[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008081962A1 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
WO2008081962A1
WO2008081962A1 PCT/JP2007/075357 JP2007075357W WO2008081962A1 WO 2008081962 A1 WO2008081962 A1 WO 2008081962A1 JP 2007075357 W JP2007075357 W JP 2007075357W WO 2008081962 A1 WO2008081962 A1 WO 2008081962A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
shear
elastic member
stacking direction
laminate
Prior art date
Application number
PCT/JP2007/075357
Other languages
English (en)
French (fr)
Inventor
Yutaka Hotta
Kimihide Horio
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE112007002945.5T priority Critical patent/DE112007002945B4/de
Priority to US12/312,775 priority patent/US8114553B2/en
Priority to CN200780045766XA priority patent/CN101569048B/zh
Publication of WO2008081962A1 publication Critical patent/WO2008081962A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell, and more particularly to improving the reliability of a fuel cell stack.
  • a fuel cell for example, a polymer electrolyte fuel cell, has a reactive gas (a fuel gas containing hydrogen and an oxidizing gas containing oxygen) on two electrodes (a fuel electrode and an oxygen electrode) facing each other with an electrolyte membrane in between.
  • the chemical energy of a substance is directly converted into electric energy by supplying an electric field and causing an electrochemical reaction.
  • a so-called stack structure in which a power generator including a substantially flat electrolyte membrane is stacked and fastened in the stacking direction is known.
  • a fuel cell may be required to have sufficient resistance against external impacts and vibrations depending on its use conditions.
  • a plate covering the side surface along the stacking direction of the fuel cell stack is provided, and a buffer member is disposed between the plate and the fuel cell stack.
  • the present invention has been made to solve the above-described problems, and an object thereof is to improve the impact resistance and vibration resistance of a fuel cell.
  • a first aspect of the present invention provides a fuel cell using a power generator having an electrolyte layer and electrodes provided on both sides of the electrolyte layer.
  • a fuel cell according to a first aspect includes a stack including a plurality of stacked power generators, and a sandwich A holding member; and a shear elastic member.
  • the sandwiching member is a member for sandwiching the laminate in the stacking direction.
  • the shear elastic member is elastically deformed in a cutting direction orthogonal to the stacking direction.
  • shock resistance and vibration resistance of the fuel cell are improved by the seismic isolation effect of the shear elastic member that elastically deforms in the shear direction.
  • the shear elastic member may include a rubber elastic member having rubber elasticity.
  • the amount of elastic deformation of the shear elastic member in the shear direction may be larger than the amount of elastic deformation of the laminate in the shear direction. In this way, the shearing force applied to the laminate is reduced, and the impact resistance and vibration resistance of the fuel cell are improved.
  • At least a peripheral portion of a contact surface that contacts another member in the stacking direction may be bonded to the other member.
  • the shear elastic member in the shear elastic member, at least a peripheral portion of a contact surface in contact with another member in the stacking direction may be bonded to the other member.
  • the shear elastic member includes a plurality of rubber elastic members having rubber elasticity, and one or a plurality of small deformation members having a small amount of compressive deformation in the stacking direction of the plurality of rubber elastic members.
  • the plurality of rubber elastic members May be laminated via small deformation members. If it carries out like this, the elastic deformation amount of a shear direction can be ensured, suppressing the elastic deformation amount of the compression direction of a shear elastic member. As a result, the impact resistance and vibration resistance of the fuel cell can be improved in both the shearing direction and the stacking direction.
  • At least one end in the stacking direction of the shear elastic member is the small deformation member, and the small deformation elastic member at the end includes the sandwiching member.
  • the holding member or the laminate may be in contact with each other, at least one end in the stacking direction may be an elastic member, and the rubber elastic member at the end may be in contact with the holding member or the laminate.
  • the fuel cell according to the first aspect further includes a reaction force applying member that applies a reaction force to at least a part of the side surface along the stacking direction of the stacked body when the stacked body is displaced in the shearing direction. Also good. In this way, when the laminated body is displaced in the shear direction, a reaction force is applied to the laminated body, so that the shearing force applied to the laminated body can be reduced. As a result, the impact resistance and vibration resistance of the fuel cell can be further improved.
  • the fuel cell according to the first aspect further includes a plate that covers at least a part of a side surface along the stacking direction of the stacked body, and the reaction force applying member includes the stacked body and the pre-coil. It may be a cushioning member having a cushioning characteristic disposed between the two. By so doing, the shear force applied to the laminate can be reduced by the reaction force applied to the laminate from the buffer member.
  • the stacked body may further include a current collector plate disposed between the plurality of stacked power generators and the clamping member, and the current collector plate And an insulating plate disposed between the holding member and the holding member.
  • the present invention can be implemented in various modes including a device invention such as a vehicle or a moving body on which the fuel cell according to the above aspect is mounted, and a method invention such as a fuel cell installation method.
  • FIG. 1 is an explanatory diagram showing the configuration of the fuel cell in the example.
  • FIG. 2 is an explanatory diagram showing a state in which the power generators are stacked.
  • FIG. 3 is an explanatory view showing the configuration of the shear elastic member 50.
  • Figure 4 shows the sample used for the simulation.
  • Figure 5 is a graph showing the simulation results.
  • Fig. 6 is a diagram showing E P D M with a laminated structure and a single structure.
  • FIG. 7 is a diagram illustrating the behavior when force is applied from the side to the fuel cell in the example.
  • FIG. 8 is a diagram for explaining the behavior when force is applied to the conventional fuel cell from the side.
  • FIG. 9 is an explanatory diagram for explaining an aspect of reaction gas Z cooling water leakage.
  • FIG. 10 is a diagram showing a shear elastic member in the first modification.
  • FIG. 11 is a schematic view showing a fuel cell in a fifth modification.
  • FIG. 12 is a diagram illustrating the behavior when force is applied from the side to the fuel cell in the fifth modification.
  • FIG. 1 is an explanatory diagram showing the configuration of the fuel cell in the example.
  • FIG. 2 is an explanatory diagram showing a state in which the power generators are stacked.
  • FIG. 3 is an explanatory view showing the configuration of the shear elastic member 50.
  • the fuel cell 100 includes a laminate 60 as a main part.
  • the laminated body 60 includes a power generation stack including a plurality of stacked power generation bodies 61, two current collecting plates 62, and two insulating plates 63. Since the configuration near the end of the power generation stack is subject to right and left, an enlarged view of the vicinity of the left end of the power generation stack is shown at the bottom of Fig.
  • the two current collector plates 62 are arranged so as to sandwich the power generation stack at both ends in the stacking direction of the power generation stack.
  • the two insulating plates 63 are arranged outside the insulating plates 63, respectively.
  • the fuel cell 100 further includes two end plates 10 which are sandwiching members for sandwiching the laminate 60 in the stacking direction, and is interposed between the end plate 10 and the laminate 60.
  • a shear elastic member 50 and a tension plate 20 are disposed between the end plate 10 and the insulating plate 63.
  • the tension plate 20 is disposed so as to cover a part of the side surface of the multilayer body 60 along the stacking direction.
  • the fuel cell 100 has a structure in which a tension plate ⁇ 20 is coupled to each end plate ⁇ ⁇ ⁇ ⁇ 10 by bolts 30 to fasten the laminate 60 with a predetermined fastening force P in the stacking direction. It has become.
  • the end plate 10 and the tension plate 20 are made of metal such as steel in order to ensure rigidity.
  • the insulating plate 63 is formed of an insulating member such as resin.
  • the current collector plate 62 is formed of a gas impermeable conductive member such as dense carbon or copper plate.
  • FIG. 1 On the upper side of FIG. 1, an enlarged view of a portion of the side surface of the laminate 60 covered with the tension plate 20 is shown. As shown in the enlarged view, a buffer member 40 is disposed between the tension plate 20 and the laminated body 60.
  • the buffer member 40 is formed of a material having elasticity and insulation, for example, rubber or foamed resin.
  • the buffer member 40 has a thickness of about 2 mm to 3 mm, for example, and may be pressed against the side surface of the laminated body 60 by a tension plate 20 with a predetermined force. It does not have to be released.
  • the power generation stack is formed by stacking a large number of, for example, several hundred power generation units 61 with a separator 80 (not shown in FIG. 1) sandwiched therebetween.
  • the power generator 61 is composed of a membrane electrode assembly (hereinafter also referred to as MEA) and A seal portion 7 joined to the outer peripheral edge of the MEA is provided.
  • the MEA includes an electrolyte membrane 5 made of an ion exchange membrane, a fanode (not shown) disposed on one surface of the electrolyte membrane 5, and a force disposed on the other surface of the electrolyte membrane 5.
  • a sword (not shown), an anode and a force sword, and diffusion layers 4 and 6 disposed between the separators 80 and 60, respectively.
  • the diffusion layers 4 and 6 function as a reaction gas (oxidation gas or fuel gas) flow path, and are, for example, a porous body made of metal or carbon.
  • the seal portion 7 seals between the separators 80 and between the electrodes, and is configured using, for example, a resin material such as silicon rubber, ptylgo steel, or fluororubber.
  • the seal portion 7 is manufactured by injection molding a resin material with the outer periphery of the MEA facing the mold cavity. By doing so, the MEA and the seal portion 7 are joined without a gap, and the oxidizing gas and the fuel gas can be prevented from leaking from the joint portion.
  • the separator evening 80 includes a force sword plate 8 facing the force sword side of the power generator 61, an anode plate 8 3 facing the anode side, and a cathode braid 8 1
  • An intermediate plate 8 2 sandwiched between the anode plate 8 3 is provided. These three plates are stacked and joined by hot pressing.
  • Each of the plates 8 1 to 8 3 is formed of, for example, a SUS (stainless steel) plate.
  • the laminate 60 is provided with a manifold for supplying and discharging the reaction gas and the cooling water so as to penetrate the power generation stack in the stacking direction.
  • the separator 80 is formed with a reaction gas flow path for distributing the reaction gas supplied to the manifold described above to the anode or cathode, and a cooling water flow path for circulating the cooling water. Yes.
  • FIG. 2 shows an oxidizing gas supply manifold 14 0, an oxidizing gas supply channel 8 4, an oxidizing gas discharge channel 8 5, and an oxidizing gas discharge manifold hold. 1 30 is indicated, and the arrow indicates the flow path of the oxidizing gas.
  • the left end plate 10 the shear elastic member 50, the insulating plate 63, and the current collector plate 62 have through holes that communicate the outside and the manifolds provided in the power generation stack. Each is provided (illustration is omitted).
  • the configuration of the shear elastic member 50 will be described with reference to FIG.
  • the shear elastic member 50 in this embodiment is configured by alternately laminating and adhering four elastic members 51 and three rigid members 52.
  • the elastic member 51 is formed using ethylene propylene dango (EPDM), and the rigid member 52 is formed using stainless steel (SUS) ceramic.
  • the thickness t ⁇ of the elastic member 51 is, for example, 1.5 to 4.0 mm, and the thickness t 2 of the rigid member 52 is, for example, 0.5 to 1.5 mm. Yes.
  • the shear elastic member 50 By making the shear elastic member 50 into such a laminated structure, the elastic deformation in the shear direction is increased (the shear elastic modulus is decreased) while suppressing the elastic deformation in the compression direction (increasing the compression elastic modulus). be able to.
  • the compression direction in the shear elastic member 50 is a direction parallel to the lamination direction, and the shear direction is a direction orthogonal to the lamination direction.
  • the shear elastic member 50 is not limited to the above configuration. For example, a configuration may be adopted in which four elastic members 51 and three rigid members 52 are alternately stacked and bonded, and metal members are provided at both ends.
  • Figure 4 shows the sample used for the simulation.
  • Figure 5 is a graph showing the simulation results.
  • Fig. 6 is a diagram showing E P D M with a laminated structure and a single structure.
  • FIG. 4 A simulation was performed on a sample (Fig. 4) in which a square EPDM sheet RB with a side length of 2 25 mm was sandwiched between SUS sheets ST.
  • compression displacement and shear displacement were measured for multiple samples with different thickness T.
  • the compression displacement is the stacking direction when compressive force F ⁇ is applied.
  • the shear displacement is the amount of deformation in the shear direction when the shear force F 2 is applied.
  • the compressive force F 1 and the shear force F 2 were set to 5000 N (two Yunes), respectively.
  • Figure 5 shows the results.
  • the shear displacement increases in proportion to the thickness T of the EPDM sheet RB.
  • the compressive displacement increases approximately in a quadratic curve as the thickness T increases. That is, when the thickness T of the EP DM sheet RB is in the range of 4. Om m or less, the thickness T increases gradually with respect to the increase, and the thickness exceeds 4.0. From around, it increases rapidly with increasing thickness T. Therefore, as the thickness T of the EPDM sheet RB decreases, the ratio of the shear displacement to the compression displacement increases.
  • the fuel cell 100 is provided with the shear elastic member 50, so that when the shock or vibration is applied to the fuel cell 100, the reaction force applied from the buffer member 40 to the laminate 60. So that the shock and vibration applied to the fuel cell 100 Transmission to the laminate 60 can be further suppressed. As a result, the impact resistance and vibration resistance of the fuel cell 100 can be further improved.
  • FIG. 7 is a diagram illustrating the behavior when force is applied from the side to the fuel cell in the example.
  • FIG. 8 is a diagram for explaining the behavior when force is applied to the conventional fuel cell from the side.
  • the dimensional ratio of each part is expressed by changing it appropriately for easy understanding.
  • the upper and lower dimensions of the cushioning member 40 and the tension plate 20 are shown enlarged.
  • the amount of deformation in the vertical direction of the laminate 60 is greatly depicted.
  • the laminated elastic body 50 is easily elastically deformed in the shearing direction of the laminated body 60 (the shear elastic modulus is smaller than that of the laminated body 60).
  • the entire laminate 60 is displaced downward in FIG.
  • the entire laminate 6 compresses the lower cushioning member 40 in FIG. 7, so that a large reaction force Q is applied from the cushioning member 40 to the laminate 60.
  • the maximum shear stress f applied to the laminate 60 is (F ⁇ Q) 2.
  • the conventional fuel cell 100 b (FIG. 8) is not provided with the shear elastic member 50.
  • the stacked body 60 is fixed to the end plate ⁇ 10, so the stacked body 60 becomes the fuel cell 1 in the embodiment. It cannot be displaced downward as much as 0 0. Then, the reaction force q applied from the lower buffer member 40 in FIG.
  • the maximum shear stress fb (F 1 q) Z 2 conventionally applied to the laminate 60 is the maximum shear stress f described above in this embodiment is (F ⁇ Q) It can be seen that it is larger than Z2. That is, in this embodiment, the shear elastic member 50 is provided. Thus, it can be seen that the shear stress applied to the laminate 60 is reduced as compared with the conventional case. As a result, the impact resistance and vibration resistance of the fuel cell 100 can be further improved.
  • the shear elastic member 50 in the present embodiment has a laminated structure as shown in FIG. 3, thereby suppressing elastic deformation in the compression direction (while increasing the compression elastic modulus) and elastic deformation in the shear direction. Is increased (the shear modulus is decreased). Therefore, the shear elastic member 50 is not easily deformed in the stacking direction, and the displacement of the stack 60 in the stacking direction is suppressed. As a result, it is possible to suppress impact and vibration resistance in the stacking direction by suppressing the side surface of the laminate 60 and the buffer member 40 from slipping and rubbing in the stacking direction.
  • the elastic member 51 located at the outer end of the shear elastic member 50 is preferably bonded to the end plate 10 with sufficient strength, and the inner end of the shear elastic member 50 It is preferable that the elastic member 51 located at is adhered to the end of the laminate 60, that is, the insulating plate 63 with sufficient strength.
  • the shear elastic member 50 on the side to which all or a part of the reaction gas and the cooling water are supplied is preferably bonded with sufficient strength.
  • FIG. 9 is an explanatory diagram for explaining an aspect of reaction gas Z cooling water leakage. If this adhesion is not sufficient, as shown in FIG. 9, there is a gap NT between the shear elastic member 50 and the end plate cage 10 or between the cut elastic member 50 and the laminate 60. This is because there is a risk of leakage of reaction gas and cooling water. Specifically, at least the peripheral edge portion of the contact surface between the shear elastic member 50 and the end plate 10 or between the shear elastic member 50 and the laminate 60 is sufficiently strong. It is preferable that they are bonded together.
  • the number of laminated elastic members 51 in the shear elastic member 50 is 4 layers as in the embodiment. Is not limited. Further, in the embodiment, the end surface of the shear elastic member 50 is an elastic member 5 mm at both ends, but is not limited thereto.
  • FIG. 10 is a diagram showing a shear elastic member in the first modification.
  • the elastic member 51 may have two layers. According to the specifications of the fuel cell 100, the number of layers is sufficient to ensure the required amount of elastic deformation in the shearing direction to ensure the required impact resistance and vibration resistance, and no gas leakage occurs. It may be appropriately changed so that the elastic deformation amount in the stacking direction can be suppressed to a certain extent. For example, when high impact resistance Z vibration resistance is required, such as when a fuel cell 100 is mounted on a vehicle, the number of layers of the elastic member 51 is set to ensure a high amount of elastic deformation in the shear direction. 5 or more layers may be used. In addition, when the fuel cell 100 is installed in a house or the like, and the high shock resistance Z vibration resistance is not required, the elastic member 51 may be one layer (the rigid member 52 is not provided).
  • the end surface of the shear elastic member may be a rigid member 52 at both ends.
  • the elastic member 51 located at the outer end of the shear elastic member 50 is bonded to the end plate 10 with sufficient strength, and is located at the inner end of the shear elastic member 50 b.
  • the rigid member 52 to be bonded is preferably bonded to the end of the laminate 60, that is, the insulating plate 63 with sufficient strength.
  • the rigid member 52 when the end face of the shear elastic member is the rigid member 52 as shown in FIG. 10, the rigid member 52 has sufficient rigidity, and there is no possibility of generating the gap NT as shown in FIG.
  • the connection between the rigid member 52 at the end and the member in contact with the rigid member 52 at the end in the stacking direction (for example, the end plate 10 or the insulating plate 63) is omitted. May be. In this way, the assembly process of the fuel cell 100 can be reduced and the assembly can be facilitated because the bonding process is unnecessary. If both ends of the shear elastic member 50 are elastic members 51 as in the embodiment, an adhesion process is required, but the number of rigid members 52 can be reduced and the number of parts can be reduced.
  • the plurality of elastic members 51 are formed using EPDM, but the invention is not limited to this.
  • the elastic member 51 is preferably formed using various materials having rubber elasticity, for example, rubber or elastomer. Specifically, silicon rubber, butyl rubber, acrylic rubber, natural rubber, fluorine rubber, ethylene propylene rubber, styrene elastomer, fluorine elastomer, and the like can be used. Rubber elasticity is the elasticity caused by the expansion and contraction (micro Brownian motion) of polymer chains.
  • the elastic member 51 may be formed of a material that elastically deforms in a shearing direction to some extent, depending on the impact resistance and vibration resistance required for the fuel cell 100, even if it does not have rubber elasticity. possible. Even in this case, the elastic member 51 is preferably made of a material whose elastic deformation amount in the shearing direction is larger than the elastic deformation amount in the shearing direction of the laminate 60.
  • the plurality of elastic members 51 are stacked with the rigid member 52 interposed therebetween, but the plurality of elastic members 51 is not limited to the rigid member 52 and is not limited to the elastic member 5. It suffices that the layers are laminated with a member that does not compressively deform in the laminating direction from 1.
  • a member that is not as rigid as metal or ceramics but does not have elastic properties for example, a cloth knitted with high-strength fibers or plastic may be used.
  • the buffer member 40 has a two-layer structure including an insulating layer that is in contact with the laminated body 60, and a buffer layer that is disposed between the insulating layer and the tension plate 20 to generate a reaction force.
  • a fluorine resin can be used for the insulating layer, and foamed urethane, fluorine rubber, a fluorine elastomer, or the like can be used for the buffer layer.
  • the buffer member 40 can be a bag-shaped member filled with air.
  • 5th modification The buffer member 40 in the above embodiment can be omitted.
  • the tension plate 20 is short-circuited between the plurality of power generators 61 constituting the laminate 60 by using an insulating material instead of metal or by applying an insulating layer. Configured to not cause.
  • a fuel cell that does not include the buffer member 40 will be described as a fifth modification with reference to FIG. 11 and FIG.
  • FIG. 11 is a schematic view showing a fuel cell in a fifth modification.
  • FIG. 12 is a diagram illustrating the behavior when force is applied from the side to the fuel cell in the fifth modification.
  • FIG. 11 and FIG. 12 similar to FIG. 7 and FIG. 8 described above, the dimensional ratios of the respective parts are appropriately changed for easy understanding.
  • the fuel cell 100 c in the fifth modified example is different from the fuel cell 100 in the example in that the buffer member 40 is not provided. Further, in the fuel cell 10 0 c in the fifth modified example, the tension plate 20 is positioned closer to the side surface of the laminated body 60 because the buffer member 40 is not provided. A space SP is provided between the side surfaces of the laminate 60. Since the other configuration of the fuel cell 100 c in the fifth modification is the same as that of the fuel cell 100 in the embodiment, description thereof is omitted.
  • the shear elastic member 50 is disposed at both ends of the laminate 60, but the shear elastic member 50 may be disposed only at one end.
  • the shear elastic member 50 may be disposed only on one side.
  • the insulating plate 63 in the embodiment may be omitted when the shear elastic member 50 has sufficient insulating properties. In such a case, the shear elastic member 50 is contacted and bonded to the current collector plate 62.
  • the separator 80 has a configuration in which three metal plates are laminated and has a flat shape.
  • the configuration and material of the separator 80 have other arbitrary configurations.
  • the shape of the separator 80 can be any other shape.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 電解質層と前記電解質層の両側にそれぞれ設けられた電極とを有する発電体を用いる燃料電池は、積層された複数の発電体を含む積層体と、挟持部材と、剪断弾性部材とを備える。挟持部材は、積層体を積層方向に挟持するための部材である。剪断弾性部材は、積層体の積層方向の端面と挟持部材との間に介在すると共に、積層方向と直交する剪断方向に弾性変形する。 

Description

明細書
燃料電池 技術分野
本発明は、燃料電池に関し、特に、燃料電池スタックの信頼性の向上に関する。 背景技術
燃料電池、 例えば、 固体高分子型燃料電池は、 電解質膜を挟んで対峙する 2つ の電極 (燃料極と酸素極) にそれぞれ反応ガス (水素を含有する燃料ガスと酸素 を含有する酸化ガス) を供給して電気化学反応を引き起こすことにより、 物質の 持つ化学エネルギを直接電気工ネルギに変換する。 かかる燃料電池の主要な構造 として、 略平板状の電解質膜を含む発電体を積層して、 積層方向に締結する、 い わゆるスタック構造のものが知られている。
ところで、 燃料電池は、 その使用条件によって、 外部からの衝撃や振動に対す る十分な耐性が要求される場合がある。 燃料電池の耐衝撃性ゃ耐振動性を向上さ せるために、 燃料電池スタックの積層方向に沿う側面を覆うプレー卜を設け、 そ のプレー卜と燃料電池スタックとの間に緩衝部材を配置する技術が知られている。 しかしながら、 燃料電池に対する耐衝撃性、 耐振動性の要求の高まりなどのた め、 燃料電池の耐衝撃性ゃ耐振動性のさらなる向上が望まれていた。 発明の開示
本発明は、 上記課題を解決するためになされたものであり、 燃料電池の耐衝撃 性ゃ耐振動性を向上させることを目的とする。
上記課題を解決するために本発明の第 1の態様は、 電解質層と前記電解質層の 両側にそれぞれ設けられた電極とを有する発電体を用いる燃料電池を提供する。 第 1の態様に係る燃料電池は、 積層された複数の前記発電体を含む積層体と、 挟 持部材と、 剪断弾性部材と、 を備える。 前記挟持部材は、 前記積層体を積層方向 に挟持するための部材である。 前記剪断弾性部材は、 前記積層方向と直交する剪 断方向に弾性変形する。
こうすれば、 剪断方向に弾性変形する剪断弾性部材の免震効果により、 燃料電 池の耐衝撃性ゃ耐振動性が向上する。
第 1の態様に係る燃料電池において、 前記剪断弾性部材は、 ゴム弾性を有する ゴム弾性部材を含んでも良い。こうすれば、ゴム弾性部材による免震効果によリ、 燃料電池の耐衝撃性ゃ耐振動性が向上する。
第 1の態様に係る燃料電池において、 前記剪断弾性部材の前記剪断方向の弾性 変形量は、 前記積層体の前記剪断方向の弾性変形量より大きくても良い。 こうす れば、 積層体にかかる剪断力が低減され、 燃料電池の耐衝撃性ゃ耐振動性が向上 する。
第 1の態様に係る燃料電池において、 剪断弾性部材において、 前記積層方向に 他の部材と接する接触面のうち少なくとも周縁部は、 前記他の部材に接着されて いても良い。 こうすれば、 弾性部材のへたりを抑制し、 その結果、 反応ガスや冷 却媒体の漏れを抑制することができる。
第 1の態様に係る燃料電池において、 前記剪断弾性部材において、 前記積層方 向に他の部材と接する接触面のうち少なくとも周縁部は、 前記他の部材に接着さ れていても良い。前記剪断弾性部材は、ゴム弾性を有する複数のゴム弾性部材と、 前記複数のゴム弾性部材ょリ積層方向の圧縮変形量が小さい 1または複数の小変 形部材を含み、 前記複数のゴム弾性部材は、 小変形部材を介して積層されていて も良い。 こうすれば、 剪断弾性部材の圧縮方向の弾性変形量を抑制しつつ、 剪断 方向の弾性変形量を確保することができる。 この結果、 燃料電池の耐衝撃性ゃ耐 振動性を、 剪断方向、 積層方向ともに向上させることができる。
第 1の態様に係る燃料電池において、 前記剪断弾性部材は、 少なくとも一方の 積層方向の端部が前記小変形部材であリ、 前記端部の小変形弾性部材は、 前記挟 持部材または前記積層体に接しても良く、 少なくとも一方の積層方向の端部がゴ 厶弾性部材であり、 前記端部のゴム弾性部材は、 前記挟持部材または前記積層体 に接していても良い。
第 1の態様に係る燃料電池は、 さらに、 前記積層体が前記剪断方向に変位した 場合に、 前記積層体の積層方向に沿う側面の少なくとも一部に反力を与える反力 付与部材を備えても良い。 こうすれば、 積層体が剪断方向に変位したときに、 積 層体に反力が加えられることによリ、 積層体にかかる剪断力を低減することがで きる。 この結果、 燃料電池の耐衝撃性ゃ耐振動性を、 より向上させることができ る。
第 1の態様に係る燃料電池は、 さらに、 前記積層体の積層方向に沿う側面の少 なくとも一部を覆うプレー卜を備え、 前記反力付与部材は、 前記積層体と前記プ レ一卜との間に配置された緩衝特性を有する緩衝部材であっても良い。 こうすれ ば、 緩衝部材から積層体に加えられる反力により、 積層体にかかる剪断力を低減 することができる。
第 1の態様に係る燃料電池において、 前記積層体は、 さらに、 前記積層された 複数の前記発電体と、 前記挟持部材との間に配置された集電板を含んでも良く、 前記集電板と前記挟持部材との間に配置された絶縁板を含んでも良い。
本発明は、 この他にも、 上記態様に係る燃料電池を搭載した車両もしくは移動 体のような装置発明、 燃料電池の設置方法などの方法発明を始めとして、 種々の 態様にて実現され得る。
以下では、図面を参照して、本願発明の好ましい実施例の詳細が説明され、本願発 明の上述の目的およびその他の目的、構成、効果が明らかにされる。 図面の簡単な説明
図 1は、 実施例における燃料電池の構成を示す説明図である
図 2は、 発電体が積層された様子を示す説明図である。 図 3は、 剪断弾性部材 5 0の構成を示す説明図である。
図 4は、 シミュレーションに用いたサンプルを示す図である。
図 5は、 シミュレーションの結果を示すグラフである。
図 6は、 積層構造と単一構造の E P D Mを示す図である。
図 7は、 実施例における燃料電池に側面から力が加えられたときの挙動を説明 する図である。
図 8は、 従来の燃料電池に側面から力が加えられたときの挙動を説明する図で ある。
図 9は、 反応ガス Z冷却水漏れの態様を説明する説明図である。
図 1 0は、 第 1変形例における剪断弾性部材を示す図である。
図 1 1は、 第 5変形例における燃料電池を示す概略図である。
図 1 2は、 第 5変形例における燃料電池に側面から力が加えられたときの挙動 を説明する図である。 発明を実施するための最良の形態 以下、 燃料電池について、 図面を参照しつつ、 実施例に基づいて説明する。
A . 実施例: ,
•燃料電池の構成
本発明の実施例に係る燃料電池の概略構成について説明する。 図 1は、 実施例 における燃料電池の構成を示す説明図である。 図 2は、 発電体が積層された様子 を示す説明図である。 図 3は、 剪断弾性部材 5 0の構成を示す説明図である。 図 1に示すように、燃料電池 1 0 0は、主要部として積層体 6 0を備えている。 積層体 6 0は、 積層された複数の発電体 6 1からなる発電スタックと、 2枚の集 電板 6 2と、 2枚の絶縁板 6 3から構成されている。 発電スタックの端部付近の 構成は左右対象であるので、 図 1の下側に、 発電スタックの左端部付近の拡大図 を代表して示す。 当該拡大図に示すように、 2枚の集電板 6 2は、 発電スタック の積層方向の両端部に、 発電スタックを挟むように配置されている。 2枚の絶縁 板 6 3は、 各絶縁板 6 3の外側にそれぞれ配置されている。
燃料電池 1 0 0は、 さらに、 積層体 6 0を積層方向に挟持するための挟持部材 である 2枚のエンドプレー卜 1 0と、 エンドプレー卜 1 0と積層体 6 0の間に介 在する剪断弾性部材 5 0と、 テンションプレー卜 2 0とを備えている。 本実施例 では、 積層体 6 0の最外端に絶縁板 6 3が配置されているので、 剪断弾性部材 5 0は、 エンドプレー卜 1 0と絶縁板 6 3との間に配置されている。 テンションプ レー卜 2 0は、 積層方向に沿って、 積層体 6 0の側面の一部を覆うように配置さ れている。 燃料電池 1 0 0は、 テンションプレー卜 2 0がボル卜 3 0によって各 エンドプレー卜 1 0に結合されることによって、 積層体 6 0を、 積層方向に所定 の締結力 Pで締結する構造となっている。 エンドプレー卜 1 0およびテンション プレー卜 2 0は、 剛性を確保するため、 鋼等の金属によって形成されている。 絶 縁板 6 3は、 樹脂等の絶縁性部材によって形成されている。 集電板 6 2は、 緻密 質カーボンや銅板などのガス不透過な導電性部材によって形成されている。 図 1の上側に、 積層体 6 0の側面のうち、 テンションプレー卜 2 0に覆われた 部分の拡大図を示す。 当該拡大図に示すように、 テンションプレー卜 2 0と積層 体 6 0との間には緩衝部材 4 0が配置されている。 緩衝部材 4 0は、 弾性と絶縁 性を有する材料、 例えば、 ゴムや、 発泡樹脂により形成されている。 緩衝部材 4 0は、 例えば、 2 m m〜3 m m程度の厚さであり、 テンションプレー卜 2 0によ リ積層体 6 0の側面に所定の力で押さえ付けられていても良いし、 押さえ付けら れていなくても良い。
図 2を参照して、発電スタックの構成について説明を加える。発電スタックは、 多数、 例えば、 数百枚の発電体 6 1がセパレー夕 8 0 (図 1では図示省略) を挟 んで積層されたものである。
発電体 6 1は、 図 2に示すように、 膜電極接合体(以下、 M E Aともいう。) と M E Aの外周縁部に接合されたシール部 7を備えている。 M E Aは、 図 2に示す ように、 イオン交換膜からなる電解質膜 5と、 電解質膜 5の一方の面に配置され たァノード(図示せず)、電解質膜 5の他方の面に配置された力ソード(図示せず) と、 アノードおよび力ソードと、 セパレータ 8 0との間にそれぞれ配置された拡 散層 4、 6とを備えている。 拡散層 4、 6は、 反応ガス (酸化ガスや燃料ガス) の流路として機能し、例えば、金属やカーボンを用いて構成された多孔体である。 シール部 7は、 セパレ一タ 8 0間および電極間をシールし、 例えば、 シリコンゴ 厶、 プチルゴ厶、 フッ素ゴム等の樹脂材料を用いて構成される。 シール部 7は、 金型のキヤビティに M E Aの外周端部を臨ませて、 樹脂材料を射出成形すること によって作製される。 こうすることで、 M E Aとシール部 7とが隙間なく接合さ れ、 酸化ガスと燃料ガスが接合部から漏れ出すことを防止できる。
セパレー夕 8 0は、 図 2に示すように、 発電体 6 1の力ソード側に対向する力 ソードプレー卜 8 と、 アノード側に対向するアノードプレー卜 8 3と、 カソー ドブレ一卜 8 1とアノードプレー卜 8 3とに挟持される中間プレー卜 8 2とを備 えている。 これらの 3枚の板は重ね合わせて、 ホットプレスすることにより接合 されている。 各プレー卜 8 1 〜8 3は、 例えば、 S U S (ステンレス) 板によつ て形成されている。
積層体 6 0には、 反応ガスおよび冷却水を供給および排出するためのマ二ホー ルドが、 発電スタックを積層方向に貫通するように設けられている。 セパレータ 8 0には、 上述したマ二ホールドに供給された反応ガスをアノードあるいはカソ ードに分配するための反応ガス流路、 および、 冷却水を循環させるための冷却水 流路が形成されている。 図 2にはこれらのマ二ホールドおよび流路のうち、 酸化 ガス供給マ二ホールド 1 4 0と、 酸化ガス供給流路 8 4と、 酸化ガス排出流路 8 5と、 酸化ガス排出マ二ホールド 1 3 0とが示されており、 矢印は酸化ガスの流 動経路を示している。
図 1に戻って説明を続ける。 燃料電池 1 0 0において、 反応ガスおよび冷却水 の発電スタックに対する供給および排出は、 図 1における左側から行われる。 こ のため、 左側のエンドプレー卜 1 0、 剪断弾性部材 5 0、 絶縁板 6 3、 集電板 6 2には、 外部と発電スタックに設けられたマ二ホールドとを連通する貫通孔がそ れぞれ設けられている (図示は省略する)。
図 3を参照して、 剪断弾性部材 5 0の構成について説明する。 本実施例におけ る剪断弾性部材 5 0は、 4枚の弾性部材 5 1と、 3枚の剛性部材 5 2とを交互に 積層 '接着して構成されている。 弾性部材 5 1は、 エチレンプロピレンジェンゴ 厶 (E P D M ) を用いて形成され、 剛性部材 5 2は、 ステンレス (S U S ) ゃセ ラミックスを用いて形成されている。 弾性部材 5 1の厚さ t 〗は、 例えば、 1 . 5〜4 . O m mに形成され、 剛性部材 5 2の厚さ t 2は、 例えば、 0 . 5〜1 . 5 m mに形成されている。
剪断弾性部材 5 0をこのような積層構造にすることにより、 圧縮方向に対する 弾性変形を抑制しつつ(圧縮弾性率を大きくしつつ)、剪断方向に対する弾性変形 を大きく (剪断弾性率を小さく) することができる。 ここで、 剪断弾性部材 5 0 における圧縮方向は積層方向に平行な方向であり、 剪断方向は積層方向と直交す る方向である。 なお、 剪断弾性部材 5 0は、 上記構成に限定されない。 例えば、 4枚の弾性部材 5 1と 3枚の剛性部材 5 2とが交互に積層して接着され、 さらに 両端に金属部材を有する構成であっても良い。
図 4〜図 6を参照して、 かかる積層構造によって、 圧縮弾性率を抑制しつつ、 剪断弾性率を大きくできる理由について説明する。 図 4は、 シミュレーションに 用いたサンプルを示す図である。 図 5は、 シミュレーション結果を示すグラフで ある。 図 6は、 積層構造と単一構造の E P D Mを示す図である。
1辺の長さが 2 2 5 m mの正方形の E P D Mシート R Bを S U Sシート S Tで 挟持したサンプル (図 4 ) について、 シミュレーションを行った。 シミュレーシ ヨンでは、 厚さ Tの異なる複数のサンプルについて圧縮変位と剪断変位を測定し た。 図 4に示すように、 圧縮変位は圧縮力 F〗を付与した場合における積層方向 の変形量であり、 剪断変位は剪断力 F 2を付与した場合における剪断方向の変形 量である。 本試験では、 圧縮力 F 1および剪断力 F 2はそれぞれ 5000 N (二 ユー卜ン) とした。
図 5のグラフにその結果を示す。 剪断変位は、 E P DMシート R Bの厚さ Tに 比例して大きくなる。 一方、 圧縮変位は、 厚さ Tの増大に対して概ね 2次曲線状 に大きくなる。 すなわち、 圧縮変位は、 E P DMシート R Bの厚さ Tが 4. Om m以下の範囲にある場合には厚さ Tが増大に対してゆるやかに増大し、 厚さ丁が 4. 0を超えた辺りから厚さ Tの増大に対して急激に増大する。 したがって、 E P DMシート R Bの厚さ Tが薄くなる程、 剪断変位の圧縮変位に対する比率は大 きくなる。
具体的には、 図 5に示すように、 E P DMシート R Bの厚さ Tが 9 mmである とき、 圧縮変位約 3. 45x1 0 3mmに対して剪断変位は 0. 9mm (剪断変 位 Z圧縮変位 260) であるが、 E P DMシー卜 R Bの厚さ Tが 3 mmである とき、 圧縮変位 0. 1 3x1 0— 3mmに対して剪断変位は 0. 3mm (剪断変位 圧縮変位 2300) である。 この結果、 厚さ 3 mmの E P DMシート R B 2 を薄いステンレス板 STを挟んで 3枚積層した部材 (図 6 (a)) と、 単一の厚さ 9mmのE PDMシー卜R B 3 (図 6 (b)) とを比較すると、 剪断変位は同じで あるが、 圧縮変位は 3枚積層した部材の方が大幅に小さくなることが解る。 以上説明した本実施例における燃料電池 1 00によれば、 剪断弾性部材 50を エンドプレー卜 1 0と積層体 60との間に配置しているので、 剪断弾性部材 50 の免震効果により、 燃料電池 1 00に加えられた衝撃や振動が積層体 60に伝わ るのを抑制することができる。 この結果、 燃料電池 1 00の耐衝撃性および耐振 動性を向上することができる。
さらに、 燃料電池 1 00は、 剪断弾性部材 50が配置されることにより、 燃料 電池 1 00に対して衝撃や振動が加えられたときに、 緩衝部材 40から積層体 6 0に付与される反力が増大するので、 燃料電池 1 00に加えられた衝撃や振動が 積層体 6 0に伝わるのを、 より抑制することができる。 この結果、 燃料電池 1 0 0の耐衝撃性および耐振動性をよリ向上することができる。
図 7および図 8を説明して、 より詳しく説明する。 図 7は、 実施例における燃 料電池に側面から力が加えられたときの挙動を説明する図である。 図 8は、 従来 の燃料電池に側面から力が加えられたときの挙動を説明する図である。 図 7およ び図 8では、各部分の寸法比を、理解の容易のために適宜変更して表現している。 例えば、 図 7および図 8では、 緩衝部材 4 0およびテンションプレー卜 2 0の上 下方向の寸法を拡大して示している。 また、 積層体 6 0の上下方向の変形量を大 きく描写している。
燃料電池 1 0 0に対する衝撃や振動より外力 Fが、 図 7、 8の上から下に向け て、 積層体 6 0に負荷されたとする。 かかる場合、 本実施例における燃料電池 1 0 0 (図 7 ) では、 積層体 6 0ょリ剪断方向に弾性変形しやすい (積層体 6 0よ リ剪断弾性率が小さい) 剪断弾性部材 5 0が剪断変形することにより、 積層体 6 0全体が、 図 7の下方向に変位する。 そうすると、 積層体 6ひ全体が、 図 7の下 側の緩衝部材 4 0を圧縮するので、 緩衝部材 4 0から積層体 6 0に対して大きな 反力 Qが付与される。 この結果、 本実施例において、 積層体 6 0に加えられる最 大の剪断応力 f は、 (F— Q) 2となる。
一方、 従来における燃料電池 1 0 0 b (図 8 ) は、 剪断弾性部材 5 0が備えら れていない。 この結果、 外力 Fが負荷されたと場合、 従来における燃料電池 1 0 O bでは、 積層体 6 0がエンドプレー卜 1 0に固定されているので、 積層体 6 0 が、 実施例における燃料電池 1 0 0ほど、 下方向に変位することができない。 そ うすると、 図 7の下側の緩衝部材 4 0から積層体 6 0に対して付与される反力 q は、 実施例における燃料電池 1 0 0における反力 Qより小さくなつてしまう (q < Q)oこの結果、従来おいて、積層体 6 0に加えられる最大の剪断応力 f b = ( F 一 q ) Z 2は、本実施例における上述した最大の剪断応力 f は、 (F— Q) Z 2よ り大きくなることが解る。 すなわち、 本実施例では剪断弾性部材 5 0を備えるこ とにより、 従来と比較して、 積層体 6 0にかかる剪断応力が低減されることが解 る。 この結果、 燃料電池 1 0 0の耐衝撃性および耐振動性をより向上することが できる。
さらに、 本実施例における剪断弾性部材 5 0は、 図 3に示すような積層構造を 有することにより、 圧縮方向に対する弾性変形を抑制しつつ (圧縮弾性率を大き くしつつ)、剪断方向に対する弾性変形を大きく(剪断弾性率を小さく)している。 したがって、 剪断弾性部材 5 0は積層方向に変形し難く、 積層体 6 0の積層方向 への変位は抑制される。 この結果、 積層体 6 0の側面と緩衝部材 4 0とが積層方 向にずれて擦れ合うことを抑制して、 積層方向の耐衝撃性および耐振動性を確保 できる。 積層体 6 0の側面と緩衝部材 4 0とが擦れ合うことは、 積層体 6 0にお いて各発電体 6 1間のシール性不良を引き起こすおそれがあるので好ましくない。 ここで、 剪断弾性部材 5 0の外側の端部に位置する弾性部材 5 1は、 エンドプ レー卜 1 0に十分な強度で接着されていることが好ましく、 剪断弾性部材 5 0の 内側の端部に位置する弾性部材 5 1は、 積層体 6 0の端部、 すなわち、 絶縁板 6 3に十分な強度で接着されていることが好ましい。 特に、 反応ガスおよび冷却水 の全部または一部が供給される側 (図 1の例では左側) の剪断弾性部材 5 0にお いては、 十分な強度の接着がなされていることが好ましい。 図 9は、 反応ガス Z 冷却水漏れの態様を説明する説明図である。 もし、 この接着が十分でないと、 図 9に示すように、 剪断弾性部材 5 0とエンドプレー卜 1 0との間、 もしくは、 剪 断弾性部材 5 0と積層体 6 0との間に隙間 N Tが生じてしまい、 反応ガスや冷却 水の漏れが生じるおそれがあるからである。 具体的には、 剪断弾性部材 5 0とェ ンドプレー卜 1 0との間、 もしくは、 剪断弾性部材 5 0と積層体 6 0との間の接 着面のうち、 少なくとも周縁部は十分な強さで接着されていることが好ましい。
B . 変形例:
·第 1変形例:
剪断弾性部材 5 0における弾性部材 5 1の積層数は、 実施例のように、 4層に は限られない。 また、 剪断弾性部材 5 0の端面は、 実施例では、 両端とも弾性部 材 5〗であるがこれに限られない。
図 1 0は、 第 1変形例における剪断弾性部材を示す図である。 図 1 0に示す剪 断弾性部材 5 0 bのように弾性部材 5 1は 2層であっても良い。 かかる層数は、 燃料電池 1 0 0の仕様に応じて、 要求される耐衝撃性 耐振動性を確保できる程 度に十分な剪断方向の弾性変形量を確保しつつ、 ガス漏れ等が発生しない程度に 積層方向の弾性変形量を抑制できるように、 適宜変更されて良い。 例えば、 燃料 電池 1 0 0が車載される場合など、 高い耐衝撃性 Z耐振動性が要求される場合に は、 高い剪断方向の弾性変形量を確保するため、 弾性部材 5 1の層数は、 5層以 上であっても良い。 また、 燃料電池 1 0 0が住居に設置される場合など、 あまり 高い耐衝撃性 Z耐振動性が要求されない場合、 弾性部材 5 1は 1層 (剛性部材 5 2はなし) でも良い。
また、 図 1 0に示す剪断弾性部材 5 0 bのように、 剪断弾性部材の端面は、 両 端とも剛性部材 5 2であっても良い。 かかる場合には、 剪断弾性部材 5 0の外側 の端部に位置する弾性部材 5 1は、エンドプレー卜 1 0に十分な強度で接着され、 剪断弾性部材 5 0 bの内側の端部に位置する剛性部材 5 2は、積層体 6 0の端部、 すなわち、 絶縁板 6 3に十分な強度で接着されるのが好ましい。
ただし、 図 1 0に示すように剪断弾性部材の端面が剛性部材 5 2である場合、 剛性部材 5 2に十分な剛性がぁリ、 図 9に示すような隙間 N Tを生じるおそれが ない場合には、 当該端部の剛性部材 5 2と、 当該端部の剛性部材 5 2と積層方向 に接する部材 (例えば、 エンドプレー卜 1 0、 または、 絶縁板 6 3 ) との間は接 着を省いても良い。 こうすれば、 接着工程が不要なだけ、 燃料電池 1 0 0の組み 立て工程を削減し、 組み立て容易となる。 なお、 実施例のように剪断弾性部材 5 0の両端が弾性部材 5 1である場合には、 接着工程を要するが、 剛性部材 5 2の 数を少なく、 部品点数が低減できる。
•第 2変形例: 上記実施例における剪断弾性部材 5 0において、 複数の弾性部材 5 1は、 E P D Mを用いて形成されているが、 これに限られない。 弾性部材 5 1は、 ゴム弾性 を有する各種材料、 例えば、 ゴムやエラス卜マーを用いて形成されるのが好まし い。 具体的には、 シリコン系ゴム、 プチルゴ厶、 アクリルゴム、 天然ゴム、 フッ 素系ゴム、 エチレン■プロピレン系ゴム、 スチレン系エラス卜マー、 フッ素系ェ ラス卜マーなどが用いられ得る。 ゴム弾性 (rubber elasticity) とは、 高分子鎖 の伸び縮み (ミクロブラウン運動) によって起こる弾性をいう。 また、 弾性部材 5 1は、 燃料電池 1 0 0に求められる耐衝撃性 耐振動性によっては、 ゴム弾性 を有していなくとも、 ある程度、 剪断方向に弾性変形する材料で形成して良いこ ともあり得る。この場合においても、弾性部材 5 1は、剪断方向の弾性変形量が、 積層体 6 0の剪断方向の弾性変形量よリ大きい材料であることが好ましい。
•第 3変形例:
上記実施例における剪断弾性部材 5 0において、 複数の弾性部材 5 1は剛性部 材 5 2を挟んで積層されているが、 複数の弾性部材 5 1は、 剛性部材 5 2に限ら ず弾性部材 5 1より積層方向に圧縮変形しない部材を挟んで積層されていれば良 い。 例えば、 剛性部材 5 2に代えて、 金属やセラミックスほどの剛性はないがゴ 厶弾性を有しない部材、 例えば、 高強度繊維で編まれた布、 プラスチックを用い ても良い。
'第 4変形例:
上記実施例における緩衝部材 4 0は、 様々な構造および材料を採用することが できる。 例えば、 緩衝部材 4 0は、 積層体 6 0との接する絶縁する絶縁層と、 絶 縁層とテンションプレー卜 2 0との間に配置され、 反力を生み出すための緩衝層 との 2層構造を有しても良い。 例えば、 絶縁層はフッ素系樹脂、 緩衝層は発泡ゥ レタン、 フッ素ゴム、 フッ素系エラス卜マーなどが用いられ得る。 また、 緩衝部 材 4 0は、 空気を充填した袋状の部材を用いることもできる。
,第 5変形例: 上記実施例における緩衝部材 4 0は省略することもできる。 かかる場合には、 テンションプレー卜 2 0は、 金属に代えて絶縁性の材料を使用する、 あるいは、 絶縁層を塗布するなどにより、 積層体 6 0を構成する複数の発電体 6 1どうしの 短絡を引き起こさないように構成される。 図 1 1および図 1 2を参照して、 緩衝 部材 4 0を備えない燃料電池を第 5変形例として説明する。 図 1 1は、 第 5変形 例における燃料電池を示す概略図である。 図 1 2は、 第 5変形例における燃料電 池に側面から力が加えられたときの挙動を説明する図である。 図 1 1および図 1 2では、 上述した図 7および図 8と同様に、 各部分の寸法比を、 理解の容易のた めに適宜変更して表現している。
第 5変形例における燃料電池 1 0 0 cは、 緩衝部材 4 0が備えられていない点 で、 実施例における燃料電池 1 0 0と異なる。 また、 第 5変形例における燃料電 池 1 0 0 cでは、 緩衝部材 4 0が無い分、 テンションプレート 2 0は、 積層体 6 0の側面により近くに位置しており、 テンションプレー卜 2 0と積層体 6 0の側 面の間には、 空間 S Pが設けられている。 第 5変形例における燃料電池 1 0 0 c のそれ以外の構成は、 実施例における燃料電池 1 0 0と同一であるので、 その説 明を省略する。
燃料電池 1 0 0 cに対する衝撃や振動より外力 Fが、 図 1 2の上から下に向け て、 積層体 6 0に負荷されたとする。 かかる場合、 本変形例における燃料電池 1 0 0 cでは、 実施例における燃料電池 1 0 0と同様に、 剪断弾性部材 5 0が剪断 変形することにより、積層体 6 0全体が、図 7の下方向に変位する。そうすると、 積層体 6 0全体が、 図〗 2に示すように、 下側の緩衝部材 4 0に接触して撓ませ る。 この結果、 橈んだテンションプレー卜 2 0から積層体 6 0に対して反力 Q' が付与される。 この結果、 本実施例において、 積層体 6 0に加えられる最大の剪 断応力 は、 反力 Q'によって低減される (f = ( F - Q') 2。 この結果、 この 結果、 燃料電池 1 0 0 cの耐衝撃性および耐振動性を向上することができる。 •第 6変形例: 上記実施例では、 積層体 6 0の両端にそれぞれ剪断弾性部材 5 0を配置してい るが、 片側の端にのみ剪断弾性部材 5 0を配置することとしても良い。 例えば、 あまり高い耐衝撃性 Z耐振動性が要求されない場合には、 剪断弾性部材 5 0を片 側のみに配置することが考えられる。
·その他の変形例:
実施例における絶縁板 6 3は、 剪断弾性部材 5 0が十分な絶縁性を有している 場合には、 省略されても良い。 かかる場合には、 剪断弾性部材 5 0は、 集電板 6 2に接触 ·接着される。
上記各実施例では、 セパレータ 8 0は 3層の金属板を積層した構成であり、 平 坦な形状であるとしているが、 セパレー夕 8 0の構成および材料は他の任意の構 成とすることが可能であり、 またセパレータ 8 0の形状は他の任意の形状とする ことが可能である。
以上では、 本願発明をその好ましい例示的な実施例および変形例を参照して詳 細に説明した。 しかし、 本願発明は、 以上で説明した実施例および変形例に限定 されるものではない。 そして、 本願発明は、 様々な変形や均等な構成を含むもの である。 さらに、 開示された発明の様々な要素は、 様々な組み合わせおよび構成 で開示されたが、 それらは例示的な物であり、 各要素はより多くてもよく、 また 少なくてもよい。 そして、 要素は一つであってもよい。 それらの態様は本願発明 の範囲に含まれるものである。
本出願は、 2 0 0 6年 1 2月 2 7日に出願された日本特許出願 2 0 0 6— 3 5 0 9 0 5号に関連すると共に、 該日本特許出願に基づき優先権を主張しており、 該日本出願の全開示内容は、 参照のために、 この明細書に組み込まれる。

Claims

請求の範囲
1 . 電解質層と前記電解質層の両側にそれぞれ設けられた電極とを有する発電 体を用いる燃料電池であって、
積層された複数の前記発電体を含む積層体と、
前記積層体を積層方向に挟持するための挟持部材と、
前記積層体の積層方向の端面と前記挟持部材との間に介在すると共に、 前記積 層方向と直交する剪断方向に弾性変形する剪断弾性部材と、
を備える、 燃料電池。
2 . 請求項 1に記載の燃料電池において、
前記剪断弾性部材は、 ゴム弾性を有するゴム弾性部材を含む、 燃料電池。
3 . 請求項 1または請求項 2に記載の燃料電池において、
前記剪断弾性部材の前記剪断方向の弾性変形量は、 前記積層体の前記剪断方向 の弾性変形量より大きい燃料電池。
4 . 請求項 1ないし請求項 3のいずれかに記載の燃料電池において、
前記剪断弾性部材は、 前記積層方向に他の部材と接する接触面を有し、 前記接触面のうち少なくとも周縁部は、 前記他の部材に接着されている、 燃料 電池。
5 . 請求項 1ないし請求項 4のいずれかに記載の燃料電池において、
前記剪断弾性部材は、 ゴム弾性を有する複数のゴム弾性部材と、 前記複数のゴ 厶弾性部材ょリ積層方向の圧縮変形量が小さい 1または複数の小変形部材を含み、 前記複数のゴム弾性部材は、 小変形部材を介して積層されている、 燃料電池。
6 . 請求項 5に記載の燃料電池において、
前記剪断弾性部材は、 少なくとも積層方向の一方の端部が前記小変形部材であ リ、前記端部の小変形弾性部材は、前記挟持部材または前記積層体に接している、 燃料電池。
7 . 請求項 5に記載の燃料電池において、
前記弾性部材は、 少なくとも積層方向の一方の端部がゴム弾性部材であり、 前 記端部のゴム弾性部材は、 前記挟持部材または前記積層体に接している、 燃料電 池。
8 . 請求項 1ないし請求項 7に記載の燃料電池は、 さらに、
前記積層体が前記剪断方向に変位した場合に、 前記積層体の積層方向に沿う側 面の少なくとも一部に反力を与える反力付与部材を備える、 燃料電池。
9 . 請求項 8に記載の燃料電池は、
さらに、 前記積層体の積層方向に沿う側面の少なくとも一部を覆うプレー卜を 備え、
前記反力付与部材は、 前記積層体と前記プレー卜との間に配置された緩衝特性 を有する緩衝部材である、 燃料電池。
1 0 . 請求項 1ないし請求項 9のいずれかに記載の燃料電池において、 前記積層体は、 さらに、 前記積層された複数の前記発電体と、 前記挟持部材と の間に配置された集電板を含む、 燃料電池。
1 1 . 請求項 1 0に記載の燃料電池において、 前記積層体は、 さらに、 前記集電板と前記挟持部材との間に配置された絶縁板 を含む、 燃料電池。
PCT/JP2007/075357 2006-12-27 2007-12-25 燃料電池 WO2008081962A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112007002945.5T DE112007002945B4 (de) 2006-12-27 2007-12-25 Brennstoffzelle mit elastischem Element
US12/312,775 US8114553B2 (en) 2006-12-27 2007-12-25 Fuel cell
CN200780045766XA CN101569048B (zh) 2006-12-27 2007-12-25 燃料电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-350905 2006-12-27
JP2006350905A JP5181473B2 (ja) 2006-12-27 2006-12-27 燃料電池

Publications (1)

Publication Number Publication Date
WO2008081962A1 true WO2008081962A1 (ja) 2008-07-10

Family

ID=39588637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/075357 WO2008081962A1 (ja) 2006-12-27 2007-12-25 燃料電池

Country Status (5)

Country Link
US (1) US8114553B2 (ja)
JP (1) JP5181473B2 (ja)
CN (1) CN101569048B (ja)
DE (1) DE112007002945B4 (ja)
WO (1) WO2008081962A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016076309A (ja) * 2014-10-02 2016-05-12 トヨタ自動車株式会社 燃料電池スタックの製造方法
JP2017004628A (ja) * 2015-06-05 2017-01-05 本田技研工業株式会社 燃料電池スタック
JP2018010839A (ja) * 2016-07-15 2018-01-18 株式会社Soken 燃料電池
WO2021121801A1 (de) 2019-12-17 2021-06-24 Robert Bosch Gmbh Brennstoffzelle mit einem stapelaufbau

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015031482A2 (en) * 2013-08-28 2015-03-05 Nuvera Fuel Cells, Inc. Integrated electrochemical compressor and cascade storage method and system
WO2015056084A1 (en) * 2013-10-19 2015-04-23 Daimler Ag Fuel cell stacks with increased natural frequency
JP6252415B2 (ja) * 2014-09-17 2017-12-27 トヨタ自動車株式会社 燃料電池スタックの製造方法
JP6341063B2 (ja) * 2014-11-05 2018-06-13 トヨタ自動車株式会社 燃料電池スタックの製造方法
JP6210050B2 (ja) * 2014-11-12 2017-10-11 トヨタ自動車株式会社 燃料電池
US9977645B2 (en) * 2015-10-01 2018-05-22 Moodelizer Ab Dynamic modification of audio content
JP7203669B2 (ja) * 2019-03-29 2023-01-13 大阪瓦斯株式会社 電気化学モジュール、電気化学装置及びエネルギーシステム
DE102019211823A1 (de) 2019-08-07 2021-02-11 Robert Bosch Gmbh Brennstoffzellenstapel und Verfahren zur Herstellung sowie Verwendung eines Brennstoffzellenstapels
CN113782802B (zh) * 2021-08-30 2022-08-16 广东利元亨智能装备股份有限公司 一种定位装置及螺杆组装方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124292A (ja) * 2000-10-19 2002-04-26 Honda Motor Co Ltd 燃料電池スタック
JP2003203670A (ja) * 2001-06-08 2003-07-18 Toyota Motor Corp 燃料電池
JP2003297377A (ja) * 2002-04-05 2003-10-17 Nissan Motor Co Ltd 車両搭載型燃料電池
JP2004288618A (ja) * 2003-03-06 2004-10-14 Toyota Motor Corp 燃料電池
JP2005317359A (ja) * 2004-04-28 2005-11-10 Toyota Motor Corp 燃料電池システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07123048B2 (ja) * 1986-04-16 1995-12-25 ヤマハ発動機株式会社 燃料電池
JPH0530586A (ja) 1991-07-24 1993-02-05 Nippon Atsudenki Kk インナイヤー型ヘツドホン
JPH06188008A (ja) 1992-04-01 1994-07-08 Toshiba Corp 燃料電池
US5364711A (en) 1992-04-01 1994-11-15 Kabushiki Kaisha Toshiba Fuel cell
JP3388710B2 (ja) 1999-03-16 2003-03-24 三菱電機株式会社 燃料電池
EP1244167A1 (de) 2001-03-24 2002-09-25 Stefan Höller Endplattenanordnung einer elektrochemischen Zelle der Polymerelektrolytmembranbauart
JP4948789B2 (ja) 2005-06-20 2012-06-06 Kddi株式会社 認証システムにおける認証情報委譲方法およびセキュリティデバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124292A (ja) * 2000-10-19 2002-04-26 Honda Motor Co Ltd 燃料電池スタック
JP2003203670A (ja) * 2001-06-08 2003-07-18 Toyota Motor Corp 燃料電池
JP2003297377A (ja) * 2002-04-05 2003-10-17 Nissan Motor Co Ltd 車両搭載型燃料電池
JP2004288618A (ja) * 2003-03-06 2004-10-14 Toyota Motor Corp 燃料電池
JP2005317359A (ja) * 2004-04-28 2005-11-10 Toyota Motor Corp 燃料電池システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016076309A (ja) * 2014-10-02 2016-05-12 トヨタ自動車株式会社 燃料電池スタックの製造方法
JP2017004628A (ja) * 2015-06-05 2017-01-05 本田技研工業株式会社 燃料電池スタック
JP2018010839A (ja) * 2016-07-15 2018-01-18 株式会社Soken 燃料電池
WO2021121801A1 (de) 2019-12-17 2021-06-24 Robert Bosch Gmbh Brennstoffzelle mit einem stapelaufbau

Also Published As

Publication number Publication date
CN101569048B (zh) 2013-04-03
US20100040925A1 (en) 2010-02-18
JP2008165993A (ja) 2008-07-17
US8114553B2 (en) 2012-02-14
DE112007002945B4 (de) 2018-10-11
JP5181473B2 (ja) 2013-04-10
DE112007002945T5 (de) 2009-10-08
CN101569048A (zh) 2009-10-28

Similar Documents

Publication Publication Date Title
WO2008081962A1 (ja) 燃料電池
US7892695B2 (en) Fuel cell stack
JP5188755B2 (ja) 圧縮アセンブリ、固体酸化物燃料電池スタック、固体酸化物燃料電池の圧縮方法及びそれの使用
US9653763B2 (en) Battery pack comprising a heat exchanger
JP5412804B2 (ja) 燃料電池スタック
KR100980927B1 (ko) 연료전지 스택용 엔드플레이트 및 그 제조 방법
JP2000182639A (ja) シール部材およびこれを用いた燃料電池
JP3570669B2 (ja) 固体高分子電解質型燃料電池およびその製造法
JP2002042837A (ja) 燃料電池のシール構造
JP5121709B2 (ja) 多層拡散媒体基板
WO2015064013A1 (ja) 燃料電池用のターミナルプレート、燃料電池用のターミナルプレートの製造方法、および燃料電池
JP2014093168A (ja) セルモジュール、および、燃料電池スタック
JP2013211240A (ja) 燃料電池スタック
JP2001126749A (ja) 燃料電池
JP5130623B2 (ja) 燃料電池およびガスケット
WO2021261166A1 (ja) 燃料電池
WO2014091878A1 (ja) 燃料電池スタックとこれを用いた荷重分担方法
JP7036607B2 (ja) 燃料電池
JP5242189B2 (ja) 燃料電池
JP4826159B2 (ja) 燃料電池用セパレータとそのシール成形方法
JP5205787B2 (ja) 燃料電池
JP2001135341A (ja) 高分子電解質型燃料電池とその製造法
JP2010165693A (ja) 燃料電池
JP2007103248A (ja) 燃料電池
JP2008034158A (ja) 燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780045766.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07860552

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12312775

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120070029455

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112007002945

Country of ref document: DE

Date of ref document: 20091008

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07860552

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)