WO2008065287A1 - Internal combustion engine exhaust system equipped with pollution reduction systems - Google Patents
Internal combustion engine exhaust system equipped with pollution reduction systems Download PDFInfo
- Publication number
- WO2008065287A1 WO2008065287A1 PCT/FR2007/052268 FR2007052268W WO2008065287A1 WO 2008065287 A1 WO2008065287 A1 WO 2008065287A1 FR 2007052268 W FR2007052268 W FR 2007052268W WO 2008065287 A1 WO2008065287 A1 WO 2008065287A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- line according
- exhaust line
- engine
- exhaust
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/0231—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0093—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2006—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
- F01N3/2033—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
- F01N9/002—Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/024—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
- F02D41/0245—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/024—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
- F02D41/025—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/029—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/402—Multiple injections
- F02D41/405—Multiple injections with post injections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2250/00—Combinations of different methods of purification
- F01N2250/06—Combinations of different methods of purification afterburning and filtering
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/08—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1446—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the invention relates to a gas exhaust line for a motor vehicle engine equipped with pollution control systems.
- the pollutants resulting from the combustion of a motor vehicle engine whether it is a diesel engine or gasoline are mainly unburned hydrocarbons, nitrogen oxides (nitrogen monoxide NO and nitrogen dioxide NO 2 ), carbon oxides (carbon monoxide CO) and in the case of diesel engines and gasoline direct injection engines, carbonaceous solid particles.
- the clearance of motor vehicles uses different after-treatment systems to remove the pollutants produced by the engine: the catalysts, and the particulate filter in the case of diesel engines.
- the particulate filter can filter out solid particles present in the exhaust gas of diesel engines. Once trapped within the filter, the particles must be removed periodically by raising the temperature to 450-700 ° C within the filter to cause their combustion. This operation is commonly called “regeneration" of the particulate filter. Conventionally the energy required for regeneration is provided by an increase in the temperature of the exhaust gas.
- the motor it is difficult for the motor to provide such a temperature, particularly in the case of the highest temperatures of 550 to 700 ° C.
- the excess energy in the exhaust compared to the normal operation of the engine is provided by the use of post-injections, that is to say of late fuel injections, after the top dead center of the cycle, or by degradation of the combustion efficiency.
- a post-injection it may burn completely or partially in the engine, generating an increase in the temperature of the exhaust gas or, if it is sufficiently late, lead to an increase in the amounts of CO and HC exhaust that oxidize upon arriving at the oxidation catalyst to generate heat.
- This method causes a strong thermal stress on the catalyst closest to the engine which is subjected to each regeneration at a high temperature rise.
- the turbocharger and the exhaust manifold are also subjected to high temperatures.
- the heating methods from the engine lead to the dilution of diesel oil in the lubricating oil thereof, which is detrimental to its life.
- This technology is of particular interest in the case where the oxidation catalyst is split into a part close to the engine outlet (called pre-catalyst) and a part further from this outlet, for example, under the vehicle body (called catalyst).
- pre-catalyst a part close to the engine outlet
- catalyst for example, under the vehicle body
- the major drawback of this technology is the very high thermal load on the catalyst generating the exotherm (up to 400 or 500 ° C exotherm) and the need for a very high HC treatment capacity for the latter. to avoid smoke and odors in the exhaust.
- the object of the invention is therefore to propose, in the case of an exhaust line comprising a catalyst associated with a particulate filter, a strategy for generating, upstream of the particulate filter, a sufficiently high temperature to cause total combustion of the particles, without excessive stress on the engine or the catalyst.
- the subject of the present invention is a gas exhaust line for an internal combustion engine of a motor vehicle equipped with a first oxidation catalyst or pre-catalyst placed close to the exit of the engine gases and a particle filter associated with a second oxidation catalyst placed downstream of the pre-catalyst.
- it comprises first means for generating an increase in the temperature of the gases leaving the engine, second means for causing an exothermic reaction in the pre-catalyst and third means for causing an exothermic reaction in the second catalyst. so as to distribute the generation of the temperature rise of the exhaust gas, necessitated by the regeneration of the particulate filter, between the engine, the pre-catalyst and the second catalyst.
- the means for generating an increase in the temperature of the gas output of the engine are able to cause a degradation of the combustion efficiency.
- the degradation of the combustion efficiency is obtained by under-setting the main fuel injection, that is to say by a later injection with respect to the top dead center of the cycle.
- the degradation of the combustion efficiency is obtained by reducing the quantity of ai r admitted into the engine.
- the means for generating an increase in the temperature of the gases leaving the engine makes it possible to obtain, upstream of the pre-catalyst, a gas temperature of between 200 and 650 ° C.
- the means for causing an exothermic reaction in the pre-catalyst are able to trigger a post-fuel injection phase in the engine.
- the post injection is late and between 90 to 240 ° angle of the crankshaft.
- the temperature of the exothermic reaction in the precatalyst is between 20 and 200 ° C.
- the means for generating an exothermic reaction in the catalyst is a fuel introduction device disposed between the pre-catalyst and the catalyst.
- the temperature of the exothermic reaction in the catalyst is between 20 and 300 ° C.
- the three means for heating the exhaust gases are activated successively as a function of the difference between the temperature of the gases at the outlet of the engine and that necessary upstream of the particulate filter to ensure the regeneration of the latter.
- At least two of the exhaust gas heating means are activated simultaneously. "Both exothermic reactions are produced simultaneously and controlled to ensure the best compromise between HC treatment and fuel consumption.
- the means to generate a rise in the temperature of the gas output of the engine are made preponderant compared to the other two gas heating means.
- the control of the heating means is predefined by cartography.
- the control of the heating means is a closed-loop control.
- the regulation uses one or more temperatures measured, by sensor, at different points of the exhaust line.
- the regulation acts on the sub-setting angle thereof, with respect to an angle of 90.degree. ° of the crankshaft n.
- control modes are pre-determined by mapping and closed-loop control.
- a cartographic control of the motor heating is coupled to a regulation by sensor for exothermic reactions in the precatalyst and in the catalyst.
- the means for heating the exhaust gases are used either continuously, intermittently or in continuously variable amounts.
- the second catalyst is located upstream of the particulate filter or integrated on the same support.
- the fuel comprises an additive that aids the regeneration of the particulate filter.
- FIG. 1 is a block diagram of an exhaust line according to the invention.
- FIG. 2 is a graph of temperatures at different points of the exhaust line, depending on the speed of the engine.
- FIG. 3 is a graph illustrating an example of a change of heating mode during a load reduction of the motor.
- FIGS. 4, 5 and 6 illustrate examples of distributions of the heating modes on the motor field.
- FIGS. 7 and 8 are examples of control of the various heating means and
- FIG. 9 shows examples of injection sequence.
- FIG. 1 illustrates an example of an exhaust line according to the invention.
- This line comprises, as is known, a motor 1, for example a four-cylinder diesel engine, at the output of which there is an exhaust manifold 2 and a turbocharger 3, opening into the exhaust line.
- a motor 1 for example a four-cylinder diesel engine, at the output of which there is an exhaust manifold 2 and a turbocharger 3, opening into the exhaust line.
- This exhaust line comprises a first catalyst or pre-catalyst 4 placed near the engine gas outlet which makes it possible to treat the HC and CO emissions of the engine
- a device 5 allows the introduction of fuel such as, for example, diesel into the exhaust line.
- This device comprises, for example, introduction control means 6 from a fuel tank 7 of the vehicle or the fuel system of the vehicle.
- the fuel introduction device 5 is disposed between the pre-catalyst 4 and a second catalyst 8 associated with a particulate filter 9.
- the catalyst 8 and the particulate filter 9 are arranged at a sufficient distance from the means 5 for introducing fuel into the exhaust line to allow good homogenization of the gas / fuel mixture.
- a high temperature between 400 and 800 ° C. (preferably between 450 and 700 ° C.), upstream of the particulate filter, without excessive stress on the engine or the catalyst in order to obtain the regeneration of said filtered.
- the strategy consists of distributing the temperature rise between the engine, the pre-catalyst and the catalyst.
- the rise in the temperature of the gases at the outlet of the engine 1 can be obtained by degradation of the combustion efficiency, for example by undercooling of the injection main, that is to say by a later injection compared to top dead center (TDC), by a post-injection totally burning in the engine, by winnowing admission or any combination of these known means.
- TDC top dead center
- FIG. 9b there is shown an injection sequence with undercurrent of the main injection, it can be seen that with respect to a conventional injection, as represented in FIG. 9a, the main injection is displaced from 2 to 20 ° C. crankshaft angle.
- a gas temperature of between 200 and 650 ° C. Under the most common operating conditions of the engine this temperature range will be between 250 and 400 ° C. This corresponds to a temperature rise of 50 to 350 ° C compared to the non-regeneration mode of operation.
- the exothermic reaction on the catalyst 8 is generated by the fuel introduction device 5 which sends into the catalyst hydrocarbons whose oxidation will cause a significant release of heat. It will be sought to obtain a temperature of the exothermic reaction thus created between 20 and 300 ° C., in most cases between 50 and 200 ° C.
- the diagram of FIG. 2 represents the temperatures at the outlet of each of the elements contributing to the heating of the exhaust line, as a function of the speed of the engine: ⁇ 1 is the temperature at the outlet of the turbocharger 3, during normal engine operation, c that is, outside the regeneration phase of the particulate filter; ⁇ 2 is the temperature at the outlet of the turbocharger in the regeneration phase, ⁇ 3 is the temperature at the outlet of the pre-catalyst 4 and ⁇ 4 the temperature at the outlet of the catalyst 8. ⁇ 2, ⁇ 3, ⁇ 4 are, of course, the temperatures reached according to the teachings of the present invention.
- Zone Z in gray, is the temperature zone for the regeneration of the particulate filter.
- FIG. 3 illustrates the possible modes of activation of these various means when the engine load decreases during the regeneration period of the particulate filter.
- the temperature at the motor output ⁇ 5 also decreases. In the part ® of the graph, this temperature is, however, sufficient for the temperature ⁇ 7, upstream of the particulate filter allows the regeneration thereof without the need for additional heating.
- the exothermic reaction in the catalyst 8 and in the pre-catalyst 4 can be activated simultaneously but in variable proportions to find the best compromise between the treatment of HC emissions for which warming of the pre-catalyst is preferable but which penalizes the consumption, which is less important in the case where the catalyst is heated by fuel injection to the exhaust.
- Figures 4 to 6 show such distributions on the motor field.
- zone A of the graphs of FIGS. 4, 5 and 6 normal engine warm-up is sufficient, no additional strategy is involved.
- zone D of the two graphs the motor heating is also activated.
- the generation of exotherms is only used in the zones of the engine field where engine heating is difficult and a source of dilution of the fuel in the lubricating oil (zone F). In the other zones (zone G), the heating is generated solely by the motor.
- the control of the heating means can be done in different ways.
- mapping For example, in a predetermined manner, by mapping. At the same point of the engine speed / load curve is always the same value for each of the heating means. In this case, no specific sensor is needed.
- This regulation can be done from one or more temperatures measured, by sensor, at different points of the line exhaust.
- the temperatures can be measured between the outlet of the turbocharger 3 and the pre-catalyst 4, between the pre-catalyst 4 and the catalyst 8, and downstream of the catalyst 8.
- an additional point can be raised downstream of the filter. particles 9.
- the regulation of the means generating the exothermic reactions can also take into account the exhaust gas flow rate. This flow can be measured or estimated.
- the regulation will act on the quantity and the phasing of it. If it is achieved by a delay of the main injection, the regulation will act on the sub-pitch angle and the amount thereof, with respect to a 90 ° angle of the crankshaft.
- the piloting of the average flow rate of the fuel injected into the exhaust will still make it possible to vary the exothermic reaction of the catalyst.
- This control can be performed from the temperature upstream of the particulate filter.
- FIG. 7 shows a control mode in which a cartographic control of the motor heating is coupled to a sensor regulation for the exothermic reactions: the temperature T1 upstream of the catalyst is measured and compared with the temperature T2 which one it is desired to obtain upstream of the particulate filter, the amounts of heat that must be created in the pre-catalyst (Q1) and in the catalyst (Q2) are thus adjusted continuously.
- the temperature T3 upstream of the particulate filter that allows the regulation, the quantities of heat in the pre-catalyst (Q3) and in the catalyst (Q4) are, they, piloted in all or nothing .
- the heating means can be used during the regeneration phase, in the various applicable control modes, continuously, intermittently or in continuously variable quantities of the PID type, according to the formula:
- Heating requirement Pre-positioning [motor point] + K p x (T-value) + K 1 xj (T-value) + K d x I T-value / Tm (T-value) xd (T-value) / dt
- the quantity injected is thus calculated by summing a quantity dependent on the driving point, by an amount proportional to the difference between the temperature reached and the target temperature, by an amount proportional to the derivative relative to the time of the the difference between the temperature reached and the target temperature (which will be deducted if the difference between the temperature reached and the target temperature is positive and added if the difference is negative) and a quantity proportional to the integral of the temperature. difference over a time much greater than the scale of variation of temperatures.
- the different heating means may use the same type of regulation or different modes.
- the different injections used to obtain the exothermic reactions can also be split into several injections.
- the invention makes it possible to minimize the stresses on all the elements of this line.
- the pre-catalyst which mainly contributes to the depollution on regulatory cycle, will not undergo accelerated aging.
- the amount of HC to be treated by the catalysts is low, in particular for the catalyst located upstream of the particulate filter, which receives the gases injected into the exhaust and under good conditions (hot upstream gases).
- the risk of HC emissions is therefore lower.
- This strategy also allows a limitation of heat losses and thus a gain in consumption during the regeneration phases of the particulate filter.
- the heat generated in the form of an exothermic reaction at the level of the catalysts results in less heat loss than that created at the motor level.
- the invention is applicable to all internal combustion engines equipped with a particulate filter, diesel engine, lean-burn gasoline engine ... It can also be used when the catalyst is situated upstream of the particulate filter, as in the example described above, only when the catalyst is directly impregnated in the particulate filter. In addition, and in all cases, a regeneration aid additive may be added to the fuel.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Exhaust system for an internal combustion engine (1) of a motor vehicle which is equipped with a first oxidation catalytic converter or precatalytic converter (4) positioned near the outlet of gas from the engine, and with a particulate filter (9) associated with a second oxidation catalytic converter (8) these being positioned downstream of the precatalytic converter. It comprises first means for generating an increase in the temperature of the gases leaving the engine (1), second means for generating an exothermal reaction in the precatalytic converter (4) and third means (5) for generating an exothermal reaction in the catalytic converter (8) so as to split the burden of generating the increase in exhaust gas temperature required for regenerating the particulate filter (9) between the engine, the precatalytic converter and the catalytic converter.
Description
Ligne d'échappement des gaz pour moteur à combustion interne équipée de systèmes de dépollution. Exhaust gas line for internal combustion engine equipped with pollution control systems.
L'invention concerne une ligne d'échappement de gaz pour moteur de véhicule automobile équipée de systèmes de dépollution.The invention relates to a gas exhaust line for a motor vehicle engine equipped with pollution control systems.
Les polluants issus de la combustion d'un moteur de véhicule automobile que celui-ci soit un moteur Diesel ou essence, sont majoritairement des hydrocarbures imbrûlés, des oxydes d'azote (monoxyde d'azote NO et dioxyde d'azote NO2), des oxydes de carbone (monoxyde de carbone CO) et dans le cas des moteurs Diesel et des moteurs à injection directe à essence, des particules solides carbonées.The pollutants resulting from the combustion of a motor vehicle engine whether it is a diesel engine or gasoline, are mainly unburned hydrocarbons, nitrogen oxides (nitrogen monoxide NO and nitrogen dioxide NO 2 ), carbon oxides (carbon monoxide CO) and in the case of diesel engines and gasoline direct injection engines, carbonaceous solid particles.
Afin de respecter les normes environnementales internationales, la maîtrise des émissions de HC, de CO, de NOx et de particules est impérative et des technologies de post-traitement des gaz sont indispensables.In order to comply with international environmental standards, the control of HC, CO, NOx and particulate emissions is imperative and gas aftertreatment technologies are essential.
La dépollution des véhicules automobiles fait appel à différents systèmes de post-traitement pour éliminer les polluants produits par le moteur : les catalyseurs, et le filtre à particules dans le cas des moteurs Diesel.The clearance of motor vehicles uses different after-treatment systems to remove the pollutants produced by the engine: the catalysts, and the particulate filter in the case of diesel engines.
Le filtre à particules permet d'éliminer par filtration les particules solides présentes dans les gaz d'échappement des moteurs Diesel. Une fois piégées au sein du filtre, les particules doivent être éliminées périodiquement par élévation de la température jusqu'à 450 à 700 °C au sein du filtre afin d'entraîner leur combustion. Cette opération est couramment appelée « régénération » du filtre à particules. Classiquement l'énergie nécessaire à la régénération est fournie par une élévation de la température des gaz d'échappement.The particulate filter can filter out solid particles present in the exhaust gas of diesel engines. Once trapped within the filter, the particles must be removed periodically by raising the temperature to 450-700 ° C within the filter to cause their combustion. This operation is commonly called "regeneration" of the particulate filter. Conventionally the energy required for regeneration is provided by an increase in the temperature of the exhaust gas.
Cependant demander au moteur de fournir une telle température présente des difficultés, en particulier dans le cas des températures les plus élevées comprises entre 550 à 700 °C.
Classiquement le surplus d'énergie à l'échappement par rapport au fonctionnement normal du moteur est fourni par l'utilisation de post-injections, c'est-à-dire d'injections de carburant tardives, après le point mort haut du cycle, ou par une dégradation du rendement de la combustion.However, it is difficult for the motor to provide such a temperature, particularly in the case of the highest temperatures of 550 to 700 ° C. Classically, the excess energy in the exhaust compared to the normal operation of the engine is provided by the use of post-injections, that is to say of late fuel injections, after the top dead center of the cycle, or by degradation of the combustion efficiency.
Dans le cas de l'utilisation d'une post-injection celle-ci peut brûler totalement ou partiellement dans le moteur, générant une élévation de la température des gaz d'échappement ou, si elle est suffisamment tardive, entraîner une augmentation des quantités de CO et d'HC à l'échappement qui s'oxydent en arrivant sur le catalyseur d'oxydation afin de générer de la chaleur.In the case of the use of a post-injection it may burn completely or partially in the engine, generating an increase in the temperature of the exhaust gas or, if it is sufficiently late, lead to an increase in the amounts of CO and HC exhaust that oxidize upon arriving at the oxidation catalyst to generate heat.
Cette méthode entraîne une contrainte thermique forte sur le catalyseur le plus proche du moteur qui est soumis à chaque régénération à une forte élévation de température. Par ailleurs le turbocompresseur et le collecteur d'échappement sont aussi soumis à des températures élevées. Enfin les méthodes de chauffage issues du moteur entraînent de la dilution de gazole dans l'huile de lubrification de celui-ci, ce qui est préjudiciable à sa durée de vie.This method causes a strong thermal stress on the catalyst closest to the engine which is subjected to each regeneration at a high temperature rise. In addition, the turbocharger and the exhaust manifold are also subjected to high temperatures. Finally, the heating methods from the engine lead to the dilution of diesel oil in the lubricating oil thereof, which is detrimental to its life.
L'utilisation d'injection de gazole à l'échappement permet de résoudre la plupart de ces problèmes. Dans ce cas le chauffage issu du moteur est fortement réduit et la chaleur est générée par combustion du gazole introduit à l'échappement sur le catalyseur en amont du filtre à particules. La dilution d'huile alors est fortement réduite ainsi que les contraintes thermiques sur le collecteur d'échappement et le turbocompresseur.The use of diesel injection in the exhaust makes it possible to solve most of these problems. In this case the heating from the engine is greatly reduced and the heat is generated by combustion of the gas oil introduced to the exhaust on the catalyst upstream of the particulate filter. The oil dilution is then greatly reduced as are the thermal stresses on the exhaust manifold and the turbocharger.
Cette technologie présente un intérêt spécifique dans le cas où le catalyseur d'oxydation est scindé en une partie proche de la sortie du moteur (appelée pré-catalyseur) et une partie plus éloignée de cette sortie, par exemple, sous la caisse du véhicule (appelée catalyseur). Dans ce cas l'injection de gazole entre les deux catalyseurs permet de ne solliciter thermiquement que le second catalyseur lors des
régénérations, le pré-catalyseur étant alors uniquement dédié à l'oxydation des HC et CO issus du moteur.This technology is of particular interest in the case where the oxidation catalyst is split into a part close to the engine outlet (called pre-catalyst) and a part further from this outlet, for example, under the vehicle body ( called catalyst). In this case, the injection of diesel fuel between the two catalysts makes it possible to thermally solicit only the second catalyst during regeneration, the pre-catalyst then being solely dedicated to the oxidation of HC and CO from the engine.
L'inconvénient majeur de cette technologie est la très forte sollicitation thermique du catalyseur générant l'exotherme (jusqu'à 400 ou 500 °C d'exotherme) et la nécessité d'une très grande capacité de traitement d'HC pour ce dernier afin d'éviter fumées et odeurs à l'échappement.The major drawback of this technology is the very high thermal load on the catalyst generating the exotherm (up to 400 or 500 ° C exotherm) and the need for a very high HC treatment capacity for the latter. to avoid smoke and odors in the exhaust.
Le but de l'invention est donc de proposer, dans le cas d'une ligne d'échappement comportant un catalyseur associé à un filtre à particules, une stratégie visant à générer, en amont du filtre à particules, une température suffisamment élevée pour provoquer la combustion totale des particules, sans sollicitation excessive du moteur ou du catalyseur.The object of the invention is therefore to propose, in the case of an exhaust line comprising a catalyst associated with a particulate filter, a strategy for generating, upstream of the particulate filter, a sufficiently high temperature to cause total combustion of the particles, without excessive stress on the engine or the catalyst.
A cet effet, la présente invention a pour objet une ligne d'échappement des gaz pour moteur à combustion interne de véhicule automobile équipée d'un premier catalyseur d'oxydation ou pré-catalyseur placé à proximité de la sortie des gaz du moteur et d'un filtre à particules associé à un second catalyseur d'oxydation placés en aval du pré- catalyseur. Selon l'invention, elle comporte des premiers moyens pour générer une élévation de la température des gaz en sortie du moteur, des deuxièmes moyens pour provoquer une réaction exothermique dans le pré-catalyseur et des troisièmes moyens pour provoquer une réaction exothermique dans le second catalyseur de façon à répartir la génération de l'élévation de température des gaz d'échappement, nécessitée par la régénération du filtre à particules, entre le moteur, le pré-catalyseur et le second catalyseur.For this purpose, the subject of the present invention is a gas exhaust line for an internal combustion engine of a motor vehicle equipped with a first oxidation catalyst or pre-catalyst placed close to the exit of the engine gases and a particle filter associated with a second oxidation catalyst placed downstream of the pre-catalyst. According to the invention, it comprises first means for generating an increase in the temperature of the gases leaving the engine, second means for causing an exothermic reaction in the pre-catalyst and third means for causing an exothermic reaction in the second catalyst. so as to distribute the generation of the temperature rise of the exhaust gas, necessitated by the regeneration of the particulate filter, between the engine, the pre-catalyst and the second catalyst.
Selon d'autres caractéristiques avantageuses de l'invention :According to other advantageous features of the invention:
- Les moyens pour générer une élévation de la température des gaz en sortie du moteur sont aptes à provoquer une dégradation de l'efficacité de combustion.- The means for generating an increase in the temperature of the gas output of the engine are able to cause a degradation of the combustion efficiency.
• La dégradation de l'efficacité de combustion est obtenue par sous calage de l'injection principale de carburant,
c'est-à-dire par une injection plus tardive par rapport au point mort haut du cycle.• The degradation of the combustion efficiency is obtained by under-setting the main fuel injection, that is to say by a later injection with respect to the top dead center of the cycle.
• L'injection principale est retardée de 2 à 20 °d'angle du vilebrequi n par rapport à une i njection normale.• The main injection is delayed by 2 to 20 ° of crank angle compared to a normal injection.
- la dégradation de l'efficacité de combustion est obtenue par réduction de la quantité d'ai r admise dans le moteur.the degradation of the combustion efficiency is obtained by reducing the quantity of ai r admitted into the engine.
• Les moyens pour générer une élévation de la température des gaz en sortie du moteur permettent d'obtenir, en amont du pré-catalyseur, une température des gaz comprise entre 200 et 650 °CThe means for generating an increase in the temperature of the gases leaving the engine makes it possible to obtain, upstream of the pre-catalyst, a gas temperature of between 200 and 650 ° C.
• Les moyens pour provoquer une réaction exothermique dans le pré-catalyseur sont aptes à déclencher une phase de post injection de carburant dans le moteur.• The means for causing an exothermic reaction in the pre-catalyst are able to trigger a post-fuel injection phase in the engine.
• La post injection est tardive et comprise entre 90 à 240 ° d'angle du vilebrequi n .• The post injection is late and between 90 to 240 ° angle of the crankshaft.
• La température de la réaction exothermique dans le précatalyseur est comprise entre 20 et 200 °C.• The temperature of the exothermic reaction in the precatalyst is between 20 and 200 ° C.
• Le moyen pour générer une réaction exothermique dans le catalyseur est un dispositif d'introduction de carburant disposé entre le pré-catalyseur et le catalyseur.The means for generating an exothermic reaction in the catalyst is a fuel introduction device disposed between the pre-catalyst and the catalyst.
• La température de la réaction exothermique dans le catalyseur est comprise entre 20 et 300 °C.The temperature of the exothermic reaction in the catalyst is between 20 and 300 ° C.
• Les trois moyens de chauffage des gaz d'échappement sont activés successivement en fonction de la différence entre la température des gaz à la sortie du moteur et celle nécessaire à l'amont du fi ltre à particules pour assurer la régénération de celui-ci .The three means for heating the exhaust gases are activated successively as a function of the difference between the temperature of the gases at the outlet of the engine and that necessary upstream of the particulate filter to ensure the regeneration of the latter.
• Au moins deux des moyens de chauffage des gaz d'échappement sont activés simultanément.
" Les deux réaction exothermes sont produites simultanément et pilotées de façon à assurer le mei lleur compromis traitement des HC/consommation de carburant.At least two of the exhaust gas heating means are activated simultaneously. "Both exothermic reactions are produced simultaneously and controlled to ensure the best compromise between HC treatment and fuel consumption.
• A fort régi me du moteur et charge moyenne et forte, les moyens pour générer une élévation de la température des gaz en sortie du moteur sont rendus prépondérants par rapport aux deux autres moyens de chauffage des gaz.• With strong engine and medium and strong load, the means to generate a rise in the temperature of the gas output of the engine are made preponderant compared to the other two gas heating means.
• Le contrôle des moyens de chauffage est prédétermi né par cartographie.• The control of the heating means is predefined by cartography.
- Le contrôle des moyens de chauffage est une régulation en boucle fermée.- The control of the heating means is a closed-loop control.
• La régulation utilise une ou plusieurs températures relevées, par capteur, en différents points de la ligne d'échappement.• The regulation uses one or more temperatures measured, by sensor, at different points of the exhaust line.
- La régulation des moyens générant les réactions exothermiques prend en compte le débit de gaz à l'échappement.- The regulation of the means generating the exothermic reactions takes into account the flow of gas to the exhaust.
• Lorsque les moyens pour générer une élévation de la température des gaz en sortie du moteur opèrent par sous calage de l'i njection principale, la régulation agit sur l'angle de sous calage de celle-ci , par rapport à un angle de 90 ° du vilebrequi n .When the means for generating an increase in the temperature of the gases at the output of the engine operate by under-setting the main injection, the regulation acts on the sub-setting angle thereof, with respect to an angle of 90.degree. ° of the crankshaft n.
• Pour réguler la réaction exothermique sur le pré-catalyseur on ajuste la quantité et le phasage de la post-i njection .• To regulate the exothermic reaction on the pre-catalyst the amount and the phase of the post-injection are adjusted.
- Pour réguler la réaction exothermique sur le catalyseur, on pi lote le débit moyen du carburant i njecté à l'échappement.To control the exothermic reaction on the catalyst, the average flow rate of the fuel i injected to the exhaust is plotted.
• Pour assurer le contrôle de la stratégie de l'élévation de température des gaz, on combine les modes de contrôle prédéterminé par cartographique et par régulation en boucle fermée. Par exemple, une régulation cartographique du chauffage moteur est couplée à une régulation par
capteur pour les réactions exothermiques dans le précatalyseur et dans le catalyseur.• To control the strategy of the gas temperature rise, the control modes are pre-determined by mapping and closed-loop control. For example, a cartographic control of the motor heating is coupled to a regulation by sensor for exothermic reactions in the precatalyst and in the catalyst.
• durant la phase de régénération , les moyens de chauffage des gaz d'échappement sont utilisés soit en continu , soit de façon i ntermittente, soit en quantités conti nûment variables.During the regeneration phase, the means for heating the exhaust gases are used either continuously, intermittently or in continuously variable amounts.
• le second catalyseur est situé en amont du filtre à particules ou intégré sur le même support.The second catalyst is located upstream of the particulate filter or integrated on the same support.
• le carburant comporte un additif d'aide à la régénération du filtre à particules.The fuel comprises an additive that aids the regeneration of the particulate filter.
D'autres caractéristiques et avantages de l'invention apparaîtront clairement à la lecture de la description ci-après, donnée à titre i ndicatif en référence aux dessins annexés dans lesquels :Other characteristics and advantages of the invention will become clear from reading the following description, given as an indication with reference to the appended drawings, in which:
- La figure 1 est un schéma synoptique d'une ligne d'échappement selon l'i nvention .FIG. 1 is a block diagram of an exhaust line according to the invention.
- La figure 2 est un graphique des températures en différents points de la ligne d'échappement, en fonction de la vitesse du moteur.- Figure 2 is a graph of temperatures at different points of the exhaust line, depending on the speed of the engine.
- La figure 3 est un graphique i llustrant un exemple de changement de mode de chauffage, lors d'une dimi nution de charge du moteur.FIG. 3 is a graph illustrating an example of a change of heating mode during a load reduction of the motor.
- Les figures 4, 5 et 6 i llustrent des exemples de répartitions des modes de chauffage sur le champ moteur. - Les figures 7 et 8 sont des exemples de contrôle des différents moyens de chauffage et,FIGS. 4, 5 and 6 illustrate examples of distributions of the heating modes on the motor field. FIGS. 7 and 8 are examples of control of the various heating means and
- La figure 9 montre des exemples de séquence d'i njection .FIG. 9 shows examples of injection sequence.
Le schéma synoptique de la figure 1 i llustre un exemple de ligne d'échappement selon l'i nvention .The block diagram of FIG. 1 illustrates an example of an exhaust line according to the invention.
Cette ligne comprend, comme cela est connu , un moteur 1 , par exemple, un moteur Diesel à quatre cylindres, en sortie duquel
se trouve un collecteur des gaz d'échappement 2 et un turbocompresseur 3, débouchant dans la ligne d'échappement.This line comprises, as is known, a motor 1, for example a four-cylinder diesel engine, at the output of which there is an exhaust manifold 2 and a turbocharger 3, opening into the exhaust line.
Cette ligne d'échappement comporte un premier catalyseur ou pré-catalyseur 4, placé à proximité de la sortie des gaz du moteur qui permet de traiter les émissions d'HC et CO du moteurThis exhaust line comprises a first catalyst or pre-catalyst 4 placed near the engine gas outlet which makes it possible to treat the HC and CO emissions of the engine
En sortie du pré-catalyseur 4, un dispositif 5 permet l'introduction de carburant comme par exemple du gazole, dans la ligne d'échappement.At the outlet of the pre-catalyst 4, a device 5 allows the introduction of fuel such as, for example, diesel into the exhaust line.
Ce dispositif comprend, par exemple, des moyens de pilotage de l'introduction 6 à partir d'un réservoir de carburant 7 du véhicule ou du circuit de carburant du véhicule.This device comprises, for example, introduction control means 6 from a fuel tank 7 of the vehicle or the fuel system of the vehicle.
Le dispositif 5 d'introduction de carburant est disposé entre le pré-catalyseur 4 et un second catalyseur 8 associé à un filtre à particules 9.The fuel introduction device 5 is disposed between the pre-catalyst 4 and a second catalyst 8 associated with a particulate filter 9.
Le catalyseur 8 et le filtre à particules 9 sont disposés à une distance suffisante des moyens 5 d'introduction de carburant dans la ligne d'échappement pour permettre une bonne homogénéisation du mélange gaz/carburant.The catalyst 8 and the particulate filter 9 are arranged at a sufficient distance from the means 5 for introducing fuel into the exhaust line to allow good homogenization of the gas / fuel mixture.
Selon l'invention, on vise à générer une température élevée, entre 400 et 800 °C (de préférence entre 450 et 700 °C), en amont du filtre à particules, sans sollicitation excessive du moteur ou du catalyseur pour obtenir la régénération dudit filtre.According to the invention, it is intended to generate a high temperature, between 400 and 800 ° C. (preferably between 450 and 700 ° C.), upstream of the particulate filter, without excessive stress on the engine or the catalyst in order to obtain the regeneration of said filtered.
Pour ce faire, la stratégie consiste à répartir l'élévation de température entre le moteur, le pré-catalyseur et le catalyseur.To do this, the strategy consists of distributing the temperature rise between the engine, the pre-catalyst and the catalyst.
Dans ce but, on génère une élévation de la température des gaz en sortie du moteur 1 , et une réaction exothermique, dans le pré-catalyseur 4 et dans le catalyseur 8.For this purpose, an increase in the temperature of the gases at the outlet of the engine 1 and an exothermic reaction are generated in the pre-catalyst 4 and in the catalyst 8.
L'élévation de la température des gaz en sortie du moteur 1 peut être obtenue par dégradation de l'efficacité de combustion, par exemple par sous calage de l'injection
principale, c'est-à-dire par une injection plus tardive par rapport au point mort haut (PMH), par une post-injection brûlant totalement dans le moteur, par vannage à l'admission ou toute combinaison de ces moyens connus.The rise in the temperature of the gases at the outlet of the engine 1 can be obtained by degradation of the combustion efficiency, for example by undercooling of the injection main, that is to say by a later injection compared to top dead center (TDC), by a post-injection totally burning in the engine, by winnowing admission or any combination of these known means.
Sur la figure 9b, on a représenté une séquence d'injection avec sous calage de l'injection principale, on voit que par rapport à une injection classique, telle que représentée figure 9a, l'injection principale est déplacée de 2 à 20 °d'angle du vilebrequin.In FIG. 9b, there is shown an injection sequence with undercurrent of the main injection, it can be seen that with respect to a conventional injection, as represented in FIG. 9a, the main injection is displaced from 2 to 20 ° C. crankshaft angle.
On vise ainsi à obtenir, en amont du pré-catalyseur 4, une température des gaz comprise entre 200 et 650 °C. Dans les conditions les plus courantes de fonctionnement du moteur cette plage de température sera comprise entre 250 et 400 °C. Ceci correspond à une élévation de température de 50 à 350 °C par rapport au mode de fonctionnement hors régénération.It is thus intended to obtain, upstream of the pre-catalyst 4, a gas temperature of between 200 and 650 ° C. Under the most common operating conditions of the engine this temperature range will be between 250 and 400 ° C. This corresponds to a temperature rise of 50 to 350 ° C compared to the non-regeneration mode of operation.
La réaction exothermique sur le pré-catalyseur 4 sera obtenue à l'aide d'une post injection, celle-ci étant de préférence tardive, afin de limiter la dilution de l'huile de lubrification. Sur la figure 9b, on a représenté une telle post injection, comprise entre 90 à 240 ° d'angle du vilebrequin, alors qu'une post injection classique (figure 9c) est comprise entre 20 à 90 d'angle du vilebrequin. De préférence, cette post-injection tardive sera comprise entre 1 20 à 1 80 ° d'angle du vilebrequin.The exothermic reaction on the pre-catalyst 4 will be obtained with the aid of a post injection, this being preferably late, in order to limit the dilution of the lubricating oil. In Figure 9b, there is shown such a post injection, between 90 to 240 ° crank angle, while a conventional post injection (Figure 9c) is between 20 to 90 crank angle. Preferably, this late post-injection will be between 1 20 to 1 80 ° crank angle.
Plus une post injection est proche de l'injection principale, plus elle génère de chaleur en sortie moteur. Au contraire, une post injection plus tardive, génère des émissions de CO, dus à sa combustion incomplète, et des HC. Plus la post injection est tardive, plus la quantité de chaleur produite est faible et plus les gaz d'échappement contiennent de HC.The more a post injection is close to the main injection, the more it generates heat at the motor output. On the contrary, a later post injection generates CO emissions, due to incomplete combustion, and HC. The later the post injection, the lower the amount of heat produced and the more the exhaust gas contains HC.
Ces émissions de CO et de HC sont oxydés en arrivant sur le pré-catalyseur et génèrent de la chaleur. Afin de ne pas soumettre celui-ci à des températures trop élevées, la température de la réaction exothermique ainsi créée sera
comprise entre 20 et 200 °C, dans la plus part des cas entre 50 et 1 50 °C.These CO and HC emissions are oxidized by arriving at the pre-catalyst and generating heat. In order not to subject the latter to too high temperatures, the temperature of the exothermic reaction thus created will be between 20 and 200 ° C, in most cases between 50 and 150 ° C.
La réaction exothermique sur le catalyseur 8 est engendrée par le dispositif d'introduction de carburant 5 qui envoie dans le catalyseur des hydrocarbures dont l'oxydation va provoquer un dégagement de chaleur important. On cherchera à obtenir une température de la réaction exothermique ainsi créée comprise entre 20 et 300 °C, dans la plus part des cas entre 50 et 200 °C.The exothermic reaction on the catalyst 8 is generated by the fuel introduction device 5 which sends into the catalyst hydrocarbons whose oxidation will cause a significant release of heat. It will be sought to obtain a temperature of the exothermic reaction thus created between 20 and 300 ° C., in most cases between 50 and 200 ° C.
Le diagramme de la figure 2 représente les températures en sortie de chacun des éléments contribuant à réchauffement de la ligne d'échappement, en fonction de la vitesse du moteur : Θ1 est la température en sortie du turbocompresseur 3, en fonctionnement normal du moteur, c'est-à-dire hors phase de régénération du filtre à particules ; Θ2 est la température en sortie du turbocompresseur en phase de régénération, Θ3 est la température en sortie du pré-catalyseur 4 et Θ4 la température en sortie du catalyseur 8. Θ2, Θ3, Θ4 sont, bien entendu, les températures atteintes selon les enseignements de la présente invention. La zone Z, en grisée, est la zone de température permettant la régénération du filtre à particules.The diagram of FIG. 2 represents the temperatures at the outlet of each of the elements contributing to the heating of the exhaust line, as a function of the speed of the engine: Θ1 is the temperature at the outlet of the turbocharger 3, during normal engine operation, c that is, outside the regeneration phase of the particulate filter; Θ2 is the temperature at the outlet of the turbocharger in the regeneration phase, Θ3 is the temperature at the outlet of the pre-catalyst 4 and Θ4 the temperature at the outlet of the catalyst 8. Θ2, Θ3, Θ4 are, of course, the temperatures reached according to the teachings of the present invention. Zone Z, in gray, is the temperature zone for the regeneration of the particulate filter.
On voit que l'amplitude des courbes varient selon les plages de fonctionnement du moteur. Dans les zones où le moteur fonctionne à forte charge, par exemple la fin du cycle tel qu'illustré sur la figure, un seul ou seulement deux des trois moyens utilisés sont suffisants pour assurer l'élévation de température requise. Il est donc possible de commander, en conséquence, l'activation des différents moyens de chauffage.It can be seen that the amplitude of the curves varies according to the operating ranges of the motor. In areas where the engine is operating at high load, for example the end of the cycle as shown in the figure, only one or two of the three means used are sufficient to ensure the required temperature rise. It is therefore possible to control, accordingly, the activation of the various heating means.
La figure 3 illustre les modes d'activation possibles de ces différents moyens lorsque la charge du moteur décroît en période de régénération du filtre à particules. Lorsque la charge décroît, la température, en sortie moteur Θ5 décroît également.
Dans la partie ® du graphique, cette température est, cependant, suffisante pour que la température Θ7, en amont du filtre à particules permette la régénération de celui-ci sans besoin de chauffage additionnel.FIG. 3 illustrates the possible modes of activation of these various means when the engine load decreases during the regeneration period of the particulate filter. When the load decreases, the temperature at the motor output Θ5 also decreases. In the part ® of the graph, this temperature is, however, sufficient for the temperature Θ7, upstream of the particulate filter allows the regeneration thereof without the need for additional heating.
Dans la partie Φ du graphique, la température de sortie moteur devient insuffisante pour assurer seule la régénération. On injecte alors du carburant à l'échappement pour provoquer une réaction exothermique dans le catalyseur 8, la température Θ9 en sortie de celui-ci augmente de sorte que Θ7 reste dans la zone de régénération.In part Φ of the graph, the motor output temperature becomes insufficient to ensure regeneration alone. Fuel is then injected into the exhaust to cause an exothermic reaction in the catalyst 8, the temperature Θ9 at the outlet thereof increases so that Θ7 remains in the regeneration zone.
Dans la partie Φ , après une nouvelle baisse de la température Θ5 de sortie moteur, on provoque, en outre, une réaction exothermique dans le pré-catalyseur 4 de façon à augmenter la température Θ8 en sortie de celui-ci .In part Φ, after a further decrease in the motor output temperature Θ5, an exothermic reaction is also caused in the pre-catalyst 4 so as to increase the temperature Θ8 at the outlet thereof.
Enfin, si la température Θ5 du moteur baisse encore, dans le cas de la partie © du graphique, on déclenche, en outre, les moyens prévus pour élever la température du moteur Θ6.Finally, if the temperature Θ5 of the engine drops further, in the case of the part © of the graph, it triggers, in addition, the means provided to raise the engine temperature Θ6.
Grâce à la l'activation successive des différents moyens de chauffage des gaz d'échappement, on constate que la température Θ7 en amont du filtre à particules est restée sensiblement constante.Thanks to the successive activation of the various means of heating the exhaust gas, it is found that the temperature Θ7 upstream of the particulate filter has remained substantially constant.
Au lieu d'une activation successive, il peut être judicieux de prévoir une activation simultanée de deux ou trois des moyens de chauffage en modulant leurs effets. La réaction exothermique dans le catalyseur 8 et dans le pré-catalyseur 4 peuvent être activées simultanément mais en proportions variables pour trouver le meilleur compromis entre le traitement des émissions de HC pour lequel réchauffement du pré-catalyseur est préférable mais qui pénalise la consommation, laquelle est moins importante dans le cas où l'on réchauffe la catalyseur par injection de carburant à l'échappement.Instead of successive activation, it may be wise to provide simultaneous activation of two or three of the heating means by modulating their effects. The exothermic reaction in the catalyst 8 and in the pre-catalyst 4 can be activated simultaneously but in variable proportions to find the best compromise between the treatment of HC emissions for which warming of the pre-catalyst is preferable but which penalizes the consumption, which is less important in the case where the catalyst is heated by fuel injection to the exhaust.
Les figures 4 à 6 présentent de telles répartitions sur le champ moteur. Dans la zone A des graphiques des figures 4, 5, et 6,
réchauffement normal des gaz engendré par le moteur est suffisant, aucune stratégie supplémentaire n'est mise en jeu.Figures 4 to 6 show such distributions on the motor field. In zone A of the graphs of FIGS. 4, 5 and 6, normal engine warm-up is sufficient, no additional strategy is involved.
Dans l'exemple de stratégie présenté figure 4, on provoque successivement une réaction exotherme dans le catalyseur 8 (zone B) et dans le pré-catalyseur 4 (zone C), tandis que dans l'exemple représenté figure 5 les deux réaction exothermes sont produites simultanément dans les deux zones B et C et pilotées de façon à assurer le meilleur compromis traitement HC/consommation.In the strategy example presented in FIG. 4, an exothermic reaction is successively carried out in the catalyst 8 (zone B) and in the pre-catalyst 4 (zone C), whereas in the example shown in FIG. 5 the two exothermic reactions are produced simultaneously in both zones B and C and piloted in order to ensure the best compromise HC / consumption treatment.
Dans la zone D des deux graphiques, Le chauffage du moteur est également activé.In zone D of the two graphs, the motor heating is also activated.
En plus de ces transitions, à fort régime du moteur et charge moyenne et forte, les forts débits des gaz d'échappement rendent les réaction exothermes plus difficiles à générer sans provoquer une trop forte émission d'HC, on privilégie donc le chauffage moteur, par rapport aux autres moyens (zone E des graphiques).In addition to these transitions, at high engine speed and medium and high load, the high flow rates of the exhaust gases make the exothermic reaction more difficult to generate without causing too much HC emission, so we prefer the engine heating, compared to the other means (zone E of the graphs).
Dans le troisième exemple de stratégie représenté figure 6, la génération d'exothermes n'est utilisé que dans les zones du champ moteur où le chauffage du moteur est difficile et source de dilution du carburant dans l'huile de lubrification (zone F). Dans les autres zones (zone G), le chauffage est généré uniquement par le moteur.In the third exemplary strategy shown in FIG. 6, the generation of exotherms is only used in the zones of the engine field where engine heating is difficult and a source of dilution of the fuel in the lubricating oil (zone F). In the other zones (zone G), the heating is generated solely by the motor.
Le contrôle des moyens de chauffage peut se faire de différentes façons.The control of the heating means can be done in different ways.
Par exemple, de manière prédéterminée, par cartographie. A un même point de la courbe régime/charge du moteur correspond toujours la même valeur pour chacun des moyens de chauffage. Dans ce cas, aucun capteur spécifique n'est nécessaire.For example, in a predetermined manner, by mapping. At the same point of the engine speed / load curve is always the same value for each of the heating means. In this case, no specific sensor is needed.
Ou bien par régulation en boucle fermée. Cette régulation pouvant se faire à partir d'une ou plusieurs températures relevées, par capteur, en différents points de la ligne
d'échappement. Les températures pourront être relevées entre la sortie du turbocompresseur 3 et le pré-catalyseur 4, entre le pré-catalyseur 4 et le catalyseur 8, et en aval du catalyseur 8. En complément, un point supplémentaire peut être relevé en aval du filtre à particules 9.Or by closed-loop regulation. This regulation can be done from one or more temperatures measured, by sensor, at different points of the line exhaust. The temperatures can be measured between the outlet of the turbocharger 3 and the pre-catalyst 4, between the pre-catalyst 4 and the catalyst 8, and downstream of the catalyst 8. In addition, an additional point can be raised downstream of the filter. particles 9.
Outre la température, la régulation des moyens générant les réactions exothermiques peut aussi prendre en compte le débit de gaz à l'échappement. Ce débit pouvant être mesuré ou estimé.In addition to the temperature, the regulation of the means generating the exothermic reactions can also take into account the exhaust gas flow rate. This flow can be measured or estimated.
En ce qui concerne le chauffage moteur, si celui-ci est réalisé au moyen d'une post-injection, la régulation agira sur la quantité et le phasage de celle-ci. S'il est réalisé au moyen d'un retard de l'injection principale, la régulation agira sur l'angle de sous calage et la quantité de celle-ci , par rapport à un angle de 90 ° du vilebrequin.With regard to the motor heating, if it is carried out by means of a post-injection, the regulation will act on the quantity and the phasing of it. If it is achieved by a delay of the main injection, the regulation will act on the sub-pitch angle and the amount thereof, with respect to a 90 ° angle of the crankshaft.
De même, on pourra ajuster la quantité et le phasage de la post-injection assurant la réaction exothermique sur le précatalyseur.Similarly, we can adjust the amount and phasing of the post-injection ensuring the exothermic reaction on the precatalyst.
Le pilotage du débit moyen du carburant injecté à l'échappement permettra encore de faire varier la réaction exothermique du catalyseur. Ce pilotage peut être effectué à partir de la température en amont du filtre à particules.The piloting of the average flow rate of the fuel injected into the exhaust will still make it possible to vary the exothermic reaction of the catalyst. This control can be performed from the temperature upstream of the particulate filter.
Enfin, il est également possible de combiner ces modes de contrôle.Finally, it is also possible to combine these control modes.
Par exemple, la figure 7 montre un mode de contrôle dans lequel une régulation cartographique du chauffage moteur est couplée à une régulation par capteur pour les réactions exothermiques : la température T1 en amont du catalyseur est mesurée et comparée à la température T2 que l'on veut obtenir en amont du filtre à particules, les quantités de chaleur qui doivent être crées dans le pré-catalyseur (Q1 ) et dans le catalyseur (Q2) sont ainsi ajustées en continu.
Dans la figure 8, c'est la température T3 en amont du filtre à particules qui permet la régulation, les quantités de chaleur dans le pré-catalyseur (Q3) et dans le catalyseur (Q4) sont, elles, pilotées en tout ou rien.For example, FIG. 7 shows a control mode in which a cartographic control of the motor heating is coupled to a sensor regulation for the exothermic reactions: the temperature T1 upstream of the catalyst is measured and compared with the temperature T2 which one it is desired to obtain upstream of the particulate filter, the amounts of heat that must be created in the pre-catalyst (Q1) and in the catalyst (Q2) are thus adjusted continuously. In FIG. 8, it is the temperature T3 upstream of the particulate filter that allows the regulation, the quantities of heat in the pre-catalyst (Q3) and in the catalyst (Q4) are, they, piloted in all or nothing .
Bien entendu, ces exemples ne sont pas limitatifs et l'on pourrait, sans sortir du cadre de l'invention choisir d'autres modes de pilotage des moyens de chauffage.Of course, these examples are not limiting and one could, without departing from the scope of the invention choose other modes of control of the heating means.
De même, les moyens de chauffage peuvent être utilisés durant la phase de régénération, dans les différents modes de régulation applicables, en continu, de façon intermittente ou en quantités continûment variables de type PID, selon la formule :Similarly, the heating means can be used during the regeneration phase, in the various applicable control modes, continuously, intermittently or in continuously variable quantities of the PID type, according to the formula:
Besoin chauffage = Prépositionnement[point moteur] + Kp x (Tcible-Tmesurée) + K1 x j(Tcible-Tmesurée) + Kd x I Tcible- Tmesuréel /(Tcible-Tmesurée) x d(Tcible-Tmesurée)/dtHeating requirement = Pre-positioning [motor point] + K p x (T-value) + K 1 xj (T-value) + K d x I T-value / Tm (T-value) xd (T-value) / dt
La quantité injectée étant ainsi calculée en faisant la somme d'une quantité dépendant du point moteur, d'une quantité proportionnelle à l'écart entre la température atteinte et la température cible, d'une quantité proportionnelle à la dérivée par rapport au temps de l'écart entre la température atteinte et la température cible (qui sera retranchée si l'écart entre la température atteinte et la température cible est positif et ajoutée si l'écart est négatif) et d'une quantité proportionnelle à l'intégrale de l'écart sur un temps très supérieur à l'échelle de variation des températures.The quantity injected is thus calculated by summing a quantity dependent on the driving point, by an amount proportional to the difference between the temperature reached and the target temperature, by an amount proportional to the derivative relative to the time of the the difference between the temperature reached and the target temperature (which will be deducted if the difference between the temperature reached and the target temperature is positive and added if the difference is negative) and a quantity proportional to the integral of the temperature. difference over a time much greater than the scale of variation of temperatures.
On précisera encore que les différent moyens de chauffage peuvent faire appel au même type de régulation ou à des modes différents.It will be further specified that the different heating means may use the same type of regulation or different modes.
Comme cela est bien connu, les différentes injections utilisées pour obtenir les réactions exothermiques peuvent aussi être scindées en plusieurs injections.As is well known, the different injections used to obtain the exothermic reactions can also be split into several injections.
Comme on l'a bien compris, à la lecture de ce qui précède, en répartissant l'élévation de température de la ligne
d'échappement, nécessitée par la régénération du filtre à particules, entre trois éléments de cette ligne, l'invention permet de minimiser les contraintes sur tous les éléments de cette ligne.As we have understood, reading the above, spreading the temperature rise of the line exhaust, required by the regeneration of the particle filter, between three elements of this line, the invention makes it possible to minimize the stresses on all the elements of this line.
La dilution d'huile, au sein du moteur, et la température en sortie de celui-ci seront plus faibles.The dilution of oil within the engine and the temperature at the outlet thereof will be lower.
Le pré-catalyseur, qui contribue principalement à la dépollution sur cycle réglementaire, ne subira pas de vieillissement accéléré.The pre-catalyst, which mainly contributes to the depollution on regulatory cycle, will not undergo accelerated aging.
Les réactions exothermiques restant limitées sur les deux catalyseurs, leur matériau n'a pas besoin de formulation spécifique, par rapport à ceux utilisés couramment.The exothermic reactions remaining limited on the two catalysts, their material does not need specific formulation, compared to those commonly used.
La quantité d'HC à traiter par les catalyseurs est faible, en particulier pour le catalyseur situé en amont du filtre à particules, qui reçoit les gaz injectés à l'échappement et dans de bonnes conditions (gaz amont chauds). Le risque d'émissions parasites d'HC (fumées, odeur) est donc plus faible.The amount of HC to be treated by the catalysts is low, in particular for the catalyst located upstream of the particulate filter, which receives the gases injected into the exhaust and under good conditions (hot upstream gases). The risk of HC emissions (fumes, odor) is therefore lower.
Cette stratégie permet aussi une limitation des pertes thermiques et donc un gain en consommation pendant les phases de régénération du filtre à particules. En effet, la chaleur générée sous forme de réaction exothermique au niveau des catalyseurs entraîne moins de pertes thermiques que celle crée au niveau du moteur.This strategy also allows a limitation of heat losses and thus a gain in consumption during the regeneration phases of the particulate filter. In fact, the heat generated in the form of an exothermic reaction at the level of the catalysts results in less heat loss than that created at the motor level.
Enfin cette stratégie permet une meilleure efficacité de régénération dans toutes les conditions et en particulier dans les zones de faible charge. Comme la cible de température fixée au moteur est plus faible (200-350 °C) elle peut-être obtenue dans toutes les conditions de roulage même les plus sévères (typiquement à faible vitesse).Finally this strategy allows a better regeneration efficiency in all conditions and in particular in areas of low load. As the temperature target attached to the engine is lower (200-350 ° C) it can be obtained in all driving conditions even the most severe (typically low speed).
L'invention est applicable à tous les moteurs à combustion interne équipés d'un filtre à particules, moteurs Diesel, moteur à essence à mélange pauvre... Elle peut être utilisée aussi
bien lorsque le catalyseur est situé en amont du filtre à particules, comme dans l'exemple décrit plus haut, que lorsque le catalyseur est di rectement i mprégné dans le fi ltre à particules. En outre, et dans tous les cas, un additif d'aide à la régénération peut être ajouté au carburant.
The invention is applicable to all internal combustion engines equipped with a particulate filter, diesel engine, lean-burn gasoline engine ... It can also be used when the catalyst is situated upstream of the particulate filter, as in the example described above, only when the catalyst is directly impregnated in the particulate filter. In addition, and in all cases, a regeneration aid additive may be added to the fuel.
Claims
1 . Ligne d'échappement des gaz pour moteur à combustion interne de véhicule automobile équipée d'un premier catalyseur d'oxydation ou pré-catalyseur placé à proximité de la sortie des gaz du moteur, et d'un filtre à particules associé à un second catalyseur d'oxydation placés en aval du précatalyseur, caractérisée en ce qu'elle comporte des premiers moyens, aptes à provoquer une dégradation de l'efficacité de combustion, pour générer une élévation de la température des gaz en sortie du moteur (1 ), des deuxièmes moyens pour provoquer une réaction exothermique dans le précatalyseur (4) et des troisièmes moyens (5) pour provoquer une réaction exothermique dans le catalyseur (8) de façon à répartir la génération de l'élévation de température des gaz d'échappement, nécessitée par la régénération du filtre à particules (9), entre le moteur (1 ), le pré-catalyseur (4) et le catalyseur (8).1. Exhaust gas line for an internal combustion engine of a motor vehicle equipped with a first oxidation catalyst or pre-catalyst placed near the exit of the engine gases, and a particle filter associated with a second catalyst of oxidation placed downstream of the precatalyst, characterized in that it comprises first means, capable of causing a degradation of the combustion efficiency, to generate an increase in the temperature of the gases at the outlet of the engine (1), second means for causing an exothermic reaction in the precatalyst (4) and third means (5) for causing an exothermic reaction in the catalyst (8) so as to distribute the generation of the temperature rise of the exhaust gas, required by the regeneration of the particulate filter (9), between the engine (1), the pre-catalyst (4) and the catalyst (8).
2. Ligne d'échappement selon la revendication 1 , caractérisée en ce que la dégradation de l'efficacité de combustion est obtenue par sous calage de l'injection principale de carburant, c'est-à-dire par une injection plus tardive par rapport au point mort haut (PMH) du cycle.2. Exhaust line according to claim 1, characterized in that the degradation of the combustion efficiency is obtained by under-setting the main fuel injection, that is to say by a later injection compared with at the top dead center (TDC) of the cycle.
3. Ligne d'échappement selon la revendication 2, caractérisée en ce que l'injection principale est retardée de 2 à 20 ° d'angle du vilebrequin par rapport à une injection normale.3. Exhaust line according to claim 2, characterized in that the main injection is delayed by 2 to 20 ° crank angle relative to a normal injection.
4. Ligne d'échappement selon la revendication 1 , caractérisée en ce que la dégradation de l'efficacité de combustion est obtenue par réduction de la quantité d'air admise dans le moteur. 4. Exhaust line according to claim 1, characterized in that the degradation of the combustion efficiency is obtained by reducing the amount of air admitted into the engine.
5. Ligne d'échappement selon l'une des revendications précédentes, caractérisée en ce que les moyens pour générer une élévation de la température des gaz en sortie du moteur (1 ) permettent d'obtenir, en amont du pré-catalyseur (4), une température des gaz comprise entre 200 et 650 °C.5. Exhaust line according to one of the preceding claims, characterized in that the means for generating an increase in the temperature of the gas output of the engine (1) make it possible to obtain, upstream of the pre-catalyst (4) a gas temperature of between 200 and 650 ° C.
6. Ligne d'échappement selon l'une des revendications précédentes, caractérisée en ce que les moyens pour provoquer une réaction exothermique dans le pré-catalyseur (4) sont aptes à déclencher une phase de post injection de carburant dans le moteur.6. Exhaust line according to one of the preceding claims, characterized in that the means for causing an exothermic reaction in the pre-catalyst (4) are able to trigger a post-fuel injection phase in the engine.
7. Ligne d'échappement selon la revendication 6, caractérisée en ce que la post injection est tardive et comprise entre 90 à 240 ° d'angle du vilebrequin.7. Exhaust line according to claim 6, characterized in that the post injection is late and between 90 to 240 ° angle of the crankshaft.
8. Ligne d'échappement selon l'une des revendications précédentes, caractérisée en ce que la température de la réaction exothermique dans le pré-catalyseur (4) est comprise entre 20 et 200 °C.8. Exhaust line according to one of the preceding claims, characterized in that the temperature of the exothermic reaction in the pre-catalyst (4) is between 20 and 200 ° C.
9. Ligne d'échappement selon l'une des revendications précédentes, caractérisée en ce que le moyen pour générer une réaction exothermique dans le catalyseur (8) est un dispositif d'introduction de carburant (5) disposé entre le précatalyseur (4) et le catalyseur (8).9. Exhaust line according to one of the preceding claims, characterized in that the means for generating an exothermic reaction in the catalyst (8) is a fuel introduction device (5) disposed between the precatalyst (4) and the catalyst (8).
1 0. Ligne d'échappement selon l'une des revendications précédentes, caractérisée en ce que la température de la réaction exothermique dans le catalyseur (8) est comprise entre 20 et 300 °C. 1 0. Exhaust line according to one of the preceding claims, characterized in that the temperature of the exothermic reaction in the catalyst (8) is between 20 and 300 ° C.
1 1 . Ligne d'échappement selon l'une des revendications précédentes, caractérisée en ce que les trois moyens de chauffage des gaz d'échappement sont activés successivement en fonction de la différence entre la température des gaz à la sortie du moteur et celle nécessaire à l'amont du filtre à particules pour assurer la régénération de celui-ci.1 1. Exhaust line according to one of the preceding claims, characterized in that the three means for heating the exhaust gas are activated successively as a function of the difference between the temperature of the gases at the outlet of the engine and that necessary for the upstream of the particulate filter to ensure the regeneration thereof.
1 2. Ligne d'échappement selon l'une des revendications 1 à 1 0, caractérisée en ce que au moins deux des moyens de chauffage des gaz d'échappement sont activés simultanément.1 2. Exhaust line according to one of claims 1 to 1 0, characterized in that at least two means of heating the exhaust gas are activated simultaneously.
1 3. Ligne d'échappement selon la revendication 1 2, caractérisée en ce que les deux réaction exothermes sont produites simultanément et pilotées de façon à assurer le meilleur compromis traitement des HC/consommation de carburant.3. Exhaust line according to claim 1 2, characterized in that the two exothermic reaction are produced simultaneously and controlled so as to ensure the best compromise treatment HC / fuel consumption.
14. Ligne d'échappement selon l'une des revendications précédentes, caractérisée en ce que à fort régime du moteur et charge moyenne et forte, les moyens pour générer une élévation de la température des gaz en sortie du moteur sont rendus prépondérants par rapport aux deux autres moyens de chauffage des gaz.14. Exhaust line according to one of the preceding claims, characterized in that at high speed of the engine and medium and high load, the means for generating an increase in the temperature of the gas output of the engine are made preponderant compared to two other means for heating the gases.
1 5. Ligne d'échappement selon l'une des revendications précédentes, caractérisée en ce que le contrôle des moyens de chauffage est prédéterminé par cartographie.5. The exhaust line according to one of the preceding claims, characterized in that the control of the heating means is predetermined by mapping.
1 6. Ligne d'échappement selon l'une des revendications 1 à 14, caractérisée en ce que le contrôle des moyens de chauffage est une régulation en boucle fermée.6. Exhaust line according to one of claims 1 to 14, characterized in that the control of the heating means is a closed-loop control.
1 7. Ligne d'échappement selon la revendication 1 6, caractérisée en ce que la régulation utilise une ou plusieurs températures relevées, par capteur, en différents points de la ligne d'échappement.7. The exhaust system according to claim 1 6, characterized in that the control uses one or more sensed temperatures per sensor at different points in the exhaust line.
1 8. Ligne d'échappement selon l'une des revendications 1 6 ou 1 7, caractérisée en ce que la régulation des moyens générant les réactions exothermiques prend en compte le débit de gaz à l'échappement.8. Exhaust line according to one of claims 1 6 or 1 7, characterized in that the regulation of the means generating the exothermic reactions takes into account the flow of gas exhaust.
1 9. Ligne d'échappement selon l'une des revendications 1 6 à 1 8, caractérisée en ce que lorsque les moyens pour générer une élévation de la température des gaz en sortie du moteur (1 ) opèrent par sous calage de l'injection principale, la régulation agit sur l'angle de sous calage de celle-ci,.1 9. Exhaust line according to one of claims 1 6 to 1 8, characterized in that when the means for generating an increase in the temperature of the gas output of the engine (1) operate by sub-calibration of the injection the main effect of the regulation is the sub-setting angle of the latter.
20. Ligne d'échappement selon l'une des revendications 6 à 1 9, caractérisée en ce que pour réguler la réaction exothermique sur le pré-catalyseur (4) on ajuste la quantité et le phasage de la post-injection.20. Exhaust line according to one of claims 6 to 1 9, characterized in that to regulate the exothermic reaction on the pre-catalyst (4) is adjusted the amount and phasage of the post-injection.
21 . Ligne d'échappement selon l'une des revendications 9 à 20, caractérisée en ce que pour réguler la réaction exothermique sur le catalyseur (8), on pilote le débit moyen du carburant injecté à l'échappement.21. Exhaust line according to one of claims 9 to 20, characterized in that to control the exothermic reaction on the catalyst (8), it controls the average flow of fuel injected into the exhaust.
22. Ligne d'échappement selon l'une des revendications précédentes, caractérisée en ce que, pour assurer le contrôle de la stratégie de l'élévation de température des gaz, on combine les modes de contrôle prédéterminé par cartographique et par régulation en boucle fermée.22. Exhaust line according to one of the preceding claims, characterized in that, to ensure the control of the strategy of the gas temperature rise, the control modes predetermined by mapping and closed-loop control are combined .
23. Ligne d'échappement selon la revendication 22, caractérisée en ce qu'une régulation cartographique du chauffage moteur est couplée à une régulation par capteur pour les réactions exothermiques dans le pré-catalyseur et dans le catalyseur.23. Exhaust line according to claim 22, characterized in that a cartographic control of the motor heating is coupled to a regulation by sensor for exothermic reactions in the pre-catalyst and in the catalyst.
24. Ligne d'échappement selon l'une des revendications précédentes, caractérisée en ce que, durant la phase de régénération, les moyens de chauffage des gaz d'échappement sont utilisés en continu.24. Exhaust line according to one of the preceding claims, characterized in that, during the regeneration phase, the exhaust gas heating means are used continuously.
25. Ligne d'échappement selon l'une des revendications 1 à 23, caractérisée en ce que, durant la phase de régénération, les moyens de chauffage des gaz d'échappement sont utilisés de façon intermittente.25. Exhaust line according to one of claims 1 to 23, characterized in that, during the regeneration phase, the exhaust gas heating means are used intermittently.
26. Ligne d'échappement selon l'une des revendications 1 à 23, caractérisée en ce que, durant la phase de régénération, les moyens de chauffage des gaz d'échappement sont utilisés en quantités continûment variables.26. Exhaust line according to one of claims 1 to 23, characterized in that, during the regeneration phase, the exhaust gas heating means are used in continuously variable amounts.
27. Ligne d'échappement selon l'une des revendications précédentes, caractérisée en ce que le catalyseur (8) est situé en amont du filtre à particules (9).27. Exhaust line according to one of the preceding claims, characterized in that the catalyst (8) is located upstream of the particulate filter (9).
28. Ligne d'échappement selon l'une des revendications 1 à 26, caractérisée en ce que le catalyseur (8) et le filtre à particules (9) sont intégrés sur le même support.28. Exhaust line according to one of claims 1 to 26, characterized in that the catalyst (8) and the particulate filter (9) are integrated on the same support.
29. Ligne d'échappement selon l'une des revendications précédentes, caractérisée en ce que le carburant comporte un additif d'aide à la régénération du filtre à particules. 29. Exhaust line according to one of the preceding claims, characterized in that the fuel comprises an additive to aid the regeneration of the particulate filter.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/516,551 US20100071350A1 (en) | 2006-11-27 | 2007-10-29 | Internal combustion engine exhaust system equipped with pollution reduction systems |
EP07866511A EP2084376A1 (en) | 2006-11-27 | 2007-10-29 | Internal combustion engine exhaust system equipped with pollution reduction systems |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0655118A FR2909123B1 (en) | 2006-11-27 | 2006-11-27 | GAS EXHAUST LINE FOR INTERNAL COMBUSTION ENGINE EQUIPPED WITH DETERMINATION SYSTEMS. |
FR0655118 | 2006-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008065287A1 true WO2008065287A1 (en) | 2008-06-05 |
Family
ID=38110702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2007/052268 WO2008065287A1 (en) | 2006-11-27 | 2007-10-29 | Internal combustion engine exhaust system equipped with pollution reduction systems |
Country Status (4)
Country | Link |
---|---|
US (1) | US20100071350A1 (en) |
EP (1) | EP2084376A1 (en) |
FR (1) | FR2909123B1 (en) |
WO (1) | WO2008065287A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5625489B2 (en) * | 2010-05-25 | 2014-11-19 | いすゞ自動車株式会社 | Exhaust gas purification system at high altitude |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1262641A1 (en) * | 2001-05-15 | 2002-12-04 | Mitsui & Co., Ltd. | Carbon particle reducing apparatus |
EP1517011A2 (en) * | 2003-09-22 | 2005-03-23 | J. Eberspächer GmbH & Co. KG | Exhaust gas apparatus with particle filter, heater arrangement and method of regeneration |
DE10361220A1 (en) * | 2003-12-24 | 2005-07-28 | Volkswagen Ag | Diesel particulate filter e.g. coated soot filter, regenerating method for motor vehicle, involves oxidizing injected fuel and its HC-portions on catalyst of filter to heat filter to preset temperature for burning soot directly on filter |
FR2880065A1 (en) * | 2004-12-23 | 2006-06-30 | Renault Sas | Internal combustion engine exhaust gas depollution device, has oxidation catalyst placed upstream of soot particle filter to reheat gas, and another oxidation catalyst placed upstream of fuel injector to treat HC and carbon-monoxide of gas |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3089989B2 (en) * | 1995-05-18 | 2000-09-18 | トヨタ自動車株式会社 | Diesel engine exhaust purification system |
DE50001415D1 (en) * | 2000-11-03 | 2003-04-10 | Ford Global Tech Inc | Process for the regeneration of the particle filter of a diesel engine |
US6405528B1 (en) * | 2000-11-20 | 2002-06-18 | Ford Global Technologies, Inc. | Method for determining load on particulate filter for engine exhaust, including estimation of ash content |
US6622480B2 (en) * | 2001-02-21 | 2003-09-23 | Isuzu Motors Limited | Diesel particulate filter unit and regeneration control method of the same |
US7137246B2 (en) * | 2002-04-24 | 2006-11-21 | Ford Global Technologies, Llc | Control for diesel engine with particulate filter |
JP4161930B2 (en) * | 2004-04-06 | 2008-10-08 | いすゞ自動車株式会社 | Exhaust gas purification system control method and exhaust gas purification system |
US7677032B2 (en) * | 2005-09-15 | 2010-03-16 | Cummins, Inc. | Apparatus, system, and method for determining the distribution of particulate matter on a particulate filter |
-
2006
- 2006-11-27 FR FR0655118A patent/FR2909123B1/en not_active Expired - Fee Related
-
2007
- 2007-10-29 WO PCT/FR2007/052268 patent/WO2008065287A1/en active Application Filing
- 2007-10-29 US US12/516,551 patent/US20100071350A1/en not_active Abandoned
- 2007-10-29 EP EP07866511A patent/EP2084376A1/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1262641A1 (en) * | 2001-05-15 | 2002-12-04 | Mitsui & Co., Ltd. | Carbon particle reducing apparatus |
EP1517011A2 (en) * | 2003-09-22 | 2005-03-23 | J. Eberspächer GmbH & Co. KG | Exhaust gas apparatus with particle filter, heater arrangement and method of regeneration |
DE10361220A1 (en) * | 2003-12-24 | 2005-07-28 | Volkswagen Ag | Diesel particulate filter e.g. coated soot filter, regenerating method for motor vehicle, involves oxidizing injected fuel and its HC-portions on catalyst of filter to heat filter to preset temperature for burning soot directly on filter |
FR2880065A1 (en) * | 2004-12-23 | 2006-06-30 | Renault Sas | Internal combustion engine exhaust gas depollution device, has oxidation catalyst placed upstream of soot particle filter to reheat gas, and another oxidation catalyst placed upstream of fuel injector to treat HC and carbon-monoxide of gas |
Also Published As
Publication number | Publication date |
---|---|
EP2084376A1 (en) | 2009-08-05 |
FR2909123A1 (en) | 2008-05-30 |
US20100071350A1 (en) | 2010-03-25 |
FR2909123B1 (en) | 2012-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2963641A1 (en) | METHOD AND DEVICE FOR REGENERATING A PARTICLE FILTER | |
EP2092168A1 (en) | Method for determining the amount of fuel to be injected in an exhaust line for regenerating a particle filter | |
FR2831208A1 (en) | Exhaust gas emission control device of internal combustion engine, performs temperature rise of specific catalyst on recognizing machine's combustion characteristic | |
EP1103702B1 (en) | Process of controlling a particle filter and a process of controlling an internal combustion engine | |
FR2915769A1 (en) | METHOD FOR CONTROLLING THE REGENERATION OF A PARTICLE FILTER. | |
EP1774144B1 (en) | System for assisting regeneration of pollution management means | |
EP2084376A1 (en) | Internal combustion engine exhaust system equipped with pollution reduction systems | |
EP2238334B1 (en) | Method and device for regenerating an exhaust gas post-treatment device | |
EP2078839B1 (en) | Quick-heating strategy to compensate for the aging of an oxidation catalyst in a diesel engine. | |
EP1625296B1 (en) | Method and system for controlling the regeneration of a particulate filter, and internal combustion engine provided with one such particulate filter | |
EP1344924B1 (en) | Particle filter regeneration method | |
EP2192293B1 (en) | Particle filter regeneration strategy | |
EP1413720A2 (en) | Method to determine the internal temperature of a particulate filter, method to control the regeneration of said particulate filter, control system and particulate filter thereof | |
EP1766212A1 (en) | System for assisting regeneration of pollution management means | |
FR2929328A3 (en) | Fuel i.e. diesel, introducing device for exhaust line in diesel engine of motor vehicle, has microprocessor circuit generating control to regulate temperature of heating element controlled by variation of modulation percentage based on time | |
FR2846049A1 (en) | METHOD FOR REGENERATING A PARTICLE FILTER AND DEVICE FOR IMPLEMENTING IT | |
FR2943720A1 (en) | Particle filter regeneration method for diesel engine of vehicle, involves adjusting hydrocarbon flow according to characteristic parameter of exhaust gas, where parameter is instantaneous oxygen concentration or richness of exhaust gas | |
FR2983531A1 (en) | Method managing fuel supply of internal combustion engine i.e. diesel engine, of power unit of car, involves determining temperature of air-fuel mixtures, and adjusting noise of combustion according to temperature of air-fuel mixtures | |
EP2444640A1 (en) | Method for controlling the regeneration of a particle filter | |
FR3020411A1 (en) | METHOD FOR REGENERATING A PARTICULATE FILTER IMPREGNATED BY TEMPERATURE BEARINGS | |
FR2801641A1 (en) | Method of monitoring exhaust filter function in motor vehicle internal combustion engine | |
FR2842872A1 (en) | Method of heating motor vehicle internal combustion engine catalytic converter involves heating the engine and-or catalyst within set power range | |
FR2896533A1 (en) | Internal combustion engine`s exhaust line for motor vehicle, has fuel injector arranged so as to orient fuel jet in direction of vaporization surface, where surface presents temperature equal to evaporation temperature of injected fuel | |
FR3066704A1 (en) | PROCESS FOR POST-PROCESSING NITROGEN OXIDES IN AN INTERNAL COMBUSTION ENGINE | |
FR2926596A1 (en) | Thermal control method for exhaust gas post-treatment system i.e. oxidation catalyst, of diesel car, involves authorizing only passage of exhaust gas via system, when temperature of system is lower than starting temperature of system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07866511 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007866511 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12516551 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |