[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008075747A1 - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
WO2008075747A1
WO2008075747A1 PCT/JP2007/074575 JP2007074575W WO2008075747A1 WO 2008075747 A1 WO2008075747 A1 WO 2008075747A1 JP 2007074575 W JP2007074575 W JP 2007074575W WO 2008075747 A1 WO2008075747 A1 WO 2008075747A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
compressor
strut
struts
rotating shaft
Prior art date
Application number
PCT/JP2007/074575
Other languages
English (en)
French (fr)
Inventor
Naonori Nagai
Kenji Sato
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39536375&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008075747(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to CN2007800431015A priority Critical patent/CN101542129B/zh
Priority to JP2008550188A priority patent/JP5222152B2/ja
Priority to EP07851000.5A priority patent/EP2096321B1/en
Priority to KR1020097010371A priority patent/KR101191060B1/ko
Priority to US12/447,985 priority patent/US8206097B2/en
Publication of WO2008075747A1 publication Critical patent/WO2008075747A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence

Definitions

  • the present invention relates to a compressor that compresses air.
  • the combustion gas force S for rotating the turbine, and the combustor combusts the fuel gas with the compressed air compressed by the compressor, so that it is generated and reduced.
  • An intake duct that sucks air from outside air is installed at the inlet of the compressor that generates the compressed air.
  • the intake duct 100 is installed in a ring shape on the outer periphery of the rotary shaft 5 on the tip side of the rotary shaft 5 where the rotor blades 12 of the compressor 101 are installed. It is a single suction structure with the upper side opened to suck in outside air.
  • the intake casing 100a on the rotating shaft 5 side is connected to the inner casing 101a covering the outer periphery of the rotating shaft 5, and the outer intake casing 100b is connected to the outer peripheral side of the inner casing 10la.
  • the stationary blades 11 and the moving blades 12 are alternately arranged with an annular space sandwiched between the inner casing 101a and the outer casing 10 lb as an air flow path 10 lc.
  • the moving blade 12 is rotated by the rotating shaft 5 so that the air taken in through the intake duct 100 is compressed.
  • the tips of the intake casing 100b and the outer casing 101b are bent in the outer circumferential direction in order to make the flow smooth.
  • the bent portion 101d has a bell mouth shape bulging toward the inner wall of the intake casing 100a.
  • the intake casing 100b is connected to the tip of the bent portion 101d of the outer casing 101b.
  • the force that the intake duct 100 is constituted by the intake casings 100a, 100b, the inner casing 101a, and the outer casing 101b.
  • the inner casing 101a extends toward the tip of the rotating shaft 5 more than the outer casing 101b.
  • the configuration is In order to support the inner casing 101a and the outer casing 10 lb, a plurality of struts 103 are provided in a radiating manner around the rotating shaft 5.
  • the plurality of struts 103 have conventionally been installed at equal intervals in the circumferential direction of the rotating shaft 5 as shown in FIG. 12 (see Patent Document 1).
  • Patent Document 1 Japanese Utility Model Publication No. 7-17994 (Page 4, Figure 4, Figure 5)
  • the bent portion 101d in the vicinity of the connection portion between the intake casing 100b and the outer casing 101b has a gentle bell mouth shape so that the wall surface side by the intake casing 100b and the outer casing 10 lb
  • the flow of flowing air will be accelerated.
  • the flow flowing into the strut 103 has a three-dimensional drift distributed in the span direction.
  • profile loss occurs at locations where the air flow is high. To increase. This is because the profile loss is proportional to the square of the speed.
  • an object of the present invention is to provide a compressor with high compression efficiency that has a high degree of freedom in blade design.
  • a compressor intake duct of the present invention is arranged so as to cover an inner casing disposed so as to cover a rotating shaft, and covers the inner casing, and is disposed around the rotating shaft.
  • An outer casing that forms a fluid flow path, and a plurality of struts that are installed between the inner casing and the outer casing on the inlet side of the fluid flow path, and the plurality of struts are arranged on the rotating shaft. And the struts adjacent to each other in the circumferential direction of the rotating shaft are unequal.
  • n struts are arranged in the circumferential direction of the rotating shaft (n is an integer of 2 or more), and the distance between adjacent struts when the rotating shaft is the center.
  • the difference between the maximum value and the minimum value of the angle representing may be 120 ° / n or more.
  • the compressor intake duct of the present invention includes a first casing connected to the inner casing at an inlet end of the fluid flow path, and a second casing connected to the outer casing at an inlet end of the fluid flow path. And a bent portion that is bent so as to protrude toward the first casing may be formed in a connection portion between the outer casing and the second casing.
  • the bent portion is adjacent to the second casing and forms a flat portion that is substantially parallel to the outer peripheral surface of the rotary shaft, and the rotation from the tip of the flat portion.
  • a curved portion that smoothly curves inward in the radial direction of the shaft, and the cross section of the bent portion may have a substantially U-shape that protrudes toward the first casing.
  • the connecting portion of the strut with the outer casing may be located on the downstream side in the axial direction of the rotating shaft with respect to the tip of the bent portion.
  • an outside air intake port formed at the front ends of the first and second casings of the flat portion formed in an annular shape along the circumferential direction of the rotation shaft.
  • the length force in the axial direction of a certain portion adjacent to the other portion may be longer than the length in the axial direction of another portion positioned farther from the inlet than the certain portion.
  • the outside air suction port formed at the tips of the first and second casings may protrude toward the first casing from the tip of another part located farther from the suction port than the part.
  • the connecting portion of the strut with the outer casing may be located further downstream in the axial direction of the rotating shaft than the connecting portion of the strut with the inner casing. Good.
  • the axial distance between the connecting portion of the strut to the outer casing and the connecting portion of the strut to the inner casing is close to the suction port! /, So long as the struts.
  • the intervals in the circumferential direction of the rotation axis are made unequal, so that the struts are arranged at regular intervals as in the past.
  • the Harmonitors component that has occurred can be reduced. That is, in the compressor, the excitation force at each frequency can be dispersed in the frequency distribution of the fluid flowing into the downstream side of the strut. In this way, since the Har Monitors component generated in the conventional shape can be reduced, the degree of freedom in blade design in the compressor can be increased.
  • the flow flows from the outer peripheral side of the inner wall of the second casing.
  • the flow of the incoming fluid can be stopped.
  • fluid can flow along the flat portion in the circumferential direction of the rotating shaft, and the flow of fluid flowing from the tip force of the bent portion in the circumferential direction of the rotating shaft can be made to have substantially the same condition. Therefore, in the circumferential direction of the rotating shaft, the drift of the flow supplied to the compressor can be reduced, and the force S can be used to control the decrease in the efficiency of the compressor.
  • the strut is positioned on the outer peripheral side with respect to the radial direction of the rotating shaft.
  • the flow of inflowing fluid can be made more uniform.
  • the pressure loss on the outer peripheral side with respect to the radial direction of the rotating shaft in the strut can be reduced, and a reduction in the efficiency of the compressor can be suppressed.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a gas turbine provided with an intake duct according to the present invention.
  • FIG. 2 is a schematic cross-sectional view around the intake duct showing the configuration of the intake duct of the first embodiment.
  • Fig. 3 is a diagram showing the arrangement relationship of struts in the intake duct of the first embodiment.
  • FIG. 4 is a diagram showing frequency component distribution characteristics when struts are arranged at equal intervals and at irregular intervals.
  • FIG. 5 is a diagram showing another example of the strut arrangement relationship in the intake duct of the first embodiment.
  • FIG. 6 is a schematic cross-sectional view around the intake duct showing the configuration of the intake duct of the second embodiment.
  • FIG. 7 is a schematic cross-sectional view around the intake duct showing another configuration of the intake duct of the second embodiment.
  • FIG. 8 is a diagram for explaining the positional relationship between the strut and the rotation shaft.
  • FIG. 9 is a schematic cross-sectional view around the intake duct showing the configuration of the intake duct of the third embodiment.
  • FIG. 10 is a schematic cross-sectional view around the intake duct showing another configuration of the intake duct of the third embodiment.
  • FIG. 11 is a schematic cross-sectional view around the intake duct showing the configuration of a conventional intake duct.
  • FIG. 12 is a view showing the arrangement relationship of struts in a conventional intake duct. Explanation of symbols
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a gas turbine.
  • the gas turbine includes a compressor 1 that compresses air, a combustor 2 that is supplied with air and fuel compressed by the compressor 1 and performs a combustion operation, and a combustor 2. And a turbine 3 that is rotationally driven by the combustion gas from.
  • the compressor 1 and the turbine 3 are respectively covered with the casings 40a and 40b, and a plurality of combustors 2 are arranged at equal intervals on the outer periphery of the rotary shaft 5 having the compressor 1 and the turbine 3 as one shaft.
  • an intake duct 6 having a single suction structure provided with a suction port 7 for sucking air supplied to the compressor 1 from outside air in a direction (radial direction of the rotation shaft 5) perpendicular to the rotation shaft 5 is provided.
  • the vehicle interior 40a is configured by the inner casing 4a and the outer casing 4b formed on the inner side and the outer side, respectively, with respect to the radial direction of the rotating shaft 5.
  • the intake duct 6 includes an intake casing (first casing) 6a and an intake casing (second casing) 6b connected to the inner casing 4a and the outer casing 4b, respectively, on the compressor 1 side.
  • the intake duct 6 is formed into an annular shape by concentric annular intake casings 6a and 6b.
  • a structure having a space 10 is provided, and outside air from the suction port 7 opened in the radial direction of the rotary shaft 5 is supplied to the space formed by the intake casings 6a and 6b.
  • the suction port 7 is not limited to the upper side, but in the radial direction of the rotating shaft 5. It only needs to be open.
  • the casing 4 Oa has a double pipe structure by the coaxial cylindrical inner casing 4a and outer casing 4b, and the compressed air flow path 13 is formed in the space between the inner casing 4a and the outer casing 4b. .
  • the inner casing 4a and the outer casing 4b are provided with struts 8 for supporting on the inlet side of the compressor 1. That is, a strut 8 is installed in front of the first stage vane 11 that becomes the IGV (inlet guide vane) of the compressor 1! /.
  • the first stage vane 11 serving as an IGV is a movable blade that can be opened and closed, and the air flow supplied to the compressor 1 from the intake duct 6 is set by the first stage vane 11. be able to.
  • the compressed air flow path 13 is configured so that the stationary blades 11 fixed to the outer casing 4b and the moving blades 12 fixed to the rotating shaft 5 are alternately arranged so that the outside air taken in by the intake duct 6 Air is supplied by
  • the turbine flow path 33 is configured so that the stationary blades 31 fixed to the turbine casing 40b and the moving blades 32 fixed to the rotating shaft 5 are alternately arranged to supply the combustion gas generated by the combustor 2. Is done.
  • the air compressed by the compressor 1 is supplied to the combustor 2.
  • the compressed air supplied to the combustor 2 is used for combustion of fuel supplied to the combustor 2.
  • a part of the compressed air is used to cool the stationary blade 31 fixed to the turbine casing 40b exposed to high temperature by the combustion gas from the combustor 2 and the moving blade 32 fixed to the rotating shaft 5. Is done.
  • FIG. 2 is a schematic cross-sectional view showing the configuration around the intake duct of the compressor of this embodiment
  • Fig. 3 shows the installation relationship in the circumferential direction of the rotation shaft of the strut used in the compressor of this embodiment.
  • the inner casing 4a extends to the tip side of the rotating shaft 5, and its tip is bent toward the outer circumferential direction.
  • Casing 6a is connected.
  • the outer casing 4b is bent at the compressor 1 side than the inner casing 4a, and the bent portion 41 has a bell mouth structure that bulges toward the inner wall of the intake casing 6a.
  • the intake casing 6b is connected.
  • the side surfaces of the intake casings 6a and 6b are connected to each other, and the intake duct 6 having an annular space 10 is formed by the intake casings 6a and 6b, the inner casing 4a, and the outer casing 4b.
  • the intake duct 6 has a configuration in which an upper portion is opened, so that a suction port 7 for sucking outside air from above is formed.
  • struts 8 provided radially around the rotation shaft 5 are connected to the inside of the bent portion 41 of the outer casing 4b and to the inner casing 4a.
  • the strut 8 supports the inner casing 4a and the outer casing 4b on the inlet side of the force compressor 1.
  • the strut 8 has a shape in which the connection positions of the inner casing 4a and the outer casing 4b are substantially the same in the axial direction of the rotary shaft 5.
  • the angle ⁇ 1 to ⁇ 3 is set to 40 ° and the angle ⁇ 4 is set to 60 ° so that the angle ⁇ 1 to ⁇ 4 is the minimum value.
  • the difference between the value of ⁇ min and the value of the maximum angle ⁇ max is set to 15 ° or more.
  • the frequency component of the total pressure downstream of the strut 8 in the compression flow path 13 can be reduced.
  • the distribution can have the distribution characteristics shown in Fig. 4 (b).
  • the distribution characteristics shown in Fig. 4 (a) in which the angles of the struts 8 are all equal, have a Harmonitors component corresponding to the number of struts, so the excitation force at the frequency that becomes the Harmonitors component protrudes and increases.
  • the distribution characteristics shown in Fig. 4 (a) in which the angles of the struts 8 are all equal, have a Harmonitors component corresponding to the number of struts, so the excitation force at the frequency that becomes the Harmonitors component protrudes and increases.
  • FIG. 4 shows the frequency distribution of the total pressure of the air flowing into the downstream side of the strut 8 by the excitation force, that is, the frequency distribution of the total pressure fluctuation amplitude of the flow downstream of the strut and upstream of the IGV.
  • FIG. 3 shows an example of the positional relationship in the circumferential direction of the strut 8 and eight slacks 8a to 8h (as opposed to FIG. 5, the angles ⁇ 1 and ⁇ 2 are set to 30.
  • Angle ⁇ 3 may be set to 50 °
  • angle ⁇ 4 may be set to 70 °
  • the number of struts 8 is not limited to eight, and if the number of struts 8 is sufficient to support the inner casing 4a and the outer casing 4b, it is more than eight. It doesn't matter if there are at least many. As described above, since the pressure loss is caused by the wake generated by the strut 8, in order to reduce the pressure loss of the air flowing into the compressor 1, the number of struts 8 is as small as possible! / Good! [0043] (Second Embodiment)
  • FIG. 6 is a schematic cross-sectional view showing the configuration around the intake duct of the compressor of the present embodiment.
  • the same components as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the strut 8 has a connection position A in the inner casing 4a upstream of a connection position B in the outer casing 4b.
  • the shape is inclined toward the downstream side in the axial direction of the rotating shaft 5 toward the outer periphery of the rotating shaft 5 so as to be positioned on the outer side.
  • the bent portion 41 of the outer casing 4b has a bell mouth shape, the aerodynamic force S flowing from the outer peripheral side along the inner wall of the intake casing 6b on the compressor 1 side of the intake duct 6 is stopped. It flows to the inlet of the air flow path 13 where the strut 8 is installed. Therefore, at the inlet of the air flow path 13, there is a difference in the flow velocity of the inflowing air between the inner casing 4a side and the outer casing 4b side.
  • the air flow path from the inner casing 4a side toward the outer casing 4b. 13 inlet forces can also increase the distance to struts 8. Therefore, the flow velocity distribution of the air at the front edge of the strut 8 (the upstream edge in the axial direction of the rotating shaft 5) can be made substantially equal to the radial direction of the rotating shaft 5. Thereby, the flow of the air flowing into the strut 8 can be made more uniform, and the pressure loss on the connection position side (tip side) with the outer casing 4b can be reduced.
  • connection position B with the outer casing 4b is downstream of the connection position A with the inner casing 4a.
  • the distance d from the tip C of the bent portion 41 of the outer casing 4b to the connection position B is assumed to be equal.
  • the distance dl may be set longer than the distance d4.
  • FIG. 9 is a schematic cross-sectional view showing the configuration around the intake duct of the compressor of the present embodiment.
  • the same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the bent portion 41 of the outer casing 4b further protrudes toward the intake casing 6a, and the outer periphery of the rotary shaft 5 on the outer peripheral side.
  • a flat portion 41a that is a surface substantially parallel to the surface (a surface substantially perpendicular to the intake casing 6b) is formed. Then, a cross-sectional force is formed from the front end of the flat portion 41a on the intake casing 6a side toward the inside, and a curved surface portion 41b having a U-shape with the front end directed toward the intake casing 6a is formed.
  • the projection 41 projects toward the intake casing 6a. Because of the extended configuration, the distance d from the tip C of the bent portion 41 to the connection position B at the outer casing 4b of the strut 8 can be increased compared to the configuration of FIG. As a result, as in the second embodiment, the flow of air flowing into the strut 8 can be made more uniform, and pressure loss on the connection position side (tip side) with the outer casing 4b can be reduced. Can do.
  • the bent portion 41 with the flat portion 41a and projecting into the intake duct 6, the distribution of the air flow flowing into the air flow path 13 can be changed to that of the rotary shaft 5. Since it can be made substantially equal to the radial direction and the circumferential direction, and the drift can be reduced, it is possible to suppress a reduction in the efficiency of the compressor.
  • the force S is such that the bent portion 41 of the outer casing 4b has the same cross-sectional shape with respect to the circumferential direction of the rotary shaft 5, as shown in FIG.
  • the axial length of the flat portion 41a at a position close to 7 may be shorter than the axial length of the flat portion 41a at a position far from the suction port 7.
  • the connection position from the tip C of the bent portion 41 of the outer casing 4b to the outer casing 4b in each of the strut 8a near the inlet 7 and the strut 8d far from the inlet 7 When the distances dl and d4 to B are compared, as shown in Fig. 10, the distance dl becomes longer than the distance d4.
  • the bent portion 41 may not have the flat portion 41 a and may have a bell mouth shape similar to FIG.
  • the distance d from the tip C of the bent portion 41 of the outer casing 4b to the connection position B with the outer casing 4b depending on the circumferential position of the bent portion 41. Is changed according to the crossing angle ⁇ (0 ° ⁇ ⁇ 180 °, see Fig. 8) with the straight line L connecting the center of the suction port 7 and the center of the rotating shaft 5, and the crossing angle ⁇
  • the distance d increases as the distance from the inlet 7 increases as the distance increases.
  • the positional relationship in the circumferential direction of the struts 8 is unequal between adjacent struts 8 as in the first embodiment (for example, FIG. 3 or FIG. 5). Therefore, it is possible to reduce the high monitor component in the frequency component distribution of the total pressure of the air flowing into the downstream side of the strut 8 and increase the degree of freedom of the compressor 1 blade design. .
  • the connection position with the outer casing 4b Assuming that B is located downstream of the connection position A with the inner casing 4a, the air flow velocity distribution at the front edge of the strut 8 may be substantially equal.
  • the compressor of the present invention is applicable to a compressor having a single suction structure having an annular space centered on a rotating shaft and having one side opened as a suction port. Further, the present invention is applicable to a compressor configured to have the same shaft as a gas turbine that is driven to rotate by combustion gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 回転軸を覆うように配置された内側ケーシングと、前記内側ケーシングを覆うように配置され、前記回転軸の周囲に流体流路を形成する外側ケーシングと、前記流体流路の入口側で前記内側ケーシングと前記外側ケーシングとの間に架設された複数のストラットとを備える圧縮機において、前記複数のストラットが、前記回転軸を中心として放射状に配設され、かつ前記回転軸の周方向に隣接する前記ストラットの間隔が不等である。

Description

明 細 書
圧縮機
技術分野
[0001] 本発明は、空気を圧縮する圧縮機に関する。本願は、 2006年 12月 21日に出願さ れた特願 2006— 343814号について優先権を主張し、その内容をここに援用する。 背景技術
[0002] 従来から、ガスタービンにおいて、タービンを回転させるための燃焼ガス力 S、圧縮機 で圧縮された圧縮空気によって燃焼器が燃料ガスを燃焼させることで、発生されてレヽ る。この圧縮空気を生成する圧縮機の入口には、外気より空気を吸気する吸気ダクト が設置されている。図 11の断面図に示すように、吸気ダクト 100は、圧縮機 101の動 翼 12が設置された回転軸 5の先端側において、回転軸 5の外周でリング形状となるよ うに設置されるとともに、外気を吸い込むように上側が開放された片吸込構造とされ ている。
[0003] そして、吸気ダクト 100において、回転軸 5側の吸気ケーシング 100aが、回転軸 5 の外周を覆う内側ケーシング 101aと接続し、外側の吸気ケーシング 100bが、内側ケ 一シング 10 laの外周側に設置される外側ケーシング 10 lbと接続する。尚、内側ケ 一シング 101 aと外側ケーシング 10 lbとで挟まれた円環状の空間を空気流路 10 lc として、静翼 11及び動翼 12が交互に並んで配置される。そして、動翼 12が回転軸 5 によって回転することで、吸気ダクト 100を通じて吸気された空気が圧縮される。
[0004] 図 11に示す吸気ダクト 100のように、回転軸に直交する方向から空気を吸い込む 片吸込構造とした場合、吸気ケーシング 100a, 100b,内側ケーシング 101a、及び 外側ケーシング 101bによって構成される円環状の空間 102において、回転軸 5の周 方向から吸い込まれた空気は環状流路の周方向に分配される。そして、この円環状 の空間 102で周方向へ分配された空気力 S、内側ケーシング 101 a及び外側ケーシン グ 101bによって構成される空気流路 101cに流れ込むこととなる。このように、空間 1 02から空気流路 101cに流れ込む際に、その流れを滑らかなものとするために、吸気 ケーシング 100bと外側ケーシング 101bの先端が外周方向に屈曲されるとともに、こ の屈曲部分 101dが吸気ケーシング 100aの内壁に向かって膨らんだベルマウス形 状とされる。そして、外側ケーシング 101bの屈曲部分 101dの先端に吸気ケーシング 100bが接続される。
[0005] このように、吸気ケーシング 100a, 100bと内側ケーシング 101a及び外側ケーシン グ 101bとによって吸気ダクト 100が構成される力 内側ケーシング 101aが外側ケー シング 101bよりも回転軸 5の先端に向かって伸びた構成とされる。そして、内側ケー シング 101 a及び外側ケーシング 10 lbを支持するために、回転軸 5を中心として放 射状に複数のストラット 103が設けられる。この複数のストラット 103は、従来は、図 12 に示すように、回転軸 5の周方向に対して等間隔となるように設置されることが常であ つた (特許文献 1参照)。
特許文献 1 :実開平 7— 17994号公報(第 4頁および図 4、図 5)
発明の開示
発明が解決しょうとする課題
[0006] 図 11に示すように、吸気ダクト 100が構成される場合、回転軸に直交する方向から 外気を吸い込む片吸込構造であるため、円環状の空間 102において回転軸 5の周 方向に分配された空気は、周方向の流路面積に対する流量のバランスがとれていな いために、その空気の流れに周方向の偏流が存在する。
[0007] よって、圧縮機 101の空気流路 101cに空気が流れ込む際、周方向に非一様な流 入条件となり、そのストールマージン(失速に対する余裕)低下の一要因となりうるとと もに、圧縮機 101の起動昇速時において旋回失速の誘起要因となりうる。更に、圧縮 機 101の空気流路 101cへの空気の流入条件が周方向に非一様となるため、ストラッ ト 103に対する迎え角が大きくなる箇所が生じる。その結果、迎え角が大きい箇所で は、ストラット 103で剥離が生じ、プロファイル損失が増加する。
[0008] 又、図 11のように、吸気ケーシング 100bと外側ケーシング 101bとの接続部付近の 屈曲部分 101dをなだらかなベルマウス形状とすることで、吸気ケーシング 100b及び 外側ケーシング 10 lbによる壁面側を流れる空気の流れを加速させることとなる。その 結果、ストラット 103に流入する流れはスパン方向にも分布する 3次元的な偏流を持 つ。特にストラット外周側では、空気の流れが高速になる箇所でプロファイル損失が 増加する。プロファイル損失は速度の二乗に比例するからである。
[0009] 更に、図 12に示すように、回転軸 5の周方向に対して等間隔にストラット 103を設け た場合、ストラット 103の後端側に発生するウェーク (流速の遅い領域)の影響に基づ き、ストラット 103の本数に相当する励振力の高調波成分 (ノ、一モニタス成分)が大き くなる。そのために、圧縮機 101の静翼 11及び動翼 12の設計を行う際、ストラット 10 3によるハーモニタス成分に共振しない様に離調させた設計とする必要がある。
[0010] このように、吸気ダクトの片吸込構造とストラットとの配置関係により、圧縮機に流入 される空気の流入条件が非一様となるとともに、ストラットによる圧損が増大して、圧縮 機の効率が低下する。又、ストラットを周方向に等間隔に設置することで発生する励 振力のハーモニタス成分によっても、圧縮機の翼設計における自由度が制限される こととなる。
[0011] このような問題を鑑みて、本発明は、翼設計の自由度が高ぐ圧縮効率の高い圧縮 機を提供すること目的とする。
課題を解決するための手段
[0012] 上記目的を達成するために、本発明の圧縮機吸気ダクトは、回転軸を覆うように配 置された内側ケーシングと、前記内側ケーシングを覆うように配置され、前記回転軸 の周囲に流体流路を形成する外側ケーシングと、前記流体流路の入口側で前記内 側ケーシングと前記外側ケーシングとの間に架設された複数のストラットとを備え、前 記複数のストラットが、前記回転軸を中心として放射状に配設され、かつ前記回転軸 の周方向に隣接する前記ストラットの間隔が不等である。
[0013] 本発明の圧縮機吸気ダクトにおいて、前記ストラットは前記回転軸の周方向に n本 配置され (nは 2以上の整数)、前記回転軸を中心としたときの隣接する前記ストラット の間隔を表す角度の最大値と最小値との差が、 120° /n以上であってもよい。
[0014] 本発明の圧縮機吸気ダクトは、前記流体流路の入口端で前記内側ケーシングに接 続される第一ケーシングと、前記流体流路の入口端で前記外側ケーシングに接続さ れる第二ケーシングとをさらに備え、前記外側ケーシングの前記第二ケーシングとの 接続部分に、前記第一ケーシングに向かって突出するように屈曲する屈曲部が形成 されていてもよい。 [0015] 本発明の圧縮機吸気ダクトにおいて、前記屈曲部は、前記第二ケーシングに隣接 し、前記回転軸の外周面と略平行な面をなす平坦部と、前記平坦部の先端から前記 回転軸の径方向内方に向かって滑らかに湾曲する曲面部とを備え、前記屈曲部の 断面は、前記第一ケーシングに向かって突出する略 U字形状をなしてもよい。
[0016] 本発明の圧縮機吸気ダクトにおいて、前記ストラットの前記外側ケーシングとの接続 部は、前記屈曲部の先端よりも前記回転軸の軸方向の下流側に位置してもよい。
[0017] 本発明の圧縮機吸気ダクトにおいて、前記回転軸の周方向に沿って円環状に形成 された前記平坦部のうち、前記第一および第二ケーシングの先端に形成された外気 の吸込口に隣接するある部分の前記軸方向の長さ力 前記ある部分よりも前記吸込 口から遠くに位置する他の部分の前記軸方向の長さよりも長くてもよい。
[0018] 本発明の圧縮機吸気ダクトにおいて、前記回転軸の周方向に沿って円環状に形成 された前記屈曲部のうち、前記第一および第二ケーシングの先端に形成された外気 の吸込口に隣接するある部分の先端力 前記ある部分よりも前記吸込口から遠くに 位置する他の部分の先端よりも前記第一ケーシングに向かって突出していてもよい。
[0019] 本発明の圧縮機吸気ダクトにおいて、前記ストラットの前記外側ケーシングとの接続 部は、前記ストラットの前記内側ケーシングとの接続部よりも前記回転軸の軸方向の 下流側に位置してもよい。
[0020] 本発明の圧縮機吸気ダクトにおいて、前記ストラットの前記外側ケーシングとの接続 部と、前記ストラットの前記内側ケーシングとの接続部との前記軸方向の距離は、前 記吸込口に近!/、前記ストラットほど長くてもょレ、。
発明の効果
[0021] 本発明によると、回転軸を中心にして放射状に設置するストラットに対して、その回 転軸の周方向における間隔を不等なものとすることによって、従来のように等間隔で 配置した場合に発生していたハーモニタス成分を低減することができる。即ち、圧縮 機内において、ストラットの下流側に流入する流体の周波数分布において各周波数 における励振力を分散させることができる。このようにして、従来形状において発生し ていたハーモニタス成分を低減することができるため、圧縮機における翼設計の自由 度を高めることができる。 [0022] 又、第二ケーシングと外側ケーシングとの接続部分における屈曲部分に、回転軸の 外周面と略平行な面となる平坦部を設けることによって、第二ケーシングの内壁の外 周側から流れてくる流体の流れを静止させることができる。これにより、この平坦部に 沿って回転軸の周方向に流体を流し、回転軸の周方向において、屈曲部分の先端 力、ら流れる流体の流れをほぼ同一条件の流れとすることができる。よって、回転軸の 周方向において、圧縮機に供給する流れの偏流を低減でき、圧縮機の効率低下を 才卬制すること力 Sでさる。
[0023] 更に、第二ケーシングと外側ケーシングとの接続部分に対して、ストラットの外側ケ 一シングの接続位置が離れた位置となることによって、ストラットに対して回転軸の径 方向に対する外周側に流入する流体の流れを、より一様な流れとすることができる。 これにより、ストラットにおける回転軸の径方向に対する外周側での圧損を低減するこ とができるため、圧縮機の効率低下を抑制することができる。
図面の簡単な説明
[0024] [図 1]図 1は、本発明の吸気ダクトを備えたガスタービンの構成を示す概略断面図で ある。
[図 2]図 2は、第 1の実施形態の吸気ダクトの構成を示す吸気ダクト周辺の概略断面 図である。
[図 3]図 3は、第 1の実施形態の吸気ダクトにおけるストラットの配置関係を示す図であ
[図 4]図 4は、ストラットの等間隔で配置した場合と不等間隔で配置した場合の周波数 成分の分布特性を示す図である。
[図 5]図 5は、第 1の実施形態の吸気ダクトにおけるストラットの配置関係の別例を示 す図である。
[図 6]図 6は、第 2の実施形態の吸気ダクトの構成を示す吸気ダクト周辺の概略断面 図である。
[図 7]図 7は、第 2の実施形態の吸気ダクトの別の構成を示す吸気ダクト周辺の概略 断面図である。
[図 8]図 8は、ストラットと回転軸との位置関係を説明するための図である。 [図 9]図 9は、第 3の実施形態の吸気ダクトの構成を示す吸気ダクト周辺の概略断面 図である。
[図 10]図 10は、第 3の実施形態の吸気ダクトの別の構成を示す吸気ダクト周辺の概 略断面図である。
[図 11]図 11は、従来の吸気ダクトの構成を示す吸気ダクト周辺の概略断面図である
[図 12]図 12は、従来の吸気ダクトにおけるストラットの配置関係を示す図である。 符号の説明
[0025] 1 · · ·圧縮機、 2· · ·燃焼器、 3· タービン、 4a…内側ケーシング、 4b…外側ケーシン グ、 5· · ·回転軸、 6a…吸気ケーシング (第一ケーシング)、 6b…吸気ケーシング (第二 ケーシング)、 7· · ·吸込口、 8 · · ·ストラット
発明を実施するための最良の形態
[0026] (ガスタービンの構成)
本願発明の吸気ダクトを備えたガスタービンの基本構成について、図 1を参照して 簡単に説明する。図 1は、ガスタービンの構成を示す概略断面図である。
[0027] 図 1に示すように、ガスタービンは、空気を圧縮する圧縮機 1と、圧縮機 1で圧縮さ れた空気と燃料が供給されて燃焼動作を行う燃焼器 2と、燃焼器 2からの燃焼ガスに より回転駆動するタービン 3と、を備える。この圧縮機 1及びタービン 3はそれぞれ、車 室 40a, 40bで覆われ、又、燃焼器 2が、圧縮機 1とタービン 3とを 1軸とする回転軸 5 の外周に等間隔で複数配置される。
[0028] 更に、圧縮機 1に供給する空気を外気より吸い込むための吸込口 7を回転軸 5と直 交する方向(回転軸 5の径方向)に備えた片吸込構造の吸気ダクト 6が、圧縮機 1の 上流側に設置される。そして、回転軸 5の径方向に対して内側及び外側それぞれに 形成される内側ケーシング 4a及び外側ケーシング 4bによって、車室 40aが構成され る。又、この吸気ダクト 6が、圧縮機 1側において、内側ケーシング 4a及び外側ケーシ ング 4bそれぞれに接続される吸気ケーシング (第一ケーシング) 6a及び吸気ケーシ ング (第二ケーシング) 6bによって構成される。
[0029] 即ち、吸気ダクト 6が、同心の円環形状の吸気ケーシング 6a, 6bによって円環状の 空間 10を備えた構造となり、吸気ケーシング 6a, 6bによって構成される空間に回転 軸 5の径方向に開いた吸込口 7からの外気が供給される。尚、図 1でも示すように、以 下の各実施形態において、吸込口 7が上方に設けられるものとして説明を行うが、吸 込口 7は、上方に限らず、回転軸 5の径方向に開くものであればよい。同様に、車室 4 Oaが、同軸の円柱形状の内側ケーシング 4a及び外側ケーシング 4bによって二重管 構造となり、内側ケーシング 4a及び外側ケーシング 4bの間の空間に、圧縮空気流路 13が構成される。
[0030] 又、内側ケーシング 4a及び外側ケーシング 4bは、圧縮機 1の入口側において支持 するためのストラット 8が設けられる。即ち、圧縮機 1の IGV (入口案内翼)となる第 1段 目の静翼 11の前段に、ストラット 8が設置されて!/、る。尚、 IGVとなる第 1段目の静翼 11は開閉可能な可動翼であり、この第 1段目の静翼 11によって、吸気ダクト 6より圧 縮機 1に供給される空気流量を設定することができる。
[0031] そして、圧縮空気流路 13は、外側ケーシング 4bに固定された静翼 11と、回転軸 5 に固定された動翼 12とが交互に配置されて、吸気ダクト 6によって吸気された外気に よる空気が供給される。又、タービン流路 33は、タービン車室 40bに固定された静翼 31と、回転軸 5に固定された動翼 32とが交互に配置されて、燃焼器 2によって発生し た燃焼ガスが供給される。
[0032] このガスタービンにおいて、圧縮機 1で圧縮された空気は燃焼器 2に供給される。そ して、燃焼器 2に供給された圧縮空気は、燃焼器 2に供給される燃料の燃焼に使用さ れる。圧縮空気の一部は、燃焼器 2からの燃焼ガスにより高温に曝されるタービン車 室 40bに固定された静翼 31と回転軸 5に固定された動翼 32とを冷却するために使 用される。
[0033] そして、燃焼器 2における燃焼動作によって発生する燃焼ガスがタービン 3に供給 されて、燃焼ガスが動翼 32及び静翼 31を交互に通過することにより、タービン 3が回 転駆動する。タービン 3の回転駆動が回転軸 5を介して圧縮機 1に伝えられることで、 圧縮機 1が回転駆動する。これにより、圧縮機 1において、回転軸 5に固定された動 翼 12が回転することで、車室 40aに固定された静翼 11と動翼 12とにより形成される 空間を流れる空気が圧縮される。 [0034] このように構成されるガスタービン 3の圧縮機 1の各実施形態について、以下に説 明する。
[0035] (第 1の実施形態)
本発明の圧縮機の第 1の実施形態について、図面を参照して説明する。図 2は、本 実施形態の圧縮機の吸気ダクト周辺の構成を示す概略断面図であり、図 3は、本実 施形態の圧縮機に使用されるストラットの回転軸の周方向における設置関係を示す 図である。
[0036] 図 2に示すように、内側ケーシング 4aが、回転軸 5の先端側まで伸びるとともに、そ の先端が外周方向に向かって屈曲した構造とされ、この屈曲した先端に円環状の吸 気ケーシング 6aが接続される。又、外側ケーシング 4bが、内側ケーシング 4aよりも圧 縮機 1側で屈曲するとともに、その屈曲部分 41が吸気ケーシング 6aの内壁に向かつ て膨らんだベルマウス構造とされ、その先端に円環状の吸気ケーシング 6bが接続さ れる。そして、吸気ケーシング 6a, 6bそれぞれの側面が接続されて、吸気ケーシング 6a, 6bと内側ケーシング 4a及び外側ケーシング 4bとによって、円環状の空間 10を 備えた吸気ダクト 6が形成される。この吸気ダクト 6は、上方が開いた構成とされること で、上方より外気を吸い込む吸込口 7が形成される。
[0037] 更に、回転軸 5を中心として放射状に設けられるストラット 8が、外側ケーシング 4bの 屈曲部分 41の内側に接続されるとともに内側ケーシング 4aとも接続される。このスト ラット 8によって、内側ケーシング 4a及び外側ケーシング 4b力 圧縮機 1の入口側に おいて支持される。又、ストラット 8は、回転軸 5の軸方向において、内側ケーシング 4 a及び外側ケーシング 4bそれぞれとの接続位置がほぼ一致した形状となる。
[0038] このように構成されるとき、回転軸 5に対して放射状に設置されるストラット 8につい て、回転軸 5の周方向に対する配置関係を図 3に示す。即ち、 8本のストラット 8a〜8 hが回転軸 5の周方向に設置されるとき、ストラット 8a〜8hにおいて隣接するストラット の間隔の角度の最小値と最大値の差力 s、 120° /8 = 15° 以上とされる。尚、 n本の ストラット 8の場合、隣接するストラット 8の間隔の角度の最小値と最大値との差が、 12 0。 /n以上となるように設定される。
[0039] 図 3のように 8本のストラット 8a〜8hが設置される場合、ストラット 8a, 8b及びストラッ ト 8e, 8fの間隔を角度 Θ 1、ストラット 8b, 8c及びストラット 8f, 8gの間隔を角度 Θ 2、 ストラット 8c, 8d及びストラット 8g, 8hの間隔を角度 Θ 3、ストラット 8d, 8e及びストラッ ト 8h, 8aの間隔を角度 Θ 4とする。このとき、例えば、図 3に示すように、角度 θ 1〜 Θ 3をそれぞれ 40° とするとともに角度 Θ 4を 60° とするように、角度 θ 1〜 θ 4におけ る最小値となる角度 Θ minの値と、最大値となる角度 Θ maxの値との差が、 15° 以上 に設定される。
[0040] このように、ストラット 8の間隔の角度の最小値と最大値との差を 120° /n以上とす ることで、圧縮流路 13におけるストラット 8下流での全圧の周波数成分の分布を、図 4 (b)に示すような分布特性とすることができる。即ち、ストラット 8の間隔の角度を全て 等しくした図 4 (a)のような分布特性では、ストラット本数に応じたハーモニタス成分を 有するため、そのハーモニタス成分となる周波数における励振力が突出して大きくな る。それに対して、本実施形態では、図 4 (b)に示すように、ストラット 8を周方向に不 等間隔で配置するので、各周波数における励振力を分散させて、ハーモニタス成分 を低減すること力 Sできる。尚、図 4は、ストラット 8の下流側に流入する空気の全圧の周 波数分布を励振力によって表したもの、即ち、ストラット下流、 IGV上流の流れの全圧 変動振幅の周波数分布を示す。
[0041] このように、本実施形態では、図 4 (b)において、ストラット 8の下流側に流入する空 気の全圧の周波数成分分布に示すように、ハーモニタス成分を低減することができる ため、圧縮機 1の静翼 11及び動翼 12の設置位置に対する設計自由度を増加させる こと力 Sできる。尚、ストラット 8の周方向の位置関係については、図 3は一例であり、 8 本のス卜ラッ卜 8a〜8h(こ対して、図 5のよう ίこ、角度 θ 1 , Θ 2を 30。 、角度 Θ 3を 50 ° 、角度 Θ 4を 70° のように、一部の隣接する間隔の角度が 15° ( = 120/8° )以 上となる様にしても構わなレ、。
[0042] 更に、ストラット 8の本数についても、 8本に限らず、内側ケーシング 4aと外側ケーシ ング 4bとを十分に支持することができるだけの本数だけ設置されるものとすれば、 8 本よりも少なくも多くても構わない。尚、上述したように、ストラット 8によって発生するゥ エークにより圧損が発生するので、圧縮機 1に流入させる空気の圧損を低減させるた めには、ストラット 8の本数はできるだけ少な!/、方が良!/、。 [0043] (第 2の実施形態)
本発明の圧縮機の第 1の実施形態について、図面を参照して説明する。図 6は、本 実施形態の圧縮機の吸気ダクト周辺の構成を示す概略断面図であり、図 2の構成と 同一の部分については同一の符号を付して、その詳細な説明は省略する。
[0044] 本実施形態では、図 6に示すように、図 2に示す構成と異なり、ストラット 8が、その内 側ケーシング 4aでの接続位置 Aが外側ケーシング 4bでの接続位置 Bに比べて上流 側に位置するように、回転軸 5の外周に向かって回転軸 5の軸方向の下流側に傾い た形状とされる。このように構成することで、外側ケーシング 4bの屈曲部分 41の先端 Cからストラット 8の外側ケーシング 4bでの接続位置 Bまでの距離 dが、図 2の構成の 場合と比べて長くなる。
[0045] 今、外側ケーシング 4bの屈曲部分 41がベルマウス形状であるため、吸気ダクト 6の 圧縮機 1側の吸気ケーシング 6bの内壁を沿って外周側から流れる空気力 S、その流れ が静止されることなぐストラット 8が設置される空気流路 13の入口まで流れる。そのた め、空気流路 13の入口では、内側ケーシング 4a側と外側ケーシング 4b側とでは、流 入する空気の流速に差が生じる。
[0046] しかしながら、ストラット 8を図 6のような後縁側(回転軸 5の軸方向における下流側) に傾けた形状とすることで、内側ケーシング 4a側から外側ケーシング 4bに向かって、 空気流路 13の入口力もストラット 8までの距離を長くすることができる。よって、回転軸 5の径方向に対して、ストラット 8の前縁(回転軸 5の軸方向における上流側の縁)に おける空気の流速分布を略等しい状態とすることができる。これにより、ストラット 8に 流入する空気の流れをより一様な流れとすることができ、外側ケーシング 4bとの接続 位置側(チップ側)における圧損を低減することができる。
[0047] 尚、図 6においては、回転軸 5の周方向に配置された複数本のストラット 8において 、その外側ケーシング 4bとの接続位置 Bが内側ケーシング 4aとの接続位置 Aに比べ て下流側に位置するものとし、外側ケーシング 4bの屈曲部分 41の先端 Cから接続位 置 Bの距離 dを等しいものとした。し力もながら、吸込口 7に近い位置のストラット 8a及 び吸込口 7より遠い位置のストラット 8dのそれぞれにおける、外側ケーシング 4bの屈 曲部分 41の先端 Cから外側ケーシング 4bとの接続位置 Bまでの距離 dl , d4を比べ たとき、図 7に示すように、距離 dlが距離 d4より長くなるように設定しても構わない。
[0048] 更に、図 7のように、ストラット 8の周方向の位置によって、外側ケーシング 4bの屈曲 部分 41の先端 Cから外側ケーシング 4bとの接続位置 Bまでの距離 dを変化させるとき 、吸込口 7の中心と回転軸 5の中心とを結ぶ直線 Lとの交差角度 Θ (0° ≤ Θ≤180 ° 、図 8参照)に応じて変化させるものとし、交差角度 Θが大きくなつて吸込口 7から 離れるほど距離 dが大きくなるものとしても構わない。
[0049] 又、ストラット 8の周方向の位置関係については、第 1の実施形態のように(例えば、 図 3又は図 5)、隣接するストラット 8の間隔を不等なものとすることで、ストラット 8の下 流側に流入する空気の全圧の周波数成分分布におけるハーモニタス成分を低減し 、圧縮機 1の翼設計の自由度を高めるようにしても構わない。
[0050] (第 3の実施形態)
本発明の圧縮機の第 1の実施形態について、図面を参照して説明する。図 9は、本 実施形態の圧縮機の吸気ダクト周辺の構成を示す概略断面図であり、図 2の構成と 同一の部分については同一の符号を付して、その詳細な説明は省略する。
[0051] 本実施形態では、図 9に示すように、図 2に示す構成と異なり、外側ケーシング 4b の屈曲部分 41が更に吸気ケーシング 6a側に突出した構成となり、外周側において 回転軸 5の外周面と略平行な面(吸気ケーシング 6bに対して略垂直な面)となる平坦 部分 41 aが形成される。そして、この平坦部分 41aの吸気ケーシング 6a側の先端から 内側に向かって断面力 その先端が吸気ケーシング 6a側に向いた U字形状となる曲 面部分 41bが形成される。
[0052] このように、外側ケーシング 4bの吸気ケーシング 6bと接続される屈曲部分 41に平 坦部分 41 aを設けることによって、吸気ケーシング 6bの内壁に沿って外周側から流 れ込む空気の流れを静止させることができる。このとき、この空気の流れを平坦部分 4 laで周方向に回り込ませることができるため、屈曲部分 41の平坦部分 41aから曲面 部分 41bを沿って流れる空気の流れを、周方向においてほぼ同一条件力も加速させ ること力 Sできる。これにより、空気流路 13に流れ込む空気の流れの分布を、回転軸 5 の周方向に対して略等しい状態とし、偏流を緩和することができる。
[0053] 又、屈曲部分 41に平坦部分 41aを設けることで、吸気ケーシング 6aに向かって突 出させた構成とするため、図 2の構成と比べて、屈曲部分 41の先端 Cからストラット 8 の外側ケーシング 4bでの接続位置 Bまでの距離 dを長くすることができる。これにより 、第 2の実施形態と同様、ストラット 8に流入する空気の流れをより一様な流れとするこ とができ、外側ケーシング 4bとの接続位置側(チップ側)における圧損を低減すること ができる。
[0054] よって、本実施形態のように、屈曲部分 41に平坦部分 41aを設けて吸気ダクト 6内 部に突出させることで、空気流路 13に流れ込む空気の流れの分布を、回転軸 5の径 方向及び周方向それぞれに対して略等しレ、状態とし、偏流を小さくすることができる ため、圧縮機の効率低下を抑制できる。
[0055] 尚、図 9においては、外側ケーシング 4bの屈曲部分 41を、回転軸 5の周方向に対 して同一の断面形状とするものとした力 S、図 10に示すように、吸込口 7に近い位置の 平坦部 41aの軸方向の長さが、吸込口 7に遠い位置の平坦部 41aの軸方向の長さよ りも短くなるようにしても構わない。このようにすることで、吸込口 7に近い位置のストラ ット 8a及び吸込口 7より遠い位置のストラット 8dのそれぞれにおける、外側ケーシング 4bの屈曲部分 41の先端 Cから外側ケーシング 4bとの接続位置 Bまでの距離 dl , d4 を比べたとき、図 10に示すように、距離 dlが距離 d4より長くなる。尚、吸込口 7に遠 い位置では、屈曲部分 41に平坦部 41aが構成されずに、図 2と同様のベルマウス形 状となるようにしても構わない。
[0056] 更に、図 10に示すような構成とするとき、屈曲部分 41の周方向の位置によって、外 側ケーシング 4bの屈曲部分 41の先端 Cから外側ケーシング 4bとの接続位置 Bまで の距離 dを変化させるとき、吸込口 7の中心と回転軸 5の中心とを結ぶ直線 Lとの交差 角度 θ (0° ≤ θ≤180° 、図 8参照)に応じて変化させるものとし、交差角度 Θが大 きくなつて吸込口 7から離れるほど距離 dが大きくなるものとしても構わな!/、。
[0057] 尚、本実施形態においても、ストラット 8の周方向の位置関係については、第 1の実 施形態のように (例えば、図 3又は図 5)、隣接するストラット 8の間隔を不等なものとす ることで、ストラット 8の下流側に流入する空気の全圧の周波数成分分布におけるハ 一モニタス成分を低減し、圧縮機 1の翼設計の自由度を高めるようにしても構わない 。又、第 2の実施形態のように、ストラット 8において、外側ケーシング 4bとの接続位置 Bが内側ケーシング 4aとの接続位置 Aに比べて下流側に位置するものとして、ストラ ット 8の前縁における空気の流速分布を略等しい状態とするものとしても構わない。 産業上の利用可能性
本発明の圧縮機は、回転軸を中心とした円環状の空間を備えるとともに、片側を開 口して吸込口とした、片吸込構造の圧縮機に適用可能である。又、燃焼ガスにより回 転駆動するガスタービンと同一軸となるように構成された圧縮機に対して適用可能で ある。

Claims

請求の範囲
[1] 回転軸を覆うように配置された内側ケーシングと、
前記内側ケーシングを覆うように配置され、前記回転軸の周囲に流体流路を形成 する外側ケーシングと、
前記流体流路の入口側で前記内側ケーシングと前記外側ケーシングとの間に架設 された複数のストラットとを備え、
前記複数のストラットが、前記回転軸を中心として放射状に配設され、かつ前記回 転軸の周方向に隣接する前記ストラットの間隔が不等である圧縮機。
[2] 前記ストラットが前記回転軸の周方向に n本配置され (nは 2以上の整数)、
前記回転軸を中心としたときの隣接する前記ストラットの間隔を表す角度の最大値 と最小値との差が、 120° /n以上となる請求項 1に記載の圧縮機。
[3] 前記流体流路の入口端で前記内側ケーシングに接続される第一ケーシングと、前 記流体流路の入口端で前記外側ケーシングに接続される第二ケーシングとをさらに 備え、
前記外側ケーシングの前記第二ケーシングとの接続部分に、前記第一ケーシング に向かって突出するように屈曲する屈曲部が形成されている請求項 1又は請求項 2 に記載の圧縮機。
[4] 前記屈曲部が、前記第二ケーシングに隣接し、前記回転軸の外周面と略平行な面 をなす平坦部と、前記平坦部の先端から前記回転軸の径方向内方に向かって滑ら かに湾曲する曲面部とを備え、
前記屈曲部の断面は、前記第一ケーシングに向かって突出する略 U字形状をなす 請求項 3に記載の圧縮機。
[5] 前記ストラットの前記外側ケーシングとの接続部は、前記屈曲部の先端よりも前記 回転軸の軸方向の下流側に位置する請求項 3又は請求項 4に記載の圧縮機。
[6] 前記回転軸の周方向に沿って円環状に形成された前記平坦部のうち、前記第一 および第二ケーシングの先端に形成された外気の吸込口に隣接するある部分の前 記軸方向の長さが、前記ある部分よりも前記吸込口から遠くに位置する他の部分の 前記軸方向の長さよりも長い請求項 4又は請求項 5に記載の圧縮機。
[7] 前記回転軸の周方向に沿って円環状に形成された前記屈曲部のうち、前記第一 および第二ケーシングの先端に形成された外気の吸込口に隣接するある部分の先 端が、前記ある部分よりも前記吸込口から遠くに位置する他の部分の先端よりも前記 第一ケーシングに向かって突出している請求項 3〜請求項 6のいずれか一項に記載 の圧縮機。
[8] 前記ストラットの前記外側ケーシングとの接続部は、前記ストラットの前記内側ケー シングとの接続部よりも前記回転軸の軸方向の下流側に位置する請求項 1〜請求項
7の!/、ずれか一項に記載の圧縮機。
[9] 前記ストラットの前記外側ケーシングとの接続部と、前記ストラットの前記内側ケーシ ングとの接続部との前記軸方向の距離は、前記吸込口に近い前記ストラットほど長い 請求項 8に記載の圧縮機。
PCT/JP2007/074575 2006-12-21 2007-12-20 圧縮機 WO2008075747A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2007800431015A CN101542129B (zh) 2006-12-21 2007-12-20 压缩机
JP2008550188A JP5222152B2 (ja) 2006-12-21 2007-12-20 圧縮機
EP07851000.5A EP2096321B1 (en) 2006-12-21 2007-12-20 Compressor
KR1020097010371A KR101191060B1 (ko) 2006-12-21 2007-12-20 압축기
US12/447,985 US8206097B2 (en) 2006-12-21 2007-12-20 Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006343814 2006-12-21
JP2006-343814 2006-12-21

Publications (1)

Publication Number Publication Date
WO2008075747A1 true WO2008075747A1 (ja) 2008-06-26

Family

ID=39536375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074575 WO2008075747A1 (ja) 2006-12-21 2007-12-20 圧縮機

Country Status (6)

Country Link
US (1) US8206097B2 (ja)
EP (1) EP2096321B1 (ja)
JP (1) JP5222152B2 (ja)
KR (1) KR101191060B1 (ja)
CN (1) CN101542129B (ja)
WO (1) WO2008075747A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207619A (ja) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd 流体機械の吸込ケーシングおよび流体機械
JP2013060947A (ja) * 2011-09-14 2013-04-04 General Electric Co <Ge> 入口噴霧制御のためのシステムおよび方法
WO2015056455A1 (ja) * 2013-10-17 2015-04-23 三菱重工業株式会社 圧縮機、及びガスタービン
CN105508015A (zh) * 2016-01-22 2016-04-20 上海博泽电机有限公司 一种低旋转噪声的汽车发动机冷却风扇

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5479021B2 (ja) * 2009-10-16 2014-04-23 三菱重工業株式会社 排気ターボ過給機のコンプレッサ
US8684685B2 (en) * 2010-10-20 2014-04-01 General Electric Company Rotary machine having grooves for control of fluid dynamics
US8678752B2 (en) * 2010-10-20 2014-03-25 General Electric Company Rotary machine having non-uniform blade and vane spacing
CN105308291B (zh) 2013-06-20 2017-06-20 三菱日立电力系统株式会社 气体引导装置及具备该气体引导装置的设备
DE102013224081B4 (de) * 2013-11-26 2015-11-05 Man Diesel & Turbo Se Verdichter
US10094223B2 (en) 2014-03-13 2018-10-09 Pratt & Whitney Canada Corp. Integrated strut and IGV configuration
JP6661323B2 (ja) * 2015-10-14 2020-03-11 川崎重工業株式会社 圧縮機の吸気構造
DE102017200754A1 (de) 2017-01-18 2018-07-19 Siemens Aktiengesellschaft Einströmleitgitter, Einströmungsanordnung, Turbomaschine
US12060891B2 (en) * 2021-10-25 2024-08-13 Pratt & Whitney Canada Corp. Centrifugal compressor having a bellmouth with a stiffening member
US11719165B2 (en) 2021-11-03 2023-08-08 Pratt & Whitney Canada Corp. Air inlet strut for aircraft engine
KR20230127497A (ko) * 2022-02-25 2023-09-01 두산에너빌리티 주식회사 공기 인렛 매니폴드 및 이를 포함하는 가스터빈

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924005B1 (ja) * 1967-09-28 1974-06-20
JPS57176400A (en) * 1981-04-24 1982-10-29 Hitachi Ltd Axial flow compressor
JPH06146922A (ja) * 1992-10-30 1994-05-27 Toshiba Corp 空気圧縮機のケーシング
JPH0717994A (ja) 1993-06-30 1995-01-20 Tokyo Yatsuka Univ デオキシリボヌクレオシド誘導体の合成法
JPH0717994U (ja) * 1993-08-27 1995-03-31 三菱重工業株式会社 圧縮機の片吸い込み型吸気ケーシング
JP2000145699A (ja) * 1998-11-11 2000-05-26 Ishikawajima Harima Heavy Ind Co Ltd ターボ形圧縮機
JP2006037877A (ja) * 2004-07-28 2006-02-09 Hitachi Ltd ガスタービン装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3116789A (en) * 1960-03-14 1964-01-07 Rolls Royce Heat exchange apparatus, e. g. for use in gas turbine engines
JPS5525555A (en) * 1978-08-12 1980-02-23 Hitachi Ltd Impeller
US5342167A (en) 1992-10-09 1994-08-30 Airflow Research And Manufacturing Corporation Low noise fan
JP3567086B2 (ja) * 1998-07-28 2004-09-15 株式会社東芝 送風羽根及び回転電機
US6439838B1 (en) * 1999-12-18 2002-08-27 General Electric Company Periodic stator airfoils
FR2824597B1 (fr) 2001-05-11 2004-04-02 Snecma Moteurs Reduction de vibrations dans une structure comprenant un rotor et des sources de perturbation fixes
US6789998B2 (en) 2002-09-06 2004-09-14 Honeywell International Inc. Aperiodic struts for enhanced blade responses
ES2306149T3 (es) * 2004-06-01 2008-11-01 Volvo Aero Corporation Sistema de compresion de turbina de gas y estructura de compresor.
US7654793B2 (en) * 2005-05-13 2010-02-02 Valeo Electrical Systems, Inc. Fan shroud supports which increase resonant frequency

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924005B1 (ja) * 1967-09-28 1974-06-20
JPS57176400A (en) * 1981-04-24 1982-10-29 Hitachi Ltd Axial flow compressor
JPH06146922A (ja) * 1992-10-30 1994-05-27 Toshiba Corp 空気圧縮機のケーシング
JPH0717994A (ja) 1993-06-30 1995-01-20 Tokyo Yatsuka Univ デオキシリボヌクレオシド誘導体の合成法
JPH0717994U (ja) * 1993-08-27 1995-03-31 三菱重工業株式会社 圧縮機の片吸い込み型吸気ケーシング
JP2000145699A (ja) * 1998-11-11 2000-05-26 Ishikawajima Harima Heavy Ind Co Ltd ターボ形圧縮機
JP2006037877A (ja) * 2004-07-28 2006-02-09 Hitachi Ltd ガスタービン装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2096321A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207619A (ja) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd 流体機械の吸込ケーシングおよび流体機械
JP2013060947A (ja) * 2011-09-14 2013-04-04 General Electric Co <Ge> 入口噴霧制御のためのシステムおよび方法
WO2015056455A1 (ja) * 2013-10-17 2015-04-23 三菱重工業株式会社 圧縮機、及びガスタービン
JP2015078662A (ja) * 2013-10-17 2015-04-23 三菱重工業株式会社 圧縮機、及びガスタービン
US10774750B2 (en) 2013-10-17 2020-09-15 Mitsubishi Heavy Industries, Ltd. Compressor with stator vane configuration in vicinity of bleed structure, and gas turbine engine
CN105508015A (zh) * 2016-01-22 2016-04-20 上海博泽电机有限公司 一种低旋转噪声的汽车发动机冷却风扇

Also Published As

Publication number Publication date
KR20090074082A (ko) 2009-07-03
US8206097B2 (en) 2012-06-26
EP2096321A4 (en) 2013-06-05
CN101542129B (zh) 2012-12-19
KR101191060B1 (ko) 2012-10-15
JP5222152B2 (ja) 2013-06-26
EP2096321B1 (en) 2017-03-22
EP2096321A1 (en) 2009-09-02
CN101542129A (zh) 2009-09-23
US20100068044A1 (en) 2010-03-18
JPWO2008075747A1 (ja) 2010-04-15

Similar Documents

Publication Publication Date Title
WO2008075747A1 (ja) 圧縮機
JP6067095B2 (ja) 遠心圧縮機
JP5649758B2 (ja) 遠心圧縮機
KR100984445B1 (ko) 원심 압축기
JP5230805B2 (ja) 多翼送風機
CN104428509A (zh) 离心压缩机
EP2581556A2 (en) Variable vanes with non uniform lean
EP3159504B1 (en) Radial-inflow type axial turbine and turbocharger
JP6234600B2 (ja) タービン
JP2017519154A (ja) 遠心圧縮機用のディフューザ
JP2017129133A (ja) 可変静翼アンダーカットボタン
JP6499636B2 (ja) 異なる後縁プロフィルを持つベーンを交互に配置したベーン配置
WO2018146753A1 (ja) 遠心圧縮機、ターボチャージャ
EP3705698A1 (en) Turbine and turbocharger
CN112177949A (zh) 多级离心压缩机
JP5565159B2 (ja) 可変容量タービン
CN111989469B (zh) 涡轮机组
EP3555429A1 (en) Exhaust system for a gas turbine engine
KR20030006810A (ko) 원심 압축기
CN111655987B (zh) 径流式涡轮机以及涡轮增压器
US5779440A (en) Flow energizing system for turbomachinery
JP7235549B2 (ja) 遠心圧縮機
JP2023007748A (ja) 遠心式回転装置
JP2019132270A (ja) 送風装置
JP2012057489A (ja) 遠心圧縮機のディフューザおよびこれを備えた遠心圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780043101.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07851000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008550188

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2007851000

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007851000

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12447985

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097010371

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE