WO2008066037A1 - Antenna radiator and antenna - Google Patents
Antenna radiator and antenna Download PDFInfo
- Publication number
- WO2008066037A1 WO2008066037A1 PCT/JP2007/072855 JP2007072855W WO2008066037A1 WO 2008066037 A1 WO2008066037 A1 WO 2008066037A1 JP 2007072855 W JP2007072855 W JP 2007072855W WO 2008066037 A1 WO2008066037 A1 WO 2008066037A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiator
- antenna
- reflector
- conductor
- narrow
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/22—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of a single substantially straight conductive element
- H01Q19/24—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of a single substantially straight conductive element the primary active element being centre-fed and substantially straight, e.g. H-antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/106—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using two or more intersecting plane surfaces, e.g. corner reflector antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/30—Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/28—Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
- H01Q9/285—Planar dipole
Definitions
- the present invention relates to a balanced antenna radiator and an antenna including the radiator and a reflector.
- an antenna for example, an antenna is proposed in which an insulating material and several metal foil antenna elements formed in a thin film shape with a conductive material are attached to the insulator (for example, a patent) Reference 1).
- Patent Document 1 Japanese Utility Model Publication No. 57-185207
- the proposed antenna is obtained by replacing the length and shape of each element determined by the reception wavelength in a general Yagi-Uda type antenna with a metal foil antenna element, an elongated conductor rod is used.
- the antenna can be downsized by using only a radiator and a reflector. I could't do it.
- the present invention has been made in view of these problems, and provides an antenna that can be miniaturized without deteriorating electrical characteristics and can be installed not only on a veranda or an antenna column but also indoors. For the purpose.
- the invention of the first aspect is a balanced antenna radiator
- the radiator includes a pair of first radiating elements formed of a thin plate-like conductive material in a rectangular shape, the longitudinal axes thereof being aligned, and spaced apart so as to be axially symmetric about a central axis orthogonal to the axial line. Are arranged by placing
- One or a plurality of slits are formed in the plate surface of each of the first radiating elements.
- the balanced radiators are arranged apart from each other in the front and rear along the radio wave radiation direction, and the front and rear radiators are connected to each other via a phase adjusting means.
- An antenna radiator
- the radiator on the rear side is a pair of first radiating elements in which a thin plate-like conductive material is formed in a rectangular shape, and the longitudinal axis thereof coincides with each other and is axially symmetrical about a central axis perpendicular to the axis. It is configured by arranging so as to be separated,
- the radiator on the front side is a pair of second radiating elements in which a thin plate-shaped conductive material is formed in a rectangular shape, and the axis of the longitudinal direction thereof coincides with each other, and the axis is symmetrical about the central axis orthogonal to the axis.
- the radiator on the rear side is arranged so that the central axes coincide with each other so that the radiating elements are parallel to each other.
- the front and rear radiators are configured by connecting the front and rear radiating elements positioned in the same direction across the central axis through the phase adjusting means with the base portion close to the central axis as a connection point. Connected,
- One or a plurality of slits are formed on the plate surfaces of the first radiating elements constituting the rear-side radiator, respectively.
- the invention of the third aspect is the antenna radiator according to the second aspect, wherein the first radiating element constituting the radiator on the rear side is used as the phase adjusting means at the base portion close to the central axis.
- the connection point to be connected is formed at a corner located on the innermost front side among the four corners of the first radiating element.
- the invention of the fourth aspect is the antenna radiator according to the third aspect.
- the dimensions of each part of the radiating element are set as follows.
- the first radiating element is formed by forming the slit.
- the line width of the front narrow conductor and the rear narrow conductor is narrower than the wavelength ⁇ 1 of the minimum frequency of the used frequency, approximately 0.106 ⁇ 1.
- the connection narrow conductor is dimensioned to be able to connect and hold, and the line width of the connection narrow conductor is less than about 0.1 ⁇ 1 of the wavelength ⁇ 1 of the minimum frequency of the use frequency of the first radiating element. This is a dimension that allows the front narrow conductor and the rear narrow conductor to be connected and held.
- the dimension of the first path formed by a straight line along the front narrow conductor is from 0.2 ⁇ 2 to 0.4 ⁇ 2 of the wavelength ⁇ 2 of the center frequency of the used frequency
- the dimension of the second path formed along the connecting narrow-point conductor on the inner side, the rear narrow-width conductor, the outer narrow-width conductor from the connection point is ⁇ 1 (7) 0.2 ⁇ 1 force, et al.
- the invention of the fifth aspect is the antenna radiator according to any one of the first to fourth aspects, wherein at least one of the radiating elements is a modification that prevents deformation of the radiating element.
- Form prevention means are provided! /.
- an invention of a sixth aspect is an antenna including at least a radiator and a reflector, and the radiator includes the radiator of the antenna according to any one of the first to fifth aspects. It is characterized by this.
- the invention of the seventh aspect is the antenna according to the sixth aspect, wherein the reflector has a longitudinal direction parallel to the polarization direction of the radio wave and a plane orthogonal to the radio wave radiation direction.
- the first reflector having a rectangular shape arranged so as to be substantially parallel to each other, and both long sides of the first reflector are folded in the radiation direction of the radio wave so that the reflection surface is substantially flat with the radiation direction of the radio wave. It is characterized by a second reflector formed in a row and a force.
- the invention of the eighth aspect provides a shielding property in the antenna according to the seventh aspect.
- a signal processing circuit that processes signals transmitted and received via the radiator, and the electronic device box is configured using a part of the first reflector. ! / Speaking.
- the invention of a ninth aspect is the antenna according to the eighth aspect, wherein the signal processing circuit is an amplifier circuit that amplifies a received signal from the radiator,
- the signal processing circuit is a mixing circuit that mixes a received signal from the radiator and a signal having a frequency different from that of the received signal.
- the frequency of the signal that can be transmitted / received by the radiator is in the UHF band. It is characterized by this.
- the pair of first radiating elements in which a thin plate-like conductive material is formed in a rectangular shape are arranged so that the longitudinal axes thereof coincide with each other and the center is orthogonal to the axial line. They are configured by being spaced apart so as to be axially symmetric with respect to the axis.
- one or a plurality of slits are formed in the plate surface of each first radiating element.
- each radiating element is simply formed of a thin plate-shaped conductive material, the frequency characteristics on the low band side are improved, and the broadband of the radiator is improved. Can be achieved.
- each radiating element can be easily manufactured by simply punching and forming a thin plate-like conductive material with a die or the like.
- balanced radiators are arranged apart from each other in the front-rear direction along the radiation direction of the radio wave, and the front and rear radiators are connected to each other via a phase adjusting unit. It is configured by.
- the radiator on the rear side shares a pair of first radiating elements in which a thin plate-like conductive material is formed in a rectangle with the longitudinal axis thereof aligned.
- the radiator on the front side is similarly formed in a rectangular shape with a rectangular shape about the central axis perpendicular to the axis.
- the pair of second radiating elements are configured so that their longitudinal axes coincide with each other and are spaced apart so as to be axially symmetric with respect to a central axis perpendicular to the axial line.
- the radiator on the front side and the radiator on the rear side are arranged so that the respective radiating elements are parallel to each other by aligning the central axes,
- the front and rear radiating elements positioned in the same direction across the central axis are connected by connecting each other via a phase adjusting means with a base portion close to the central axis as a connection point.
- the radiator described in the second aspect as compared with the case where the radiator described in the first aspect is configured by only a pair of radiating elements, the radiator on the rear side is separated. An antenna having the maximum directivity in the arrangement direction of the radiators on the front side can be realized.
- the radiator according to the second aspect as in the first radiating element according to the first aspect, one or more are provided on the plate surface of the first radiating element constituting the rear-side radiator.
- the slit is drilled. Therefore, in the radiator described in the second aspect, as in the case described in the first aspect, the frequency on the low frequency side is lower than that in the case where the first radiating element is formed of a thin plate-shaped conductive material having no slit. The characteristics can be improved and the bandwidth of the radiator can be increased.
- the front narrow conductor formed on the front side of the slit in the first radiating element, and The line width of the rear narrow conductor formed on the rear side of the slit is approximately the same as the wavelength ⁇ 1 of the minimum frequency of the used frequency.
- the line width of the connecting narrow conductor formed on the side of the slit in the first radiating element and connecting the front narrow conductor and the rear narrow conductor is the minimum of the operating frequency. It is preferable to set the dimensions so that the front narrow conductor and the rear narrow conductor of the first radiating element narrower than the wavelength ⁇ 1 of about 0.1 ⁇ 1 can be connected and held.
- the size of the first path formed by a straight line along the narrow conductor on the front side is 0.2-2 of the center frequency of the center frequency of the used frequency, etc.
- it is a path connecting the above-mentioned connection point and the specific point, and is set along the connecting narrow conductor on the inside, the narrow back conductor on the back side, and the connecting narrow conductor on the outside.
- the dimension of the second path to be formed should be set to 0 ⁇ 2 ⁇ 1 of the wavelength ⁇ ⁇ of the minimum frequency of the used frequency, and 0.4 ⁇ ⁇ .
- the dimensions of the respective parts of the first radiating element are set in this way, the characteristics of the entire radiator are adjusted by the slit, the first path, and the second path, as is apparent from the experimental results described later.
- At least one of the radiating elements is provided with a deformation preventing means for preventing deformation of the radiating element. For this reason, by forming the radiating element from a thin plate-shaped conductive material, even if the radiating element alone cannot secure the strength, the radiating element is deformed through the deformation preventing means such as a reinforcing plate. To prevent the problem,
- the radiator described in the fifth aspect it is possible to prevent the radiation element from being deformed when the radiator is moved or assembled, and also to prevent deformation after assembly. In addition, the radiation characteristics can be stabilized.
- the invention described in the sixth aspect is an invention related to an antenna including at least a radiator and a reflector, and the radiator is described in any one of the first to fifth aspects described above.
- a radiator is used.
- the reflector is arranged such that the direction parallel to the polarization direction of the radio wave is the longitudinal direction and substantially parallel to the plane orthogonal to the radio wave radiation direction.
- a rectangular first reflector and both long sides of the first reflector are folded in the direction of radio wave radiation, respectively, so that the reflection surface is substantially parallel to the direction of radio wave radiation. Consists of two reflectors and force.
- the dimensions of the reflector that does not deteriorate the electrical characteristics compared to the conventional antenna (specifically, the dimensions in the direction perpendicular to the polarization direction of the radio wave). ) Power S can be shortened.
- the size of the reflector can be shortened in this way, it is possible to reduce the thickness of the entire antenna S, easy to handle, and easy to install.
- An antenna can be provided.
- the antenna according to the eighth aspect includes an electronic device box that houses a signal processing circuit that processes a signal transmitted and received via the radiator, and the box has a first reflection. It is constructed using a part of the vessel.
- the signal processing circuit stored in the electronic device box includes an amplification circuit that amplifies the received signal from the radiator, and a radiation circuit as described in the tenth aspect.
- a mixed circuit that mixes a received signal with a frequency different from that of the received signal (for example, a received signal from another antenna) can be given.
- the antenna of the present invention can receive terrestrial digital broadcasting performed using the UHF band if configured to transmit and receive UHF band signals.
- a UHF antenna suitable for communication can be realized.
- FIG. 1 is a schematic perspective view of an antenna according to a first embodiment as viewed obliquely from the front side.
- FIG. 2 is a plan view showing the configuration of the radiator.
- FIGS. 3A-3F are schematic views showing examples of slits formed in the plate surface of the first radiating element.
- FIG. 4 is a graph showing the number of slits formed and the change in gain at 470 MHz.
- FIG. 5A-5B is an enlarged view of the first radiating element for explaining the first path and the second path.
- FIG. 6A-6B It is explanatory drawing which shows arrangement
- FIGS. 7A-7B are side views showing a configuration example of deformation preventing means.
- FIG. 8 Data showing changes in electrical characteristics when the shape of the reflector is changed.
- FIG. 9 is a schematic perspective view of the antenna according to the second embodiment viewed from the rear side.
- FIG. 10 is a schematic perspective view of the antenna according to the second embodiment viewed from the front side.
- FIG. 11 is a schematic cross-sectional view showing a state where the antenna of the second embodiment is housed in a decorative case.
- FIG. 12A is a specific use example of the antenna of the embodiment, FIG. 12A is an antenna mast, FIG. 12B is an indoor, FIG. 12C is an eaves, and FIG. .
- FIG. 1 is a schematic perspective view of the antenna according to the first embodiment to which the present invention is applied as viewed obliquely from the front side in the radio wave radiation direction
- FIG. 2 is a plan view of a radiator used for the antenna.
- the antenna 1 of the present embodiment includes a waveguide 3, a radiator 10, and a reflector 20.
- the radiator 10 includes a first radiator 11 and a second radiator 12, and the front side in the direction of radio wave radiation (in the direction of arrow F shown in FIG. When the direction is indicated, the second radiator 12 is arranged in the arrow F unless otherwise specified.)
- the first radiator 12 is arranged behind the second radiator 12 at a predetermined interval on the rear side. Radiator 11 is arranged.
- the first radiator 11 includes a pair of first radiating elements l la and l ib in which a plate-shaped conductive material that is extremely thin compared to the outer diameter is formed in a rectangular shape, with the longitudinal axes thereof aligned. In addition, it is configured by arranging them so as to be axisymmetric with respect to a central axis that is perpendicular to the axis.
- the second radiator 12 has a pair of second radiating elements 12a and 12b in which a plate-shaped conductive material that is extremely thin compared to the outer diameter shape is formed in a rectangular shape, with the longitudinal axes thereof aligned, It is configured by arranging them so as to be axisymmetric with respect to a central axis orthogonal to the axis.
- the first radiator 11 and the second radiator 12 have the same center axis, and the first radiating elements 11a, l ib and the second radiating elements 12a, 12b are parallel to each other. Are arranged.
- the central axis is the axis along the direction of radio wave radiation.
- the inner corner closest to the central axis and the corner on the front side near the second radiator are formed.
- Phase adjustment means 15a and 15b for phase adjustment are provided between the connection points Aa and Ca and the connection points Ab and Cb opposite to each other in the arrangement direction of the first radiator 11 and the second radiator 12, respectively. Yes.
- the first radiating elements l la and l ib constituting the first radiator 11 are formed by punching with a mold or the like simultaneously with the formation of the radiators l la and l ib.
- a slit 5 is formed.
- the slit 5 will be described in detail with reference to FIGS.
- FIGS. 3A to 3F are schematic views showing examples of slits formed in the plate surfaces of the first radiating elements 1 la and ib constituting the first radiator 11 of the present embodiment.
- 3A shows a case where two slits are arranged along the longitudinal direction of the first radiating element 11a
- FIG. 3B shows a case where four slits are arranged
- FIG. 3C shows a case where six slits are arranged.
- 3D, FIG. 3E, and FIG. 3F show examples in which the size or arrangement of the slits is changed and the slits are different.
- FIG. 4 is a graph showing the relationship between the number of slits of the radiating element and the antenna gain, that is, a graph showing the change in the number of slits and the gain of the antenna 1 at 470 MHz.
- the first radiating element 11a on the rear side constituting the first radiator 11 is respectively formed with slits 5 (in the figure, punched and formed by a mold or the like).
- the inner slit 5a, the intermediate slit 5b, and the outer slit 5c are divided into six in the longitudinal direction of the first radiating element 11a.
- the minimum frequency (470 MHz) of the frequency used by the antenna 1 using the radiator 10 (in this embodiment, the television signal using the UHF band) is used.
- the gain in the first radiating element 11a with a predetermined external shape we experimentally confirmed the gain change when slit 5 was not formed and slit 6 was formed, and the first radiating element 11a was The effect of the slit 5 formed in the element 1 la will be explained!
- the slits 5 are sequentially increased from the connection point Aa side (inner side) to the tip end (outer side) of the first radiating element 1 la with respect to the first radiating element 11a.
- Fig. 3A two slits 5 are formed, in Fig. 3B four slits are shown, and in Fig. 3C six slits 5 forces are formed! /, The
- the gain of antenna 1 is approximately 4 dB, and the first radiating element l la and l ib have slit 5
- the gain of antenna 1 is approximately 4.2 dB, and the first radiating element l la, 1 lb has 5 slits, 6 and 8 antennas. It was experimentally confirmed that the antenna gain was improved by about 0.4 dB by forming a predetermined number of slits 5 at predetermined positions of the first radiator l la and 1 lb.
- the improvement in gain due to the slit 5 can be expected by providing at least four slits 5 as shown in Fig. 4. It can be seen that the effect is the same even if it is provided and if it is provided with one long slit 5 in which a plurality of slits 5 are continuously connected as shown in FIG. 3D.
- the formation position of the slit 5 is directed from the outside in the longitudinal direction of the first radiating element 11a to the inside, contrary to the examples shown in FIGS. 3A, 3B, and 3C.
- Examining the change in gain when the force is arranged so as to increase in order at equal intervals it shows a change as shown by the alternate long and short dash line in the graph of FIG. 4, and as shown in FIG. 3F, Examining the change in gain when the positions of the slits 5 are increased from the center of the first radiating elements l la and l ib to the outside and inside in order at equal intervals, the change in gain is shown by a broken line in FIG. It changes like the graph shown.
- the first radiating element l The radiator 10 constructed using la and l ib, and hence the antenna 1, is the minimum frequency of the operating frequency band. It can be seen that the gain at can be improved.
- the frequency characteristics on the wide frequency side of the operating frequency are not affected by the formation of the slit 5.
- the slit 5 in the first radiating element 11a is formed.
- the front narrow conductor Fl la is on the front side of the inner slit 5a and the outer slit 5c
- the rear narrow conductor Rl la is on the rear side. It is formed.
- the inner slit 5a, the two intermediate slits 5b, and the outer slit 5c are connected to the inner link narrow conductor 6a, the three intermediate link narrow conductors 6b, and the outer link narrow.
- the inner slit 5a, the four intermediate slits 5b, and the outer slit 5c are used to form the inner connecting narrow conductor 6a and the five intermediate connecting narrow conductors 6b.
- a connected narrow conductor 6c is formed.
- one slit 5 is provided so as to be sandwiched between the inner connecting narrow conductor 6a and the outer connecting narrow conductor 6c.
- the line width W6a of the inner connecting narrow conductor 6a and the line width W6b of the intermediate connecting narrow conductor 6b are substantially the same.
- the line width W6c of the outer connecting narrow conductor has different line widths such as 6c-1, 6c-2, and 6c, respectively.
- the line width W6c of the outer connecting narrow conductor 6c and the line width W6b of the intermediate connecting narrow conductor 6b are formed to have substantially the same line width.
- the line width W6a of the inner connecting narrow conductor 6a-2 is changed to the line width W6c of the outer connecting narrow conductor 6c and the line width W6b of the intermediate connecting narrow conductor 6b.
- the line width W6c of the outer connection narrow conductor 6c-3 and the line of the inner connection narrow conductor 6a-3 are larger than the line width W6b of the intermediate connection narrow conductor 6b. Width W6a should be formed wide.
- the slits 5 are formed in the first radiating element 11a, whereby at least two signal paths are formed in the first radiating element 11a.
- the path is defined by the specific point Ba at the corner located on the opposite side of the connection point Aa along the longitudinal axis of the first radiating element 11a among the four corners of the first radiating element 11a.
- the first path 7 formed by a straight line along the front narrow conductor Fl la, the connecting narrow conductor 6a on the inner side from the connection point Aa, the rear side A narrow conductor Rl la is a second path 8 formed along the outer connecting narrow conductor 6c.
- the outer connection narrow-width guide in FIG. 3A is used.
- the line width W6c is larger than the predetermined width as in the case of the body 6c—1, the effect of the slit 5 cannot be obtained, and as shown in FIGS. 3B, 3C, and 3D, the outer connecting narrow conductor 6c— It was found that the effect of slit 5 can be obtained if the line width W6c of 2 and 6c is equal to or smaller than the predetermined dimension.
- the slit 5 is formed from the inside of the first radiating element 11a. Even if they are arranged, they may be arranged inward from the front end side of the first radiating element 11a, or arranged in the vertical direction in the figure from the center of the first radiating element 11a. The effect is recognized
- the slit 5 may be one or plural. In other words, the formation of the slit 5 has to form a route with an appropriate line length.
- the force shown in the example in which the slit 5 has a quadrangular shape and if the width of the connecting narrow conductor is not more than a predetermined dimension as described above, the shape is particularly limited to this shape.
- Other polygonal shapes may be used instead of things, and a circular shape, an elliptical shape, or the like may be used.
- the line widths W6a, W6b, W6c of the inner, intermediate, and outer connected narrow conductors 6 are the first width narrower than approximately 0.1 ⁇ 1 of the wavelength ⁇ 1 of the minimum frequency of the operating frequency.
- the size of the radiating element 11a is such that the front narrow conductor Fl la and the rear narrow conductor Rl la can be held together.
- the dimension of the first path 7 connecting the connection point Aa and the specific point Ba is set to 0.2-2 of the center frequency 2 of the use frequency, and 0.4 ⁇ 2.
- the size of the second path 8 is set to 0.2 ⁇ 1 force of the wavelength ⁇ ⁇ of the minimum frequency of use frequency, and so forth to 0.4 ⁇ 1.
- the line width of the front narrow conductor Fl la and the rear narrow conductor Rl la is a connected narrow width narrower than approximately 0.016 ⁇ 1 of the wavelength ⁇ 1 of the minimum frequency of the use frequency.
- the conductor 6 is dimensioned so that it can be held together.
- the distance between the first radiator 11 and the second radiator 12 is approximately 0.05 force of the wavelength 2 corresponding to the center frequency at the used frequency, and 0.2 times as much. It only has to be configured.
- FIGS. 6A and 6B are explanatory diagrams showing the arrangement of each part of the antenna according to this embodiment.
- the front-rear direction dimension is 15mm, and the left-right direction dimension is 10mm.
- Six rectangular slits 5 are formed, and the widest line width of the connecting narrow conductor 6 formed thereby is 15 mm.
- the front narrow conductor Fl 1 a and the rear narrow conductor 5 are formed.
- the length of the first radiating element so that The direction axis lines are aligned, and are arranged so as to be axially symmetric with respect to a central axis perpendicular to the axis line.
- the radiator 10 configured as described above has the maximum directivity in the arrangement direction of the first radiator 11 and the second radiator 12, and the lower frequency side of the operating frequency. It has excellent profitability.
- the conductive material may be pressed, or it may be thin, or the conductive material may be integrally molded with resin! /, Etc. As long as it is a conductive material, it is not limited to this embodiment. Les.
- the radiator 10 of the present embodiment has the maximum directivity in the arrangement direction from the radiator 11 on the rear side to the radiator 12 on the front side, has sharp directivity, and broadcasts. It can provide an antenna 1 that can receive radio waves transmitted from the station (UHF TV broadcast radio waves) with high gain.
- the antenna 1 using the radiator 10 has a high-performance directional characteristic, it is possible to increase the bandwidth of signals that can be transmitted and received, so that a UHF band television broadcast signal can be transmitted. If configured as a receiving UHF antenna, an antenna suitable for receiving digital terrestrial broadcasting can be provided. [0092]
- the radiating elements l la, l ib, 12a, and 12b constituting the radiator 10 are made of a plate-like metal material that is extremely thin compared to the outer diameter. Therefore, it is conceivable that it may be deformed!
- the radiating elements l la, l ib, 12a, 12b As a means for preventing deformation of the radiating elements l la, l ib, 12a, 12b, as shown in FIG. 7A, the radiating elements l la, l ib, 12a, 12b (l lb, 12b in the figure) Ribs 42b and 41b are formed along the longitudinal axis of each radiating element lla, 1 lb, 12a, 12b as shown in FIG.
- the radiating elements l la, l ib, 12a, 12b can be moved and assembled in the radiating elements l la, l ib, 12a, 12b will not be deformed by bending, etc., and deformation after assembly can be prevented, reducing the number of assembly steps and stabilizing characteristics.
- FIG. 7A and 7B are side views showing examples of the deformation preventing means of the present invention. And figure
- the rib 4b or the bent portion 4c is also formed on the waveguide 3 arranged on the front side of the radiator 10!
- the reflector 20 has a longitudinal direction parallel to the polarization direction of the radio wave (in other words, the polarization plane), and the radio wave radiation direction (in other words,
- the first reflector 21 having a rectangular shape arranged so as to be substantially parallel to the plane perpendicular to the direction of arrival, and the long side of the first reflector 21 are respectively directed to the radiation direction of the radio wave (in other words, the radiator).
- the second reflectors 22a and 22b which are formed so that the reflecting surface is substantially parallel to the radiation direction of the radio wave, are combined with force.
- the reflector 20 is manufactured by bending a plate having a size of 320 ⁇ 100 mm into a U-shaped cross section.
- the dimensions of each part are set as follows. ing.
- the width W W4 22.5mm (length is 320mm, which is the same dimension as W4).
- the reflector 20 has a U-shaped cross section when the antenna 10 is optimized using the reflector 10 described above and the reflector 20 made of a 320 x 100 mm plate. This is to make the antenna 1 thin by shortening the short dimension of the reflector 20 (the vertical dimension shown in Fig. 6A) while maintaining the good frequency characteristics of 1. This is an experimentally obtained value.
- Figure 8 is data representing the change in electrical characteristics when the shape of the reflector 20 is changed.
- the main object of the present invention is to reduce the size of the antenna without deteriorating the electrical characteristics.
- the reflector is the largest of the elements constituting the antenna, the shape of the reflector It is extremely important to reduce the size of the antenna.
- the height of reflector B is the same as that of reflector B, and reflector C having a shape in which both long sides of reflector B are bent portions 14 and second reflector 22 is projected in the direction of radiator 10 is provided. If used, the operating gain is Although it is slightly lower than that of gun A, the other characteristics are almost the same.
- the reflector height H4 (that is, the first height does not deteriorate the antenna 1 electrical characteristics).
- the height of the reflector 61 can be shortened, so that the antenna 1 can be configured to be thin and slim.
- the net formed in the above may be bent.
- a film-like plate body in which a thin conductive material is integrally formed with a resin may be used. That is, the reflector 20 is not limited to these as long as it is a conductive material.
- the reflector 20 does not necessarily need to be folded into a U-shaped cross section, and is formed as a flat surface as it is, but is folded back into a generally square shape whose upper and lower sides are inclined toward the radiator. But it ’s okay. That is, the shape of the reflector 20 is not limited to these.
- the director 3 is obtained by punching a thin plate-like metal material with a die or the like in the same manner as the first radiating elements l la and l ib of the radiator 10.
- the waveguide 3 is provided for improving the high frequency characteristics of the antenna 1, and may or may not be provided as necessary.
- FIG. 9 is a schematic perspective view of the antenna of the second embodiment as viewed from the front side
- FIG. 10 is a schematic perspective view of the antenna of the second embodiment as viewed from the rear side
- FIG. FIG. 5 is a schematic cross-sectional view in which the antenna of the second embodiment is housed in a decorative case and a part thereof is cut.
- the configuration of the antenna 1 of the present embodiment is basically the same as that of the first embodiment.
- the difference from the first embodiment is that a signal processing circuit 30 for processing a reception signal output from the radiator 10 of the antenna 1 is provided.
- the signal processing circuit 30 has a configuration in which a printed circuit board on which an amplifier circuit or the like is assembled is housed in an electronic equipment box (hereinafter referred to as a shield case) 31 having excellent shielding properties.
- the shield case 31 is made of a conductive material such as a metal material, and includes a cylindrical frame 32 that opens at the front and rear, and a lid 33 that closes one opening of the frame 32.
- the opening on the front side is a portion that does not affect the electrical characteristics of the antenna in the first reflector 21 of the reflector 20 (this embodiment In the state, it is fixed to the rear side of the reflector 20).
- the opening on the rear side of the frame 32 is closed with a lid 33 made of a conductive material such as a metal material.
- the shield case 31 is formed by the reflector 20, the frame body 32, and the lid body 33, and the inside thereof is sealed and shielded by these parts.
- the signal processing circuit 30 housed in the shield case 31 may be set in accordance with the use of the antenna 1. For example, even if the signal processing circuit 30 is a signal amplification circuit that amplifies the reception signal from the antenna 1, It may be a mixing circuit that mixes the reception signal from the antenna 1 and the reception signal from the external antenna, or may be both a signal amplification circuit and a mixing circuit.
- the signal processing circuit 30 is composed of a signal amplification circuit and a signal mixing circuit.
- the shield case 31 (specifically, the frame body 32) Output to output a signal that is a mixture of the input terminal 35 for receiving the signal received from the external antenna, the signal obtained by amplifying the signal received from antenna 1 and the signal received from the input terminal 35.
- Terminal 37 is provided.
- Each of these terminals consists of an F-type terminal for inputting and outputting signals via a coaxial cable.
- the signal processing circuit 30 is supplied with received signals from the feed points 16a and 16b of the radiator 10 via the balanced line 17, the unbalanced conversion circuit 18 and the unbalanced line 19. .
- the reflector 20 (specifically, the first reflector 21) to which the shield case 31 is assembled is provided with a through hole 23 through which the unbalanced line 19 is passed.
- the size of the hole 23 is set so as not to affect the electrical characteristics of the antenna.
- the signal processing circuit 30 may be any region as long as it does not affect the force S to be attached to the rear side of the first reflector 21 and the electrical characteristics of the antenna 1. Good. That is, when a part of the reflector 20 is used as a part of the shield case 31 of the signal processing circuit 30 as in the present embodiment, if the electrical characteristics of the antenna 1 are not affected, the reflector 20 It may be the front side or the reflector 20 may be sandwiched between them.
- the antenna 1 of the present embodiment is housed in a decorative case 40.
- the decorative case 40 has an opening toward the upper side, and a space for accommodating the radiator 10, the reflector 20, and the like 20 is formed on the inner side, and the first radiator 11 is formed from the inner surface.
- a decorative case main body 45 in which a boss for attaching the second radiator 12, the waveguide 3, the balance-unbalance conversion portion 18 and the like is integrally projected, and the opening of the decorative case main body 45 is closed.
- the decorative case cover 46 is configured as described above.
- the decorative case 40 is made of a synthetic resin material or the like whose material and thickness are optimized so as not to affect the electrical characteristics of the antenna.
- a boss 41 formed on the decorative case body 45 is a boss for mounting the first radiator 11 (the first radiating element l ib is shown in the figure).
- the first radiator 11 is fixed by screws 51.
- the second radiator 12 (the second radiating element 12b is shown in the figure) is fixed to the boss 42 by the screw 52, and the director 3 is screwed to the boss 43. Fixed by 53
- phase adjusting means 15 (the phase adjusting means 15b is shown in the figure) is connected to the base part of the second radiator 12 (the connection point Ca Cb not shown in this figure). ) And the two radiators 12 and the phase adjusting means 15 are completely fixed to each other with the screw 52.
- connection point Aa Ab not shown in this figure connection point Aa Ab not shown in this figure
- connection point Aa Ab not shown in this figure connection point Aa Ab not shown in this figure
- the installation of means 15 is complete.
- the waveguide 3 and the radiator 10 are further improved. It can be stably stored in the cosmetic case body 40.
- the reflector 20 is also fixedly attached to the decorative case body 45 with a well-known holding means (not shown). At this time, the reflector 20 attached to the reflector 20 and one of the casings are fixed.
- the input terminal 35 and the output terminal 37 provided in the signal processing circuit 30 configured in common are the antennas from the terminal section 39 having concentric double draining skirts formed on the bottom of the decorative case body 45. 1 It is configured to project at the bottom.
- the waterproof property can be improved by attaching a waterproof boot (not shown) to the skirt portion of the terminal portion 39.
- the balance / unbalance conversion portion 18 is attached to the boss 44 formed on the decorative case main body 45 with a screw 54, and a feeding point (see FIG. 11) provided at a predetermined position of the phase adjusting means 15. 16a, 16b) and the balanced / unbalanced converter 18 are not connected through a balanced line 17.
- An unbalanced line 19 is connected between the balanced and unbalanced conversion unit 18 and the signal processing circuit 30.
- the director 3, the radiator 10 and the reflector 20 are arranged in parallel in a predetermined position in the decorative case body 45, and then the decorative case cover 46 is attached to the decorative case body 45.
- the antenna 1 is completed by covering.
- the antenna 1 of the present embodiment is small and thin, and has high-performance frequency characteristics. Therefore, as shown in FIG. 12A, the antenna mast 50, the veranda, etc. If the mast attaching means 60 for attaching the antenna 1 can be detachably fixed, it can be easily attached to the antenna mast or the like.
- Fig. 12A shows the antenna 1 attached to the antenna support.
- FIG. 12B if a stand mounting means 49 is provided on the lower surface side of the decorative case 40 and a mounting stand 61 corresponding to the stand mounting means 49 is attached, the indoor antenna can be obtained. Can also be used.
- Fig. 12B shows the antenna 1 mounted on the mounting stand. At this time, as shown in the top view of FIG. 12B, if the stand mounting means 49 is configured so that the direction of the antenna can be freely adjusted with respect to the mounting stand 61, the reception sensitivity can be easily adjusted. So convenient.
- the mounting stand 61 is configured so that it can be fixed to the installation target, it can be installed on the eaves or on the wall shown in Fig. 12D as shown in Fig. 12C.
- An antenna having the characteristics can be provided.
- FIG. 12C shows the mounting state of the antenna 1 under the eaves
- FIG. 12D shows the mounting state of the antenna 1 on the wall surface.
Landscapes
- Aerials With Secondary Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Provided is a radiator for a balanced antenna. A thin plate-like conductive material is formed rectangular to form a first radiation element. A pair of first radiation elements are arranged at an interval so that the axial lines in the longitudinal directions accord with each other and are axisymmetrical about a center axis which orthogonally intersects with the axial lines. On the plate surfaces of the first radiation elements, one or a plurality of slits are arranged.
Description
明 細 書 Specification
アンテナの放射器およびアンテナ Antenna radiator and antenna
技術分野 Technical field
[0001] 本発明は、平衡型のアンテナの放射器、および、この放射器と反射器とを備えたァ ンテナに関する。 The present invention relates to a balanced antenna radiator and an antenna including the radiator and a reflector.
背景技術 Background art
[0002] 近年広がりつつある地上ディジタル放送は、一定レベル以上の電波を受信できれ ば、ディジタル放送の持つその優れた特性によって綺麗な画像を受信することが出 来ることから、従来のアナログ放送受信用アンテナで一般的であった八木 ·宇多式ァ ンテナば力、りでなぐベランダでも屋内であっても簡単に取り付けができ、しかも邪魔 にならないような小型で軽量、且つデザイン性にも優れたアンテナが求められるよう になった。 [0002] In recent years, terrestrial digital broadcasting, which is spreading in recent years, can receive beautiful images due to its superior characteristics if it can receive radio waves above a certain level. Yagi · Uda type antenna, which is common for antennas, can be easily installed on the veranda or indoors, and it is compact and lightweight so that it does not get in the way, and it has excellent design An antenna was required.
[0003] このようなアンテナの例として、たとえば、絶縁材と、この絶縁体に導電材によって 薄膜状に形成された金属箔アンテナ素子を数枚貼着したアンテナが提案されている (例えば、特許文献 1参照)。 [0003] As an example of such an antenna, for example, an antenna is proposed in which an insulating material and several metal foil antenna elements formed in a thin film shape with a conductive material are attached to the insulator (for example, a patent) Reference 1).
特許文献 1 :実開昭 57— 185207号公報 Patent Document 1: Japanese Utility Model Publication No. 57-185207
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0004] しかし、上記提案のアンテナは、一般的な八木 ·宇田式アンテナにおいて受信波長 で決まる各素子の長さや形状等を、金属箔アンテナ素子に置き換えたものであること から、細長い導体棒を使用した従来のアンテナと同程度の電気的特性を得るために は、そのアンテナと同程度の大きさにする必要があり、例えば、放射器と反射器だけ で構成することによりアンテナの小型化を図る、といったことはできなかった。 [0004] However, since the proposed antenna is obtained by replacing the length and shape of each element determined by the reception wavelength in a general Yagi-Uda type antenna with a metal foil antenna element, an elongated conductor rod is used. In order to obtain the same electrical characteristics as the conventional antenna used, it is necessary to make it as large as the antenna. For example, the antenna can be downsized by using only a radiator and a reflector. I couldn't do it.
[0005] 本発明は、こうした問題に鑑みなされたものであり、電気的特性を低下させることな く小型化でき、ベランダやアンテナ支柱だけでなく室内にも設置することのできるアン テナを提供することを目的とする。 [0005] The present invention has been made in view of these problems, and provides an antenna that can be miniaturized without deteriorating electrical characteristics and can be installed not only on a veranda or an antenna column but also indoors. For the purpose.
課題を解決するための手段
[0006] 上記課題を解決するために、第 1局面の発明は、平衡型のアンテナの放射器であ つて、 Means for solving the problem [0006] In order to solve the above problems, the invention of the first aspect is a balanced antenna radiator,
当該放射器は、薄板状の導電材を矩形に形成した一対の第 1放射素子を、その長 手方向の軸線を一致させると共に、該軸線に直交する中心軸を中心として軸対称と なるよう離隔して配置することにより構成されており、 The radiator includes a pair of first radiating elements formed of a thin plate-like conductive material in a rectangular shape, the longitudinal axes thereof being aligned, and spaced apart so as to be axially symmetric about a central axis orthogonal to the axial line. Are arranged by placing
前記各第 1放射素子の板面には、それぞれ、 1又は複数のスリットが穿設されている ことを特徴とする。 One or a plurality of slits are formed in the plate surface of each of the first radiating elements.
[0007] また、第 2局面の発明は、平衡型の放射器を、電波の放射方向に沿って前後に離 隔して配置すると共に、該前後の放射器同士を位相調整手段を介して接続してなる アンテナの放射器であって、 [0007] In the invention of the second aspect, the balanced radiators are arranged apart from each other in the front and rear along the radio wave radiation direction, and the front and rear radiators are connected to each other via a phase adjusting means. An antenna radiator,
後方側の放射器は、薄板状の導電材を矩形に形成した一対の第 1放射素子を、そ の長手方向の軸線を一致させると共に、該軸線に直交する中心軸を中心として軸対 称となるように離隔して配置することにより構成されており、 The radiator on the rear side is a pair of first radiating elements in which a thin plate-like conductive material is formed in a rectangular shape, and the longitudinal axis thereof coincides with each other and is axially symmetrical about a central axis perpendicular to the axis. It is configured by arranging so as to be separated,
前方側の放射器は、薄板状の導電材を矩形に形成した一対の第 2放射素子を、そ の長手方向の軸線を一致させると共に、該軸線に直交する中心軸を中心として軸対 称となるように離隔して配置することにより構成され、しかも、前記後方側の放射器と は、前記中心軸同士を一致させることにより前記各放射素子同士が互いに平行とな るように配置されており、 The radiator on the front side is a pair of second radiating elements in which a thin plate-shaped conductive material is formed in a rectangular shape, and the axis of the longitudinal direction thereof coincides with each other, and the axis is symmetrical about the central axis orthogonal to the axis. In addition, the radiator on the rear side is arranged so that the central axes coincide with each other so that the radiating elements are parallel to each other. ,
前記前後の放射器は、前記中心軸を挟んで同一方向に位置する前後の放射素子 同士を、それぞれ、前記中心軸に近い元部を接続点として前記位相調整手段を介し て互いに接続することにより、接続されており、 The front and rear radiators are configured by connecting the front and rear radiating elements positioned in the same direction across the central axis through the phase adjusting means with the base portion close to the central axis as a connection point. Connected,
前記後方側の放射器を構成する第 1放射素子の板面には、それぞれ、 1又は複数 のスリットが穿設されて!/、ることを特徴とする。 One or a plurality of slits are formed on the plate surfaces of the first radiating elements constituting the rear-side radiator, respectively.
[0008] また、第 3局面の発明は、第 2局面に記載のアンテナの放射器において、後方側の 放射器を構成する第 1放射素子が前記中心軸に近い元部で前記位相調整手段に 接続される接続点は、当該第 1放射素子の四隅の内、最も内側の前方側に位置する 隅部に形成されていることを特徴とする。 [0008] Further, the invention of the third aspect is the antenna radiator according to the second aspect, wherein the first radiating element constituting the radiator on the rear side is used as the phase adjusting means at the base portion close to the central axis. The connection point to be connected is formed at a corner located on the innermost front side among the four corners of the first radiating element.
[0009] また次に、第 4局面の発明は、第 3局面に記載のアンテナの放射器において、第 1
放射素子の各部の寸法を下記のように設定したことを特徴とする。 [0009] Next, the invention of the fourth aspect is the antenna radiator according to the third aspect. The dimensions of each part of the radiating element are set as follows.
[0010] すなわち、前記第 1放射素子において、前記スリットを形成することにより形成されるThat is, the first radiating element is formed by forming the slit.
、前記スリットよりも前方側の前方側細幅状導体、前記スリットよりも後方側の後方側 細幅状導体、および、該スリットの側辺側で前方側細幅状導体と後方側細幅状導体 とを連結する連結細幅状導体の内、前方側細幅状導体と後方側細幅状導体の線幅 は、使用周波数の最小周波数の波長 λ 1の略 0. 016 λ 1より細ぐ前記連結細幅状 導体を連結保持できる寸法であり、前記連結細幅状導体の線幅は、使用周波数の 最小周波数の波長 λ 1の略 0. 1 λ 1より細ぐ前記第 1放射素子の前方側細幅状導 体と後方側細幅状導体とを連結保持できる寸法である。 A narrow front conductor on the front side of the slit, a narrow back conductor on the rear side of the slit, and a narrow front conductor and a narrow back side on the side of the slit. Of the connecting narrow conductors that connect the conductors, the line width of the front narrow conductor and the rear narrow conductor is narrower than the wavelength λ 1 of the minimum frequency of the used frequency, approximately 0.106 λ 1. The connection narrow conductor is dimensioned to be able to connect and hold, and the line width of the connection narrow conductor is less than about 0.1 λ 1 of the wavelength λ 1 of the minimum frequency of the use frequency of the first radiating element. This is a dimension that allows the front narrow conductor and the rear narrow conductor to be connected and held.
[0011] また、第 1放射素子の四隅の内、当該第 1放射素子の長手方向の軸線に沿って前 記接続点とは反対側に位置する隅部の特定点と、前記接続点とを結ぶ経路であって [0011] Of the four corners of the first radiating element, a specific point at a corner located on the opposite side of the connection point along the longitudinal axis of the first radiating element, and the connection point A route that connects
、前方側細幅状導体に沿った直線で形成される第 1経路の寸法は、使用周波数の 中心周波数の波長 λ 2の 0. 2 λ 2から 0. 4 λ 2であり、前記特定点と前記接続点とを 結ぶ経路であって、前記接続点から内側の連結細幅状導体、後方側細幅状導体、 外側の連結細幅状導体に沿って形成される第 2経路の寸法は、使用周波数の最小 周波数の波長 λ 1(7)0. 2 λ 1力、ら 0. 4 λ 1である。 The dimension of the first path formed by a straight line along the front narrow conductor is from 0.2 λ 2 to 0.4 λ 2 of the wavelength λ 2 of the center frequency of the used frequency, The dimension of the second path formed along the connecting narrow-point conductor on the inner side, the rear narrow-width conductor, the outer narrow-width conductor from the connection point, The minimum frequency of the used frequency is λ 1 (7) 0.2 λ 1 force, et al.
[0012] また、第 5局面の発明は、第 1局面〜第 4局面の何れかに記載のアンテナの放射器 において、前記放射素子の少なくとも一つには、当該放射素子の変形を防止する変 形防止手段が設けられて!/、ることを特徴とする。 [0012] Further, the invention of the fifth aspect is the antenna radiator according to any one of the first to fourth aspects, wherein at least one of the radiating elements is a modification that prevents deformation of the radiating element. Form prevention means are provided! /.
[0013] 一方、第 6局面の発明は、少なくとも放射器と反射器とを備えるアンテナであって、 前記放射器は、第 1局面〜第 5局面の何れかに記載のアンテナの放射器からなるこ とを特徴する。 [0013] On the other hand, an invention of a sixth aspect is an antenna including at least a radiator and a reflector, and the radiator includes the radiator of the antenna according to any one of the first to fifth aspects. It is characterized by this.
[0014] また、第 7局面の発明は、第 6局面に記載のアンテナにおいて、前記反射器は、電 波の偏波方向に平行な方向が長手方向となり、電波の放射方向に直交する面に略 平行となるよう配置された矩形形状の第 1の反射器と、該第 1の反射器の両長辺側を それぞれ電波の放射方向に折り曲げることにより、反射面が電波の放射方向と略平 行になるよう形成された第 2の反射器と、力 なることを特徴とする。 [0014] Further, the invention of the seventh aspect is the antenna according to the sixth aspect, wherein the reflector has a longitudinal direction parallel to the polarization direction of the radio wave and a plane orthogonal to the radio wave radiation direction. The first reflector having a rectangular shape arranged so as to be substantially parallel to each other, and both long sides of the first reflector are folded in the radiation direction of the radio wave so that the reflection surface is substantially flat with the radiation direction of the radio wave. It is characterized by a second reflector formed in a row and a force.
[0015] また次に、第 8局面の発明は、第 7局面に記載のアンテナにおいて、シールド性を
有する電子機器箱体に収容され、前記放射器を介して送受信する信号を処理する 信号処理回路を備え、前記電子機器箱体は、前記第 1の反射器の一部を利用して 構成されて!/ヽることを特徴とする。 [0015] Next, the invention of the eighth aspect provides a shielding property in the antenna according to the seventh aspect. A signal processing circuit that processes signals transmitted and received via the radiator, and the electronic device box is configured using a part of the first reflector. ! / Speaking.
[0016] また、第 9局面の発明は、第 8局面に記載のアンテナにおいて、前記信号処理回路 は、前記放射器からの受信信号を増幅する増幅回路であることを特徴とし、第 10局 面の発明は、第 8局面に記載のアンテナにおいて、前記信号処理回路は、前記放射 器からの受信信号と、該受信信号とは周波数が異なる信号とを混合する混合回路で あることを特徴とする。 [0016] Further, the invention of a ninth aspect is the antenna according to the eighth aspect, wherein the signal processing circuit is an amplifier circuit that amplifies a received signal from the radiator, The invention according to claim 8 is characterized in that, in the antenna according to the eighth aspect, the signal processing circuit is a mixing circuit that mixes a received signal from the radiator and a signal having a frequency different from that of the received signal. .
[0017] また更に、第 11局面の発明は、第 6局面〜第 10局面の何れかに記載のアンテナ にお!/、て、前記放射器にて送受信可能な信号の周波数は UHF帯であることを特徴 とする。 [0017] Furthermore, in the eleventh aspect of the invention, in the antenna according to any one of the sixth to tenth aspects, the frequency of the signal that can be transmitted / received by the radiator is in the UHF band. It is characterized by this.
発明の効果 The invention's effect
[0018] 第 1局面に記載の放射器においては、薄板状の導電材を矩形に形成した一対の 第 1放射素子を、その長手方向の軸線を一致させ、しかも、その軸線に直交する中 心軸を中心として軸対称となるように離隔して配置することにより構成されている。そ して、各第 1放射素子の板面には、それぞれ、 1又は複数のスリットが穿設されている [0018] In the radiator according to the first aspect, the pair of first radiating elements in which a thin plate-like conductive material is formed in a rectangular shape are arranged so that the longitudinal axes thereof coincide with each other and the center is orthogonal to the axial line. They are configured by being spaced apart so as to be axially symmetric with respect to the axis. In addition, one or a plurality of slits are formed in the plate surface of each first radiating element.
[0019] このため、後述する実験結果から明らかなように、各放射素子を単に薄板状の導電 材にて形成した場合に比べて、低域側の周波数特性を改善して、放射器の広帯域 化を図ることができる。また、各放射素子は、薄板状の導電材を金型等で打ち抜き形 成するだけで簡単に製造することができることから、低コストで実現できる。 [0019] Therefore, as will be apparent from the experimental results described later, compared with the case where each radiating element is simply formed of a thin plate-shaped conductive material, the frequency characteristics on the low band side are improved, and the broadband of the radiator is improved. Can be achieved. In addition, each radiating element can be easily manufactured by simply punching and forming a thin plate-like conductive material with a die or the like.
[0020] 第 2局面に記載の放射器は、平衡型の放射器を、電波の放射方向に沿って前後に 離隔して配置し、その前後の放射器同士を位相調整手段を介して接続することにより 構成されている。 [0020] In the radiator according to the second aspect, balanced radiators are arranged apart from each other in the front-rear direction along the radiation direction of the radio wave, and the front and rear radiators are connected to each other via a phase adjusting unit. It is configured by.
[0021] すなわち、第 2局面に記載の放射器において、後方側の放射器は、薄板状の導電 材を矩形に形成した一対の第 1放射素子を、その長手方向の軸線を一致させると共 に、その軸線に直交する中心軸を中心として軸対称となるように離隔して配置するこ とにより構成されており、前方側の放射器も同様に、薄板状の導電材を矩形に形成し
た一対の第 2放射素子を、その長手方向の軸線を一致させると共に、その軸線に直 交する中心軸を中心として軸対称となるように離隔して配置することにより構成されて いる。 [0021] That is, in the radiator according to the second aspect, the radiator on the rear side shares a pair of first radiating elements in which a thin plate-like conductive material is formed in a rectangle with the longitudinal axis thereof aligned. In addition, the radiator on the front side is similarly formed in a rectangular shape with a rectangular shape about the central axis perpendicular to the axis. The pair of second radiating elements are configured so that their longitudinal axes coincide with each other and are spaced apart so as to be axially symmetric with respect to a central axis perpendicular to the axial line.
[0022] そして、前方側の放射器と後方側の放射器とは、中心軸同士を一致させることによ り各放射素子同士が互いに平行となるように配置されており、前後の放射器は、その 中心軸を挟んで同一方向に位置する前後の放射素子同士を、それぞれ、中心軸に 近い元部を接続点として位相調整手段を介して互いに接続することにより、接続され ている。 [0022] And, the radiator on the front side and the radiator on the rear side are arranged so that the respective radiating elements are parallel to each other by aligning the central axes, The front and rear radiating elements positioned in the same direction across the central axis are connected by connecting each other via a phase adjusting means with a base portion close to the central axis as a connection point.
[0023] このため、第 2局面に記載の放射器によれば、第 1局面に記載の放射器のように、 単に一対の放射素子だけで構成した場合に比べて、後方側の放射器から前方側の 放射器の配列方向に最大の指向特性を有するアンテナを実現できる。 [0023] For this reason, according to the radiator described in the second aspect, as compared with the case where the radiator described in the first aspect is configured by only a pair of radiating elements, the radiator on the rear side is separated. An antenna having the maximum directivity in the arrangement direction of the radiators on the front side can be realized.
[0024] そして、第 2局面に記載の放射器においても、第 1局面に記載の第 1放射素子と同 様、後方側の放射器を構成する第 1放射素子の板面に、 1又は複数のスリットが穿設 されている。従って、第 2局面に記載の放射器においても、第 1局面に記載のものと 同様、第 1放射素子をスリットのない薄板状の導電材にて形成した場合に比べて、低 域側の周波数特性を改善して、放射器の広帯域化を図ることができる。 [0024] Also in the radiator according to the second aspect, as in the first radiating element according to the first aspect, one or more are provided on the plate surface of the first radiating element constituting the rear-side radiator. The slit is drilled. Therefore, in the radiator described in the second aspect, as in the case described in the first aspect, the frequency on the low frequency side is lower than that in the case where the first radiating element is formed of a thin plate-shaped conductive material having no slit. The characteristics can be improved and the bandwidth of the radiator can be increased.
[0025] 次に、第 3局面に記載の放射器においては、後方側の放射器を構成する第 1放射 素子において、中心軸に近い元部に形成されて位相調整手段に接続される接続点 は、第 1放射素子の四隅の内、最も内側の前方側に位置する隅部に形成されている [0025] Next, in the radiator according to the third aspect, in the first radiating element constituting the rear-side radiator, a connection point formed at the base portion near the central axis and connected to the phase adjusting means. Is formed at the corner located on the innermost front side among the four corners of the first radiating element
[0026] このため、その接続点と第 1放射素子の外側端部までの経路を考えた場合、第 1放 射素子に形成されたスリットによって、複数の異なる線路長を有する経路が形成され ることになり、この複数の経路によって低域側の周波数特性が改善されて、広帯域に 亘つて優れた周波数特性を有する放射器を実現できることになる。 For this reason, when considering the path from the connection point to the outer end of the first radiating element, a plurality of paths having different line lengths are formed by the slits formed in the first radiating element. Therefore, the frequency characteristics on the low band side are improved by the plurality of paths, and a radiator having excellent frequency characteristics over a wide band can be realized.
[0027] なお、第 1放射素子をこのように構成する場合には、第 4局面に記載のように、第 1 放射素子においてスリットよりも前方側に形成される前方側細幅状導体、および、スリ ットよりも後方側に形成される後方側細幅状導体の線幅は、使用周波数の最小周波 数の波長 λ 1の略 0. 016 λ 1より細ぐ連結細幅状導体を連結保持できる寸法に設
定するとよく、第 1放射素子においてスリットの側辺側に形成され、前方側細幅状導 体と後方側細幅状導体とを連結する連結細幅状導体の線幅は、使用周波数の最小 周波数の波長 λ 1の略 0. 1 λ 1より細ぐ前記第 1放射素子の前方側細幅状導体と 後方側細幅状導体とを連結保持できる寸法に設定するとよい。 [0027] When the first radiating element is configured in this way, as described in the fourth aspect, the front narrow conductor formed on the front side of the slit in the first radiating element, and The line width of the rear narrow conductor formed on the rear side of the slit is approximately the same as the wavelength λ 1 of the minimum frequency of the used frequency. Set to dimensions that can be held The line width of the connecting narrow conductor formed on the side of the slit in the first radiating element and connecting the front narrow conductor and the rear narrow conductor is the minimum of the operating frequency. It is preferable to set the dimensions so that the front narrow conductor and the rear narrow conductor of the first radiating element narrower than the wavelength λ 1 of about 0.1 λ 1 can be connected and held.
[0028] またこの場合、第 1放射素子の四隅の内、第 1放射素子の長手方向の軸線に沿つ て前記接続点とは反対側に位置する隅部の特定点と、前記接続点とを結ぶ経路で あって、前方側細幅状導体に沿った直線で形成される第 1経路の寸法は、使用周波 数の中心周波数の波長え 2の 0. 2ぇ2カ、ら0. 4 λ 2に設定し、同じく上記接続点と特 定点とを結ぶ経路であって、接続点から内側の連結細幅状導体、後方側細幅状導 体、外側の連結細幅状導体に沿って形成される第 2経路の寸法は、使用周波数の 最小周波数の波長 λ ΐの 0· 2ぇ1カ、ら0. 4 λ ΐに設定するとよい。 [0028] In this case, of the four corners of the first radiating element, a specific point at a corner located on the opposite side of the connection point along the longitudinal axis of the first radiating element, and the connection point The size of the first path formed by a straight line along the narrow conductor on the front side is 0.2-2 of the center frequency of the center frequency of the used frequency, etc. Similarly, it is a path connecting the above-mentioned connection point and the specific point, and is set along the connecting narrow conductor on the inside, the narrow back conductor on the back side, and the connecting narrow conductor on the outside. The dimension of the second path to be formed should be set to 0 · 2 · 1 of the wavelength λ の of the minimum frequency of the used frequency, and 0.4 λ ら.
[0029] つまり、第 1放射素子の各部の寸法をこのように設定すれば、後述する実験結果か ら明らかなように、スリット、第 1経路および第 2経路によって、放射器全体の特性を整 えながら、低域側の周波数特性を改善することができ、広帯域に亘り周波数特性の 良い放射器を簡単且つ安価に実現できることになる。 That is, if the dimensions of the respective parts of the first radiating element are set in this way, the characteristics of the entire radiator are adjusted by the slit, the first path, and the second path, as is apparent from the experimental results described later. On the other hand, it is possible to improve the frequency characteristic on the low frequency side, and to realize a radiator having a good frequency characteristic over a wide band easily and inexpensively.
[0030] 次に、第 5局面に記載の放射器においては、放射素子の少なくとも一つに、当該放 射素子の変形を防止する変形防止手段が設けられている。このため、放射素子を薄 板状の導電材にて形成することによって、放射素子単体では強度を確保できないよう な場合であっても、補強板等からなる変形防止手段を介して放射素子の変形を防止 することカでさるようになる。 [0030] Next, in the radiator according to the fifth aspect, at least one of the radiating elements is provided with a deformation preventing means for preventing deformation of the radiating element. For this reason, by forming the radiating element from a thin plate-shaped conductive material, even if the radiating element alone cannot secure the strength, the radiating element is deformed through the deformation preventing means such as a reinforcing plate. To prevent the problem,
[0031] よって、第 5局面に記載の放射器によれば、放射器の移動時や組み立て時に放射 素子が変形するのを防止でき、また組み立て後の変形も防止できることから、組み立 て工数を削減できると共に、放射特性の安定化を図ることができる。 [0031] Therefore, according to the radiator described in the fifth aspect, it is possible to prevent the radiation element from being deformed when the radiator is moved or assembled, and also to prevent deformation after assembly. In addition, the radiation characteristics can be stabilized.
[0032] 一方、第 6局面に記載の発明は、少なくとも放射器と反射器とを備えるアンテナに 関する発明であり、放射器には、上述した第 1局面〜第 5局面の何れかに記載の放 射器が使用される。 [0032] On the other hand, the invention described in the sixth aspect is an invention related to an antenna including at least a radiator and a reflector, and the radiator is described in any one of the first to fifth aspects described above. A radiator is used.
[0033] このため、第 6局面に記載のアンテナによれば、広帯域にわたって周波数特性がよ いアンテナを実現できる。そして、特に、放射器として、第 2局面〜第 5局面の何れか
に記載の放射器を使用するようにすれば、指向特性が鋭ぐゲインの高いアンテナを 実現できる。 [0033] Therefore, according to the antenna described in the sixth aspect, it is possible to realize an antenna having good frequency characteristics over a wide band. And in particular, any of the second to fifth aspects as a radiator If the radiator described in is used, an antenna with high gain and sharp directivity can be realized.
[0034] 次に、第 7局面に記載のアンテナにおいては、反射器が、電波の偏波方向に平行 な方向が長手方向となり、電波の放射方向に直交する面に略平行となるよう配置され た矩形形状の第 1の反射器と、この第 1の反射器の両長辺側をそれぞれ電波の放射 方向に折り曲げることにより、反射面が電波の放射方向と略平行になるよう形成され た第 2の反射器と、力 構成される。 [0034] Next, in the antenna according to the seventh aspect, the reflector is arranged such that the direction parallel to the polarization direction of the radio wave is the longitudinal direction and substantially parallel to the plane orthogonal to the radio wave radiation direction. A rectangular first reflector and both long sides of the first reflector are folded in the direction of radio wave radiation, respectively, so that the reflection surface is substantially parallel to the direction of radio wave radiation. Consists of two reflectors and force.
[0035] このため、第 7局面に記載のアンテナによれば、従来のアンテナに比べ、電気的特 性を劣化させることなぐ反射器の寸法 (詳しくは電波の偏波方向に直交する方向の 寸法)を短くすること力 Sできる。 [0035] Therefore, according to the antenna described in the seventh aspect, the dimensions of the reflector that does not deteriorate the electrical characteristics compared to the conventional antenna (specifically, the dimensions in the direction perpendicular to the polarization direction of the radio wave). ) Power S can be shortened.
[0036] また、このように反射器の寸法を短くすることができるので、アンテナ全体を薄型に すること力 Sでき、取り扱いが容易で、その設置作業も簡単 '安全にできる汎用性の高 いアンテナを提供できる。 [0036] In addition, since the size of the reflector can be shortened in this way, it is possible to reduce the thickness of the entire antenna S, easy to handle, and easy to install. An antenna can be provided.
[0037] また次に、第 8局面に記載のアンテナにおいては、放射器を介して送受信する信号 を処理する信号処理回路が収容された電子機器箱体を備え、この箱体は第 1の反射 器の一部を利用して構成される。 [0037] Next, the antenna according to the eighth aspect includes an electronic device box that houses a signal processing circuit that processes a signal transmitted and received via the radiator, and the box has a first reflection. It is constructed using a part of the vessel.
[0038] このため、第 8局面に記載のアンテナによれば、アンテナと信号処理回路とを一体 化できるだけでなぐ信号処理回路を収容する箱体を別途設ける必要がないので、 アンテナの小型 ·軽量化を図ることができる。 [0038] For this reason, according to the antenna described in the eighth aspect, it is not necessary to separately provide a box for housing the signal processing circuit as long as the antenna and the signal processing circuit can be integrated. Can be achieved.
[0039] なお、電子機器箱体に収納する信号処理回路としては、第 9局面に記載のように、 放射器からの受信信号を増幅する増幅回路や、第 10局面に記載のように、放射器 力、らの受信信号と、その受信信号とは周波数が異なる信号 (例えば、他のアンテナか らの受信信号)とを混合する混合回路を挙げることができる。 [0039] Note that, as described in the ninth aspect, the signal processing circuit stored in the electronic device box includes an amplification circuit that amplifies the received signal from the radiator, and a radiation circuit as described in the tenth aspect. A mixed circuit that mixes a received signal with a frequency different from that of the received signal (for example, a received signal from another antenna) can be given.
[0040] そして、特に信号処理回路として混合回路を設けた場合、アンテナからの受信信号 を受信端末側へ引き込む引込線を一本にすることができるので、その配線作業を簡 単にすることカでさる。 [0040] In particular, when a mixing circuit is provided as a signal processing circuit, it is possible to use a single lead-in wire for drawing a received signal from the antenna to the receiving terminal side, thus simplifying the wiring work. .
[0041] また次に、本発明のアンテナは、第 10局面に記載のように、 UHF帯の信号を送受 信できるように構成すれば、 UHF帯を使って行われている地上ディジタル放送を受
信するのに好適な UHFアンテナを実現できる。 [0041] Next, as described in the tenth aspect, the antenna of the present invention can receive terrestrial digital broadcasting performed using the UHF band if configured to transmit and receive UHF band signals. A UHF antenna suitable for communication can be realized.
図面の簡単な説明 Brief Description of Drawings
[0042] [図 1]第 1実施形態のアンテナを斜め前方側から見た概略斜視図である。 FIG. 1 is a schematic perspective view of an antenna according to a first embodiment as viewed obliquely from the front side.
[図 2]放射器の構成を表す平面図である。 FIG. 2 is a plan view showing the configuration of the radiator.
[図 3A-3F]第 1放射素子の板面に穿設されたスリットの例を示す概略図である。 FIGS. 3A-3F are schematic views showing examples of slits formed in the plate surface of the first radiating element.
[図 4]スリットの形成個数と 470MHzにおける利得の変化を示すグラフである。 FIG. 4 is a graph showing the number of slits formed and the change in gain at 470 MHz.
[図 5A-5B]第 1経路と第 2経路を説明するための第 1放射素子の拡大図である。 FIG. 5A-5B is an enlarged view of the first radiating element for explaining the first path and the second path.
[図 6A-6B]アンテナ各部の配置を示す説明図である。 [FIG. 6A-6B] It is explanatory drawing which shows arrangement | positioning of each part of an antenna.
[図 7A-7B]変形防止手段の構成例を示す側面図である。 FIGS. 7A-7B are side views showing a configuration example of deformation preventing means.
[図 8]反射器の形状を変化させたときの電気的特性の変化を表すデータである。 [Fig. 8] Data showing changes in electrical characteristics when the shape of the reflector is changed.
[図 9]第 2実施形態のアンテナを後方側から見た概略斜視図である。 FIG. 9 is a schematic perspective view of the antenna according to the second embodiment viewed from the rear side.
[図 10]第 2実施形態のアンテナを前方側から見た概略斜視図である。 FIG. 10 is a schematic perspective view of the antenna according to the second embodiment viewed from the front side.
[図 11]第 2実施形態のアンテナを化粧ケースに収納した状態を表す概略断面図であ FIG. 11 is a schematic cross-sectional view showing a state where the antenna of the second embodiment is housed in a decorative case.
[図 12A-12D]実施形態のアンテナの具体的な使用例であり、図 12Aはアンテナマス ト、図 12Bは室内、図 12Cは軒下、図 12Dは壁面に取り付けたときの概略説明図で ある。 [FIGS. 12A-12D] FIG. 12A is a specific use example of the antenna of the embodiment, FIG. 12A is an antenna mast, FIG. 12B is an indoor, FIG. 12C is an eaves, and FIG. .
符号の説明 Explanation of symbols
[0043] 1…アンテナ、 3…導波器、 4b, 42b, 41b…リブ、 4c, 42c, 41c…折曲部、 5…ス リット、 5a…内側スリット、 5b…中間スリット、 5c…外側スリット、 6···連結細幅状導体、 6a---内側連結細幅状導体、 6b…中間連結細幅状導体、 6c · ··外側連結細幅状導体 、 7···第 1経路、 8···第 2経路、 10···放射器、 11···第 1放射器、 11a, lib…放射素 子、 Flla, Fllb…前方側細幅状導体、 Rlla, Rllb…後方側細幅状導体、 12··· 第 2放射器、 12a, 12b…放射素子、 14···折曲部、 15a, 15b…位相調整手段、 16a , 16b…給電点、 17···平衡線路、 18···平衡不平衡変換回路、 19···不平衡線路、 2 0···反射器、 21···第 1反射器、 22a, 22b…第 2反射器、 23···揷通孔、 30···信号処 理回路、 31···シールドケース、 32···枠体、 33···蓋体、 35···入力端子、 37…出力端 子、 39···端子咅 ^ 40···ィ匕 ΐゲース、 41, 42, 43, 44···ボス、 45···ィ匕 ΐゲース本体
、 46· · ·ィ匕 ΐケースカノく一、 49· · ·スタンド取付手段、 50· · ·アンテナマスト、 51 , 52, 5 3, 54, 55…ビス、 60…マスト取付手段、 61…室内スタンド、 Aa, Ab…第 1放射素 子の接続点、 Ca, Cb…第 2放射素子の接続点、 Ba, Bb…第 1放射素子の対称点、 W6a- - ·内側連結細幅状導体の線幅、 W6b- - ·中間連結細幅状導体の線幅、 W6c- - · • · ·外側連結細幅状導体の線幅。 [0043] 1 ... Antenna, 3 ... Director, 4b, 42b, 41b ... Rib, 4c, 42c, 41c ... Bent part, 5 ... Slit, 5a ... Inner slit, 5b ... Intermediate slit, 5c ... Outer slit 6 ... Linked narrow conductor, 6a --- Inner linked narrow conductor, 6b ... Intermediate linked narrow conductor, 6c ... Outer linked narrow conductor, 7 ... First path, 8 ··· 2nd path, 10 ······································································ 1st radiator, 11a, lib… radiation element, Flla, Fllb… narrow conductor on the front side, Rlla, Rllb… narrow on the back side Width conductor, 12 ... 2nd radiator, 12a, 12b ... Radiating element, 14 ... Bending part, 15a, 15b ... Phase adjusting means, 16a, 16b ... Feed point, 17 ... Balance line, 18 ··· balanced / unbalanced conversion circuit, 19 ··· unbalanced line, 2 ··· reflector, 21 ··· first reflector, 22a, 22b ··· second reflector, 23 ······· Hole, 30 ... Signal processing circuit, 31 ... Shield case, 32 ... Frame, 33 ... Cover, 35 ... Input terminal, 37 ... Output Pin, 39 ... terminal 咅 ^ 40 ... I spoon ΐ Gesu, 41, 42, 43, 44 ... boss, 45 ... spoon ΐ Gesu body , 46 ··· 匕 ΐCase, 49 ··· Stand mounting means, 50 ··· Antenna mast, 51, 52, 5 3, 54, 55 ... Screw, 60 ... Mast mounting means, 61 ... Indoor stand Aa, Ab ... first radiating element connection point, Ca, Cb ... second radiating element connection point, Ba, Bb ... first radiating element symmetry point, W6a--· Inside connecting narrow conductor line Width, W6b--· Line width of middle connecting narrow conductor, W6c--· · · Line width of outer connecting narrow conductor.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0044] 以下に本発明の実施形態を図面と共に説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[第 1実施形態] [First embodiment]
図 1は、本発明が適用された第 1実施形態のアンテナを電波の放射方向斜め前方 側から見た概略斜視図であり、図 2はそのアンテナに用いられる放射器の平面図で ある。 FIG. 1 is a schematic perspective view of the antenna according to the first embodiment to which the present invention is applied as viewed obliquely from the front side in the radio wave radiation direction, and FIG. 2 is a plan view of a radiator used for the antenna.
[0045] 図 1に示すように、本実施形態のアンテナ 1は、導波器 3と、放射器 10と、反射器 20 とから構成されている。 As shown in FIG. 1, the antenna 1 of the present embodiment includes a waveguide 3, a radiator 10, and a reflector 20.
[0046] 図 1、図 2に示すように放射器 10は、第 1放射器 11と第 2放射器 12とを備え、電波 の放射方向前方側(図 1に示す矢印 F方向、以下に、方向を示す場合は特に明示し ない限り矢印 Fを基準とする。)には第 2放射器 12が配置され、後方側には、第 2放 射器 12とは所定の間隔を空けて第 1放射器 11が配置されている。 As shown in FIGS. 1 and 2, the radiator 10 includes a first radiator 11 and a second radiator 12, and the front side in the direction of radio wave radiation (in the direction of arrow F shown in FIG. When the direction is indicated, the second radiator 12 is arranged in the arrow F unless otherwise specified.) The first radiator 12 is arranged behind the second radiator 12 at a predetermined interval on the rear side. Radiator 11 is arranged.
[0047] 第 1放射器 11は、外径形状に比べて極めて薄い板状の導電材を矩形に形成した 一対の第 1放射素子 l la、 l ibを、その長手方向の軸線を一致させて、その軸線と直 交する中心軸を挟んで軸対称となるように間隔を空けて配置することにより構成され ている。 [0047] The first radiator 11 includes a pair of first radiating elements l la and l ib in which a plate-shaped conductive material that is extremely thin compared to the outer diameter is formed in a rectangular shape, with the longitudinal axes thereof aligned. In addition, it is configured by arranging them so as to be axisymmetric with respect to a central axis that is perpendicular to the axis.
[0048] また、第 2放射器 12は外径形状に比べて極めて薄い板状の導電材を矩形に形成 した一対の第 2放射素子 12a、 12bを、その長手方向の軸線を一致させて、その軸線 と直交する中心軸を挟んで軸対称となるように間隔を空けて配置することにより構成 されている。 [0048] Further, the second radiator 12 has a pair of second radiating elements 12a and 12b in which a plate-shaped conductive material that is extremely thin compared to the outer diameter shape is formed in a rectangular shape, with the longitudinal axes thereof aligned, It is configured by arranging them so as to be axisymmetric with respect to a central axis orthogonal to the axis.
[0049] そして、第 1放射器 11と第 2放射器 12とは、互いに中心軸が一致し、第 1放射素子 11a, l ibと、第 2放射素子 12a、 12bとが互いに平行となるように配置されている。な お、各放射器 11、 12において、中心軸は電波の放射方向に沿った軸となるため、各
放射器 11、 12の中心軸を一致させることにより、各放射器 11、 12の電波の放射方 向も一致することになる。 [0049] Then, the first radiator 11 and the second radiator 12 have the same center axis, and the first radiating elements 11a, l ib and the second radiating elements 12a, 12b are parallel to each other. Are arranged. In each radiator 11, 12, the central axis is the axis along the direction of radio wave radiation. By making the central axes of radiators 11 and 12 coincide, the radiation directions of the radio waves of each radiator 11 and 12 also coincide.
[0050] そして、第 1放射器 11の第 1放射素子 l la、 l ibの四隅の内、中心軸に最も近い内 側で、且つ、第 2の放射器に近い前方側の隅部に形成された接続点 Aa、 Abと、第 2 放射器 12の第 2放射素子 12a、 12bにおいて中心軸に最も近い元部(内側)に形成 された接続点 Ca、 Cbとの間であって、第 1放射器 11と第 2放射器 12の配列方向に 相対向する接続点 Aaと Caおよび接続点 Abと Cbとの間には、それぞれ、位相調整 用の位相調整手段 15a、 15bが設けられている。 [0050] Of the four corners of the first radiator 11 of the first radiator 11, the inner corner closest to the central axis and the corner on the front side near the second radiator are formed. Between the connected connection points Aa and Ab and the connection points Ca and Cb formed at the base portion (inner side) closest to the central axis in the second radiating elements 12a and 12b of the second radiator 12. Phase adjustment means 15a and 15b for phase adjustment are provided between the connection points Aa and Ca and the connection points Ab and Cb opposite to each other in the arrangement direction of the first radiator 11 and the second radiator 12, respectively. Yes.
[0051] 次に、本実施形態において、第 1放射器 11を構成する第 1放射素子 l la、 l ibに は、放射器 l la、 l ibの形成と同時に金型等で打ち抜き形成されるスリット 5が形成さ れている。以下、このスリット 5について、図 2〜図 4を用いて詳しく説明する。 Next, in the present embodiment, the first radiating elements l la and l ib constituting the first radiator 11 are formed by punching with a mold or the like simultaneously with the formation of the radiators l la and l ib. A slit 5 is formed. Hereinafter, the slit 5 will be described in detail with reference to FIGS.
[0052] なお、図 3A〜図 3Fは、本実施形態の第 1放射器 11を構成する第 1放射素子 1 la 、 l ibの板面に穿設されたスリットの例を示す概略図であり、図 3Aは第 1放射素子 11 aの長手方向に沿ってスリットを 2つ配列した場合、図 3Bは同じくスリットを 4つ配列し た場合、図 3Cは同じくスリットを 6つ配列した場合、を表し、図 3D、図 3E、図 3Fは、 スリットの大きさ或いは配置を変更した、スリットが異なる実施例を示す。また、図 4は 放射素子のスリットの数とアンテナ利得の関係を示すグラフ、つまり、スリットの個数と 470MHzにおけるアンテナ 1の利得の変化を示すグラフである。 FIGS. 3A to 3F are schematic views showing examples of slits formed in the plate surfaces of the first radiating elements 1 la and ib constituting the first radiator 11 of the present embodiment. 3A shows a case where two slits are arranged along the longitudinal direction of the first radiating element 11a, FIG. 3B shows a case where four slits are arranged, and FIG. 3C shows a case where six slits are arranged. 3D, FIG. 3E, and FIG. 3F show examples in which the size or arrangement of the slits is changed and the slits are different. FIG. 4 is a graph showing the relationship between the number of slits of the radiating element and the antenna gain, that is, a graph showing the change in the number of slits and the gain of the antenna 1 at 470 MHz.
[0053] また、以下の説明では、スリット 5の説明を簡単にするために、特に明示しない限り 第 1放射器 11を構成する一方の第 1放射素子 11aについて説明し、第 1放射素子 1 lbについては、その中心軸を中心として軸対称となるようにスリットが形成されること から、詳しい説明は省略する。 [0053] Further, in the following description, to simplify the description of the slit 5, unless otherwise specified, one first radiating element 11a constituting the first radiator 11 will be described, and the first radiating element 1 lb Since the slit is formed so as to be axially symmetric with respect to the central axis, detailed description thereof is omitted.
[0054] 図 2に示すように、本実施形態では第 1放射器 11を構成する後方側の第 1放射素 子 11aには、夫々、金型等によって打ち抜き形成されたスリット 5 (図では、内側スリツ ト 5a、中間スリット 5b、外側スリット 5cに区分している。)が、第 1放射素子 11aの長手 方向に 6つ並ぶように備えられている。 [0054] As shown in FIG. 2, in the present embodiment, the first radiating element 11a on the rear side constituting the first radiator 11 is respectively formed with slits 5 (in the figure, punched and formed by a mold or the like). The inner slit 5a, the intermediate slit 5b, and the outer slit 5c are divided into six in the longitudinal direction of the first radiating element 11a.
[0055] ここで、図 3A〜図 3Fと図 4を用いて、この放射器 10を用いたアンテナ 1の使用周 波数 (本実施形態では、 UHF帯を使ったテレビ信号)の最小周波数 (470MHz)に
おける利得に着目して、所定の大きさの外形を有する第 1放射素子 11aに対して、ス リット 5が無い場合とスリット 6を形成した場合の利得変化を実験的に確認し、第 1放射 素子 1 laに形成したスリット 5の効果につ!/、て説明する。 [0055] Here, using FIGS. 3A to 3F and FIG. 4, the minimum frequency (470 MHz) of the frequency used by the antenna 1 using the radiator 10 (in this embodiment, the television signal using the UHF band) is used. ) Paying attention to the gain in the first radiating element 11a with a predetermined external shape, we experimentally confirmed the gain change when slit 5 was not formed and slit 6 was formed, and the first radiating element 11a was The effect of the slit 5 formed in the element 1 la will be explained!
[0056] 図 3A〜図 3Cには、第 1放射素子 11aに対して、スリット 5を第 1放射素子 1 laの接 続点 Aa側(内側)から先端部(外側)に向かって順に増やして!/、く例を示しており、図 3Aでは 2つのスリット 5が、図 3Bでは 4つのスリットが、図 3Cでは 6つのスリット 5力 そ れぞれ形成された例が示されて!/、る。 In FIG. 3A to FIG. 3C, the slits 5 are sequentially increased from the connection point Aa side (inner side) to the tip end (outer side) of the first radiating element 1 la with respect to the first radiating element 11a. In Fig. 3A, two slits 5 are formed, in Fig. 3B four slits are shown, and in Fig. 3C six slits 5 forces are formed! /, The
[0057] そして、このようなスリット 5の配設条件において、スリット 5の形成数の違いに対する 利得の変化の様子を調べた実験結果が、図 4に実線で示されるグラフとなる。 [0057] Then, in such an arrangement condition of the slits 5, the experimental result of examining the change in gain with respect to the difference in the number of slits 5 formed becomes a graph shown by a solid line in FIG.
[0058] このグラフによれば、第 1放射素子 11aにスリット 5が無い (スリット 5が 0)場合のアン テナ 1の利得は略 4dB、第 1放射素子 l la、 l ibにスリット 5が 2つ形成された場合の アンテナ 1の利得は略 4. 2dB、第 1放射素子 l la、 1 lbにスリット 5力 つ、 6つ、そし て 8つ形成された場合の夫々のアンテナ利得は略 4. 4dBとなり、第 1放射器 l la、 1 lbの所定位置に所定数のスリット 5を形成することによって、アンテナ利得が略 0. 4d B改善されることが実験的に確認できた。 [0058] According to this graph, when the first radiating element 11a has no slit 5 (slit 5 is 0), the gain of antenna 1 is approximately 4 dB, and the first radiating element l la and l ib have slit 5 The gain of antenna 1 is approximately 4.2 dB, and the first radiating element l la, 1 lb has 5 slits, 6 and 8 antennas. It was experimentally confirmed that the antenna gain was improved by about 0.4 dB by forming a predetermined number of slits 5 at predetermined positions of the first radiator l la and 1 lb.
[0059] そして、この実験データからわかるように、スリット 5による利得の改善が期待できる のは、スリット 5を 4つ以上備えさせておればよぐ図 4に示されるようにスリット 5を 8つ 備えても、そして、図 3Dに示されるように複数のスリット 5を連続的に連結した 1つの 長いスリット 5を備えても、その効果は同じであることがわかる。 [0059] As can be seen from this experimental data, the improvement in gain due to the slit 5 can be expected by providing at least four slits 5 as shown in Fig. 4. It can be seen that the effect is the same even if it is provided and if it is provided with one long slit 5 in which a plurality of slits 5 are continuously connected as shown in FIG. 3D.
[0060] また、図 3Eに示されるように、スリット 5の形成位置を、図 3A、図 3B、図 3Cに示す 例とは逆に、第 1放射素子 11aの長手方向の外側から内側に向力、つて等間隔に順に 増やすように配設したときの利得の変化を調べてみると、図 4のグラフの一点鎖線で 示されるような変化を示し、また、図 3Fに示されるように、スリット 5の形成位置を、第 1 放射素子 l la、 l ibの中心部から外側、内側方向に等間隔に順に増やして配設した ときの利得の変化を調べてみると、図 4に破線で示すグラフのように変化する。 In addition, as shown in FIG. 3E, the formation position of the slit 5 is directed from the outside in the longitudinal direction of the first radiating element 11a to the inside, contrary to the examples shown in FIGS. 3A, 3B, and 3C. Examining the change in gain when the force is arranged so as to increase in order at equal intervals, it shows a change as shown by the alternate long and short dash line in the graph of FIG. 4, and as shown in FIG. 3F, Examining the change in gain when the positions of the slits 5 are increased from the center of the first radiating elements l la and l ib to the outside and inside in order at equal intervals, the change in gain is shown by a broken line in FIG. It changes like the graph shown.
[0061] すなわち、これらの実験データによれば、第 1放射素子 l la、 l ibに、所定の大きさ で所定数のスリット 5を所定の位置に配設すれば、この第 1放射素子 l la、 l ibを用 いて構成した放射器 10、延いては、アンテナ 1は、その使用周波数帯の最小周波数
における利得を改善できることがわかる。 That is, according to these experimental data, if a predetermined number of slits 5 having a predetermined size are arranged in a predetermined position in the first radiating elements l la and l ib, the first radiating element l The radiator 10 constructed using la and l ib, and hence the antenna 1, is the minimum frequency of the operating frequency band. It can be seen that the gain at can be improved.
[0062] なお、図 4には示されていないが、スリット 5の形成によって使用周波数の広域側の 周波数特性が影響を受けることは無レ、。 Although not shown in FIG. 4, the frequency characteristics on the wide frequency side of the operating frequency are not affected by the formation of the slit 5.
[0063] ここで、上記実験に用いた第 1放射素子 11aの大きさ、スリット 5の配設数、その配 設位置等について図 3A〜図 3Fおよび図 5A、図 5Bを用いて説明する。 Here, the size of the first radiating element 11a used in the experiment, the number of slits 5, the position of the slits, and the like will be described with reference to FIGS. 3A to 3F, FIGS. 5A, and 5B.
[0064] 図 3Aにおいては、放射素子 11aの接続端子 Aa側から内側スリット 5a、外側スリット In FIG. 3A, the inner slit 5a and the outer slit from the connection terminal Aa side of the radiating element 11a.
5cが形成されている。このように第 1放射素子 11aにスリット 5を形成することによって 、内側スリット 5a、外側スリット 5cの前方側には前方細幅状導体 Fl laが、後方側に は後方細幅状導体 Rl laが形成される。 5c is formed. By forming the slit 5 in the first radiating element 11a in this way, the front narrow conductor Fl la is on the front side of the inner slit 5a and the outer slit 5c, and the rear narrow conductor Rl la is on the rear side. It is formed.
[0065] そして、一番内側にある内側スリット 5aの図における下側側辺には、前方側細幅状 導体 Fl laの内側端部と後方側細幅状導体 Rl laの内側端部を接続するための線 幅 W6aを有する内側連結細幅状導体 6aが形成され、隣り合う内側スリット 5aと外側 スリット 5cとの間には、前方側細幅状導体 Fl laと後方側細幅状導体 Rl laの中間部 を接続するための線幅 W6bを有する中間連結細幅状導体 6bが形成され、外側スリ ット 5cの図における上側側辺と第 1放射素子 11aの先端部との間には、前方側細幅 状導体 Fl laの先端部側と後方側細幅状導体 Rl laの先端部側を接続する線幅 W6 cを有する外側連結細幅状導体 6c— 1が形成される。 [0065] Then, on the lower side in the figure of the innermost inner slit 5a, the inner end of the front narrow conductor Fl la and the inner end of the rear narrow conductor Rla are connected. An inner connecting narrow conductor 6a having a line width W6a is formed, and between the adjacent inner slit 5a and outer slit 5c, the front narrow conductor Fl la and the rear narrow conductor Rl An intermediate connection narrow conductor 6b having a line width W6b for connecting the intermediate portion of la is formed, and between the upper side in the drawing of the outer slit 5c and the tip of the first radiating element 11a. Then, the outer connected narrow conductor 6c-1 having a line width W6c connecting the front end side of the front narrow conductor Flla and the front end side of the rear narrow conductor Rlla is formed.
[0066] 同様に、図 3Bにおいては、内側スリット 5a、 2つの中間スリット 5b、および外側スリツ ト 5cにより、内側連結細幅状導体 6aと 3つの中間連結細幅状導体 6bと外側連結細 幅状導体 6c— 2とが形成され、図 3Cにおいては、内側スリット 5a、 4つの中間スリット 5b、および外側スリット 5cにより、内側連結細幅状導体 6aと 5つの中間連結細幅状 導体 6bと外側連結細幅状導体 6cとが形成される。 [0066] Similarly, in FIG. 3B, the inner slit 5a, the two intermediate slits 5b, and the outer slit 5c are connected to the inner link narrow conductor 6a, the three intermediate link narrow conductors 6b, and the outer link narrow. In Fig. 3C, the inner slit 5a, the four intermediate slits 5b, and the outer slit 5c are used to form the inner connecting narrow conductor 6a and the five intermediate connecting narrow conductors 6b. A connected narrow conductor 6c is formed.
[0067] また、図 3Dにおいては、内側連結細幅状導体 6aと外側連結細幅状導体 6cに挟ま れるようにスリット 5が 1つ備えられている。 In FIG. 3D, one slit 5 is provided so as to be sandwiched between the inner connecting narrow conductor 6a and the outer connecting narrow conductor 6c.
[0068] なお、図 3A、図 3B、図 3Cに示すスリットの例では、内側連結細幅状導体 6aの線 幅 W6aと中間連結細幅状導体 6bの線幅 W6bは略同一の線幅となるように形成され ており、この結果として、スリット 5の形成数によって、前記外側連結細幅状導体の線 幅 W6cは夫々、 6c— 1、 6c— 2、 6cのように夫々異なる線幅を有するものとなってい
[0069] また、図 3Eの例では、外側連結細幅状導体 6cの線幅 W6cと中間連結細幅状導体 6bの線幅 W6bは略同一の線幅となるように形成されており、この結果、スリット 5の形 成数によって、前記内側連結細幅状導体 6a— 2の線幅 W6aは外側連結細幅状導 体 6cの線幅 W6cと中間連結細幅状導体 6bの線幅 W6bに比べて広くなり、図 3Fの 例では、中間連結細幅状導体 6bの線幅 W6bに比べて外側連結細幅状導体 6c— 3 の線幅 W6cと内側連結細幅状導体 6a— 3の線幅 W6aは幅広に形成されることにな [0068] In the example of the slits shown in Figs. 3A, 3B, and 3C, the line width W6a of the inner connecting narrow conductor 6a and the line width W6b of the intermediate connecting narrow conductor 6b are substantially the same. As a result, depending on the number of slits 5 formed, the line width W6c of the outer connecting narrow conductor has different line widths such as 6c-1, 6c-2, and 6c, respectively. Have Further, in the example of FIG. 3E, the line width W6c of the outer connecting narrow conductor 6c and the line width W6b of the intermediate connecting narrow conductor 6b are formed to have substantially the same line width. As a result, depending on the number of slits 5, the line width W6a of the inner connecting narrow conductor 6a-2 is changed to the line width W6c of the outer connecting narrow conductor 6c and the line width W6b of the intermediate connecting narrow conductor 6b. In the example of FIG. 3F, the line width W6c of the outer connection narrow conductor 6c-3 and the line of the inner connection narrow conductor 6a-3 are larger than the line width W6b of the intermediate connection narrow conductor 6b. Width W6a should be formed wide.
[0070] 更に、図 5A、図 5Bに示されるように、第 1放射素子 11aにスリット 5が形成されること によって、第 1放射素子 11aには少なくとも 2つの信号経路が形成される。 Furthermore, as shown in FIGS. 5A and 5B, the slits 5 are formed in the first radiating element 11a, whereby at least two signal paths are formed in the first radiating element 11a.
[0071] すなわち、その経路は、第 1放射素子 11aの四隅の内、第 1放射素子 11aの長手方 向の軸線に沿って接続点 Aaとは反対側に位置する隅部の特定点 Baと、接続点 Aa とを結ぶ経路であって、前方側細幅状導体 Fl laに沿った直線で形成される第 1経 路 7と、接続点 Aaから内側の連結細幅状導体 6a、後方側細幅状導体 Rl la、外側の 連結細幅状導体 6cに沿って形成される第 2経路 8である。 [0071] That is, the path is defined by the specific point Ba at the corner located on the opposite side of the connection point Aa along the longitudinal axis of the first radiating element 11a among the four corners of the first radiating element 11a. , The first path 7 formed by a straight line along the front narrow conductor Fl la, the connecting narrow conductor 6a on the inner side from the connection point Aa, the rear side A narrow conductor Rl la is a second path 8 formed along the outer connecting narrow conductor 6c.
[0072] そして、上記実験データによれば、上述のように少なくとも 2つの経路を備えるように 略矩形に形成された同じ大きさの放射素子であっても、図 3Aの外側連結細幅状導 体 6c— 1のように、線幅 W6cが所定を超えて広くなるとスリット 5の効果は得られず、 図 3B、図 3C、図 3Dの例のように、外側の連結細幅状導体 6c— 2、 6cの線幅 W6cが 所定寸法と同じかそれより狭まければスリット 5の効果が得られることが判った。 [0072] Then, according to the above experimental data, even with the radiation element of the same size formed in a substantially rectangular shape so as to have at least two paths as described above, the outer connection narrow-width guide in FIG. 3A is used. When the line width W6c is larger than the predetermined width as in the case of the body 6c—1, the effect of the slit 5 cannot be obtained, and as shown in FIGS. 3B, 3C, and 3D, the outer connecting narrow conductor 6c— It was found that the effect of slit 5 can be obtained if the line width W6c of 2 and 6c is equal to or smaller than the predetermined dimension.
[0073] また、上記実験データによれば、すでに述べたように、スリット 5が所定の大きさで所 定の位置に配設されているならば、スリット 5を第 1放射素子 11aの内側から配設して も、第 1放射素子 11aの先端部側から内側に向かって配設していても良いし、第 1放 射素子 11 aの中心部から図における上下方向に配設していてもその効果は認められ [0073] Further, according to the above experimental data, as described above, if the slit 5 is disposed at a predetermined position with a predetermined size, the slit 5 is formed from the inside of the first radiating element 11a. Even if they are arranged, they may be arranged inward from the front end side of the first radiating element 11a, or arranged in the vertical direction in the figure from the center of the first radiating element 11a. The effect is recognized
[0074] このため、内側の連結細幅状導体 6a、中間部に備えさせる連結細幅状導体 6b、外 側の連結細幅状導体 6cの線幅 W6a、 W6b、 W6cの何れも力 所定の寸法より狭く なるように形成されておれば、スリット 5が 1つであっても複数であっても良いことが判
[0075] つまり、スリット 5の形成によって、適宜な線路長の経路が形成されなければならな いのである。 [0074] For this reason, all of the line widths W6a, W6b, and W6c of the inner connecting narrow conductor 6a, the connecting narrow conductor 6b provided in the intermediate portion, and the outer connecting narrow conductor 6c are given force. If it is formed so as to be narrower than the dimension, it can be understood that the slit 5 may be one or plural. In other words, the formation of the slit 5 has to form a route with an appropriate line length.
[0076] なお、本実施形態では、スリット 5が四角形をした例を示した力、上述のように連結 細幅状導体の幅が所定寸法以下になるのであれば、特にこの形状に限定されるもの ではなぐその他の多角形状でも良いし、円状、楕円状等でも良い。 [0076] In the present embodiment, the force shown in the example in which the slit 5 has a quadrangular shape, and if the width of the connecting narrow conductor is not more than a predetermined dimension as described above, the shape is particularly limited to this shape. Other polygonal shapes may be used instead of things, and a circular shape, an elliptical shape, or the like may be used.
[0077] そして、上記実験結果から、第 1放射素子 11aの各部の寸法は、次のようにすれば よいことが判った。 [0077] From the above experimental results, it was found that the dimensions of each part of the first radiating element 11a should be as follows.
[0078] すなわち、内側、中間、外側の各連結細幅状導体 6の線幅 W6a、 W6b、 W6cは、 使用周波数の最小周波数の波長 λ 1の略 0. 1 λ 1より細ぐ前記第 1放射素子 11a の前方側細幅状導体 Fl laと後方側細幅状導体 Rl laとを連結保持できる寸法にす [0078] That is, the line widths W6a, W6b, W6c of the inner, intermediate, and outer connected narrow conductors 6 are the first width narrower than approximately 0.1 λ1 of the wavelength λ1 of the minimum frequency of the operating frequency. The size of the radiating element 11a is such that the front narrow conductor Fl la and the rear narrow conductor Rl la can be held together.
[0079] また、接続点 Aaと特定点 Baとを結ぶ第 1経路 7の寸法は、使用周波数の中心周波 数の波長え 2の 0. 2ぇ2カ、ら0. 4 λ 2に設定し、同じく第 2経路 8の寸法は、使用周波 数の最小周波数の波長 λ ΐの 0. 2 λ 1力、ら 0. 4 λ 1に設定する。 [0079] In addition, the dimension of the first path 7 connecting the connection point Aa and the specific point Ba is set to 0.2-2 of the center frequency 2 of the use frequency, and 0.4λ2. Similarly, the size of the second path 8 is set to 0.2 λ 1 force of the wavelength λ の of the minimum frequency of use frequency, and so forth to 0.4 λ 1.
[0080] また、前方側細幅状導体 Fl laと後方側細幅状導体 Rl laの線幅は、使用周波数 の最小周波数の波長 λ 1の略 0. 016 λ 1より細ぐ連結細幅状導体 6を連結保持で きる寸法にする。 [0080] Further, the line width of the front narrow conductor Fl la and the rear narrow conductor Rl la is a connected narrow width narrower than approximately 0.016 λ 1 of the wavelength λ 1 of the minimum frequency of the use frequency. The conductor 6 is dimensioned so that it can be held together.
[0081] なお、第 1放射器 11と第 2放射器 12の相互の間隔は、使用周波数における中心周 波数に対応する波長え 2の略 0. 05力、ら 0. 2倍であるように構成されていればよい。 [0081] It should be noted that the distance between the first radiator 11 and the second radiator 12 is approximately 0.05 force of the wavelength 2 corresponding to the center frequency at the used frequency, and 0.2 times as much. It only has to be configured.
[0082] ここで、上記実験に使用した放射器 10の具体的な寸法を図 6Α、図 6Βに示す。な お、図 6Α、図 6Βは本実施形態のアンテナ各部の配置を示す説明図である。 Here, specific dimensions of the radiator 10 used in the experiment are shown in FIGS. 6A and 6B are explanatory diagrams showing the arrangement of each part of the antenna according to this embodiment.
[0083] 本実施形態では、第 1放射器 11は、長さ Wl l = 150mm、幅 WWl = 25mmの矩 形の板に、前後方向の寸法が 15mmで、左右方向の寸法が 10mmの略 4角形のスリ ット 5が 6つ形成されており、それによつて形成される連結細幅状導体 6の最も幅広の 線幅は 15mmであり、前方側細幅状導体 Fl 1 aと後方側細幅状導体 Rl 1 aの線幅は 5mmであるような第 1放射素子 11aと、この第 1放射素子 11aと同じ構成で形成され た第 1放射素子 l ibを、両端の長さ Wl = 315mmとなるように、第 1放射素子の長手
方向の軸線を一致させて、その軸線に直交する中心軸に対し軸対称となるように離 隔して配置されている。 [0083] In the present embodiment, the first radiator 11 is a rectangular plate having a length Wl l = 150mm and a width WWl = 25mm. The front-rear direction dimension is 15mm, and the left-right direction dimension is 10mm. Six rectangular slits 5 are formed, and the widest line width of the connecting narrow conductor 6 formed thereby is 15 mm. The front narrow conductor Fl 1 a and the rear narrow conductor 5 are formed. The first radiating element 11a whose line width of the width-shaped conductor Rl 1 a is 5 mm, and the first radiating element l ib formed with the same configuration as the first radiating element 11a, have a length Wl = 315 mm at both ends. The length of the first radiating element so that The direction axis lines are aligned, and are arranged so as to be axially symmetric with respect to a central axis perpendicular to the axis line.
[0084] また、第 2放射器 12は、長さ W22 = 130mm、幅 WW2 = 25mmの第 2放射素子 1 2a、 12bを、両端の長さ W2 = 275mmとなるように、第 2放射素子 12a、 12bの長手 方向の軸線を一致させて、その軸線に直交する中心軸に対し軸対称となるように離 隔して配置されている。 [0084] Also, the second radiator 12 includes second radiating elements 12a and 12b having a length W22 = 130mm and a width WW2 = 25mm, and the second radiating elements 12a and 12b so that the length W2 = 275mm at both ends. 12b are arranged so as to be axially symmetric with respect to the central axis orthogonal to the axis line, with the longitudinal axis lines of 12b aligned.
[0085] そして、第 1放射器 11と第 2放射器 12の間隔 L2 = 60mmである。 [0085] The distance between the first radiator 11 and the second radiator 12 is L2 = 60 mm.
[0086] このように構成された放射器 10は、第 1放射器 11、第 2放射器 12の配列方向に最 大の指向特性を有するようになり、また、使用周波数の低域側の周波数において利 得の優れた特性を有するようになる。 [0086] The radiator 10 configured as described above has the maximum directivity in the arrangement direction of the first radiator 11 and the second radiator 12, and the lower frequency side of the operating frequency. It has excellent profitability.
[0087] なお、本実施形態において、第 1放射器 11および第 2放射器 12を構成する各放射 素子は、板圧 t = 0. 2mmの金属板を所定長に打ち抜き加工したものである力 S、導電 材をプレス加工したものでもよレ、し、薄レ、導電材を樹脂で一体成形した物でもよ!/、な ど、導電材料であれば本実施形態に限定されるものではなレ、。 [0087] In the present embodiment, each of the radiating elements constituting the first radiator 11 and the second radiator 12 is a force obtained by punching a metal plate having a plate pressure t = 0.2 mm into a predetermined length. The conductive material may be pressed, or it may be thin, or the conductive material may be integrally molded with resin! /, Etc. As long as it is a conductive material, it is not limited to this embodiment. Les.
[0088] 以上、本実施形態の放射器 10によれば、後方側の放射器 11から前方側の放射器 12の配列方向に最大の指向特性を有するものとなり、鋭い指向特性を有し、放送局 からの送信電波(UHF帯のテレビ放送電波)を高利得で受信可能なアンテナ 1を提 供できる。 As described above, according to the radiator 10 of the present embodiment, it has the maximum directivity in the arrangement direction from the radiator 11 on the rear side to the radiator 12 on the front side, has sharp directivity, and broadcasts. It can provide an antenna 1 that can receive radio waves transmitted from the station (UHF TV broadcast radio waves) with high gain.
[0089] また、後方側の放射器 11を構成する第 1放射素子 l la、 l ibに、 1もしくは複数のス リット 5を金型等で打ち抜き形成するだけで、低域側の周波数特性を改善して、アン テナ 1の広帯域化を実現できることから、広帯域なアンテナ 1を簡単且つ低コストで実 現できる。 [0089] Further, by simply punching and forming one or a plurality of slits 5 in the first radiating elements lla and ib constituting the radiator 11 on the rear side, a frequency characteristic on the low frequency side can be obtained. Since the antenna 1 can be widened with improvement, the broadband antenna 1 can be realized easily and at low cost.
[0090] また、スリット 5の形成によって第 1放射素子 l la、 1 lbの一部を欠損させることにな るため、放射器 10、延いてはアンテナ 1自体の軽量化を図ることもできる。 [0090] Further, since the slits 5 are formed, a part of the first radiating elements lla and 1 lb is lost, so that the radiator 10 and thus the antenna 1 itself can be reduced in weight.
[0091] そして、この放射器 10を使ったアンテナ 1は、高性能な指向特性を有するば力、りで なぐ送受信可能な信号の広帯域化を図ることができるので、 UHF帯のテレビ放送 信号を受信する UHFアンテナとして構成すれば、地上ディジタル放送を受信するの に好適なアンテナを提供できる。
[0092] ところで、放射器 10を構成する放射素子 l la、 l ib, 12a, 12bは、外径寸法に比 ベて極めて肉厚の薄!/、板状の金属材から構成されてレ、るので、組み立て等にお!/、 て変形することが考えられる。 [0091] Since the antenna 1 using the radiator 10 has a high-performance directional characteristic, it is possible to increase the bandwidth of signals that can be transmitted and received, so that a UHF band television broadcast signal can be transmitted. If configured as a receiving UHF antenna, an antenna suitable for receiving digital terrestrial broadcasting can be provided. [0092] By the way, the radiating elements l la, l ib, 12a, and 12b constituting the radiator 10 are made of a plate-like metal material that is extremely thin compared to the outer diameter. Therefore, it is conceivable that it may be deformed!
[0093] この場合は、放射素子 l la、 l ib, 12a, 12bの変形防止手段として、図 7Aに示す ように、放射素子 l la、 l ib, 12a, 12b (図には l lb、 12bのみ記載)の長手方向の 軸線に沿って、リブ 42b、 41bを形成したり、図 7Bに示すように、各放射素子 l l a、 1 lb、 12a, 12b (図には l lb、 12bのみ記載)を長手方向の軸線に沿ってわずかに折 り曲げた折曲部 42c、 41cを形成するようにすれば、放射素子 l la、 l ib, 12a, 12b の移動や組み立てにおいて、放射素子 l la、 l ib, 12a、 12bが湾曲するなどによつ て変形することもないし、組み立て後の変形も防止できることから、組み立て工数の 削減、特性の安定化などが達成できる。 [0093] In this case, as a means for preventing deformation of the radiating elements l la, l ib, 12a, 12b, as shown in FIG. 7A, the radiating elements l la, l ib, 12a, 12b (l lb, 12b in the figure) Ribs 42b and 41b are formed along the longitudinal axis of each radiating element lla, 1 lb, 12a, 12b as shown in FIG. 7B (only l lb, 12b is shown) If the bent portions 42c and 41c are slightly bent along the longitudinal axis, the radiating elements l la, l ib, 12a, 12b can be moved and assembled in the radiating elements l la, l ib, 12a, 12b will not be deformed by bending, etc., and deformation after assembly can be prevented, reducing the number of assembly steps and stabilizing characteristics.
[0094] なお、図 7A、図 7Bは本発明の変形防止手段の例を示す側面図である。そして、図 7A and 7B are side views showing examples of the deformation preventing means of the present invention. And figure
7A、図 7Bにおいては、放射器 10の前方側に配置される導波器 3に対しても、リブ 4b 又は折曲部 4cが形成されて!/、る。 In FIG. 7A and FIG. 7B, the rib 4b or the bent portion 4c is also formed on the waveguide 3 arranged on the front side of the radiator 10!
[0095] 次に反射器 20について説明する。 Next, the reflector 20 will be described.
[0096] 図 1、図 6A、図 6Bに示すように、反射器 20は、電波の偏波方向(換言すれば偏波 面)に平行な方向が長手方向となり、電波の放射方向(換言すれば到来方向)に直 交する面に略平行となるよう配置された矩形形状の第 1反射器 21と、第 1反射器 21 の両長辺側をそれぞれ電波の放射方向(換言すれば放射器 10側)に折り曲げること により、反射面が電波の放射方向と略平行になるよう形成された第 2反射器 22a、 22 bと力、らなる。 As shown in FIG. 1, FIG. 6A, and FIG. 6B, the reflector 20 has a longitudinal direction parallel to the polarization direction of the radio wave (in other words, the polarization plane), and the radio wave radiation direction (in other words, The first reflector 21 having a rectangular shape arranged so as to be substantially parallel to the plane perpendicular to the direction of arrival, and the long side of the first reflector 21 are respectively directed to the radiation direction of the radio wave (in other words, the radiator). By bending it to the 10th side, the second reflectors 22a and 22b, which are formed so that the reflecting surface is substantially parallel to the radiation direction of the radio wave, are combined with force.
[0097] この反射器 20は、 320 X 100mmの大きさの板体を断面コ字状に折り曲げ形成す ることにより作製されており、本実施形態では、各部の寸法が下記のように設定され ている。 The reflector 20 is manufactured by bending a plate having a size of 320 × 100 mm into a U-shaped cross section. In this embodiment, the dimensions of each part are set as follows. ing.
[0098] すなわち、第 1反射器 21は、長さ W4 = 320mm、高さ H4 = 55mmであり、第 2反 射器 22は、第 1放射器 21の両長辺側を折曲部 14において放射器 10の方向に幅 W W4 = 22. 5mm (長さは W4と同じ寸法の 320mm)だけ折り返した構成となっている That is, the first reflector 21 has a length W4 = 320 mm and a height H4 = 55 mm, and the second reflector 22 has both long sides of the first radiator 21 at the bent portion 14. In the direction of radiator 10, the width W W4 = 22.5mm (length is 320mm, which is the same dimension as W4).
〇
[0099] また、第 1放射器 11と反射器 20の間隔 L3 = 55mmである。 Yes [0099] The distance between the first radiator 11 and the reflector 20 is L3 = 55 mm.
[0100] ここで、反射器 20を断面コ字状としたのは、上述した放射器 10と 320 X 100mmの 大きさの板体からなる反射器 20とを用いて最適化した場合に、アンテナ 1の良好な周 波数特性を維持しつつ、反射器 20の短手方向の寸法(図 6Aに示す上下方向の寸 法)を短くしてアンテナ 1を薄型にするためであり、上記各寸法は実験的に得られた 値である。 [0100] Here, the reflector 20 has a U-shaped cross section when the antenna 10 is optimized using the reflector 10 described above and the reflector 20 made of a 320 x 100 mm plate. This is to make the antenna 1 thin by shortening the short dimension of the reflector 20 (the vertical dimension shown in Fig. 6A) while maintaining the good frequency characteristics of 1. This is an experimentally obtained value.
[0101] 以下、この実験について説明する。 [0101] This experiment will be described below.
[0102] 図 8は、反射器 20の形状を変化させたときの電気的特性の変化を表すデータであ [0102] Figure 8 is data representing the change in electrical characteristics when the shape of the reflector 20 is changed.
[0103] 図 8において反射器 Aで示されるのは、寸法(\¥4 ^14) = 320 100111111の反射 器を平板状(つまり、第 2の反射器 22が第 1の反射器 21と同一平面上になるように両 側に開いた状態(折り曲げ形成する前の状態))に形成したときのデータである (すな わち、反射器 A =平板状)。 [0103] Reflector A in FIG. 8 shows that the reflector with dimensions (\\ 4 ^ 14) = 320 100111111 is flat (ie, second reflector 22 is identical to first reflector 21) This is data when it is formed in a state where it is open on both sides so that it is on a flat surface (state before bending) (ie, reflector A = flat plate shape).
図 8において反射器 Bで示されるデータは、反射器 Aと同様の平板状である力 反 射器 Aに対し高さ H4を約半分にした、寸法(W4 X H4) = 320 X 55mmの反射器を 用いたときのデータである (すなわち、反射器 B =高さが反射器 Aの略半分)。 The data shown by reflector B in Fig. 8 is a reflection of dimension (W4 X H4) = 320 X 55mm, with height H4 approximately halved with respect to force reflector A, which is flat like reflector A Data when using a reflector (ie, reflector B = height is about half that of reflector A).
図 8において反射器 Cで示されるデータは、本実施形態の反射器 20、つまり、反射 器 Aと同寸法 (W4 X H4) = 320 X 100mmの板材を断面略コ字状に折り曲げ形成 した反射器、を用いたときのデータである。 In FIG. 8, the data indicated by the reflector C is the reflector 20 of this embodiment, that is, a reflection obtained by bending a plate material having the same dimensions as the reflector A (W4 X H4) = 320 X 100 mm into a substantially U-shaped cross section. It is data when using a container.
[0104] 本発明の主たる目的は、電気的特性を低下させることなくアンテナを小型化するこ とであるが、反射器はアンテナを構成するエレメントの中でも最も大きくなるため、そ の反射器の形状を小型化することは、アンテナを小型化する上で極めて重要である [0104] The main object of the present invention is to reduce the size of the antenna without deteriorating the electrical characteristics. However, since the reflector is the largest of the elements constituting the antenna, the shape of the reflector It is extremely important to reduce the size of the antenna.
[0105] そして、反射器 Aのデータと反射器 Bのデータとから明らかなように、反射器を平板 状にした場合、その高さ(詳しくは電波の放射面に直交する短手方向の長さ)が小さ くなると、アンテナ 1の利得がほぼ全帯域に亘つて低下する。 [0105] Then, as is clear from the data of reflector A and the data of reflector B, the height of the reflector (specifically, the length in the short direction perpendicular to the radio wave radiation surface) When (b) is small, the gain of antenna 1 decreases over almost the entire band.
[0106] しかし、高さは反射器 Bと同じで、反射器 Bの両長辺を折曲部 14として放射器 10方 向に第 2反射器 22を突設させた形状の反射器 Cを用いると、動作利得においては反
射器 Aの場合と比較して僅かに低下するものの、そのほかは、ほぼ同程度の特性が 得られる。 [0106] However, the height of reflector B is the same as that of reflector B, and reflector C having a shape in which both long sides of reflector B are bent portions 14 and second reflector 22 is projected in the direction of radiator 10 is provided. If used, the operating gain is Although it is slightly lower than that of gun A, the other characteristics are almost the same.
[0107] つまり、本実施形態のように、反射器 20を断面略コ字状に折り曲げ形成すれば、ァ ンテナ 1の電気的特性を劣化させることなぐ反射器の高さ H4 (すなわち、第 1の反 射器 61の高さ)を短くすることができ、延いてはアンテナ 1を薄型でスリムに構成でき るようになる。 That is, if the reflector 20 is bent in a substantially U-shaped cross section as in the present embodiment, the reflector height H4 (that is, the first height does not deteriorate the antenna 1 electrical characteristics). The height of the reflector 61 can be shortened, so that the antenna 1 can be configured to be thin and slim.
[0108] なお、本実施形態では、反射器 20は 320 X 110mmの大きさで板圧 t = 0. 2mmの 金属板を折り曲げ加工したものである力 金属板でなくても金属線を網目状に形成し た網体を折り曲げ加工してもよい。また、薄い導電材を樹脂で一体成形したフィルム 状の板体でもよい。つまり、反射器 20は、導電材料であればよぐこれらに限定される ものではない。 In the present embodiment, the reflector 20 is a force obtained by bending a metal plate having a size of 320 × 110 mm and a plate pressure t = 0.2 mm. The net formed in the above may be bent. Further, a film-like plate body in which a thin conductive material is integrally formed with a resin may be used. That is, the reflector 20 is not limited to these as long as it is a conductive material.
[0109] また、反射器 20は、必ずしも断面コ字状に折り曲げ形成する必要は無ぐそのまま 平面に形成されたものでも、上下が放射器方向に傾いた略く字状に折り返し形成し たものでも良い。つまり、反射器 20の形状についても、これらに限定されるものでは ない。 [0109] In addition, the reflector 20 does not necessarily need to be folded into a U-shaped cross section, and is formed as a flat surface as it is, but is folded back into a generally square shape whose upper and lower sides are inclined toward the radiator. But it ’s okay. That is, the shape of the reflector 20 is not limited to these.
[0110] 次に導波器 3について説明する。 Next, the director 3 will be described.
[0111] 図 1に示すように、導波器 3は、放射器 10の第 1放射素子 l la、 l ibと同様に薄板 状の金属材を金型等で抜き打ち加工したものであり、その長さ W3 = 160、幅 WW3 = 10mmである。そして、放射器 12と導波器 3との間隔 Ll = 52mmであるに放射器 10の前方に配設されている。 [0111] As shown in FIG. 1, the director 3 is obtained by punching a thin plate-like metal material with a die or the like in the same manner as the first radiating elements l la and l ib of the radiator 10. Length W3 = 160, width WW3 = 10mm. The distance between the radiator 12 and the waveguide 3 is Ll = 52 mm, and is disposed in front of the radiator 10.
[0112] この導波器 3はアンテナ 1の高域の特性改善用に備えられたものであり、必要に応 じて備えさせてもよいし、なくてもよい。 [0112] The waveguide 3 is provided for improving the high frequency characteristics of the antenna 1, and may or may not be provided as necessary.
[第 2実施形態] [Second Embodiment]
次に、本発明の第 2実施形態について、図 9〜図 11を用いて説明する。 Next, a second embodiment of the present invention will be described with reference to FIGS.
[0113] なお、図 9は第 2実施形態のアンテナを前方側から見た概略斜視図であり、図 10は 第 2実施形態のアンテナを後方側から見た概略斜視図であり、図 11は第 2実施形態 のアンテナを化粧ケースに収納し、その一部を切断した概略断面図である。 FIG. 9 is a schematic perspective view of the antenna of the second embodiment as viewed from the front side, FIG. 10 is a schematic perspective view of the antenna of the second embodiment as viewed from the rear side, and FIG. FIG. 5 is a schematic cross-sectional view in which the antenna of the second embodiment is housed in a decorative case and a part thereof is cut.
[0114] 本実施形態のアンテナ 1の構成は、基本的には第 1実施形態のものと同じであり、
第 1実施形態と異なる点は、アンテナ 1の放射器 10から出力される受信信号を処理 する信号処理回路 30を備えた点である。 [0114] The configuration of the antenna 1 of the present embodiment is basically the same as that of the first embodiment. The difference from the first embodiment is that a signal processing circuit 30 for processing a reception signal output from the radiator 10 of the antenna 1 is provided.
[0115] この信号処理回路 30は、増幅回路等が組み付けられたプリント基板をシールド性 に優れた電子機器箱体(以下、シールドケースと記載する) 31に収納した構成となつ ている。 The signal processing circuit 30 has a configuration in which a printed circuit board on which an amplifier circuit or the like is assembled is housed in an electronic equipment box (hereinafter referred to as a shield case) 31 having excellent shielding properties.
[0116] シールドケース 31は、金属材等の導電材からなり、前後を開口した筒状の枠体 32 と、この枠体 32の一方の開口を閉塞する蓋体 33とを備える。 The shield case 31 is made of a conductive material such as a metal material, and includes a cylindrical frame 32 that opens at the front and rear, and a lid 33 that closes one opening of the frame 32.
[0117] そして、枠体 32は、内部にプリント基板等を収納した後、前方側の開口部を、反射 器 20の第 1反射器 21におけるアンテナの電気的特性に影響しない部分 (本実施形 態では反射器 20の後方側)に固定される。 [0117] Then, after housing the printed circuit board or the like inside the frame 32, the opening on the front side is a portion that does not affect the electrical characteristics of the antenna in the first reflector 21 of the reflector 20 (this embodiment In the state, it is fixed to the rear side of the reflector 20).
[0118] また、枠体 32の後方側の開口部は、金属材等の導電材からなる蓋体 33で閉塞さ れる。この結果、シールドケース 31は、反射器 20と、枠体 32と、蓋体 33とで形成され 、その内部は、これら各部によって密閉され、シールドされることになる。 [0118] Further, the opening on the rear side of the frame 32 is closed with a lid 33 made of a conductive material such as a metal material. As a result, the shield case 31 is formed by the reflector 20, the frame body 32, and the lid body 33, and the inside thereof is sealed and shielded by these parts.
[0119] なお、シールドケース 31内に収納する信号処理回路 30は、アンテナ 1の用途に応 じて設定すればよぐ例えば、アンテナ 1からの受信信号を増幅する信号増幅回路で あっても、アンテナ 1からの受信信号と外部アンテナからの受信信号とを混合する混 合回路であっても、或いは、信号増幅回路と混合回路との両方であってもよい。 [0119] The signal processing circuit 30 housed in the shield case 31 may be set in accordance with the use of the antenna 1. For example, even if the signal processing circuit 30 is a signal amplification circuit that amplifies the reception signal from the antenna 1, It may be a mixing circuit that mixes the reception signal from the antenna 1 and the reception signal from the external antenna, or may be both a signal amplification circuit and a mixing circuit.
[0120] 本実施形態では、この信号処理回路 30を、信号増幅回路と信号混合回路とから構 成しており、図 10、図 11に示すように、シールドケース 31 (詳しくは枠体 32)には、外 部アンテナからの受信信号を入力する入力端子 35と、アンテナ 1からの受信信号を 増幅した信号と入力端子 35から入力された受信信号とを混合した信号を出力するた めの出力端子 37が設けられている。なお、これら各端子は、同軸ケーブル介して信 号を入出力するための F型端子にて構成されている。 In the present embodiment, the signal processing circuit 30 is composed of a signal amplification circuit and a signal mixing circuit. As shown in FIGS. 10 and 11, the shield case 31 (specifically, the frame body 32) Output to output a signal that is a mixture of the input terminal 35 for receiving the signal received from the external antenna, the signal obtained by amplifying the signal received from antenna 1 and the signal received from the input terminal 35. Terminal 37 is provided. Each of these terminals consists of an F-type terminal for inputting and outputting signals via a coaxial cable.
[0121] また、信号処理回路 30には、放射器 10の給電点 16a、 16bから、平衡線路 17、平 衡不平衡変換回路 18、不平衡線路 19を介して、受信信号が供給されている。 [0121] Further, the signal processing circuit 30 is supplied with received signals from the feed points 16a and 16b of the radiator 10 via the balanced line 17, the unbalanced conversion circuit 18 and the unbalanced line 19. .
[0122] また、シールドケース 31が組み付けられる反射器 20 (詳しくは第 1反射器 21)には 、不平衡線路 19を揷通するための揷通孔 23が穿設されており、この揷通孔 23の大 きさは、アンテナの電気的特性に影響のないように設定されている。
[0123] なお、本実施形態において、信号処理回路 30は、第 1反射器 21の後方側に取り 付けるものとしている力 S、アンテナ 1の電気的特性に影響が出ない領域であればどこ でもよい。つまり、本実施形態のように、反射器 20の一部を信号処理回路 30のシー ルドケース 31の一部として使用する場合、アンテナ 1の電気的特性に影響を与えな ければ、反射器 20の前方側であってもよいし、反射器 20を挟み込むようにしてもよい [0122] Further, the reflector 20 (specifically, the first reflector 21) to which the shield case 31 is assembled is provided with a through hole 23 through which the unbalanced line 19 is passed. The size of the hole 23 is set so as not to affect the electrical characteristics of the antenna. [0123] In the present embodiment, the signal processing circuit 30 may be any region as long as it does not affect the force S to be attached to the rear side of the first reflector 21 and the electrical characteristics of the antenna 1. Good. That is, when a part of the reflector 20 is used as a part of the shield case 31 of the signal processing circuit 30 as in the present embodiment, if the electrical characteristics of the antenna 1 are not affected, the reflector 20 It may be the front side or the reflector 20 may be sandwiched between them.
[0124] 次に、図 11に示すように、本実施形態のアンテナ 1は、化粧ケース 40に収納される Next, as shown in FIG. 11, the antenna 1 of the present embodiment is housed in a decorative case 40.
[0125] この化粧ケース 40は、上側に向かって開口部を有し、内側には放射器 10や反射 器等 20を収納するための空間が形成され、この内面からは前記第 1放射器 11、第 2 放射器 12、導波器 3、平衡不平衡変換部 18等を取り付けるためのボスが一体的に 突設してある化粧ケース本体 45と、該化粧ケース本体 45の開口部を閉塞するように 構成された化粧ケースカバー 46とからなる。 [0125] The decorative case 40 has an opening toward the upper side, and a space for accommodating the radiator 10, the reflector 20, and the like 20 is formed on the inner side, and the first radiator 11 is formed from the inner surface. , A decorative case main body 45 in which a boss for attaching the second radiator 12, the waveguide 3, the balance-unbalance conversion portion 18 and the like is integrally projected, and the opening of the decorative case main body 45 is closed. The decorative case cover 46 is configured as described above.
[0126] この化粧ケース 40はアンテナの電気的特性に影響のないように材料や肉厚等を最 適化した合成樹脂材等にて構成されている。 [0126] The decorative case 40 is made of a synthetic resin material or the like whose material and thickness are optimized so as not to affect the electrical characteristics of the antenna.
[0127] 化粧ケース本体 45に形成されたボス 41は、前記第 1放射器 11 (図には、第 1放射 素子 l ibが示されている)を取り付けるためのボスであり、このボス 41には例えばビス 51によって第 1放射器 11が固着されている。 [0127] A boss 41 formed on the decorative case body 45 is a boss for mounting the first radiator 11 (the first radiating element l ib is shown in the figure). For example, the first radiator 11 is fixed by screws 51.
[0128] 同様にボス 42には第 2放射器 12 (図には、第 2放射素子 12bが示されている)がビ ス 52によって固着されており、ボス 43には導波器 3がビス 53によって固着されている Similarly, the second radiator 12 (the second radiating element 12b is shown in the figure) is fixed to the boss 42 by the screw 52, and the director 3 is screwed to the boss 43. Fixed by 53
[0129] このとき、位相調整手段 15 (図には、位相調整手段 15bが示されている)の一端側 を第 2放射器 12の元部(この図には示されていない接続点 Ca Cb)と重合させて配 設することによって、ビス 52で第 2放射器 12と位相調整手段 15の一端側の固着が完 了する。 At this time, one end side of the phase adjusting means 15 (the phase adjusting means 15b is shown in the figure) is connected to the base part of the second radiator 12 (the connection point Ca Cb not shown in this figure). ) And the two radiators 12 and the phase adjusting means 15 are completely fixed to each other with the screw 52.
[0130] そして、位相調整手段 15の他端側を第 1放射器 11の元部(この図には示されてい ない接続点 Aa Ab)において、例えばビス 55等によって接続固着することによって 位相調整手段 15の取り付けが完了する。
[0131] なお、図には示されていないが導波器 3や放射器 10を支持するためのボス等を化 粧ケース本体 45内部に複数設けることによって導波器 3や放射器 10は更に安定的 に化粧ケース本体 40内に収納することができる。 [0130] Then, the other end of the phase adjusting means 15 is connected and fixed at the base of the first radiator 11 (connection point Aa Ab not shown in this figure) with, for example, a screw 55 or the like. The installation of means 15 is complete. [0131] Although not shown in the drawing, by providing a plurality of bosses and the like for supporting the waveguide 3 and the radiator 10 inside the cosmetic case body 45, the waveguide 3 and the radiator 10 are further improved. It can be stably stored in the cosmetic case body 40.
[0132] 反射器 20も、図示されていない周知の保持手段等で化粧ケース本体 45に取り付 け固着されており、このとき、反射器 20に取り付けられた、反射器 20と筐体の一部を 共通にして構成された信号処理回路 30に備えられた入力端子 35や出力端子 37は 、化粧ケース本体 45の底部に形成された同心円状の二重に水切りスカートを有する 端子部 39からアンテナ 1下部に突設するように構成されている。 [0132] The reflector 20 is also fixedly attached to the decorative case body 45 with a well-known holding means (not shown). At this time, the reflector 20 attached to the reflector 20 and one of the casings are fixed. The input terminal 35 and the output terminal 37 provided in the signal processing circuit 30 configured in common are the antennas from the terminal section 39 having concentric double draining skirts formed on the bottom of the decorative case body 45. 1 It is configured to project at the bottom.
[0133] なお、アンテナ 1を屋外で使用する場合、この端子部 39のスカート部分に図には示 されていない防水ブーツを取り付けることによって防水性を優れたものにすることがで きる。 [0133] When the antenna 1 is used outdoors, the waterproof property can be improved by attaching a waterproof boot (not shown) to the skirt portion of the terminal portion 39.
[0134] 化粧ケース本体 45に形成されたボス 44には、平衡不平衡変換部 18がビス 54によ つて取り付けられており、位相調整手段 15の所定位置に設けられた給電点(図 11に は示されていない 16a、 16b)と平衡不平衡変換部 18との間は平衡線路 17を介して 接続されている。そして、平衡不平後変換部 18と信号処理回路 30との間には、不平 衡線路 19が接続されている。 The balance / unbalance conversion portion 18 is attached to the boss 44 formed on the decorative case main body 45 with a screw 54, and a feeding point (see FIG. 11) provided at a predetermined position of the phase adjusting means 15. 16a, 16b) and the balanced / unbalanced converter 18 are not connected through a balanced line 17. An unbalanced line 19 is connected between the balanced and unbalanced conversion unit 18 and the signal processing circuit 30.
[0135] このようにして、導波器 3と放射器 10と反射器 20は、化粧ケース本体 45内部に相 互に所定位置に平行配列された後、化粧ケース本体 45に化粧ケースカバー 46を被 せることでアンテナ 1が完成する。 In this manner, the director 3, the radiator 10 and the reflector 20 are arranged in parallel in a predetermined position in the decorative case body 45, and then the decorative case cover 46 is attached to the decorative case body 45. The antenna 1 is completed by covering.
[0136] このように本実施形態のアンテナ 1は、小型で且つ薄型でも高性能な周波数特性を 有するので、図 12Aに示すように、化粧ケース 40後方側に、アンテナマスト 50やベラ ンダ等にこのアンテナ 1を取り付けるためのマスト取付手段 60を着脱自在に固着でき るようにすればアンテナマスト等にも簡単に取り付けができる。なお、図 12Aは、アン テナ 1のアンテナ支柱への取付状態を示す。 As described above, the antenna 1 of the present embodiment is small and thin, and has high-performance frequency characteristics. Therefore, as shown in FIG. 12A, the antenna mast 50, the veranda, etc. If the mast attaching means 60 for attaching the antenna 1 can be detachably fixed, it can be easily attached to the antenna mast or the like. Fig. 12A shows the antenna 1 attached to the antenna support.
[0137] また、図 12Bに示すように、化粧ケース 40の下面側にスタンド取付手段 49を設けて おいて、そのスタンド取付手段 49に対応する取付スタンド 61がとりつけられるように すれば室内アンテナとしても使用できる。なお、図 12Bは、アンテナ 1の取付スタンド への取付状態を示す。
[0138] このとき、図 12Bの上面図に示すように、スタンド取付手段 49が取付スタンド 61に 対してアンテナの方向調整が自在となるように構成しておけば受信感度の調整が簡 単にできるので利便性が良い。 Further, as shown in FIG. 12B, if a stand mounting means 49 is provided on the lower surface side of the decorative case 40 and a mounting stand 61 corresponding to the stand mounting means 49 is attached, the indoor antenna can be obtained. Can also be used. Fig. 12B shows the antenna 1 mounted on the mounting stand. At this time, as shown in the top view of FIG. 12B, if the stand mounting means 49 is configured so that the direction of the antenna can be freely adjusted with respect to the mounting stand 61, the reception sensitivity can be easily adjusted. So convenient.
[0139] 加えて、取付スタンド 61を設置対象物に固着できるように構成すれば、図 12Cに示 すように軒下や図 12Dに示す壁面にも取り付けができる等、設置場所を選ばない汎 用性を有したアンテナを提供できる。なお、図 12Cは、アンテナ 1の軒下への取付状 態を示し、図 12Dは、アンテナ 1の壁面への取付状態を示す。 [0139] In addition, if the mounting stand 61 is configured so that it can be fixed to the installation target, it can be installed on the eaves or on the wall shown in Fig. 12D as shown in Fig. 12C. An antenna having the characteristics can be provided. FIG. 12C shows the mounting state of the antenna 1 under the eaves, and FIG. 12D shows the mounting state of the antenna 1 on the wall surface.
[0140] なお、本発明は上記実施の形態に限定されるものではなぐ各部の構成を適宜に 変更して実施することも可能である。
It should be noted that the present invention is not limited to the above-described embodiment, and can be implemented by appropriately changing the configuration of each part.
Claims
[1] 平衡型のアンテナの放射器であって、 [1] Balanced antenna radiator,
当該放射器は、薄板状の導電材を矩形に形成した一対の第 1放射素子を、その長 手方向の軸線を一致させると共に、該軸線に直交する中心軸を中心として軸対称と なるよう離隔して配置することにより構成されており、 The radiator includes a pair of first radiating elements formed of a thin plate-like conductive material in a rectangular shape, the longitudinal axes thereof being aligned, and spaced apart so as to be axially symmetric about a central axis orthogonal to the axial line. Are arranged by placing
前記各第 1放射素子の板面には、それぞれ、 1又は複数のスリットが穿設されている ことを特徴とするアンテナの放射器。 One or more slits are formed in the plate surface of each of the first radiating elements, respectively.
[2] 平衡型の放射器を、電波の放射方向に沿って前後に離隔して配置すると共に、該 前後の放射器同士を位相調整手段を介して接続してなるアンテナの放射器であって 後方側の放射器は、薄板状の導電材を矩形に形成した一対の第 1放射素子を、そ の長手方向の軸線を一致させると共に、該軸線に直交する中心軸を中心として軸対 称となるように離隔して配置することにより構成されており、 [2] An antenna radiator in which balanced radiators are spaced apart in the front-rear direction along the radiation direction of radio waves, and the front and rear radiators are connected to each other via phase adjusting means. The radiator on the rear side is a pair of first radiating elements in which a thin plate-like conductive material is formed in a rectangular shape, and the longitudinal axis thereof coincides with each other and is axially symmetrical about a central axis perpendicular to the axis. It is configured by arranging so as to be separated,
前方側の放射器は、薄板状の導電材を矩形に形成した一対の第 2放射素子を、そ の長手方向の軸線を一致させると共に、該軸線に直交する中心軸を中心として軸対 称となるように離隔して配置することにより構成され、しかも、前記後方側の放射器と は、前記中心軸同士を一致させることにより前記各放射素子同士が互いに平行とな るように配置されており、 The radiator on the front side is a pair of second radiating elements in which a thin plate-shaped conductive material is formed in a rectangular shape, and the axis of the longitudinal direction thereof coincides with each other, and the axis is symmetrical about the central axis orthogonal to the axis. In addition, the radiator on the rear side is arranged so that the central axes coincide with each other so that the radiating elements are parallel to each other. ,
前記前後の放射器は、前記中心軸を挟んで同一方向に位置する前後の放射素子 同士を、それぞれ、前記中心軸に近い元部を接続点として前記位相調整手段を介し て互いに接続することにより、接続されており、 The front and rear radiators are configured by connecting the front and rear radiating elements positioned in the same direction across the central axis through the phase adjusting means with the base portion close to the central axis as a connection point. Connected,
前記後方側の放射器を構成する第 1放射素子の板面には、それぞれ、 1又は複数 のスリットが穿設されていることを特徴とするアンテナの放射器。 An antenna radiator, wherein one or a plurality of slits are formed in a plate surface of the first radiating element constituting the rear radiator.
[3] 前記後方側の放射器を構成する第 1放射素子において、前記中心軸に近い元部 で前記位相調整手段に接続される接続点は、当該第 1放射素子の四隅の内、最も 内側の前方側に位置する隅部に形成されていることを特徴とする請求項 2に記載の アンテナの放射器。 [3] In the first radiating element constituting the radiator on the rear side, the connection point connected to the phase adjusting means at the base portion close to the central axis is the innermost of the four corners of the first radiating element. 3. The antenna radiator according to claim 2, wherein the antenna radiator is formed at a corner located on the front side of the antenna.
[4] 前記第 1放射素子において、
前記スリットを形成することにより形成される、前記スリットよりも前方側の前方側細 幅状導体、前記スリットよりも後方側の後方側細幅状導体、および、該スリットの側辺 側で前方側細幅状導体と後方側細幅状導体とを連結する連結細幅状導体の内、 前方側細幅状導体と後方側細幅状導体の線幅は、使用周波数の最小周波数の波 長 λ 1の略 0. 016 λ 1より細ぐ前記連結細幅状導体を連結保持できる寸法であり、 前記連結細幅状導体の線幅は、使用周波数の最小周波数の波長 λ 1の略 0. 1 λ 1より細ぐ前記第 1放射素子の前方側細幅状導体と後方側細幅状導体とを連結保 持できる寸法であり、 [4] In the first radiating element, The narrow front conductor on the front side of the slit, the narrow back conductor on the rear side of the slit, and the front side on the side of the slit, formed by forming the slit. Of the connecting narrow conductors that connect the narrow conductor and the rear narrow conductor, the line width of the front narrow conductor and the rear narrow conductor is the wavelength of the minimum frequency of the operating frequency λ The width of the connecting narrow conductor that is thinner than λ 1 is approximately 0.1, and the line width of the connecting narrow conductor is approximately 0.1 of the wavelength λ 1 of the minimum frequency of the use frequency. The dimension is such that the narrower conductor on the front side and the narrower conductor on the rear side of the first radiating element thinner than λ1 can be connected and held
更に、当該第 1放射素子の四隅の内、当該第 1放射素子の長手方向の軸線に沿つ て前記接続点とは反対側に位置する隅部の特定点と、前記接続点とを結ぶ経路で あって、前方側細幅状導体に沿った直線で形成される第 1経路の寸法は、使用周波 数の中 、周波数の波長え 2の 0· 2ぇ2カ、ら0. 4 λ 2であり、 Further, a path connecting the connection point with a specific point at a corner located on the opposite side of the connection point along the longitudinal axis of the first radiation element among the four corners of the first radiation element. The dimension of the first path formed by the straight line along the narrow narrow conductor on the front side is, among the frequencies used, 0 to 2 of the wavelength of the frequency 2, and 0.4 λ 2 And
前記特定点と前記接続点とを結ぶ経路であって、前記接続点から内側の連結細幅 状導体、後方側細幅状導体、外側の連結細幅状導体に沿って形成される第 2経路 の寸法は、使用周波数の最小周波数の波長 λ 1の 0. 2 λ 1から 0. 4 λ 1である、 ことを特徴とする請求項 3に記載のアンテナの放射器。 A path connecting the specific point and the connection point, and a second path formed along the inner connecting narrow conductor, the rear narrow conductor, and the outer connecting narrow conductor from the connection point. 4. The antenna radiator according to claim 3, wherein the dimension of the antenna is from 0.2 λ 1 to 0.4 λ 1 of a wavelength λ 1 of a minimum frequency of use. 5.
[5] 前記放射素子の少なくとも一つには、当該放射素子の変形を防止する変形防止手 段が設けられていることを特徴とする請求項 1〜請求項 4の何れかに記載のアンテナ の放射器。 [5] The antenna according to any one of claims 1 to 4, wherein at least one of the radiating elements is provided with a deformation preventing means for preventing deformation of the radiating element. Radiator.
[6] 少なくとも放射器と反射器とを備えるアンテナであって、前記放射器は、請求項;!〜 請求項 5の何れかに記載のアンテナの放射器からなることを特徴するアンテナ。 6. An antenna comprising at least a radiator and a reflector, wherein the radiator comprises the antenna radiator according to any one of claims ;! to 5.
[7] 前記反射器は、 [7] The reflector is:
電波の偏波方向に平行な方向が長手方向となり、電波の放射方向に直交する面 に略平行となるよう配置された矩形形状の第 1の反射器と、 A rectangular first reflector arranged so that the direction parallel to the polarization direction of the radio wave is the longitudinal direction and substantially parallel to a plane orthogonal to the radio wave radiation direction;
該第 1の反射器の両長辺側をそれぞれ電波の放射方向に折り曲げることにより、反 射面が電波の放射方向と略平行になるよう形成された第 2の反射器と、 A second reflector formed such that the reflection surface is substantially parallel to the radio wave radiation direction by bending both long sides of the first reflector in the radio wave radiation direction;
力 なることを特徴とする請求項 6に記載のアンテナ。 The antenna according to claim 6, wherein
[8] シールド性を有する電子機器箱体に収容され、前記放射器を介して送受信する信
号を処理する信号処理回路を備え、 [8] A signal that is contained in a shielded electronic equipment box and is transmitted and received through the radiator. A signal processing circuit for processing
前記電子機器箱体は、前記第 1の反射器の一部を利用して構成されていることを 特徴とする請求項 7に記載のアンテナ。 The antenna according to claim 7, wherein the electronic device box is configured by using a part of the first reflector.
[9] 前記信号処理回路は、前記放射器からの受信信号を増幅する増幅回路であること を特徴とする請求項 8に記載のアンテナ。 9. The antenna according to claim 8, wherein the signal processing circuit is an amplifier circuit that amplifies a received signal from the radiator.
[10] 前記信号処理回路は、前記放射器からの受信信号と、該受信信号とは周波数が異 なる信号とを混合する混合回路であることを特徴とする請求項 8に記載のアンテナ。 10. The antenna according to claim 8, wherein the signal processing circuit is a mixing circuit that mixes a reception signal from the radiator and a signal having a frequency different from that of the reception signal.
[11] 前記放射器にて送受信可能な信号の周波数は UHF帯であることを特徴とする請 求項 6〜請求項 10の何れかに記載のアンテナ。
[11] The antenna according to any one of claims 6 to 10, wherein a frequency of a signal that can be transmitted and received by the radiator is in a UHF band.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-319087 | 2006-11-27 | ||
JP2006319087 | 2006-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008066037A1 true WO2008066037A1 (en) | 2008-06-05 |
Family
ID=39467824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/072855 WO2008066037A1 (en) | 2006-11-27 | 2007-11-27 | Antenna radiator and antenna |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4950009B2 (en) |
WO (1) | WO2008066037A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5086410B2 (en) * | 2010-09-02 | 2012-11-28 | 茂一 渋谷 | Broadband radiating element and antenna with reflector having the same |
JP6824846B2 (en) * | 2017-08-14 | 2021-02-03 | 日本電信電話株式会社 | Phase difference feeding antenna device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0410410U (en) * | 1990-05-18 | 1992-01-29 | ||
JPH09181518A (en) * | 1995-12-26 | 1997-07-11 | N T T Ido Tsushinmo Kk | Antenna system |
JP2002198731A (en) * | 2000-12-26 | 2002-07-12 | Nippon Dengyo Kosaku Co Ltd | Frequency common use non-directional antenna, and array antenna |
JP2003273637A (en) * | 2002-03-15 | 2003-09-26 | Hitachi Kokusai Electric Inc | Wide band antenna for receiving uhf band |
JP2006174186A (en) * | 2004-12-17 | 2006-06-29 | Tohoku Univ | Receiving array antenna |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5734704A (en) * | 1980-08-11 | 1982-02-25 | Hitachi Ltd | Pattern controlling device for motor |
JPH0237805A (en) * | 1988-07-28 | 1990-02-07 | Oki Electric Ind Co Ltd | Antenna for pager |
JP2993183B2 (en) * | 1991-06-20 | 1999-12-20 | 東レ株式会社 | Thermoplastic resin composition |
JP2000124730A (en) * | 1998-10-19 | 2000-04-28 | Dx Antenna Co Ltd | Vhf and uhf band film antenna |
US6127982A (en) * | 1998-12-23 | 2000-10-03 | Terk Technologies Corp. | Apparatus and method for processing satellite and terrestrial signals |
JP3959945B2 (en) * | 2000-10-02 | 2007-08-15 | 松下電器産業株式会社 | High frequency module with antenna |
JP4555019B2 (en) * | 2004-01-27 | 2010-09-29 | 八木アンテナ株式会社 | Wideband antenna for UHF band |
JP2005286794A (en) * | 2004-03-30 | 2005-10-13 | Clarion Co Ltd | Antenna unit |
JP2006025027A (en) * | 2004-07-06 | 2006-01-26 | Ntt Docomo Inc | Two-element array antenna |
EP1689020B1 (en) * | 2005-01-28 | 2013-03-20 | Mondi Gronau GmbH | Foil with a printed antenna |
KR100731278B1 (en) * | 2005-01-31 | 2007-06-25 | 주식회사 와이어리스데이터커뮤니케이션 | antenna assembly |
-
2007
- 2007-11-27 JP JP2007305917A patent/JP4950009B2/en not_active Expired - Fee Related
- 2007-11-27 WO PCT/JP2007/072855 patent/WO2008066037A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0410410U (en) * | 1990-05-18 | 1992-01-29 | ||
JPH09181518A (en) * | 1995-12-26 | 1997-07-11 | N T T Ido Tsushinmo Kk | Antenna system |
JP2002198731A (en) * | 2000-12-26 | 2002-07-12 | Nippon Dengyo Kosaku Co Ltd | Frequency common use non-directional antenna, and array antenna |
JP2003273637A (en) * | 2002-03-15 | 2003-09-26 | Hitachi Kokusai Electric Inc | Wide band antenna for receiving uhf band |
JP2006174186A (en) * | 2004-12-17 | 2006-06-29 | Tohoku Univ | Receiving array antenna |
Also Published As
Publication number | Publication date |
---|---|
JP4950009B2 (en) | 2012-06-13 |
JP2008160818A (en) | 2008-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6646618B2 (en) | Low-profile slot antenna for vehicular communications and methods of making and designing same | |
US6317099B1 (en) | Folded dipole antenna | |
US8228250B2 (en) | Composite antenna apparatus | |
CN106688141B (en) | Omnidirectional antenna for mobile communication service | |
US8378915B2 (en) | Antenna assembly | |
EP1098391B1 (en) | Folded dipole antenna | |
US20100007573A1 (en) | Multibeam antenna | |
US9793607B2 (en) | Antenna with quarter wave patch element, U-Slot, and slotted shorting wall | |
CN110622352B (en) | Array antenna | |
JP4519034B2 (en) | antenna | |
US7339543B2 (en) | Array antenna with low profile | |
AU624342B2 (en) | Microwave antenna structure | |
KR19980069830A (en) | Log Periodic Dipole Antenna with Microstrip Feeder | |
CN211879622U (en) | Full-band dual-polarized antenna | |
TWI715284B (en) | Antenna assemblies | |
JP2008048004A (en) | Antenna | |
WO2008066037A1 (en) | Antenna radiator and antenna | |
JP4878024B2 (en) | antenna | |
JP4938561B2 (en) | Antenna device and horizontal polarization non-directional antenna for horizontal polarization | |
JPH01236703A (en) | Microwave antenna system | |
CN101213707B (en) | Antenna | |
JP6799433B2 (en) | Polarization shared antenna | |
JP4589821B2 (en) | Antenna device | |
JP2006014152A (en) | Plane antenna | |
JP2008109459A (en) | Antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07832580 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07832580 Country of ref document: EP Kind code of ref document: A1 |