図である。  FIG. 3 is a control block diagram of the air conditioner.
[図 4]試運転モードのフローチャートである。  FIG. 4 is a flowchart of a test operation mode.
[図 5]冷媒自動充填運転のフローチャートである。  FIG. 5 is a flowchart of an automatic refrigerant charging operation.
[図 6]冷媒量判定運転における冷媒回路内を流れる冷媒の状態を示す模式図(四路 切換弁等の図示を省略)である。  FIG. 6 is a schematic diagram showing the state of refrigerant flowing in the refrigerant circuit in the refrigerant quantity determination operation (illustration of a four-way switching valve and the like is omitted).
[図 7]配管容積判定運転のフローチャートである。  FIG. 7 is a flowchart of a pipe volume determination operation.
[図 8]液冷媒連絡配管用の配管容積判定運転における空気調和装置の冷凍サイク ルを示すモリエル線図である。  FIG. 8 is a Mollier diagram showing the refrigeration cycle of the air conditioner in the pipe volume judgment operation for the liquid refrigerant communication pipe.
[図 9]ガス冷媒連絡配管用の配管容積判定運転における空気調和装置の冷凍サイク ルを示すモリエル線図である。  FIG. 9 is a Mollier diagram showing the refrigeration cycle of the air conditioner in the pipe volume judgment operation for the gas refrigerant communication pipe.
[図 10]初期冷媒量判定運転のフローチャートである。  FIG. 10 is a flowchart of an initial refrigerant quantity determination operation.
[図 11]冷媒漏洩検知運転モードのフローチャートである。  FIG. 11 is a flowchart of a refrigerant leak detection operation mode.
[図 12]吸入温度及び室外温度と冷凍機油の温度との関係を示す線図である。  FIG. 12 is a diagram showing the relationship between the intake and outdoor temperatures and the temperature of the refrigerating machine oil.
符号の説明  Explanation of symbols
[0011] 1 空気調和装置 [0011] 1 Air conditioner
10 冷媒回路  10 Refrigerant circuit
21 圧縮機  21 Compressor
23 室外熱交換器 (熱源側熱交換器)  23 Outdoor heat exchanger (heat source side heat exchanger)
38 室外膨張弁 (膨張機構)  38 Outdoor expansion valve (expansion mechanism)
41、 51 室内膨張弁 (膨張機構)  41, 51 Indoor expansion valve (expansion mechanism)
42、 52 室内熱交翻 (利用側熱交翻)  42, 52 Indoor heat exchange (use side heat exchange)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、図面に基づいて、本発明にかかる空気調和装置の実施形態について説明 する。 (1)空気調和装置の構成 Hereinafter, embodiments of an air-conditioning apparatus according to the present invention will be described with reference to the drawings. (1) Configuration of air conditioner
図 1は、本発明の一実施形態に力かる空気調和装置 1の概略構成図である。空気 調和装置 1は、蒸気圧縮式の冷凍サイクル運転を行うことによって、ビル等の室内の 冷暖房に使用される装置である。空気調和装置 1は、主として、 1台の熱源ユニットと しての室外ユニット 2と、それに並列に接続された複数台(本実施形態では、 2台)の 利用ユニットとしての室内ユニット 4、 5と、室外ユニット 2と室内ユニット 4、 5とを接続 する冷媒連絡配管としての液冷媒連絡配管 6及びガス冷媒連絡配管 7とを備えてい る。すなわち、本実施形態の空気調和装置 1の蒸気圧縮式の冷媒回路 10は、室外 ユニット 2と、室内ユニット 4、 5と、液冷媒連絡配管 6及びガス冷媒連絡配管 7とが接 続されることによって構成されている。そして、本実施形態において、冷媒回路 10内 には、 R407C、 R410Aあるいは R134a等の HFC系冷媒が冷媒として封入されてい る。  FIG. 1 is a schematic configuration diagram of an air-conditioning apparatus 1 according to one embodiment of the present invention. The air conditioner 1 is an apparatus used for air conditioning in a room such as a building by performing a vapor compression refrigeration cycle operation. The air conditioner 1 mainly includes an outdoor unit 2 as a single heat source unit, and indoor units 4 and 5 as a plurality of (two in this embodiment) usage units connected in parallel to the outdoor unit 2. The liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 are provided as refrigerant communication pipes connecting the outdoor unit 2 and the indoor units 4 and 5. That is, in the vapor compression refrigerant circuit 10 of the air conditioner 1 of the present embodiment, the outdoor unit 2, the indoor units 4, 5, the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 are connected. It is constituted by. In the present embodiment, an HFC refrigerant such as R407C, R410A, or R134a is sealed in the refrigerant circuit 10 as a refrigerant.
[0013] <室内ユニット >  [0013] <Indoor unit>
室内ユニット 4、 5は、ビル等の室内の天井に埋め込みや吊り下げ等により、又は、 室内の壁面に壁掛け等により設置されている。室内ユニット 4、 5は、液冷媒連絡配管 6及びガス冷媒連絡配管 7を介して室外ユニット 2に接続されており、冷媒回路 10の 一部を構成している。  The indoor units 4 and 5 are installed by being embedded or suspended in the ceiling of a room such as a building or by hanging on the wall surface of the room. The indoor units 4 and 5 are connected to the outdoor unit 2 via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 and constitute a part of the refrigerant circuit 10.
次に、室内ユニット 4、 5の構成について説明する。尚、室内ユニット 4と室内ユニット 5とは同様の構成であるため、ここでは、室内ユニット 4の構成のみ説明し、室内ュ- ット 5の構成については、それぞれ、室内ユニット 4の各部を示す 40番台の符号の代 わりに 50番台の符号を付して、各部の説明を省略する。  Next, the configuration of the indoor units 4 and 5 will be described. Since the indoor unit 4 and the indoor unit 5 have the same configuration, only the configuration of the indoor unit 4 will be described here, and the configuration of the indoor unit 5 indicates each part of the indoor unit 4 respectively. Instead of the 40's code, the 50's code is used, and the description of each part is omitted.
室内ユニット 4は、主として、冷媒回路 10の一部を構成する室内側冷媒回路 10a ( 室内ユニット 5では、室内側冷媒回路 10b)を有している。この室内側冷媒回路 10a は、主として、膨張機構としての室内膨張弁 41と、利用側熱交換器としての室内熱交 翻 42とを有している。  The indoor unit 4 mainly includes an indoor refrigerant circuit 10a (in the indoor unit 5, the indoor refrigerant circuit 10b) that constitutes a part of the refrigerant circuit 10. The indoor refrigerant circuit 10a mainly has an indoor expansion valve 41 as an expansion mechanism and an indoor heat exchange 42 as a use side heat exchanger.
[0014] 本実施形態において、室内膨張弁 41は、室内側冷媒回路 10a内を流れる冷媒の 流量の調節等を行うために、室内熱交換器 42の液側に接続された電動膨張弁であ る。 本実施形態において、室内熱交 は、伝熱管と多数のフィンとにより構成され たクロスフィン式のフィン 'アンド'チューブ型熱交換器であり、冷房運転時には冷媒 の蒸発器として機能して室内空気を冷却し、暖房運転時には冷媒の凝縮器として機 能して室内空気を加熱する熱交^^である。 In the present embodiment, the indoor expansion valve 41 is an electric expansion valve connected to the liquid side of the indoor heat exchanger 42 in order to adjust the flow rate of the refrigerant flowing in the indoor refrigerant circuit 10a. The In the present embodiment, the indoor heat exchange is a cross-fin type fin 'and' tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant evaporator during cooling operation. It is a heat exchanger that functions as a refrigerant condenser during heating operation to heat indoor air.
本実施形態において、室内ユニット 4は、ユニット内に室内空気を吸入して、室内熱 交 42において冷媒と熱交換させた後に、供給空気として室内に供給するための 送風ファンとしての室内ファン 43を有している。室内ファン 43は、室内熱交換器 42に 供給する空気の風量 Wrを可変することが可能なファンであり、本実施形態において 、 DCファンモータ力もなるモータ 43aによって駆動される遠心ファンや多翼ファン等 である。  In the present embodiment, the indoor unit 4 sucks indoor air into the unit, exchanges heat with the refrigerant in the indoor heat exchanger 42, and then supplies the indoor fan 43 as a blower fan to be supplied indoors as supply air. Have. The indoor fan 43 is a fan capable of changing the air volume Wr of air supplied to the indoor heat exchanger 42, and in this embodiment, the centrifugal fan or the multiblade fan driven by the motor 43a that also has DC fan motor power. Etc.
[0015] また、室内ユニット 4には、各種のセンサが設けられている。室内熱交換器 42の液 側には、冷媒の温度 (すなわち、暖房運転時における凝縮温度 Tc又は冷房運転時 における蒸発温度 Teに対応する冷媒温度)を検出する液側温度センサ 44が設けら れている。室内熱交換器 42のガス側には、冷媒の温度 Teoを検出するガス側温度セ ンサ 45が設けられている。室内ユニット 4の室内空気の吸入口側には、ユニット内に 流入する室内空気の温度 (すなわち、室内温度 Tr)を検出する室内温度センサ 46が 設けられている。本実施形態において、液側温度センサ 44、ガス側温度センサ 45及 び室内温度センサ 46は、サーミスタからなる。また、室内ユニット 4は、室内ユニット 4 を構成する各部の動作を制御する室内側制御部 47を有している。そして、室内側制 御部 47は、室内ユニット 4の制御を行うために設けられたマイクロコンピュータやメモ リ等を有しており、室内ユニット 4を個別に操作するためのリモコン(図示せず)との間 で制御信号等のやりとりを行ったり、室外ユニット 2との間で伝送線 8aを介して制御信 号等のやりとりを行うことができるようになって 、る。  [0015] The indoor unit 4 is provided with various sensors. On the liquid side of the indoor heat exchanger 42, a liquid side temperature sensor 44 that detects the temperature of the refrigerant (that is, the refrigerant temperature corresponding to the condensation temperature Tc during heating operation or the evaporation temperature Te during cooling operation) is provided. ing. A gas side temperature sensor 45 for detecting the refrigerant temperature Teo is provided on the gas side of the indoor heat exchanger 42. An indoor temperature sensor 46 for detecting the temperature of indoor air flowing into the unit (that is, the indoor temperature Tr) is provided on the indoor air inlet side of the indoor unit 4. In the present embodiment, the liquid side temperature sensor 44, the gas side temperature sensor 45, and the room temperature sensor 46 are composed of thermistors. The indoor unit 4 also has an indoor side control unit 47 that controls the operation of each part constituting the indoor unit 4. The indoor control unit 47 includes a microcomputer, a memory, and the like provided for controlling the indoor unit 4, and a remote controller (not shown) for individually operating the indoor unit 4. Control signals etc. can be exchanged with the outdoor unit 2 and control signals etc. can be exchanged with the outdoor unit 2 via the transmission line 8a.
[0016] <室外ユニット >  [0016] <Outdoor unit>
室外ユニット 2は、ビル等の室外に設置されており、液冷媒連絡配管 6及びガス冷 媒連絡配管 7を介して室内ユニット 4、 5に接続されており、室内ユニット 4、 5の間で 冷媒回路 10を構成している。  The outdoor unit 2 is installed outside a building or the like, and is connected to the indoor units 4 and 5 via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7. Circuit 10 is configured.
次に、室外ユニット 2の構成について説明する。室外ユニット 2は、主として、冷媒回 路 10の一部を構成する室外側冷媒回路 10cを有している。この室外側冷媒回路 10 cは、主として、圧縮機 21と、四路切換弁 22と、熱源側熱交 としての室外熱交換 器 23と、膨張機構としての室外膨張弁 38と、アキュムレータ 24と、温度調節機構とし ての過冷却器 25と、液側閉鎖弁 26と、ガス側閉鎖弁 27とを有している。 Next, the configuration of the outdoor unit 2 will be described. The outdoor unit 2 mainly has a refrigerant circuit. The outdoor refrigerant circuit 10c constituting a part of the passage 10 is provided. This outdoor refrigerant circuit 10c mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23 as a heat source side heat exchange, an outdoor expansion valve 38 as an expansion mechanism, an accumulator 24, A supercooler 25 as a temperature adjusting mechanism, a liquid side closing valve 26 and a gas side closing valve 27 are provided.
圧縮機 21は、運転容量を可変することが可能な圧縮機であり、本実施形態におい て、インバータにより回転数 Rmが制御される圧縮機モータ 73によって駆動される容 積式圧縮機である。本実施形態において、圧縮機 21は、 1台のみであるが、これに 限定されず、室内ユニットの接続台数等に応じて、 2台以上の圧縮機が並列に接続 されていてもよい。  The compressor 21 is a compressor whose operating capacity can be varied. In this embodiment, the compressor 21 is a capacity type compressor driven by a compressor motor 73 whose rotation speed Rm is controlled by an inverter. In the present embodiment, the number of the compressors 21 is only one, but is not limited to this, and two or more compressors may be connected in parallel according to the number of indoor units connected.
[0017] 次に、圧縮機 21の構成について、図 2を用いて説明する。ここで、図 2は、圧縮機 2 1の概略縦断面図である。圧縮機 21は、本実施形態において、縦型円筒形状の容 器である圧縮機ケーシング 71内に、圧縮要素 72及び圧縮機モータ 73が内蔵された 密閉式圧縮機である。  Next, the configuration of the compressor 21 will be described with reference to FIG. Here, FIG. 2 is a schematic longitudinal sectional view of the compressor 21. In this embodiment, the compressor 21 is a hermetic compressor in which a compression element 72 and a compressor motor 73 are incorporated in a compressor casing 71 that is a vertical cylindrical container.
圧縮機ケーシング 71は、略円筒形状の胴板 71aと、胴板 71aの上端に溶接固定さ れた上部鏡板 71bと、胴板 71aの下端に溶接固定された下部鏡板 71cとを有してい る。そして、この圧縮機ケーシング 71内には、主として、上部に圧縮要素 72が配置さ れ、圧縮要素 72の下側に圧縮機モータ 73が配置されている。圧縮要素 72と圧縮機 モータ 73とは、圧縮機ケーシング 71内を上下方向に延びるように配置されるシャフト 74によって連結されている。また、圧縮機ケーシング 71には、胴板 71aを貫通するよ うに吸入管 81が設けられており、上部鏡板 71bを貫通するように吐出管 82が設けら れている。そして、圧縮機ケーシング 71内の空間のうち圧縮要素 72の下側の吸入管 81が連通して 、る空間は、吸入管 81を通じて圧縮機ケーシング 71内に低圧の冷媒 が流入する低圧空間 Q1となっている。さらに、本実施形態において、低圧空間 Q1 の下部には、圧縮機 21内 (特に、圧縮要素 72)の潤滑に必要な冷凍機油を溜めるた めの油溜まり部 71dが形成されている。そして、本実施形態において、冷凍機油とし ては、 HFC系冷媒に対して相溶性のあるエステル系油やエーテル系油が使用され ている。  The compressor casing 71 has a substantially cylindrical body plate 71a, an upper end plate 71b welded and fixed to the upper end of the body plate 71a, and a lower end plate 71c welded and fixed to the lower end of the body plate 71a. . In the compressor casing 71, a compression element 72 is mainly disposed at the upper part, and a compressor motor 73 is disposed below the compression element 72. The compression element 72 and the compressor motor 73 are connected by a shaft 74 arranged so as to extend in the up-down direction within the compressor casing 71. The compressor casing 71 is provided with a suction pipe 81 so as to penetrate the body plate 71a, and a discharge pipe 82 is provided so as to penetrate the upper end plate 71b. Of the spaces in the compressor casing 71, the space where the lower suction pipe 81 communicates with the compression element 72 is the low pressure space Q1 into which the low-pressure refrigerant flows into the compressor casing 71 through the suction pipe 81. It has become. Furthermore, in the present embodiment, an oil reservoir 71d is formed in the lower part of the low-pressure space Q1 to store the refrigerating machine oil necessary for lubricating the compressor 21 (particularly, the compression element 72). In this embodiment, ester oil or ether oil that is compatible with the HFC refrigerant is used as the refrigerating machine oil.
[0018] 圧縮要素 72は、その内部において冷媒を圧縮するための機構であり、本実施形態 において、スクロールタイプの圧縮要素が採用されており、その下部に低圧空間 Q1 内の冷媒を吸入する吸入口 72aが形成されており、上部に圧縮された高圧の冷媒を 吐出する吐出口 72bが形成されている。圧縮機ケーシング 71内の空間のうち圧縮要 素 72の上側の吐出管 82が連通している空間は、圧縮要素 72の吐出口 72bを通じて 高圧の冷媒が流入する高圧空間 Q2となっている。尚、圧縮要素 72としては、本実施 形態のようなスクロールタイプの圧縮要素に限定されず、ロータリタイプ等の種々のタ イブの圧縮要素を使用することが可能である。 [0018] The compression element 72 is a mechanism for compressing the refrigerant therein, and this embodiment , A scroll-type compression element is employed, and a suction port 72a for sucking the refrigerant in the low pressure space Q1 is formed in the lower part, and a discharge port 72b for discharging the compressed high-pressure refrigerant is formed in the upper part. Has been. Of the space in the compressor casing 71, the space where the discharge pipe 82 on the upper side of the compression element 72 communicates is a high-pressure space Q2 into which high-pressure refrigerant flows through the discharge port 72b of the compression element 72. The compression element 72 is not limited to the scroll type compression element as in the present embodiment, and various types of compression elements such as a rotary type can be used.
シャフト 74には、油溜まり部 71dに開口するとともに、圧縮要素 72の内部に連通す る油路 74aが形成されており、この油路 74aの下端には、油溜まり部 71dに溜まった 冷凍機油を圧縮要素 72に供給するポンプ要素 74bが設けられている。  The shaft 74 is formed with an oil passage 74a that opens to the oil reservoir 71d and communicates with the inside of the compression element 72. Refrigerating machine oil collected in the oil reservoir 71d is formed at the lower end of the oil passage 74a. Is provided with a pump element 74b for supplying the pressure to the compression element 72.
圧縮機モータ 73は、圧縮要素 72の下側の低圧空間 Q1内に配置されており、圧縮 機ケーシング 71の内面に固定された環状のステータ 73aと、ステータ 73aの内周側 に僅かな隙間を空けて回転自在に収容されたロータ 73bとから構成されている。 そして、このような構成を有する圧縮機 21において、圧縮機モータ 73を駆動すると 、吸入管 81を通じて圧縮機ケーシング 71の低圧空間 Q1内に低圧の冷媒が流入し、 圧縮要素 72によって圧縮されて高圧の冷媒となった後、吐出管 82を通じて圧縮機 ケーシング 71の高圧空間 Q2から流出する。ここで、低圧空間 Q1内に流入した低圧 の冷媒は、主として、図 2における吸入冷媒の流れを示す二点鎖線で描かれた矢印 に示されるように、油溜まり部 71dに溜まった冷凍機油の油上面と接するように流れ た後、圧縮機モータ 73と圧縮機ケーシング 71との隙間ゃステータ 73aとロータ 73bと の隙間を通じて上昇して、圧縮要素 72の下部に形成された吸入口 72aに向かって 流れることになる。そして、油溜まり部 71dに溜まった冷凍機油は、その油上面が冷 媒に接しているため、油上面付近の冷凍機油は冷媒の温度に近づき、そして、油溜 まり部 71dを形成する圧縮機ケーシング 71の下部(主として、下部鏡板 71c)の壁面 付近の冷凍機油は壁面の温度、すなわち、圧縮機 21外部の雰囲気温度に近づくこ とから、油溜まり部 71dに溜まった冷凍機油には、油溜まり部 71dの油上面に接する 冷媒の温度と圧縮機 21外部の雰囲気温度との温度差に相当する温度分布が生じる ことになる。しかし、油溜まり部 71dの油上面に接する冷媒は、冷房運転時には、蒸 発器として機能する室内熱交 42、 52から戻る低圧の冷媒であり、また、暖房運 転時には、蒸発器として機能する室外熱交換器 23から戻る低圧の冷媒であり、室内 空気の温度や室外空気の温度に近!、温度を示すことから、圧縮機 21外部の雰囲気 温度との温度差は最大でも 50°C以内に収まる。すなわち、本実施形態の空気調和 装置 1は、圧縮機 21内部の油溜まり部 71dに溜まった冷凍機油とこの冷凍機油に接 する冷媒との温度差の最大値が 50°C以下となるように構成されており、圧縮機 21内 部の油溜まり部 71dに溜まった冷凍機油の温度分布が生じに《なっている。 The compressor motor 73 is disposed in the low pressure space Q1 below the compression element 72, and an annular stator 73a fixed to the inner surface of the compressor casing 71 and a slight gap on the inner peripheral side of the stator 73a. And a rotor 73b accommodated in a freely rotatable manner. In the compressor 21 having such a configuration, when the compressor motor 73 is driven, a low-pressure refrigerant flows into the low-pressure space Q1 of the compressor casing 71 through the suction pipe 81 and is compressed by the compression element 72 to be high-pressure. Then, the refrigerant flows out from the high-pressure space Q2 of the compressor casing 71 through the discharge pipe 82. Here, the low-pressure refrigerant that has flowed into the low-pressure space Q1 is mainly composed of the refrigerating machine oil accumulated in the oil sump 71d as shown by the arrow drawn with a two-dot chain line indicating the flow of the suction refrigerant in FIG. After flowing in contact with the oil upper surface, the gap between the compressor motor 73 and the compressor casing 71 rises through the gap between the stator 73a and the rotor 73b and moves toward the suction port 72a formed at the lower part of the compression element 72. Will flow. The refrigerating machine oil accumulated in the oil reservoir 71d is in contact with the coolant, so that the refrigerating machine oil near the oil upper surface approaches the temperature of the refrigerant, and the compressor forming the oil reservoir 71d Since the refrigeration oil near the wall surface of the lower part of the casing 71 (mainly the lower end plate 71c) approaches the temperature of the wall surface, that is, the ambient temperature outside the compressor 21, the refrigeration oil accumulated in the oil reservoir 71d contains oil. A temperature distribution corresponding to the temperature difference between the temperature of the refrigerant in contact with the oil upper surface of the reservoir 71d and the ambient temperature outside the compressor 21 is generated. However, the refrigerant in contact with the oil upper surface of the oil reservoir 71d is steamed during the cooling operation. It is a low-pressure refrigerant that returns from the indoor heat exchangers 42 and 52 that function as generators, and a low-pressure refrigerant that returns from the outdoor heat exchanger 23 that functions as an evaporator during heating operation. Since the temperature is close to the temperature of the air, the temperature difference from the ambient temperature outside the compressor 21 is within 50 ° C at the maximum. That is, in the air conditioner 1 of the present embodiment, the maximum value of the temperature difference between the refrigerating machine oil accumulated in the oil reservoir 71d inside the compressor 21 and the refrigerant in contact with the refrigerating machine oil is 50 ° C. or less. The temperature distribution of the refrigerating machine oil collected in the oil reservoir 71d inside the compressor 21 is generated.
[0020] 四路切換弁 22は、冷媒の流れの方向を切り換えるための弁であり、冷房運転時に は、室外熱交 23を圧縮機 21によって圧縮される冷媒の凝縮器として、かつ、室 内熱交 42、 52を室外熱交 23において凝縮される冷媒の蒸発器として機能 させるために、圧縮機 21の吐出側と室外熱交 23のガス側とを接続するとともに 圧縮機 21の吸入側 (具体的には、アキュムレータ 24)とガス冷媒連絡配管 7側とを接 続し(図 1の四路切換弁 22の実線を参照)、暖房運転時には、室内熱交換器 42、 52 を圧縮機 21によって圧縮される冷媒の凝縮器として、かつ、室外熱交換器 23を室内 熱交翻 42、 52において凝縮される冷媒の蒸発器として機能させるために、圧縮機 21の吐出側とガス冷媒連絡配管 7側とを接続するとともに圧縮機 21の吸入側と室外 熱交 のガス側とを接続することが可能である(図 1の四路切換弁 22の破線を 参照)。 [0020] The four-way switching valve 22 is a valve for switching the flow direction of the refrigerant. During the cooling operation, the outdoor heat exchanger 23 serves as a refrigerant condenser compressed by the compressor 21, and the indoor In order for the heat exchangers 42 and 52 to function as an evaporator for the refrigerant condensed in the outdoor heat exchanger 23, the discharge side of the compressor 21 and the gas side of the outdoor heat exchanger 23 are connected and the suction side of the compressor 21 ( Specifically, the accumulator 24) and the gas refrigerant communication pipe 7 side are connected (see the solid line of the four-way selector valve 22 in Fig. 1), and the indoor heat exchangers 42 and 52 are connected to the compressor 21 during heating operation. In order to allow the outdoor heat exchanger 23 to function as a refrigerant evaporator to be condensed in the indoor heat exchangers 42 and 52, the discharge side of the compressor 21 and the gas refrigerant communication pipe 7 side and the suction side of the compressor 21 and the gas side of the outdoor heat exchange Can be connected (see the dashed line of the four-way selector valve 22 in FIG. 1).
[0021] 本実施形態において、室外熱交 は、伝熱管と多数のフィンとにより構成され たクロスフィン式のフィン 'アンド'チューブ型熱交換器であり、冷房運転時には冷媒 の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する熱交 であ る。室外熱交換器 23は、そのガス側が四路切換弁 22に接続され、その液側が液冷 媒連絡配管 6に接続されている。  [0021] In the present embodiment, the outdoor heat exchange is a cross-fin type fin 'and' tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant condenser during cooling operation. This is heat exchange that functions as a refrigerant evaporator during heating operation. The outdoor heat exchanger 23 has a gas side connected to the four-way switching valve 22 and a liquid side connected to the liquid coolant communication pipe 6.
本実施形態において、室外膨張弁 38は、室外側冷媒回路 10c内を流れる冷媒の 圧力や流量等の調節を行うために、室外熱交換器 23の液側に接続された電動膨張 弁である。  In the present embodiment, the outdoor expansion valve 38 is an electric expansion valve connected to the liquid side of the outdoor heat exchanger 23 in order to adjust the pressure and flow rate of the refrigerant flowing in the outdoor refrigerant circuit 10c.
本実施形態において、室外ユニット 2は、ユニット内に室外空気を吸入して、室外熱 交 23において冷媒と熱交換させた後に、室外に排出するための送風ファンとし ての室外ファン 28を有している。この室外ファン 28は、室外熱交^^ 23に供給する 空気の風量 Woを可変することが可能なファンであり、本実施形態において、 DCファ ンモータ力もなるモータ 28aによって駆動されるプロペラファン等である。 In the present embodiment, the outdoor unit 2 is a blower fan for sucking outdoor air into the unit and exchanging heat with the refrigerant in the outdoor heat exchanger 23 and then discharging it to the outdoor. All outdoor fans 28 are provided. The outdoor fan 28 is a fan capable of changing the air volume Wo of the air supplied to the outdoor heat exchanger ^ 23. In this embodiment, the outdoor fan 28 is a propeller fan or the like driven by a motor 28a having a DC fan motor power. is there.
[0022] アキュムレータ 24は、四路切換弁 22と圧縮機 21との間に接続されており、室内ュ ニット 4、 5の運転負荷の変動等に応じて冷媒回路 10内に発生する余剰冷媒を溜め ることが可能な容器である。  [0022] The accumulator 24 is connected between the four-way switching valve 22 and the compressor 21, and removes excess refrigerant generated in the refrigerant circuit 10 in accordance with fluctuations in the operation load of the indoor units 4 and 5. It is a container that can be stored.
過冷却器 25は、本実施形態において、 2重管式の熱交換器であり、室外熱交換器 23において凝縮された後に、室内膨張弁 41、 51に送られる冷媒を冷却するために 設けられている。過冷却器 25は、本実施形態において、室外膨張弁 38と液側閉鎖 弁 26との間に接続されて!ヽる。  In this embodiment, the subcooler 25 is a double-pipe heat exchanger, and is provided to cool the refrigerant sent to the indoor expansion valves 41 and 51 after being condensed in the outdoor heat exchanger 23. ing. In the present embodiment, the supercooler 25 is connected between the outdoor expansion valve 38 and the liquid side closing valve 26.
本実施形態において、過冷却器 25の冷却源としてのバイパス冷媒回路 61が設け られている。尚、以下の説明では、冷媒回路 10からバイパス冷媒回路 61を除いた部 分を、便宜上、主冷媒回路と呼ぶことにする。  In the present embodiment, a bypass refrigerant circuit 61 as a cooling source for the subcooler 25 is provided. In the following description, the part excluding the bypass refrigerant circuit 61 from the refrigerant circuit 10 will be referred to as a main refrigerant circuit for convenience.
[0023] バイパス冷媒回路 61は、室外熱交換器 23から室内膨張弁 41、 51へ送られる冷媒 の一部を主冷媒回路から分岐させて圧縮機 21の吸入側に戻すように主冷媒回路に 接続されている。具体的には、バイパス冷媒回路 61は、室外膨張弁 38から室内膨 張弁 41、 51に送られる冷媒の一部を室外熱交 と過冷却器 25との間の位置 力も分岐させるように接続された分岐回路 61aと、過冷却器 25のバイパス冷媒回路 側の出口カゝら圧縮機 21の吸入側に戻すように圧縮機 21の吸入側に接続された合流 回路 61bとを有している。そして、分岐回路 61aには、バイパス冷媒回路 61を流れる 冷媒の流量を調節するためのバイパス膨張弁 62が設けられている。ここで、バイパス 膨張弁 62は、電動膨張弁力もなる。これにより、室外熱交翻23から室内膨張弁 41 、 51に送られる冷媒は、過冷却器 25において、ノ ィパス膨張弁 62によって減圧され た後のバイパス冷媒回路 61を流れる冷媒によって冷却される。すなわち、過冷却器 25は、バイパス膨張弁 62の開度調節によって能力制御が行われることになる。  [0023] The bypass refrigerant circuit 61 is provided in the main refrigerant circuit so that a part of the refrigerant sent from the outdoor heat exchanger 23 to the indoor expansion valves 41, 51 is branched from the main refrigerant circuit and returned to the suction side of the compressor 21. It is connected. Specifically, the bypass refrigerant circuit 61 connects a part of the refrigerant sent from the outdoor expansion valve 38 to the indoor expansion valves 41 and 51 so that the positional force between the outdoor heat exchanger and the subcooler 25 also branches. And the junction circuit 61b connected to the suction side of the compressor 21 so as to return to the suction side of the compressor 21 from the outlet of the bypass refrigerant circuit side of the subcooler 25. . The branch circuit 61a is provided with a bypass expansion valve 62 for adjusting the flow rate of the refrigerant flowing through the bypass refrigerant circuit 61. Here, the bypass expansion valve 62 also has an electric expansion valve force. Thus, the refrigerant sent from the outdoor heat exchanger 23 to the indoor expansion valves 41 and 51 is cooled by the refrigerant flowing in the bypass refrigerant circuit 61 after being depressurized by the no-pass expansion valve 62 in the supercooler 25. That is, the capacity control of the subcooler 25 is performed by adjusting the opening degree of the bypass expansion valve 62.
[0024] 液側閉鎖弁 26及びガス側閉鎖弁 27は、外部の機器,配管 (具体的には、液冷媒 連絡配管 6及びガス冷媒連絡配管 7)との接続口に設けられた弁である。液側閉鎖弁 26は、室外熱交翻23に接続されている。ガス側閉鎖弁 27は、四路切換弁 22に接 続されている。 [0024] The liquid side shut-off valve 26 and the gas side shut-off valve 27 are valves provided at connection ports with external devices and pipes (specifically, the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7). . The liquid side closing valve 26 is connected to the outdoor heat exchanger 23. The gas side stop valve 27 is in contact with the four-way selector valve 22. It has been continued.
また、室外ユニット 2には、各種のセンサが設けられている。具体的には、室外ュ- ット 2には、圧縮機 21の吸入圧力 Psを検出する吸入圧力センサ 29と、圧縮機 21の 吐出圧力 Pdを検出する吐出圧力センサ 30と、圧縮機 21の吸入温度 Tsを検出する 吸入温度センサ 31と、圧縮機 21の吐出温度 Tdを検出する吐出温度センサ 32とが 設けられている。吸入温度センサ 31は、アキュムレータ 24と圧縮機 21との間の位置 に設けられている。室外熱交換器 23には、室外熱交換器 23内を流れる冷媒の温度 (すなわち、冷房運転時における凝縮温度 Tc又は暖房運転時における蒸発温度 Te に対応する冷媒温度)を検出する熱交温度センサ 33が設けられている。室外熱交換 器 23の液側には、冷媒の温度 Tcoを検出する液側温度センサ 34が設けられて 、る 。過冷却器 25の主冷媒回路側の出口には、冷媒の温度 (すなわち、液管温度 Tip) を検出する液管温度センサ 35が設けられている。ノ ィパス冷媒回路 61の合流回路 6 lbには、過冷却器 25のバイパス冷媒回路側の出口を流れる冷媒の温度を検出する ためのバイパス温度センサ 63が設けられて!/、る。室外ユニット 2の室外空気の吸入口 側には、ユニット内に流入する室外空気の温度 (すなわち、室外温度 Ta)を検出する 室外温度センサ 36が設けられている。尚、この室外温度センサ 36は、本実施形態に おいて、ユニット内に流入する室外空気の温度を検出していることから、室外ユニット 2内に設けられた圧縮機 21等の各種機器の外部の雰囲気温度を示しているともいえ る。本実施形態において、吸入温度センサ 31、吐出温度センサ 32、熱交温度セン サ 33、液側温度センサ 34、液管温度センサ 35、室外温度センサ 36及びバイパス温 度センサ 63は、サーミスタからなる。また、室外ユニット 2は、室外ユニット 2を構成す る各部の動作を制御する室外側制御部 37を有している。そして、室外側制御部 37 は、室外ユニット 2の制御を行うために設けられたマイクロコンピュータ、メモリや圧縮 機モータ 73を制御するインバータ回路等を有しており、室内ユニット 4、 5の室内側制 御部 47、 57との間で伝送線 8aを介して制御信号等のやりとりを行うことができるよう になっている。すなわち、室内側制御部 47、 57と室外側制御部 37と制御部 37、 47 、 57間を接続する伝送線 8aとによって、空気調和装置 1全体の運転制御を行う制御 部 8が構成されている。 [0025] 帘 U御咅 8ίま、図 3【こ示されるよう【こ、各種センサ 29〜36、 44〜46、 54〜56、 63の 検出信号を受けることができるように接続されるとともに、これらの検出信号等に基づ ヽて各種機器及び弁 21、 22、 24、 28a, 38、 41、 43a, 51、 53a, 62を帘 U御すること ができるように接続されている。また、制御部 8には、後述の冷媒漏洩検知運転にお いて、冷媒漏洩を検知したことを知らせるための LED等力 なる警告表示部 9が接続 されている。ここで、図 3は、空気調和装置 1の制御ブロック図である。 The outdoor unit 2 is provided with various sensors. Specifically, the outdoor unit 2 includes a suction pressure sensor 29 that detects the suction pressure Ps of the compressor 21, a discharge pressure sensor 30 that detects the discharge pressure Pd of the compressor 21, and the compressor 21. A suction temperature sensor 31 for detecting the suction temperature Ts and a discharge temperature sensor 32 for detecting the discharge temperature Td of the compressor 21 are provided. The suction temperature sensor 31 is provided at a position between the accumulator 24 and the compressor 21. The outdoor heat exchanger 23 includes a heat exchange temperature sensor that detects the temperature of the refrigerant flowing in the outdoor heat exchanger 23 (that is, the refrigerant temperature corresponding to the condensation temperature Tc during the cooling operation or the evaporation temperature Te during the heating operation). 33 is provided. On the liquid side of the outdoor heat exchanger 23, a liquid side temperature sensor 34 for detecting the temperature Tco of the refrigerant is provided. A liquid pipe temperature sensor 35 that detects the temperature of the refrigerant (that is, the liquid pipe temperature Tip) is provided at the outlet of the subcooler 25 on the main refrigerant circuit side. The junction circuit 6 lb of the no-pass refrigerant circuit 61 is provided with a bypass temperature sensor 63 for detecting the temperature of the refrigerant flowing through the outlet of the subcooler 25 on the bypass refrigerant circuit side. An outdoor temperature sensor 36 for detecting the temperature of the outdoor air flowing into the unit (that is, the outdoor temperature Ta) is provided on the outdoor air inlet side of the outdoor unit 2. In this embodiment, the outdoor temperature sensor 36 detects the temperature of the outdoor air flowing into the unit, so that the outside of various devices such as the compressor 21 provided in the outdoor unit 2 is externally detected. It can be said that this shows the ambient temperature. In the present embodiment, the suction temperature sensor 31, the discharge temperature sensor 32, the heat exchange temperature sensor 33, the liquid side temperature sensor 34, the liquid pipe temperature sensor 35, the outdoor temperature sensor 36, and the bypass temperature sensor 63 are composed of thermistors. The outdoor unit 2 also has an outdoor control unit 37 that controls the operation of each part constituting the outdoor unit 2. The outdoor control unit 37 includes a microcomputer provided for controlling the outdoor unit 2, an inverter circuit that controls the memory and the compressor motor 73, and the like. Control signals can be exchanged between the control units 47 and 57 via the transmission line 8a. That is, the control unit 8 that controls the overall operation of the air conditioner 1 is configured by the indoor control units 47 and 57, the outdoor control unit 37, and the transmission line 8a that connects the control units 37, 47, and 57. Yes. [0025] 咅 U 咅 ί 8ί, Fig. 3 [As shown, this is connected to receive the detection signals of various sensors 29-36, 44-46, 54-56, 63, Based on these detection signals, etc., various devices and valves 21, 22, 24, 28a, 38, 41, 43a, 51, 53a, 62 are connected so that they can be controlled. In addition, the control unit 8 is connected to a warning display unit 9 that is an LED or the like for notifying that a refrigerant leak has been detected in the refrigerant leak detection operation described later. Here, FIG. 3 is a control block diagram of the air conditioner 1.
<冷媒連絡配管 >  <Refrigerant piping>
冷媒連絡配管 6、 7は、空気調和装置 1をビル等の設置場所に設置する際に、現地 にて施工される冷媒配管であり、設置場所や室外ユニットと室内ユニットとの組み合 わせ等の設置条件に応じて種々の長さや管径を有するものが使用される。このため、 例えば、新規に空気調和装置を設置する場合には、冷媒の追加充填量を計算する ために、冷媒連絡配管 6、 7の長さゃ管径等の情報を正確に把握する必要があるが、 その情報管理ゃ冷媒量の計算自体が煩雑である。また、既設配管を利用して室内ュ ニットや室外ユニットを更新するような場合には、冷媒連絡配管 6、 7の長さや管径等 の†青報が失われて ヽることがある。  Refrigerant communication pipes 6 and 7 are refrigerant pipes that are installed on site when the air conditioner 1 is installed in a building or other location, such as a combination of the installation location or outdoor unit and indoor unit. Depending on the installation conditions, those having various lengths and pipe diameters are used. For this reason, for example, when a new air conditioner is installed, it is necessary to accurately grasp information such as the length of the refrigerant communication pipes 6 and 7 in order to calculate the additional refrigerant charging amount. Although there is information management, the calculation of the refrigerant amount itself is complicated. In addition, when the existing unit is used to update the indoor unit or the outdoor unit, the blueprints such as the length and diameter of the refrigerant communication pipes 6 and 7 may be lost.
[0026] 以上のように、室内側冷媒回路 10a、 10bと、室外側冷媒回路 10cと、冷媒連絡配 管 6、 7とが接続されて、空気調和装置 1の冷媒回路 10が構成されている。また、この 冷媒回路 10は、バイパス冷媒回路 61と、バイパス冷媒回路 61を除く主冷媒回路と 力 構成されていると言い換えることもできる。そして、本実施形態の空気調和装置 1 は、室内側制御部 47、 57と室外側制御部 37とから構成される制御部 8によって、四 路切換弁 22により冷房運転及び暖房運転を切り換えて運転を行うとともに、各室内 ユニット 4、 5の運転負荷に応じて、室外ユニット 2及び室内ユニット 4、 5の各機器の 制御を行うようになって 、る。 [0026] As described above, the refrigerant circuit 10 of the air conditioner 1 is configured by connecting the indoor refrigerant circuits 10a, 10b, the outdoor refrigerant circuit 10c, and the refrigerant communication pipes 6, 7. . In other words, the refrigerant circuit 10 can be paraphrased as being composed of a bypass refrigerant circuit 61 and a main refrigerant circuit excluding the bypass refrigerant circuit 61. The air conditioner 1 according to the present embodiment is operated by switching the cooling operation and the heating operation by the four-way switching valve 22 by the control unit 8 including the indoor side control units 47 and 57 and the outdoor side control unit 37. In addition, the outdoor unit 2 and the indoor units 4 and 5 are controlled according to the operation load of the indoor units 4 and 5.
(2)空気調和装置の動作  (2) Operation of the air conditioner
次に、本実施形態の空気調和装置 1の動作について説明する。  Next, the operation of the air conditioner 1 of the present embodiment will be described.
[0027] 本実施形態の空気調和装置 1の運転モードとしては、各室内ユニット 4、 5の運転負 荷に応じて室外ユニット 2及び室内ユニット 4、 5の構成機器の制御を行う通常運転モ ードと、空気調和装置 1の構成機器の設置後 (具体的には、最初の機器設置後に限 られず、例えば、室内ユニット等の構成機器を追加や撤去する等の改造後や機器の 故障を修理した後等も含まれる)に行われる試運転を行うための試運転モードと、試 運転を終了して通常運転を開始した後において、冷媒回路 10からの冷媒の漏洩の 有無を判定する冷媒漏洩検知運転モードとがある。そして、通常運転モードには、主 として、室内の冷房を行う冷房運転と、室内の暖房を行う暖房運転とが含まれている[0027] The operation mode of the air conditioner 1 of the present embodiment is a normal operation mode in which the components of the outdoor unit 2 and the indoor units 4, 5 are controlled in accordance with the operation load of each indoor unit 4, 5. After installing the components of the air conditioner 1 (specifically, only after installing the first device) (For example, after remodeling such as adding or removing components such as indoor units, or after repairing the equipment failure, etc.) After starting normal operation, there is a refrigerant leakage detection operation mode in which the presence or absence of refrigerant leakage from the refrigerant circuit 10 is determined. The normal operation mode mainly includes a cooling operation for cooling the room and a heating operation for heating the room.
。また、試運転モードには、主として、冷媒回路 10内に冷媒を充填する冷媒自動充 填運転と、冷媒連絡配管 6、 7の容積を検知する配管容積判定運転と、構成機器を 設置した後又は冷媒回路内に冷媒を充填した後の初期冷媒量を検知する初期冷媒 量検知運転とが含まれて ヽる。 . In the test operation mode, the automatic refrigerant charging operation for charging the refrigerant into the refrigerant circuit 10, the pipe volume determination operation for detecting the volume of the refrigerant communication pipes 6 and 7, and after the installation of the components or the refrigerant And an initial refrigerant quantity detection operation for detecting the initial refrigerant quantity after the refrigerant is filled in the circuit.
以下、空気調和装置 1の各運転モードにおける動作について説明する。  Hereinafter, the operation in each operation mode of the air conditioner 1 will be described.
<通常運転モード >  <Normal operation mode>
(冷房運転)  (Cooling operation)
まず、通常運転モードにおける冷房運転について、図 1及び図 3を用いて説明する 冷房運転時は、四路切換弁 22が図 1の実線で示される状態、すなわち、圧縮機 21 の吐出側が室外熱交換器 23のガス側に接続され、かつ、圧縮機 21の吸入側がガス 側閉鎖弁 27及びガス冷媒連絡配管 7を介して室内熱交換器 42、 52のガス側に接続 された状態となっている。室外膨張弁 38は、全開状態にされている。液側閉鎖弁 26 及びガス側閉鎖弁 27は、開状態にされている。各室内膨張弁 41、 51は、室内熱交 42、 52の出口(すなわち、室内熱交換器 42、 52のガス側)における冷媒の過 熱度 SHrが過熱度目標値 SHrsで一定になるように開度調節されるようになって!/、る 。本実施形態において、各室内熱交換器 42、 52の出口における冷媒の過熱度 SHr は、ガス側温度センサ 45、 55により検出される冷媒温度値力も液側温度センサ 44、 54により検出される冷媒温度値 (蒸発温度 Teに対応)を差し引くことによって検出さ れるか、又は、吸入圧力センサ 29により検出される圧縮機 21の吸入圧力 Psを蒸発 温度 Teに対応する飽和温度値に換算し、ガス側温度センサ 45、 55により検出される 冷媒温度値からこの冷媒の飽和温度値を差し引くことによって検出される。尚、本実 施形態では採用していないが、各室内熱交換器 42、 52内を流れる冷媒の温度を検 出する温度センサを設けて、この温度センサにより検出される蒸発温度 Teに対応す る冷媒温度値を、ガス側温度センサ 45、 55により検出される冷媒温度値から差し引 くことによって、各室内熱交換器 42、 52の出口における冷媒の過熱度 SHrを検出す るようにしてもよい。また、バイパス膨張弁 62は、過冷却器 25のバイパス冷媒回路側 の出口における冷媒の過熱度 SHbが過熱度目標値 SHbsになるように開度調節され るようになっている。本実施形態において、過冷却器 25のバイパス冷媒回路側の出 口における冷媒の過熱度 SHbは、吸入圧力センサ 29により検出される圧縮機 21の 吸入圧力 Psを蒸発温度 Teに対応する飽和温度値に換算し、バイパス温度センサ 63 により検出される冷媒温度値からこの冷媒の飽和温度値を差し引くことによって検出 される。尚、本実施形態では採用していないが、過冷却器 25のバイパス冷媒回路側 の入口に温度センサを設けて、この温度センサにより検出される冷媒温度値をバイパ ス温度センサ 63により検出される冷媒温度値力も差し引くことによって、過冷却器 25 のバイパス冷媒回路側の出口における冷媒の過熱度 SHbを検出するようにしてもよ い。 First, the cooling operation in the normal operation mode will be described with reference to FIGS. 1 and 3.At the time of the cooling operation, the four-way switching valve 22 is in the state indicated by the solid line in FIG. 1, that is, the discharge side of the compressor 21 is the outdoor heat. It is connected to the gas side of the exchanger 23, and the suction side of the compressor 21 is connected to the gas side of the indoor heat exchangers 42 and 52 via the gas side closing valve 27 and the gas refrigerant communication pipe 7. Yes. The outdoor expansion valve 38 is fully opened. The liquid side closing valve 26 and the gas side closing valve 27 are in an open state. The indoor expansion valves 41 and 51 are opened so that the superheat degree SHr of the refrigerant at the outlets of the indoor heat exchangers 42 and 52 (that is, the gas side of the indoor heat exchangers 42 and 52) is constant at the superheat degree target value SHrs. The degree is adjusted! / In the present embodiment, the degree of superheat SHr of the refrigerant at the outlets of the indoor heat exchangers 42, 52 is the refrigerant temperature value detected by the gas side temperature sensors 45, 55, and the refrigerant temperature sensors 44, 54 also detect the refrigerant temperature value force. It is detected by subtracting the temperature value (corresponding to the evaporation temperature Te), or the suction pressure Ps of the compressor 21 detected by the suction pressure sensor 29 is converted into a saturation temperature value corresponding to the evaporation temperature Te, and the gas This is detected by subtracting the saturation temperature value of the refrigerant from the refrigerant temperature value detected by the side temperature sensors 45 and 55. Although not adopted in this embodiment, the temperature of the refrigerant flowing in each indoor heat exchanger 42, 52 is detected. A temperature sensor is provided, and the refrigerant temperature value corresponding to the evaporation temperature Te detected by this temperature sensor is subtracted from the refrigerant temperature value detected by the gas side temperature sensors 45 and 55, thereby making it possible to The degree of superheat SHr of the refrigerant at the outlets of the heat exchangers 42 and 52 may be detected. Further, the bypass expansion valve 62 is adjusted in opening degree so that the superheat degree SHb of the refrigerant at the outlet on the bypass refrigerant circuit side of the supercooler 25 becomes the superheat degree target value SHbs. In this embodiment, the superheat degree SHb of the refrigerant at the outlet on the bypass refrigerant circuit side of the subcooler 25 is the saturation temperature value corresponding to the evaporation pressure Te, which is the suction pressure Ps of the compressor 21 detected by the suction pressure sensor 29. Is detected by subtracting the saturation temperature value of the refrigerant from the refrigerant temperature value detected by the bypass temperature sensor 63. Although not adopted in this embodiment, a temperature sensor is provided at the bypass refrigerant circuit side inlet of the subcooler 25, and the refrigerant temperature value detected by this temperature sensor is detected by the bypass temperature sensor 63. The refrigerant superheat degree SHb at the outlet of the subcooler 25 on the bypass refrigerant circuit side may be detected by subtracting the refrigerant temperature value.
[0029] この冷媒回路 10の状態で、圧縮機 21、室外ファン 28及び室内ファン 43、 53を起 動すると、低圧のガス冷媒は、圧縮機 21に吸入されて圧縮されて高圧のガス冷媒と なる。その後、高圧のガス冷媒は、四路切換弁 22を経由して室外熱交換器 23に送ら れて、室外ファン 28によって供給される室外空気と熱交換を行って凝縮して高圧の 液冷媒となる。そして、この高圧の液冷媒は、室外膨張弁 38を通過して、過冷却器 2 5に流入し、バイパス冷媒回路 61を流れる冷媒と熱交換を行ってさらに冷却されて過 冷却状態になる。このとき、室外熱交 において凝縮した高圧の液冷媒の一部 は、バイパス冷媒回路 61に分岐され、バイパス膨張弁 62によって減圧された後に、 圧縮機 21の吸入側に戻される。ここで、バイノ ス膨張弁 62を通過する冷媒は、圧縮 機 21の吸入圧力 Ps近くまで減圧されることで、その一部が蒸発する。そして、バイパ ス冷媒回路 61のバイパス膨張弁 62の出口力も圧縮機 21の吸入側に向力つて流れ る冷媒は、過冷却器 25を通過して、主冷媒回路側の室外熱交換器 23から室内ュニ ット 4、 5へ送られる高圧の液冷媒と熱交換を行う。  [0029] When the compressor 21, the outdoor fan 28, and the indoor fans 43, 53 are started in the state of the refrigerant circuit 10, the low-pressure gas refrigerant is sucked into the compressor 21 and compressed to become a high-pressure gas refrigerant. Become. After that, the high-pressure gas refrigerant is sent to the outdoor heat exchanger 23 via the four-way switching valve 22, exchanges heat with the outdoor air supplied by the outdoor fan 28, and condenses to form a high-pressure liquid refrigerant. Become. Then, this high-pressure liquid refrigerant passes through the outdoor expansion valve 38 and flows into the supercooler 25, and is further cooled by exchanging heat with the refrigerant flowing through the bypass refrigerant circuit 61 to be in a supercooled state. At this time, a part of the high-pressure liquid refrigerant condensed in the outdoor heat exchange is branched to the bypass refrigerant circuit 61, decompressed by the bypass expansion valve 62, and then returned to the suction side of the compressor 21. Here, a part of the refrigerant passing through the binos expansion valve 62 is evaporated by being reduced to near the suction pressure Ps of the compressor 21. Then, the refrigerant flowing in the direction of the outlet force of the bypass expansion valve 62 of the bypass refrigerant circuit 61 toward the suction side of the compressor 21 passes through the subcooler 25 and from the outdoor heat exchanger 23 on the main refrigerant circuit side. Exchanges heat with high-pressure liquid refrigerant sent to indoor units 4 and 5.
[0030] そして、過冷却状態になった高圧の液冷媒は、液側閉鎖弁 26及び液冷媒連絡配 管 6を経由して、室内ユニット 4、 5に送られる。この室内ユニット 4、 5に送られた高圧 の液冷媒は、室内膨張弁 41、 51によって圧縮機 21の吸入圧力 Ps近くまで減圧され て低圧の気液二相状態の冷媒となって室内熱交換器 42、 52に送られ、室内熱交換 器 42、 52において室内空気と熱交換を行って蒸発して低圧のガス冷媒となる。 この低圧のガス冷媒は、ガス冷媒連絡配管 7を経由して室外ユニット 2に送られ、ガ ス側閉鎖弁 27及び四路切換弁 22を経由して、アキュムレータ 24に流入する。そして 、アキュムレータ 24に流入した低圧のガス冷媒は、再び、圧縮機 21に吸入される。 [0030] Then, the high-pressure liquid refrigerant in a supercooled state is connected to the liquid-side stop valve 26 and the liquid refrigerant communication line. It is sent to indoor units 4 and 5 via pipe 6. The high-pressure liquid refrigerant sent to the indoor units 4 and 5 is decompressed to near the suction pressure Ps of the compressor 21 by the indoor expansion valves 41 and 51 to become a low-pressure gas-liquid two-phase refrigerant and exchanges heat in the room. The heat is exchanged with the indoor air in the indoor heat exchangers 42 and 52 to evaporate and become low-pressure gas refrigerant. This low-pressure gas refrigerant is sent to the outdoor unit 2 via the gas refrigerant communication pipe 7 and flows into the accumulator 24 via the gas side closing valve 27 and the four-way switching valve 22. Then, the low-pressure gas refrigerant that has flowed into the accumulator 24 is again sucked into the compressor 21.
(暖房運転)  (Heating operation)
次に、通常運転モードにおける暖房運転について説明する。  Next, the heating operation in the normal operation mode will be described.
[0031] 暖房運転時は、四路切換弁 22が図 1の破線で示される状態、すなわち、圧縮機 21 の吐出側がガス側閉鎖弁 27及びガス冷媒連絡配管 7を介して室内熱交換器 42、 52 のガス側に接続され、かつ、圧縮機 21の吸入側が室外熱交換器 23のガス側に接続 された状態となっている。室外膨張弁 38は、室外熱交 23に流入する冷媒を室 外熱交 において蒸発させることが可能な圧力(すなわち、蒸発圧力 Pe)まで 減圧するために開度調節されるようになっている。また、液側閉鎖弁 26及びガス側閉 鎖弁 27は、開状態にされている。室内膨張弁 41、 51は、室内熱交換器 42、 52の出 口における冷媒の過冷却度 SCrが過冷却度目標値 SCrsで一定になるように開度調 節されるようになつている。本実施形態において、室内熱交換器 42、 52の出口にお ける冷媒の過冷却度 SCrは、吐出圧力センサ 30により検出される圧縮機 21の吐出 圧力 Pdを凝縮温度 Tcに対応する飽和温度値に換算し、この冷媒の飽和温度値から 液側温度センサ 44、 54により検出される冷媒温度値を差し引くことによって検出され る。尚、本実施形態では採用していないが、各室内熱交換器 42、 52内を流れる冷媒 の温度を検出する温度センサを設けて、この温度センサにより検出される凝縮温度 T cに対応する冷媒温度値を、液側温度センサ 44、 54により検出される冷媒温度値か ら差し引くことによって室内熱交^^ 42、 52の出口における冷媒の過冷却度 SCrを 検出するようにしてもよい。また、バイパス膨張弁 62は、閉止されている。 [0031] During the heating operation, the four-way switching valve 22 is in the state indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the indoor heat exchanger 42 via the gas-side closing valve 27 and the gas refrigerant communication pipe 7. 52, and the suction side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23. The degree of opening of the outdoor expansion valve 38 is adjusted to reduce the pressure of the refrigerant flowing into the outdoor heat exchanger 23 to a pressure at which the refrigerant can be evaporated in the outdoor heat exchanger (that is, the evaporation pressure Pe). Further, the liquid side closing valve 26 and the gas side closing valve 27 are opened. The indoor expansion valves 41 and 51 are adjusted in opening degree so that the supercooling degree SCr of the refrigerant at the outlets of the indoor heat exchangers 42 and 52 becomes constant at the supercooling degree target value SCrs. In the present embodiment, the degree of refrigerant supercooling SCr at the outlets of the indoor heat exchangers 42 and 52 is the saturation temperature value corresponding to the condensation temperature Tc, which is the discharge pressure Pd of the compressor 21 detected by the discharge pressure sensor 30. The refrigerant temperature value is detected by subtracting the refrigerant temperature value detected by the liquid side temperature sensors 44 and 54 from the saturation temperature value of the refrigerant. Although not adopted in this embodiment, a temperature sensor that detects the temperature of the refrigerant flowing in each indoor heat exchanger 42, 52 is provided, and the refrigerant corresponding to the condensation temperature Tc detected by this temperature sensor. The subcooling degree SCr of the refrigerant at the outlets of the indoor heat exchangers 42, 52 may be detected by subtracting the temperature value from the refrigerant temperature value detected by the liquid side temperature sensors 44, 54. Further, the bypass expansion valve 62 is closed.
[0032] この冷媒回路 10の状態で、圧縮機 21、室外ファン 28及び室内ファン 43、 53を起 動すると、低圧のガス冷媒は、圧縮機 21に吸入されて圧縮されて高圧のガス冷媒と なり、四路切換弁 22、ガス側閉鎖弁 27及びガス冷媒連絡配管 7を経由して、室内ュ ニット 4、 5〖こ送られる。 [0032] When the compressor 21, the outdoor fan 28, and the indoor fans 43, 53 are started in the state of the refrigerant circuit 10, the low-pressure gas refrigerant is sucked into the compressor 21 and compressed to become a high-pressure gas refrigerant. Thus, the indoor units 4 and 5 are sent through the four-way switching valve 22, the gas side closing valve 27 and the gas refrigerant communication pipe 7.
そして、室内ユニット 4、 5に送られた高圧のガス冷媒は、室外熱交^^ 42、 52に おいて、室内空気と熱交換を行って凝縮して高圧の液冷媒となった後、室内膨張弁 41、 51を通過する際に、室内膨張弁 41、 51の弁開度に応じて減圧される。  The high-pressure gas refrigerant sent to the indoor units 4 and 5 is condensed by exchanging heat with the indoor air in the outdoor heat exchangers ^ 42 and 52 to become a high-pressure liquid refrigerant. When passing through the expansion valves 41 and 51, the pressure is reduced according to the opening degree of the indoor expansion valves 41 and 51.
この室内膨張弁 41、 51を通過した冷媒は、液冷媒連絡配管 6を経由して室外ュ- ット 2に送られ、液側閉鎖弁 26、過冷却器 25及び室外膨張弁 38を経由してさらに減 圧された後に、室外熱交換器 23に流入する。そして、室外熱交換器 23に流入した 低圧の気液二相状態の冷媒は、室外ファン 28によって供給される室外空気と熱交換 を行って蒸発して低圧のガス冷媒となり、四路切換弁 22を経由してアキュムレータ 24 に流入する。そして、アキュムレータ 24に流入した低圧のガス冷媒は、再び、圧縮機 21に吸人される。  The refrigerant that has passed through the indoor expansion valves 41 and 51 is sent to the outdoor unit 2 via the liquid refrigerant communication pipe 6 and passes through the liquid side closing valve 26, the supercooler 25, and the outdoor expansion valve 38. The pressure is further reduced and then flows into the outdoor heat exchanger 23. The low-pressure gas-liquid two-phase refrigerant flowing into the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied by the outdoor fan 28 to evaporate into a low-pressure gas refrigerant. Flows into the accumulator 24 via. Then, the low-pressure gas refrigerant that has flowed into the accumulator 24 is again sucked into the compressor 21.
[0033] 以上のような通常運転モードにおける運転制御は、冷房運転及び暖房運転を含む 通常運転を行う通常運転制御手段として機能する制御部 8 (より具体的には、室内側 制御部 47、 57と室外側制御部 37と制御部 37、 47、 57間を接続する伝送線 8a)によ つて行われる。  [0033] The operation control in the normal operation mode as described above is performed by the control unit 8 (more specifically, the indoor side control units 47, 57 functioning as normal operation control means for performing normal operation including cooling operation and heating operation. And the transmission line 8a) connecting the outdoor control unit 37 and the control units 37, 47, and 57.
<試運転モード >  <Test run mode>
次に、試運転モードについて、図 1〜図 4を用いて説明する。ここで、図 4は、試運 転モードのフローチャートである。本実施形態において、試運転モードでは、まず、ス テツプ S1の冷媒自動充填運転が行われ、続いて、ステップ S2の配管容積判定運転 が行われ、さらに、ステップ S3の初期冷媒量検知運転が行われる。  Next, the trial operation mode will be described with reference to FIGS. Here, Fig. 4 is a flowchart of the test operation mode. In the present embodiment, in the test operation mode, first, the automatic refrigerant charging operation in step S1 is performed, then the pipe volume determination operation in step S2 is performed, and further, the initial refrigerant amount detection operation in step S3 is performed. .
本実施形態では、冷媒が予め充填された室外ユニット 2と、室内ユニット 4、 5とをビ ル等の設置場所に設置し、液冷媒連絡配管 6及びガス冷媒連絡配管 7を介して接続 して冷媒回路 10を構成した後に、液冷媒連絡配管 6及びガス冷媒連絡配管 7の容 積に応じて不足する冷媒を冷媒回路 10内に追加充填する場合を例にして説明する  In the present embodiment, the outdoor unit 2 pre-filled with the refrigerant and the indoor units 4 and 5 are installed at a place such as a building and connected via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7. An example will be described in which after the refrigerant circuit 10 is configured, the refrigerant circuit 10 is additionally filled with a refrigerant that is insufficient in accordance with the volume of the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7.
[0034] (ステップ S 1:冷媒自動充填運転) [0034] (Step S1: Refrigerant automatic charging operation)
まず、室外ユニット 2の液側閉鎖弁 26及びガス側閉鎖弁 27を開けて、室外ユニット 2に予め充填されている冷媒を冷媒回路 10内に充満させる。 First, open the liquid side shutoff valve 26 and the gas side shutoff valve 27 of the outdoor unit 2 to open the outdoor unit 2. The refrigerant circuit 10 is filled with the refrigerant prefilled in 2.
次に、試運転を行う作業者が、追加充填用の冷媒ボンべを冷媒回路 10のサービス ポート(図示せず)に接続し、制御部 8に対して直接に又はリモコン(図示せず)等を 通じて遠隔から試運転を開始する指令を出すと、制御部 8によって、図 5に示されるス テツプ S 11〜ステップ S 13の処理が行われる。ここで、図 5は、冷媒自動充填運転の フローチャートである。  Next, an operator who performs a test run connects a refrigerant cylinder for additional charging to a service port (not shown) of the refrigerant circuit 10 and directly or remotely controls the control unit 8. When a command to start a test run from a remote location is issued, the control unit 8 performs steps S11 to S13 shown in FIG. Here, FIG. 5 is a flowchart of the automatic refrigerant charging operation.
(ステップ S 11:冷媒量判定運転)  (Step S11: Refrigerant amount judgment operation)
冷媒自動充填運転の開始指令がなされると、冷媒回路 10が、室外ユニット 2の四路 切換弁 22が図 1の実線で示される状態で、かつ、室内ユニット 4、 5の室内膨張弁 41 、 51及び室外膨張弁 38が開状態となり、圧縮機 21、室外ファン 28及び室内ファン 4 3、 53が起動されて、室内ユニット 4、 5の全てについて強制的に冷房運転 (以下、室 内ユニット全数運転とする)が行われる。  When an instruction to start the automatic refrigerant charging operation is made, the refrigerant circuit 10 is in a state where the four-way switching valve 22 of the outdoor unit 2 is shown by a solid line in FIG. 1 and the indoor expansion valves 41 of the indoor units 4 and 5 51 and outdoor expansion valve 38 are opened, compressor 21, outdoor fan 28 and indoor fans 4 3, 53 are activated, and all indoor units 4, 5 are forcibly cooled (hereinafter referred to as the total number of indoor units). Driving).
すると、図 6に示されるように、冷媒回路 10において、圧縮機 21から凝縮器として 機能する室外熱交 までの流路には圧縮機 21において圧縮されて吐出され た高圧のガス冷媒が流れ(図 6の斜線のハッチング部分のうち圧縮機 21から室外熱 交換器 23までの部分を参照)、凝縮器として機能する室外熱交換器 23には室外空 気との熱交換によってガス状態から液状態に相変化する高圧の冷媒が流れ (図 6の 斜線のハッチング及び黒塗りのハッチングの部分のうち室外熱交換器 23に対応する 部分を参照)、室外熱交換器 23から室内膨張弁 41、 51までの室外膨張弁 38、過冷 却器 25の主冷媒回路側の部分及び液冷媒連絡配管 6を含む流路と室外熱交換器 2 3からバイパス膨張弁 62までの流路には高圧の液冷媒が流れ(図 6の黒塗りのハツ チング部分のうち室外熱交換器 23から室内膨張弁 41、 51及びバイパス膨張弁 62ま での部分を参照)、蒸発器として機能する室内熱交 42、 52の部分と過冷却器 2 5のバイパス冷媒回路側の部分とには室内空気との熱交換によって気液二相状態か らガス状態に相変化する低圧の冷媒が流れ(図 6の格子状のハッチング及び斜線の ハッチングの部分のうち室内熱交^^ 42、 52の部分と過冷却器 25の部分を参照)、 室内熱交換器 42、 52から圧縮機 21までのガス冷媒連絡配管 7及びアキュムレータ 2 4を含む流路と過冷却器 25のバイパス冷媒回路側の部分力も圧縮機 21までの流路 とには低圧のガス冷媒が流れるようになる(図 6の斜線のハッチングの部分のうち室内 熱交^^ 42、 52から圧縮機 21までの部分と過冷却器 25のバイパス冷媒回路側の 部分力も圧縮機 21までの部分とを参照)。図 6は、冷媒量判定運転における冷媒回 路 10内を流れる冷媒の状態を示す模式図(四路切換弁 22等の図示を省略)である Then, as shown in FIG. 6, in the refrigerant circuit 10, the high-pressure gas refrigerant compressed and discharged in the compressor 21 flows through the flow path from the compressor 21 to the outdoor heat exchange functioning as a condenser ( (Refer to the hatched portion in Fig. 6 from the compressor 21 to the outdoor heat exchanger 23), and the outdoor heat exchanger 23 functioning as a condenser is changed from a gas state to a liquid state by heat exchange with the outdoor air. (Refer to the portion corresponding to the outdoor heat exchanger 23 in the hatched and black hatched portions in FIG. 6), and from the outdoor heat exchanger 23 to the indoor expansion valves 41, 51 High-pressure liquid is present in the flow path including the outdoor expansion valve 38, the part of the subcooler 25 on the main refrigerant circuit side and the liquid refrigerant communication pipe 6 and the flow path from the outdoor heat exchanger 23 to the bypass expansion valve 62. The refrigerant flows (out of the black hatched parts in Fig. 6). (Refer to the section from the external heat exchanger 23 to the indoor expansion valves 41 and 51 and the bypass expansion valve 62), the indoor heat exchanger 42 and 52 functioning as an evaporator, and the bypass refrigerant circuit side of the subcooler 25 Low-pressure refrigerant that changes phase from a gas-liquid two-phase state to a gas state due to heat exchange with room air flows into the part (in the part of the grid-like hatching and hatched hatching in Fig. 6 42, 52 and the subcooler 25)), the flow path including the indoor refrigerant heat exchanger 42, 52 to the compressor 21 and the flow path including the accumulator 2 4 and the bypass refrigerant of the subcooler 25 The partial force on the circuit side is also the flow path to the compressor 21 The low-pressure gas refrigerant flows through (the hatched part in Fig. 6 is the part from the indoor heat exchanger ^^ 42, 52 to the compressor 21 and the part on the bypass refrigerant circuit side of the subcooler 25) (See also force to compressor 21). FIG. 6 is a schematic diagram showing the state of the refrigerant flowing in the refrigerant circuit 10 in the refrigerant quantity determination operation (illustration of the four-way switching valve 22 and the like is omitted).
[0036] 次に、以下のような機器制御を行って、冷媒回路 10内を循環する冷媒の状態を安 定させる運転に移行する。具体的には、蒸発器として機能する室内熱交 42、 52 の過熱度 SHrが一定になるように室内膨張弁 41、 51を制御(以下、過熱度制御とす る)し、蒸発圧力 Peが一定になるように圧縮機 21の運転容量を制御(以下、蒸発圧 力制御とする)し、室外熱交換器 23における冷媒の凝縮圧力 Pcが一定になるように 、室外ファン 28によって室外熱交換器 23に供給される室外空気の風量 Woを制御( 以下、凝縮圧力制御とする)し、過冷却器 25から室内膨張弁 41、 51に送られる冷媒 の温度が一定になるように過冷却器 25の能力を制御(以下、液管温度制御とする)し 、上述の蒸発圧力制御によって冷媒の蒸発圧力 Peが安定的に制御されるように、室 内ファン 43、 53によって室内熱交換器 42、 52に供給される室内空気の風量 Wrを一 定にしている。 [0036] Next, the following device control is performed to shift to an operation for stabilizing the state of the refrigerant circulating in the refrigerant circuit 10. Specifically, the indoor expansion valves 41 and 51 are controlled so that the superheat degree SHr of the indoor heat exchangers 42 and 52 functioning as an evaporator becomes constant (hereinafter referred to as superheat degree control). The operation capacity of the compressor 21 is controlled so as to be constant (hereinafter referred to as evaporation pressure control), and the outdoor fan 28 is used for outdoor heat exchange so that the refrigerant condensation pressure Pc in the outdoor heat exchanger 23 is constant. The subcooler is controlled so that the air volume Wo of the outdoor air supplied to the cooler 23 is controlled (hereinafter referred to as condensing pressure control) and the temperature of the refrigerant sent from the supercooler 25 to the indoor expansion valves 41 and 51 is constant. The indoor fan 43, 53 controls the indoor heat exchanger 42 so that the refrigerant evaporating pressure Pe is controlled stably by the above evaporating pressure control. The air volume Wr of the indoor air supplied to No. 52 is kept constant.
[0037] ここで、蒸発圧力制御を行うのは、蒸発器として機能する室内熱交換器 42、 52内 には室内空気との熱交換によって気液二相状態力 ガス状態に相変化しながら低圧 の冷媒が流れる室内熱交^^ 42、 52内(図 6の格子状のノ、ツチング及び斜線のハツ チングの部分のうち室内熱交換器 42、 52に対応する部分を参照、以下、蒸発器部 C とする)における冷媒量が、冷媒の蒸発圧力 Peに大きく影響するからである。そして、 ここでは、インバータにより回転数 Rmが制御される圧縮機モータ 73によって圧縮機 21の運転容量を制御することによって、室内熱交換器 42、 52における冷媒の蒸発 圧力 Peを一定にして、蒸発器部 C内を流れる冷媒の状態を安定させて、主として、蒸 発圧力 Peによって蒸発器 C内における冷媒量が変化する状態を作り出している。尚 、本実施形態の圧縮機 21による蒸発圧力 Peの制御においては、室内熱交換器 42、 52の液側温度センサ 44、 54により検出される冷媒温度値 (蒸発温度 Teに対応)を 飽和圧力値に換算して、この圧力値が低圧目標値 Pesで一定になるように、圧縮機 2 1の運転容量を制御して (すなわち、圧縮機モータ 73の回転数 Rmを変化させる制御 を行って)、冷媒回路 10内を流れる冷媒循環量 Wcを増減することによって実現され ている。尚、本実施形態では採用していないが、室内熱交 42、 52における冷媒 の蒸発圧力 Peにおける冷媒の圧力に等価な運転状態量である、吸入圧力センサ 29 によって検出される圧縮機 21の吸入圧力 Psが、低圧目標値 Pesで一定になるように 、又は、吸入圧力 Psに対応する飽和温度値 (蒸発温度 Teに対応)が、低圧目標値 T esで一定になるように、圧縮機 21の運転容量を制御してもよいし、室内熱交換器 42 、 52の液側温度センサ 44、 54により検出される冷媒温度値 (蒸発温度 Teに対応)が 、低圧目標値 Tesで一定になるように、圧縮機 21の運転容量を制御してもよい。 そして、このような蒸発圧力制御を行うことによって、室内熱交 42、 52から圧縮 機 21までのガス冷媒連絡配管 7及びアキュムレータ 24を含む冷媒配管内(図 6の斜 線のノ、ツチングの部分のうち室内熱交換器 42、 52から圧縮機 21までの部分を参照 、以下、ガス冷媒流通部 Dとする)を流れる冷媒の状態も安定して、主として、ガス冷 媒流通部 Dにおける冷媒の圧力に等価な運転状態量である、蒸発圧力 Pe (すなわ ち、吸入圧力 Ps)によってガス冷媒流通部 D内における冷媒量が変化する状態を作 り出している。 [0037] Here, the evaporation pressure control is performed in the indoor heat exchangers 42 and 52 functioning as an evaporator in a gas-liquid two-phase state force due to heat exchange with the room air, while the phase is changed to a gas state and a low pressure. Inside the indoor heat exchanger ^^ 42, 52 through which the refrigerant flows (see the part corresponding to the indoor heat exchangers 42, 52 in the grid-shaped, hatching and hatched hatching parts in Fig. 6; This is because the amount of refrigerant in (part C) greatly affects the evaporation pressure Pe of the refrigerant. And here, by controlling the operating capacity of the compressor 21 by the compressor motor 73 whose rotation speed Rm is controlled by the inverter, the evaporation pressure Pe of the refrigerant in the indoor heat exchangers 42 and 52 is kept constant, and the evaporation The state of the refrigerant flowing in the vessel part C is stabilized, and a state in which the amount of refrigerant in the evaporator C is changed mainly by the evaporation pressure Pe is created. In the control of the evaporation pressure Pe by the compressor 21 of the present embodiment, the refrigerant temperature value (corresponding to the evaporation temperature Te) detected by the liquid side temperature sensors 44, 54 of the indoor heat exchangers 42, 52 is the saturation pressure. In order to make this pressure value constant at the low pressure target value Pes, This is realized by controlling the operating capacity of 1 (that is, by controlling the rotational speed Rm of the compressor motor 73) to increase or decrease the refrigerant circulation amount Wc flowing in the refrigerant circuit 10. Although not adopted in the present embodiment, the suction of the compressor 21 detected by the suction pressure sensor 29, which is an operation state quantity equivalent to the refrigerant pressure at the refrigerant evaporating pressure Pe in the indoor heat exchangers 42 and 52, The compressor 21 is set so that the pressure Ps becomes constant at the low pressure target value Pes, or the saturation temperature value (corresponding to the evaporation temperature Te) corresponding to the suction pressure Ps becomes constant at the low pressure target value Tes. May be controlled, and the refrigerant temperature value (corresponding to the evaporation temperature Te) detected by the liquid side temperature sensors 44 and 54 of the indoor heat exchangers 42 and 52 becomes constant at the low pressure target value Tes. Thus, the operating capacity of the compressor 21 may be controlled. By performing such evaporation pressure control, the refrigerant refrigerant pipe including the gas refrigerant communication pipe 7 and the accumulator 24 from the indoor heat exchangers 42 and 52 to the compressor 21 (the hatched portion in FIG. Among these, the state of the refrigerant flowing through the indoor heat exchangers 42 and 52 to the compressor 21 (hereinafter referred to as gas refrigerant circulation section D) is also stable, and mainly the refrigerant flow in the gas refrigerant circulation section D. A state is created in which the amount of refrigerant in the gas refrigerant circulation portion D is changed by the evaporation pressure Pe (that is, the suction pressure Ps), which is an operation state amount equivalent to the pressure.
また、凝縮圧力制御を行うのは、室外空気との熱交換によってガス状態力も液状態 に相変化しながら高圧の冷媒が流れる室外熱交^^ 23内(図 6の斜線のハッチング 及び黒塗りのハッチングの部分のうち室外熱交換器 23に対応する部分を参照、以下 、凝縮器部 Aとする)における冷媒量が、冷媒の凝縮圧力 Pcに大きく影響する力もで ある。そして、この凝縮器部 Aにおける冷媒の凝縮圧力 Pcは、室外温度 Taの影響よ り大きく変化するため、モータ 28aにより室外ファン 28から室外熱交換器 23に供給す る室内空気の風量 Woを制御することによって、室外熱交換器 23における冷媒の凝 縮圧力 Pcを一定にして、凝縮器部 A内を流れる冷媒の状態を安定させて、主として 、室外熱交換器 23の液側 (以下、冷媒量判定運転に関する説明では、室外熱交換 器 23の出口とする)における過冷却度 SCoによって凝縮器 A内における冷媒量が変 化する状態を作り出している。尚、本実施形態の室外ファン 28による凝縮圧力 Pcの 制御においては、室外熱交換器 23における冷媒の凝縮圧力 Pcに等価な運転状態 量である、吐出圧力センサ 30によって検出される圧縮機 21の吐出圧力 Pd、又は、 熱交温度センサ 33によって検出される室外熱交換器 23内を流れる冷媒の温度 (す なわち、凝縮温度 Tc)が用いられる。 Condensation pressure control is performed in the outdoor heat exchanger ^^ 23 in which high-pressure refrigerant flows while the gas state force changes to a liquid state due to heat exchange with the outdoor air (hatched hatched and blacked out in Fig. 6). Among the hatched portions, see the portion corresponding to the outdoor heat exchanger 23 (hereinafter referred to as the condenser portion A), which is also the force that greatly affects the refrigerant condensing pressure Pc. Since the refrigerant condensing pressure Pc in the condenser part A changes greatly due to the influence of the outdoor temperature Ta, the air volume Wo of the indoor air supplied from the outdoor fan 28 to the outdoor heat exchanger 23 is controlled by the motor 28a. As a result, the condensation pressure Pc of the refrigerant in the outdoor heat exchanger 23 is made constant, and the state of the refrigerant flowing in the condenser section A is stabilized, and mainly the liquid side of the outdoor heat exchanger 23 (hereinafter referred to as the refrigerant). In the description of the quantity determination operation, the refrigerant amount in the condenser A is changed by the degree of supercooling SCo at the outlet of the outdoor heat exchanger 23). In the control of the condensation pressure Pc by the outdoor fan 28 of the present embodiment, the operation state equivalent to the refrigerant condensation pressure Pc in the outdoor heat exchanger 23 is used. The discharge pressure Pd of the compressor 21 detected by the discharge pressure sensor 30 or the temperature of the refrigerant flowing in the outdoor heat exchanger 23 detected by the heat exchange temperature sensor 33 (that is, the condensation temperature Tc ) Is used.
[0039] そして、このような凝縮圧力制御を行うことによって、室外熱交 から室内膨 張弁 41、 51までの室外膨張弁 38、過冷却器 25の主冷媒回路側の部分及び液冷媒 連絡配管 6を含む流路と室外熱交翻 23からバイパス冷媒回路 61のバイパス膨張 弁 62までの流路とには高圧の液冷媒が流れて、室外熱交換器 23から室内膨張弁 4 1、 51及びバイノス膨張弁 62までの部分(図 6の黒塗りのハッチング部分を参照、以 下、液冷媒流通部 Bとする)における冷媒の圧力も安定し、液冷媒流通部 Bが液冷媒 でシールされて安定した状態となる。  [0039] Then, by performing such condensing pressure control, the outdoor expansion valve 38 from the outdoor heat exchange to the indoor expansion valves 41, 51, the part on the main refrigerant circuit side of the supercooler 25, and the liquid refrigerant communication pipe 6 and the flow from the outdoor heat exchanger 23 to the flow path from the bypass refrigerant circuit 61 to the bypass expansion valve 62, a high-pressure liquid refrigerant flows from the outdoor heat exchanger 23 to the indoor expansion valves 41, 51 and The pressure of the refrigerant in the portion up to the binos expansion valve 62 (refer to the black hatched portion in FIG. 6, hereinafter referred to as the liquid refrigerant circulation section B) is stable, and the liquid refrigerant circulation section B is sealed with the liquid refrigerant. It will be in a stable state.
また、液管温度制御を行うのは、過冷却器 25から室内膨張弁 41、 51に至る液冷媒 連絡配管 6を含む冷媒配管内(図 6に示される液冷媒流通部 Bのうち過冷却器 25か ら室内膨張弁 41、 51までの部分を参照)の冷媒の密度が変化しないようにするため である。そして、過冷却器 25の能力制御は、過冷却器 25の主冷媒回路側の出口に 設けられた液管温度センサ 35によって検出される冷媒の温度 Tipが液管温度目標 値 Tipsで一定になるようにバイパス冷媒回路 61を流れる冷媒の流量を増減して、過 冷却器 25の主冷媒回路側を流れる冷媒とバイパス冷媒回路側を流れる冷媒との間 の交換熱量を調節することによって実現されている。尚、このバイパス冷媒回路 61を 流れる冷媒の流量の増減は、バイパス膨張弁 62の開度調節によって行われる。この ようにして、過冷却器 25から室内膨張弁 41、 51に至る液冷媒連絡配管 6を含む冷 媒配管内における冷媒の温度が一定となる液管温度制御が実現されている。  The liquid pipe temperature control is performed in the refrigerant pipe including the liquid refrigerant communication pipe 6 from the subcooler 25 to the indoor expansion valves 41 and 51 (the subcooler in the liquid refrigerant circulation section B shown in FIG. 6). This is to prevent the refrigerant density from changing from 25 to the indoor expansion valves 41 and 51). The capacity control of the subcooler 25 is controlled so that the refrigerant temperature Tip detected by the liquid pipe temperature sensor 35 provided at the outlet of the main refrigerant circuit of the subcooler 25 is constant at the liquid pipe temperature target value Tips. In this way, the flow rate of the refrigerant flowing through the bypass refrigerant circuit 61 is increased or decreased to adjust the amount of heat exchanged between the refrigerant flowing through the main refrigerant circuit side of the subcooler 25 and the refrigerant flowing through the bypass refrigerant circuit side. Yes. The flow rate of the refrigerant flowing through the bypass refrigerant circuit 61 is increased or decreased by adjusting the opening degree of the bypass expansion valve 62. In this way, liquid pipe temperature control is realized in which the refrigerant temperature in the refrigerant pipe including the liquid refrigerant communication pipe 6 extending from the supercooler 25 to the indoor expansion valves 41 and 51 is constant.
[0040] そして、このような液管温度一定制御を行うことによって、冷媒回路 10に冷媒を充 填することによって冷媒回路 10内の冷媒量が徐々に増加するのに伴って、室外熱交 23の出口における冷媒の温度 Tco (すなわち、室外熱交換器 23の出口におけ る冷媒の過冷却度 SCo)が変化する場合であっても、室外熱交換器 23の出口にお ける冷媒の温度 Tcoの変化の影響力、室外熱交 の出口力も過冷却器 25に 至る冷媒配管のみに収まり、液冷媒流通部 Bのうち過冷却器 25から液冷媒連絡配管 6を含む室内膨張弁 41、 51までの冷媒配管には影響しな 、状態となる。 さらに、過熱度制御を行うのは、蒸発器部 Cにおける冷媒量が、室内熱交換器 42、 52の出口における冷媒の乾き度に大きく影響するからである。この室内熱交 、 52の出口における冷媒の過熱度 SHrは、室内膨張弁 41、 51の開度を制御するこ とによって、室内熱交換器 42、 52のガス側(以下、冷媒量判定運転に関する説明で は、室内熱交換器 42、 52の出口とする)における冷媒の過熱度 SHrが過熱度目標 値 SHrsで一定になるように(すなわち、室内熱交換器 42、 52の出口のガス冷媒を過 熱状態)にして、蒸発器部 C内を流れる冷媒の状態を安定させている。 [0040] Then, by performing such liquid pipe temperature constant control, the refrigerant heat is filled in the refrigerant circuit 10, and as the amount of refrigerant in the refrigerant circuit 10 gradually increases, the outdoor heat exchange 23 The refrigerant temperature Tco at the outlet of the outdoor heat exchanger 23 is changed even when the refrigerant temperature Tco at the outlet of the outdoor heat exchanger 23 changes (that is, the degree of refrigerant supercooling SCo at the outlet of the outdoor heat exchanger 23). The influence of this change and the outlet force of the outdoor heat exchange are also contained only in the refrigerant pipe that reaches the subcooler 25, and in the liquid refrigerant circulation section B, from the subcooler 25 to the indoor expansion valves 41 and 51 including the liquid refrigerant communication pipe 6 The refrigerant piping is not affected. Further, the superheat control is performed because the amount of refrigerant in the evaporator section C greatly affects the dryness of the refrigerant at the outlets of the indoor heat exchangers 42 and 52. The degree of superheat SHr of the refrigerant at the outlet of the indoor heat exchanger 52 is controlled by controlling the opening degree of the indoor expansion valves 41 and 51, so that the gas side of the indoor heat exchangers 42 and 52 (hereinafter referred to as refrigerant amount determination operation). In the explanation, the superheat degree SHr of the refrigerant in the indoor heat exchangers 42 and 52 is made constant at the superheat target value SHrs (that is, the gas refrigerant at the outlets of the indoor heat exchangers 42 and 52 is used). The state of the refrigerant flowing in the evaporator section C is stabilized.
[0041] そして、このような過熱度制御を行うことによって、ガス冷媒連絡部 Dにガス冷媒が 確実に流れる状態を作り出して ヽる。 [0041] By performing such superheat control, a state in which the gas refrigerant surely flows in the gas refrigerant communication section D is created.
上述の各種制御によって、冷媒回路 10内を循環する冷媒の状態が安定して、冷媒 回路 10内における冷媒量の分布が一定となるため、続いて行われる冷媒の追加充 填によって冷媒回路 10内に冷媒が充填され始めた際に、冷媒回路 10内の冷媒量 の変化が、主として、室外熱交換器 23内の冷媒量の変化となって現れる状態を作り 出すことができる(以下、この運転を冷媒量判定運転とする)。  By the various controls described above, the state of the refrigerant circulating in the refrigerant circuit 10 is stabilized, and the distribution of the refrigerant amount in the refrigerant circuit 10 becomes constant. When the refrigerant begins to be charged, it is possible to create a state in which the change in the refrigerant amount in the refrigerant circuit 10 mainly appears as a change in the refrigerant amount in the outdoor heat exchanger 23 (hereinafter, this operation is performed). Is the refrigerant quantity determination operation).
以上のような制御は、冷媒量判定運転を行う冷媒量判定運転制御手段として機能 する制御部 8 (より具体的には、室内側制御部 47、 57と室外側制御部 37と制御部 37 、 47、 57間を接続する伝送線 8a)により、ステップ S 11の処理として行われる。  The control as described above is performed by the control unit 8 (more specifically, the indoor side control units 47 and 57, the outdoor side control unit 37, and the control unit 37, which functions as a refrigerant amount determination operation control unit that performs the refrigerant amount determination operation. The transmission line 8a) connecting 47 and 57 is performed as the process of step S11.
[0042] 尚、本実施形態と異なり、室外ユニット 2に予め冷媒が充填されていない場合には、 このステップ S11の処理に先だって、上述の冷媒量判定運転を行う際に、構成機器 が異常停止してしまうことがない程度の冷媒量になるまで冷媒充填を行う必要がある [0042] Unlike the present embodiment, when the outdoor unit 2 is not prefilled with the refrigerant, the component device abnormally stops when the above-described refrigerant amount determination operation is performed prior to the processing of step S11. It is necessary to charge the refrigerant until the amount of refrigerant is low enough
(ステップ S 12:冷媒量の演算) (Step S12: Calculation of refrigerant quantity)
次に、上記の冷媒量判定運転を行いつつ、冷媒回路 10内に冷媒の追加充填を実 施するが、この際、冷媒量演算手段として機能する制御部 8によって、ステップ S12 における冷媒の追加充填時における冷媒回路 10を流れる冷媒又は構成機器の運 転状態量から冷媒回路 10内の冷媒量を演算する。  Next, additional refrigerant charging is performed in the refrigerant circuit 10 while performing the above-described refrigerant amount determination operation. At this time, the additional charging of the refrigerant in step S12 is performed by the control unit 8 functioning as the refrigerant amount calculating means. The refrigerant amount in the refrigerant circuit 10 is calculated from the refrigerant flowing through the refrigerant circuit 10 at the time or the operating state quantity of the component equipment.
まず、本実施形態における冷媒量演算手段について説明する。冷媒量演算手段 は、冷媒回路 10を複数の部分に分割して、分割された各部分ごとに冷媒量を演算 することで、冷媒回路 10内の冷媒量を演算するものである。より具体的には、分割さ れた各部分ごとに、各部分の冷媒量と冷媒回路 10を流れる冷媒又は構成機器の運 転状態量との関係式が設定されており、これらの関係式を用いて、各部分の冷媒量 を演算することができるようになつている。そして、本実施形態においては、冷媒回路First, the refrigerant quantity calculating means in this embodiment will be described. The refrigerant quantity calculating means divides the refrigerant circuit 10 into a plurality of parts, and calculates the refrigerant quantity for each of the divided parts. Thus, the amount of refrigerant in the refrigerant circuit 10 is calculated. More specifically, for each of the divided parts, a relational expression between the refrigerant amount of each part and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is set. By using it, the amount of refrigerant in each part can be calculated. And in this embodiment, a refrigerant circuit
10は、四路切換弁 22が図 1の実線で示される状態、すなわち、圧縮機 21の吐出側 が室外熱交換器 23のガス側に接続され、かつ、圧縮機 21の吸入側がガス側閉鎖弁 27及びガス冷媒連絡配管 7を介して室内熱交換器 42、 52の出口に接続された状態 において、圧縮機 21から四路切換弁 22 (図 6では図示せず)を含む室外熱交換器 2 3までの部分 (以下、高圧ガス管部 Eとする)と、室外熱交換器 23の部分 (すなわち、 凝縮器部 A)と、液冷媒流通部 Bのうち室外熱交換器 23から過冷却器 25までの部分 及び過冷却器 25の主冷媒回路側の部分の入口側半分 (以下、高温側液管部 B1と する)と、液冷媒流通部 Bのうち過冷却器 25の主冷媒回路側の部分の出口側半分及 び過冷却器 25から液側閉鎖弁 26 (図 6では図示せず)までの部分 (以下、低温側液 管部 B2とする)と、液冷媒流通部 Bのうち液冷媒連絡配管 6の部分 (以下、液冷媒連 絡配管部 B3とする)と、液冷媒流通部 Bのうち液冷媒連絡配管 6から室内膨張弁 41 、 51及び室内熱交換器 42、 52の部分 (すなわち、蒸発器部 C)を含むガス冷媒流通 部 Dのうちガス冷媒連絡配管 7までの部分 (以下、室内ユニット部 Fとする)と、ガス冷 媒流通部 Dのうちガス冷媒連絡配管 7の部分 (以下、ガス冷媒連絡配管部 Gとする) と、ガス冷媒流通部 Dのうちガス側閉鎖弁 27 (図 6では図示せず)から四路切換弁 22 及びアキュムレータ 24を含む圧縮機 21までの部分 (以下、低圧ガス管部 Hとする)と 、液冷媒流通部 Bのうち高温側液管部 B1からバイパス膨張弁 62及び過冷却器 25の バイパス冷媒回路側の部分を含む低圧ガス管部 Hまでの部分 (以下、バイパス回路 部 Iとする)と、圧縮機 21の部分 (以下、圧縮機部 Jとする)と、に分割されて、各部分ご とに関係式が設定されている。次に、上述の各部分ごとに設定された関係式につい て、説明する。 10 shows a state in which the four-way switching valve 22 is shown by a solid line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23, and the suction side of the compressor 21 is closed to the gas side. The outdoor heat exchanger including the four-way switching valve 22 (not shown in FIG. 6) from the compressor 21 in a state connected to the outlets of the indoor heat exchangers 42 and 52 through the valve 27 and the gas refrigerant communication pipe 7 2 The parts up to 3 (hereinafter referred to as “high pressure gas pipe part E”), the part of the outdoor heat exchanger 23 (namely, the condenser part A) and the liquid refrigerant circulation part B are supercooled from the outdoor heat exchanger 23. The main refrigerant circuit of the subcooler 25 in the liquid refrigerant circulation part B and the inlet-side half of the main refrigerant circuit side part of the subcooler 25 and the part of the subcooler 25 (hereinafter referred to as the high temperature side liquid pipe part B1). And the part from the subcooler 25 to the liquid side shutoff valve 26 (not shown in FIG. 6) (hereinafter referred to as the low temperature side liquid pipe part B2) The liquid refrigerant communication pipe 6 in the liquid refrigerant circulation section B (hereinafter referred to as the liquid refrigerant communication pipe section B3) and the liquid refrigerant communication pipe 6 in the liquid refrigerant circulation section B through the indoor expansion valves 41, 51 and the indoor Of the gas refrigerant circulation part D including the heat exchangers 42 and 52 (that is, the evaporator part C), the part up to the gas refrigerant communication pipe 7 (hereinafter referred to as the indoor unit part F), and the gas refrigerant circulation part A part of the gas refrigerant communication pipe 7 in D (hereinafter referred to as gas refrigerant communication pipe part G) and a gas side closing valve 27 (not shown in FIG. 6) of the gas refrigerant circulation part D to a four-way switching valve 22 And the portion up to the compressor 21 including the accumulator 24 (hereinafter referred to as the low-pressure gas pipe section H) and the high-temperature side liquid pipe section B1 from the liquid refrigerant circulation section B to the bypass expansion valve 62 and the subcooler 25 bypass refrigerant. The part up to the low pressure gas pipe part H including the part on the circuit side (hereinafter referred to as bypass circuit part I) and compression The machine 21 is divided into parts (hereinafter referred to as compressor part J), and a relational expression is set for each part. Next, the relational expressions set for each part will be described.
本実施形態において、高圧ガス管部 Eにおける冷媒量 Moglと冷媒回路 10を流れ る冷媒又は構成機器の運転状態量との関係式は、例えば、  In the present embodiment, the relational expression between the refrigerant amount Mogl in the high-pressure gas pipe E and the operating state quantity of the refrigerant or the component device flowing through the refrigerant circuit 10 is, for example,
Mogl =Vogl X p d という、室外ユニット 2の高圧ガス管部 Eの容積 Voglに高圧ガス管部 Eにおける冷媒 の密度/ 0 dを乗じた関数式として表される。尚、高圧ガス管部 Eの容積 Voglは、室外 ユニット 2が設置場所に設置される前力 既知の値であり、予め制御部 8のメモリに記 憶されている。また、高圧ガス管部 Eにおける冷媒の密度 は、吐出温度 Td及び 吐出圧力 Pdを換算することによって得られる。 Mogl = Vogl X pd This is expressed as a functional expression obtained by multiplying the volume Vogl of the high-pressure gas pipe E of the outdoor unit 2 by the refrigerant density / 0 d in the high-pressure gas pipe E. Note that the volume Vogl of the high-pressure gas pipe E is a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in advance in the memory of the control unit 8. The density of the refrigerant in the high-pressure gas pipe E can be obtained by converting the discharge temperature Td and the discharge pressure Pd.
凝縮器部 Aにおける冷媒量 Mcと冷媒回路 10を流れる冷媒又は構成機器の運転 状態量との関係式は、例えば、  The relational expression between the refrigerant quantity Mc in the condenser part A and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
Mc=kcl XTa+kc2 XTc+kc3 X SHm+kc4 XWc  Mc = kcl XTa + kc2 XTc + kc3 X SHm + kc4 XWc
+ kc5 X p c + kco X p CO + C I  + kc5 X pc + kco X p CO + C I
という、室外温度 Ta、凝縮温度 Tc、圧縮機吐出過熱度 SHm、冷媒循環量 Wc、室 外熱交換器 23における冷媒の飽和液密度 p c及び室外熱交換器 23の出口におけ る冷媒の密度 P coの関数式として表される。尚、上述の関係式におけるパラメータ kc l〜kc7は、試験や詳細なシミュレーションの結果を回帰分析することによって求めら れたものであり、予め制御部 8のメモリに記憶されている。また、圧縮機吐出過熱度 S Hmは、圧縮機の吐出側における冷媒の過熱度であり、吐出圧力 Pdを冷媒の飽和 温度値に換算し、吐出温度 Td力 この冷媒の飽和温度値を差し引くことにより得られ る。冷媒循環量 Wcは、蒸発温度 Teと凝縮温度 Tcとの関数 (すなわち、 Wc = fl (Te 、 Tc) )として表される。冷媒の飽和液密度 p cは、凝縮温度 Tcを換算することによつ て得られる。室外熱交換器 23の出口における冷媒の密度 p coは、凝縮温度 Tcを換 算することによって得られる凝縮圧力 Pc及び冷媒の温度 Tcoを換算することによって 得られる。 The outdoor temperature Ta, the condensation temperature Tc, the compressor discharge superheat SHm, the refrigerant circulation rate Wc, the saturated liquid density pc of the refrigerant in the outdoor heat exchanger 23, and the refrigerant density P at the outlet of the outdoor heat exchanger 23 It is expressed as a function expression of co. The parameters kcl to kc7 in the above relational expression are obtained by regression analysis of the results of tests and detailed simulations, and are stored in the memory of the control unit 8 in advance. The compressor discharge superheat degree S Hm is the refrigerant superheat degree on the discharge side of the compressor. The discharge pressure Pd is converted to the refrigerant saturation temperature value, and the discharge temperature Td force is subtracted from the refrigerant saturation temperature value. Can be obtained. The refrigerant circulation amount Wc is expressed as a function of the evaporation temperature Te and the condensation temperature Tc (that is, Wc = fl (Te, Tc)). The saturated liquid density pc of the refrigerant can be obtained by converting the condensation temperature Tc. The refrigerant density p co at the outlet of the outdoor heat exchanger 23 is obtained by converting the condensation pressure Pc obtained by converting the condensation temperature Tc and the refrigerant temperature Tco.
高温液管部 B1における冷媒量 Mollと冷媒回路 10を流れる冷媒又は構成機器の 運転状態量との関係式は、例えば、  The relational expression between the refrigerant amount Moll in the high-temperature liquid pipe section B1 and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
Moll =Voll X p co  Moll = Voll X p co
t 、う、室外ユニット 2の高温液管部 B1の容積 Vollに高温液管部 B1における冷媒 の密度 p co (すなわち、上述の室外熱交換器 23の出口における冷媒の密度)を乗じ た関数式として表される。尚、高圧液管部 B1の容積 Vollは、室外ユニット 2が設置 場所に設置される前力 既知の値であり、予め制御部 8のメモリに記憶されている。 低温液管部 B2における冷媒量 Mol2と冷媒回路 10を流れる冷媒又は構成機器の 運転状態量との関係式は、例えば、 t, u, a functional equation that multiplies the volume Voll of the high-temperature liquid pipe section B1 of the outdoor unit 2 by the refrigerant density p co in the high-temperature liquid pipe section B1 (that is, the refrigerant density at the outlet of the outdoor heat exchanger 23 described above). Represented as: The volume Voll of the high-pressure liquid pipe section B1 is a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in the memory of the control section 8 in advance. The relational expression between the refrigerant quantity Mol2 in the low temperature liquid pipe part B2 and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
Mol2=Vol2 X ip  Mol2 = Vol2 X ip
という、室外ユニット 2の低温液管部 B2の容積 Vol2に低温液管部 B2における冷媒 の密度 p lpを乗じた関数式として表される。尚、低温液管部 B2の容積 Vol2は、室外 ユニット 2が設置場所に設置される前力 既知の値であり、予め制御部 8のメモリに記 憶されている。また、低温液管部 B2における冷媒の密度 p lpは、過冷却器 25の出 口における冷媒の密度であり、凝縮圧力 Pc及び過冷却器 25の出口における冷媒の 温度 Tipを換算することによって得られる。  This is expressed as a functional expression obtained by multiplying the volume Vol2 of the cryogenic liquid pipe section B2 of the outdoor unit 2 by the refrigerant density p lp in the cryogenic liquid pipe section B2. Note that the volume Vol2 of the cryogenic liquid pipe section B2 is a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in the memory of the control section 8 in advance. The refrigerant density p lp in the cryogenic liquid pipe section B2 is the refrigerant density at the outlet of the subcooler 25, and is obtained by converting the condensation pressure Pc and the refrigerant temperature Tip at the outlet of the subcooler 25. It is done.
[0045] 液冷媒連絡配管部 B3における冷媒量 Mlpと冷媒回路 10を流れる冷媒又は構成 機器の運転状態量との関係式は、例えば、 [0045] The relational expression between the refrigerant amount Mlp in the liquid refrigerant communication pipe section B3 and the operating state quantity of the refrigerant or the component device flowing through the refrigerant circuit 10 is, for example,
Mlp=Vlp X ip  Mlp = Vlp X ip
という、液冷媒連絡配管 6の容積 Vlpに液冷媒連絡配管部 B3における冷媒の密度 lp (すなわち、過冷却器 25の出口における冷媒の密度)を乗じた関数式として表さ れる。尚、液冷媒連絡配管 6の容積 Vlpは、液冷媒連絡配管 6が空気調和装置 1をビ ル等の設置場所に設置する際に現地にて施工される冷媒配管であるため、長さや管 径等の情報から現地において演算した値を入力したり、長さゃ管径等の情報を現地 にお 、て入力し、これらの入力された液冷媒連絡配管 6の情報力も制御部 8で演算し たり、又は、後述のように、配管容積判定運転の運転結果を用いて演算される。  This is expressed as a function equation obtained by multiplying the volume Vlp of the liquid refrigerant communication pipe 6 by the refrigerant density lp (that is, the refrigerant density at the outlet of the subcooler 25) in the liquid refrigerant communication pipe section B3. Note that the volume Vlp of the liquid refrigerant communication pipe 6 is a refrigerant pipe that is installed locally when the liquid refrigerant communication pipe 6 is installed at the installation location of the air conditioner 1 at a place such as a building. Input the value calculated locally from the information, etc., or input the information such as the pipe diameter at the site, and the control section 8 also calculates the information power of these input liquid refrigerant communication pipes 6 Or, as will be described later, calculation is performed using the operation result of the pipe volume determination operation.
[0046] 室内ュニット部 Fにおける冷媒量 Mrと冷媒回路 10を流れる冷媒又は構成機器の 運転状態量との関係式は、例えば、 [0046] The relational expression between the refrigerant quantity Mr in the indoor unit F and the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device is, for example,
Mr=krl XTlp+kr2 X AT+kr3 X SHr+kr4 XWr+kr5  Mr = krl XTlp + kr2 X AT + kr3 X SHr + kr4 XWr + kr5
という、過冷却器 25の出口における冷媒の温度 Tlp、室内温度 Trから蒸発温度 Teを 差し引いた温度差 ΔΤ、室内熱交換器 42、 52の出口における冷媒の過熱度 SHr及 び室内ファン 43、 53の風量 Wrの関数式として表される。尚、上述の関係式における パラメータ krl〜kr5は、試験や詳細なシミュレーションの結果を回帰分析することに よって求められたものであり、予め制御部 8のメモリに記憶されている。尚、ここでは、 2台の室内ユニット 4、 5のそれぞれに対応して冷媒量 Mrの関係式が設定されており 、室内ユニット 4の冷媒量 Mrと室内ユニット 5の冷媒量 Mrとを加算することにより、室 内ユニット部 Fの全冷媒量が演算されるようになっている。尚、室内ユニット 4と室内ュ ニット 5の機種や容量が異なる場合には、パラメータ krl〜kr5の値が異なる関係式 力 S使用されること〖こなる。 The refrigerant temperature Tlp at the outlet of the supercooler 25, the temperature difference ΔΤ obtained by subtracting the evaporation temperature Te from the indoor temperature Tr, the superheat degree SHr of the refrigerant at the outlet of the indoor heat exchangers 42 and 52, and the indoor fans 43 and 53 It is expressed as a function expression of the air volume Wr. Note that the parameters krl to kr5 in the above relational expression are obtained by regression analysis of the results of the test and detailed simulation, and are stored in the memory of the control unit 8 in advance. Here, the relational expression of the refrigerant amount Mr is set for each of the two indoor units 4 and 5. The total refrigerant quantity of the indoor unit F is calculated by adding the refrigerant quantity Mr of the indoor unit 4 and the refrigerant quantity Mr of the indoor unit 5. If the indoor unit 4 and the indoor unit 5 have different models and capacities, the relational forces S with different values of the parameters krl to kr5 will be used.
[0047] ガス冷媒連絡配管部 Gにおける冷媒量 Mgpと冷媒回路 10を流れる冷媒又は構成 機器の運転状態量との関係式は、例えば、 [0047] The relational expression between the refrigerant amount Mgp in the gas refrigerant communication pipe section G and the operating state quantity of the refrigerant or the component device flowing through the refrigerant circuit 10 is, for example,
Mgp = Vgp X gp  Mgp = Vgp X gp
という、ガス冷媒連絡配管 7の容積 Vgpにガス冷媒連絡配管部 Hにおける冷媒の密 度 p gpを乗じた関数式として表される。尚、ガス冷媒連絡配管 7の容積 Vgpは、液冷 媒連絡配管 6と同様に、ガス冷媒連絡配管 7が空気調和装置 1をビル等の設置場所 に設置する際に現地にて施工される冷媒配管であるため、長さゃ管径等の情報から 現地において演算した値を入力したり、長さゃ管径等の情報を現地において入力し 、これらの入力されたガス冷媒連絡配管 7の情報力 制御部 8で演算したり、又は、 後述のように、配管容積判定運転の運転結果を用いて演算される。また、ガス冷媒配 管連絡部 Gにおける冷媒の密度 p gpは、圧縮機 21の吸入側における冷媒の密度 P sと、室内熱交換器 42、 52の出口(すなわち、ガス冷媒連絡配管 7の入口)におけ る冷媒の密度 p eoとの平均値である。冷媒の密度 p sは、吸入圧力 Ps及び吸入温 度 Tsを換算することによって得られ、冷媒の密度 p eoは、蒸発温度 Teの換算値であ る蒸発圧力 Pe及び室内熱交換器 42、 52の出口温度 Teoを換算することによって得 られる。  This is expressed as a function expression obtained by multiplying the volume Vgp of the gas refrigerant communication pipe 7 by the refrigerant density p gp in the gas refrigerant communication pipe section H. Note that the volume Vgp of the gas refrigerant communication pipe 7 is the refrigerant installed at the site when the gas refrigerant communication pipe 7 installs the air conditioner 1 at the installation location of the building, etc., like the liquid coolant communication pipe 6. Because it is a pipe, input the value calculated locally from the information such as the pipe diameter or the length, or enter the information such as the pipe diameter at the local, and the information of the gas refrigerant communication pipe 7 that has been input It is calculated by the force control unit 8 or is calculated using the operation result of the pipe volume determination operation as described later. In addition, the refrigerant density p gp in the gas refrigerant pipe connecting portion G is equal to the refrigerant density P s on the suction side of the compressor 21 and the outlets of the indoor heat exchangers 42 and 52 (that is, the inlet of the gas refrigerant connecting pipe 7). This is the average value with the density p eo of the refrigerant. The refrigerant density ps is obtained by converting the suction pressure Ps and the suction temperature Ts, and the refrigerant density p eo is obtained by converting the evaporation pressure Pe and the indoor heat exchangers 42 and 52, which are conversion values of the evaporation temperature Te. It is obtained by converting the outlet temperature Teo.
[0048] 低圧ガス管部 Hにおける冷媒量 Mog2と冷媒回路 10を流れる冷媒又は構成機器 の運転状態量との関係式は、例えば、  [0048] The relational expression between the refrigerant amount Mog2 in the low-pressure gas pipe portion H and the operating state quantity of the refrigerant or the component device flowing through the refrigerant circuit 10 is, for example,
Mog2=Vog2 X p s  Mog2 = Vog2 X p s
という、室外ユニット 2内の低圧ガス管部 Hの容積 Vog2に低圧ガス管部 Hにおける 冷媒の密度 p sを乗じた関数式として表される。尚、低圧ガス管部 Hの容積 Vog2は、 設置場所に出荷される前力 既知の値であり、予め制御部 8のメモリに記憶されてい る。  This is expressed as a functional expression obtained by multiplying the volume Vog2 of the low-pressure gas pipe H in the outdoor unit 2 by the refrigerant density p s in the low-pressure gas pipe H. Note that the volume Vog2 of the low-pressure gas pipe H is a known value of the pre-force that is shipped to the installation location, and is stored in the memory of the controller 8 in advance.
ノ ィパス回路部 Iにおける冷媒量 Mobと冷媒回路 10を流れる冷媒又は構成機器の 運転状態量との関係式は、例えば、 Refrigerant amount Mob in nopass circuit section I and refrigerant or component equipment flowing in refrigerant circuit 10 The relational expression with the driving state quantity is, for example,
Mob = kobl X co + kob2 X p s + kob3 X Pe + kob4  Mob = kobl X co + kob2 X ps + kob3 X Pe + kob4
という、室外熱交換器 23の出口における冷媒の密度 p co、過冷却器 25のバイパス 回路側の出口における冷媒の密度 p s及び蒸発圧力 Peの関数式として表される。尚 、上述の関係式におけるパラメータ kobl〜kob3は、試験や詳細なシミュレーション の結果を回帰分析することによって求められたものであり、予め制御部 8のメモリに記 憶されている。また、バイパス回路部 Iの容積 Mobは、他の部分に比べて冷媒量が少 ないこともあり、さらに簡易的な関係式によって演算されてもよい。例えば、 The refrigerant density p co at the outlet of the outdoor heat exchanger 23, the refrigerant density p s at the outlet of the subcooler 25 on the bypass circuit side, and the evaporation pressure Pe are expressed as functional expressions. Note that the parameters kobl to kob3 in the above relational expression are obtained by regression analysis of the results of tests and detailed simulations, and are stored in the memory of the control unit 8 in advance. Further, the volume Mob of the bypass circuit part I may be smaller than the other parts, and may be calculated by a simpler relational expression. For example,
Mob=Vob X e X kob5  Mob = Vob X e X kob5
という、バイパス回路部 Iの容積 Vobに過冷却器 25のバイパス回路側の部分におけ る飽和液密度 p e及び補正係数 kobを乗じた関数式として表される。尚、バイパス回 路部 Iの容積 Vobは、室外ユニット 2が設置場所に設置される前力も既知の値であり、 予め制御部 8のメモリに記憶されている。また、過冷却器 25のバイパス回路側の部分 における飽和液密度 p eは、吸入圧力 Ps又は蒸発温度 Teを換算することによって得 られる。 This is expressed as a functional expression obtained by multiplying the volume Vob of the bypass circuit portion I by the saturated liquid density p e and the correction coefficient kob in the bypass circuit side portion of the subcooler 25. Incidentally, the volume Vob of the bypass circuit section I is also a known value of the front force at which the outdoor unit 2 is installed at the installation location, and is stored in the memory of the control section 8 in advance. Further, the saturated liquid density pe in the portion on the bypass circuit side of the subcooler 25 can be obtained by converting the suction pressure Ps or the evaporation temperature Te.
圧縮機部 Jにおける冷媒量 Mcompと冷媒回路 10を流れる冷媒又は構成機器の運 転状態量との関係式は、例えば、  The relational expression between the refrigerant amount Mcomp in the compressor part J and the operating state quantity of the refrigerant or the component equipment flowing through the refrigerant circuit 10 is, for example,
Mcomp = Mqo + Mq 1 + Mq2  Mcomp = Mqo + Mq 1 + Mq2
という、圧縮機 21の圧縮機ケーシング 71内の低圧空間 Qlのうち油溜まり部 71dに 溜まって!/ヽる冷凍機油中に溶解する溶存冷媒量 Mqo、圧縮機 21の圧縮機ケーシン グ 71内の低圧空間 Q1のうち油溜まり部 71d以外の部分における冷媒量 Mql、及び 圧縮機 21の圧縮機ケーシング 71内の高圧空間 Q2の部分における冷媒量 Mq2を 加算した関数式として表される。 That is, the amount of dissolved refrigerant Mqo that is accumulated in the oil reservoir 71d in the low pressure space Ql in the compressor casing 71 of the compressor 21 and dissolved in the refrigerating machine oil, and the compressor casing 71 of the compressor 21 This is expressed as a function equation obtained by adding the refrigerant amount Mql in the portion other than the oil reservoir 71d in the low pressure space Q1 and the refrigerant amount Mq2 in the high pressure space Q2 in the compressor casing 71 of the compressor 21.
ここで、冷凍機油の量を Moilとし、冷凍機油への冷媒の溶解度を φとすると、溶存 冷媒量 Mqoは、  Here, if the amount of refrigeration oil is Moil and the solubility of the refrigerant in the refrigeration oil is φ, the dissolved refrigerant amount Mqo is
Mqo= / (ΐ - ) X Moil  Mqo = / (ΐ-) X Moil
として表される。この冷凍機油への冷媒の溶解度 φは、油溜まり部 71dに溜まってい る冷凍機油の圧力及び温度の関数として表されるが、このとき、冷凍機油の圧力とし ては、低圧空間 Q1における冷媒の圧力(すなわち、吸入圧力 Ps)を用いることができ 、また、本実施形態における空気調和装置 1が圧縮機 21内部の油溜まり部 71dに溜 まった冷凍機油とこの冷凍機油に接する冷媒との温度差の最大値が 50°C以下となる ように構成されており、圧縮機 21内部の油溜まり部 71dに溜まった冷凍機油の温度 分布が生じに《なっていることから、冷凍機油の温度としては、低圧空間 Q1におけ る冷媒の温度 (すなわち、吸入温度 Ts)を用いることができる。すなわち、冷凍機油 への冷媒の溶解度 Φは、油溜まり部 71dが形成された低圧空間 Q1における冷媒の 圧力及び温度 (すなわち、吸入圧力 Ps及び吸入温度 Ts)の関数 (すなわち、 φ =f2 (Ps、 Ts) )として表すことができる。このように、溶存冷媒量 Mqoは、既知の冷凍機油 の量 Moil、吸入圧力 Ps及び吸入温度 Ts力も演算することができる。 Represented as: The refrigerant solubility φ in the refrigerating machine oil is expressed as a function of the pressure and temperature of the refrigerating machine oil accumulated in the oil reservoir 71d. Thus, the refrigerant pressure (that is, the suction pressure Ps) in the low pressure space Q1 can be used, and the refrigerating machine oil collected in the oil sump 71d in the compressor 21 by the air conditioner 1 in the present embodiment can be used. The maximum temperature difference with the refrigerant in contact with the refrigerating machine oil is configured to be 50 ° C or less, resulting in a temperature distribution of the refrigerating machine oil accumulated in the oil reservoir 71d inside the compressor 21. Therefore, the temperature of the refrigerant in the low-pressure space Q1 (that is, the suction temperature Ts) can be used as the temperature of the refrigerating machine oil. That is, the refrigerant solubility Φ in the refrigeration oil is a function of the refrigerant pressure and temperature (i.e., suction pressure Ps and suction temperature Ts) in the low-pressure space Q1 where the oil reservoir 71d is formed (i.e., φ = f2 (Ps , Ts))). As described above, the dissolved refrigerant amount Mqo can also calculate a known amount of refrigerating machine oil Moil, suction pressure Ps, and suction temperature Ts force.
[0050] また、冷媒量 Mqlは、  [0050] The refrigerant amount Mql is
Mql = (Vcomp-Voil-Vq2) X p s  Mql = (Vcomp-Voil-Vq2) X p s
という、圧縮機 21の全容積 Vcompカゝら冷凍機油の容積 Voil及び高圧空間 Q2の容 積 Vq2を差し引き、これに低圧空間 Q1における冷媒の密度としての冷媒の密度 p s を乗算することによって演算される。  This is calculated by subtracting the total volume Vcomp of compressor 21 and the volume Voil of the refrigeration oil and the volume Vq2 of the high-pressure space Q2, and multiplying this by the refrigerant density ps as the refrigerant density in the low-pressure space Q1. The
ここで、冷凍機油の容積 Voilは、冷凍機油の量 Moilを冷凍機油の密度 p oilで除 算することによって演算される。この冷凍機油の密度 p oilは、冷凍機油の温度の関 数として表されるが、この場合においても、上述の溶解度 φを演算する場合と同様に 、低圧空間 Q1における冷媒の温度 (すなわち、吸入温度 Ts)を用いることができる。 すなわち、冷凍機油の密度は、油溜まり部 71dが形成された低圧空間 Q1における 冷媒の温度 (すなわち、吸入温度 Ts)の関数 (すなわち、 p oilzfS CTs) )として表す ことができる。このように、圧縮機 21の圧縮機ケーシング 71内の低圧空間 Q1のうち 油溜まり部 71d以外の部分における冷媒量 Mqlは、既知の容積 Vcomp、既知の容 積 Vq2、既知の冷凍機油の量 Moil及び吸入温度 Tsから演算することができる。  Here, the volume Voil of the refrigeration oil is calculated by dividing the amount Moil of the refrigeration oil by the density p oil of the refrigeration oil. The density p oil of the refrigerating machine oil is expressed as a function of the temperature of the refrigerating machine oil. In this case as well, as in the case of calculating the solubility φ described above, the refrigerant temperature (that is, the suction) in the low-pressure space Q1. Temperature Ts) can be used. That is, the density of the refrigerating machine oil can be expressed as a function (that is, oilzfS CTs) of the temperature of the refrigerant (that is, the suction temperature Ts) in the low pressure space Q1 in which the oil reservoir 71d is formed. As described above, the refrigerant amount Mql in the low-pressure space Q1 in the compressor casing 71 of the compressor 21 other than the oil reservoir 71d is the known volume Vcomp, the known volume Vq2, and the known amount of refrigeration oil Moil. And the suction temperature Ts.
[0051] また、冷媒量 Mq2は、  [0051] The refrigerant amount Mq2 is
Mq2=Vq2 X p d  Mq2 = Vq2 X p d
という、高圧空間 Q2の容積 Vq2に高圧空間 Q2における冷媒の密度としての冷媒の 密度 p dを乗算することによって演算される。 尚、本実施形態において、室外ユニット 2は 1台である力 室外ユニットが複数台接 続される場合には、室外ユニットに関する冷媒量 Mogl、 Mc、 Moll, Mol2、 Mog2 、 Mob及び Mcompは、複数の室外ユニットのそれぞれに対応して各部分の冷媒量 の関係式が設定され、複数の室外ユニットの各部分の冷媒量を加算することにより、 室外ユニットの全冷媒量が演算されるようになっている。尚、機種や容量が異なる複 数の室外ユニットが接続される場合には、パラメータの値が異なる各部分の冷媒量の 関係式が使用されることになる。 This is calculated by multiplying the volume Vq2 of the high-pressure space Q2 by the refrigerant density pd as the refrigerant density in the high-pressure space Q2. In the present embodiment, there is only one outdoor unit 2 force. When a plurality of outdoor units are connected, a plurality of refrigerant quantities Mogl, Mc, Moll, Mol2, Mog2, Mob, and Mcomp related to the outdoor unit are present. The relational expression of the refrigerant quantity of each part is set corresponding to each of the outdoor units, and the total refrigerant quantity of the outdoor unit is calculated by adding the refrigerant quantity of each part of the plurality of outdoor units. ing. When multiple outdoor units with different models and capacities are connected, the relational expression for the refrigerant amount of each part with different parameter values is used.
[0052] 以上のように、本実施形態では、冷媒回路 10の各部分についての関係式を用いて 、冷媒量判定運転における冷媒回路 10を流れる冷媒又は構成機器の運転状態量 力 各部分の冷媒量を演算することで、冷媒回路 10の冷媒量を演算することができ るようになっている。 [0052] As described above, in the present embodiment, using the relational expression for each part of the refrigerant circuit 10, the refrigerant flowing through the refrigerant circuit 10 in the refrigerant quantity determination operation or the operating state quantity of the component device. By calculating the amount, the amount of refrigerant in the refrigerant circuit 10 can be calculated.
そして、このステップ S 12は、後述のステップ S 13における冷媒量の適否の判定の 条件が満たされるまで繰り返されるため、冷媒の追加充填が開始して力 完了するま での間、冷媒回路 10の各部分についての関係式を用いて、冷媒充填時における運 転状態量力 各部分の冷媒量が演算される。より具体的には、後述のステップ S 13 における冷媒量の適否の判定に必要な室外ユニット 2内の冷媒量 Mo及び各室内ュ ニット 4、 5内の冷媒量 Mr (すなわち、冷媒連絡配管 6、 7を除く冷媒回路 10の各部 分の冷媒量)が演算される。ここで、室外ユニット 2内の冷媒量 Moは、上述の室外ュ ニット 2内の各部分の冷媒量 Mogl、 Mc、 Moll, Mol2、 Mog2、 Mob及び Mcomp を加算することによって演算される。  Since this step S12 is repeated until the condition for determining whether or not the refrigerant amount is appropriate in step S13, which will be described later, is satisfied, the additional charging of the refrigerant is started and the power is completed until the power is completed. Using the relational expression for each part, the amount of operating state force when the refrigerant is charged is calculated. More specifically, the refrigerant amount Mo in the outdoor unit 2 and the refrigerant amount Mr in each of the indoor units 4 and 5 necessary for determining whether or not the refrigerant amount is appropriate in step S 13 described later (that is, the refrigerant communication pipe 6, The refrigerant amount of each part of the refrigerant circuit 10 excluding 7 is calculated. Here, the refrigerant amount Mo in the outdoor unit 2 is calculated by adding the refrigerant amounts Mogl, Mc, Moll, Mol2, Mog2, Mob, and Mcomp of each part in the outdoor unit 2 described above.
[0053] このように、冷媒自動充填運転における冷媒回路 10内を流れる冷媒又は構成機器 の運転状態量から冷媒回路 10の各部分の冷媒量を演算する冷媒量演算手段として 機能する制御部 8により、ステップ S 12の処理が行われる。 [0053] In this way, by the control unit 8 functioning as a refrigerant amount calculating means for calculating the refrigerant amount of each part of the refrigerant circuit 10 from the refrigerant flowing in the refrigerant circuit 10 or the operation state quantity of the component device in the automatic refrigerant charging operation. Then, the process of step S12 is performed.
(ステップ S 13:冷媒量の適否の判定)  (Step S13: Judgment of appropriateness of refrigerant quantity)
上述のように、冷媒回路 10内に冷媒の追加充填を開始すると、冷媒回路 10内の 冷媒量が徐々に増加する。ここで、冷媒連絡配管 6、 7の容積が未知である場合には 、冷媒の追加充填後に冷媒回路 10内に充填されるべき冷媒量を、冷媒回路 10全体 の冷媒量として規定することができない。しかし、室外ユニット 2及び室内ユニット 4、 5 だけに着目すれば (すなわち、冷媒連絡配管 6、 7を除く冷媒回路 10)、試験や詳細 なシミュレーションにより通常運転モードにおける最適な室外ユニット 2の冷媒量を予 め知ることができるため、この冷媒量を充填目標値 Msとして予め制御部 8のメモリに 記憶しておき、上述の関係式を用いて冷媒自動充填運転における冷媒回路 10内を 流れる冷媒又は構成機器の運転状態量力も演算される室外ユニット 2の冷媒量 Moと 室内ユニット 4、 5の冷媒量 Mrとを加算した冷媒量の値力 この充填目標値 Msに到 達するまで、冷媒の追カ卩充填を行えばよいことになる。すなわち、ステップ S 13は、冷 媒自動充填運転における室外ユニット 2の冷媒量 Moと室内ユニット 4、 5の冷媒量 M rとを加算した冷媒量の値が充填目標値 Msに到達したかどうかを判定することで、冷 媒の追加充填により冷媒回路 10内に充填された冷媒量の適否を判定する処理であ る。 As described above, when additional charging of the refrigerant into the refrigerant circuit 10 is started, the refrigerant amount in the refrigerant circuit 10 gradually increases. Here, when the volume of the refrigerant communication pipes 6 and 7 is unknown, the amount of refrigerant to be filled in the refrigerant circuit 10 after the additional charging of the refrigerant cannot be defined as the refrigerant amount of the refrigerant circuit 10 as a whole. . However, outdoor unit 2 and indoor units 4, 5 If we focus only on that (i.e., the refrigerant circuit 10 excluding the refrigerant communication pipes 6 and 7), the optimum amount of refrigerant in the outdoor unit 2 in the normal operation mode can be known in advance by testing and detailed simulation. The amount is stored in advance in the memory of the control unit 8 as the charging target value Ms, and the operating state quantity force of the refrigerant flowing in the refrigerant circuit 10 or the component device in the refrigerant automatic charging operation is also calculated using the above-described relational expression. Refrigerant amount value obtained by adding refrigerant amount Mo of unit 2 and refrigerant amounts Mr of indoor units 4 and 5 Until this filling target value Ms is reached, additional charging of the refrigerant may be performed. That is, step S13 determines whether or not the refrigerant amount value obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amounts Mr of the indoor units 4 and 5 in the automatic refrigerant charging operation has reached the charging target value Ms. This determination is a process for determining whether or not the amount of refrigerant charged in the refrigerant circuit 10 by additional charging of the refrigerant is appropriate.
[0054] そして、ステップ S13において、室外ユニット 2の冷媒量 Moと室内ユニット 4、 5の冷 媒量 Mrとを加算した冷媒量の値が充填目標値 Msよりも小さぐ冷媒の追加充填が 完了していない場合には、充填目標値 Msに到達するまで、ステップ S13の処理が繰 り返される。また、室外ユニット 2の冷媒量 Moと室内ユニット 4、 5の冷媒量 Mrとを加 算した冷媒量の値が充填目標値 Msに到達した場合には、冷媒の追加充填が完了し 、冷媒自動充填運転処理としてのステップ S1が完了する。  [0054] Then, in step S13, the additional charging of the refrigerant in which the refrigerant amount value obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amount Mr of the indoor units 4 and 5 is smaller than the charging target value Ms is completed. If not, the process of step S13 is repeated until the filling target value Ms is reached. In addition, when the refrigerant amount value obtained by adding the refrigerant amount Mo of the outdoor unit 2 and the refrigerant amount Mr of the indoor units 4 and 5 reaches the charging target value Ms, the additional charging of the refrigerant is completed and the refrigerant automatic Step S1 as the filling operation process is completed.
尚、上述の冷媒量判定運転においては、冷媒回路 10内への冷媒の追加充填が進 むにつれて、主として、室外熱交換器 23の出口における過冷却度 SCoが大きくなる 傾向が現れて室外熱交換器 23における冷媒量 Mcが増加し、他の部分における冷 媒量がほぼ一定に保たれる傾向になるため、充填目標値 Msを、室外ユニット 2及び 室内ユニット 4、 5ではなぐ室外ユニット 2の冷媒量 Moのみに対応する値として設定 したり、又は、室外熱交換器 23の冷媒量 Mcに対応する値として設定して、充填目標 値 Msに到達するまで冷媒の追加充填を行うようにしてもよい。  In the refrigerant amount determination operation described above, as the additional charging of the refrigerant into the refrigerant circuit 10 progresses, the degree of supercooling SCo mainly at the outlet of the outdoor heat exchanger 23 tends to increase, resulting in outdoor heat exchange. Since the refrigerant amount Mc in the chamber 23 increases and the refrigerant amount in other parts tends to be kept almost constant, the charging target value Ms is set to the value of the outdoor unit 2 that is not the outdoor unit 2 and the indoor units 4 and 5. Set as a value corresponding only to the refrigerant amount Mo, or set as a value corresponding to the refrigerant amount Mc of the outdoor heat exchanger 23, and perform additional charging of the refrigerant until the charging target value Ms is reached. Also good.
[0055] このように、冷媒自動充填運転の冷媒量判定運転における冷媒回路 10内の冷媒 量の適否 (すなわち、充填目標値 Msに到達したかどうか)を判定する冷媒量判定手 段として機能する制御部 8により、ステップ S 13の処理が行われる。  [0055] In this manner, the refrigerant amount determination unit functions to determine whether or not the refrigerant amount in the refrigerant circuit 10 in the refrigerant amount determination operation of the automatic refrigerant charging operation is appropriate (that is, whether or not the charging target value Ms has been reached). The control unit 8 performs the process of step S13.
(ステップ S2:配管容積判定運転) 上述のステップ SIの冷媒自動充填運転が完了したら、ステップ S 2の配管容積判 定運転に移行する。配管容積判定運転では、制御部 8によって、図 7に示されるステ ップ S21〜ステップ S25の処理が行われる。ここで、図 7は、配管容積判定運転のフ ローチャートである。 (Step S2: Pipe volume judgment operation) When the above-described automatic refrigerant charging operation in step SI is completed, the process proceeds to the pipe volume determination operation in step S2. In the pipe volume determination operation, the control unit 8 performs the processing from step S21 to step S25 shown in FIG. Here, FIG. 7 is a flow chart of the pipe volume judgment operation.
(ステップ S21、S22 :液冷媒連絡配管用の配管容積判定運転及び容積の演算) ステップ S21では、上述の冷媒自動充填運転におけるステップ S 11の冷媒量判定 運転と同様に、室内ユニット全数運転、凝縮圧力制御、液管温度制御、過熱度制御 及び蒸発圧力制御を含む液冷媒連絡配管 6用の配管容積判定運転を行う。ここで、 液管温度制御における過冷却器 25の主冷媒回路側の出口の冷媒の温度 Tipの液 管温度目標値 Tipsを第 1目標値 Tlpslとし、この第 1目標値 Tlpslで冷媒量判定運 転が安定した状態を第 1状態とする(図 8の破線を含む線で示された冷凍サイクルを 参照)。尚、図 8は、液冷媒連絡配管用の配管容積判定運転における空気調和装置 1の冷凍サイクルを示すモリエル線図である。 (Steps S21 and S22: Pipe volume judgment operation and volume calculation for liquid refrigerant communication pipe) In step S21, the indoor unit 100% operation and condensation are performed in the same manner as the refrigerant amount judgment operation in step S11 in the above-described automatic refrigerant charging operation. Perform pipe volume judgment operation for liquid refrigerant communication pipe 6 including pressure control, liquid pipe temperature control, superheat control and evaporation pressure control. Here, the refrigerant temperature at the outlet of the main refrigerant circuit of the subcooler 25 in the liquid pipe temperature control is set as the first target value Tlpsl, and the refrigerant amount judgment operation is performed with the first target value Tlpsl. The stable state is the first state (see the refrigeration cycle indicated by the line including the broken line in Fig. 8). FIG. 8 is a Mollier diagram showing the refrigeration cycle of the air conditioner 1 in the pipe volume determination operation for the liquid refrigerant communication pipe.
次に、液管温度制御における過冷却器 25の主冷媒回路側の出口の冷媒の温度 T lpが第 1目標値 Tlpslで安定した第 1状態から、他の機器制御、すなわち、凝縮圧力 制御、過熱度制御及び蒸発圧力制御の条件については変更することなく(すなわち 、過熱度目標値 SHrsや低圧目標値 Tesを変更することなく)、液管温度目標値 Tips を第 1目標値 Tlpslと異なる第 2目標値 Tlps2に変更して安定させた第 2状態とする( 図 8の実線で示された冷凍サイクルを参照)。本実施形態において、第 2目標値 Tips 2は、第 1目標値 Tlpslよりも高い温度である。  Next, from the first state where the refrigerant temperature T lp at the outlet of the main refrigerant circuit side of the subcooler 25 in the liquid pipe temperature control is stabilized at the first target value Tlpsl, other equipment control, that is, condensation pressure control, The conditions of superheat degree control and evaporation pressure control are not changed (that is, without changing the superheat degree target value SHrs and low pressure target value Tes), and the liquid pipe temperature target value Tips is different from the first target value Tlpsl. 2 Change to the target value Tlps2 to achieve a stable second state (see the refrigeration cycle indicated by the solid line in Fig. 8). In the present embodiment, the second target value Tips 2 is a temperature higher than the first target value Tlpsl.
このように、第 1状態で安定した状態から第 2状態に変更することによって、液冷媒 連絡配管 6内の冷媒の密度が小さくなるため、第 2状態における液冷媒連絡配管部 B3の冷媒量 Mlpは、第 1状態における冷媒量に比べて減少することになる。そして、 この液冷媒連絡配管部 B3から減少した冷媒は、冷媒回路 10の他の部分に移動する ことになる。より具体的には、上述のように、液管温度制御以外の他の機器制御の条 件については変更していないことから、高圧ガス管部 Eにおける冷媒量 Mogl、低圧 ガス管部 Hにおける冷媒量 Mog2、ガス冷媒連絡配管部 Gにおける冷媒量 Mgp及 び圧縮機部 Jにおける冷媒量 Mcompがほぼ一定に保たれて、液冷媒連絡配管部 B 3から減少した冷媒は、凝縮器部 A、高温液管部 Bl、低温液管部 B2、室内ユニット 部 F及びバイノス回路部 Iに移動することになる。すなわち、液冷媒連絡配管部 B3か ら冷媒が減少した分だけ、凝縮器部 Aにおける冷媒量 Mc、高温液管部 B1における 冷媒量 Moll、低温液管部 B2における冷媒量 Mol2、室内ユニット部 Fにおける冷媒 量 Mr及びバイパス回路部 Iにおける冷媒量 Mobが増加することになる。 Thus, since the density of the refrigerant in the liquid refrigerant communication pipe 6 is reduced by changing from the stable state in the first state to the second state, the refrigerant amount Mlp in the liquid refrigerant communication pipe part B3 in the second state Will decrease compared to the amount of refrigerant in the first state. Then, the refrigerant decreased from the liquid refrigerant communication pipe part B3 moves to the other part of the refrigerant circuit 10. More specifically, as described above, the equipment control conditions other than the liquid pipe temperature control are not changed, so that the refrigerant amount Mogl in the high pressure gas pipe E and the refrigerant in the low pressure gas pipe H Amount Mog2, refrigerant amount Mgp in gas refrigerant communication pipe part G and refrigerant quantity Mcomp in compressor part J are kept almost constant, liquid refrigerant communication pipe part B The refrigerant reduced from 3 moves to the condenser part A, the high temperature liquid pipe part Bl, the low temperature liquid pipe part B2, the indoor unit part F, and the binos circuit part I. That is, the refrigerant amount Mc in the condenser part A, the refrigerant amount Moll in the high temperature liquid pipe part B1, the refrigerant quantity Mol2 in the low temperature liquid pipe part B2, and the indoor unit part F by the amount of refrigerant reduced from the liquid refrigerant communication pipe part B3 As a result, the refrigerant amount Mr and the refrigerant amount Mob in the bypass circuit section I increase.
[0057] 以上のような制御は、液冷媒連絡配管 6の容積 Mlpを演算するための配管容積判 定運転を行う配管容積判定運転制御手段として機能する制御部 8 (より具体的には、 室内側制御部 47、 57と室外側制御部 37と制御部 37、 47、 57間を接続する伝送線 8a)により、ステップ S 21の処理として行われる。  [0057] The control as described above is performed by the control unit 8 (more specifically, a chamber functioning as a pipe volume determination operation control means for performing a pipe volume determination operation for calculating the volume Mlp of the liquid refrigerant communication pipe 6. This is performed as the processing of step S21 by the transmission line 8a) connecting the inner control units 47, 57, the outdoor control unit 37, and the control units 37, 47, 57.
次に、ステップ S22では、第 1状態から第 2状態への変更により、液冷媒連絡配管 部 B3から冷媒が減少して冷媒回路 10の他の部分に移動する現象を利用して、液冷 媒連絡配管 6の容積 Vlpを演算する。  Next, in step S22, the liquid cooling medium is utilized by utilizing the phenomenon that the refrigerant is decreased from the liquid refrigerant communication pipe section B3 and moves to the other part of the refrigerant circuit 10 due to the change from the first state to the second state. Calculate the volume Vlp of connecting pipe 6.
まず、液冷媒連絡配管 6の容積 Vlpを演算するために使用される演算式について、 説明する。上述の配管容積判定運転によって、この液冷媒連絡配管部 B3から減少 して冷媒回路 10の他の部分に移動した冷媒量を冷媒増減量 Δ Mlpとし、第 1及び第 2状態間における各部分の冷媒の増減量を A Mc、 Δ Μο11、 Δ Μο12、 A Mr及び Δ Mob (ここでは、冷媒量 Mogl、冷媒量 Mog2及び冷媒量 Mgpがほぼ一定に保たれ るため省略する)とすると、冷媒増減量 Δ Mlpは、例えば、  First, the calculation formula used to calculate the volume Vlp of the liquid refrigerant communication pipe 6 will be described. The amount of refrigerant that has decreased from the liquid refrigerant communication piping section B3 and moved to the other part of the refrigerant circuit 10 by the pipe volume determination operation described above is defined as the refrigerant increase / decrease amount ΔMlp, and each part between the first and second states If the increase / decrease amount of the refrigerant is A Mc, Δ Μο11, Δ Μο12, A Mr, and Δ Mob (here, the refrigerant amount Mogl, the refrigerant amount Mog2 and the refrigerant amount Mgp are kept almost constant, they are omitted), the refrigerant increase / decrease The quantity Δ Mlp is, for example,
Δ Mlp=— ( Δ Mc+ Δ Moll + Δ Μο12+ Δ Mr+ Δ Mob)  Δ Mlp = — (Δ Mc + Δ Moll + Δ Μο12 + Δ Mr + Δ Mob)
という関数式力 演算することができる。そして、この Δ Mlpの値を液冷媒連絡配管 6 内における第 1及び第 2状態間の冷媒の密度変化量 Δ p ipで除算することにより、液 冷媒連絡配管 6の容積 Vlpを演算することができる。尚、冷媒増減量 Δ Mlpの演算結 果にはほとんど影響しないが、上述の関数式において、冷媒量 Mogl及び冷媒量 M og2が含まれていてもよい。  It is possible to calculate the functional force. Then, by dividing the value of ΔMlp by the refrigerant density change Δpip between the first and second states in the liquid refrigerant communication pipe 6, the volume Vlp of the liquid refrigerant communication pipe 6 can be calculated. it can. Note that although the calculation result of the refrigerant increase / decrease amount ΔMlp is hardly affected, the refrigerant amount Mogl and the refrigerant amount Mog2 may be included in the above-described functional expression.
[0058] Vlp = Δ Mlp/ Δ lp  [0058] Vlp = Δ Mlp / Δ lp
尚、 A Mc、 Δ Μο11、 Δ Μο12、 A Mr及び A Mobは、上述の冷媒回路 10の各部分 についての関係式を用いて、第 1状態における冷媒量と第 2状態における冷媒量とを 演算し、さらに第 2状態における冷媒量力 第 1状態の冷媒量を減算することによつ て得られ、また、密度変化量 Δ lpは、第 1状態における過冷却器 25の出口におけ る冷媒の密度と第 2状態における過冷却器 25の出口における冷媒の密度を演算し、 さらに第 2状態における冷媒の密度力 第 1状態における冷媒の密度を減算すること によって得られる。 A Mc, Δ Μο11, Δ Μο12, A Mr, and A Mob are used to calculate the refrigerant amount in the first state and the refrigerant amount in the second state using the relational expressions for each part of the refrigerant circuit 10 described above. In addition, the amount of refrigerant in the second state is subtracted from the amount of refrigerant in the first state. The density change amount Δlp is obtained by calculating the refrigerant density at the outlet of the subcooler 25 in the first state and the refrigerant density at the outlet of the subcooler 25 in the second state. Refrigerant density force in two states Obtained by subtracting the refrigerant density in the first state.
以上のような演算式を用いて、第 1及び第 2状態における冷媒回路 10を流れる冷 媒又は構成機器の運転状態量から液冷媒連絡配管 6の容積 Vlpを演算することがで きる。  The volume Vlp of the liquid refrigerant communication pipe 6 can be calculated from the refrigerant flowing through the refrigerant circuit 10 in the first and second states or the operating state quantity of the component equipment using the arithmetic expression as described above.
[0059] 尚、本実施形態では、第 2状態における第 2目標値 Tlps2が第 1状態における第 1 目標値 Tlpslよりも高い温度になるように状態変更を行い、液冷媒連絡配管部 B2の 冷媒を他の部分に移動させることで他の部分における冷媒量を増加させて、この増 加量力 液冷媒連絡配管 6の容積 Vlpを演算しているが、第 2状態における第 2目標 値 Tlps2が第 1状態における第 1目標値 Tlpslよりも低い温度になるように状態変更 を行い、液冷媒連絡配管部 B3に他の部分から冷媒を移動させることで他の部分に おける冷媒量を減少させて、この減少量から液冷媒連絡配管 6の容積 Vlpを演算し てもよい。  In the present embodiment, the state is changed so that the second target value Tlps2 in the second state is higher than the first target value Tlpsl in the first state, and the refrigerant in the liquid refrigerant communication pipe section B2 is changed. The amount of refrigerant in the other part is increased by moving the part to the other part, and the volume Vlp of the increased force liquid refrigerant communication pipe 6 is calculated. However, the second target value Tlps2 in the second state is Change the state so that the temperature is lower than the first target value Tlpsl in 1 state, and move the refrigerant from the other part to the liquid refrigerant communication pipe part B3 to reduce the amount of refrigerant in the other part, From this decrease, the volume Vlp of the liquid refrigerant communication pipe 6 may be calculated.
このように、液冷媒連絡配管 6用の配管容積判定運転における冷媒回路 10内を流 れる冷媒又は構成機器の運転状態量から液冷媒連絡配管 6の容積 Vlpを演算する 液冷媒連絡配管用の配管容積演算手段として機能する制御部 8により、ステップ S2 2の処理が行われる。  Thus, the volume Vlp of the liquid refrigerant communication pipe 6 is calculated from the refrigerant flowing in the refrigerant circuit 10 in the pipe volume determination operation for the liquid refrigerant communication pipe 6 or the operating state quantity of the component equipment. Pipe for the liquid refrigerant communication pipe The process of step S22 is performed by the control unit 8 functioning as a volume calculation means.
[0060] (ステップ S23、S24 :ガス冷媒連絡配管用の配管容積判定運転及び容積の演算) 上述のステップ S21及びステップ S22が完了した後、ステップ S23において、室内 ユニット全数運転、凝縮圧力制御、液管温度制御、過熱度制御及び蒸発圧力制御 を含むガス冷媒連絡配管 7用の配管容積判定運転を行う。ここで、蒸発圧力制御に おける圧縮機 21の吸入圧力 Psの低圧目標値 Pesを第 1目標値 Peslとし、この第 1目 標値 Peslで冷媒量判定運転が安定した状態を第 1状態とする(図 9の破線を含む線 で示された冷凍サイクルを参照)。尚、図 9は、ガス冷媒連絡配管用の配管容積判定 運転における空気調和装置 1の冷凍サイクルを示すモリエル線図である。  [0060] (Steps S23, S24: Pipe volume determination operation and volume calculation for gas refrigerant communication pipe) After the completion of the above Steps S21 and S22, in Step S23, all indoor units are operated, condensation pressure control, liquid Pipe volume judgment operation for gas refrigerant communication pipe 7 including pipe temperature control, superheat control and evaporation pressure control is performed. Here, the low pressure target value Pes of the suction pressure Ps of the compressor 21 in the evaporation pressure control is set as the first target value Pesl, and the state in which the refrigerant amount determination operation is stable at the first target value Pesl is set as the first state. (See the refrigeration cycle indicated by the line including the dashed line in Figure 9). FIG. 9 is a Mollier diagram showing the refrigeration cycle of the air conditioner 1 in the pipe volume determination operation for the gas refrigerant communication pipe.
次に、蒸発圧力制御における圧縮機 21の吸入圧力 Psの低圧目標値 Pesが第 1目 標値 Peslで安定した第 1状態から、他の機器制御、すなわち、液管温度制御、凝縮 圧力制御及び過熱度制御の条件については変更することなく(すなわち、液管温度 目標値 Tipsや過熱度目標値 SHrsを変更することなく)、低圧目標値 Pesを第 1目標 値 Peslと異なる第 2目標値 Pes2に変更して安定させた第 2状態とする(図 9の実線 のみで示された冷凍サイクルを参照)。本実施形態において、第 2目標値 Pes2は、 第 1目標値 Peslよりも低い圧力である。 Next, the low pressure target value Pes of the suction pressure Ps of the compressor 21 in the evaporation pressure control is the first value. From the first state, which is stable at the standard value Pesl, the conditions for other equipment control, that is, liquid pipe temperature control, condensing pressure control and superheat degree control are not changed (ie, liquid pipe temperature target value Tips and superheat degree Without changing the target value SHrs), the low pressure target value Pes is changed to the second target value Pes2, which is different from the first target value Pesl, to achieve a stable second state (the refrigeration shown only by the solid line in FIG. 9). See cycle). In the present embodiment, the second target value Pes2 is a pressure lower than the first target value Pesl.
[0061] このように、第 1状態で安定した状態から第 2状態に変更することによって、ガス冷 媒連絡配管 7内の冷媒の密度が小さくなるため、第 2状態におけるガス冷媒連絡配 管部 Gの冷媒量 Mgpは、第 1状態における冷媒量に比べて減少することになる。そし て、このガス冷媒連絡配管部 Gから減少した冷媒は、冷媒回路 10の他の部分に移動 することになる。より具体的には、上述のように、蒸発圧力制御以外の他の機器制御 の条件にっ 、ては変更して 、な 、ことから、高圧ガス管部 Eにおける冷媒量 Mogl、 高温液管部 B1における冷媒量 Moll、低温液管部 B2における冷媒量 Mol2及び液 冷媒連絡配管部 B3における冷媒量 Mlpがほぼ一定に保たれて、ガス冷媒連絡配管 部 G力も減少した冷媒は、低圧ガス管部 H、凝縮器部 A、室内ユニット部 F、バイパス 回路部 I及び圧縮機部 Jに移動することになる。すなわち、ガス冷媒連絡配管部 Gから 冷媒が減少した分だけ、低圧ガス管部 Hにおける冷媒量 Mog2、凝縮器部 Aにおけ る冷媒量 Mc、室内ユニット部 Fにおける冷媒量 Mr、バイパス回路部 Iにおける冷媒 量 Mob及び圧縮機部 Jにおける冷媒量 Mcompが増加することになる。  [0061] In this way, by changing from the stable state in the first state to the second state, the density of the refrigerant in the gas refrigerant communication pipe 7 is reduced, so the gas refrigerant communication pipe part in the second state The refrigerant amount Mgp of G is reduced compared to the refrigerant amount in the first state. Then, the refrigerant decreased from the gas refrigerant communication pipe part G moves to the other part of the refrigerant circuit 10. More specifically, as described above, the device control conditions other than the evaporation pressure control are changed, so that the refrigerant amount Mogl in the high-pressure gas pipe section E, the high-temperature liquid pipe section Refrigerant amount Moll in B1, refrigerant amount Mol2 in low temperature liquid pipe B2 and liquid Refrigerant communication pipe part B3 Refrigerant quantity Mlp is kept almost constant and gas refrigerant communication pipe part H, condenser section A, indoor unit section F, bypass circuit section I and compressor section J. That is, the refrigerant amount Mog2 in the low-pressure gas pipe part H, the refrigerant quantity Mc in the condenser part A, the refrigerant quantity Mr in the indoor unit part F, and the bypass circuit part I by the amount of refrigerant reduced from the gas refrigerant communication pipe part G The refrigerant amount Mob in the compressor and the refrigerant amount Mcomp in the compressor part J will increase.
[0062] 以上のような制御は、ガス冷媒連絡配管 7の容積 Vgpを演算するための配管容積 判定運転を行う配管容積判定運転制御手段として機能する制御部 8 (より具体的に は、室内側制御部 47、 57と室外側制御部 37と制御部 37、 47、 57間を接続する伝 送線 8a)により、ステップ S23の処理として行われる。  [0062] The control described above is performed by the control unit 8 (more specifically, indoor side) that functions as a pipe volume determination operation control means for performing a pipe volume determination operation for calculating the volume Vgp of the gas refrigerant communication pipe 7. This is performed as the process of step S23 by the control unit 47, 57, the outdoor control unit 37, and the transmission line 8a) connecting the control units 37, 47, 57.
次に、ステップ S24では、第 1状態から第 2状態への変更により、ガス冷媒連絡配管 部 G力も冷媒が減少して冷媒回路 10の他の部分に移動する現象を利用して、ガス 冷媒連絡配管 7の容積 Vgpを演算する。  Next, in step S24, by changing from the first state to the second state, the gas refrigerant communication piping part G force also uses the phenomenon that the refrigerant decreases and moves to the other part of the refrigerant circuit 10 to connect the gas refrigerant. Calculate the volume Vgp of pipe 7.
まず、ガス冷媒連絡配管 7の容積 Vgpを演算するために使用される演算式につい て、説明する。上述の配管容積判定運転によって、このガス冷媒連絡配管部 Gから 減少して冷媒回路 10の他の部分に移動した冷媒量を冷媒増減量 Δ Mgpとし、第 1 及び第 2状態間における各部分の冷媒の増減量を A Mc、 A Mog2、 A Mr、 A Mob 及び A Mcomp (ここでは、冷媒量 Mogl、冷媒量 Moll、冷媒量 Mol2及び冷媒量 Mlpがほぼ一定に保たれるため省略する)とすると、冷媒増減量 Δ Mgpは、例えば、First, the calculation formula used to calculate the volume Vgp of the gas refrigerant communication pipe 7 will be described. From the piping volume judgment operation described above, from this gas refrigerant communication pipe section G The amount of refrigerant that has decreased and moved to other parts of the refrigerant circuit 10 is the refrigerant increase / decrease amount ΔMgp, and the amount of refrigerant increase / decrease between the first and second states is A Mc, A Mog2, A Mr, A Mob And A Mcomp (here, the refrigerant amount Mogl, the refrigerant amount Moll, the refrigerant amount Mol2 and the refrigerant amount Mlp are omitted because they are kept almost constant), the refrigerant increase / decrease amount ΔMgp is, for example,
A Mgp=— ( A Mc+ A Mog2+ A Mr+ A Mob+ A Mcomp) という関数式力 演算することができる。そして、この Δ Mgpの値をガス冷媒連絡配 管 7内における第 1及び第 2状態間の冷媒の密度変化量 Δ p gpで除算することによ り、ガス冷媒連絡配管 7の容積 Vgpを演算することができる。尚、冷媒増減量 Δ Mgp の演算結果にはほとんど影響しないが、上述の関数式において、冷媒量 Mogl、冷 媒量 Moll及び冷媒量 Mol2が含まれて 、てもよ 、。A Mgp = — (A Mc + A Mog2 + A Mr + A Mob + A Mcomp) can be calculated. Then, by dividing the value of ΔMgp by the refrigerant density change Δp gp between the first and second states in the gas refrigerant communication pipe 7, the volume Vgp of the gas refrigerant communication pipe 7 is calculated. can do. It should be noted that the calculation result of the refrigerant increase / decrease amount ΔMgp is hardly affected, but the above-mentioned function formula may include the refrigerant amount Mogl, the refrigerant amount Moll, and the refrigerant amount Mol2.
Figure imgf000036_0001
Figure imgf000036_0001
尚、 A Mc、 A Mog2、 A Mr、 A Mob及び A Mcompは、上述の冷媒回路 10の各部 分についての関係式を用いて、第 1状態における冷媒量と第 2状態における冷媒量 とを演算し、さらに第 2状態における冷媒量力 第 1状態の冷媒量を減算することによ つて得られ、また、密度変化量 Δ p gpは、第 1状態における圧縮機 21の吸入側にお ける冷媒の密度 p sと室内熱交換器 42、 52の出口における冷媒の密度 p eoとの平 均密度を演算し、第 2状態における平均密度から第 1状態における平均密度を減算 すること〖こよって得られる。  A Mc, A Mog2, A Mr, A Mob, and A Mcomp calculate the refrigerant amount in the first state and the refrigerant amount in the second state using the relational expressions for each part of the refrigerant circuit 10 described above. Further, the amount of refrigerant in the second state is obtained by subtracting the amount of refrigerant in the first state, and the density change amount Δp gp is the amount of refrigerant on the suction side of the compressor 21 in the first state. It is obtained by calculating the average density of the density ps and the refrigerant density p eo at the outlets of the indoor heat exchangers 42 and 52, and subtracting the average density in the first state from the average density in the second state.
以上のような演算式を用いて、第 1及び第 2状態における冷媒回路 10を流れる冷 媒又は構成機器の運転状態量からガス冷媒連絡配管 7の容積 Vgpを演算することが できる。  The volume Vgp of the gas refrigerant communication pipe 7 can be calculated from the refrigerant flowing through the refrigerant circuit 10 in the first and second states or the operation state quantity of the component equipment in the first and second states using the above arithmetic expression.
[0064] 尚、本実施形態では、第 2状態における第 2目標値 Pes2が第 1状態における第 1目 標値 Peslよりも低 、圧力になるように状態変更を行 、、ガス冷媒連絡配管部 Gの冷 媒を他の部分に移動させることで他の部分における冷媒量を増加させて、この増加 量力もガス冷媒連絡配管 7の容積 Vlpを演算しているが、第 2状態における第 2目標 値 Pes2が第 1状態における第 1目標値 Peslよりも高い圧力になるように状態変更を 行い、ガス冷媒連絡配管部 Gに他の部分から冷媒を移動させることで他の部分にお ける冷媒量を減少させて、この減少量からガス冷媒連絡配管 7の容積 Vlpを演算して ちょい。 [0064] In the present embodiment, the gas refrigerant communication pipe section is changed so that the second target value Pes2 in the second state is lower than the first target value Pesl in the first state and becomes a pressure. The amount of refrigerant in the other part is increased by moving the refrigerant of G to the other part, and this increased force also calculates the volume Vlp of the gas refrigerant communication pipe 7, but the second target in the second state Change the state so that the value Pes2 is higher than the first target value Pesl in the first state, and move the refrigerant from the other part to the gas refrigerant communication pipe part G. The volume Vlp of the gas refrigerant communication pipe 7 is calculated from this reduced amount. A little.
このように、ガス冷媒連絡配管 7用の配管容積判定運転における冷媒回路 10内を 流れる冷媒又は構成機器の運転状態量からガス冷媒連絡配管 7の容積 Vgpを演算 するガス冷媒連絡配管用の配管容積演算手段として機能する制御部 8により、ステツ プ S24の処理が行われる。  As described above, the pipe volume for the gas refrigerant communication pipe for calculating the volume Vgp of the gas refrigerant communication pipe 7 from the refrigerant flowing in the refrigerant circuit 10 in the pipe volume judgment operation for the gas refrigerant communication pipe 7 or the operation state quantity of the component equipment. The process of step S24 is performed by the control unit 8 functioning as a calculation means.
[0065] (ステップ S25:配管容積判定運転の結果の妥当性の判定) [0065] (Step S25: Determination of the Validity of the Pipe Volume Judgment Operation)
上述のステップ S21〜ステップ S24が完了した後、ステップ S25において、配管容 積判定運転の結果が妥当なものであるかどうか、すなわち、配管容積演算手段によ つて演算された冷媒連絡配管 6、 7の容積 Vlp、 Vgpが妥当なものであるかどうかを判 定する。  After the above steps S21 to S24 are completed, in step S25, whether or not the result of the pipe volume determination operation is appropriate, that is, the refrigerant communication pipes 6 and 7 calculated by the pipe volume calculation means. It is determined whether the volume of Vlp and Vgp is reasonable.
具体的には、以下の不等式のように、演算により得られたガス冷媒連絡配管 7の容 積 Vgpに対する液冷媒連絡配管 6の容積 Vlpの比が所定の数値範囲内にあるかどう かにより判定する。  Specifically, as in the following inequality, judgment is made based on whether the ratio of the volume Vlp of the liquid refrigerant communication pipe 6 to the volume Vgp of the gas refrigerant communication pipe 7 obtained by the calculation is within a predetermined numerical range. To do.
ε 1 く Vlp/Vgp く ε 2  ε 1 Vlp / Vgp ε 2
ここで、 ε 1及び ε 2は、室外ユニットと室内ユニットとの実現可能な組み合わせにお ける配管容積比の最小値及び最大値に基づいて可変される値である。  Here, ε 1 and ε 2 are values that can be varied based on the minimum value and the maximum value of the pipe volume ratio in a feasible combination of the outdoor unit and the indoor unit.
[0066] そして、容積比 VlpZVgpが上述の数値範囲を満たす場合には、配管容積判定運 転に力かるステップ S2の処理が完了となり、容積比 VlpZVgpが上述の数値範囲を 満たさない場合には、再度、ステップ S21〜ステップ S 24の配管容積判定運転及び 容積の演算の処理が行われる。 [0066] Then, when the volume ratio VlpZVgp satisfies the above numerical range, the processing of step S2 that is applied to the pipe volume determination operation is completed, and when the volume ratio VlpZVgp does not satisfy the above numerical range, The pipe volume determination operation and the volume calculation process in steps S21 to S24 are performed again.
このように、上述の配管容積判定運転の結果が妥当なものであるかどうか、すなわ ち、配管容積演算手段によって演算された冷媒連絡配管 6、 7の容積 Vlp、 Vgpが妥 当なものであるかどうかを判定する妥当性判定手段として機能する制御部 8により、ス テツプ S25の処理が行われる。  As described above, whether the result of the above-described pipe volume determination operation is appropriate, that is, the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 calculated by the pipe volume calculation means are appropriate. The process of step S25 is performed by the control unit 8 functioning as validity determination means for determining whether or not there is.
尚、本実施形態においては、液冷媒連絡配管 6用の配管容積判定運転 (ステップ S 21、 S22)を先に行い、その後に、ガス冷媒連絡配管 7用の配管容積判定運転 (ステ ップ S23、 S24)を行っているが、ガス冷媒連絡配管 7用の配管容積判定運転を先に 行ってもよい。 [0067] また、上述のステップ S25において、ステップ S21〜S24の配管容積判定運転の 結果が妥当でないものと複数回判定されるような場合や、より簡易的に冷媒連絡配 管 6、 7の容積 Vlp、 Vgpの判定を行いたい場合には、図 7には図示しないが、例えば 、ステップ S25において、ステップ S21〜S24の配管容積判定運転の結果が妥当で ないものと判定された後に、冷媒連絡配管 6、 7における圧力損失から冷媒連絡配管 6、 7の配管長さを推定し、この推定された配管長さと平均容積比から冷媒連絡配管 6、 7の容積 Vlp、 Vgpを演算する処理に移行して、冷媒連絡配管 6、 7の容積 Vlp、 V gpを得るようにしてもよい。 In this embodiment, the pipe volume determination operation for the liquid refrigerant communication pipe 6 (steps S21 and S22) is performed first, and then the pipe volume determination operation for the gas refrigerant communication pipe 7 (step S23). S24), but the pipe volume judgment operation for the gas refrigerant communication pipe 7 may be performed first. [0067] Also, in the above-described step S25, when the result of the pipe volume determination operation in steps S21 to S24 is determined a plurality of times as inappropriate, or the volume of the refrigerant communication pipes 6 and 7 is more simply If it is desired to make a determination of Vlp or Vgp, although not shown in FIG. 7, for example, in step S25, after determining that the result of the pipe volume determination operation in steps S21 to S24 is not valid, the refrigerant communication is performed. Estimate the length of the refrigerant communication pipes 6 and 7 from the pressure loss in the pipes 6 and 7, and move to the process of calculating the volume Vlp and Vgp of the refrigerant communication pipes 6 and 7 from the estimated pipe length and the average volume ratio. Then, the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 may be obtained.
また、本実施形態においては、冷媒連絡配管 6、 7の長さゃ管径等の情報がなぐ 冷媒連絡配管 6、 7の容積 Vlp、 Vgpが未知であることを前提として、配管容積判定 運転を行って冷媒連絡配管 6、 7の容積 Vlp、 Vgpを演算する場合について説明した 力 配管容積演算手段が、冷媒連絡配管 6、 7の長さゃ管径等の情報を入力すること で冷媒連絡配管 6、 7の容積 Vlp、 Vgpを演算する機能を有している場合には、この 機能を併用してもよい。  In the present embodiment, the length of the refrigerant communication pipes 6 and 7 has no information on the pipe diameter, etc. The pipe volume judgment operation is performed on the assumption that the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 are unknown. The force described for calculating the volume Vlp and Vgp of the refrigerant communication pipes 6 and 7 When the pipe volume calculation means inputs information such as the diameter of the refrigerant communication pipes 6 and 7, the refrigerant communication pipe If you have the function to calculate the volume Vlp and Vgp of 6 and 7, you can use this function together.
[0068] さらに、上述の配管容積判定運転及びその運転結果を用いて冷媒連絡配管 6、 7 の容積 Vlp、 Vgpを演算する機能を使用せず、冷媒連絡配管 6、 7の長さゃ管径等の 情報を入力することで冷媒連絡配管 6、 7の容積 Vlp、 Vgpを演算する機能のみを使 用する場合には、上述の妥当性判定手段 (ステップ S25)を用いて、入力された冷媒 連絡配管 6、 7の長さゃ管径等の情報が妥当であるかどうかについての判定を行うよ うにしてもよい。  [0068] Further, without using the function of calculating the volume Vlp and Vgp of the refrigerant communication pipes 6 and 7 using the above-described pipe volume determination operation and the operation result, the length of the refrigerant communication pipes 6 and 7 is the pipe diameter. When using only the function to calculate the volume Vlp and Vgp of the refrigerant communication pipes 6 and 7 by inputting such information, the above-mentioned validity judgment means (step S25) is used to input the refrigerant If the length of the communication pipes 6 and 7 is sufficient, it may be determined whether or not the information such as the pipe diameter is appropriate.
(ステップ S3:初期冷媒量検知運転)  (Step S3: Initial refrigerant quantity detection operation)
上述のステップ S 2の配管容積判定運転が完了したら、ステップ S3の初期冷媒量 判定運転に移行する。初期冷媒量検知運転では、制御部 8によって、図 10に示され るステップ S31及びステップ S32の処理が行われる。ここで、図 10は、初期冷媒量検 知運転のフローチャートである。  When the pipe volume determination operation in step S2 is completed, the process proceeds to the initial refrigerant amount determination operation in step S3. In the initial refrigerant quantity detection operation, the processing of step S31 and step S32 shown in FIG. Here, FIG. 10 is a flowchart of the initial refrigerant quantity detection operation.
[0069] (ステップ S31:冷媒量判定運転)  [0069] (Step S31: Refrigerant Amount Determination Operation)
ステップ S31では、上述の冷媒自動充填運転のステップ S11の冷媒量判定運転と 同様に、室内ユニット全数運転、凝縮圧力制御、液管温度制御、過熱度制御及び蒸 発圧力制御を含む冷媒量判定運転が行われる。 In step S31, the indoor unit 100% operation, condensing pressure control, liquid pipe temperature control, superheat degree control, The refrigerant quantity determination operation including the pressure generation pressure control is performed.
このように、室内ユニット全数運転、凝縮圧力制御、液管温度制御、過熱度制御及 び蒸発圧力制御を含む冷媒量判定運転を行う冷媒量判定運転制御手段として機能 する制御部 8により、ステップ S 31の処理が行われる。  In this way, the control unit 8 functioning as the refrigerant quantity determination operation control means for performing the refrigerant quantity determination operation including the indoor unit total number operation, the condensation pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control, performs the step S. 31 processes are performed.
(ステップ S32:冷媒量の演算)  (Step S32: Calculation of refrigerant amount)
次に、上述の冷媒量判定運転を行!、つつ冷媒量演算手段として機能する制御部 8 によって、ステップ S32における初期冷媒量判定運転における冷媒回路 10を流れる 冷媒又は構成機器の運転状態量から冷媒回路 10内の冷媒量を演算する。冷媒回 路 10内の冷媒量の演算は、上述の冷媒回路 10の各部分の冷媒量と冷媒回路 10を 流れる冷媒又は構成機器の運転状態量との関係式を用いて演算されるが、この際、 上述の配管容積判定運転によって、空気調和装置 1の構成機器の設置後において 未知であった冷媒連絡配管 6、 7の容積 Vlp、 Vgpが演算されて既知となっているた め、これらの冷媒連絡配管 6、 7の容積 Vlp、 Vgpに冷媒の密度を乗算することによつ て、冷媒連絡配管 6、 7内の冷媒量 Mlp、 Mgpを演算し、さらに他の各部分の冷媒量 を加算することにより、冷媒回路 10全体の初期冷媒量を検知することができる。この 初期冷媒量は、後述の冷媒漏洩検知運転において、冷媒回路 10からの漏洩の有無 を判定する基準となる冷媒回路 10全体の基準冷媒量 Miとして使用されるため、運 転状態量の 1つとして、状態量蓄積手段としての制御部 8のメモリに記憶される。 このように、初期冷媒量検知運転における冷媒回路 10内を流れる冷媒又は構成機 器の運転状態量から冷媒回路 10の各部分の冷媒量を演算する冷媒量演算手段とし て機能する制御部 8により、ステップ S32の処理が行われる。  Next, the control unit 8 that functions as the refrigerant amount calculation means while performing the refrigerant amount determination operation described above, the refrigerant flowing from the refrigerant circuit 10 in the initial refrigerant amount determination operation in step S32 or the operation state amount of the component device is used. Calculate the amount of refrigerant in circuit 10. The amount of refrigerant in the refrigerant circuit 10 is calculated using a relational expression between the amount of refrigerant in each part of the refrigerant circuit 10 described above and the operating state amount of the refrigerant flowing through the refrigerant circuit 10 or the constituent devices. At this time, the volume Vlp and Vgp of the refrigerant communication pipes 6 and 7 that were unknown after the installation of the components of the air conditioner 1 are calculated and known by the above-described pipe volume determination operation. Refrigerant communication pipes 6 and 7 volumes Vlp and Vgp are multiplied by the refrigerant density to calculate refrigerant amounts Mlp and Mgp in refrigerant communication pipes 6 and 7, and the refrigerant quantities in the other parts are calculated. By adding, the initial refrigerant amount of the entire refrigerant circuit 10 can be detected. This initial refrigerant quantity is used as a reference refrigerant quantity Mi for the refrigerant circuit 10 as a reference for determining the presence or absence of leakage from the refrigerant circuit 10 in the refrigerant leakage detection operation described later. Is stored in the memory of the control unit 8 as state quantity storage means. In this way, the control unit 8 that functions as a refrigerant amount calculating means that calculates the refrigerant amount in each part of the refrigerant circuit 10 from the refrigerant flowing in the refrigerant circuit 10 in the initial refrigerant amount detection operation or the operation state quantity of the constituent devices. Then, the process of step S32 is performed.
<冷媒漏洩検知運転モード >  <Refrigerant leak detection operation mode>
次に、冷媒漏洩検知運転モードについて、図 1、図 3、図 6及び図 11を用いて説明 する。ここで、図 11は、冷媒漏洩検知運転モードのフローチャートである。  Next, the refrigerant leak detection operation mode will be described with reference to FIGS. 1, 3, 6, and 11. FIG. Here, FIG. 11 is a flowchart of the refrigerant leak detection operation mode.
本実施形態において、定期的 (例えば、休日や深夜等で空調を行う必要がない時 間帯等)に、不測の原因により冷媒回路 10から冷媒が外部に漏洩していないかどう かを検知する場合を例にして説明する。  In the present embodiment, it is detected periodically (for example, when it is not necessary to perform air conditioning during holidays, late at night, etc.) whether refrigerant has leaked from the refrigerant circuit 10 due to unforeseen causes. A case will be described as an example.
(ステップ S41:冷媒量判定運転) まず、上記の冷房運転や暖房運転のような通常運転モードにおける運転が一定時 間(例えば、半年〜 1年ごと等)経過した場合に、自動又は手動で通常運転モードか ら冷媒漏洩検知運転モードに切り換えて、初期冷媒量検知運転の冷媒量判定運転 と同様に、室内ユニット全数運転、凝縮圧力制御、液管温度制御、過熱度制御及び 蒸発圧力制御を含む冷媒量判定運転を行なう。 (Step S41: Refrigerant amount judgment operation) First, when a certain amount of time (for example, every six months to one year) has elapsed in the normal operation mode such as the cooling operation or the heating operation described above, the refrigerant leak detection operation mode is automatically or manually changed from the normal operation mode. In the same manner as the refrigerant quantity judgment operation in the initial refrigerant quantity detection operation, the refrigerant quantity judgment operation including the indoor unit total number operation, the condensation pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control is performed.
[0071] 尚、この冷媒量判定運転は、冷媒漏洩検知運転ごとに行われることになるが、例え ば、凝縮圧力 Pcが異なる場合ゃ冷媒漏洩が生じて!/ヽる場合のような運転条件の違 いによって室外熱交換器 23出口における冷媒の温度 Tcoが変動する場合において も、液管温度制御によって、液冷媒連絡配管 6内の冷媒の温度 Tipが同じ液管温度 目標値 Tipsで一定に保たれることになる。  [0071] Note that this refrigerant quantity determination operation is performed for each refrigerant leakage detection operation. For example, if the condensation pressure Pc is different, the refrigerant leakage occurs! Even if the refrigerant temperature Tco fluctuates at the outlet of the outdoor heat exchanger 23 due to the difference in temperature, the temperature of the refrigerant in the liquid refrigerant communication pipe 6 is the same as the liquid pipe temperature. Will be kept.
このように、室内ユニット全数運転、凝縮圧力制御、液管温度制御、過熱度制御及 び蒸発圧力制御を含む冷媒量判定運転を行う冷媒量判定運転制御手段として機能 する制御部 8により、ステップ S41の処理が行われる。  In this way, the control unit 8 functioning as the refrigerant amount determination operation control means for performing the refrigerant amount determination operation including the indoor unit total number operation, the condensation pressure control, the liquid pipe temperature control, the superheat degree control, and the evaporation pressure control, performs step S41. Is performed.
(ステップ S42:冷媒量の演算)  (Step S42: Calculation of refrigerant quantity)
次に、上述の冷媒量判定運転を行!、つつ冷媒量演算手段として機能する制御部 8 によって、ステップ S42における冷媒漏洩検知運転における冷媒回路 10を流れる冷 媒又は構成機器の運転状態量から冷媒回路 10内の冷媒量を演算する。冷媒回路 1 0内の冷媒量の演算は、上述の冷媒回路 10の各部分の冷媒量と冷媒回路 10を流 れる冷媒又は構成機器の運転状態量との関係式を用いて演算されるが、この際、初 期冷媒量判定運転と同様に、上述の配管容積判定運転によって、空気調和装置 1 の構成機器の設置後において未知であった冷媒連絡配管 6、 7の容積 Vlp、 Vgpが 演算されて既知となっているため、これらの冷媒連絡配管 6、 7の容積 Vlp、 Vgpに冷 媒の密度を乗算することによって、冷媒連絡配管 6、 7内の冷媒量 Mlp、 Mgpを演算 し、さらに他の各部分の冷媒量を加算することにより、冷媒回路 10全体の冷媒量 M を演算することができる。  Next, the control unit 8 that functions as the refrigerant quantity calculation means while performing the refrigerant quantity determination operation described above, the refrigerant from the operating state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device in the refrigerant leakage detection operation in step S42. Calculate the amount of refrigerant in circuit 10. The refrigerant amount in the refrigerant circuit 10 is calculated using a relational expression between the refrigerant amount of each part of the refrigerant circuit 10 and the operation state quantity of the refrigerant flowing through the refrigerant circuit 10 or the component device. At this time, the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 that were unknown after the installation of the components of the air conditioner 1 are calculated by the above-described pipe volume determination operation as in the initial refrigerant amount determination operation. Therefore, the refrigerant volumes Mlp and Mgp in the refrigerant communication pipes 6 and 7 are calculated by multiplying the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 by the density of the refrigerant. By adding the refrigerant amounts of the other parts, the refrigerant amount M of the entire refrigerant circuit 10 can be calculated.
[0072] ここで、上述のように、液管温度制御によって液冷媒連絡配管 6内の冷媒の温度 T1 Pが同じ液管温度目標値 Tipsで一定に保たれているため、液冷媒連絡配管部 B3に おける冷媒量 Mlpは、冷媒漏洩検知運転の運転条件の違いによらず、室外熱交換 器 23出口における冷媒の温度 Tcoが変動する場合においても、一定に保たれること になる。 [0072] Here, as described above, since the temperature T1 P of the refrigerant in the liquid refrigerant communication pipe 6 is kept constant at the same liquid pipe temperature target value Tips by the liquid pipe temperature control, the liquid refrigerant communication pipe section Refrigerant amount Mlp in B3 is an outdoor heat exchange regardless of the operating conditions of the refrigerant leak detection operation. Even when the temperature Tco of the refrigerant at the outlet of the vessel 23 fluctuates, it is kept constant.
このように、冷媒漏洩検知運転における冷媒回路 10内を流れる冷媒又は構成機器 の運転状態量から冷媒回路 10の各部分の冷媒量を演算する冷媒量演算手段として 機能する制御部 8により、ステップ S42の処理が行われる。  In this way, the control unit 8 that functions as the refrigerant amount calculating means for calculating the refrigerant amount of each part of the refrigerant circuit 10 from the refrigerant flowing in the refrigerant circuit 10 or the operating state quantity of the component device in the refrigerant leakage detection operation causes the step S42. Is performed.
(ステップ S43、 S44 :冷媒量の適否の判定、警告表示)  (Steps S43, S44: Judgment of appropriateness of refrigerant amount, warning display)
冷媒回路 10から冷媒が外部に漏洩すると、冷媒回路 10内の冷媒量が減少する。 そして、上述のステップ S42において演算された冷媒回路 10全体の冷媒量 Mは、冷 媒回路 10からの冷媒漏洩が生じて 、る場合には、初期冷媒量検知運転にぉ 、て検 知された基準冷媒量 MUりも小さくなり、冷媒回路 10からの冷媒漏洩が生じていな い場合には、基準冷媒量 Miとほぼ同じ値になる。  When the refrigerant leaks from the refrigerant circuit 10 to the outside, the amount of refrigerant in the refrigerant circuit 10 decreases. Then, the refrigerant amount M of the entire refrigerant circuit 10 calculated in step S42 described above is detected through the initial refrigerant amount detection operation in the case where refrigerant leakage from the refrigerant circuit 10 occurs. When the reference refrigerant amount MU is also small and no refrigerant leakage from the refrigerant circuit 10 occurs, the value is almost the same as the reference refrigerant amount Mi.
[0073] このことを利用して、ステップ S43では、冷媒の漏洩の有無を判定している。そして 、ステップ S43において、冷媒回路 10からの冷媒の漏洩が生じていないと判定され る場合には、冷媒漏洩検知運転モードを終了する。 [0073] Utilizing this fact, in step S43, it is determined whether or not refrigerant has leaked. If it is determined in step S43 that no refrigerant leaks from the refrigerant circuit 10, the refrigerant leak detection operation mode is terminated.
一方、ステップ S43において、冷媒回路 10からの冷媒の漏洩が生じていると判定さ れる場合には、ステップ S44の処理に移行して、冷媒漏洩を検知したことを知らせる 警告を警告表示部 9に表示した後、冷媒漏洩検知運転モードを終了する。  On the other hand, if it is determined in step S43 that refrigerant has leaked from the refrigerant circuit 10, the process proceeds to step S44, and a warning is sent to the warning display unit 9 informing that the refrigerant has been detected. After the display, the refrigerant leak detection operation mode is terminated.
このように、冷媒漏洩検知運転モードにお!ヽて冷媒量判定運転を行!ヽつつ冷媒回 路 10内の冷媒量の適否を判定して冷媒漏洩の有無を検知する、冷媒量判定手段の 一つである冷媒漏洩検知手段として機能する制御部 8により、ステップ S42〜S44の 処理が行われる。  In this way, the refrigerant amount determination means for detecting the presence or absence of refrigerant leakage by determining whether or not the refrigerant amount in the refrigerant circuit 10 is appropriate while performing the refrigerant amount determination operation in the refrigerant leakage detection operation mode. The processing of steps S42 to S44 is performed by the control unit 8 that functions as one refrigerant leakage detection means.
[0074] 以上のように、本実施形態の空気調和装置 1では、制御部 8が、冷媒量判定運転 手段、冷媒量演算手段、冷媒量判定手段、配管容積判定運転手段、配管容積演算 手段、妥当性判定手段及び状態量蓄積手段として機能することにより、冷媒回路 10 内に充填された冷媒量の適否を判定するための冷媒量判定システムを構成して 、る  [0074] As described above, in the air conditioner 1 of the present embodiment, the control unit 8 includes the refrigerant amount determination operation means, the refrigerant amount calculation means, the refrigerant amount determination means, the pipe volume determination operation means, the pipe volume calculation means, A refrigerant amount determination system for determining the suitability of the amount of refrigerant charged in the refrigerant circuit 10 by functioning as a validity determination unit and a state quantity storage unit is configured.
(3)空気調和装置の特徴 (3) Features of the air conditioner
本実施形態の空気調和装置 1には、以下のような特徴がある。 本実施形態の空気調和装置 1では、圧縮機 21の圧縮機ケーシング 71内に形成さ れた油溜まり部 71dに溜まった冷凍機油の油上面に冷媒が接しているため、油上面 付近の冷凍機油は冷媒の温度に近づき、そして、油溜まり部 71dを形成する圧縮機 ケーシング 71の壁面付近の冷凍機油は壁面の温度、すなわち、圧縮機 21外部の雰 囲気温度に近づくことから、油溜まり部 71dに溜まった冷凍機油には、油上面に接す る冷媒の温度と圧縮機 21外部の雰囲気温度との温度差に相当する温度分布が生じ ることになる。 The air conditioner 1 of the present embodiment has the following features. In the air conditioner 1 of the present embodiment, since the refrigerant is in contact with the oil upper surface of the refrigerating machine oil collected in the oil reservoir 71d formed in the compressor casing 71 of the compressor 21, the refrigerating machine oil near the oil upper surface is obtained. Since the refrigerant temperature approaches the temperature of the refrigerant, and the refrigeration oil near the wall surface of the compressor casing 71 forming the oil reservoir 71d approaches the temperature of the wall surface, that is, the ambient temperature outside the compressor 21, the oil reservoir 71d In the refrigeration oil accumulated in the tank, a temperature distribution corresponding to the temperature difference between the temperature of the refrigerant in contact with the oil upper surface and the ambient temperature outside the compressor 21 is generated.
[0075] しかし、本実施形態の空気調和装置 1では、圧縮機 21内部の冷凍機油と冷凍機油 に接する冷媒との温度差の最大値が 50°C以下となるように構成されているため、圧 縮機 21内部の冷凍機油の温度分布が生じに《なっている。これにより、圧縮機 21 内部の冷凍機油に溶解する冷媒量 Mqoを正確に把握することができるようになるた め、冷媒回路 10内の冷媒量の適否を高精度に判定できるようになる。  [0075] However, the air conditioner 1 of the present embodiment is configured so that the maximum value of the temperature difference between the refrigerating machine oil inside the compressor 21 and the refrigerant in contact with the refrigerating machine oil is 50 ° C or less. The temperature distribution of the refrigerating machine oil inside the compressor 21 is generated. As a result, the refrigerant amount Mqo dissolved in the refrigeration oil inside the compressor 21 can be accurately grasped, so that the suitability of the refrigerant amount in the refrigerant circuit 10 can be determined with high accuracy.
より具体的には、本実施形態の空気調和装置 1では、冷媒回路 10を流れる冷媒又 は構成機器の運転状態量に基づいて、冷媒回路 10内の冷媒量を演算することがで き、このような演算された冷媒量に基づいて、冷媒回路 10内の冷媒量の適否を判定 するようになっており、このような冷媒量の演算の際に、冷媒回路 10を流れる冷媒又 は構成機器の運転状態量の一つとしての圧縮機 21内部の冷凍機油に接する冷媒 の温度 (ここでは、吸入温度 Ts)に基づいて溶存冷媒量 Mqoを演算するようにしてい るが、この際に、圧縮機 21内部の冷凍機油の温度分布が生じに《なっているため、 圧縮機 21内部の冷凍機油への冷媒の溶解度の演算誤差が小さくすることができる。 これにより、溶存冷媒量 Mqoを正確に把握することができるようになるとともに、演算 される冷媒量も正確に把握することができるようになるため、冷媒回路 10内の冷媒量 の適否を高精度に判定できるようになる。  More specifically, in the air conditioner 1 of the present embodiment, the refrigerant amount in the refrigerant circuit 10 can be calculated based on the refrigerant flowing through the refrigerant circuit 10 or the operating state quantity of the component equipment. On the basis of the calculated refrigerant quantity, the suitability of the refrigerant quantity in the refrigerant circuit 10 is determined, and the refrigerant or the component device that flows through the refrigerant circuit 10 when calculating the refrigerant quantity. As one of the operating state quantities of the compressor, the dissolved refrigerant quantity Mqo is calculated based on the temperature of the refrigerant in contact with the refrigeration oil inside the compressor 21 (here, the suction temperature Ts). Since the temperature distribution of the refrigerating machine oil inside the machine 21 is generated, the calculation error of the solubility of the refrigerant in the refrigerating machine oil inside the compressor 21 can be reduced. This makes it possible to accurately grasp the amount of refrigerant Mqo, and to accurately ascertain the amount of refrigerant that is calculated. Can be judged.
[0076] (4)変形例  [0076] (4) Modification
上述の実施形態においては、圧縮機 21内部の冷凍機油と冷凍機油に接する冷媒 との温度差の最大値が 50°C以下となるように構成することによって圧縮機 21内部の 冷凍機油の温度分布が生じに《して、油溜まり部 71dに溜まっている冷凍機油の温 度として、圧縮機 21内部の冷凍機油に接する冷媒の温度 (ここでは、吸入温度 Ts) を使用しても、圧縮機 21内部の冷凍機油への溶存冷媒量 Mqoを高精度に演算でき るようにしている。しかし、この場合においても、圧縮機 21内部の冷凍機油の温度分 布はいくらか生じており、この温度分布の影響をさらに考慮して溶存冷媒量 Mqoを演 算することが望ましい。 In the embodiment described above, the temperature distribution of the refrigerating machine oil inside the compressor 21 is configured such that the maximum value of the temperature difference between the refrigerating machine oil inside the compressor 21 and the refrigerant in contact with the refrigerating machine oil is 50 ° C or less. Therefore, the temperature of the refrigerant in contact with the refrigeration oil inside the compressor 21 (here, the suction temperature Ts) is the temperature of the refrigeration oil accumulated in the oil reservoir 71d. Even if is used, the amount of refrigerant Mqo dissolved in the refrigeration machine oil inside the compressor 21 can be calculated with high accuracy. However, even in this case, there is some temperature distribution of the refrigerating machine oil inside the compressor 21, and it is desirable to calculate the dissolved refrigerant amount Mqo by further considering the influence of this temperature distribution.
そこで、本変形例では、圧縮機 21内部の冷凍機油の温度分布の発生原因である 圧縮機 21外部の雰囲気温度としての室外温度 Taも溶存冷媒量 Mqoの演算に用い るようにしている。具体的には、冷凍機油への冷媒の溶解度 φを演算する際に必要 な冷凍機油の温度(以下、 Toilとする)として、上述の実施形態における吸入温度 Ts に代えて、吸入温度 Ts及び室外温度 Taの関数 (すなわち、 Toil = f4 (Ts、 Ta) )とし て表される圧縮機 21内部の冷凍機油の平均温度を用いることができる(図 12の吸入 温度 Ts及び室外温度 Taと冷凍機油の温度 Toilとの関係を示す線図を参照)。尚、 T oilと吸入温度 Ts及び室外温度 Taとの関係は、予め実験的に得られた測定データを 用いて関数式ィ匕したものを用いてもよいし、マップ化したものを用いてもよい。また、 室外温度 Taを検出する室外温度センサ 36の設置位置等によっては、検出された室 外温度 Taと実際の圧縮機 21外部の雰囲気温度との間にずれが生じるおそれもある 力 このような場合には、検出された室外温度 Taをそのまま使用するのではなぐ室 外温度 Taに補正を施した値を圧縮機 21外部の雰囲気温度として使用するようにし てもよい。ここで、室外温度 Taの補正の方法としては、構成機器の運転状態量、例え ば、空気調和装置 1の運転状態から求めた能力、吐出圧力 Pd及び室外ファン 28の 風量 Woの少なくとも 1つを用いて補正することが可能である。  Therefore, in this modification, the outdoor temperature Ta as the atmospheric temperature outside the compressor 21 that is the cause of the temperature distribution of the refrigeration oil inside the compressor 21 is also used for the calculation of the dissolved refrigerant amount Mqo. Specifically, as the temperature of the refrigerating machine oil (hereinafter referred to as Toil) required for calculating the solubility φ of the refrigerant in the refrigerating machine oil, the suction temperature Ts and the outdoor temperature are used instead of the suction temperature Ts in the above-described embodiment. The average temperature of the refrigeration oil inside the compressor 21 expressed as a function of the temperature Ta (ie Toil = f4 (Ts, Ta)) can be used (intake temperature Ts and outdoor temperature Ta in Fig. 12 and refrigeration oil). (Refer to the diagram showing the relationship between the temperature and Toil.) The relationship between T oil, suction temperature Ts, and outdoor temperature Ta may be a function equation using measurement data obtained experimentally in advance or may be a map. Good. In addition, depending on the installation position of the outdoor temperature sensor 36 that detects the outdoor temperature Ta, there is a possibility that a deviation may occur between the detected outdoor temperature Ta and the ambient temperature outside the actual compressor 21. In this case, instead of using the detected outdoor temperature Ta as it is, a value obtained by correcting the outdoor temperature Ta may be used as the ambient temperature outside the compressor 21. Here, as a method of correcting the outdoor temperature Ta, at least one of the operation state quantity of the component equipment, for example, the capacity obtained from the operation state of the air conditioner 1, the discharge pressure Pd, and the air volume Wo of the outdoor fan 28 is used. It is possible to correct by using.
この変形例では、上述の実施形態のように、圧縮機 21内部の冷凍機油に接する冷 媒の温度のみに基づ!/、て溶存冷媒量 Mqoを演算する際に比べて、溶存冷媒量 Mq oの演算誤差をさらに小さくすることができるようになる。これにより、演算される冷媒 量をさらに正確に把握することができるようになるため、冷媒回路 10内の冷媒量の適 否をさらに高精度に判定できるようになる。  In this modification, the amount of dissolved refrigerant Mq is compared with the case where the amount of dissolved refrigerant Mqo is calculated based on only the temperature of the refrigerant in contact with the refrigerating machine oil inside the compressor 21 as in the above embodiment! The calculation error of o can be further reduced. As a result, the amount of refrigerant to be calculated can be grasped more accurately, so that the suitability of the amount of refrigerant in the refrigerant circuit 10 can be determined with higher accuracy.
(5)他の実施形態  (5) Other embodiments
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、 これらの実施形態に限られるものではなぐ発明の要旨を逸脱しない範囲で変更可 能である。 As mentioned above, although embodiment of this invention was described based on drawing, specific structure can be changed in the range which does not deviate from the summary of invention which is not restricted to these embodiment. Noh.
例えば、上述の実施形態では、冷暖切り換え可能な空気調和装置に本発明を適 用した例を説明したが、これに限定されず、冷房専用の空気調和装置等の他の空気 調和装置に本発明を適用してもよい。また、上述の実施形態では、 1台の室外ュ-ッ トを備えた空気調和装置に本発明を適用した例を説明したが、これに限定されず、 複数台の室外ユニットを備えた空気調和装置に本発明を適用してもよい。  For example, in the above-described embodiment, an example in which the present invention is applied to an air conditioner capable of switching between cooling and heating has been described. May be applied. In the above-described embodiment, the example in which the present invention is applied to the air conditioner including one outdoor unit has been described. However, the present invention is not limited to this, and the air conditioner includes a plurality of outdoor units. The present invention may be applied to an apparatus.
産業上の利用可能性 Industrial applicability
本発明を利用すれば、圧縮機内部の冷凍機油に溶解する冷媒量を正確に把握し 、冷媒回路内の冷媒量の適否を高精度に判定することができるようになる。  By utilizing the present invention, it becomes possible to accurately grasp the amount of refrigerant dissolved in the refrigeration machine oil inside the compressor, and to determine the suitability of the amount of refrigerant in the refrigerant circuit with high accuracy.

Claims

請求の範囲 The scope of the claims
[1] 圧縮機 (21)と熱源側熱交換器 (23)と膨張機構 (38、 41、 51)と、利用側熱交換 器 (42、 52)とが接続されることによって構成される冷媒回路(10)と、  [1] Refrigerant configured by connecting the compressor (21), the heat source side heat exchanger (23), the expansion mechanism (38, 41, 51), and the use side heat exchanger (42, 52) Circuit (10),
前記冷媒回路を流れる冷媒又は構成機器の運転状態量に基づ!、て、前記冷媒回 路内の冷媒量の適否を判定する冷媒量判定手段とを備え、  Based on the refrigerant flowing through the refrigerant circuit or the operating state quantity of the component device, and comprising refrigerant quantity determination means for judging the suitability of the refrigerant quantity in the refrigerant circuit,
前記圧縮機内部の冷凍機油と前記冷凍機油に接する冷媒との温度差の最大値が 50°C以下となるように構成されて 、る、  The maximum value of the temperature difference between the refrigerating machine oil inside the compressor and the refrigerant in contact with the refrigerating machine oil is 50 ° C. or less.
空気調和装置(1)。  Air conditioner (1).
[2] 前記圧縮機(21)には、内部に冷凍機油を溜めることが可能な油溜まり部(71d)を 有しており、  [2] The compressor (21) has an oil reservoir (71d) capable of storing refrigerator oil therein,
冷媒は、前記圧縮機内部において、前記油溜まり部に溜まった冷凍機油の油上面 に接している、  The refrigerant is in contact with the oil upper surface of the refrigerating machine oil accumulated in the oil reservoir inside the compressor.
請求項 1に記載の空気調和装置( 1)。  The air conditioner (1) according to claim 1.
[3] 前記冷媒回路(10)を流れる冷媒又は構成機器の運転状態量に基づいて、前記冷 凍機油に溶解する冷媒量である溶存冷媒量を含む前記冷媒回路内の冷媒量を演 算する冷媒量演算手段をさらに備え、 [3] Based on the refrigerant flowing through the refrigerant circuit (10) or the operating state quantity of the component device, the refrigerant quantity in the refrigerant circuit including the dissolved refrigerant quantity that is the refrigerant quantity dissolved in the refrigeration machine oil is calculated. A refrigerant amount calculating means;
前記冷媒量判定手段は、前記冷媒量演算手段によって演算される冷媒量に基づ いて、前記冷媒回路内の冷媒量の適否を判定する、  The refrigerant amount determining means determines whether the refrigerant amount in the refrigerant circuit is appropriate based on the refrigerant amount calculated by the refrigerant amount calculating means.
請求項 1又は 2に記載の空気調和装置(1)。  The air conditioner (1) according to claim 1 or 2.
[4] 前記冷媒量演算手段は、前記圧縮機 (21)外部の雰囲気温度を少なくとも含む運 転状態量に基づいて、前記溶存冷媒量を演算する、請求項 3に記載の空気調和装 置 (1)。 [4] The air conditioner according to claim 3, wherein the refrigerant amount calculating means calculates the amount of the dissolved refrigerant based on an operating state amount including at least an ambient temperature outside the compressor (21). 1).
PCT/JP2007/064222 2006-07-24 2007-07-19 Air conditioner WO2008013089A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-200486 2006-07-24
JP2006200486A JP2008025936A (en) 2006-07-24 2006-07-24 Air conditioner

Publications (1)

Publication Number Publication Date
WO2008013089A1 true WO2008013089A1 (en) 2008-01-31

Family

ID=38981401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064222 WO2008013089A1 (en) 2006-07-24 2007-07-19 Air conditioner

Country Status (2)

Country Link
JP (1) JP2008025936A (en)
WO (1) WO2008013089A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021139520A (en) * 2020-03-03 2021-09-16 ダイキン工業株式会社 Refrigeration cycle device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311278A (en) * 1989-06-08 1991-01-18 Hitachi Ltd Detector for storage of quantity of refrigerant sealed into air conditioner
JPH03186170A (en) * 1989-12-13 1991-08-14 Hitachi Ltd Refrigerating machine and refrigerant amount indicating method in refrigerating machine
JPH04148170A (en) * 1990-10-12 1992-05-21 Mitsubishi Electric Corp Refrigerant sealing amount operating device
JP2001032772A (en) * 1999-07-19 2001-02-06 Daikin Ind Ltd Compressor, and freezing device
JP2003097443A (en) * 2001-09-25 2003-04-03 Mitsubishi Heavy Ind Ltd Compressor and refrigeration unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311278A (en) * 1989-06-08 1991-01-18 Hitachi Ltd Detector for storage of quantity of refrigerant sealed into air conditioner
JPH03186170A (en) * 1989-12-13 1991-08-14 Hitachi Ltd Refrigerating machine and refrigerant amount indicating method in refrigerating machine
JPH04148170A (en) * 1990-10-12 1992-05-21 Mitsubishi Electric Corp Refrigerant sealing amount operating device
JP2001032772A (en) * 1999-07-19 2001-02-06 Daikin Ind Ltd Compressor, and freezing device
JP2003097443A (en) * 2001-09-25 2003-04-03 Mitsubishi Heavy Ind Ltd Compressor and refrigeration unit

Also Published As

Publication number Publication date
JP2008025936A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4169057B2 (en) Air conditioner
JP4705878B2 (en) Air conditioner
JP4165566B2 (en) Air conditioner
JP4114691B2 (en) Air conditioner
JP4120676B2 (en) Air conditioner
WO2007069578A1 (en) Air conditioner
JP4075933B2 (en) Air conditioner
WO2008001687A1 (en) Air conditioner
WO2007126055A1 (en) Air conditioner
JP2007212134A (en) Air conditioner
WO2007069583A1 (en) Air conditioner
WO2008013093A1 (en) Air conditioner
JP5104225B2 (en) Air conditioner
JP4826266B2 (en) Air conditioner
WO2007125959A1 (en) Air conditioner
JP4311470B2 (en) Air conditioner
JP4665748B2 (en) Air conditioner
WO2008013089A1 (en) Air conditioner
JP4655107B2 (en) Air conditioner
JP2008190864A (en) Air conditioner
JP4826247B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790976

Country of ref document: EP

Kind code of ref document: A1