[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008009522A1 - VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG EINER PROZESSGRÖßE EINES MEDIUMS - Google Patents

VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG EINER PROZESSGRÖßE EINES MEDIUMS Download PDF

Info

Publication number
WO2008009522A1
WO2008009522A1 PCT/EP2007/055907 EP2007055907W WO2008009522A1 WO 2008009522 A1 WO2008009522 A1 WO 2008009522A1 EP 2007055907 W EP2007055907 W EP 2007055907W WO 2008009522 A1 WO2008009522 A1 WO 2008009522A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
phase difference
medium
soll
impedance
Prior art date
Application number
PCT/EP2007/055907
Other languages
English (en)
French (fr)
Inventor
Sergej Lopatin
Alexander Müller
Sascha D'angelico
Martin Urban
Stanislaw Herwik
Original Assignee
Endress+Hauser Gmbh+Co.Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress+Hauser Gmbh+Co.Kg filed Critical Endress+Hauser Gmbh+Co.Kg
Priority to DE502007007071T priority Critical patent/DE502007007071D1/de
Priority to US12/309,474 priority patent/US8220313B2/en
Priority to EP07765424A priority patent/EP2041529B1/de
Priority to CN2007800337780A priority patent/CN101517382B/zh
Priority to AT07765424T priority patent/ATE507463T1/de
Publication of WO2008009522A1 publication Critical patent/WO2008009522A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2966Acoustic waves making use of acoustical resonance or standing waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2966Acoustic waves making use of acoustical resonance or standing waves
    • G01F23/2967Acoustic waves making use of acoustical resonance or standing waves for discrete levels

Definitions

  • the invention relates to a device for determining and / or monitoring at least one process variable, in particular the density r of a medium, with at least one mechanically oscillatable unit, with at least one pickup / receiving unit, which mechanically oscillates the unit to mechanical vibrations excites and which receives the mechanical vibrations of the mechanically oscillatable unit, and with at least one electronic unit, which receives the pickup / receiving unit with an electrical pick-up signal S A , and which receives an electrical received signal S E from the pickup / receiving unit.
  • the medium is, for example, a liquid.
  • the medium is for example in a container or it flows through a pipe.
  • the process variable is the density of the medium.
  • measuring devices which have so-called. Schwinggabeln. These vibrating forks are set in vibration, and the vibrations dependent on the contact with the medium and also on medium properties are received and evaluated.
  • the vibrations i. the quantities such as frequency or amplitude depend on the level, i. the degree of coverage of the tuning fork by the medium, but also the density or viscosity of the medium.
  • the double dependence of the vibrations of density and viscosity of the medium makes it difficult to monitor the density accordingly.
  • the published patent application DE 100 57 974 A1 describes such a tuning fork and refers in particular to the suppression of the dependence of the vibrations on the viscosity of the medium.
  • the effects of the viscosity can be reduced such that a phase different from 90 ° is set between the excitation signal and the received signal, and in particular 70 ° in the case of liquid media. Such a phase largely compensates for the effect of the viscosity.
  • Effects on the frequency of the oscillations can be recorded, for example, by different media curves, which show the course of the Play phase difference between transmit and receive signal as a function of the frequency of the transmission signal. The intersection of the curves then gives the sought phase difference. This is described, for example, in EP 0 985 916 A1 of the Applicant.
  • the object of the invention is to provide a measuring device for measuring a process variable, in particular the density, which allows reproducible measurements.
  • the electronic unit is designed such that the electronics unit generates the excitation signal (S A ) in such a way that a phase difference (Df) occurs between the received signal (S E ) and the excitation signal (S A ).
  • phase difference setpoint (Df 8011 ) which is substantially equal to a predefinable phase difference setpoint (Df 8011 ), that the phase difference setpoint (Df soll ) is predetermined such that at the phase difference setpoint (Df soll ) effects of changes in the viscosity of the medium on the mechanical vibrations of the mechanically oscillatable unit in Are substantially negligible, and that the phase difference setpoint (Df soll ) is predetermined at least as a function of the ratio of the impedance of the pickup / receiver unit to the input impedance of the electronic unit, wherein the input impedance refers to the input, via which the electronic unit, the received signal (S E ) receives.
  • Df 8011 a predefinable phase difference setpoint
  • the pickup / receiving unit is a piezoelectric element which converts the pickup signal (S A ), in which it is an electrical alternating voltage, into mechanical oscillations. These vibrations are transmitted for example via a membrane to the mechanically oscillatable unit, that is, for example, to a so-called. Tuning fork with two forks.
  • the mechanical vibrations which are influenced by the contact with the medium or by its properties, are in turn converted by the pickup / receiving unit into an electrical received signal (S E ), which at least the frequency (F 0 ) of the mechanical vibrations of the mechanical carrying oscillatory unit.
  • the viscosity represents an attenuation of the oscillations. It is known from theory that an independence of the attenuation is given if there is a phase of + 90 ° between the excitation signal and the received signal. However, as disclosed, for example, in the published patent application DE 100 57 974 A1, this effect can be seen in real systems in terms of values occur differently to 90 °.
  • the invention is based on the finding that the phase for the viscosity independence depends at least on the ratio between the impedance of the pickup / receiving unit and the input impedance of the electronic unit.
  • the impedance of the pickup / receiving unit and the input impedance of the electronic unit - this also depends on the type of electronic unit - measured or it is taken into account from the design of Mes s device resulting phase angle, and the appropriate phase angle is adjusted to achieve independence of viscosity changes.
  • the phase which has the received signal with respect to the starting signal is + 46 °. If the input impedance is very hard-nodular, ie if it is at least an order of magnitude or a factor of 10 greater than the impedance of the pickup / receiver unit, then the phase is +42 ° in the case of viscosity independence.
  • a high input impedance is given for example in voltage amplifiers. If the input impedance is very small, ie at least an order of magnitude smaller than the impedance of the pickup / receiver unit, then the phase difference is -48 °. A small input impedance is present, for example, in charge amplifiers.
  • the phase of the received signal relative to the excitation signal is thus, depending on the configuration of the electronic unit + 46 °, + 42 ° or -48 °.
  • the amount of the phase is thus preferably in the range between 40 ° and 50 °. This is therefore a significant deviation from the theoretical value of 90 °.
  • the phase difference setpoint (Df soll ) is -46 °, -42 ° or + 48 ° depending on the ratio input impedance to the impedance of the pickup / receiver unit.
  • at least one evaluation unit is advantageously provided, which determines at least the density (r) of the medium from the frequency of the received signal (S E ). This evaluation unit is part of the measuring device or it is an external unit.
  • An embodiment includes that the phase difference setpoint (Df soll ) at least as a function of the ratio of the impedance of the pickup / receiving unit to Input impedance of the electronics unit and in dependence on the output impedance of the electronic unit is predetermined, wherein the output impedance refers to the output, via which the electronic unit outputs the start signal (S A ). In this embodiment, therefore, a further dependence on the output impedance of the electronic unit is taken into account.
  • phase difference setpoint (Df soll ) is different to 90 °.
  • the amount of the phase difference setpoint (Df soll ) is between 40 ° and 50 °.
  • An embodiment includes that the phase difference setpoint (Df soll ) in the case that the input impedance of the electronics unit, in particular by at least an order of magnitude, is greater than the impedance of the exciting / receiving unit, the phase difference setpoint (Df 8011 ) -42 ° is. This is especially true in a sensor unit which has a bimorph drive and its forks no coating.
  • phase difference setpoint (Df soll ) in the case that the input impedance of the electronics unit, in particular by at least an order of magnitude smaller than the impedance of the exciting / receiving unit, the phase difference setpoint (Df 8011 ) +48 ° is.
  • the phase difference setpoint (Df soll ) is -46 °, so that the phase value of the received signal (S E ) is + 46 ° relative to the excitation signal (S A ).
  • An embodiment includes that the electronic unit is configured such that the electronic unit generates the start signal (S A ) such that the start signal (S A ) is substantially a sine signal.
  • a square wave signal is used for excitation for the sake of simplicity.
  • a gain greater than one is used, resulting in a square wave signal.
  • An advantage of sine excitation is precisely that no harmonics are excited, and that the sveraging energy is used for only one mode.
  • An embodiment provides that the evaluation unit is configured such that the evaluation unit, the density (r) of the medium substantially following
  • K is a coefficient for the density sensitivity of the mechanically oscillatable unit
  • F 0 Vak is the frequency of the mechanical vibrations of the mechanically oscillatable unit in vacuum
  • C is a coefficient for the temperature sensitivity of the mechanically oscillatable unit
  • T is a temperature value for the medium
  • F 0 Med is the frequency (F 0 ) of the mechanical vibrations of the mechanically oscillatable unit in the medium
  • D is a coefficient for the pressure sensitivity of the mechanically oscillatable unit
  • P is a pressure value for the medium.
  • Such a simplification is especially possible if essentially only a change in density is to be detected.
  • the density can thus be measured or monitored by means of the following steps: First, an adjustment of the measuring device takes place: [0022] The dependence of the mechanical oscillations of the mechanically oscillatable unit on the temperature T of the medium is determined and derived therefrom a coefficient C for the temperature sensitivity of the mechanically oscillatable unit is determined, the dependence of the mechanical oscillations of the mechanically oscillatable unit on the pressure P of the medium is determined and from this becomes
  • Coefficient D for the pressure sensitivity of the mechanically oscillatable unit is determined, the dependence of the mechanical oscillations of the mechanically oscillatable unit on the density r of the medium is determined, and this results in a coefficient (K) for the density sensitivity of the mechanically oscillatable
  • Receiving signal (S E ) is determined in which effects of changes in
  • the determined values are suitably deposited and the actual measurements are carried out: the temperature T of the medium is determined or a value for the
  • Temperature T of the medium selectable set ie, for example, also neglected, - the pressure P of the medium is determined or it is set a value for the pressure P of the medium selectable, for example, the pressure is neglected, the mechanically oscillatable unit is excited to mechanical oscillations, - the mechanical vibrations of the mechanically oscillatable unit are received and converted into a received signal S E , - from the received signal S E , the frequency F 0 Med of the mechanical
  • Vibrations of the mechanically oscillatable unit in the medium determined, and - the density r of the medium is determined by the following formula with the above
  • the abbreviated formula is used and substantially a change in density is indicated.
  • the procedure described is only an example and can be easily adapted to other conditions.
  • the dependence between the frequency (F 0 Med ) of the mechanical vibrations of the mechanically oscillatable unit in the respective medium and the phase difference (Df) between the excitation signal (S A ) and the received signal (S E ), and that the phase range within which the phase difference (Df) of the at least two media is substantially equal is determined. If the media also have different densities, then the subsequent design has to be considered.
  • the phase difference is determined as a function of a variable load resistance at the pickup / receiving unit, ie as a function of different input impedances of the electronics unit, ie, the effect of the input impedance on the phase value to be determined can be determined.
  • the method of determining the phase range is extended to determine the density r of the at least two media, and in the event that the density values of the at least two media differ, the effects of the density r on the Frequency F 0 Med of the vibrations is determined and compensated.
  • the effect of the density on the measurement is calculated out.
  • This embodiment thus relates in particular to the fact that the densities of the two measurement media are different, so that the effects of the density on the vibrations and in particular on the oscillation frequency is calculated out in order to obtain the frequency change that results solely from the change in viscosity.
  • An embodiment of the device according to the invention includes that at least one temperature sensor for determining the temperature (T) of the medium is provided, and / or that at least one pressure sensor for determining the pressure (P) of the medium is provided. These sensors allow a more accurate measurement of density, allowing for the effects of density and temperature.
  • Fig. 1 a schematic representation of a measuring device according to the invention.
  • Fig. 1 is a medium 1 in a container 10.
  • the mechanically oscillatable unit 2 of a measuring device according to the invention is mounted on the container 10.
  • This is a so-called. Schwinggabe], ie two forks are attached to a membrane.
  • the excitation / reception unit 3 Behind the membrane and mechanically coupled with her is the excitation / reception unit 3, which is in the case shown is a piezo-electric element.
  • This piezoelectric element 3 is used as a transducer between the mechanical vibrations and the electrical signals.
  • the drive / receiving unit 3 is acted upon by the electrical starting signal S A. This electrical alternating voltage is transmitted into mechanical vibrations which cause the tuning fork 2 to vibrate.
  • the vibrations of the mechanically oscillatable unit 2 depend on the degree of coverage of the fork through the medium 1, but also on properties of the medium 1 itself. Thus, the vibrations are also dependent on the density and viscosity of the medium 1. Conversely, the variables can be measured by way of this dependency, in that the received signal S E of the drive / receiving unit 3 is suitably evaluated.
  • the measuring device is designed here so that in particular the density of the medium 1 is determined or monitored. However, the level can also be measured or monitored, among other things. It should also be noted that the invention described herein is not limited to the application to tuning forks or bars, but that it can also be applied, for example, to Coriolis flowmeters.
  • the value also depends on which structure has the electronic unit 4, ie in particular what type of amplifier it is.
  • the theoretical value for the phase is 90 °. It turns out, however, that the phase at a very high-impedance input 4.1 equal 42 ° and at a low impedance input 4.1 is equal to -48 °. Accordingly, the phase difference desired value Df is -42 ° or + 48 °.
  • these special values also relate to the further design of the measuring device.
  • An explanatory model for these values is that the electronic unit 4 or its input impedance in conjunction with the capacitive property of the drive / receiving unit 3, in particular in the embodiment as a piezoelectric element acts as a high pass.
  • phase value or the phase difference desired value Df soll or a value for the starting / receiving unit 3, from which results in conjunction with the type of electronic unit 4 of the phase difference setpoint Df soll is preferably stored in a memory unit 8, so that the electronic unit. 4 or a microprocessor located therein can access it.
  • the resonant circuit of mechanically oscillatable unit 2, drive / receiving unit 3 and electronic unit 4 is designed such that the total gain is equal to one. That is, the attenuation of the vibrations by the medium 1 and the gain of the electronic unit 4 just have to compensate each other. Therefore, it is also required that the gain of the electronic unit 4 is adjustable and changeable. Furthermore, there are advantages in that the excitation signal S A is a sinusoidal signal and not a square wave signal, as is common in such oscillating systems. In particular, a fundamental wave excitation takes place.
  • temperature T and pressure P are measured by a respective sensor 6, 7.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Fluid Pressure (AREA)
  • Paper (AREA)
  • Sheets, Magazines, And Separation Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Die Erfindung bezieht sich auf eine Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße, insbesondere der Dichte (r) eines Mediums (1), mit einer Anrege-/Empfangseinheit (3), welche eine mechanisch schwingfähige Einheit (2) zu mechanischen Schwingungen anregt und welche die mechanischen Schwingungen empfängt, mit einer Elektronikeinheit (4), welche die Anrege-/Empfangseinheit (3) mit einem elektrischen Anregesignal (SA) beaufschlagt, und welche von der Anrege-/Empfangseinheit (3) ein elektrisches Empfangssignal (SE) erhält. Die Erfindung beinhaltet, dass die Elektronikeinheit (4) das Anregesignal (SA) derartig erzeugt, dass sich zwischen dem Empfangssignal (SE) und dem Anregesignal (SA) eine Phasendifferenz (Df) gleich einem Phasendifferenzsollwert (Dfsoll) ergibt, bei welchem Auswirkungen von Änderungen der Viskosität des Mediums auf die mechanischen Schwingungen der mechanisch schwingfähigen Einheit (2) vernachlässigbar sind, und dass der Phasendifferenzsollwert (Dfsoll) in Abhängigkeit vom Verhältnis der Impedanz der Anrege-/Empfangseinheit (3) zur Eingangsimpedanz der Elektronikeinheit (4) vorgegeben ist.

Description

Beschreibung
Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
[0001] Die Erfindung bezieht sich auf eine Vorrichtung zur Bestimmung und/oder Überwachung mindestens einer Prozessgröße, insbesondere der Dichte r eines Mediums, mit mindestens einer mechanisch schwingfähigen Einheit, mit mindestens einer Anrege-/Empfangseinheit, welche die mechanisch schwingfähige Einheit zu mechanischen Schwingungen anregt und welche die mechanischen Schwingungen der mechanisch schwingfähigen Einheit empfängt, und mit mindestens einer Elektronikeinheit, welche die Anrege-/Empfangseinheit mit einem elektrischen Anregesignal SA beaufschlagt, und welche von der Anrege-/Empfangseinheit ein elektrisches Empfangssignal S E erhält. Bei dem Medium handelt es sich beispielsweise um eine Flüssigkeit. Das Medium befindet sich beispielsweise in einem Behälter oder es durchströmt ein Rohr. Die Prozessgröße ist in einer Ausgestaltung die Dichte des Mediums.
[0002] Im Stand der Technik sind Messgeräte bekannt, welche sog. Schwinggabeln aufweisen. Diese Schwinggabeln werden in Schwingungen versetzt, und die von dem Kontakt mit dem Medium und auch von Mediumseigenschaften abhängigen Schwingungen werden empfangen und ausgewertet. Die Schwingungen, d.h. die Größen wie Frequenz oder Amplitude sind abhängig vom Füllstand, d.h. vom Grad der Bedeckung der Schwinggabel durch das Medium, aber auch von der Dichte oder der Viskosität des Mediums. Die zweifache Abhängigkeit der Schwingungen von Dichte und Viskosität des Mediums macht eine Überwachung der Dichte entsprechend schwierig.
[0003] Die Offenlegungsschrift DE 100 57 974 Al beschreibt eine solche Schwinggabel und bezieht sich insbesondere auf die Unterdrückung der Abhängigkeit der Schwingungen von der Viskosität des Mediums. Die Auswirkungen der Viskosität lassen sich gemäß der Offenlegungsschrift derartig vermindern, dass zwischen dem Erregersignal und dem Empfangssignal eine Phase unterschiedlich zu 90°, bei flüssigen Medien insbesondere von 70° eingestellt wird. Durch eine solche Phase wird die Auswirkung der Viskosität weitgehend kompensiert.
[0004] Um eine Phasendifferenz zu finden, bei welcher Viskositätsänderungen keine
Auswirkungen auf die Frequenz der Schwingungen haben, lassen sich beispielsweise von unterschiedlichen Medien Kurven aufnehmen, welche den Verlauf der Phasendifferenz zwischen Sende- und Empfangssignal in Abhängigkeit von der Frequenz des Sendesignals wiedergeben. Der Schnittpunkt der Kurven ergibt dann die gesuchte Phasendifferenz. Dies ist beispielsweise in der EP 0 985 916 Al der Anmelderin beschrieben.
[0005] Die Aufgabe der Erfindung besteht darin, ein Messgerät zur Messung einer Prozessgröße, insbesondere der Dichte anzugeben, welches reproduzierbare Messungen erlaubt.
[0006] Die Aufgabe löst die Erfindung dadurch, dass die Elektronikeinheit derartig ausgestaltet ist, dass die Elektronikeinheit das Anregesignal (SA) derartig erzeugt, dass sich zwischen dem Empfangssignal (S E) und dem Anregesignal (SA) eine Phasendifferenz (Df) ergibt, welche im Wesentlichen gleich einem vorgebbaren Phasendifferenzsollwert (Df8011) ist, dass der Phasendifferenzsollwert (Df soll) derartig vorgegeben ist, dass bei dem Phasendifferenzsollwert (Df soll) Auswirkungen von Änderungen der Viskosität des Mediums auf die mechanischen Schwingungen der mechanisch schwingfähigen Einheit im Wesentlichen vernachlässigbar sind, und dass der Phasendifferenzsollwert (Df soll) mindestens in Abhängigkeit vom Verhältnis der Impedanz der Anrege-/Empfangseinheit zur Eingangsimpedanz der Elektronikeinheit vorgegeben ist, wobei die Eingangsimpedanz sich auf den Eingang bezieht, über welchen die Elektronikeinheit das Empfangssignal (S E) empfängt.
[0007] Bei der Anrege-/Empfangseinheit handelt es sich in einer Ausgestaltung um ein piezo-elektrisches Element, welches das Anregesignal (S A), bei welchem es sich um eine elektrische Wechselspannung handelt, in mechanische Schwingungen umsetzt. Diese Schwingungen werden beispielsweise über eine Membran auf die mechanisch schwingfähige Einheit, also z.B. auf eine sog. Schwinggabel mit zwei Gabelzinken übertragen. Die mechanischen Schwingungen, welche durch den Kontakt mit dem Medium bzw. durch dessen Eigenschaften beeinflusst werden, werden von der Anrege- /Empfangseinheit wiederum in ein elektrisches Empfangssignal (S E) umgewandelt, welches mindestens die Frequenz (F 0) der mechanischen Schwingungen der mechanisch schwingfähigen Einheit trägt.
[0008] Für die Messung der Dichte (r) ist es insbesondere wichtig, dass die Abhängigkeit von einer Viskositätsänderung kompensiert wird. Die Viskosität stellt eine Dämpfung der Schwingungen dar. Aus der Theorie ist bekannt, dass eine Unabhängigkeit von der Dämpfung gegeben ist, wenn zwischen dem Anrege- und dem Empfangssignal eine Phase von +90° vorliegt. Wie jedoch beispielsweise der Offenlegungsschrift DE 100 57 974 Al zu entnehmen, kann dieser Effekt in realen Systemen bei Werten unterschiedlich zu 90° auftreten. Der Erfindung liegt nun die Erkenntnis zugrunde, dass die Phase für die Viskositätsunabhängigkeit zumindest vom Verhältnis zwischen der Impedanz der Anrege-/Empfangseinheit und der Eingangsimpedanz der Elektronikeinheit abhängt. Daher werden erfindungsgemäß bezogen auf die jeweilige Dimensionierung des Messgerätes die Impedanz der Anrege-/Empfangseinheit und die Eingangsimpedanz der Elektronikeinheit - dies hängt auch vom Typ der Elektronikeinheit ab - gemessen bzw. es wird der aus der Ausgestaltung der Mes s Vorrichtung resultierende Phasenwinkel berücksichtigt, und es wird der entsprechende Phasenwinkel eingestellt, um die Unabhängigkeit von Viskositätsänderungen zu erreichen. In einer Ausgestaltung, welche sich auf eine bestimmte Anordnung des Messgerätes bezieht, beträgt die Phase, welche das Empfangssignal gegenüber dem Anregesignal aufweist, +46°. Ist die Eingangsimpedanz sehr hodrohrnig, d.h. ist sie zumindest eine Größenordnung oder den Faktor 10 größer als die Impedanz der Anrege-/Empfangseinheit, so ist die Phase bei Viskositätsunabhängigkeit +42°. Eine hohe Eingangsimpedanz ist beispielsweise bei Spannungsverstärkern gegeben. Ist die Eingangsimpedanz sehr klein, d.h. um mindestens eine Größenordnung kleiner als die Impedanz der Anrege- /Empfangseinheit, so beträgt die Phasendifferenz -48°. Eine kleine Eingangsimpedanz liegt beispielsweise bei Ladungsverstärkern vor. Die Phase des Empfangssignals relativ zum Anregesignal beträgt also je nach Ausgestaltung der Elektronikeinheit +46°, +42° oder -48°. Der Betrag der Phase liegt also vorzugsweise im Bereich zwischen 40° und 50°. Dies ist somit eine deutliche Abweichung zum theoretischen Wert von 90°.
Damit diese Phasenwerte erhalten werden, muss die Elektronikeinheit das Anregesignal derartig erzeugen, dass sich in Summe über alle Phasen der Wert 0° bzw. n * 360° (n = 1, 2, 3...) ergibt, da es sich insgesamt um einen Schwingkreis handelt. D.h. der Phasendifferenzsollwert (Df soll) beträgt in Abhängigkeit vom Verhältnis Eingangsimpedanz zur Impedanz der Anrege-/Empfangseinheit -46°, -42° oder +48°. Für die Auswertung des Empfangssignals hin auf die Ermittlung der Dichte des Mediums ist vorteilhafterweise mindestens eine Auswerteeinheit vorgesehen, welche aus der Frequenz des Empfangssignals (SE) mindestens die Dichte (r) des Mediums ermittelt. Diese Auswerteeinheit ist dabei ein Bestandteil des Messgerätes oder es handelt sich um eine externe Einheit. Eine Ausgestaltung beinhaltet, dass der Phasendifferenzsollwert (Df soll) mindestens in Abhängigkeit vom Verhältnis der Impedanz der Anrege-/Empfangseinheit zur Eingangsimpedanz der Elektronikeinheit und in Abhängigkeit von der Ausgangsimpedanz der Elektronikeinheit vorgegeben ist, wobei die Ausgangsimpedanz sich auf den Ausgang bezieht, über welchen die Elektronikeinheit das Anregesignal (SA) ausgibt. In dieser Ausgestaltung wird somit auch eine weitere Abhängigkeit von der Ausgangsimpedanz der Elektronikeinheit berücksichtigt.
[0010] Eine Ausgestaltung sieht vor, dass der Phasendifferenzsollwert (Df soll) unterschiedlich zu 90° ist. Insbesondere liegt der Betrag des Phasendifferenzsollwerts (Dfsoll) zwischen 40° und 50°. Der Phasendifferenzsollwert (Df soll) ist dabei so bemessen, dass er und der Phasenwert des Sensors, bei welchem die Viskositätsunabhängigkeit gegeben ist, zusammen den Wert n * 360° (n = 0, 1, 2...) ergibt. Ist also beispielsweise dieser Phasenwert zwischen dem Anregesignal und Empfangssignal +46°, so ist der Phasendifferenzsollwert (Df soll) -46°.
[0011] Eine Ausgestaltung beinhaltet, dass der Phasendifferenzsollwert (Df soll) in dem Fall, dass die Eingangsimpedanz der Elektronikeinheit, insbesondere um mindestens eine Größenordnung, größer als die Impedanz der Anrege-/Empfangseinheit ist, der Phasendifferenzsollwert (Df8011) -42° beträgt. Dies trifft insbesondere bei einer Sensoreinheit auf, welche einen Bimorphantrieb und dessen Gabelzinken kein Coating aufweist.
[0012] Eine Ausgestaltung sieht vor, dass der Phasendifferenzsollwert (Df soll) in dem Fall, dass die Eingangsimpedanz der Elektronikeinheit, insbesondere um mindestens eine Größenordnung, kleiner als die Impedanz der Anrege-/Empfangseinheit ist, der Phasendifferenzsollwert (Df8011) +48° beträgt. Insbesondere sieht eine Ausgestaltung vor, dass der Phasendifferenzsollwert (Df soll) -46° ist, so dass der Phasenwert des Empfangssignals (SE) relativ zum Anregesignal (SA) +46° beträgt.
[0013] Eine Ausgestaltung beinhaltet, dass die Elektronikeinheit derartig ausgestaltet ist, dass die Elektronikeinheit das Anregesignal (SA) derartig erzeugt, dass das Anregesignal (SA) im Wesentlichen ein Sinus-Signal ist. Im Allgemeinen wird zur Anregung ein Rechtecksignal der Einfachheit halber verwendet. Weist die Verstärkung des gesamten Schwingsystems - d.h. die Anordnung aus der mechanisch schwingfähigen Einheit und der Elektronikeinheit - im stationären Fall, d.h. wenn sich Dämpfung, Verstärkung und Amplitude nicht mehr ändern, weil sich beispielsweise der Füllstand des Mediums, mit welchem die schwingfähige Einheit wechselwirkt, nicht mehr ändert, einen Wert von Eins auf, so ergibt sich ein Sinus. In den meisten Messgeräten wird eine Verstärkung größer Eins verwendet, so dass sich ein Rechtecksignal ergibt. Für die Dichtemessung wird jedoch in dieser Ausgestaltung ein Wert von Eins verwendet. Ein Vorteil der Sinus-Anregung besteht gerade darin, dass keine Obertöne angeregt werden, und dass die Sdiwingungsenergie für nur eine Mode verwendet wird. [0014] Eine Ausgestaltung sieht vor, dass die Auswerteeinheit derartig ausgestaltet ist, dass die Auswerteeinheit die Dichte (r) des Mediums im Wesentlichen nach folgender
Formel bestimmt: [0015]
_ * p +C* T
*{] + D r\ φ
P = * P) - \
K F DAUiI
[0016] wobei K ein Koeffizient für die Dichteempfindlichkeit der mechanisch schwingfähigen Einheit ist, wobei F 0 Vak die Frequenz der mechanischen Schwingungen der mechanisch schwingfähigen Einheit im Vakuum ist, wobei C ein Koeffizient für die Temperaturempfindlichkeit der mechanisch schwingfähigen Einheit ist, wobei T ein Temperaturwert für das Medium ist, wobei F0 Med die Frequenz (F0) der mechanischen Schwingungen der mechanisch schwingfähigen Einheit im Medium ist, wobei D ein Koeffizient für die Druckempfindlichkeit der mechanisch schwingfähigen Einheit ist, und wobei P ein Druckwert für das Medium ist.
[0017] Für die genaue Messung der Dichte muss die Abhängigkeit von Druck und
Temperatur berücksichtigt bzw. müssen die entsprechenden Werte gemessen werden. Ist eine Konstanz dieser Größen gegeben oder ist deren Auswirkungen in der Anwendung vernachlässigbar, so lässt sich die Formel auch entsprechend vereinfachen:
[0018]
Figure imgf000007_0001
[0019] Eine solche Vereinfachung ist vor allem dann möglich, wenn im Wesentlichen nur eine Änderung der Dichte erkannt werden soll.
[0020] Die Dichte lässt sich somit über folgende Schritte messen bzw. überwachen: [0021] Zunächst erfolgt ein Abgleich des Messgerätes: [0022] - die Abhängigkeit der mechanischen Schwingungen der mechanisch schwingfähigen Einheit von der Temperatur T des Mediums wird ermittelt und daraus wird ein Koeffizient C für die Temperaturempfindlidikeit der mechanisch schwingfähigen Einheit ermittelt, [0023] - die Abhängigkeit der mechanischen Schwingungen der mechanisch schwingfähigen Einheit vom Druck P des Mediums wird ermittelt und daraus wird ein
Koeffizient D für die Druckempfindlichkeit der mechanisch schwingfähigen Einheit ermittelt, [0024] - die Abhängigkeit der mechanischen Schwingungen der mechanisch schwingfähigen Einheit von der Dichte r des Mediums wird ermittelt und daraus wird ein Koeffizient (K) für die Dichteempfindlichkeit der mechanisch schwingfähigen
Einheit ermittelt, [0025] - die Frequenz der mechanischen Schwingungen der mechanisch schwingfähigen
Einheit im Vakuum F0 Vak wird ermittelt, [0026] - ein Phasendifferenzsollwert (Df8011) zwischen dem Anregesignal (S A) und dem
Empfangssignal (SE) wird ermittelt, bei welchem Auswirkungen von Änderungen der
Viskosität auf die mechanischen Schwingungen der mechanisch schwingfähigen
Einheit im Wesentlichen vernachlässigbar sind. [0027] Nach diesem Abgleich werden die ermittelten Werte passend hinterlegt und die eigentlichen Messungen werden durchgeführt: [0028] - die Temperatur T des Mediums wird ermittelt oder es wird ein Wert für die
Temperatur T des Mediums wählbar gesetzt, d.h. beispielsweise auch vernachlässigt, [0029] - der Druck P des Mediums wird ermittelt oder es wird ein Wert für den Druck P des Mediums wählbar gesetzt, indem beispielsweise auch der Druck vernachlässigt wird, [0030] - die mechanisch schwingfähige Einheit wird zu mechanischen Schwingungen angeregt, [0031] - die mechanischen Schwingungen der mechanisch schwingfähigen Einheit werden empfangen und in ein Empfangssignal SE umgewandelt, [0032] - aus dem Empfangssignal SE wird die Frequenz F0 Med der mechanischen
Schwingungen der mechanisch schwingfähigen Einheit im Medium ermittelt, und [0033] - die Dichte r des Mediums wird über folgende Formel mit den oben ermittelten
Konstanten und Werten bestimmt: [0034]
Figure imgf000008_0001
[0035] Alternativ wird die verkürzte Formel verwendet und es wird im Wesentlichen eine Änderung der Dichte angezeigt. Die beschriebene Vorgehensweise ist jedoch nur ein Beispiel und lässt sich leicht an weitere Bedingungen anpassen.
[0036] Der Phasendifferenzsollwert wird dabei in einer Ausgestaltung mit folgenden Schritten ermittelt:
[0037] dass für mindestens zwei Medien mit unterschiedlicher Viskosität die Abhängigkeit zwischen der Frequenz (F 0 Med) der mechanischen Schwingungen der mechanisch schwingfähigen Einheit im jeweiligen Medium und der Phasendifferenz (Df) zwischen dem Anregesignal (SA) und dem Empfangssignal (SE) ermittelt wird, und dass der Phasenbereich ermittelt wird, innerhalb dessen die Phasendifferenz (Df) der mindestens zwei Medien im Wesentlichen gleich sind. Haben die Medien auch unterschiedliche Dichte, so ist die anschließende Ausgestaltung zu beachten. In einer weiteren Ausgestaltung wird die Phasendifferenz in Abhängigkeit von einem variierbaren Lastwiderstand an der Anrege-/Empfangseinheit, d.h. in Abhängigkeit von unterschiedlichen Eingangsimpedanzen der Elektronikeinheit ermittelt, d.h. so kann die Auswirkung der Eingangsimpedanz auf den festzulegenden Phasenwert ermittelt werden.
[0038] In einer Ausgestaltung wird das Verfahren zur Bestimmung des Phasenbereichs dahingehend erweitert, dass die Dichte r der mindestens zwei Medien bestimmt wird, und dass in dem Fall, dass sich die Dichtewerte der mindestens zwei Medien unterscheiden, die Auswirkungen der Dichte r auf die Frequenz F 0 Med der Schwingungen ermittelt und kompensiert wird. Im einfachsten Fall wird die Auswirkung der Dichte auf die Messung jeweils herausgerechnet. Diese Ausgestaltung bezieht sich also insbesondere darauf, dass die Dichten der beiden Messmedien unterschiedlich sind, so dass die Auswirkungen der Dichte auf die Schwingungen und insbesondere auf die Schwingungsfrequenz herausgerechnet wird, um die Frequenzänderung zu erhalten, die sich allein durch die Viskositätsänderung ergibt.
[0039] Eine Ausgestaltung der erfindungsgemäßen Vorrichtung beinhaltet, dass mindestens ein Temperatursensor zur Bestimmung der Temperatur (T) des Mediums vorgesehen ist, und/oder dass mindestens ein Drucksensor zur Bestimmung des Druckes (P) des Mediums vorgesehen ist. Diese Sensoren erlauben eine genauere Messung der Dichte, da so die Auswirkungen von Dichte und Temperatur berücksichtigt werden können.
[0040] Die Erfindung wird anhand der nachfolgenden Zeichnung näher erläutert. Es zeigt:
[0041] Fig. 1: eine schematische Darstellung einer erfindungsgemäßen Mess Vorrichtung. In der Fig. 1 befindet sich ein Medium 1 in einem Behälter 10. An dem Behälter 10 ist die mechanisch schwingfähige Einheit 2 eines erfindungsgemäßen Messgerätes angebracht. Hierbei handelt es sich um eine sog. Schwinggabe], d.h. zwei Gabelzinken sind an einer Membran angebracht. Hinter der Membran und mechanisch mit ihr gekoppelt befindet sich die Anrege-/Empfangseinheit 3, bei welcher es sich im gezeigten Fall um ein piezo-elektrisches Element handelt. Dieses piezo-elektrische Element 3 wird als Wandler zwischen den mechanischen Schwingungen und den elektrischen Signalen verwendet. Von der Elektronikeinheit 4 wird die Antriebs- /Empfangseinheit 3 mit dem elektrischen Anregesignal S A beaufschlagt. Diese elektrische Wechselspannung wird in mechanische Schwingungen übertragen, welche die Schwinggabel 2 schwingen lassen. Die Schwingungen der mechanisch schwingfähigen Einheit 2 hängen dabei vom Bedeckungsgrad der Gabel durch das Medium 1, aber auch von Eigenschaften des Mediums 1 selbst ab. So sind die Schwingungen auch von der Dichte und der Viskosität des Mediums 1 abhängig. Über diese Abhängigkeit lassen sich umgekehrt die Größen messen, indem das Empfangssignal SE der Antriebs-/Empfangseinheit 3 passend ausgewertet wird. Das Messgerät ist hier so ausgebildet, dass insbesondere die Dichte des Mediums 1 bestimmt bzw. überwacht wird. Der Füllstand lässt sich jedoch u.a. auch weiterhin messen bzw. überwachen. Es sei auch angemerkt, dass die hier beschriebene Erfindung nicht auf die Anwendung auf Schwinggabeln oder Einstäben beschränkt ist, sondern dass sie sich beispielsweise auch auf Coriolis-Durchflussmessgeräte anwenden lässt. Für die Dichtemessung ist es jedoch erforderlich, dass u.a. die Abhängigkeit der Schwingungen von der Viskosität kompensiert wird. Dies geschieht dadurch, dass das Empfangssignal SE eine spezielle Phase aufweist, bei welcher Änderungen der Viskosität auf die Schwingfrequenz keine oder nur vernachlässigbare Auswirkungen haben. Damit diese Phase des Empfangssignals S E erhalten wird und damit die Resonanzbedingung, dass die Summe aller Phasen im Schwingkreis gleich n * 360° mit n = 0, 1, 2, 3... ist, ist die Elektronikeinheit 4 derartig ausgestaltet, dass sie das Anregesignal SA entsprechend erzeugt. Dabei hat sich ergeben, dass dieser Phasenwert zumindest abhängig davon ist, welches Größenverhältnis zwischen der Impedanz der Antriebs-/Empfangseinheit 3 und der Eingangsimpedanz 4.1 der Elektronikeinheit 4 besteht. Somit ist der Wert auch davon abhängig, welche Struktur die Elektronikeinheit 4 aufweist, d.h. insbesondere um was für einen Verstärkertyp es sich handelt. Der theoretische Wert für die Phase ist 90°. Es zeigt sich jedoch, dass die Phase bei einem sehr hochohmigen Eingang 4.1 gleich 42° und bei einem niederohmigen Eingang 4.1 gleich -48° ist. Entsprechend beträgt der Phasendifferenzsollwert Df soll -42° bzw. +48°. Diese speziellen Werte beziehen sich jedoch auch auf die weitere Ausgestaltung des Messgerätes. Ein Erklärungsmodell für diese Werte ist, dass die Elektronikeinheit 4 bzw. dessen Eingangsimpedanz in Verbindung mit der kapazitiven Eigenschaft der Antriebs-/Empfangseinheit 3, insbesondere in der Ausgestaltung als piezo-elektrisches Element als Hochpass fungiert. Der Phasenwert bzw. der Phasendifferenzsollwert Df soll bzw. ein Wert für die Anrege-/Empfangseinheit 3, aus welchem sich in Verbindung mit der Art der Elektronikeinheit 4 der Phasendifferenzsollwert Df soll ergibt, wird vorzugsweise in einer Speichereinheit 8 abgelegt, so dass die Elektronikeinheit 4 bzw. ein darin befindlicher Mikroprozessor darauf zugreifen kann.
[0043] Um die Messungen zu verbessern und die Leistung des Messgerätes zu erhöhen, ist der Schwingkreis aus mechanisch schwingfähiger Einheit 2, Antriebs- /Empfangseinheit 3 und Elektronikeinheit 4 derartig ausgestaltet, dass die Gesamtverstärkung gleich Eins ist. D.h. die Dämpfung der Schwingungen durch das Medium 1 und die Verstärkung der Elektronikeinheit 4 müssen sich gerade gegenseitig kompensieren. Daher ist es auch erforderlich, dass der Verstärkungsfaktor der Elektronikeinheit 4 einstellbar und veränderbar ist. Weiterhin bringt es Vorteile mit sich, dass das Anregesignal S A ein Sinussignal ist und nicht wie allgemein bei solchen Schwingsystemen üblich ein Rechtecksignal. Insbesondere findet eine Grundwellenanregung statt.
[0044] Auf die Schwingungen bestehen weiterhin Auswirkungen von Druck und
Temperatur. Sind diese beiden Größen konstant oder sind ihre Variationen nur sehr gering, so kann ihre Auswirkungen auf die Dichte-Messung vernachlässigt werden. Ist jedoch eine möglichst genaue Messung erforderlich, so werden Temperatur T und Druck P durch einen jeweiligen Sensor 6, 7 gemessen. Die Auswerteeinheit 5 welche hier eine eigenständige Einheit ist, berechnet dann aus den mechanischen Schwingungen, d.h. insbesondere aus der Frequenz und den beiden Messgrößen Temperatur und Druck die Dichte.
[0045] Bezugszeichenliste Tabelle 1
Figure imgf000012_0001
[0046]

Claims

Ansprüche
[0001] Vorrichtung zur Bestimmung und/oder Überwachung mindestens einer
Prozessgröße, insbesondere der Dichte (r) eines Mediums (1), mit mindestens einer mechanisch schwingfähigen Einheit (2), mit mindestens einer Anrege- /Empfangseinheit (3), welche die mechanisch schwingfähige Einheit (2) zu mechanischen Schwingungen anregt und welche die mechanischen Schwingungen der mechanisch schwingfähigen Einheit (2) empfängt, und mit mindestens einer Elektronikeinheit (4), welche die Anrege -/Empfangseinheit (3) mit einem elektrischen Anregesignal (S A) beaufschlagt, und welche von der Anrege-/Empfangseinheit (3) ein elektrisches Empfangssignal (S E) erhält, dadurch gekennzeichnet, dass die Elektronikeinheit (4) derartig ausgestaltet ist, dass die Elektronikeinheit (4) das Anregesignal (S A) derartig erzeugt, dass sich zwischen dem Empfangssignal (S E) und dem Anregesignal (S A) eine Phasendifferenz (Df) ergibt, welche im Wesentlichen gleich einem vorgebbaren Phasendifferenzsollwert (Df soll) ist, dass der Phasendifferenzsollwert (Df soll) derartig vorgegeben ist, dass bei dem Phasendifferenzsollwert (Df soll) Auswirkungen von Änderungen der Viskosität des Mediums (1) auf die mechanischen Schwingungen der mechanisch schwingfähigen Einheit (2) im Wesentlichen vernachlässigbar sind, und dass der Phasendifferenzsollwert (Df soll) mindestens in Abhängigkeit vom Verhältnis der Impedanz der Anrege- /Empfangseinheit (3) zur Eingangsimpedanz der Elektronikeinheit (4) vorgegeben ist, wobei die Eingangsimpedanz sich auf den Eingang (4.1) bezieht, über welchen die Elektronikeinheit (4) das Empfangssignal (S E) empfängt.
[0002] Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der
Phasendifferenzsollwert (Df soll) mindestens in Abhängigkeit vom Verhältnis der Impedanz der Anrege-/Empfangseinheit (3) zur Eingangsimpedanz der Elektronikeinheit (4) und in Abhängigkeit von der Ausgangsimpedanz der Elektronikeinheit (4) vorgegeben ist, wobei die Ausgangsimpedanz sich auf den Ausgang (4.2) bezieht, über welchen die Elektronikeinheit (4) das Anregesignal (SA) ausgibt.
[0003] Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der
Phasendifferenzsollwert (Df soll) unterschiedlich zu 90° ist.
[0004] Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der
Phasendifferenzsollwert (Df soll) in dem Fall, dass die Eingangsimpedanz der Elektronikeinheit (4), insbesondere um mindestens eine Größenordnung, größer als die Impedanz der Anrege-/Empfangseinheit (3) ist, der Phasendifferenzsollwert (Df soll) -42° beträgt.
[0005] Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der
Phasendifferenzsollwert (Df soll) in dem Fall, dass die Eingangsimpedanz der Elektronikeinheit (4), insbesondere um mindestens eine Größenordnung, kleiner als die Impedanz der Anrege-/Empfangseinheit (3) ist, der Phasendifferenzsollwert (Df soll) +48° beträgt.
[0006] Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die
Elektronikeinheit (4) derartig ausgestaltet ist, dass die Elektronikeinheit (4) das Anregesignal (S A) derartig erzeugt, dass das Anregesignal (S A) im Wesentlichen ein Sinus-Signal ist.
[0007] Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die
Auswerteeinheit (5) derartig ausgestaltet ist, dass die Auswertaeinheit (5) die Dichte (r) des Mediums (1) im Wesentlichen nach folgender Formel bestimmt:
Figure imgf000014_0001
, wobei K ein Koeffizient für die Dichteempfindlichkeit der mechanisch schwingfähigen Einheit (2) ist, wobei F 0;Vak die Frequenz der mechanischen Schwingungen der mechanisch schwingfähigen Einheit (2) im Vakuum ist, wobei C ein Koeffizient für die Temperaturempfindlichkeit der mechanisch schwingfähigen Einheit (2) ist, wobei T ein Temperaturwert für das Medium (1) ist, wobei F0 Med die Frequenz (F0) der mechanischen Schwingungen der mechanisch schwingfähigen Einheit (2) im Medium (1) ist, wobei D ein Koeffizient für die Druckempfindlichkeit der mechanisch schwingfähigen Einheit (2) ist, und wobei P ein Druckwert für das Medium (1) ist.
[0008] Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mindestens ein Temperatursensor (6) zur Bestimmung der Temperatur (T) des Mediums (1) vorgesehen ist, und/oder dass mindestens ein Drucksensor (7) zur Bestimmung des Druckes (P) des Mediums (1) vorgesehen ist.
PCT/EP2007/055907 2006-07-19 2007-06-14 VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG EINER PROZESSGRÖßE EINES MEDIUMS WO2008009522A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE502007007071T DE502007007071D1 (de) 2006-07-19 2007-06-14 VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG EINER PROZESSGRÖßE EINES MEDIUMS
US12/309,474 US8220313B2 (en) 2006-07-19 2007-06-14 Apparatus for ascertaining and/or monitoring a process variable of a meduim
EP07765424A EP2041529B1 (de) 2006-07-19 2007-06-14 VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG EINER PROZESSGRÖßE EINES MEDIUMS
CN2007800337780A CN101517382B (zh) 2006-07-19 2007-06-14 用于确定和/或监控介质的过程变量的系统
AT07765424T ATE507463T1 (de) 2006-07-19 2007-06-14 VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG EINER PROZESSGRÖßE EINES MEDIUMS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006033819A DE102006033819A1 (de) 2006-07-19 2006-07-19 Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
DE102006033819.7 2006-07-19

Publications (1)

Publication Number Publication Date
WO2008009522A1 true WO2008009522A1 (de) 2008-01-24

Family

ID=38519762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/055907 WO2008009522A1 (de) 2006-07-19 2007-06-14 VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG EINER PROZESSGRÖßE EINES MEDIUMS

Country Status (6)

Country Link
US (1) US8220313B2 (de)
EP (1) EP2041529B1 (de)
CN (1) CN101517382B (de)
AT (1) ATE507463T1 (de)
DE (2) DE102006033819A1 (de)
WO (1) WO2008009522A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020249318A1 (de) * 2019-06-13 2020-12-17 Endress+Hauser SE+Co. KG Vibronischer multisensor
US11255766B2 (en) 2015-12-17 2022-02-22 Endress + Hauser SE+Co. KG Vibronic sensor and measuring assembly for monitoring a flowable medium

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007027797A2 (en) 2005-08-30 2007-03-08 Troxler Electronic Laboratories, Inc. Methods, systems, and computer program products for measuring the density of material
DE102007013557A1 (de) * 2006-08-02 2008-02-14 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
DE102007008669A1 (de) * 2007-02-20 2008-08-21 Endress + Hauser Gmbh + Co. Kg Verfahren zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums und entsprechende Vorrichtung
DE102008043764A1 (de) * 2008-11-14 2010-05-20 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße
DE102011075113A1 (de) * 2011-05-03 2012-11-08 Endress + Hauser Gmbh + Co. Kg Vorrichtung und Verfahren zum Betreiben einer Vorrichtung zur Bestimmung und/oder Überwachung mindestens einer physikalischen Prozessgröße
DE102011089808A1 (de) 2011-12-23 2013-06-27 Endress + Hauser Flowtec Ag Verfahren bzw. Meßsystem zum Ermitteln einer Dichte eines Fluids
DE102012113045B4 (de) 2012-12-21 2023-03-23 Endress+Hauser SE+Co. KG Verfahren zur Bestimmung und oder Überwachung von zumindest einem Parameter in der Automatisierungstechnik
WO2014176122A1 (en) 2013-04-23 2014-10-30 Micro Motion, Inc. A method of generating a drive signal for a vibratory sensor
KR20160003038A (ko) * 2013-04-26 2016-01-08 마이크로 모우션, 인코포레이티드 진동 센서 및 진동 센서의 진동을 변동시키는 방법
MX353530B (es) * 2013-04-29 2018-01-18 Micro Motion Inc Detección de límite de separador de arena.
EP2811269A1 (de) * 2013-06-06 2014-12-10 VEGA Grieshaber KG Multigrenzstandmessgerät
DE102013106172A1 (de) 2013-06-13 2014-12-18 Endress + Hauser Gmbh + Co. Kg Verfahren zur Kalibration oder zum Abgleich einer beliebigen schwingfähigen Einheit
DE102013109277B4 (de) * 2013-08-27 2024-10-02 Endress+Hauser SE+Co. KG Vorrichtung zur Bestimmung oder Überwachung einer Prozessgröße
DE102014113993A1 (de) * 2014-09-26 2016-03-31 Endress + Hauser Gmbh + Co. Kg Verfahren zum Herstellen eines Behältnisses für ein Medium
AT516420B1 (de) * 2014-10-20 2016-11-15 Anton Paar Gmbh Verfahren und Vorrichtung zur Ermittlung der Dichte eines Fluids
DE102014115693A1 (de) 2014-10-29 2016-05-04 Endress + Hauser Gmbh + Co. Kg Vibronischer Sensor
DE102014119061A1 (de) * 2014-12-18 2016-06-23 Endress + Hauser Gmbh + Co. Kg Vibronischer Sensor
CN107110824B (zh) * 2014-12-19 2020-06-26 高准公司 确定振动元件的振动响应参数
DE102015100415A1 (de) * 2015-01-13 2016-07-14 Krohne Messtechnik Gmbh Vorrichtung zur Bestimmung des Füllstands eines Mediums
DE102015101891A1 (de) 2015-02-10 2016-08-11 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße eines Mediums
DE102015102834A1 (de) * 2015-02-27 2016-09-01 Endress + Hauser Gmbh + Co. Kg Vibronischer Sensor
DE102015103071B3 (de) * 2015-03-03 2015-11-12 Endress + Hauser Gmbh + Co. Kg Vibronischer Sensor mit einem Stellelement
DE102015104536A1 (de) 2015-03-25 2016-09-29 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße
DE102015104533A1 (de) 2015-03-25 2016-09-29 Endress + Hauser Gmbh + Co. Kg Elektromagnetische Antriebs-/Empfangseinheit für ein Feldgerät der Automatisierungstechnik
CN104833610B (zh) * 2015-04-23 2017-07-28 电子科技大学 一种基于压电体声波谐振式传感器的液体属性测量方法
DE102015108845A1 (de) 2015-06-03 2016-12-08 Endress + Hauser Gmbh + Co. Kg Beschichtung für ein Messgerät der Prozesstechnik
DE102015112421A1 (de) 2015-07-29 2017-02-02 Endress + Hauser Gmbh + Co. Kg Phasenregeleinheit für vibronischen Sensor
DE102015112543A1 (de) 2015-07-30 2017-02-02 Endress+Hauser Gmbh+Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße
DE102016111134A1 (de) * 2016-06-17 2017-12-21 Endress+Hauser Gmbh+Co. Kg Vibronischer Sensor
DE102016112308A1 (de) 2016-07-05 2018-01-11 Endress + Hauser Gmbh + Co. Kg Elektromagnetische Antriebs-/Empfangseinheit für ein Feldgerät der Automatisierungstechnik
DE102016112309A1 (de) 2016-07-05 2018-01-11 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße
DE102016112743A1 (de) 2016-07-12 2018-01-18 Endress+Hauser Gmbh+Co. Kg Vibronischer Sensor
DE102016117194A1 (de) 2016-09-13 2018-03-15 Endress + Hauser Gmbh + Co. Kg Kompensation einer Phasenverschiebung zumindest einer Komponente einer Elektronik eines vibronischen Sensors
DE102016120326A1 (de) 2016-10-25 2018-04-26 Endress+Hauser SE+Co. KG Verfahren zur Zustandsüberwachung eines elektromechanischen Resonators
DE102016124365A1 (de) 2016-12-14 2018-06-14 Endress+Hauser SE+Co. KG Vibronischer Sensor mit Temperaturkompensation
DE102016124740A1 (de) 2016-12-19 2018-06-21 Endress+Hauser SE+Co. KG Vibronischer Sensor mit Störsignal Kompensation
DE102016125243A1 (de) 2016-12-21 2018-06-21 Endress+Hauser SE+Co. KG Vibronischer Sensor mit Temperaturkompensation
DE102017102550A1 (de) 2017-02-09 2018-08-09 Endress+Hauser SE+Co. KG Zustandsüberwachung eines vibronischen Sensors
DE102017130527A1 (de) 2017-12-19 2019-06-19 Endress+Hauser SE+Co. KG Vibronischer Sensor
DE102017130530A1 (de) 2017-12-19 2019-06-19 Endress+Hauser SE+Co. KG Verfahren zur Zustandsüberwachung eines vibronischen Sensors
DE102018115368A1 (de) * 2018-06-26 2020-01-02 Endress+Hauser SE+Co. KG Parametrierung eines Feldgeräts
DE102018127526A1 (de) 2018-11-05 2020-05-07 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102018128734A1 (de) 2018-11-15 2020-05-20 Endress+Hauser SE+Co. KG Vibronischer Sensor mit Temperaturkompensation
DE102019109487A1 (de) 2019-04-10 2020-10-15 Endress+Hauser SE+Co. KG Zustandsüberwachung eines vibronischen Sensors
DE102019110821A1 (de) 2019-04-26 2020-10-29 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102019112866A1 (de) 2019-05-16 2020-11-19 Endress+Hauser SE+Co. KG Zustandsüberwachung eines vibronischen Sensors
DE102019114174A1 (de) 2019-05-27 2020-12-03 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102019116150A1 (de) 2019-06-13 2020-12-17 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102019116152A1 (de) 2019-06-13 2020-12-17 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102019131485A1 (de) 2019-11-21 2021-05-27 Endress+Hauser SE+Co. KG Zustandsüberwachung eines vibronischen Sensors
DE102020104065A1 (de) 2020-02-17 2021-08-19 Endress+Hauser SE+Co. KG Vibronischer Sensor mit reduzierter Anfälligkeit für Gasblasenbildung
DE102020104066A1 (de) 2020-02-17 2021-08-19 Endress+Hauser SE+Co. KG Vibronischer Sensor
DE102020105214A1 (de) 2020-02-27 2021-09-02 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102020116299A1 (de) 2020-06-19 2021-12-23 Endress+Hauser SE+Co. KG Symmetrierung eines vibronischen Sensors
DE102020116278A1 (de) 2020-06-19 2021-12-23 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102020127077A1 (de) 2020-10-14 2022-04-14 Endress+Hauser SE+Co. KG Verfahren zum Betreiben eines vibronischen Sensors
CN113252508B (zh) * 2021-06-28 2021-11-02 中国计量科学研究院 一种用于谐振式密度计的闭环控制系统及方法
DE202021103688U1 (de) 2021-07-08 2021-09-06 Endress+Hauser SE+Co. KG Zustandsüberwachung eines vibronischen Sensors
DE102021122533A1 (de) 2021-08-31 2023-03-02 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102021122534A1 (de) 2021-08-31 2023-03-02 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102021126092A1 (de) 2021-10-07 2023-04-13 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102021126093A1 (de) 2021-10-07 2023-04-13 Endress+Hauser SE+Co. KG Entkopplungseinheit für einen vibronischen Sensor
DE102021129416A1 (de) 2021-11-11 2023-05-11 Endress+Hauser SE+Co. KG Zustandsüberwachung für einen vibronischen Sensor
DE102022115591A1 (de) 2022-06-22 2023-12-28 Endress+Hauser SE+Co. KG Modularer vibronischer Multisensor
DE102022115592A1 (de) 2022-06-22 2023-12-28 Endress+Hauser SE+Co. KG Modularer vibronischer Multisensor
DE102022115594A1 (de) 2022-06-22 2023-12-28 Endress+Hauser SE+Co. KG Modularer vibronischer Multisensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985916A1 (de) * 1998-09-09 2000-03-15 Endress + Hauser GmbH + Co. Vorrichtung zur Feststellung und/oder Überwachung eines vorbestimmten Füllstandes in einem Behälter
DE10057974A1 (de) * 2000-11-22 2002-05-23 Endress Hauser Gmbh Co Verfahren und Vorrichtung zur Feststellung und/oder Überwachung des Füllstands eines Mediums in einem Behälter bzw. zur Ermittlung der Dichte eines Mediums in einem Behälter

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170094A (en) * 1961-05-29 1965-02-16 Roth Wilfred Liquid level indicator
CH619043A5 (de) * 1977-07-27 1980-08-29 Straumann Inst Ag
GB2067756B (en) * 1980-01-15 1983-11-16 Marconi Co Ltd Liquid level measurement
LU84185A1 (fr) * 1982-06-07 1983-09-02 Egemin Nv Appareil de mesure
DE3336991A1 (de) * 1983-10-11 1985-05-02 Endress U. Hauser Gmbh U. Co, 7867 Maulburg Vorrichtung zur feststellung und/oder ueberwachung eines vorbestimmten fuellstands in einem behaelter
NL8801836A (nl) * 1988-07-20 1990-02-16 Enraf Nonius Delft Inrichting voor het bepalen van het niveau van het grensvlak tussen een eerste en een tweede medium in een reservoir.
US6044694A (en) * 1996-08-28 2000-04-04 Videojet Systems International, Inc. Resonator sensors employing piezoelectric benders for fluid property sensing
EP0875741B1 (de) * 1997-04-30 2008-08-20 Endress + Hauser GmbH + Co. KG Anordnung zur Feststellung und/oder Überwachung eines vorbestimmten Füllstands in einem Behälter
US6236322B1 (en) * 1998-09-09 2001-05-22 Endress + Hauser Gmbh + Co. Apparatus for establishing and/or monitoring a predetermined filling level in a container
DE10014724A1 (de) * 2000-03-24 2001-09-27 Endress Hauser Gmbh Co Verfahren und Vorrichtung zur Feststellung und/oder Überwachung des Füllstandes eines Mediums in einem Behälter
US7220229B2 (en) * 2000-07-18 2007-05-22 Global Monitors, Inc. Density/solute monitor of multi-modalities and signal processing scheme
US6718832B1 (en) * 2000-09-19 2004-04-13 John C. Hay, Jr. Method and apparatus for measuring physical properties of matter
US6784671B2 (en) * 2002-02-04 2004-08-31 Mississippi State University Moisture and density detector (MDD)
DE10308087A1 (de) * 2003-02-24 2004-09-09 Endress + Hauser Gmbh + Co. Kg Schutz vor den Effekten von Kondensatbrücken
WO2005103674A2 (en) * 2004-04-21 2005-11-03 Symyx Technologies, Inc. Portable fluid sensing system and sensing method using a flexural resonator
DE102004036018A1 (de) * 2004-07-23 2006-02-16 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung mindestens einer Prozessgröße
GB0420181D0 (en) * 2004-09-10 2004-10-13 Dt Assembly & Test Europ Ltd Metering apparatus
WO2007027797A2 (en) * 2005-08-30 2007-03-08 Troxler Electronic Laboratories, Inc. Methods, systems, and computer program products for measuring the density of material
EP1804048B1 (de) * 2005-12-30 2010-05-12 Services Pétroliers Schlumberger Dichte- und Viskositätssensor
CA2723047C (en) * 2008-05-01 2016-07-19 Micro Motion, Inc. Very high frequency vibratory flow meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985916A1 (de) * 1998-09-09 2000-03-15 Endress + Hauser GmbH + Co. Vorrichtung zur Feststellung und/oder Überwachung eines vorbestimmten Füllstandes in einem Behälter
DE10057974A1 (de) * 2000-11-22 2002-05-23 Endress Hauser Gmbh Co Verfahren und Vorrichtung zur Feststellung und/oder Überwachung des Füllstands eines Mediums in einem Behälter bzw. zur Ermittlung der Dichte eines Mediums in einem Behälter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11255766B2 (en) 2015-12-17 2022-02-22 Endress + Hauser SE+Co. KG Vibronic sensor and measuring assembly for monitoring a flowable medium
WO2020249318A1 (de) * 2019-06-13 2020-12-17 Endress+Hauser SE+Co. KG Vibronischer multisensor
US11994420B2 (en) 2019-06-13 2024-05-28 Endress+Hauser SE+Co. KG Vibronic multisensor with pressure detection unit

Also Published As

Publication number Publication date
EP2041529B1 (de) 2011-04-27
DE102006033819A1 (de) 2008-01-24
US20100083752A1 (en) 2010-04-08
EP2041529A1 (de) 2009-04-01
US8220313B2 (en) 2012-07-17
CN101517382B (zh) 2011-11-16
CN101517382A (zh) 2009-08-26
DE502007007071D1 (de) 2011-06-09
ATE507463T1 (de) 2011-05-15

Similar Documents

Publication Publication Date Title
EP2041529B1 (de) VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG EINER PROZESSGRÖßE EINES MEDIUMS
EP2054702B1 (de) Vorrichtung zur bestimmung und/oder überwachung einer prozessgrösse eines mediums
EP2798319B1 (de) Vorrichtung zur bestimmung und/oder überwachung mindestens einer prozessgrösse
EP2588842B1 (de) VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG EINER PROZESSGRÖßE EINES MEDIUMS
EP2044400A1 (de) Vorrichtung mit einer mechanisch schwingfähigen einheit zur bestimmung und/oder uberwachung einer prozessgrösse eines mediums
EP3877732A1 (de) Vibronischer multisensor
EP3472578B1 (de) Vibronischer sensor und verfahren zum betreiben eines vibronischen sensors
EP2798318B1 (de) VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG MINDESTENS EINER PROZESSGRÖßE
EP2564174B1 (de) VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG EINER PROZESSGRÖßE EINES MEDIUMS
EP1529202A2 (de) Vorrichtung zur überwachung eines vorbestimmten füllstands eines messmediums in einem behälter
WO2010040582A1 (de) VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG EINER PROZESSGRÖßE EINES MEDIUMS
EP3580532A1 (de) Zustandsüberwachung eines vibronischen sensors
DE102014119061A1 (de) Vibronischer Sensor
AT516281B1 (de) Verfahren zur Ermittlung des Befüllungsgrads eines Schwingerrohrs eines Biegeschwingers und Biegeschwinger
WO2012028426A2 (de) Vibronisches messgerät
EP3555575A1 (de) Vibronischer sensor mit störsignal kompensation
WO1998053282A1 (de) Vibrations-füllstands-grenzschalter und verfahren zur feststellung und/oder überwachung eines füllstands eines mediums in einem behälter
WO2021255105A1 (de) Symmetrierung eines vibronischen sensors
DE102014118393A1 (de) Vorrichtung und ein Verfahren zur Bestimmung und/oder Überwachung mindestens einer Prozessgröße
DE102022110405B3 (de) Vibronischer Grenzstandsensor mit Schalldetektor
EP4396546A1 (de) Vibronischer multisensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780033778.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07765424

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007765424

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12309474

Country of ref document: US