WO2008066129A1 - Testing apparatus, testing method, image pickup testing system, color filter manufacturing method, and testing program - Google Patents
Testing apparatus, testing method, image pickup testing system, color filter manufacturing method, and testing program Download PDFInfo
- Publication number
- WO2008066129A1 WO2008066129A1 PCT/JP2007/073093 JP2007073093W WO2008066129A1 WO 2008066129 A1 WO2008066129 A1 WO 2008066129A1 JP 2007073093 W JP2007073093 W JP 2007073093W WO 2008066129 A1 WO2008066129 A1 WO 2008066129A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- color filter
- inspection
- processing
- dimensional projection
- distribution information
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 92
- 238000012360 testing method Methods 0.000 title abstract 5
- 238000012545 processing Methods 0.000 claims abstract description 246
- 238000009826 distribution Methods 0.000 claims abstract description 79
- 238000004458 analytical method Methods 0.000 claims abstract description 64
- 238000003384 imaging method Methods 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims description 141
- 230000008569 process Effects 0.000 claims description 101
- 238000007689 inspection Methods 0.000 claims description 100
- 238000009499 grossing Methods 0.000 claims description 51
- 230000000737 periodic effect Effects 0.000 claims description 44
- 238000001914 filtration Methods 0.000 claims description 41
- 230000002950 deficient Effects 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 5
- 238000005286 illumination Methods 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 52
- 238000010191 image analysis Methods 0.000 description 34
- 238000001228 spectrum Methods 0.000 description 30
- 239000011159 matrix material Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 15
- 239000011521 glass Substances 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 239000011344 liquid material Substances 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 101150012579 ADSL gene Proteins 0.000 description 1
- 102100020775 Adenylosuccinate lyase Human genes 0.000 description 1
- 108700040193 Adenylosuccinate lyases Proteins 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/30—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
- G01B11/306—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/958—Inspecting transparent materials or objects, e.g. windscreens
Definitions
- Inspection device Inspection device, inspection method, imaging inspection system, color filter manufacturing method, inspection program
- the present invention relates to an inspection apparatus for inspecting display members such as color filters.
- a color filter for color display is one of the important components that affect display quality. For this reason, the quality required for color filters has become higher.
- the ink is formed by ejecting R (red), G (green) and ⁇ (blue) ink from the nozzles of the inkjet head to each picture element.
- the characteristics of the ink jet method are that the number of processes is reduced and the waste of ink is reduced, so that the process can be shortened and the cost can be reduced.
- Patent Document 1 Japanese Published Patent Publication “Japanese Unexamined Patent Publication No. 2006-184125 (Publication Date: July 13, 2006)”
- the color filter inspection apparatus disclosed in Patent Document 1 can detect stripes on the color finerator but cannot detect the periodicity of the stripes. For this reason, the cause of the occurrence of streak cannot be identified, and when manufacturing a color filter, the cause of the occurrence of streak cannot be fed back, so it is difficult to improve quality.
- the present invention has been made in view of the above problems, and an object of the present invention is the presence or absence of periodicity of unevenness (straight lines) generated on the surface of a display member such as a color filter that is an object to be inspected. This is to realize an inspection device that can make this determination.
- an inspection apparatus performs inspection of a display member based on captured image data obtained by imaging an inspection symmetry plane irradiated with light on the display member.
- a one-dimensional projection processing unit that performs one-dimensional projection processing with respect to the light distribution information included in the captured image data, with an arbitrary direction as a projection direction, and the one-dimensional projection processing unit. It comprises a periodic analysis processing means for performing periodic analysis of the processed light distribution information.
- the inspection method according to the present invention is based on captured image data obtained by imaging the inspection symmetry plane irradiated with light of the display member.
- a first step of performing one-dimensional projection processing with an arbitrary direction as a projection direction on the light distribution information included in the captured image data and the first And a second step of performing periodic analysis of the light distribution information after the one-dimensional projection processing obtained by the step!
- the one-dimensional projection processing means performs one-dimensional projection processing on the two-dimensional light distribution information in the captured image data, thereby obtaining light distribution information in the projection direction in the captured image. be able to. Then, by performing periodic analysis of the light distribution information in the projection direction in the captured image by the periodic analysis processing means, the period of the light distribution in the projection direction in the captured image can be determined from the periodic analysis result.
- the display member is a color filter
- a high-quality color filter can be obtained by changing the manufacturing process so as to eliminate the uneven stripes.
- the period analysis processing means may perform a Fourier transform on the light distribution information.
- the periodic analysis processing unit obtains a periodic function of the light distribution information by performing Fourier transform on the light distribution information subjected to the one-dimensional projection processing by the one-dimensional projection processing unit. be able to.
- the operator can easily determine the presence or absence of periodic irregularities on the surface of the display member visually.
- the periodic function is obtained by using Fourier transform, the periodic function force, the smoothing period, and the like can be obtained.
- the inspection apparatus having the above-described configuration further includes a finoletering processing unit that performs filtering processing on the light distribution information subjected to the one-dimensional projection processing by the one-dimensional projection processing unit using a filter of an arbitrary size.
- the period analysis processing means is connected to the filtering processing means. Therefore, periodic analysis of the filtered light distribution information may be performed.
- the light distribution information after the one-dimensional projection processing obtained by the first step is further obtained between the first step and the second step.
- a filtering process step for performing a filtering process with a filter of an arbitrary size is provided, and the second step performs a periodic analysis of the light distribution information after the filtering process obtained by the filtering process step. Good.
- the light distribution information subjected to the one-dimensional projection processing by the filtering processing means is subjected to filtering processing by a filter of an arbitrary size, so that the analysis means in the subsequent stage can perform filtering from the filter size. Therefore, it is possible to suppress the period of stripes with a large width, and to extract the period of stripes with a width smaller than the filter size.
- the filtering processing in the filtering processing circuit is preferably a morphology processing.
- the filtering processing in the filtering processing circuit is preferably smoothing processing.
- the filtering processing circuit includes a smoothing processing circuit that performs smoothing processing on the light distribution information that has been subjected to the one-dimensional projection processing by the one-dimensional projection processing means, and smoothing by the smoothing processing circuit.
- a morphology processing circuit that performs a morphology process on the processed light distribution information may be provided, and the light distribution information subjected to the morphology process by the morphology processing circuit may be output to the period analysis processing means.
- the filtering processing circuit includes a morphology processing circuit that performs morphology processing on the light distribution information that has been one-dimensionally projected by the one-dimensional projection processing means, and light that has undergone the morphology processing by the morphology processing circuit.
- a smoothing processing circuit that performs a smoothing process on the distribution information may be provided, and the light distribution information smoothed by the smoothing processing circuit may be output to the periodic analysis processing means.
- the light component subjected to the one-dimensional projection processing by the one-dimensional projection processing means By applying two types of filtering processing, which are different in smoothing processing and morphology processing, to the fabric information, even if it is a period of stripes with a width that could not be filtered or emphasized, it can be compensated on the other side. it can. As a result, it is possible to easily determine the presence or absence of stripe irregularity and to specify the stripe unevenness period.
- the inspection apparatus can be applied to an imaging inspection system as described below.
- the illumination device that irradiates light on the front surface or the back surface of the display member, and the display member is irradiated with the light in a state irradiated with light! /
- an inspection apparatus having the above-described configuration for inspecting the display member based on captured image data imaged by the imaging apparatus.
- the color filter manufacturing method of the present invention is a color filter manufacturing method for manufacturing a color filter by a color filter manufacturing apparatus in order to solve the above-described problems, and the period according to the inspection method described above. Only color filters determined to be non-defective as a result of the analysis are used in the manufacturing process after the inspection process in the color filter manufacturing apparatus.
- the color filter determined as a non-defective product as a result of the periodic analysis (determined that the stripes have no periodicity). Since only the color filter) is used in the color filter manufacturing process after the inspection process, the color filter having a stripe irregularity does not go through the process after the inspection process. Therefore, since the defective color filter is not produced in vain, the yield S of the color filter can be improved and the manufacturing cost of the color filter can be reduced.
- a color filter manufacturing method of the present invention is a color filter manufacturing method for manufacturing a color filter by a color filter manufacturing apparatus in order to solve the above-described problems, and is a result of periodic analysis by the above-described inspection method.
- a color filter determined to be a defective product is generated, information indicating that the defective product is generated is transmitted to the color filter manufacturing apparatus.
- FIG. 1, showing an embodiment of the present invention is a block diagram showing a main configuration of an image analysis apparatus.
- FIG. 2 is a diagram showing an outline of an imaging inspection apparatus using the image analysis apparatus shown in FIG.
- FIG. 3 is a diagram showing a manufacturing process of a color filter as an object to be inspected.
- FIG. 4 is a diagram showing an image obtained by imaging a color filter by the imaging apparatus of the imaging inspection apparatus shown in FIG. 2.
- FIG.5 One-dimensional projection processing is performed from the two-dimensional luminance distribution information obtained from the image shown in Fig.4.
- FIG. 6 is a graph showing the result of performing Fourier transform on the data of the graph shown in FIG.
- FIG. 7 is a flowchart showing a process flow of a manufacturing process of a color filter substrate.
- FIG. 8, showing another embodiment of the present invention is a block diagram showing a main configuration of an image analysis apparatus.
- FIG. 9 (a) is a graph showing the state of morphology processing by the morphology processing circuit of the image analysis apparatus shown in FIG.
- FIG. 9 (b) is a graph showing the state of morphology processing by the morphology processing circuit of the image analysis device shown in Fig. 8.
- FIG. 10 is a flowchart showing a flow of an inspection method using the image analysis apparatus shown in FIG.
- FIG. 11 is a graph showing the result of the morphology processing with the filter size set to fl pixels with respect to the result of the one-dimensional projection processing in the image analysis apparatus shown in FIG.
- FIG. 12 is a graph showing the result of performing Fourier transform on the data in the graph of FIG.
- FIG. 13 is a graph showing the result of the morphology processing with the filter size set to f2 pixels with respect to the result of the one-dimensional projection processing in the image analysis apparatus shown in FIG.
- FIG. 14 is a graph showing the result of performing Fourier transform on the data of the graph of FIG.
- FIG. 15, showing still another embodiment of the present invention is a block diagram showing a main configuration of an image analyzing apparatus.
- FIG. 16 is a graph showing the result of smoothing processing with the finalizer size set to f3 pixels with respect to the result of the one-dimensional projection processing in the image analysis apparatus shown in FIG.
- FIG. 17 is a graph showing the result of performing a Fourier transform on the data in the graph of FIG.
- FIG. 18 shows still another embodiment of the present invention, and is a block diagram showing a main configuration of an image analysis apparatus.
- FIG. 19 is a graph showing the result of morphological processing on the data of the graph of FIG. 16 with a filter size of f2 pixels.
- FIG. 20 is a graph showing the result of performing Fourier transform on the data in the graph of FIG.
- the display member refers to a member that is used in an image display device and transmits or reflects light or both.
- a color filter formed by an inkjet method is described as an example of the display member.
- a color filter refers to a filter that causes a display device to perform color display by passing light of a specific wavelength.
- the color filter is formed by ejecting a liquid material by an ink jet method onto a glass substrate on which black matrix is formed.
- black matrix and color filter are formed
- the glass substrate in this state is called a color filter substrate.
- FIG. 2 shows an outline of an imaging inspection system 300 that is an inspection apparatus of the present invention.
- the imaging inspection system 300 inspects the color filter substrate 330 that is an object to be inspected, and irradiates the surface (color filter forming surface) of the color filter substrate 330 with light.
- the camera (detection means) 320 includes an output means for outputting a captured image to the image analysis apparatus (inspection apparatus) 100.
- the information output from the camera 320 is captured image information including luminance distribution information on the surface of the color filter substrate 330.
- the luminance distribution information is information indicating a distribution state of luminance values in a predetermined area unit of the color filter substrate 330, for example, a pixel unit.
- the information analyzed by the image analysis device 100 is output to the result output device 400 as unevenness period information described later. Details of the image analysis apparatus 100 will be described later.
- the result output device 400 outputs data that can be confirmed by the operator based on the input unevenness period information, for example, graphed data, as result data.
- the output result will be described later.
- the color filter substrate 330 is formed as follows.
- FIG. 3 is a diagram showing a part of the manufacturing process (manufacturing method) of the color filter substrate 330 and the discharging process of the liquid material of the color filter by the inkjet method.
- the head unit 230 moves in the scanning direction (backward or frontward in the drawing) with respect to the glass substrate 220 on which the black matrix 210 is formed, and the ink jet nozzle 240 is liquid on the glass substrate 220 between the black matrix 210.
- the material is sequentially discharged in the scanning direction.
- the head unit 230 moves a predetermined distance in the direction orthogonal to the scanning direction (left and right in the drawing), and then again in the scanning direction (front or back in the drawing). ),
- the inkjet nozzle 240 sequentially discharges the liquid material in the scanning direction.
- stripes occur in the color filter at intervals of the head unit 230. Specifically, stripes occur in the scanning direction in units of the number of head units 230 arranged in the direction orthogonal to the scanning direction of nozzles 240, for example, in FIG.
- FIG. 4 is a diagram showing an example of an image obtained by imaging the color filter substrate 330 with the camera 320 in a planar (two-dimensional) manner.
- the stripe unevenness generated when the head unit 230 is used is shown.
- the direction parallel to the stripe uneven direction is defined as the Y direction
- the direction perpendicular to the stripe uneven direction is defined as the X direction.
- the uneven stripe means unevenness recognized as a plurality of stripe-like unevenness on the color filter forming surface of the color filter substrate 330 due to the difference in film thickness. Therefore, the non-uniform direction refers to the longitudinal direction of the formed stripe.
- the image analysis device 100 that is an inspection device uses the color from the two-dimensional luminance distribution information (light distribution information) extracted from the planar captured image of the color filter substrate 330 that is the object to be inspected. Information for determining the periodicity of stripes occurring in the color filter formed on the surface of the filter substrate 330 is provided.
- FIG. 1 shows a schematic block diagram of an image analysis apparatus 100 that is an inspection apparatus according to the present embodiment.
- the image analysis apparatus 100 captures image information obtained by the imaging inspection system 300. And a function for outputting to the result output device 400 as uneven period information.
- the image analysis apparatus 100 includes a one-dimensional projection processing circuit (one-dimensional projection processing means) 110 that converts input two-dimensional luminance distribution information into one-dimensional luminance distribution information, and a primary Periodic analysis processing circuit (periodic analysis processing means) 120 that performs periodic analysis of the one-dimensional luminance distribution information converted by the original projection processing circuit 110, and for sending control signals including various commands to these processing circuits With CPU150.
- a one-dimensional projection processing circuit one-dimensional projection processing means
- periodic analysis processing means 120 that performs periodic analysis of the one-dimensional luminance distribution information converted by the original projection processing circuit 110, and for sending control signals including various commands to these processing circuits With CPU150.
- the one-dimensional projection processing circuit 110 acquires captured image information from the imaging inspection system 300 in accordance with an instruction from the CPU 150.
- the one-dimensional projection processing circuit 110 converts the two-dimensional luminance distribution information included in the acquired captured image information into one-dimensional luminance distribution information. Details of the one-dimensional projection processing by the one-dimensional projection processing circuit 110 will be described later. Further, according to the instruction of the CPU 150, the one-dimensional projection processing circuit 110 outputs the one-dimensional projection processing result to the periodic analysis processing circuit 120 at the subsequent stage.
- the period analysis processing circuit 120 performs Fourier transform on the input one-dimensional luminance distribution information, and analyzes the periodicity of the one-dimensional luminance distribution information. Details of the period analysis processing by the period analysis processing circuit 120 will be described later. Further, in accordance with an instruction from the CPU 150, the cycle analysis processing circuit 120 outputs the Fourier analysis processing result to the subsequent result output device 400 as uneven cycle information.
- the result output device 400 outputs the inputted unevenness period information in a form that is easy for a human to recognize, for example, a graph.
- the operator looks at the output result and determines whether or not the stripes having periodicity are present in the color filter formed on the surface of the color filter substrate 330. Therefore, the result output from the result output device 400 may be in any form as long as it can be determined by the operator.
- the reflected light from the imaging inspection system 300 is the thickness of the picture element of the color filter substrate 330 where the amount of reflected light is larger in the portion where the thickness of the picture element of the color filter substrate 330 is relatively larger than other regions. However, the amount of reflected light is smaller in a portion where is relatively smaller than other regions. This difference in the amount of reflected light is recognized as unevenness.
- the difference in film thickness by the ink jet method is generally the head unit.
- the head unit When a large difference in film thickness occurs in one line in the scanning direction of the image 230, stripes are observed in the image data picked up by the camera (detection means) 320.
- FIG. 4 is a diagram illustrating an example of an image captured by the camera 320 serving as an imaging unit.
- the one-dimensional projection processing circuit 110 performs one-dimensional projection processing with respect to the light distribution information included in the image data captured by the camera 320 (for example, FIG. 4) with an arbitrary direction as the projection direction. It has become.
- the projection direction is a direction in which the luminance value is added along the above-described streak direction (direction in which one-dimensional projection processing is performed).
- the Y direction parallel to the non-straight direction is taken in the captured image.
- the arbitrary value is set as the Y direction, and the luminance value is averaged in the Y direction with respect to the image shown in FIG. One-dimensional distribution information.
- the luminance distribution information of the captured image is represented as p. x
- xy and y are the coordinate values in the X and Y directions, respectively. Using this, the luminance distribution information that is made one-dimensional can be obtained by calculating equation (1).
- N is the number of data in the Y direction.
- FIG. 5 is a graph showing the one-dimensional luminance distribution information obtained by the equation (1).
- the vertical axis is the luminance value
- the horizontal axis is the position of the X coordinate.
- the unit of horizontal axis is pixel (pix).
- the one-dimensional luminance distribution information obtained in this way is Fourier transformed by the period analysis processing circuit 120 at the subsequent stage.
- the one-dimensional projection process a method of taking the average value of the luminance values is used.
- the one-dimensional projection process may be any one that can convert two-dimensional data into one dimension. It is not restricted to this in particular. For example, it may be a method of integrating the luminance value in the Y direction! /, Or a method of adding the weight in the Y direction.
- the Fourier transform performed in the period analysis processing circuit 120 is performed using Expression (2).
- a frequency distribution can be obtained by performing Fourier transform using the above equation (2). Furthermore, if the inverse of the frequency is taken, the result can be a function of the period.
- FIG. 6 is a graph showing the result of Fourier transform of the data one-dimensionally projected by the one-dimensional projection processing circuit 110 (the graph shown in FIG. 5) as it is.
- the vertical axis shows the intensity of the spectrum.
- the horizontal axis takes the reciprocal of the frequency, converts it to a period, and displays the logarithm.
- the unit of the period is a pixel (pix).
- the irregularity period information is output in the form of a graph or the like that can be recognized by the operator in the result output device 400, so that the operator can determine whether or not the irregularity of the stripes is semi-IJ. ! / Speak.
- the determination of the presence or absence of periodic irregularities may be automatically performed based on the relationship between the spectrum and the period included in the unevenness period information that is not obtained by visual judgment by the operator.
- the determination criterion information for example, the moving average of FIG. 6 is taken, and the vicinity of the moving average value (for example, a value obtained by multiplying the moving average value by 1.2 is set as the upper limit value and the moving average value is set).
- the range (with a value multiplied by 8 as the lower limit) is used as the criterion information, and the presence or absence of spectral values that are out of this range! / There is a way to judge.
- the presence or absence of the periodicity of stripes may be determined by various other methods.
- a neighborhood value range including a cycle of stripe unevenness associated with the cause of occurrence of stripe unevenness and a range in the vicinity thereof is used as information to be registered in the determination criterion database. Then, the periodic force included in the unevenness period information is checked in order with respect to the registered period to determine whether it is included in the neighborhood value range of the period registered in the above criteria database. It is determined by whether or not it is included in the neighborhood value range. At this time, if it is determined that the period of the stripe unevenness included in the detected uneven period information is included in the neighborhood value range of the registered period, it is possible to identify the cause of the occurrence of the stripe unevenness of the period. it can.
- the period is set to be expanded to the neighborhood value range because an error may occur due to the positional deviation of the head unit or other causes, and the range is set in consideration of the error.
- the neighborhood value range is determined from the dimension error value of the mechanism such as the head, the nozzle, and the scanning stage, the operation error value, and the experience value.
- the width of the stripe Information about this may be added to the determination reference database for determination.
- the determination result may include information for specifying the cause of the occurrence of the uneven stripes in addition to the information indicating the presence or absence of the uneven stripe periodicity.
- step S1 the step of executing the above-described color filter inspection method
- step S3 the step of executing the above-described color filter inspection method
- step S1 which is the preceding process, includes a black matrix manufacturing process and a color filter manufacturing process.
- a negative acrylic photosensitive resin liquid in which carbon fine particles are dispersed is applied onto a glass substrate by spin coating, followed by drying! / ⁇ A black photosensitive resin layer is formed. Form. Subsequently, after the black photosensitive resin layer is exposed through a photomask, development is performed to form a black matrix (BM). For example, as shown in FIG. 3, a black matrix 210 is formed on a glass substrate 220. At this time, the opening for use in the color filter manufacturing process, which is the next process, that is, the opening for receiving the ink ejected from each nozzle 240 of the head unit 230 (the color of each color). The black matrix 210 is formed so as to form a filter.
- the head unit 230 moves in the scanning direction (backward or frontward in the drawing) with respect to the glass substrate 220 on which the black matrix 210 is formed.
- Inkjet nozzles 240 sequentially eject liquid materials on the glass substrate 220 between the black matrixes 210 in the scanning direction to form color filters on the glass substrate 220.
- the black matrix 210 may be formed by ink jet or roller transfer. Moreover, you may perform a surface processing process as needed.
- step S2 a color filter inspection process is executed (step S2).
- this color filter inspection process uneven period information of the color filter is detected, and a non-defective product of the color filter is determined from the detection result.
- the uneven cycle information includes the stripe irregularity periodicity information. It is assumed that at least the spectrum in the period is included.
- the unevenness period information sent from the image analysis apparatus 100 which is the above-described inspection apparatus, includes the fact that the periodicity of stripes exists. If this is the case, the information contained in the irregularity period information is compared with the inspection reference information created and stored in advance, and the color filter processing (processing after the inspection process) is performed according to the comparison result. Change).
- the inspection standard information may be registered in the above-described determination standard database, or may be registered in another database. If necessary, it can be registered in any database that can be read by the color filter manufacturing apparatus. /!
- Changing the processing of the color filter means for example, a color value formed with a color finisher determined to be equal to or greater than the first predetermined value included in the spectral power included in the unevenness period information and the inspection standard information.
- the filter substrate is discarded based on the inspected object processing change information created and stored in advance, and the color filter on which the color filter determined to be less than the first predetermined value and greater than or equal to the second predetermined value is formed. It is conveying a filter board
- the color filter substrate on which the color filter determined to be less than the spectral value S included in the unevenness period information and the second predetermined value is determined to be a non-defective product, and the inspection process is performed. Then, it is conveyed to the next manufacturing process to be executed.
- the color filter transported to the above-mentioned rework process is a color filter that is determined to be in a repairable state, and is reworked together with rework information including location information of abnormal points obtained in the color filter inspection process. After being transported to the process and repaired in this rework process, it is transported again to the inspection process and inspected.
- the reworking process is included in the black matrix manufacturing process and the color filter manufacturing process in step S1 of the power filter substrate manufacturing process. In the rework process, there are cases of local repair that repairs only abnormal parts and full repair of the color filter substrate, repair of only the color filter, and repair of the black matrix and color filter. There are cases.
- the color filter manufacturing process changes the manufacturing conditions in the color filter manufacturing process (for example, adjustment of ink ejection amount, head Change the moving speed of the unit, etc.) and manufacture the color filter. Furthermore, if it is determined in the color filter inspection process in step S2 that unevenness due to the inappropriate width of the black matrix has occurred, the black matrix manufacturing process is compared with the black matrix manufacturing process. Instruct the condition change (adjustment of photomask formation position to form black matrix, etc.).
- the manufacturing conditions are changed according to the instructed contents, and the black matrix is manufactured.
- the decision to change the manufacturing conditions based on the spectrum value and the judgment reference database may be made on the pre-manufacturing process side, or on the color filter inspection process side, and an instruction to change the manufacturing conditions is sent to the pre-manufacturing process. May be sent.
- step S3 The color filter substrate on which the color filter determined to be non-defective after the inspection is completed as described above is transported to the next step (step S3). Even if it is determined that the product is non-defective, if it is close to the limit value of the non-defective product, the manufacturing conditions are set so that the next process is executed under the manufacturing conditions that consider the color filter inspection results. Change instructions Good.
- a counter electrode made of a transparent electrode such as ITO is formed by sputtering, and then a columnar spacer (not shown) for defining the cell gap of the liquid crystal panel, for example, is an acrylic photosensitive resin. It is formed by applying a resin solution and exposing, developing and curing with a photomask.
- the color filter substrate 330 is formed as described above.
- the color filter after the inspection can be processed according to the inspection result based on the unevenness period information that is the inspection result obtained in the color filter inspection process, it is finally obtained.
- the yield of good color filters can be improved.
- the processing change of the color filter that is the work to be inspected may be made for a single color filter, for all the color filters of the lot to which it belongs, or for a power color filter of the same model number. You may go to all.
- a marking or the like may be provided at a predetermined predetermined position of the color filter substrate or an abnormality occurrence region of the color filter.
- the color filter determined to be a defective product is not discarded in the manufacturing process and is used by the operator to identify the cause of the defective product.
- inspection values obtained in the inspection process of a plurality of color filters are stored in an inspection value database (for example, installed in an inspection apparatus).
- the manufacturing process and the manufacturing process conditions described may be changed when the conditions applicable to the conditions described in the inspection standard information registered in the judgment standard database are met.
- the number of consecutive color filters whose frequency value is greater than or equal to a certain reference value (the first predetermined value or the second predetermined value described above) or the frequency of occurrence is counted. If the specified frequency is exceeded, the manufacturing process is changed based on the inspection result. Based on the manufacturing process change information, the manufacturing method is changed by feeding back to the manufacturing process before the process causing the failure. .
- Examples of changes in the manufacturing method include changing the manufacturing conditions of the manufacturing apparatus, starting a check inspection for the necessity of maintenance of the manufacturing apparatus, stopping the manufacturing apparatus, It is conceivable to perform cleaning or replacement of the parts.
- the manufacturing method may be changed by transmitting the inspection value to a manufacturing process after the inspection process.
- the manufacturing condition of the next manufacturing process is reduced, and the high inspection value is relaxed
- the manufacturing condition change information so that the final luminance value falls within the range of the final inspection standard.
- the force periodic analysis process using the Fourier transform for the periodic analysis process is particularly suitable if it can check the presence of periodicity. Not limited! /.
- the surface of the display member is irradiated with light and the analysis is performed based on the reflected light distribution.
- the analysis may be performed based on the transmitted light distribution.
- the image processing procedure is the same as the image processing procedure using the reflected light distribution.
- the periodic analysis described above may be performed based on the transmitted light distribution obtained by irradiating the back surface of the display member (color filter) with light and transmitting the light to the front surface that is the color filter formation surface. Conceivable.
- the lighting device is arranged on the color filter non-formation side (the back side of the display member), and the camera is Is placed on the color filter forming side (front side of the display member). It is desirable to set the camera arrangement angle to an angle at which unevenness appears easily on the color filter forming surface. For example, as in the case of reflection, it is desirable that the irradiation angle with respect to the back surface of the substrate and the emission angle of the transmitted light with respect to the substrate are different from those of the straight transmitted light.
- the illumination device is arranged in the normal direction of the substrate and the camera is arranged at an angle inclined from the normal line of the substrate, or the illumination device is arranged at an angle inclined from the normal line of the substrate. It is conceivable to arrange them at an angle inclined from the normal direction of the substrate and the direction of the straight transmitted light.
- filtering processing may be performed on the data subjected to the one-dimensional projection processing before performing force cycle analysis processing in which cycle analysis processing is performed as it is.
- the filtering process in this specification refers to a process of extracting or suppressing irregularities having a certain periodic width with respect to information obtained by one-dimensional projection of light distribution information (luminance distribution information).
- Embodiment 2 the case where the morphology process is used as an example of the filtering process will be described.
- Embodiment 3 the case where the smoothing process is used as an example of the filtering process will be described. Further, in the fourth embodiment, a case where both morphology processing and smoothing processing are used will be described.
- FIG. 8 shows a schematic block diagram of the image analysis apparatus 102 that is effective in the present embodiment.
- the difference from the image analysis apparatus 100 shown in FIG. 1 of the first embodiment is that a morphology processing circuit 130 is provided after the one-dimensional projection processing circuit 110.
- the one-dimensional projection processing circuit 110 performs one-dimensional projection processing on the one-dimensional luminance distribution information
- the morphology processing circuit 130 performs filtering
- the periodic analysis processing circuit 120 performs the filtering process. Periodic analysis processing is performed.
- the morphology processing circuit 130 is also controlled by a control signal from the CPU 150 in the same manner as other processing circuits.
- the morphology processing in the morphology processing circuit 130 will be described.
- FIGS. 9A and 9B are schematic diagrams for explaining the morphology processing used in the present embodiment.
- morphology processing There are two types of morphology processing in the present embodiment: black morphology processing and white morphology processing.
- Black morphology processing is processing that suppresses recesses that are larger than a certain width (filter size) (straightness that is lower than the surrounding luminance), and white morphology processing is a certain width (filter size). ) This is a process that suppresses convex parts with a larger width (higher brightness values than the surrounding brightness! /, Uneven stripes).
- Black morphology processing is performed to maximize the luminance value in the filtering area while scanning in the X direction for the one-dimensional data (shown by the solid line in Fig. 9 (a)). Processing is performed to obtain a maximum value distribution (indicated by a broken line in Fig. 9 (a)), and the minimum value for obtaining the minimum value of the luminance value in the filtering region while scanning the maximum value distribution in the X direction. After processing, the minimum value distribution (shown in bold in Fig. 9 (a)) is obtained, the difference between the one-dimensional data and the minimum value distribution is obtained, and the morphology distribution (shown in solid line in Fig. 9 (b)). This is the process for obtaining
- f is a constant input to determine the filter size
- 2f + 1 is the filter size
- Min [] and Max [] in Equation (3) are operators represented by the following Equations (4) and (5).
- Minf [] is an operator that selects the minimum value of the sequence in []
- Maxf [] is an operator that selects the maximum value of the sequence in [].
- the white morphology processing is the reverse of the black morphology processing and is expressed by the following equation (6). in this case
- FIG. 10 is a flowchart showing the flow of processing of the inspection method in the present embodiment.
- the processing in the one-dimensional projection processing circuit 110 is omitted, and the processing flow in the morphology processing circuit 130 and the period analysis processing circuit 120 is shown.
- the following procedures are performed for white morphology processing and black morphology processing, respectively.
- N l is set (step S l).
- N is a specific integer.
- step S2 it is determined whether 2f + 1 is smaller than MAX (step S2).
- MAX is a specific integer such as 128, 256, 512, or 1024.
- step S2 if 2f + l is smaller than MAX, the filter size is set to 2f + 1, and the morphology processing is performed on the luminance distribution information subjected to the one-dimensional projection processing (step S3
- step S4 Fourier transformation is performed on the result of the morphology processing.
- step S5 the result obtained by the Fourier transform is output to the result output device 400 (step S5).
- N N + 1 is set, and the process returns to step S2 (step S6).
- Steps S3 to S6 are repeated until it is determined that 2f + l indicating the filter size is greater than or equal to MAX. That is, when it is determined that 2f + 1 is greater than or equal to MAX, the process of the flowchart shown in FIG. 10 ends.
- the result when the filter size in the white morphology processing is f pixels, and f
- Figure 11 shows the result of morphology processing with the filter size set to fl pixels. It is rough. Note that the vertical axis is contrast, the horizontal axis is the X coordinate position as in the graph of the one-dimensional projection processing result, and the unit is pixel (pix).
- FIG. 12 is a graph showing a result when Fourier transform is further performed from the result of performing the morphology processing shown in FIG.
- the vertical axis indicates the intensity of the spectrum.
- the horizontal axis takes the reciprocal of the frequency, converts it to a period, and displays the logarithm.
- the unit of period is pixel (pix).
- the spectrum is also observed around pixel B having a period smaller than the T pixel. This is due to the width of the T pixel as a result of the Fourier transform. A harmonic of period T appears, indicating that it contributes to the accuracy of determining the existence of the spectrum of the fundamental period! /.
- Figure 13 shows the results of morphology processing with the filter size set to f pixels.
- FIG. 14 shows the result when Fourier transform is performed as in FIG.
- the period analysis is performed on the data subjected to the one-dimensional projection processing as it is. However, as shown in Fig. 6, when a large number of stripes with different periods are mixed. If one-dimensional projection data is Fourier-analyzed as it is, it is observed in a state where a plurality of spectra are mixed due to a plurality of stripe irregularities having different periods.
- FIG. 15 shows a schematic block diagram of the image analysis apparatus 103 that is effective in the present embodiment.
- the difference from the image analysis apparatus 100 shown in FIG. 1 of the first embodiment is that a smoothing processing circuit 140 is provided after the one-dimensional projection processing circuit 110.
- the one-dimensional projection distribution circuit 110 performs one-dimensional projection processing on the one-dimensional luminance distribution information filtered by the smoothing processing circuit 140, and then performed by the periodic analysis processing circuit 120. Periodic analysis processing is performed.
- smoothing processing circuit 140 is also controlled by a control signal from the CPU 150, as in the case of other processing circuits.
- the smoothing process is a process of obtaining an average value distribution by performing an averaging process for obtaining an average value in a predetermined region while scanning in the X direction with respect to the one-dimensional data.
- AV [] is expressed by the following equation (8).
- AV [] selects the average value of the sequence in [] Operator.
- f is a constant input to determine the filter size
- 2f + l is the filter size
- the smoothing process suppresses uneven stripes having a width equal to or smaller than the filter size (2f + l), so that the period of uneven stripes can be easily obtained.
- Figure 16 shows the filter size force pixel plane for the one-dimensional projection result shown in Figure 5.
- the vertical axis is the luminance value
- the horizontal axis is the position of the X coordinate as in the one-dimensional projection processing result graph
- the unit is pixel (pix).
- FIG. 17 shows the result of Fourier transform performed on the smoothing processing result by the period analysis processing circuit 120.
- the vertical axis indicates the intensity of the spectrum.
- the horizontal axis takes the reciprocal of the frequency, converts it to a period, and displays the logarithm.
- the unit of period is pixel (pix).
- Fig. 17 suppresses the spattering due to the uneven stripe having a period of T1 pixel that was observed in Fig. 6.
- the smoothing process and the Fourier transform are repeated by changing the smoothing process filter size, and according to the smoothing process filter size, Various periods can be extracted, making it easier to examine the spectrum of stripes with a specific period.
- smoothing process a method of simply obtaining an average value is used.
- this is particularly applicable to a process that suppresses uneven stripes having a width smaller than a certain width. It is not limited.
- smoothing may be performed using local weights, or a method of drawing an approximate curve using a polynomial.
- FIG. 18 shows a schematic block diagram of the image analysis device 104 that is effective in the present embodiment.
- the difference from the image analysis apparatus 100 shown in FIG. 1 of the first embodiment is that a morphology processing circuit 130 and a smoothing processing circuit 140 are provided after the one-dimensional projection processing circuit 110. It is a point.
- the one-dimensional luminance distribution information subjected to the one-dimensional projection processing by the one-dimensional projection processing circuit 110 is filtered by the morphology processing circuit 130 and the smoothing processing circuit 140, and then subjected to periodic analysis.
- a period analysis process is performed by the processing circuit 120.
- morphology processing circuit 130 and the smoothing processing circuit 140 are also controlled by a control signal from the CPU 150 in the same manner as other processing circuits.
- FIG. 19 shows the result of the morphology processing shown in the second embodiment on the data that has been subjected to the smoothing processing described above (the data shown in the graph of FIG. 16 in the third embodiment). It is a thing. Note that the vertical axis is contrast, the horizontal axis is the position of the X coordinate as in the graph of the one-dimensional projection processing result, and the unit is pixel (pix).
- FIG. 20 shows the result of the Fourier transform performed by the period analysis processing circuit 120 on the morphology processing result.
- the vertical axis indicates the intensity of the spectrum.
- the horizontal axis is the frequency
- the reciprocal is taken, converted into a period, and displayed logarithmically.
- the unit of period is pixel (pix).
- the graph shown in FIG. 20 emphasizes the spectrum due to the stripe unevenness near the T2 pixel. This is thought to be due to the fact that the smoothing process suppressed the spectrum due to stripes that were smaller than the filter size! This is a peculiar effect by combining smoothing processing and morphology processing, and this makes it possible to obtain the stripe unevenness period more accurately.
- the smoothing process, the morphology process, and the Fourier transform are performed by changing the filter sizes of the smoothing process and the morphology process. By repeating, it is possible to extract various periods according to the filter size, and it becomes easy to inspect the spectrum of stripes having a specific period.
- the filtering process As described above, in the first to fourth embodiments, as an example of the filtering process, the information on the one-dimensional projection of the intensity distribution information using the morphology process and the smoothing process is used.
- the process is not particularly limited as long as it is a process for extracting or suppressing irregularities having a certain period width.
- force using a color filter created by an inkjet method as an object to be inspected is not limited to this, and color filters created by other production methods In this case, the present invention can be implemented.
- a pixel with a defective color may become uneven, or the surface of the color filter may be scratched for some reason.
- the present invention can be implemented.
- the unevenness that appears on the one-dimensional projection data is the force S that has been detected with respect to the unevenness in the color filter, the unevenness is not necessarily a streak-like unevenness.
- the present invention can be implemented.
- a color filter is used as an object to be inspected.
- the display member is used in an image display device and transmits or reflects light or both.
- a surface glass or a rear glass used for a display may be used as an object to be inspected, and a diffusion plate in a knock light unit may be used as an object to be inspected. It can also be applied to inspection of reflectors and screens that project images.
- each block of the image analysis devices 100 to 103 in particular, the one-dimensional projection processing circuit 110, the periodic analysis processing circuit 120, the morphology processing circuit 130, and the smoothing processing circuit 140 are configured by hardware logic. Alternatively, it may be realized by software using a CPU as follows.
- the image analysis apparatus 100 includes a CPU (central processing unit) that executes instructions of a control program that implements each function, a ROM (read only memory) that stores the program, and a RAM ( random access memory), and a storage device (recording medium) such as a memory for storing the above program and various data.
- An object of the present invention is a recording medium in which a program code (execution format program, intermediate code program, source program) of a control program of the image analysis apparatus 100, which is software that realizes the above-described functions, is recorded so as to be readable by a computer. This can also be achieved by supplying the above to the image analysis apparatus 100, and the computer or CPU or MPU) reads out and executes the program code recorded on the recording medium.
- Examples of the recording medium include a tape system such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy (registered trademark) disk / hard disk, and a CD-ROM / MO / MD / DVD / CD-R.
- Disc system including optical disc, IC card (including memory card) /) Card systems such as optical cards, or semiconductor memory systems such as mask ROM / EPROM / EEPROM / flash ROM can be used.
- the image analysis apparatus 100 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
- the communication network is not particularly limited.
- the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication A net or the like is available.
- the transmission medium constituting the communication network is not particularly limited.
- IEEE1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc. ooth (registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, etc. can also be used.
- the present invention can also be realized in the form of a computer data signal embedded in a carrier wave, in which the program code is embodied by electronic transmission.
- the present invention can be applied to any member as long as the periodicity of unevenness generated on a surface that can transmit or reflect light is a problem. Is possible.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Liquid Crystal (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Optical Filters (AREA)
Abstract
An image analyzing apparatus (100), which is one of testing apparatuses according to the present invention, tests a color filter substrate (330) based on picked-up image data obtained by imaging a light-irradiated to-be-tested surface of the color filter substrate (330). The image analyzing apparatus (100) comprises a one-dimensional projection processing circuit (110) that performs a one-dimensional projection processing of light distribution information included in the picked-up image data with an arbitrary direction used as a projecting direction; and a period analysis processing circuit (120) that performs a period analysis of the light distribution information having been subjected to the one-dimensional projection processing by the one-dimensional projection processing circuit (110). In this way, the period of the light distribution in the picked-up image in the projecting direction can be determined from a period analysis result, thereby making it possible to determine whether there exists any periodicity for unevenness (stripe unevenness) occurring on the surface of the display member of the color filter substrate (330) or the like that is a tested object.
Description
明 細 書 Specification
検查装置、検查方法、撮像検查システム、カラーフィルタの製造方法、検 查プログラム Inspection device, inspection method, imaging inspection system, color filter manufacturing method, inspection program
技術分野 Technical field
[0001] 本発明は、カラーフィルタなどの表示部材の検査を行うための検査装置に関するも のである。 The present invention relates to an inspection apparatus for inspecting display members such as color filters.
背景技術 Background art
[0002] 近年、テレビやモニタ等の表示装置の薄型化 ·大型化が進み、その需要が増加し ている。それに伴って、今まで以上に高品質な表示性能が求められるようになつてき ている。 In recent years, display devices such as televisions and monitors have become thinner and larger, and the demand for such devices has increased. Along with this, higher quality display performance is required more than ever.
[0003] 表示装置を構成する部品の中でも、カラー表示をさせるためのカラーフィルタは、 表示品質を左右する重要な部品の一つである。そのため、カラーフィルタに要求され る品質も、より高度なものとなってきている。 [0003] Among the components that make up a display device, a color filter for color display is one of the important components that affect display quality. For this reason, the quality required for color filters has become higher.
[0004] また、カラーフィルタは製造コストの比重が高!/、ため、このカラーフィルタの歩留まり を向上させ、一枚当たりの製造コストを削減することも要求されている。 [0004] Further, since the specific cost of the color filter is high! /, It is required to improve the yield of the color filter and to reduce the production cost per sheet.
[0005] 最近では、インクジェット方式によるカラーフィルタの形成方法が注目されて!/、る。こ の形成方法では、インクジェットヘッドのノズルから、 R (赤) ' G (緑) · Β (青)のインクを 各絵素に吐出することにより形成する。インクジェット方式の特徴は、工程数が少なく てすむことや、インクの無駄が少ないことなどで、プロセスの短縮化や低コスト化が実 現できる。 [0005] Recently, a method for forming a color filter by an ink jet method has attracted attention! In this forming method, the ink is formed by ejecting R (red), G (green) and Β (blue) ink from the nozzles of the inkjet head to each picture element. The characteristics of the ink jet method are that the number of processes is reduced and the waste of ink is reduced, so that the process can be shortened and the cost can be reduced.
[0006] しかしながら、インクジェット方式にお!/、てカラーフィルタを形成する場合には、特に スジムラが発生し易い。その結果として表示品質が下がったり、不良品が出たり、する 場合がある。 [0006] However, when forming a color filter in the ink jet system, stripes are particularly likely to occur. As a result, display quality may deteriorate or defective products may appear.
[0007] このスジムラを検査する技術として、例えば特許文献 1に記載される技術は、所定 の傾斜角度で光を照射し、光が照射された膜表面を撮像し、撮像画像情報を分析し て、各起伏間における輝度差を算出し、膜表面の各起伏間の膜厚差を推定すること で、スジムラを検出している。
特許文献 1 :日本国公開特許公報「特開 2006— 184125号公報 (公開日: 2006年 7 月 13日)」 [0007] As a technique for inspecting this stripe unevenness, for example, the technique described in Patent Document 1 irradiates light at a predetermined inclination angle, images the film surface irradiated with light, and analyzes captured image information. The brightness difference between each undulation is calculated, and the unevenness is detected by estimating the film thickness difference between each undulation on the film surface. Patent Document 1: Japanese Published Patent Publication “Japanese Unexamined Patent Publication No. 2006-184125 (Publication Date: July 13, 2006)”
発明の開示 Disclosure of the invention
[0008] ところで、カラーフィルタ上のスジムラのうち、人間の視覚特性の関係から、特に周 期性をもって発生するスジムラが目にっき易いため、周期性を有するスジムラは表示 装置の品質面から好ましくない。 [0008] By the way, among the uneven stripes on the color filter, due to the human visual characteristics, the uneven stripes that are generated with periodicity are particularly noticeable. Therefore, the uneven stripes with periodicity are not preferable in terms of the quality of the display device.
[0009] このため、観察されたスジムラが周期性を持つか否かを判断することは、カラーフィ ルタの検査工程において、極めて重要である。また、スジムラに周期性があることが 分かれば、そのスジムラの発生原因が特定しやすくなり、カラーフィルタを製造する際 に、スジムラの発生原因をフィードバックすれば品質向上につながる。 [0009] For this reason, it is very important in the color filter inspection process to determine whether or not the observed uneven stripe has periodicity. In addition, if it is known that the stripes have periodicity, it is easier to identify the cause of the stripes, and when producing color filters, the cause of the stripes can be fed back to improve quality.
[0010] しかしながら、特許文献 1に開示されたカラーフィルタ検査装置では、カラーフィノレ タ上のスジムラを検出することができるものの、検出して!/、るスジムラの周期性を検出 するものではなかった。このため、スジムラの発生原因を特定できず、カラーフィルタ を製造する際に、スジムラの発生原因をフィードバックできないので品質を向上させ ること力 S難し!/、と!/、う問題が生じる。 [0010] However, the color filter inspection apparatus disclosed in Patent Document 1 can detect stripes on the color finerator but cannot detect the periodicity of the stripes. For this reason, the cause of the occurrence of streak cannot be identified, and when manufacturing a color filter, the cause of the occurrence of streak cannot be fed back, so it is difficult to improve quality.
[0011] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、被検査体であ るカラーフィルタなどの表示部材の表面に発生するムラ(スジムラ)の周期性の有無の 判断が可能な検査装置を実現することにある。 [0011] The present invention has been made in view of the above problems, and an object of the present invention is the presence or absence of periodicity of unevenness (straight lines) generated on the surface of a display member such as a color filter that is an object to be inspected. This is to realize an inspection device that can make this determination.
[0012] 本発明に係る検査装置は、上記課題を解決するために、表示部材の光照射されて いる検査対称面を撮像して得られた撮像画像データに基づいて、該表示部材の検 查を行う検査装置において、上記撮像画像データに含まれる光分布情報に対して、 任意の方向を投影方向として一次元投影処理を行う一次元投影処理手段と、上記 一次元投影処理手段によって一次元投影処理された光分布情報の周期解析を行う 周期解析処理手段とを備えてレ、ることを特徴として!/、る。 [0012] In order to solve the above problems, an inspection apparatus according to the present invention performs inspection of a display member based on captured image data obtained by imaging an inspection symmetry plane irradiated with light on the display member. A one-dimensional projection processing unit that performs one-dimensional projection processing with respect to the light distribution information included in the captured image data, with an arbitrary direction as a projection direction, and the one-dimensional projection processing unit. It comprises a periodic analysis processing means for performing periodic analysis of the processed light distribution information.
[0013] また、本発明に係る検査方法は、上記課題を解決するために、表示部材の光照射 されている検査対称面を撮像して得られた撮像画像データに基づいて、該表示部材 の検査を行う検査方法において、上記撮像画像データに含まれる光分布情報に対し て、任意の方向を投影方向として一次元投影処理を行う第 1のステップと、上記第 1
のステップによって得られた一次元投影処理後の光分布情報の周期解析を行う第 2 のステップとを含むことを特徴として!/、る。 [0013] Further, in order to solve the above-described problem, the inspection method according to the present invention is based on captured image data obtained by imaging the inspection symmetry plane irradiated with light of the display member. In the inspection method for performing an inspection, a first step of performing one-dimensional projection processing with an arbitrary direction as a projection direction on the light distribution information included in the captured image data, and the first And a second step of performing periodic analysis of the light distribution information after the one-dimensional projection processing obtained by the step!
[0014] 上記構成によれば、一次元投影処理手段によって、撮像画像データにおける二次 元の光分布情報に対して一次元投影処理を行うことで、撮像画像における投影方向 の光分布情報を得ることができる。そして、周期解析処理手段によって、撮像画像に おける投影方向の光分布情報の周期解析を行うことで、周期解析結果から、撮像画 像における投影方向の光分布の周期を判断することができる。 [0014] According to the above configuration, the one-dimensional projection processing means performs one-dimensional projection processing on the two-dimensional light distribution information in the captured image data, thereby obtaining light distribution information in the projection direction in the captured image. be able to. Then, by performing periodic analysis of the light distribution information in the projection direction in the captured image by the periodic analysis processing means, the period of the light distribution in the projection direction in the captured image can be determined from the periodic analysis result.
[0015] これにより、表示部材の表面のスジムラの発生方向を上記の投影方向とすれば、ス ジムラの周期性の有無を判断することが可能となる。 [0015] With this, it is possible to determine the presence or absence of the periodicity of stripe unevenness if the direction of occurrence of uneven stripes on the surface of the display member is the projection direction described above.
[0016] 例えば、上記表示部材がカラーフィルタである場合、該カラーフィルタの表面に発 生しているスジムラのうち、周期性を有するスジムラを特定することが可能となるので、 発生した周期性を有するスジムラをなくすように製造工程を変更することで、高品質 のカラーフィルタを得ることができる。 [0016] For example, when the display member is a color filter, it is possible to specify a non-uniform stripe having a periodicity among the non-uniform stripes generated on the surface of the color filter. A high-quality color filter can be obtained by changing the manufacturing process so as to eliminate the uneven stripes.
[0017] また、上記周期解析処理手段は、上記光分布情報に対してフーリエ変換を行うよう にしてもよい。 [0017] Further, the period analysis processing means may perform a Fourier transform on the light distribution information.
[0018] 上記の構成によれば、周期解析処理手段が、一次元投影処理手段によって一次 元投影処理された光分布情報に対してフーリエ変換を行うことで、該光分布情報の 周期関数を求めることができる。 [0018] According to the above configuration, the periodic analysis processing unit obtains a periodic function of the light distribution information by performing Fourier transform on the light distribution information subjected to the one-dimensional projection processing by the one-dimensional projection processing unit. be able to.
[0019] この求めた周期関数を、例えばグラフ化すれば、オペレータは視覚により表示部材 の表面のスジムラの周期性の有無の判断を容易に行うことができる。 [0019] If the obtained periodic function is graphed, for example, the operator can easily determine the presence or absence of periodic irregularities on the surface of the display member visually.
[0020] また、フーリエ変換を用いて周期関数を求めているので、この周期関数力、らスジムラ の周期を求めることができる。 [0020] Further, since the periodic function is obtained by using Fourier transform, the periodic function force, the smoothing period, and the like can be obtained.
[0021] これにより、表示部材を製造する際に、スジムラの周期をフィードバックさせることで[0021] Thus, when manufacturing the display member, the period of the stripe unevenness is fed back.
、スジムラの発生原因を特定することが可能となり、その結果、品質の高い表示部材 を提供すること力できる。 Therefore, it is possible to identify the cause of the occurrence of uneven stripes, and as a result, it is possible to provide a high-quality display member.
[0022] 上記構成の検査装置は、さらに、上記一次元投影処理手段によって一次元投影処 理された光分布情報を、任意の大きさのフィルタによりフィルタリング処理を行うフィノレ タリング処理手段を備え、上記周期解析処理手段は、上記フィルタリング処理手段に
よってフィルタリング処理された光分布情報の周期解析を行うようにしてもよい。 [0022] The inspection apparatus having the above-described configuration further includes a finoletering processing unit that performs filtering processing on the light distribution information subjected to the one-dimensional projection processing by the one-dimensional projection processing unit using a filter of an arbitrary size. The period analysis processing means is connected to the filtering processing means. Therefore, periodic analysis of the filtered light distribution information may be performed.
[0023] また、上記構成の検査方法は、さらに、上記第 1のステップと上記第 2のステップと の間に、上記第 1のステップによって得られた一次元投影処理後の光分布情報を、 任意の大きさのフィルタによりフィルタリング処理を行うフィルタリング処理ステップが 設けられ、上記第 2のステップは、上記フィルタリング処理ステップによって得られたフ ィルタリング処理後の光分布情報の周期解析を行うようにしてもよい。 [0023] Further, in the inspection method having the above-described configuration, the light distribution information after the one-dimensional projection processing obtained by the first step is further obtained between the first step and the second step. A filtering process step for performing a filtering process with a filter of an arbitrary size is provided, and the second step performs a periodic analysis of the light distribution information after the filtering process obtained by the filtering process step. Good.
[0024] 上記の構成によれば、フィルタリング処理手段によって、一次元投影処理された光 分布情報を、任意の大きさのフィルタによりフィルタリング処理を行うことで、後段の解 析手段によって、フィルタサイズよりも大きな幅を持つスジムラの周期を抑制し、フィル タサイズよりも小さな幅をもつスジムラの周期を抽出することが可能となる。 [0024] According to the above configuration, the light distribution information subjected to the one-dimensional projection processing by the filtering processing means is subjected to filtering processing by a filter of an arbitrary size, so that the analysis means in the subsequent stage can perform filtering from the filter size. Therefore, it is possible to suppress the period of stripes with a large width, and to extract the period of stripes with a width smaller than the filter size.
[0025] つまり、フィルタリング処理回路におけるフィルタサイズを変えることで、種々の幅の スジムラの周期を抽出することが可能となるので、必要な幅のスジムラの周期を強調 させること力 Sでき、その結果、スジムラの周期性の有無の判断を容易にできる。 That is, by changing the filter size in the filtering processing circuit, it becomes possible to extract the period of stripes with various widths, so that it is possible to emphasize the period of stripes with a necessary width S, and as a result. It is possible to easily determine the presence or absence of periodicity of stripes.
[0026] 上記フィルタリング処理回路におけるフィルタリング処理は、モフォロジ処理であるこ とが好ましい。 [0026] The filtering processing in the filtering processing circuit is preferably a morphology processing.
[0027] 上記フィルタリング処理回路におけるフィルタリング処理は、平滑化処理であること が好ましい。 [0027] The filtering processing in the filtering processing circuit is preferably smoothing processing.
[0028] また、上記フィルタリング処理回路は、上記一次元投影処理手段によって一次元投 影処理された光分布情報に対して平滑化処理を行う平滑化処理回路と、上記平滑 化処理回路によって平滑化処理された光分布情報に対してモフォロジ処理を行うモ フォロジ処理回路とを備え、上記モフォロジ処理回路によってモフォロジ処理された 光分布情報を上記周期解析処理手段に出力するようにしてもよい。 [0028] The filtering processing circuit includes a smoothing processing circuit that performs smoothing processing on the light distribution information that has been subjected to the one-dimensional projection processing by the one-dimensional projection processing means, and smoothing by the smoothing processing circuit. A morphology processing circuit that performs a morphology process on the processed light distribution information may be provided, and the light distribution information subjected to the morphology process by the morphology processing circuit may be output to the period analysis processing means.
[0029] さらに、上記フィルタリング処理回路は、上記一次元投影処理手段によって一次元 投影処理された光分布情報に対してモフォロジ処理を行うモフォロジ処理回路と、上 記モフォロジ処理回路によってモフォロジ処理された光分布情報に対して平滑化処 理を行う平滑化処理回路とを備え、上記平滑化処理回路によって平滑化処理された 光分布情報を上記周期解析処理手段に出力するようにしてもよい。 [0029] Further, the filtering processing circuit includes a morphology processing circuit that performs morphology processing on the light distribution information that has been one-dimensionally projected by the one-dimensional projection processing means, and light that has undergone the morphology processing by the morphology processing circuit. A smoothing processing circuit that performs a smoothing process on the distribution information may be provided, and the light distribution information smoothed by the smoothing processing circuit may be output to the periodic analysis processing means.
[0030] 上記の構成によれば、一次元投影処理手段によって一次元投影処理された光分
布情報に対して、平滑化処理およびモフォロジ処理の異なる 2種類のフィルタリング 処理を行うことで、一方でフィルタリングできなかった、あるいは強調できなかった幅 のスジムラの周期であっても他方で補うことができる。これにより、さらに、容易にスジ ムラの周期性の有無の判断及びスジムラの周期を特定することが可能となる。 [0030] According to the above configuration, the light component subjected to the one-dimensional projection processing by the one-dimensional projection processing means. By applying two types of filtering processing, which are different in smoothing processing and morphology processing, to the fabric information, even if it is a period of stripes with a width that could not be filtered or emphasized, it can be compensated on the other side. it can. As a result, it is possible to easily determine the presence or absence of stripe irregularity and to specify the stripe unevenness period.
[0031] 上記検査装置は、下記に示すように、撮像検査システムに適用できる。 [0031] The inspection apparatus can be applied to an imaging inspection system as described below.
[0032] すなわち、本発明の撮像検査システムは、表示部材の表面または裏面に光を照射 する照明装置と、上記照明装置によって光が照射された状態で上記表示部材の光 照射されて!/、る検査対称面を撮像する撮像装置と、上記撮像装置によって撮像され た撮像画像データに基づレ、て、上記表示部材の検査を行う上記構成の検査装置と を備えたことを特徴として!/、る。 That is, in the imaging inspection system of the present invention, the illumination device that irradiates light on the front surface or the back surface of the display member, and the display member is irradiated with the light in a state irradiated with light! /, And an inspection apparatus having the above-described configuration for inspecting the display member based on captured image data imaged by the imaging apparatus. RU
[0033] また、本発明のカラーフィルタの製造方法は、上記の課題を解決するために、カラ 一フィルタ製造装置によってカラーフィルタを製造するカラーフィルタの製造方法で あって、上記した検査方法による周期解析の結果、良品であると判定されたカラーフ ィルタのみを、上記カラーフィルタ製造装置における、上記検査工程以降の製造ェ 程に供することを特徴として!/、る。 [0033] The color filter manufacturing method of the present invention is a color filter manufacturing method for manufacturing a color filter by a color filter manufacturing apparatus in order to solve the above-described problems, and the period according to the inspection method described above. Only color filters determined to be non-defective as a result of the analysis are used in the manufacturing process after the inspection process in the color filter manufacturing apparatus.
[0034] 上記の構成によれば、カラーフィルタ製造工程に含まれる検査工程にお!/、て、周期 解析の結果、良品であると判定されたカラーフィルタ (スジムラに周期性が無いと判断 されたカラーフィルタ)のみが検査工程以降のカラーフィルタの製造工程に供される ので、スジムラの周期性の有るカラーフィルタが検査工程以降の工程を経てしまうこと がない。したがって、不良品のカラーフィルタを無駄に生産することがなくなるので、 カラーフィルタの歩留まりの向上を図ると共に、カラーフィルタの製造コストを低減させ ること力 Sでさる。 [0034] According to the above configuration, in the inspection process included in the color filter manufacturing process, the color filter determined as a non-defective product as a result of the periodic analysis (determined that the stripes have no periodicity). Since only the color filter) is used in the color filter manufacturing process after the inspection process, the color filter having a stripe irregularity does not go through the process after the inspection process. Therefore, since the defective color filter is not produced in vain, the yield S of the color filter can be improved and the manufacturing cost of the color filter can be reduced.
[0035] 本発明のカラーフィルタの製造方法は、上記の課題を解決するために、カラーフィ ルタ製造装置によってカラーフィルタを製造するカラーフィルタの製造方法であって、 上記した検査方法による周期解析の結果、不良品であると判定されたカラーフィルタ が発生した場合に、不良品が発生したという情報を、上記カラーフィルタの製造装置 に伝達することを特徴としてレ、る。 [0035] A color filter manufacturing method of the present invention is a color filter manufacturing method for manufacturing a color filter by a color filter manufacturing apparatus in order to solve the above-described problems, and is a result of periodic analysis by the above-described inspection method. When a color filter determined to be a defective product is generated, information indicating that the defective product is generated is transmitted to the color filter manufacturing apparatus.
[0036] 上記の構成によれば、カラーフィルタ製造工程に含まれる検査工程にお!/、て、周期
解析の結果、不良品であると判定されたカラーフィルタ (スジムラに周期性があると判 断されたカラーフィルタ)が発生したと!/、う情報がカラーフィルタの製造装置に伝達さ れるので、カラーフィルタの製造装置側でカラーフィルタの製造ラインを停止させるな どの措置を講じることが可能となる。したがって、不良品のカラーフィルタを無駄に生 産することがなくなるので、カラーフィルタの歩留まりの向上を図ると共に、カラーフィ ルタの製造コストを低減させることができる。 [0036] According to the above configuration, in the inspection process included in the color filter manufacturing process! As a result of the analysis, if a color filter that was determined to be defective (a color filter that was determined to have periodicity in stripes) occurred! /, The information was transmitted to the color filter manufacturing equipment. It is possible to take measures such as stopping the color filter production line on the color filter production equipment side. Therefore, since defective color filters are not produced unnecessarily, the yield of color filters can be improved and the manufacturing cost of color filters can be reduced.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の実施形態を示すものであり、画像解析装置の要部構成を示すブロック 図である。 FIG. 1, showing an embodiment of the present invention, is a block diagram showing a main configuration of an image analysis apparatus.
[図 2]図 1に示す画像解析装置を用いた撮像検査装置の概略を示した図である。 2 is a diagram showing an outline of an imaging inspection apparatus using the image analysis apparatus shown in FIG.
[図 3]被検査体としてのカラーフィルタの製造工程を示した図である。 FIG. 3 is a diagram showing a manufacturing process of a color filter as an object to be inspected.
[図 4]図 2に示す撮像検査装置の撮像装置によってカラーフィルタを撮像した画像を 示した図である。 4 is a diagram showing an image obtained by imaging a color filter by the imaging apparatus of the imaging inspection apparatus shown in FIG. 2.
[図 5]図 4に示す画像から得られた二次元輝度分布情報から一次元投影処理を行つ [Fig.5] One-dimensional projection processing is performed from the two-dimensional luminance distribution information obtained from the image shown in Fig.4.
[図 6]図 5に示すグラフのデータに対してフーリエ変換を行った結果を示したグラフで ある。 FIG. 6 is a graph showing the result of performing Fourier transform on the data of the graph shown in FIG.
[図 7]カラーフィルタ基板の製造工程の処理の流れを示すフローチャートである。 FIG. 7 is a flowchart showing a process flow of a manufacturing process of a color filter substrate.
[図 8]本発明の他の実施形態を示すものであり、画像解析装置の要部構成を示すブ ロック図である。 FIG. 8, showing another embodiment of the present invention, is a block diagram showing a main configuration of an image analysis apparatus.
[図 9(a)]図 8に示す画像解析装置のモフォロジ処理回路によるモフォロジ処理の様子 を示したグラフである。 FIG. 9 (a) is a graph showing the state of morphology processing by the morphology processing circuit of the image analysis apparatus shown in FIG.
[図 9(b)]図 8に示す画像解析装置のモフォロジ処理回路によるモフォロジ処理の様子 を示したグラフである。 [Fig. 9 (b)] is a graph showing the state of morphology processing by the morphology processing circuit of the image analysis device shown in Fig. 8.
[図 10]図 8に示す画像解析装置を用レ、た検査方法の流れを示したフローチャートで ある。 FIG. 10 is a flowchart showing a flow of an inspection method using the image analysis apparatus shown in FIG.
[図 11]図 8に示す画像解析装置における、一次元投影処理の結果に対してフィルタ サイズを flピクセルとしてモフォロジ処理を行った結果を示したグラフである。
[図 12]図 11のグラフのデータに対してフーリエ変換を行った結果を示したグラフであ FIG. 11 is a graph showing the result of the morphology processing with the filter size set to fl pixels with respect to the result of the one-dimensional projection processing in the image analysis apparatus shown in FIG. FIG. 12 is a graph showing the result of performing Fourier transform on the data in the graph of FIG.
[図 13]図 8に示す画像解析装置における、一次元投影処理の結果に対してフィルタ サイズを f2ピクセルとしてモフォロジ処理を行った結果を示したグラフである。 FIG. 13 is a graph showing the result of the morphology processing with the filter size set to f2 pixels with respect to the result of the one-dimensional projection processing in the image analysis apparatus shown in FIG.
[図 14]図 13のグラフのデータに対してフーリエ変換を行った結果を示したグラフであ FIG. 14 is a graph showing the result of performing Fourier transform on the data of the graph of FIG.
[図 15]本発明のさらに他の実施形態を示すものであり、画像解析装置の要部構成を 示すブロック図である。 FIG. 15, showing still another embodiment of the present invention, is a block diagram showing a main configuration of an image analyzing apparatus.
[図 16]図 15に示す画像解析装置における、一次元投影処理の結果に対してフィノレ タサイズを f3ピクセルとして平滑化処理を行った結果を示したグラフである。 FIG. 16 is a graph showing the result of smoothing processing with the finalizer size set to f3 pixels with respect to the result of the one-dimensional projection processing in the image analysis apparatus shown in FIG.
[図 17]図 16のグラフのデータに対してフーリエ変換を行った結果を示したグラフであ FIG. 17 is a graph showing the result of performing a Fourier transform on the data in the graph of FIG.
[図 18]本発明のさらに他の実施形態を示すものであり、画像解析装置の要部構成を 示すブロック図である。 FIG. 18 shows still another embodiment of the present invention, and is a block diagram showing a main configuration of an image analysis apparatus.
[図 19]図 16のグラフのデータに対してフィルタサイズを f2ピクセルとしてモフォロジ処 理を行った結果を示したグラフである。 FIG. 19 is a graph showing the result of morphological processing on the data of the graph of FIG. 16 with a filter size of f2 pixels.
[図 20]図 19のグラフのデータに対してフーリエ変換を行った結果を示したグラフであ FIG. 20 is a graph showing the result of performing Fourier transform on the data in the graph of FIG.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0038] 本発明の実施の形態について説明すれば、以下の通りである。 [0038] An embodiment of the present invention will be described as follows.
[0039] なお、本願発明において表示部材とは、映像表示装置に用いられ、光を透過又は 反射又はその両方をする部材のことを言う。 [0039] In the present invention, the display member refers to a member that is used in an image display device and transmits or reflects light or both.
[0040] また、本実施の形態では、表示部材として、インクジェット方式で形成されたカラー フィルタを例にとって説明する。 [0040] In this embodiment, a color filter formed by an inkjet method is described as an example of the display member.
[0041] なお、以下の説明において、カラーフィルタとは、特定の波長の光を通すことで表 示装置にカラー表示をさせるフィルタのことを言う。また、カラーフィルタは、ブラックマ トリタスが形成されたガラス基板上にインクジェット方式により液状材料を吐出すること によって形成されるものとする。さらに、ブラックマトリクスおよびカラーフィルタが形成
された状態のガラス基板をカラーフィルタ基板という。 In the following description, a color filter refers to a filter that causes a display device to perform color display by passing light of a specific wavelength. The color filter is formed by ejecting a liquid material by an ink jet method onto a glass substrate on which black matrix is formed. In addition, black matrix and color filter are formed The glass substrate in this state is called a color filter substrate.
[0042] 〔実施の形態 1〕 [Embodiment 1]
図 2は、本発明の検査装置である撮像検査システム 300の概略を示したものである FIG. 2 shows an outline of an imaging inspection system 300 that is an inspection apparatus of the present invention.
[0043] 撮像検査システム 300は、図 2に示すように、被検査体であるカラーフィルタ基板 3 30を検査するものであって、カラーフィルタ基板 330の表面(カラーフィルタ形成面) に光を照射する照明装置 (照射手段) 310、上記カラーフィルタ基板 330による反射 光を撮像するカメラ(検知手段) 320、カラーフィルタ基板 330を載せるためのステー ジ 340、を備えている。 As shown in FIG. 2, the imaging inspection system 300 inspects the color filter substrate 330 that is an object to be inspected, and irradiates the surface (color filter forming surface) of the color filter substrate 330 with light. An illumination device (irradiation means) 310, a camera (detection means) 320 for imaging reflected light from the color filter substrate 330, and a stage 340 for mounting the color filter substrate 330.
[0044] なお、カメラ (検知手段) 320は、撮像された画像を画像解析装置 (検査装置) 100 に出力する出力手段を含んで構成されている。このカメラ 320から出力される情報は 、該カラーフィルタ基板 330の表面の輝度分布情報を含んだ撮像画像情報である。 輝度分布情報は、カラーフィルタ基板 330の所定の領域単位、例えば画素単位の輝 度値の分布状態を示す情報である。 Note that the camera (detection means) 320 includes an output means for outputting a captured image to the image analysis apparatus (inspection apparatus) 100. The information output from the camera 320 is captured image information including luminance distribution information on the surface of the color filter substrate 330. The luminance distribution information is information indicating a distribution state of luminance values in a predetermined area unit of the color filter substrate 330, for example, a pixel unit.
[0045] 上記画像解析装置 100によって解析された情報は、後述するムラ周期情報として、 結果出力装置 400に出力される。なお、画像解析装置 100の詳細について後述す The information analyzed by the image analysis device 100 is output to the result output device 400 as unevenness period information described later. Details of the image analysis apparatus 100 will be described later.
[0046] 上記結果出力装置 400では、入力されたムラ周期情報に基づいてオペレータが確 認できるようなデータ、例えばグラフ化したデータを結果データとして出力する。出力 結果については後述する。 [0046] The result output device 400 outputs data that can be confirmed by the operator based on the input unevenness period information, for example, graphed data, as result data. The output result will be described later.
[0047] 上記カラーフィルタ基板 330は、下記のように形成される。 [0047] The color filter substrate 330 is formed as follows.
[0048] 図 3は、カラーフィルタ基板 330の製造工程 (製造方法)の一部の工程、インクジェ ット法によるカラーフィルタの液状材料の吐出工程を示した図である。ブラックマトリク ス 210が形成されたガラス基板 220に対して、ヘッドユニット 230が走査方向(図面で は奥または手前方向)に動き、ブラックマトリクス 210間のガラス基板 220上にインクジ エツトのノズル 240が液状材料を走査方向に順に吐出していく。そして、走査方向の 吐出が完了すれば、ヘッドユニット 230は、走査方向とは直交する方向(図面では、 左右方向)に所定の距離移動した後、再び、走査方向(図面では手前または奥方向
)に動き、インクジェットのノズル 240が液状材料を走査方向に順に吐出していく。上 記ヘッドユニット 230による上記の動作が繰り返されることで、カラーフィルタ基板 330 上にカラーフィルタが形成される。 FIG. 3 is a diagram showing a part of the manufacturing process (manufacturing method) of the color filter substrate 330 and the discharging process of the liquid material of the color filter by the inkjet method. The head unit 230 moves in the scanning direction (backward or frontward in the drawing) with respect to the glass substrate 220 on which the black matrix 210 is formed, and the ink jet nozzle 240 is liquid on the glass substrate 220 between the black matrix 210. The material is sequentially discharged in the scanning direction. When the ejection in the scanning direction is completed, the head unit 230 moves a predetermined distance in the direction orthogonal to the scanning direction (left and right in the drawing), and then again in the scanning direction (front or back in the drawing). ), The inkjet nozzle 240 sequentially discharges the liquid material in the scanning direction. By repeating the above operation by the head unit 230, a color filter is formed on the color filter substrate 330.
[0049] このときに、なんらかの原因で液状材料の吐出量がヘッドユニット 230のノズル 240 ごとにバラバラになってしまった場合等には、ノズル間隔でカラーフィルタにスジムラ が発生する。 [0049] At this time, when the discharge amount of the liquid material varies for each nozzle 240 of the head unit 230 for some reason, the color filter is unevenly spaced at the nozzle interval.
[0050] また、なんらかの原因で一つのノズルが詰まっている場合等には、ヘッドユニット 23 0間隔でカラーフィルタにスジムラが発生する。具体的には、ヘッドユニット 230のノズ ル 240の走査方向と直交する方向への配設数単位で、例えば図 2では、 3つのノズ ノレ 240単位で走査方向にスジムラが発生する。 [0050] Further, when one nozzle is clogged for some reason, stripes occur in the color filter at intervals of the head unit 230. Specifically, stripes occur in the scanning direction in units of the number of head units 230 arranged in the direction orthogonal to the scanning direction of nozzles 240, for example, in FIG.
[0051] このように、インクジェット法によってカラーフィルタ基板 330を作成した場合には、 その発生原因に応じて様々な周期を持ったスジムラが発生する。 [0051] As described above, when the color filter substrate 330 is formed by the ink jet method, uneven stripes having various periods are generated according to the cause of the color filter substrate 330.
[0052] このようなスジムラは、図 2に示す撮像手段であるカメラ 320によって撮像することで 明確となる。 [0052] Such unevenness is clarified by imaging with the camera 320 which is the imaging means shown in FIG.
[0053] 図 4は、上記カメラ 320によってカラーフィルタ基板 330を平面状(2次元)に撮像し て得られた画像の一例を示した図である。ここでは、上記のヘッドユニット 230を用い た場合に生じるスジムラを示しており、撮像された画像において、スジムラ方向に平 行な方向を Y方向とし、このスジムラ方向に対して垂直方向を X方向としている。ここ で、スジムラとは、カラーフィルタ基板 330のカラーフィルタ形成面に、膜厚の違いに より複数のスジ状のムラとして認識されるムラをいう。したがって、スジムラ方向とは、 形成されたスジの長手方向をレ、う。 FIG. 4 is a diagram showing an example of an image obtained by imaging the color filter substrate 330 with the camera 320 in a planar (two-dimensional) manner. Here, the stripe unevenness generated when the head unit 230 is used is shown. In the captured image, the direction parallel to the stripe uneven direction is defined as the Y direction, and the direction perpendicular to the stripe uneven direction is defined as the X direction. Yes. Here, the uneven stripe means unevenness recognized as a plurality of stripe-like unevenness on the color filter forming surface of the color filter substrate 330 due to the difference in film thickness. Therefore, the non-uniform direction refers to the longitudinal direction of the formed stripe.
[0054] 本願発明では、検査装置である画像解析装置 100によって、被検査体であるカラ 一フィルタ基板 330の平面状の撮像画像から抽出された二次元輝度分布情報(光分 布情報)からカラーフィルタ基板 330表面に形成されたカラーフィルタに発生している スジムラの周期性を判断するための情報を提供するようになっている。 [0054] In the present invention, the image analysis device 100 that is an inspection device uses the color from the two-dimensional luminance distribution information (light distribution information) extracted from the planar captured image of the color filter substrate 330 that is the object to be inspected. Information for determining the periodicity of stripes occurring in the color filter formed on the surface of the filter substrate 330 is provided.
[0055] 図 1は、本実施の形態に係る、検査装置である画像解析装置 100の概略ブロック図 を示したものである。 FIG. 1 shows a schematic block diagram of an image analysis apparatus 100 that is an inspection apparatus according to the present embodiment.
[0056] 画像解析装置 100は、上述したように、撮像検査システム 300による撮像画像情報
を解析し、ムラ周期情報として結果出力装置 400に出力する機能を備えている。 [0056] As described above, the image analysis apparatus 100 captures image information obtained by the imaging inspection system 300. And a function for outputting to the result output device 400 as uneven period information.
[0057] 上記画像解析装置 100は、図 1に示すように、入力された二次元輝度分布情報を 一次元輝度分布情報に変換する一次元投影処理回路(一次元投影処理手段) 110 と、一次元投影処理回路 110によって変換された一次元輝度分布情報の周期解析 を行う周期解析処理回路 (周期解析処理手段) 120と、これら各処理回路に対して各 種命令を含んだ制御信号を送るための CPU150とを備えている。 As shown in FIG. 1, the image analysis apparatus 100 includes a one-dimensional projection processing circuit (one-dimensional projection processing means) 110 that converts input two-dimensional luminance distribution information into one-dimensional luminance distribution information, and a primary Periodic analysis processing circuit (periodic analysis processing means) 120 that performs periodic analysis of the one-dimensional luminance distribution information converted by the original projection processing circuit 110, and for sending control signals including various commands to these processing circuits With CPU150.
[0058] 具体的には、上記画像解析装置 100では、まず、 CPU150の命令により、一次元 投影処理回路 110が、撮像検査システム 300から撮像画像情報を取得する。 Specifically, in the image analysis apparatus 100, first, the one-dimensional projection processing circuit 110 acquires captured image information from the imaging inspection system 300 in accordance with an instruction from the CPU 150.
[0059] 一次元投影処理回路 110は、取得した撮像画像情報に含まれる二次元輝度分布 情報を一次元輝度分布情報に変換する。この一次元投影処理回路 110による一次 元投影処理についての詳細は後述する。さらに、 CPU150の命令により、一次元投 影処理回路 110は、一次元投影処理結果を後段の周期解析処理回路 120に出力 する。 The one-dimensional projection processing circuit 110 converts the two-dimensional luminance distribution information included in the acquired captured image information into one-dimensional luminance distribution information. Details of the one-dimensional projection processing by the one-dimensional projection processing circuit 110 will be described later. Further, according to the instruction of the CPU 150, the one-dimensional projection processing circuit 110 outputs the one-dimensional projection processing result to the periodic analysis processing circuit 120 at the subsequent stage.
[0060] 周期解析処理回路 120は、入力された一次元輝度分布情報をフーリエ変換して、 該一次元輝度分布情報の周期性を解析する。この周期解析処理回路 120による周 期解析処理についての詳細は後述する。さらに、 CPU150の命令により、周期解析 処理回路 120は、フーリエ解析処理結果をムラ周期情報として後段の結果出力装置 400に出力する。 The period analysis processing circuit 120 performs Fourier transform on the input one-dimensional luminance distribution information, and analyzes the periodicity of the one-dimensional luminance distribution information. Details of the period analysis processing by the period analysis processing circuit 120 will be described later. Further, in accordance with an instruction from the CPU 150, the cycle analysis processing circuit 120 outputs the Fourier analysis processing result to the subsequent result output device 400 as uneven cycle information.
[0061] 上記結果出力装置 400は、入力されたムラ周期情報を人間が認識しやすい形、例 えば、グラフ化して出力する。オペレータは、この出力結果を見て、カラーフィルタ基 板 330表面に形成されたカラーフィルタに周期性を有するスジムラが存在しているか 否かを判断するようになっている。したがって、結果出力装置 400から出力される結 果は、オペレータが判断できる形であれば、どのような形であってもよい。 [0061] The result output device 400 outputs the inputted unevenness period information in a form that is easy for a human to recognize, for example, a graph. The operator looks at the output result and determines whether or not the stripes having periodicity are present in the color filter formed on the surface of the color filter substrate 330. Therefore, the result output from the result output device 400 may be in any form as long as it can be determined by the operator.
[0062] 上記撮像検査システム 300による反射光は、カラーフィルタ基板 330の絵素の厚み が他の領域に比べて相対的に大きい部分は反射光量が多ぐカラーフィルタ基板 33 0の絵素の厚みが他の領域に比べて相対的に小さい部分は反射光量が少なくなる。 この反射光量の差がムラとなって認識される。 [0062] The reflected light from the imaging inspection system 300 is the thickness of the picture element of the color filter substrate 330 where the amount of reflected light is larger in the portion where the thickness of the picture element of the color filter substrate 330 is relatively larger than other regions. However, the amount of reflected light is smaller in a portion where is relatively smaller than other regions. This difference in the amount of reflected light is recognized as unevenness.
[0063] なお、前述した原因により、一般的にインクジェット法による膜厚差は、ヘッドュニッ
ト 230の走査方向に一列に発生する場合が多ぐ膜厚差が一列に発生した場合は、 カメラ (検知手段) 320によって撮像された画像データにスジムラが観察される。 [0063] Due to the above-described causes, the difference in film thickness by the ink jet method is generally the head unit. When a large difference in film thickness occurs in one line in the scanning direction of the image 230, stripes are observed in the image data picked up by the camera (detection means) 320.
[0064] なお、上述したように、人間の視覚特性の関係から、カラーフィルタ基板 330に発生 するスジムラのうち、周期的に発生するスジムラが目立つので、周期的に発生してい るスジムラの有無を判定することは品質向上のために重要である。 [0064] As described above, from the relationship of human visual characteristics, among the uneven stripes generated on the color filter substrate 330, the uneven stripes that occur periodically are conspicuous. Judgment is important for quality improvement.
[0065] 以下に、上記構成の画像解析装置 100による、スジムラの周期性の有無を判断す るための処理について説明する。 Hereinafter, a process for determining the presence or absence of stripe unevenness by the image analysis apparatus 100 having the above configuration will be described.
[0066] まず、一次元投影処理回路 110による一次元投影処理について説明する。 First, the one-dimensional projection processing by the one-dimensional projection processing circuit 110 will be described.
[0067] 図 4は、撮像手段としてのカメラ 320によって撮像された画像の一例を示した図であ る。なお、一次元投影処理回路 110は、上記カメラ 320によって撮像された画像デー タ(例えば図 4)に含まれる光分布情報に対して、任意の方向を投影方向として一次 元投影処理を行うようになっている。ここで、投影方向とは、上述したスジムラ方向に 沿って輝度値を加算する方向(一次元投影処理を行う方向)とする。本実施の形態で は、図 4に示すように、撮像された画像においてスジムラ方向に平行な Y方向として いる。 FIG. 4 is a diagram illustrating an example of an image captured by the camera 320 serving as an imaging unit. Note that the one-dimensional projection processing circuit 110 performs one-dimensional projection processing with respect to the light distribution information included in the image data captured by the camera 320 (for example, FIG. 4) with an arbitrary direction as the projection direction. It has become. Here, the projection direction is a direction in which the luminance value is added along the above-described streak direction (direction in which one-dimensional projection processing is performed). In the present embodiment, as shown in FIG. 4, the Y direction parallel to the non-straight direction is taken in the captured image.
[0068] 従って、本実施の形態における、一次元投影処理では、上記任意の方向を Y方向 として、図 4に示す画像に対して、 Y方向に輝度値の平均化を行い、二次元の輝度 分布情報を一次元化する。 Accordingly, in the one-dimensional projection processing in the present embodiment, the arbitrary value is set as the Y direction, and the luminance value is averaged in the Y direction with respect to the image shown in FIG. One-dimensional distribution information.
[0069] ここで、撮像画像の輝度分布情報を p と表す。 x Here, the luminance distribution information of the captured image is represented as p. x
xy 、 yは、それぞれ X方向、 Y方向の 座標値である。これを用いて、一次元化される輝度分布情報は、式(1)を演算するこ とで得られる。 xy and y are the coordinate values in the X and Y directions, respectively. Using this, the luminance distribution information that is made one-dimensional can be obtained by calculating equation (1).
[0070] 國 ' … " [0070] Country '... "
[0071] ここで、 Nは Y方向のデータ数である。 [0071] Here, N is the number of data in the Y direction.
[0072] 図 5は、式(1)によって、求めた一次元輝度分布情報をグラフにしたものである。縦 軸は輝度値であり、横軸は X座標の位置である。なお、横軸の単位はピクセル (pix)と する。
[0073] このようにして求めた一次元輝度分布情報は、後段の周期解析処理回路 120によ つてフーリエ変換される。 FIG. 5 is a graph showing the one-dimensional luminance distribution information obtained by the equation (1). The vertical axis is the luminance value, and the horizontal axis is the position of the X coordinate. The unit of horizontal axis is pixel (pix). [0073] The one-dimensional luminance distribution information obtained in this way is Fourier transformed by the period analysis processing circuit 120 at the subsequent stage.
[0074] なお、本実施の形態では、一次元投影処理の一例として、輝度値の平均値をとる 方法を用いたが、一次元投影処理は二次元データを一次元化できるものであれば、 特にこれに限られるものではない。例えば Y方向に輝度値の積分をとる方法であって もよ!/、し、 Y方向に重みをつけて足し合わせる方法であってもよレ、。 [0074] In the present embodiment, as an example of the one-dimensional projection process, a method of taking the average value of the luminance values is used. However, the one-dimensional projection process may be any one that can convert two-dimensional data into one dimension. It is not restricted to this in particular. For example, it may be a method of integrating the luminance value in the Y direction! /, Or a method of adding the weight in the Y direction.
[0075] 次に、周期解析処理回路 120による周期解析処理について説明する。 Next, the cycle analysis process performed by the cycle analysis processing circuit 120 will be described.
[0076] 上記周期解析処理回路 120で行われるフーリエ変換は、式(2)を用いて行われる。 The Fourier transform performed in the period analysis processing circuit 120 is performed using Expression (2).
[0078] 上記式(2)を用いて、フーリエ変換することで、周波数の分布を求めることができる 。さらに、周波数の逆数をとれば、結果を周期の関数にすることができる。 [0078] A frequency distribution can be obtained by performing Fourier transform using the above equation (2). Furthermore, if the inverse of the frequency is taken, the result can be a function of the period.
[0079] 図 6は、一次元投影処理回路 110によって一次元投影されたデータ(図 5に示すグ ラフ)をそのままフーリエ変換した結果を示すグラフである。縦軸はスペクトルの強度 を示している。横軸は周波数の逆数をとり、周期に変換して対数表示している。なお 、周期の単位はピクセル (pix)である。 FIG. 6 is a graph showing the result of Fourier transform of the data one-dimensionally projected by the one-dimensional projection processing circuit 110 (the graph shown in FIG. 5) as it is. The vertical axis shows the intensity of the spectrum. The horizontal axis takes the reciprocal of the frequency, converts it to a period, and displays the logarithm. The unit of the period is a pixel (pix).
[0080] このグラフで、顕著なスペクトルが観察される部分 A (T Pix周期のスジムラによる [0080] In this graph, the part A where the remarkable spectrum is observed
2 2
スペクトル)があることから、スジムラが周期性を持って発生していることがわかる。この ように、フーリエ変換を行うことで、カラーフィルタ基板 330で発生しているスジムラの 周期性の有無を示すデータ(ムラ周期情報)を得ること力できる。 (Spectrum), it can be seen that stripes are generated with periodicity. In this way, by performing Fourier transform, it is possible to obtain data (uneven period information) indicating the presence or absence of periodicity of stripes occurring on the color filter substrate 330.
[0081] ここで、上記ムラ周期情報は、結果出力装置 400においてオペレータが認識できる グラフなどの形式で出力することで、オペレータによって、スジムラの周期性の有無を 半 IJ定させることを可倉 として!/ヽる。 Here, the irregularity period information is output in the form of a graph or the like that can be recognized by the operator in the result output device 400, so that the operator can determine whether or not the irregularity of the stripes is semi-IJ. ! / Speak.
[0082] なお、スジムラの周期性の有無の判定を、上述のように、オペレータによる目視判 定ではなぐムラ周期情報に含まれるスペクトルと周期との関係から自動的に行うよう にしてもよい。 [0082] It should be noted that, as described above, the determination of the presence or absence of periodic irregularities may be automatically performed based on the relationship between the spectrum and the period included in the unevenness period information that is not obtained by visual judgment by the operator.
[0083] 例えば、スジムラの周期性の有無の判定、すなわち、顕著なスペクトルが観察され
るか否かの判定を、あらかじめ保存された判定基準情報を読み出し、検出されたスぺ タトルと比較を行うことで、スジムラの周期性の有無の判定を自動的に行うことが可能 となる。この判定基準情報は、判定基準データベースに登録しておく。この判定基準 データベースは、例えば撮像検査システム 300の結果出力装置 400内に設けてもよ ぐ別途設けてもよい。 [0083] For example, determination of the presence or absence of periodic irregularities, that is, a remarkable spectrum is observed. It is possible to automatically determine whether or not there is a periodicity of streak by reading out the reference information stored in advance and comparing it with the detected spectrum. This criterion information is registered in the criterion database. This criterion database may be provided in the result output device 400 of the imaging inspection system 300 or may be provided separately.
[0084] 具体的には、上記判定基準情報として、例えば、図 6の移動平均を取り、移動平均 値の近傍 (例えば、移動平均値を 1. 2倍した値を上限値、移動平均値を 0. 8倍した 値を下限値とした範囲)を判定基準情報とし、この範囲から外れて!/、るスペクトル値が あるか否かを判定することでスジムラの周期性の有無を自動的に判定する方法があ る。また、その他各種の方法によって、スジムラの周期性の有無を判定するようにして あよい。 Specifically, as the determination criterion information, for example, the moving average of FIG. 6 is taken, and the vicinity of the moving average value (for example, a value obtained by multiplying the moving average value by 1.2 is set as the upper limit value and the moving average value is set). The range (with a value multiplied by 8 as the lower limit) is used as the criterion information, and the presence or absence of spectral values that are out of this range! / There is a way to judge. In addition, the presence or absence of the periodicity of stripes may be determined by various other methods.
[0085] また、前述したように、発生原因に応じて様々な周期を持ったスジムラが発生するの で、予め予測されるスジムラの幅や周期を含んだ情報を、スジムラの発生原因と関連 付けて上記判定基準データベースに登録しておき、検出したムラ周期情報に含まれ るスジムラの幅や周期と登録された情報とからスジムラの発生原因を特定するようにし てもよい。 [0085] As described above, uneven stripes having various periods occur depending on the cause of occurrence. Therefore, information including the width and period of the uneven stripe predicted in advance is associated with the cause of the uneven stripes. Thus, it may be registered in the determination criterion database, and the cause of the occurrence of streaks may be specified from the width and period of streaks included in the detected unevenness period information and the registered information.
[0086] 例えば、上記判定基準データベースに登録する情報としては、スジムラの発生原因 と関連付けられたスジムラの周期とその近傍の範囲を含めた近傍値範囲を用いる。 そして、ムラ周期情報に含まれる周期力 上記判定基準データベースに登録された 周期の近傍値範囲内に含まれているか否かを、登録された周期に対して順に確認し ていき、登録された周期の近傍値範囲内に含まれているか否かによって判定する。こ のとき、検出したムラ周期情報に含まれるスジムラの周期が、登録されたある周期の 近傍値範囲に含まれていると判断されれば、その周期のスジムラをもたらす発生原因 を特定すること力できる。 [0086] For example, as information to be registered in the determination criterion database, a neighborhood value range including a cycle of stripe unevenness associated with the cause of occurrence of stripe unevenness and a range in the vicinity thereof is used. Then, the periodic force included in the unevenness period information is checked in order with respect to the registered period to determine whether it is included in the neighborhood value range of the period registered in the above criteria database. It is determined by whether or not it is included in the neighborhood value range. At this time, if it is determined that the period of the stripe unevenness included in the detected uneven period information is included in the neighborhood value range of the registered period, it is possible to identify the cause of the occurrence of the stripe unevenness of the period. it can.
[0087] ここで、周期を、近傍値範囲まで広げて設定するのは、ヘッドユニットの位置ずれや その他の原因により誤差が発生する場合があるためであり、その誤差を考慮して範囲 を設定する。例えば、近傍値範囲は、ヘッドやノズルや走査ステージなどの機構の寸 法誤差値'動作誤差値等や経験値などから決定されている。さらに、スジムラの幅に
ついての情報を判定基準データベースに追加して判定するようにしてもよい。 [0087] Here, the period is set to be expanded to the neighborhood value range because an error may occur due to the positional deviation of the head unit or other causes, and the range is set in consideration of the error. To do. For example, the neighborhood value range is determined from the dimension error value of the mechanism such as the head, the nozzle, and the scanning stage, the operation error value, and the experience value. In addition, to the width of the stripe Information about this may be added to the determination reference database for determination.
[0088] 上記のように、スジムラの周期性の有無を判定することで、この判定結果を生産ェ 程にフィードバックすることが可能となる。 As described above, it is possible to feed back the result of the determination to the production process by determining whether or not the stripe has periodicity.
[0089] また、 Tピクセル付近に顕著なスペクトルが発生することから、スジムラの周期が T [0089] Further, since a remarkable spectrum is generated in the vicinity of the T pixel, the period of the uneven stripe is T
2 2 ピクセル程度であることがわかる。このように、フーリエ変換によって、スジムラの周期 を求めることも可能である。 2 It can be seen that it is about 2 pixels. In this way, it is also possible to obtain the stripe unevenness period by Fourier transform.
[0090] 上述したように、一般にインクジェット方式においては、スジムラ発生の原因に応じ て異なる周期のスジムラが観察される。 [0090] As described above, in general, in the inkjet method, stripes with different periods are observed depending on the cause of the occurrence of stripes.
[0091] したがって、スジムラの周期性の有無を知るのみでなぐさらに周期を求めることが できれば、スジムラ発生の原因を知り、生産工程にフィードバックさせることもできる。 [0091] Therefore, if it is possible to obtain a further period by simply knowing whether or not the stripe has periodicity, it is possible to know the cause of stripe occurrence and feed it back to the production process.
[0092] この場合、判定結果としては、スジムラの周期性の有無を示す情報に加えて、上述 したスジムラの発生原因を特定するための情報を含ませるようにすればよい。 [0092] In this case, the determination result may include information for specifying the cause of the occurrence of the uneven stripes in addition to the information indicating the presence or absence of the uneven stripe periodicity.
[0093] 以下に、カラーフィルタ基板 330上のカラーフィルタのムラ周期情報をカラーフィノレ タ基板 330の生産工程 (製造工程)にフィードバックした例について説明する。 Hereinafter, an example in which unevenness period information of the color filter on the color filter substrate 330 is fed back to the production process (manufacturing process) of the color finer substrate 330 will be described.
[0094] なお、以下の説明では、上述したカラーフィルタの検査方法を実行する工程 (以下 、カラーフィルタ検査工程と称する)は、一連のカラーフィルタ基板 330の製造工程に 含まれているものとする。例えば、図 7に示すカラーフィルタ基板の 3つの製造工程( ステップ S 1〜S3)において、カラーフィルタ検査工程を示すステップ S2を基準に考 えた場合、ステップ S1は、前工程であり、ステップ S3は、次工程である。 In the following description, it is assumed that the step of executing the above-described color filter inspection method (hereinafter referred to as the color filter inspection step) is included in a series of manufacturing steps of the color filter substrate 330. . For example, in the three manufacturing processes (steps S1 to S3) of the color filter substrate shown in FIG. 7, when considering step S2 indicating the color filter inspection process as a reference, step S1 is the previous process and step S3 is The next step.
[0095] 上記の前工程であるステップ S1は、図 7に示すように、ブラックマトリクス製造工程と 、カラーフィルタ製造工程とを含んでいる。 As shown in FIG. 7, step S1, which is the preceding process, includes a black matrix manufacturing process and a color filter manufacturing process.
[0096] 上記ブラックマトリクス製造工程では、ガラス基板上に、スピンコートによりカーボン の微粒子を分散したネガ型のアクリル系感光性樹脂液を塗布した後、乾燥を行!/ \ 黒色感光性樹脂層を形成する。続いて、フォトマスクを介して黒色感光性樹脂層を露 光した後、現像を行って、ブラックマトリクス(BM)を形成する。例えば、図 3に示すよ うに、ガラス基板 220上にブラックマトリックス 210を形成する。このとき、次の工程で ある、カラーフィルタ製造工程において使用するための開口部、すなわちヘッドュニ ット 230の各ノズノレ 240から吐出されるインクを受け入れるための開口部(各色のフィ
ルタに相当)が形成されるように、ブラックマトリクス 210を形成する。 [0096] In the above black matrix manufacturing process, a negative acrylic photosensitive resin liquid in which carbon fine particles are dispersed is applied onto a glass substrate by spin coating, followed by drying! / \ A black photosensitive resin layer is formed. Form. Subsequently, after the black photosensitive resin layer is exposed through a photomask, development is performed to form a black matrix (BM). For example, as shown in FIG. 3, a black matrix 210 is formed on a glass substrate 220. At this time, the opening for use in the color filter manufacturing process, which is the next process, that is, the opening for receiving the ink ejected from each nozzle 240 of the head unit 230 (the color of each color). The black matrix 210 is formed so as to form a filter.
[0097] 上記カラーフィルタ製造工程では、上述したように、ブラックマトリクス 210が形成さ れたガラス基板 220に対して、ヘッドユニット 230が走査方向(図面では奥または手 前方向)に動くことで、ブラックマトリクス 210間のガラス基板 220上にインクジェットの ノズル 240が液状材料を走査方向に順に吐出して、ガラス基板 220上にカラーフィル タを形成する。なお、インクジェットやローラー転写などによりブラックマトリックス 210 を形成してもよい。また、必要に応じて表面加工処理を行ってもよい。 [0097] In the color filter manufacturing process, as described above, the head unit 230 moves in the scanning direction (backward or frontward in the drawing) with respect to the glass substrate 220 on which the black matrix 210 is formed. Inkjet nozzles 240 sequentially eject liquid materials on the glass substrate 220 between the black matrixes 210 in the scanning direction to form color filters on the glass substrate 220. The black matrix 210 may be formed by ink jet or roller transfer. Moreover, you may perform a surface processing process as needed.
[0098] 上記のステップ S 1の前工程が完了した後、カラーフィルタ検査工程を実行する(ス テツプ S2)。このカラーフィルタ検査工程では、カラーフィルタのムラ周期情報を検出 し、検出結果から、カラーフィルタの良品判定を行う。 [0098] After the previous process of step S1 is completed, a color filter inspection process is executed (step S2). In this color filter inspection process, uneven period information of the color filter is detected, and a non-defective product of the color filter is determined from the detection result.
[0099] ここで、上記ムラ周期情報には、スジムラの周期性の有無を示す情報、スジムラの 発生原因を特定するための情報に加えて、スジムラの周期性を有している場合のそ の周期におけるスぺク W直が少なくとも含まれているものとする。 [0099] Here, in addition to the information indicating the presence / absence of stripe unevenness and the information for identifying the cause of occurrence of stripe unevenness, the uneven cycle information includes the stripe irregularity periodicity information. It is assumed that at least the spectrum in the period is included.
[0100] 例えばカラーフィルタを生産する装置 (カラーフィルタ製造装置)では、上記の検査 装置である画像解析装置 100から送られたムラ周期情報にスジムラの周期性が存在 している旨が含まれている場合、ムラ周期情報に含まれる情報を、予め作成保存され た検査基準情報と比較することで、その比較結果に応じて、被検査ワークであるカラ 一フィルタの処理 (検査工程以降の処理を含める)を変更する。なお、上記検査基準 情報は、上述した判定基準データベースに登録してもよいし、他のデータベースに 登録してもよく、必要に応じて、カラーフィルタ製造装置が読み込めるデータベース であれば何れに登録して!/、てもよ!/、。 [0100] For example, in an apparatus that produces a color filter (color filter manufacturing apparatus), the unevenness period information sent from the image analysis apparatus 100, which is the above-described inspection apparatus, includes the fact that the periodicity of stripes exists. If this is the case, the information contained in the irregularity period information is compared with the inspection reference information created and stored in advance, and the color filter processing (processing after the inspection process) is performed according to the comparison result. Change). The inspection standard information may be registered in the above-described determination standard database, or may be registered in another database. If necessary, it can be registered in any database that can be read by the color filter manufacturing apparatus. /!
[0101] カラーフィルタの処理を変更するとは、例えば、ムラ周期情報に含まれるスペクトル 値力、検査基準情報に含まれている第 1所定値以上であると判定されたカラーフィノレ タが形成されたカラーフィルタ基板を、予め作成保存された被検査物処理変更情報 に基づレ、て廃棄し、上記第 1所定値未満で第 2所定値以上であると判定されたカラ 一フィルタが形成されたカラーフィルタ基板を、リワーク工程へ搬送することである。な お、ムラ周期情報に含まれるスペクトル値力 S、上記第 2所定値未満であると判定され たカラーフィルタが形成されたカラーフィルタ基板は、良品であると判定し、検査工程
に実行される次の製造工程へ搬送するようになっている。 [0101] Changing the processing of the color filter means, for example, a color value formed with a color finisher determined to be equal to or greater than the first predetermined value included in the spectral power included in the unevenness period information and the inspection standard information. The filter substrate is discarded based on the inspected object processing change information created and stored in advance, and the color filter on which the color filter determined to be less than the first predetermined value and greater than or equal to the second predetermined value is formed. It is conveying a filter board | substrate to a rework process. The color filter substrate on which the color filter determined to be less than the spectral value S included in the unevenness period information and the second predetermined value is determined to be a non-defective product, and the inspection process is performed. Then, it is conveyed to the next manufacturing process to be executed.
[0102] 上記のリワーク工程に搬送されるカラーフィルタは修復可能な状態であると判断さ れたカラーフィルタであり、カラーフィルタ検査工程で得られた異常箇所の位置情報 などを含むリワーク情報とともにリワーク工程に搬送され、このリワーク工程で修復処 理された後、再度、検査工程に搬送され、検査される。なお、上記リワーク工程は、力 ラーフィルタ基板の製造工程のステップ S 1におけるブラックマトリクス製造工程やカラ 一フィルタ製造工程に含まれている。リワーク工程は、異常箇所のみを修復する局所 的な修復の場合と、カラーフィルタ基板の全面的な修復の場合があり、また、カラーフ ィルタのみを修復する場合と、ブラックマトリクスとカラーフィルタを修復する場合等が ある。 [0102] The color filter transported to the above-mentioned rework process is a color filter that is determined to be in a repairable state, and is reworked together with rework information including location information of abnormal points obtained in the color filter inspection process. After being transported to the process and repaired in this rework process, it is transported again to the inspection process and inspected. The reworking process is included in the black matrix manufacturing process and the color filter manufacturing process in step S1 of the power filter substrate manufacturing process. In the rework process, there are cases of local repair that repairs only abnormal parts and full repair of the color filter substrate, repair of only the color filter, and repair of the black matrix and color filter. There are cases.
[0103] また、ステップ S2のカラーフィルタ検査工程において、廃棄処分ゃリワーク工程行 きとして判定されたときのスペクトル値等を、前工程 S 1にフィードバックする。カラーフ ィルタ製造工程にフィードバックされる場合、カラーフィルタ製造工程では、フィードバ ックされたスペクトル値と上述の判定基準データベースからカラーフィルタ製造工程 における製造条件の変更(例えば、インクの吐出量の調整、ヘッドユニットの移動速 度の変更など)を行い、カラーフィルタを製造する。さらに、ステップ S2のカラーフィル タ検査工程において、ブラックマトリクスの幅が適切でないことに起因するムラが発生 していると判定された場合には、ブラックマトリクス製造工程に対して、ブラックマトリク スの製造条件の変更(ブラックマトリクスを形成するためのフォトマスクの形成位置の 調整など)を指示する。そして、ブラックマトリクス製造工程では、指示された内容で製 造条件を変更し、ブラックマトリクスを製造する。なお、スペクトル値と判定基準データ ベース等による製造条件の変更の決定は、製造の前工程側で行ってもよいし、カラ 一フィルタ検査工程側で行い製造条件変更の指示を製造の前工程へ送信してもよ い。 [0103] In addition, in the color filter inspection process in step S2, the spectrum value and the like when it is determined that the disposal process is performed is fed back to the previous process S1. When fed back to the color filter manufacturing process, the color filter manufacturing process changes the manufacturing conditions in the color filter manufacturing process (for example, adjustment of ink ejection amount, head Change the moving speed of the unit, etc.) and manufacture the color filter. Furthermore, if it is determined in the color filter inspection process in step S2 that unevenness due to the inappropriate width of the black matrix has occurred, the black matrix manufacturing process is compared with the black matrix manufacturing process. Instruct the condition change (adjustment of photomask formation position to form black matrix, etc.). In the black matrix manufacturing process, the manufacturing conditions are changed according to the instructed contents, and the black matrix is manufactured. The decision to change the manufacturing conditions based on the spectrum value and the judgment reference database may be made on the pre-manufacturing process side, or on the color filter inspection process side, and an instruction to change the manufacturing conditions is sent to the pre-manufacturing process. May be sent.
[0104] 以上のようにして検査が完了し、良品であると判定されたカラーフィルタが形成され たカラーフィルタ基板は、次工程 (ステップ S3)に搬送される。なお、良品であると判 定された場合であっても、良品の限界値付近である場合は、カラーフィルタの検査結 果を考慮した製造条件で次工程が実行されるように、製造条件の変更指示が行って
あよい。 [0104] The color filter substrate on which the color filter determined to be non-defective after the inspection is completed as described above is transported to the next step (step S3). Even if it is determined that the product is non-defective, if it is close to the limit value of the non-defective product, the manufacturing conditions are set so that the next process is executed under the manufacturing conditions that consider the color filter inspection results. Change instructions Good.
[0105] ステップ S3では、 ITOなどの透明電極からなる対向電極をスパッタリングにより形成 し、その後、例えば液晶パネルのセルギャップを規定するための柱状スぺーサ(図示 せず)を、アクリル系感光性樹脂液を塗布しフォトマスクで露光、現像、硬化して形成 する。 [0105] In step S3, a counter electrode made of a transparent electrode such as ITO is formed by sputtering, and then a columnar spacer (not shown) for defining the cell gap of the liquid crystal panel, for example, is an acrylic photosensitive resin. It is formed by applying a resin solution and exposing, developing and curing with a photomask.
[0106] 以上により、カラーフィルタ基板 330が形成される。 [0106] The color filter substrate 330 is formed as described above.
[0107] このように、カラーフィルタの検査工程で得られた検査結果であるムラ周期情報に 基づいて、検査後のカラーフィルタを、検査結果に応じて処理することができるので、 最終的に得られるカラーフィルタの良品率を向上させることができる。 [0107] As described above, since the color filter after the inspection can be processed according to the inspection result based on the unevenness period information that is the inspection result obtained in the color filter inspection process, it is finally obtained. The yield of good color filters can be improved.
[0108] しかも、スジムラの周期性が有る場合であっても、スジムラの発生程度 (スペクトル値 の大きさ)によって、修復可能か否かを判断するようになっているので、スジムラの周 期性の発生したカラーフィルタをすベて不良品とはせずに、スジムラの周期性の発生 して!/、るカラーフィルタのうち、修復不可能なスジムラが発生して!/、るカラーフィルタ のみを不良品と判断し廃棄することになる。これにより、カラーフィルタの無駄な廃棄 を無くすことができるので、カラーフィルタの歩留まりの向上及び製造コストの低減を 図ること力 Sでさる。 [0108] Moreover, even if there is periodicity of stripes, it is determined whether or not it can be repaired by the degree of occurrence of stripes (the magnitude of the spectrum value). All the color filters that have undergone non-defective product are not defective. Will be discarded as a defective product. As a result, wasteful disposal of the color filter can be eliminated, and the power S can be improved by improving the yield of the color filter and reducing the manufacturing cost.
[0109] これにより、カラーフィルタの製造に力、かる時間をトータルで短縮することができる。 [0109] Thereby, the power and time required for manufacturing the color filter can be reduced in total.
[0110] 被検査ワークであるカラーフィルタの処理変更は、単一のカラーフィルタに対して行 つてもよいし、属するロットのカラーフィルタ全てに対して行ってもよいし、同型番の力 ラーフィルタ全てに行ってもよい。 [0110] The processing change of the color filter that is the work to be inspected may be made for a single color filter, for all the color filters of the lot to which it belongs, or for a power color filter of the same model number. You may go to all.
[0111] 不良品であると判断されたカラーフィルタに対しては、そのカラーフィルタ基板の予 め決められた所定箇所に、あるいはカラーフィルタの異常発生領域にマーキングなど を fiつてもよい。 [0111] For a color filter that is determined to be a defective product, a marking or the like may be provided at a predetermined predetermined position of the color filter substrate or an abnormality occurrence region of the color filter.
[0112] この場合には、不良品であると判断されたカラーフィルタは、製造工程においては 廃棄処理されずに、オペレータによって不良品の発生原因の特定する際に使用され [0112] In this case, the color filter determined to be a defective product is not discarded in the manufacturing process and is used by the operator to identify the cause of the defective product.
[0113] また、複数のカラーフィルタ(あるいは、カラーフィルタ内の複数の箇所)の検査工程 で得られた検査値を検査値データベース(例えば検査装置に搭載)などに保存し、
判定基準データベースに予め登録された検査基準情報に記載の条件に当てはまる 状況に適合した場合に、記載の製造工程や製造工程条件の変更を行うようにしても よい。 [0113] In addition, inspection values obtained in the inspection process of a plurality of color filters (or a plurality of locations in the color filter) are stored in an inspection value database (for example, installed in an inspection apparatus). The manufacturing process and the manufacturing process conditions described may be changed when the conditions applicable to the conditions described in the inspection standard information registered in the judgment standard database are met.
[0114] 例えば、ムラ周期情報に含まれるスペクトル値がある基準値(上述の第 1所定値ある いは第 2所定値)以上であるカラーフィルタが連続する個数や発生頻度をカウントし、 所定個数や所定頻度を超えた際に、検査結果により製造工程を変更する製造工程 変更情報に基づいて、その不良の発生原因となる工程よりも前の製造工程にフィー ドバックして、製造方法を変更する。 [0114] For example, the number of consecutive color filters whose frequency value is greater than or equal to a certain reference value (the first predetermined value or the second predetermined value described above) or the frequency of occurrence is counted. If the specified frequency is exceeded, the manufacturing process is changed based on the inspection result. Based on the manufacturing process change information, the manufacturing method is changed by feeding back to the manufacturing process before the process causing the failure. .
[0115] 製造方法の変更としては、例えば、製造装置の製造条件の変更を行ったり、該製 造装置のメンテナンスの必要性についてチェック検査を開始したり、製造装置を停止 したり、発生原因となる部品のクリーニングや交換を行うことが考えられる。 [0115] Examples of changes in the manufacturing method include changing the manufacturing conditions of the manufacturing apparatus, starting a check inspection for the necessity of maintenance of the manufacturing apparatus, stopping the manufacturing apparatus, It is conceivable to perform cleaning or replacement of the parts.
[0116] また、検査工程よりも後の製造工程に検査値を伝達して、製造方法を変更してもよ い。 [0116] In addition, the manufacturing method may be changed by transmitting the inspection value to a manufacturing process after the inspection process.
[0117] 例えば、ある基準以上の検査値 (スペクトル値)の、所定数以上のカラーフィルタの 属するロットのカラーフィルタに対して、次製造工程の製造条件を、高い検査値が緩 和される方向、例えば、最終的な輝度値が最終検査基準の範囲内に入るように、製 造工程変更情報にしたがって、変更してもよレ、。 [0117] For example, for a color filter in a lot that belongs to a predetermined number or more of the inspection value (spectrum value) that exceeds a certain standard, the manufacturing condition of the next manufacturing process is reduced, and the high inspection value is relaxed For example, it may be changed according to the manufacturing process change information so that the final luminance value falls within the range of the final inspection standard.
[0118] なお、本実施の形態では周期解析処理の一例として、周期解析処理のためにフー リエ変換を用いた力 周期解析処理は周期性の有無を検査できるものであれば、特 にこれに限られるものではな!/、。 [0118] In the present embodiment, as an example of the periodic analysis process, the force periodic analysis process using the Fourier transform for the periodic analysis process is particularly suitable if it can check the presence of periodicity. Not limited! /.
[0119] また、本実施の形態では表示部材表面に光を照射して、反射光分布を元に解析を 行ったが、透過光分布を元に解析を行ってもよい。 [0119] In the present embodiment, the surface of the display member is irradiated with light and the analysis is performed based on the reflected light distribution. However, the analysis may be performed based on the transmitted light distribution.
[0120] 透過光分布を利用した場合であっても、反射光分布を利用した画像処理手順と同 じ手順の画像処理手順でょレ、。 [0120] Even when the transmitted light distribution is used, the image processing procedure is the same as the image processing procedure using the reflected light distribution.
[0121] 例えば、表示部材 (カラーフィルタ)の裏面に光を照射して、カラーフィルタの形成 面である正面に光を透過させて得られる透過光分布を元に上述した周期解析を行う ことが考えられる。 [0121] For example, the periodic analysis described above may be performed based on the transmitted light distribution obtained by irradiating the back surface of the display member (color filter) with light and transmitting the light to the front surface that is the color filter formation surface. Conceivable.
[0122] この場合、照明装置をカラーフィルタ非形成側(表示部材の裏面側)に配置し、カメ
ラをカラーフィルタ形成側(表示部材の正面側)に配置する。カメラの配置角度として は、カラーフィルタ形成面上でムラが現れやすい角度に設定するのが望ましい。例え ば、直進透過光よりも、反射の場合と同様、基板裏面に対する照射角度と透過光の 基板に対する出射角度が異なっているのが、望ましい。具体的には、照明装置は基 板の法線方向で、カメラは基板の法線よりも傾いた角度に配置したり、あるいは、照 明装置は基板の法線よりも傾いた角度で、カメラは基板の法線方向や直進透過光の 方向よりも傾いた角度に配置することが考えられる。 [0122] In this case, the lighting device is arranged on the color filter non-formation side (the back side of the display member), and the camera is Is placed on the color filter forming side (front side of the display member). It is desirable to set the camera arrangement angle to an angle at which unevenness appears easily on the color filter forming surface. For example, as in the case of reflection, it is desirable that the irradiation angle with respect to the back surface of the substrate and the emission angle of the transmitted light with respect to the substrate are different from those of the straight transmitted light. Specifically, the illumination device is arranged in the normal direction of the substrate and the camera is arranged at an angle inclined from the normal line of the substrate, or the illumination device is arranged at an angle inclined from the normal line of the substrate. It is conceivable to arrange them at an angle inclined from the normal direction of the substrate and the direction of the straight transmitted light.
[0123] 本実施の形態 1では、一次元投影処理させたデータに対して、そのまま周期解析 処理を行った力 周期解析処理を行う前にフィルタリング処理(モフォロジ処理)を行 つてもよい。 In the first embodiment, filtering processing (morphology processing) may be performed on the data subjected to the one-dimensional projection processing before performing force cycle analysis processing in which cycle analysis processing is performed as it is.
[0124] なお、本明細書においてフィルタリング処理とは、光分布情報 (輝度分布情報)を一 次元投影した情報に対して、一定の周期幅の凹凸を抽出又は抑制する処理をいう。 [0124] Note that the filtering process in this specification refers to a process of extracting or suppressing irregularities having a certain periodic width with respect to information obtained by one-dimensional projection of light distribution information (luminance distribution information).
[0125] 以下の実施の形態 2では、フィルタリング処理の一例としてモフォロジ処理を用いた 場合について説明し、また、実施の形態 3では、フィルタリング処理の一例として平滑 化処理を用いた場合について説明し、さらに、実施の形態 4では、モフォロジ処理と 平滑化処理の両方を用いた場合につ!/、て説明する。 [0125] In the following Embodiment 2, the case where the morphology process is used as an example of the filtering process will be described. In Embodiment 3, the case where the smoothing process is used as an example of the filtering process will be described. Further, in the fourth embodiment, a case where both morphology processing and smoothing processing are used will be described.
[0126] 〔実施の形態 2〕 [Embodiment 2]
本発明の他の実施の形態について説明すれば、以下の通りである。なお、本実施 の形態では、前記実施の形態 1で説明した処理回路と同じ処理回路については同 一名及び同一部材番号を付記し、その説明は省略する。 Another embodiment of the present invention will be described as follows. In the present embodiment, the same processing circuit as that described in the first embodiment is given the same name and the same member number, and the description thereof is omitted.
[0127] 図 8は、本実施の形態に力、かる画像解析装置 102の概略ブロック図を示す。ここで 、前記実施の形態 1の図 1に示した画像解析装置 100と相違する点は、一次元投影 処理回路 110の後段に、モフォロジ処理回路 130が設けられている点である。 FIG. 8 shows a schematic block diagram of the image analysis apparatus 102 that is effective in the present embodiment. Here, the difference from the image analysis apparatus 100 shown in FIG. 1 of the first embodiment is that a morphology processing circuit 130 is provided after the one-dimensional projection processing circuit 110.
[0128] すなわち、上記画像解析装置 102では、一次元投影処理回路 110によって一次元 投影処理された一次元輝度分布情報をモフォロジ処理回路 130によってフィルタリン グ処理された後、周期解析処理回路 120によって周期解析処理が行われる。 That is, in the image analysis device 102, the one-dimensional projection processing circuit 110 performs one-dimensional projection processing on the one-dimensional luminance distribution information, the morphology processing circuit 130 performs filtering, and then the periodic analysis processing circuit 120 performs the filtering process. Periodic analysis processing is performed.
[0129] なお、上記モフォロジ処理回路 130も、他の処理回路と同様に、 CPU150からの制 御信号によって制御されるものとする。
[0130] ここで、上記モフォロジ処理回路 130における、モフォロジ処理について説明する。 It should be noted that the morphology processing circuit 130 is also controlled by a control signal from the CPU 150 in the same manner as other processing circuits. Here, the morphology processing in the morphology processing circuit 130 will be described.
[0131] 図 9 (a) (b)は、本実施の形態で用いるモフォロジ処理について説明するための概 略図である。 [0131] FIGS. 9A and 9B are schematic diagrams for explaining the morphology processing used in the present embodiment.
[0132] 本実施の形態におけるモフォロジ処理の種類は、黒モフォロジ処理と、白モフォロ ジ処理の二種類ある。 There are two types of morphology processing in the present embodiment: black morphology processing and white morphology processing.
[0133] 黒モフォロジ処理は、一定幅(フィルタサイズ)より幅の大きい凹部(周辺の輝度に 比べて、輝度値の低いスジムラ)を抑制する処理であり、白モフォロジ処理は、一定 幅(フィルタサイズ)より幅の大きい凸部(周辺の輝度に比べて、輝度値の高!/、スジム ラ)を抑制する処理である。 [0133] Black morphology processing is processing that suppresses recesses that are larger than a certain width (filter size) (straightness that is lower than the surrounding luminance), and white morphology processing is a certain width (filter size). ) This is a process that suppresses convex parts with a larger width (higher brightness values than the surrounding brightness! /, Uneven stripes).
[0134] 黒モフォロジ処理は、一次元化されたデータ(図 9 (a)に実線で示す)に対して、 X方 向に走査しながらフィルタリング領域内の輝度値の最大値を求める最大値化処理を して、最大値分布(図 9 (a)に破線で示す)を求め、この最大値分布に対して X方向に 走査しながら前記フィルタリング領域内の輝度値の最小値を求める最小値化処理を して最小値分布(図 9 (a)に太線で示す)を求め、一次元化されたデータと最小値分 布との差を求めて、モフォロジ分布(図 9 (b)に実線で示す)を求める処理である。 [0134] Black morphology processing is performed to maximize the luminance value in the filtering area while scanning in the X direction for the one-dimensional data (shown by the solid line in Fig. 9 (a)). Processing is performed to obtain a maximum value distribution (indicated by a broken line in Fig. 9 (a)), and the minimum value for obtaining the minimum value of the luminance value in the filtering region while scanning the maximum value distribution in the X direction. After processing, the minimum value distribution (shown in bold in Fig. 9 (a)) is obtained, the difference between the one-dimensional data and the minimum value distribution is obtained, and the morphology distribution (shown in solid line in Fig. 9 (b)). This is the process for obtaining
[0135] 具体的には、下記式(3)を解くことで求めることができる。ここで、 fはフィルタサイズ を決めるために入力する定数であり、 2f + 1がフィルタサイズとなる。 Specifically, it can be obtained by solving the following equation (3). Here, f is a constant input to determine the filter size, and 2f + 1 is the filter size.
[0137] ただし、式(3)中の Min []及び Max[]は下記式(4)、(5)で表される演算子である 。 Minf[]は、 []の中の数列の最小値を選出する演算子であり、 Maxf[]は、 []の中 の数列の最大値を選出する演算子である。 [0137] However, Min [] and Max [] in Equation (3) are operators represented by the following Equations (4) and (5). Minf [] is an operator that selects the minimum value of the sequence in [], and Maxf [] is an operator that selects the maximum value of the sequence in [].
[0140] 黒モフォロジ処理の結果、フィルタサイズ(2f + l )より小さい幅の凹部分を抽出する
ことが可能となる。 [0140] As a result of black morphology processing, the concave portion with a width smaller than the filter size (2f + l) is extracted. It becomes possible.
[0141] 白モフォロジ処理は、黒モフォロジ処理の逆で、下記式(6)で表される。この場合は [0141] The white morphology processing is the reverse of the black morphology processing and is expressed by the following equation (6). in this case
、フィルタサイズ(2f + l )より小さい凸部分を抽出することが可能となる。 It is possible to extract a convex portion smaller than the filter size (2f + l).
[0143] 図 10は、本実施の形態における検査方法の処理の流れを示したフローチャートで ある。なお、本フローチャートでは、一次元投影処理回路 1 10における処理を省略し 、モフォロジ処理回路 130と周期解析処理回路 120における処理の流れを示してい る。また、以下の手順は、白モフォロジ処理と黒モフォロジ処理についてそれぞれ行 FIG. 10 is a flowchart showing the flow of processing of the inspection method in the present embodiment. In this flowchart, the processing in the one-dimensional projection processing circuit 110 is omitted, and the processing flow in the morphology processing circuit 130 and the period analysis processing circuit 120 is shown. In addition, the following procedures are performed for white morphology processing and black morphology processing, respectively.
5。 Five.
[0144] まず、 N = lとする (ステップ S l)。ここで、 Nは特定な整数とする。 First, N = l is set (step S l). Here, N is a specific integer.
[0145] 次に、 f = 2Nとして、 2f + lが MAXより小さいかどうかを判断する(ステップ S2)。こ こで、 MAXは、 列えば、、 128、 256、 512、 1024等の特定な整数とする。 Next, with f = 2N, it is determined whether 2f + 1 is smaller than MAX (step S2). Here, MAX is a specific integer such as 128, 256, 512, or 1024.
[0146] ステップ S2において、 2f + lが MAXより小さい場合は、フィルタサイズを 2f + 1とし て、一次元投影処理された輝度分布情報に対してモフォロジ処理を行う(ステップ S3[0146] In step S2, if 2f + l is smaller than MAX, the filter size is set to 2f + 1, and the morphology processing is performed on the luminance distribution information subjected to the one-dimensional projection processing (step S3
)。 ).
[0147] さらに、モフォロジ処理の結果に対してフーリエ変換を行う(ステップ S4)。 [0147] Further, Fourier transformation is performed on the result of the morphology processing (step S4).
[0148] 続いて、フーリエ変換されて得られた結果を結果出力装置 400に出力する(ステツ プ S 5)。 [0148] Subsequently, the result obtained by the Fourier transform is output to the result output device 400 (step S5).
[0149] 最後に、 N = N + 1とし、ステップ S2に戻る(ステップ S6)。 [0149] Finally, N = N + 1 is set, and the process returns to step S2 (step S6).
[0150] フィルタサイズを示す 2f + lが MAX以上であると判定されるまで、ステップ S3〜ス テツプ S 6までが繰り返される。つまり、 2f + lが MAX以上であると判定された場合、 図 10に示すフローチャートの処理が終了する。 [0150] Steps S3 to S6 are repeated until it is determined that 2f + l indicating the filter size is greater than or equal to MAX. That is, when it is determined that 2f + 1 is greater than or equal to MAX, the process of the flowchart shown in FIG. 10 ends.
[0151] このようにして、得られた結果を比較することで、さらにスジムラの周期を検査しやす くなる。この点について以下に説明する。 [0151] By comparing the obtained results in this way, it becomes easier to inspect the stripe unevenness period. This will be described below.
[0152] ここで、白モフォロジ処理におけるフィルタサイズを f ピクセルとした場合の結果と、 f [0152] Here, the result when the filter size in the white morphology processing is f pixels, and f
よりも大きい f ピクセルとした場合の結果について、以下説明する。 The results for a larger f pixel are described below.
1 2 1 2
[0153] 図 1 1は、フィルタサイズを f lピクセルとして、モフォロジ処理を行った結果を示すグ
ラフである。なお、縦軸はコントラストであり、横軸は一次元投影処理結果のグラフ同 様 X座標の位置であり、単位はピクセル (pix)である。 [0153] Figure 11 shows the result of morphology processing with the filter size set to fl pixels. It is rough. Note that the vertical axis is contrast, the horizontal axis is the X coordinate position as in the graph of the one-dimensional projection processing result, and the unit is pixel (pix).
[0154] 図 12は、図 11に示すモフォロジ処理を行った結果からさらにフーリエ変換を行った 場合の結果を示すグラフである。ここでは、前記実施の形態 1で示したフーリエ変換 結果同様、縦軸はスペクトルの強度を示している。横軸は周波数の逆数をとり、周期 に変換して対数表示している。また、周期の単位はピクセル (pix)である。 [0154] FIG. 12 is a graph showing a result when Fourier transform is further performed from the result of performing the morphology processing shown in FIG. Here, like the Fourier transform result shown in the first embodiment, the vertical axis indicates the intensity of the spectrum. The horizontal axis takes the reciprocal of the frequency, converts it to a period, and displays the logarithm. The unit of period is pixel (pix).
[0155] 図 12に示すグラフから、モフォロジ処理によってフィルタサイズ flより大きい幅のス ジムラが抑制された結果、周期が T1ピクセルのスジムラ(比較的幅の小さ!/、スジムラ) によるスペクトル Bが特に強調されて出力されていることが分かる。 [0155] From the graph shown in Fig. 12, as a result of the suppression of stripe unevenness with a width larger than the filter size fl by morphology processing, the spectrum B due to the stripe unevenness with a period of T1 pixels (relatively small! /, Stripe unevenness) is particularly It can be seen that the output is emphasized.
[0156] なお、図 12に示すグラフにおいて、周期が Tピクセルよりも小さい周期のピクセル B 1辺りにもスペクトルが観察されるカ、これはフーリエ変換の結果、 Tピクセルの幅に 起因して、周期 Tの高調波が現れており、基本周期のスペクトルの存在の判定の確 実性に寄与して!/、ることを示して!/、る。 In the graph shown in FIG. 12, the spectrum is also observed around pixel B having a period smaller than the T pixel. This is due to the width of the T pixel as a result of the Fourier transform. A harmonic of period T appears, indicating that it contributes to the accuracy of determining the existence of the spectrum of the fundamental period! /.
[0157] このようにモフォロジ処理を行うことで、特定の周期をもって発生するムラの周期を 検査し易くなる。 [0157] By performing the morphology processing in this way, it becomes easy to inspect the period of unevenness occurring with a specific period.
[0158] 図 13は、フィルタサイズを f ピクセルとして、モフォロジ処理を行った結果を図 11と [0158] Figure 13 shows the results of morphology processing with the filter size set to f pixels.
2 2
同様に示したものである。 It is shown similarly.
[0159] 図 14は、フーリエ変換を行った場合の結果を図 12と同様に示したものである。 FIG. 14 shows the result when Fourier transform is performed as in FIG.
[0160] 図 14に示すグラフから、周期が Tピクセル Aのものが特に強調されていることが分 [0160] From the graph shown in Fig. 14, it is clear that the period with T pixel A is particularly emphasized.
2 2
力る。 Power.
[0161] なお、図 14に示すグラフにおいて、周期が T /2ピクセノレ Al、 T /3ピクセノレ A2辺り [0161] In the graph shown in Fig. 14, the period is around T / 2 pixenore Al and T / 3 pixenore A2.
2 2 twenty two
にもスペクトルが観察される力 s、これはフーリエ変換の結果、 τピクセルの幅に起因し Also the spectrum observing force s, which is due to the width of τ pixel as a result of Fourier transform
2 2
て、周期 τの高調波が現れており、基本周期のスペクトルの存在の判定の確実性に As a result, the harmonics of period τ appear, and the reliability of determining the existence of the spectrum of the fundamental period
2 2
寄与してレ、ることを示して!/、る。 Show that it contributes!
[0162] このように、処理結果を比較することで、周期が Tピクセルのスジムラと周期が Tピ [0162] In this way, by comparing the processing results, the non-uniformity with a period of T pixels and the period with a T pitch.
2 1 クセルのスジムラと力 S、混在していることがわ力、る。 2 1 Kussell's smoothness and strength S.
[0163] 前記実施の形態 1では、一次元投影処理したデータに対して、そのまま周期解析を 行ったが、図 6に示すように、周期の異なる多数のスジムラが混在している場合にお
いては、一次元投影データをそのままフーリエ解析すると、周期の異なる複数のスジ ムラに起因して、複数のスペクトルが混在した状態で観察される。 [0163] In the first embodiment, the period analysis is performed on the data subjected to the one-dimensional projection processing as it is. However, as shown in Fig. 6, when a large number of stripes with different periods are mixed. If one-dimensional projection data is Fourier-analyzed as it is, it is observed in a state where a plurality of spectra are mixed due to a plurality of stripe irregularities having different periods.
[0164] しかしながら、本実施の形態のように、フーリエ変換を行う前にモフォロジ処理を行う ことによって、フーリエ変換において、複数の幅を持つスジムラがそれぞれ異なる周 期で発生する場合に、特定の幅のスジムラに起因するスペクトルのみが強調されて 観察できるため、スジムラの周期を検査し易くできる。 [0164] However, by performing the morphology process before performing the Fourier transform as in the present embodiment, in the Fourier transform, when stripes having a plurality of widths occur in different periods, a specific width Since only the spectrum due to the uneven stripes is emphasized and observed, the period of uneven stripes can be easily inspected.
[0165] さらに、前述したようにモフォロジ処理のフィルタサイズを変えて、モフォロジ処理及 び前記フーリエ変換を繰り返すことで、モフォロジ処理の処理サイズに応じて、さまざ まな周期を抽出でき、特定の周期を持ったスジムラのスペクトルが検査し易くなる。 [0165] Furthermore, as described above, by changing the filter size of the morphology process and repeating the morphology process and the Fourier transform, various periods can be extracted according to the process size of the morphology process, and a specific period can be extracted. This makes it easier to inspect the spectrum of a striped stripe.
[0166] 〔実施の形態 3〕 [Embodiment 3]
本発明の他の実施の形態について説明すれば、以下の通りである。なお、本実施 の形態では、前記実施の形態 1で説明した処理回路と同じ処理回路については同 一名及び同一部材番号を付記し、その説明は省略する。 Another embodiment of the present invention will be described as follows. In the present embodiment, the same processing circuit as that described in the first embodiment is given the same name and the same member number, and the description thereof is omitted.
[0167] 図 15は、本実施の形態に力、かる画像解析装置 103の概略ブロック図を示す。ここ で、前記実施の形態 1の図 1に示した画像解析装置 100と相違する点は、一次元投 影処理回路 110の後段に、平滑化処理回路 140が設けられている点である。 FIG. 15 shows a schematic block diagram of the image analysis apparatus 103 that is effective in the present embodiment. Here, the difference from the image analysis apparatus 100 shown in FIG. 1 of the first embodiment is that a smoothing processing circuit 140 is provided after the one-dimensional projection processing circuit 110.
[0168] すなわち、上記画像解析装置 103では、一次元投影処理回路 1 10によって一次元 投影処理された一次元輝度分布情報を平滑化処理回路 140によってフィルタリング 処理された後、周期解析処理回路 120によって周期解析処理が行われる。 That is, in the image analysis apparatus 103, the one-dimensional projection distribution circuit 110 performs one-dimensional projection processing on the one-dimensional luminance distribution information filtered by the smoothing processing circuit 140, and then performed by the periodic analysis processing circuit 120. Periodic analysis processing is performed.
[0169] なお、上記平滑化処理回路 140も、他の処理回路と同様に、 CPU150力、らの制御 信号によって制御されるものとする。 Note that the smoothing processing circuit 140 is also controlled by a control signal from the CPU 150, as in the case of other processing circuits.
[0170] ここで、上記平滑化処理回路 140における、平滑化処理について説明する。 [0170] Here, the smoothing processing in the smoothing processing circuit 140 will be described.
[0171] 平滑化処理は、一次元化されたデータに対して、 X方向に走査しながら予め定める 領域内の平均値を求める平均値化処理をして平均値分布を求める処理である。 [0171] The smoothing process is a process of obtaining an average value distribution by performing an averaging process for obtaining an average value in a predetermined region while scanning in the X direction with respect to the one-dimensional data.
[0172] 具体的には、下記式(7)を解くことで求めることができる。 [0172] Specifically, it can be obtained by solving the following equation (7).
[0173] [数 7] [0173] [Equation 7]
H, = Avf [Px ] . · . ( 7 ) H, = Av f [P x ] (7)
[0174] ここで、 AV[]は下記式(8)で表される。 AV[]は、 []の中の数列の平均値を選出
する演算子である。 [0174] Here, AV [] is expressed by the following equation (8). AV [] selects the average value of the sequence in [] Operator.
[0175] [数 8コ ]= 一,,…' ", /} · · · ( 8 ) [0175] [Equation 8] = one, ... '", /} · · · · (8)
[0176] ただし、モフォロジ処理の際と同様、 fはフィルタサイズを決めるために入力する定 数であり、 2f+ lがフィルタサイズとなる。 [0176] However, as in the case of morphology processing, f is a constant input to determine the filter size, and 2f + l is the filter size.
[0177] 平滑化処理によって、フィルタサイズ(2f+ l)以下の幅のスジムラが抑制されるの で、スジムラの周期が求め易くなる。 [0177] The smoothing process suppresses uneven stripes having a width equal to or smaller than the filter size (2f + l), so that the period of uneven stripes can be easily obtained.
[0178] 図 16は、図 5に示される一次元投影結果に対してフィルタサイズ力 ピクセルの平 [0178] Figure 16 shows the filter size force pixel plane for the one-dimensional projection result shown in Figure 5.
3 Three
滑化処理を行った結果を示したものである。縦軸は輝度値であり、横軸は一次元投 影処理結果のグラフ同様 X座標の位置であり、単位はピクセル (pix)である。 The result of having performed the smoothing process is shown. The vertical axis is the luminance value, the horizontal axis is the position of the X coordinate as in the one-dimensional projection processing result graph, and the unit is pixel (pix).
[0179] これによつて、スジムラの幅が f ピクセル未満のスジムラが抑制され、 f ピクセル以上 [0179] This suppresses stripes with stripe width less than f pixels, and f pixels or more.
3 3 3 3
の幅を持つスジムラの周期を検査し易くなる。 This makes it easier to inspect the period of stripes with a width of.
[0180] さらに、平滑化処理結果に対して、周期解析処理回路 120によってフーリエ変換を 行ったものを図 17に示す。縦軸はスペクトルの強度を示している。横軸は周波数の 逆数をとり、周期に変換して対数表示している。なお、周期の単位はピクセル (pix)で ある。 Further, FIG. 17 shows the result of Fourier transform performed on the smoothing processing result by the period analysis processing circuit 120. The vertical axis indicates the intensity of the spectrum. The horizontal axis takes the reciprocal of the frequency, converts it to a period, and displays the logarithm. The unit of period is pixel (pix).
[0181] 前記実施の形態 1の図 6と比較して、図 6では観察されていた周期が T1ピクセルの スジムラによるスぺタトノレが、図 17では抑制されていることがわかる。 [0181] Compared to Fig. 6 of the first embodiment, it can be seen that Fig. 17 suppresses the spattering due to the uneven stripe having a period of T1 pixel that was observed in Fig. 6.
[0182] このように、フィルタサイズ力 ¾ピクセルの平滑化処理を行った場合は、 f ピクセル( [0182] In this way, when the filter size force ¾ pixel is smoothed, f pixels (
3 3 3 3
Pix)よりも小さい幅で発生するスジムラによるスペクトルを抑制することができ、ムラの 周期を検査し易くなる。 It is possible to suppress the spectrum due to the stripe unevenness generated with a width smaller than (Pix), and to easily inspect the period of unevenness.
[0183] この場合も、前記実施の形態 2と同様に、平滑化処理のフィルタサイズを変えて、平 滑化処理及び前記フーリエ変換を繰り返すことで、平滑化処理のフィルタサイズに応 じて、さまざまな周期を抽出でき、特定の周期を持ったスジムラのスペクトルが検査し 易くなる。 [0183] Also in this case, as in the second embodiment, the smoothing process and the Fourier transform are repeated by changing the smoothing process filter size, and according to the smoothing process filter size, Various periods can be extracted, making it easier to examine the spectrum of stripes with a specific period.
[0184] なお、本実施の形態では平滑化処理の一例として、単純に平均値を求める方法を 用いたが、一定の幅よりも小さい幅のスジムラを抑制する処理であれば、特にこれに
限られるものではない。例えば局所的な重みをつけて平滑化をおこなってもよいし、 多項式を用レ、て近似曲線を引く方法であってもよレ、。 [0184] In the present embodiment, as an example of the smoothing process, a method of simply obtaining an average value is used. However, this is particularly applicable to a process that suppresses uneven stripes having a width smaller than a certain width. It is not limited. For example, smoothing may be performed using local weights, or a method of drawing an approximate curve using a polynomial.
[0185] 〔実施の形態 4〕 [Embodiment 4]
本発明の他の実施の形態について説明すれば、以下の通りである。なお、本実施 の形態では、前記実施の形態;!〜 3で説明した処理回路と同じ処理回路については 同一名及び同一部材番号を付記し、その説明は省略する。 Another embodiment of the present invention will be described as follows. In the present embodiment, the same processing circuit as the processing circuit described in the above embodiments;! To 3 is given the same name and the same member number, and the description thereof is omitted.
[0186] 図 18は、本実施の形態に力、かる画像解析装置 104の概略ブロック図を示す。ここ で、前記実施の形態 1の図 1に示した画像解析装置 100と相違する点は、一次元投 影処理回路 110の後段に、モフォロジ処理回路 130と平滑化処理回路 140とが設け られている点である。 FIG. 18 shows a schematic block diagram of the image analysis device 104 that is effective in the present embodiment. Here, the difference from the image analysis apparatus 100 shown in FIG. 1 of the first embodiment is that a morphology processing circuit 130 and a smoothing processing circuit 140 are provided after the one-dimensional projection processing circuit 110. It is a point.
[0187] すなわち、上記画像解析装置 104では、一次元投影処理回路 110によって一次元 投影処理された一次元輝度分布情報をモフォロジ処理回路 130および平滑化処理 回路 140によってフィルタリング処理された後、周期解析処理回路 120によって周期 解析処理が行われる。 That is, in the image analysis device 104, the one-dimensional luminance distribution information subjected to the one-dimensional projection processing by the one-dimensional projection processing circuit 110 is filtered by the morphology processing circuit 130 and the smoothing processing circuit 140, and then subjected to periodic analysis. A period analysis process is performed by the processing circuit 120.
[0188] なお、上記モフォロジ処理回路 130および平滑化処理回路 140も、他の処理回路 と同様に、 CPU150からの制御信号によって制御されるものとする。 It should be noted that the morphology processing circuit 130 and the smoothing processing circuit 140 are also controlled by a control signal from the CPU 150 in the same manner as other processing circuits.
[0189] このように、本実施の形態では、実施の形態 2、実施の形態 3において、それぞれ 行っていたフィルタリング処理(モフォロジ処理、平滑化処理)を両方行うことで、さら に精度よくスジムラの周期性およびその周期を求めることができる。 [0189] As described above, in this embodiment, by performing both the filtering processing (morphology processing and smoothing processing) performed in Embodiment 2 and Embodiment 3, respectively, the smoothing of the stripes can be further accurately performed. Periodicity and its period can be determined.
[0190] 本実施の形態では、平滑化処理回路 140による平滑化処理の後、平滑処理結果 に対してモフォロジ処理回路 130によるモフォロジ処理を行う場合について説明する In the present embodiment, a case will be described in which, after smoothing processing by the smoothing processing circuit 140, morphology processing by the morphology processing circuit 130 is performed on the smoothing processing result.
[0191] 図 19は、前述した平滑化処理を行ったデータ(前記実施の形態 3の図 16のグラフ に示されているデータ)に対して、前記実施の形態 2で示したモフォロジ処理を行つ たものである。なお、縦軸はコントラストであり、横軸は一次元投影処理結果のグラフ 同様 X座標の位置であり、単位はピクセル (pix)である。 FIG. 19 shows the result of the morphology processing shown in the second embodiment on the data that has been subjected to the smoothing processing described above (the data shown in the graph of FIG. 16 in the third embodiment). It is a thing. Note that the vertical axis is contrast, the horizontal axis is the position of the X coordinate as in the graph of the one-dimensional projection processing result, and the unit is pixel (pix).
[0192] さらに、モフォロジ処理結果に対して、周期解析処理回路 120によるフーリエ変換 を行ったものを図 20に示す。縦軸はスペクトルの強度を示している。横軸は周波数の
逆数をとり、周期に変換して対数表示している。なお、周期の単位はピクセル (pix)で ある。 Furthermore, FIG. 20 shows the result of the Fourier transform performed by the period analysis processing circuit 120 on the morphology processing result. The vertical axis indicates the intensity of the spectrum. The horizontal axis is the frequency The reciprocal is taken, converted into a period, and displayed logarithmically. The unit of period is pixel (pix).
[0193] 図 20に示すグラフと図 15に示すグラフとを比較すると、図 20に示すグラフのほうが 、 T2ピクセル付近のスジムラによるスペクトルが、強調されている。これは、平滑化処 理によって、フィルタサイズより小さ!/、幅で発生するスジムラによるスペクトルが抑制さ れた結果、その他の部分が強調されたと考えられる。これは、平滑化処理とモフォロ ジ処理を組み合わせることによる特有の効果であり、これによつてさらに精度よくスジ ムラの周期を求めることができる。 [0193] Comparing the graph shown in FIG. 20 with the graph shown in FIG. 15, the graph shown in FIG. 20 emphasizes the spectrum due to the stripe unevenness near the T2 pixel. This is thought to be due to the fact that the smoothing process suppressed the spectrum due to stripes that were smaller than the filter size! This is a peculiar effect by combining smoothing processing and morphology processing, and this makes it possible to obtain the stripe unevenness period more accurately.
[0194] また、図 20に示すグラフと図 15に示すグラフとを比較すると、図 20に示すグラフほ う力 S、T1ピクセル付近のスジムラによるスペクトルが抑制されている。これは、平滑化 処理によって、フィルタリングサイズ(f3ピクセル(Pix) )よりも、小さい幅で発生するス ジムラによるスペクトルを抑制された効果と考えられる。これによつてさらに精度よくス ジムラ周期を求めることができる。 [0194] Further, when the graph shown in FIG. 20 is compared with the graph shown in FIG. 15, the spectrum due to the streaks in the vicinity of the forces S and T1 of the graph shown in FIG. 20 is suppressed. This is thought to be due to the effect of suppressing the spectrum due to stripe unevenness that occurs with a width smaller than the filtering size (f3 pixel (Pix)) by the smoothing process. As a result, the stripe unevenness period can be obtained with higher accuracy.
[0195] このように、モフォロジ処理と平滑化処理を両方行うことによって、さらにムラの周期 を検査しやすくなる。 Thus, by performing both the morphology process and the smoothing process, it becomes easier to inspect the period of unevenness.
[0196] また、本実施の形態では、前記実施の形態 2及び実施の形態 3と同様に、平滑化 処理とモフォロジ処理のフィルタサイズを変えて、平滑化処理及びモフォロジ処理及 び前記フーリエ変換を繰り返すことで、フィルタサイズに応じて、さまざまな周期を抽 出でき、特定の周期を持ったスジムラのスペクトルが検査し易くなる。 [0196] In the present embodiment, as in the second and third embodiments, the smoothing process, the morphology process, and the Fourier transform are performed by changing the filter sizes of the smoothing process and the morphology process. By repeating, it is possible to extract various periods according to the filter size, and it becomes easy to inspect the spectrum of stripes having a specific period.
[0197] 以上のように、本実施の形態 1から実施の形態 4では、フィルタリング処理の一例と して、モフォロジ処理及び平滑化処理を用いた力 光分布情報を一次元投影した情 報に対して、一定の周期幅の凹凸を抽出又は抑制する処理であれば、特にこれに限 られるものではない。 [0197] As described above, in the first to fourth embodiments, as an example of the filtering process, the information on the one-dimensional projection of the intensity distribution information using the morphology process and the smoothing process is used. Thus, the process is not particularly limited as long as it is a process for extracting or suppressing irregularities having a certain period width.
[0198] また、本実施の形態 1から実施の形態 4においては、被検査体としてインクジェット 法によって作成されたカラーフィルタを用いた力 これに限らずその他の製法によつ て作成されたカラーフィルタにおいても、本願発明を実施することができる。 [0198] Further, in Embodiments 1 to 4, force using a color filter created by an inkjet method as an object to be inspected is not limited to this, and color filters created by other production methods In this case, the present invention can be implemented.
[0199] 例えば、色ごとにフォトリソグラフィを行う顔料分散法であれば、不具合のあった色 の絵素が、スジムラになる場合もあるし、何らかの原因でカラーフィルタ表面に傷がつ
いてスジムラとなる場合もあり、本願発明を実施することができる。 [0199] For example, in the case of a pigment dispersion method in which photolithography is performed for each color, a pixel with a defective color may become uneven, or the surface of the color filter may be scratched for some reason. In some cases, the present invention can be implemented.
[0200] また、上記の各実施の形態においては、カラーフィルタにおけるスジムラに関して検 查を行った力 S、一次元投影データ上に現れるムラであれば、必ずしもスジ状になった ムラでなくても本願発明を実施することができる。 [0200] Further, in each of the above-described embodiments, if the unevenness that appears on the one-dimensional projection data is the force S that has been detected with respect to the unevenness in the color filter, the unevenness is not necessarily a streak-like unevenness. The present invention can be implemented.
[0201] なお、上記の各実施の形態においては、被検査体としてカラーフィルタを用いたが 、映像表示装置に用いられ、光を透過又は反射又はその両方をする表示部材であ れば、特にこれに限られるものでなぐ例えばディスプレイに用いられる表面ガラスや 背面ガラスを被検査体としてもょレ、し、ノ ックライトユニットにおける拡散板を被検査体 としてもよい。また、反射板や映像を投影するスクリーンの検査に応用することもでき [0201] In each of the above embodiments, a color filter is used as an object to be inspected. However, if the display member is used in an image display device and transmits or reflects light or both, For example, a surface glass or a rear glass used for a display may be used as an object to be inspected, and a diffusion plate in a knock light unit may be used as an object to be inspected. It can also be applied to inspection of reflectors and screens that project images.
[0202] 本発明は上述した各実施形態に限定されるものではなぐ請求項に示した範囲で 種々の変更が可能である。 [0202] The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims.
[0203] 最後に、画像解析装置 100〜; 103の各ブロック、特に一次元投影処理回路 110、 周期解析処理回路 120、モフォロジ処理回路 130および平滑化処理回路 140は、ハ 一ドウエアロジックによって構成してもよいし、次のように CPUを用いてソフトウェアに よって実現してもよい。 [0203] Finally, each block of the image analysis devices 100 to 103, in particular, the one-dimensional projection processing circuit 110, the periodic analysis processing circuit 120, the morphology processing circuit 130, and the smoothing processing circuit 140 are configured by hardware logic. Alternatively, it may be realized by software using a CPU as follows.
[0204] すなわち、画像解析装置 100は、各機能を実現する制御プログラムの命令を実行 する CPU (central processing unit)、上記プログラムを格納した ROM (read only me mory)、上記プログラムを展開する RAM (random access memory) ,上記プログラム および各種データを格納するメモリ等の記憶装置 (記録媒体)などを備えてレ、る。そし て、本発明の目的は、上述した機能を実現するソフトウェアである画像解析装置 100 の制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソ ースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、上記画像解 析装置 100に供給し、そのコンピュータほたは CPUや MPU)が記録媒体に記録さ れているプログラムコードを読み出し実行することによつても、達成可能である。 That is, the image analysis apparatus 100 includes a CPU (central processing unit) that executes instructions of a control program that implements each function, a ROM (read only memory) that stores the program, and a RAM ( random access memory), and a storage device (recording medium) such as a memory for storing the above program and various data. An object of the present invention is a recording medium in which a program code (execution format program, intermediate code program, source program) of a control program of the image analysis apparatus 100, which is software that realizes the above-described functions, is recorded so as to be readable by a computer. This can also be achieved by supplying the above to the image analysis apparatus 100, and the computer or CPU or MPU) reads out and executes the program code recorded on the recording medium.
[0205] 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッ ピー(登録商標)ディスク/ハードディスク等の磁気ディスクや CD— ROM/MO/ MD/DVD/CD— R等の光ディスクを含むディスク系、 ICカード(メモリカードを含
む)/光カード等のカード系、あるいはマスク ROM/EPROM/EEPROM/フラッ シュ ROM等の半導体メモリ系などを用いることができる。 [0205] Examples of the recording medium include a tape system such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy (registered trademark) disk / hard disk, and a CD-ROM / MO / MD / DVD / CD-R. Disc system including optical disc, IC card (including memory card) /) Card systems such as optical cards, or semiconductor memory systems such as mask ROM / EPROM / EEPROM / flash ROM can be used.
[0206] また、画像解析装置 100を通信ネットワークと接続可能に構成し、上記プログラムコ ードを通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に 限定されず、例えば、インターネット、イントラネット、エキストラネット、 LAN, ISDN, VAN, CATV通信網、仮想専用網(virtual private network)、電話回線網、移動体 通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒 体としては、特に限定されず、例えば、 IEEE1394、 USB、電力線搬送、ケーブル T V回線、電話線、 ADSL回線等の有線でも、 IrDAやリモコンのような赤外線、 Bluet ooth (登録商標)、 802. 11無線、 HDR、携帯電話網、衛星回線、地上波デジタル 網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な 伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実 現され得る。 [0206] The image analysis apparatus 100 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network. The communication network is not particularly limited. For example, the Internet, intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication A net or the like is available. Also, the transmission medium constituting the communication network is not particularly limited. For example, IEEE1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc. ooth (registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, etc. can also be used. The present invention can also be realized in the form of a computer data signal embedded in a carrier wave, in which the program code is embodied by electronic transmission.
産業上の利用可能性 Industrial applicability
[0207] 本発明は、光透過あるいは光反射が可能な面に発生するムラの周期性が問題視さ れてレ、る被検査体であれば、どのような部材であっても適用することが可能である。
[0207] The present invention can be applied to any member as long as the periodicity of unevenness generated on a surface that can transmit or reflect light is a problem. Is possible.
Claims
[1] 表示部材の光照射されている検査対称面を撮像して得られた撮像画像データに基 づレヽて、該表示部材の検査を行う検査装置にお!/、て、 [1] An inspection apparatus for inspecting a display member based on captured image data obtained by imaging a light-exposed inspection plane of the display member! /,
上記撮像画像データに含まれる光分布情報に対して、任意の方向を投影方向とし て一次元投影処理を行う一次元投影処理手段と、 One-dimensional projection processing means for performing one-dimensional projection processing with an arbitrary direction as a projection direction for the light distribution information included in the captured image data;
上記一次元投影処理手段によって一次元投影処理された光分布情報の周期解析 を行う周期解析処理手段とを備えていることを特徴とする検査装置。 An inspection apparatus comprising: periodic analysis processing means for performing periodic analysis of light distribution information subjected to one-dimensional projection processing by the one-dimensional projection processing means.
[2] 上記周期解析処理手段は、上記光分布情報に対してフーリエ変換を行うことを特 徴とする請求項 1に記載の検査装置。 [2] The inspection apparatus according to [1], wherein the period analysis processing means performs Fourier transform on the light distribution information.
[3] 上記一次元投影処理手段によって一次元投影処理された光分布情報を、任意の 大きさのフィルタによりフィルタリング処理を行うフィルタリング処理手段を備え、 上記周期解析処理手段は、上記フィルタリング処理手段によつてフィルタリング処 理された光分布情報の周期解析を行うことを特徴とする請求項 1又は 2に記載の検 查装置。 [3] It comprises filtering processing means for performing filtering processing on the light distribution information subjected to the one-dimensional projection processing by the one-dimensional projection processing means using a filter of an arbitrary size, and the periodic analysis processing means includes the filtering processing means. The detection device according to claim 1 or 2, wherein periodic analysis of the filtered light distribution information is performed.
[4] 上記フィルタリング処理手段におけるフィルタリング処理は、モフォロジ処理であるこ とを特徴とする請求項 3に記載の検査装置。 [4] The inspection apparatus according to [3], wherein the filtering processing in the filtering processing means is morphology processing.
[5] 上記フィルタリング処理手段におけるフィルタリング処理は、平滑化処理であること を特徴とする請求項 3に記載の検査装置。 5. The inspection apparatus according to claim 3, wherein the filtering process in the filtering process means is a smoothing process.
[6] 上記フィルタリング処理手段は、 [6] The filtering processing means includes:
上記一次元投影処理手段によって一次元投影処理された光分布情報に対して平 滑化処理を行う平滑化処理回路と、 A smoothing processing circuit for performing smoothing processing on the light distribution information subjected to the one-dimensional projection processing by the one-dimensional projection processing means;
上記平滑化処理回路によって平滑化処理された光分布情報に対してモフォロジ処 理を行うモフォロジ処理回路とを備え、 A morphology processing circuit for performing morphology processing on the light distribution information smoothed by the smoothing processing circuit,
上記モフォロジ処理回路によってモフォロジ処理された光分布情報を上記周期解 析処理手段に出力することを特徴とする請求項 3に記載の検査装置。 4. The inspection apparatus according to claim 3, wherein the light distribution information subjected to the morphology processing by the morphology processing circuit is output to the periodic analysis processing means.
[7] 上記フィルタリング処理手段は、 [7] The filtering processing means includes:
上記一次元投影処理手段によって一次元投影処理された光分布情報に対してモ フォロジ処理を行うモフォロジ処理回路と、
上記モフォロジ処理回路によってモフォロジ処理された光分布情報に対して平滑 化処理を行う平滑化処理回路とを備え、 A morphology processing circuit for performing morphology processing on the light distribution information subjected to the one-dimensional projection processing by the one-dimensional projection processing means; A smoothing processing circuit for performing a smoothing process on the light distribution information subjected to the morphology processing by the morphology processing circuit,
上記平滑化処理回路によって平滑化処理された光分布情報を上記周期解析処理 手段に出力することを特徴とする請求項 3に記載の検査装置。 4. The inspection apparatus according to claim 3, wherein the light distribution information smoothed by the smoothing processing circuit is output to the period analysis processing means.
[8] 上記表示部材は、カラーフィルタであることを特徴とする請求項 1〜7の何れ力、 1項 に記載の検査装置。 [8] The inspection device according to any one of [1] to [7], wherein the display member is a color filter.
[9] 表示部材の検査対称面に光を照射する照明装置と、 [9] an illuminating device for irradiating light onto the inspection symmetry plane of the display member;
上記照明装置によって光が照射された状態で上記表示部材の検査対象面を撮像 する撮像装置と、 An imaging device for imaging the inspection target surface of the display member in a state where light is irradiated by the illumination device;
上記撮像装置によって撮像された撮像画像データに基づいて、上記表示部材の 検査を行う請求項;!〜 8の何れか 1項に記載の検査装置とを備えたことを特徴とする 撮像検査システム。 An imaging inspection system comprising: the inspection device according to any one of claims 8 to 8, wherein the display member is inspected based on captured image data captured by the imaging device.
[10] 表示部材の光照射されている検査対称面を撮像して得られた撮像画像データに基 づレ、て、該表示部材の検査を行う検査方法にお!/、て、 [10] An inspection method for inspecting the display member based on imaged image data obtained by imaging the inspection symmetry plane irradiated with light on the display member! /
上記撮像画像データに含まれる光分布情報に対して、任意の方向を投影方向とし て一次元投影処理を行う第 1のステップと、 A first step of performing one-dimensional projection processing with an arbitrary direction as a projection direction for the light distribution information included in the captured image data;
上記第 1のステップによって得られた一次元投影処理後の光分布情報の周期解析 を行う第 2のステップとを含むことを特徴とする検査方法。 And a second step of performing periodic analysis of the light distribution information after the one-dimensional projection processing obtained by the first step.
[11] 上記第 1のステップと上記第 2のステップとの間に、 [11] Between the first step and the second step,
上記第 1のステップによって得られた一次元投影処理後の光分布情報を、任意の 大きさのフィルタによりフィルタリング処理を行うフィルタリング処理ステップが設けられ 上記第 2のステップは、 There is provided a filtering processing step for filtering the light distribution information after the one-dimensional projection processing obtained in the first step using a filter of an arbitrary size, and the second step includes
上記フィルタリング処理ステップによって得られたフィルタリング処理後の光分布情 報の周期解析を行うことを特徴とする請求項 10に記載の検査方法。 11. The inspection method according to claim 10, wherein a periodic analysis of the light distribution information after the filtering process obtained by the filtering process step is performed.
[12] カラーフィルタ製造装置によってカラーフィルタを製造するカラーフィルタの製造方 法であって、 [12] A color filter manufacturing method for manufacturing a color filter by a color filter manufacturing apparatus,
請求項 10または請求項 11の何れかに記載の検査方法を実行する検査工程を含
み、 An inspection process for executing the inspection method according to claim 10 or claim 11 is included. See
上記検査方工程による周期解析の結果、良品であると判定されたカラーフィルタの みを、上記カラーフィルタ製造装置における、上記検査工程以降の製造工程に供す ることを特徴とするカラーフィルタの製造方法。 A method for producing a color filter, wherein only the color filter determined to be a non-defective product as a result of the periodic analysis in the inspection method process is used in the manufacturing process after the inspection process in the color filter manufacturing apparatus. .
[13] カラーフィルタ製造装置によってカラーフィルタを製造するカラーフィルタの製造方 法であって、 [13] A color filter manufacturing method for manufacturing a color filter by a color filter manufacturing apparatus,
請求項 10または請求項 11の何れかに記載の検査方法を実行する検査工程を含 み、 Including an inspection process for executing the inspection method according to claim 10 or claim 11,
上記検査工程による周期解析の結果、不良品であると判定されたカラーフィルタが 発生した場合に、不良品が発生したという情報を、上記カラーフィルタの製造装置に 伝達することを特徴とするカラーフィルタの製造方法。 When a color filter determined to be defective as a result of periodic analysis by the inspection process occurs, information indicating that a defective product has occurred is transmitted to the color filter manufacturing apparatus. Manufacturing method.
[14] コンピュータを、請求項;!〜 8の何れか 1項に記載の検査装置の各手段として機能 させるための検査プログラム。 [14] An inspection program for causing a computer to function as each means of the inspection apparatus according to any one of claims;! To 8.
[15] 請求項 14に記載の検査プログラムを記録したコンピュータ読み取り可能な記録媒 体。
[15] A computer-readable recording medium on which the inspection program according to claim 14 is recorded.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-322631 | 2006-11-29 | ||
JP2006322631A JP2008139027A (en) | 2006-11-29 | 2006-11-29 | Inspection device, inspection method, image inspection system, manufacturing method of color filter and inspection program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008066129A1 true WO2008066129A1 (en) | 2008-06-05 |
Family
ID=39467916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/073093 WO2008066129A1 (en) | 2006-11-29 | 2007-11-29 | Testing apparatus, testing method, image pickup testing system, color filter manufacturing method, and testing program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2008139027A (en) |
WO (1) | WO2008066129A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011024945A1 (en) * | 2009-08-31 | 2011-03-03 | コニカミノルタオプト株式会社 | Wafer lens manufacturing method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4768014B2 (en) | 2006-04-26 | 2011-09-07 | シャープ株式会社 | Color filter inspection method, color filter manufacturing method, and color filter inspection apparatus |
JP4902456B2 (en) * | 2007-07-31 | 2012-03-21 | シャープ株式会社 | Unevenness evaluation apparatus, Unevenness evaluation method, Unevenness evaluation program, recording medium, and color filter manufacturing method |
JP5866912B2 (en) * | 2011-09-16 | 2016-02-24 | 凸版印刷株式会社 | Pattern drawing condition derivation method and pattern drawing apparatus |
JP6035794B2 (en) * | 2012-03-14 | 2016-11-30 | 大日本印刷株式会社 | MURA INFORMATION GENERATION DEVICE, MURA INFORMATION INFORMATION GENERATION PROGRAM, AND MURA INFORMATION INFORMATION GENERATION METHOD |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0972824A (en) * | 1995-09-08 | 1997-03-18 | Sefuto Kenkyusho:Kk | Filter inspection apparatus |
JPH09126891A (en) * | 1995-10-31 | 1997-05-16 | Hitachi Ltd | Liquid crystal display element manufacturing method, alignment characteristic inspection method and apparatus |
JPH10121368A (en) * | 1996-10-15 | 1998-05-12 | Toyobo Co Ltd | Inspection apparatus for woven fabric |
JPH11189970A (en) * | 1997-12-24 | 1999-07-13 | Toyobo Co Ltd | Inspection apparatus for woven fabric |
JPH11194096A (en) * | 1997-10-29 | 1999-07-21 | Toyota Motor Corp | Evaluation method and inspection apparatus of painted face |
JP2002543421A (en) * | 1999-05-04 | 2002-12-17 | スピードライン・テクノロジーズ・インコーポレーテッド | Method and apparatus for inspecting solder paste deposition on a substrate |
JP2003168114A (en) * | 2001-12-04 | 2003-06-13 | Olympus Optical Co Ltd | Defect sorting device |
JP2004063504A (en) * | 2002-07-24 | 2004-02-26 | Sharp Corp | Inspection method and inspection apparatus for crystal film |
JP2004086539A (en) * | 2002-08-27 | 2004-03-18 | Fuji Photo Film Co Ltd | Image dividing method and device and its program |
JP2005249633A (en) * | 2004-03-05 | 2005-09-15 | Toppan Printing Co Ltd | Method for inspecting streaky irregularities in periodic patterns |
JP2006145484A (en) * | 2004-11-24 | 2006-06-08 | Sharp Corp | Appearance inspection apparatus, appearance inspection method, and program for causing computer to function as appearance inspection apparatus |
-
2006
- 2006-11-29 JP JP2006322631A patent/JP2008139027A/en active Pending
-
2007
- 2007-11-29 WO PCT/JP2007/073093 patent/WO2008066129A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0972824A (en) * | 1995-09-08 | 1997-03-18 | Sefuto Kenkyusho:Kk | Filter inspection apparatus |
JPH09126891A (en) * | 1995-10-31 | 1997-05-16 | Hitachi Ltd | Liquid crystal display element manufacturing method, alignment characteristic inspection method and apparatus |
JPH10121368A (en) * | 1996-10-15 | 1998-05-12 | Toyobo Co Ltd | Inspection apparatus for woven fabric |
JPH11194096A (en) * | 1997-10-29 | 1999-07-21 | Toyota Motor Corp | Evaluation method and inspection apparatus of painted face |
JPH11189970A (en) * | 1997-12-24 | 1999-07-13 | Toyobo Co Ltd | Inspection apparatus for woven fabric |
JP2002543421A (en) * | 1999-05-04 | 2002-12-17 | スピードライン・テクノロジーズ・インコーポレーテッド | Method and apparatus for inspecting solder paste deposition on a substrate |
JP2003168114A (en) * | 2001-12-04 | 2003-06-13 | Olympus Optical Co Ltd | Defect sorting device |
JP2004063504A (en) * | 2002-07-24 | 2004-02-26 | Sharp Corp | Inspection method and inspection apparatus for crystal film |
JP2004086539A (en) * | 2002-08-27 | 2004-03-18 | Fuji Photo Film Co Ltd | Image dividing method and device and its program |
JP2005249633A (en) * | 2004-03-05 | 2005-09-15 | Toppan Printing Co Ltd | Method for inspecting streaky irregularities in periodic patterns |
JP2006145484A (en) * | 2004-11-24 | 2006-06-08 | Sharp Corp | Appearance inspection apparatus, appearance inspection method, and program for causing computer to function as appearance inspection apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011024945A1 (en) * | 2009-08-31 | 2011-03-03 | コニカミノルタオプト株式会社 | Wafer lens manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2008139027A (en) | 2008-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4902456B2 (en) | Unevenness evaluation apparatus, Unevenness evaluation method, Unevenness evaluation program, recording medium, and color filter manufacturing method | |
JP6615172B2 (en) | Systems, devices and methods for quality assessment of OLED stack films | |
US7412088B2 (en) | Inspection method, and inspection device, and manufacturing for display panel | |
JP4777310B2 (en) | INSPECTION DEVICE, INSPECTION METHOD, INSPECTION SYSTEM, COLOR FILTER MANUFACTURING METHOD, INSPECTION DEVICE CONTROL PROGRAM, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING THE PROGRAM | |
JP2017111149A (en) | Method for checking image examination system | |
WO2008066129A1 (en) | Testing apparatus, testing method, image pickup testing system, color filter manufacturing method, and testing program | |
JPH09329527A (en) | Image processing method, and apparatus therefor | |
JP2008139027A5 (en) | ||
JP3752338B2 (en) | Macro inspection apparatus and process monitoring method | |
JP4017148B2 (en) | Pattern inspection apparatus, yield management system, pattern inspection method, substrate manufacturing method, and program | |
JP5050398B2 (en) | Display panel inspection method, inspection apparatus, and manufacturing method | |
TWI810799B (en) | Inspection system, inspection management device, inspection method, and program | |
US20090268950A1 (en) | Product-Quality Inspection System and Method thereof | |
JP6035794B2 (en) | MURA INFORMATION GENERATION DEVICE, MURA INFORMATION INFORMATION GENERATION PROGRAM, AND MURA INFORMATION INFORMATION GENERATION METHOD | |
JP2009041930A (en) | Color filter appearance inspection method | |
JP2003075294A (en) | Method for inspecting substrate | |
JP2013064831A (en) | Ink jet coating device | |
JP2005114500A (en) | Method and instrument for measuring nonuniformity in optical characteristics, and product quality determination device using the same | |
JP2004117150A (en) | Pattern defect inspection apparatus and pattern defect inspection method | |
JPH10260139A (en) | Automatic inspection apparatus for substrate | |
JP2006226837A (en) | Method and apparatus for inspecting stain | |
JP2009063298A (en) | Color filter appearance inspection method | |
KR100570268B1 (en) | Method for detecting irregularity spot of light-related plate element for flat panel using feature point intensity | |
JP2010014430A (en) | Phosphor inspection device | |
JP2004245829A (en) | Pattern defect inspection apparatus and pattern defect inspection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07849924 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07849924 Country of ref document: EP Kind code of ref document: A1 |