[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008062142A1 - Article d'optique comportant un revetement anti-abrasion et anti-rayures bicouche, et procede de fabrication - Google Patents

Article d'optique comportant un revetement anti-abrasion et anti-rayures bicouche, et procede de fabrication Download PDF

Info

Publication number
WO2008062142A1
WO2008062142A1 PCT/FR2007/052383 FR2007052383W WO2008062142A1 WO 2008062142 A1 WO2008062142 A1 WO 2008062142A1 FR 2007052383 W FR2007052383 W FR 2007052383W WO 2008062142 A1 WO2008062142 A1 WO 2008062142A1
Authority
WO
WIPO (PCT)
Prior art keywords
groups
abrasion
layer
equal
composition
Prior art date
Application number
PCT/FR2007/052383
Other languages
English (en)
Inventor
Fabien Berit-Debat
Christian Bovet
Jean-Paul Cano
Amélie KUDLA
Yves Leclaire
Original Assignee
Essilor International (Compagnie Generale D'optique)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Essilor International (Compagnie Generale D'optique) filed Critical Essilor International (Compagnie Generale D'optique)
Priority to AT07866538T priority Critical patent/ATE545051T1/de
Priority to ES07866538T priority patent/ES2382008T3/es
Priority to EP07866538A priority patent/EP2092377B1/fr
Priority to CN2007800435196A priority patent/CN101553743B/zh
Priority to BRPI0718835-8A priority patent/BRPI0718835B1/pt
Priority to US12/160,587 priority patent/US20110058142A1/en
Priority to JP2008555854A priority patent/JP4918101B2/ja
Priority to PL07866538T priority patent/PL2092377T3/pl
Publication of WO2008062142A1 publication Critical patent/WO2008062142A1/fr
Priority to US15/264,290 priority patent/US10222511B2/en

Links

Classifications

    • G02B1/105
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/546No clear coat specified each layer being cured, at least partially, separately
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether

Definitions

  • Optical article comprising an anti-abrasion and bilayer anti-scratch coating, and method of manufacture
  • the present invention relates to an optical article, such as an ophthalmic lens of organic glass, coated with a bilayer coating based in particular on thermosetting polysiloxane compositions simultaneously conferring on it a performance in terms of resistance to abrasion and to close scratches. those of mineral glass, and a method of manufacturing this optical article.
  • Ophthalmic lenses made of transparent organic material, or organic glass, lighter than mineral glass, are now widely used.
  • Organic glasses, however, have the disadvantage of being more sensitive to scratches and abrasion than are conventional mineral glasses.
  • ophthalmic lens It is conventional to coat an ophthalmic lens with various coatings in order to impart to this lens improved mechanical and / or optical properties.
  • ophthalmic lens successively forms coatings such as anti-shock, anti-abrasion and / or anti-scratch and anti-reflection coatings.
  • the anti-abrasion and / or anti-scratch coatings used to protect the surface of organic glasses are generally monolayer hard coatings of poly (meth) acrylic nature or based on hydrolysates of silanes.
  • One known technique for forming abrasion-resistant coatings is to polymerize alkoxysilanes in the presence of curing catalysts such as aluminum derivatives.
  • curing catalysts such as aluminum derivatives.
  • US Pat. No. 5,916,669 describes a bilayer coating whose upper layer, of a poly (urethane-acrylate) nature, is a hard layer, more fragile than the lower layer, which is a softer layer of acrylate nature.
  • the top layer is a layer providing protection against scratching, while the lower layer increases the abrasion resistance of the top layer without affecting the scratch resistance properties thereof.
  • the patent indicates that the combination of these two layers makes it possible simultaneously to obtain good resistance to abrasion and scratching.
  • US 5254395 and US 51 14783 also disclose two-layer anti-abrasion and anti-scratch coatings, comprising a hard top layer based on a highly crosslinked acrylic copolymer, adhered to a flexible lower layer formed from a mixture of a cross-linked aliphatic urethane-acrylate copolymer and a lower proportion of a multifunctional acrylic monomer.
  • US 6808812 discloses an anti-abrasion or anti-scratch coating composition, comprising the product of the reaction between oxalic acid and an organometallic derivative, preferably a titanate such as tetraisopropoxytitanium, an epoxyalkoxysilane such as ⁇ -glycidoxypropyltrimethoxysilane (GLYMO) and optionally a second alkoxysilane such as dimethyldiethoxysilane (DMDES).
  • an organometallic derivative preferably a titanate such as tetraisopropoxytitanium
  • an epoxyalkoxysilane such as ⁇ -glycidoxypropyltrimethoxysilane (GLYMO)
  • GLYMO ⁇ -glycidoxypropyltrimethoxysilane
  • DMDES dimethyldiethoxysilane
  • this composition can be deposited on a substrate already coated with an anti-abrasion coating of (meth) acrylic or polysiloxane nature, for example based on an epoxyalkoxysilane hydrolyzate and silica. colloid.
  • an anti-abrasion coating of (meth) acrylic or polysiloxane nature for example based on an epoxyalkoxysilane hydrolyzate and silica. colloid.
  • Such a bilayer coating has a combination of excellent abrasion and scratch resistance properties.
  • the patent FR 2721720 discloses a bilayer coating comprising a top layer of polysiloxane-type (methyl-GLYMO or GLYMO) anti-shock primer and a polysiloxane-type anti-abrasion lower layer, comprising a methyl-GLYMO ( ⁇ -glycidoxypropylmethyldimethoxysilane) matrix. ) in which is dispersed colloidal silica.
  • the present invention also aims to provide an anti-scratch and abrasion-resistant coating as above, which does not weaken the substrate on which it is applied.
  • the anti-scratch and anti-abrasion coating must have the transparency required for application to the optical domain and have good adhesion to substrates, especially those made of organic material.
  • the layers component must have good adhesion to each other.
  • Another object of the invention is to provide a method of preparing such optical articles, which easily integrates into the conventional process of manufacturing optical articles.
  • an optical article comprising a substrate having at least one main surface coated with an anti-abrasion and anti-scratch coating, said coating being composed, starting from the substrate, of a lower layer and an upper layer adhered to each other, the upper layer being a layer of cured upper layer composition and the lower layer being a layer of cured lower layer composition, said upper layer composition comprising:
  • M (Z) x (II) in which M denotes a metal or a metalloid, the groups Z, identical or different, are hydrolyzable groups and x, equal to or greater than 4, is the valence of the metal or metalloid M, the ratio : mass of the theoretical solids content of compounds I in the top layer composition
  • HS mass of theoretical dry extract of compounds II in the upper layer composition being less than or equal to 2.3, and said lower layer composition comprising:
  • the theoretical dry solids content of compounds III in the lower bulk composition of the theoretical solids content of compounds IV in the lower layer composition is greater than 2.3.
  • the term "depositing a layer or coating on the article” means that a layer or coating is deposited on the surface to be coated. discovered (exposed) of the external coating of the article, that is to say its coating farthest from the substrate.
  • a coating that is "on" a substrate or that has been “deposited” on a substrate is defined as a coating that (i) is positioned above the substrate, (ii) is not necessarily in contact with the substrate, i.e. one or more intermediate coatings may be disposed between the substrate and the coating in question, and (iii) does not necessarily cover the substrate completely.
  • the optical article of the invention comprises a substrate, preferably transparent, of organic or mineral glass, having front and rear main faces, at least one of said main faces having an anti-abrasion and anti-scratch coating bilayer, preferably the two main faces.
  • anti-abrasion coating or "bilayer coating.”
  • the anti-abrasion coating of the optical article according to the invention may be deposited on any substrate, and preferably on substrates made of organic glass, for example a thermoplastic or thermosetting plastic material.
  • thermoplastic materials that are suitable for substrates, mention may be made of (meth) acrylic (co) polymers, in particular poly (methyl methacrylate) (PMMA), thio (meth) acrylic (co) polymers, polyvinyl butyral (PVB) ), polycarbonates (PC), polyurethanes (PU), poly (thiourethanes), polyol allyl carbonates (co) polymers, ethylene / vinyl acetate thermoplastic copolymers, polyesters such as poly (terephthalate), ethylene) (PET) or poly (butylene terephthalate) (PBT), polyepisulfides, polyepoxides, polycarbonate / polyester copolymers, copolymers of cycloolefins such as ethylene / norbornene or ethylene / cyclopentadiene copolymers and combinations thereof.
  • (co) polymer is meant a copolymer or a polymer.
  • (meth) acrylate is meant
  • substrates obtained by polymerization of alkyl (methacrylates), in particular (C 1 -C 4 ) alkyl (meth) acrylates, such as (meth) acrylate. methyl and ethyl (meth) acrylate, polyethoxylated aromatic (meth) acrylates such as polyethoxylated bisphenol di (meth) acrylates, allyl derivatives such as linear or branched aliphatic or aromatic polyol allyl carbonates, thio (meth) acrylates, meth) acrylates, episulfides and polythiol / polyisocyanate precursor mixtures (for obtaining polythiourethanes).
  • alkyl (methacrylates) such as (meth) acrylate.
  • C 1 -C 4 ) alkyl (meth) acrylates such as (meth) acrylate.
  • methyl and ethyl (meth) acrylate polyethoxylated aromatic (meth)
  • polycarbonate is intended to mean homopolycarbonates as well as copolycarbonates and copolycarbonates that are sequenced.
  • the polycarbonates are commercially available, for example from the companies GENERAL ELECTRIC COMPANY under the trademark LEXAN ® , TEIJIN under the trademark PANLITE ® , BAYER under the brand BAYBLEND ® , MOBAY CHEMICHAL Corp. under the trademark MAKROLON ® and DOW CHEMICAL Co. under the trade name CALIBER ® .
  • Examples of (co) polymers of polyol allyl carbonates include
  • Particularly recommended substrates are substrates obtained by (co) polymerizing the bis allyl carbonate of diethylene glycol, sold, e.g., under the trade name CR-39 ® from PPG Industries (ORMA ® lenses ESSILOR).
  • the substrates that are also particularly recommended mention may be made of the substrates obtained by polymerization of the thio (meth) acrylic monomers, such as those described in the French patent application FR 2734827.
  • the substrates may be obtained by polymerization of mixtures of the above monomers, or may further comprise mixtures of these polymers and (co) polymers.
  • the substrate comprises a front face and a rear face
  • the abrasion-resistant coating can be applied to at least one of the two. It is preferably applied on the front and rear faces of the substrate.
  • rear face (generally concave) of the substrate is meant the face which, when using the article, is closest to the eye of the wearer.
  • front face (generally convex) of the substrate means the face which, when using the article, is furthest from the eye of the wearer.
  • the anti-abrasion coating on the optionally coated substrate for example a layer of anti-shock primer
  • a treatment intended to increase the adhesion of the anti-blocking layer is common to subject the surface of said optionally coated substrate to a treatment intended to increase the adhesion of the anti-blocking layer.
  • lower abrasion which is generally conducted under vacuum, such as a bombardment with energetic species, for example an ion beam ("Ion Pre-Cleaning" or "IPC"), a corona discharge treatment, effluvage or vacuum plasma treatment.
  • IPC ion Pre-Cleaning
  • An ionic bombardment treatment is preferred, which preferably uses argon, oxygen, or mixtures thereof as an ionizing gas, at an acceleration voltage generally ranging from 50 to 200 V.
  • energetic species are meant species having an energy ranging from 1 to 150 eV, preferably from 10 to 150 eV, and more preferably from 40 to 150 eV.
  • the energetic species can be chemical species such as ions, radicals, or species such as photons or electrons.
  • the anti-abrasion and anti-scratch bilayer coating can be deposited directly on a bare substrate.
  • the main surface of the substrate is coated with one or more functional coatings prior to deposition of the abrasion-resistant coating of the invention.
  • These functional coatings may be, without limitation, a primer layer, a polarized coating, a photochromic coating, an antistatic coating, an additional anti-abrasion and / or anti-scratch coating or a colored coating.
  • the bilayer abrasion-resistant coating of the invention is preferably deposited on a bare substrate, on a substrate coated with an additional anti-abrasion and / or anti-scratch coating which is preferably monolayer, or on a coated substrate. a layer of primary improving the impact resistance and / or adhesion of subsequent layers in the final product.
  • This coating may be any layer of anti-shock primer conventionally used for articles made of transparent polymer material, such as ophthalmic lenses.
  • primer compositions based on thermoplastic polyurethanes, such as those described in Japanese patents JP 63-141001 and JP 63-87223, poly (meth) acrylic primer compositions, such as those described above. in patent LJS 5,015,523, compositions based on thermosetting polyurethanes, such as those described in patent EP 0404111 and compositions based on poly (meth) acrylic latex or polyurethane type latex, such as those described in US Pat. US Patents 5,316,791 and EP 0680492.
  • Preferred primer compositions are polyurethane-based compositions and latex-based compositions, particularly polyurethane latices.
  • the poly (meth) acrylic latexes are latexes of copolymers consisting mainly of a (meth) acrylate, such as for example ethyl (meth) acrylate, butyl, methoxyethyl or ethoxyethyl, with a generally minor proportion of at least one other comonomer, such as, for example, styrene.
  • a (meth) acrylate such as for example ethyl (meth) acrylate, butyl, methoxyethyl or ethoxyethyl
  • at least one other comonomer such as, for example, styrene.
  • Preferred poly (meth) acrylic latices are acrylate-styrene copolymer latices.
  • Such latexes of acrylate-styrene copolymers are commercially available from Zeneca Resins under the name Neocryl ®.
  • Polyurethane latices are also known and commercially available. By way of example, mention may be made of polyurethane latices containing polyester units. Such latexes are also marketed by Zeneca Resins under the name NEOREZ ® and the company Baxenden Chemicals under the name ® WITCOBOND Among the commercial primer compositions suitable for the invention include the Witcobond ® 232 compositions Witcobond ® 234, Witcobond ® 240, Witcobond ® 242, Neorez ® R-962, Neorez R-972 ®, ® Neorez R-986 and Neorez R-9603 ®.
  • the primer composition preferably comprises fillers, which are generally nanoparticles, in order to increase the hardness and / or the refractive index of the cured coating, and also to prevent any diffusion of the layer immediately deposited on the primer.
  • the nanoparticles can be organic or inorganic. A mixture of organic and inorganic nanoparticles can also be used.
  • inorganic nanoparticles are used, in particular nanoparticles of metal oxide or metalloid, nitride or fluoride type, or mixtures thereof.
  • nanoparticles that are suitable for the invention are, for example, nanoparticles of the following compounds: SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 , Sb 2 O 5 , Ta 2 O 5 , ZnO 2 , tin oxide, indium oxide, cerium oxide, WO 3 , Y 2 O 3 , and mixtures thereof.
  • the fillers are preferably used in the form of colloids, that is to say in the form of fine particles whose diameter (or largest dimension) is less than 1 ⁇ m, preferably less than 150 nm, better still at 100 nm, more preferably from 10 to 80 nm, dispersed in a dispersing medium such as water, an alcohol, a ketone, an ester or mixtures thereof, preferably an alcohol.
  • a dispersing medium such as water, an alcohol, a ketone, an ester or mixtures thereof, preferably an alcohol.
  • the fillers are preferably high refractive index colloids (or precursors thereof), i.e., colloids made of a material having a refractive index greater than 1.55.
  • the fillers may be TiO 2 , ZrO 2 , Sb 2 O 5 , SnO 2 , WO 3 , Al 2 O 3 , Y 2 O 3 , Ta 2 O 5 colloids and mixtures thereof.
  • the primer composition preferably comprises from 5% to 65%, preferably from 5% to 50% by weight of charges.
  • the fillers may also be composite particles, preferably composite particles colloids, for example based on the following oxides: SiO 2 / TiO 2, SiO 2 / ZrO 2, SiO 2 / TiO 2 / ZrO 2, Ti0 2 / Si0 2 / Zr0 2 / Sn0 2 .
  • composite particle colloids are available from Catalysts and Chemical. Particularly recommended composite particles are described in the patents
  • primer compositions may be deposited on the faces of the article by dipping or centrifugation and then dried at a temperature of at least 70 ° C. and up to 100 ° C., preferably of the order of 90 ° C. for a period of 2 minutes to 2 hours, generally of the order of 15 minutes, to form primer layers having thicknesses, after curing, of 0.2 to 2.5 ⁇ m, preferably of 0.5 to 1.5 ⁇ m.
  • the optional anti-abrasion and / or anti-scratch coating on which the anti-abrasion and bilayer scratch-resistant coating of the invention can be deposited will generally be referred to as "additional anti-abrasion and / or anti-scratch coating.”
  • This additional anti-abrasion and / or anti-scratch coating is preferably a monolayer coating.
  • It may be formed of any layer conventionally used as an anti-abrasion and / or anti-scratch coating in the field of ophthalmic lenses. It is preferably a hard coating based on poly (meth) acrylates or silicones generally comprising one or more mineral fillers intended to increase the hardness and / or the refractive index of the coating once cured.
  • a hard coating based on poly (meth) acrylates or silicones generally comprising one or more mineral fillers intended to increase the hardness and / or the refractive index of the coating once cured.
  • the additional anti-abrasion and / or anti-scratch coatings preferred in the present invention are coatings based on hydrolysates of epoxysilanes, in particular those described in French patent application FR 2702486 and in US Pat. , 823 and US 5,015,523, or coatings based on poly (meth) acrylates such as those described in the application WO 2007/051841.
  • the additional anti-abrasion and / or anti-scratch coating composition may be deposited on the main surface of the substrate by dipping or centrifugation. It is then cured by the appropriate route (preferably thermal, or UV).
  • the thickness of this additional anti-abrasion and / or anti-scratch coating generally varies from 2 to 10 ⁇ m, preferably from 2 to 5 ⁇ m.
  • the abrasion and scratch resistant coating of the invention is composed of two adjacent layers having different characteristics and having a very good adhesion to one another.
  • the two-layer preparation compositions, the upper abrasion-resistant layer composition and the lower abrasion-resistant layer composition are formulated such that said coating has a hardness gradient, the upper layer being harder than the lower layer. .
  • top layer of the anti-abrasion coating which will be called simply “top layer” is meant the layer of abrasion-resistant coating furthest from the substrate.
  • lower layer of the anti-abrasion coating which we will simply call
  • bottom layer means the layer of the abrasion-resistant coating closest to the substrate.
  • the two anti-abrasion coating compositions of the invention are thermosetting compositions which, after application to a main surface of the substrate of the optical article and then curing, to an anti-abrasion and anti-scratch bilayer coating, preferentially polysiloxane nature.
  • the top layer composition necessarily comprises a crosslinking agent of formula II, while the presence of the crosslinking agent of formula IV is only optional in the lower layer composition. Its quantity is voluntarily limited in order to obtain a softer lower layer than the upper layer which has, because of its higher degree of crosslinking, a higher hardness.
  • Si-OH functions may initially be present in the compounds of formula I or III, in which case they are considered as hydrolysates.
  • the integers n and m as defined above define three categories of compounds I.
  • the hydrolyzable groups X or X ' may denote, independently of one another and without limitation, alkoxy groups -O-R 1 , where R 1 denotes preferably a linear or branched alkyl group, preferably a C 1 -C 4 alkyl group, or an alkoxyalkyl group, acyloxy groups -O-C (O) R 3 where R 3 is an alkyl group, preferably a C 1 -C 6 , preferably methyl or ethyl, the halogens such as Cl and Br, the amino groups optionally substituted by one or two functional groups such as an alkyl or silane group, for example the group -NHSiMe 3 .
  • the groups X or X ' are alkoxy groups, and in particular methoxy, ethoxy, propoxy or butoxy, better methoxy or ethoxy, which makes compounds of formula I or III epoxyalkoxysilanes.
  • the monovalent R or R 'groups bonded to silicon by a carbon atom are organic groups in that they contain at least one epoxy function, preferably a single epoxy function.
  • epoxy function is meant a group of atoms in which an oxygen atom is directly bonded to two adjacent or non-adjacent carbon atoms of a carbon chain or a ring carbon system.
  • the oxirane functions are preferred, i.e. the three-membered saturated cyclic ether groups.
  • R or R 'groups have the following formulas V and VI:
  • R 2 is an alkyl group, preferably a methyl group, or a hydrogen atom, ideally a hydrogen atom, a and c are integers ranging from 1 to 6, and b represents O, 1 or 2 .
  • the preferred epoxysilanes of formula I or III are epoxyalkoxysilanes, preferably having one R or R 'group and three alkoxy groups, the latter being directly linked to the silicon atom.
  • Particularly preferred epoxy trialkoxysilanes correspond to the formulas
  • R 1 is an alkyl group having 1 to 6 carbon atoms, preferably a methyl or ethyl group, and a, b and c are as defined above.
  • epoxysilanes are ⁇ -glycidoxypropyl triethoxysilane, ⁇ -glycidoxypropyl trimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane.
  • Other examples of useful epoxytrialkoxysilanes are given in US Pat. No. 4,294,450. Among them, ⁇ -glycidoxypropyltrimethoxysilane (GLYMO) is preferred.
  • the epoxysilanes I or I II may optionally comprise a monovalent organic group Y or Y 'bonded directly to the silicon atom via an Si-C bond.
  • These groups may be saturated or unsaturated, preferably C 1 -C 10 and better still C 1 -C 4 hydrocarbon-based groups, for example an alkyl group, preferably C 1 -C 4 , such as methyl or ethyl, an alkenyl group such as the vinyl group, a C 6 -C 10 aryl group, for example phenyl, optionally substituted, in particular with one or more C 1 -C 4 alkyl groups, a (meth) acryloxyalkyl group, or represent the fluorinated or perfluorinated analogous groups of the abovementioned hydrocarbon groups, for example, fluoroalkyl or perfluoroalkyl groups, or (poly) fluoro or perfluoroalkoxy [(poly) alkyleneoxy] alkyl groups.
  • the groups Y (or Y ') do not comprise functional groups capable of reacting with the hydrolysed silanes present in the top (or bottom) layer composition, and in particular with the SiOH and / or epoxy groups of these silanes.
  • Y (or Y ') represents an alkyl group, preferentially dC 4 , and better still a methyl group.
  • Preferred epoxysilanes I or III having a Y or Y 'group are epoxydialkoxysilanes such as ⁇ -glycidoxypropyl (methyl) dimethoxysilane, ⁇ -glycidoxypropyl (methyl) diethoxysilane and ⁇ -glycidoxyethoxypropyl (methyl) dimethoxysilane.
  • the epoxydialkoxysilanes are preferably combined with epoxytrialkoxysilanes such as those described above, and are then preferably used at lower levels than said epoxytrialkoxysilanes.
  • metals such as Sn, transition metals such as Zr, Hf, Nb, Cr, Ta, W or Ti or metalloids such as silicon or germanium. Antimony in its pentavalent form may also be suitable.
  • M or M ' preferably represent silicon, zirconium, aluminum or titanium, ideally silicon.
  • the preferred compound II is a compound of formula Si (Z) 4 , in which the groups Z, which are identical or different, are hydrolyzable groups
  • the preferred compound IV is a compound of formula Si (Z ') 4 , in which which groups 71, identical or different, are hydrolyzable groups.
  • the preferred compounds II or IV are tetraalkyl orthosilicates (or tetraalkoxysilanes).
  • tetra (n-propoxy) silane, tetra (i-propoxy) silane is advantageously used.
  • tetra (n-butoxy) silane, tetra (sec-butoxy) silane or tetra (t-butoxy) silane and preferably TEOS.
  • compounds I to IV may be hydrolyzed, partially or completely.
  • they are completely hydrolyzed.
  • the hydrolysates are prepared in a manner known per se. The techniques set forth in patents FR 2702486 and US Pat. No. 4,221,823 may in particular be used.
  • the hydrolysates of compounds I to IV can be prepared by adding to the compositions water or an organic solvent or a mixture of water and organic solvent and preferably a hydrolysis catalyst of groups X, X ', Z or Z ', such as a mineral acid, typically an aqueous solution of hydrochloric, sulfuric, nitric or phosphoric acid or an organic acid such as acetic acid, preferably HCl or H 3 PO 4 .
  • the organic solvents or the mixture of organic solvents that are suitable for the hydrolysis step are preferably polar solvents, in particular alkanols such as methanol, ethanol, isopropanol, isobutanol, n-butanol, and ethers. methyl propylene glycol and mixtures thereof.
  • Other solvents may be employed, for example ketones such as acetone, ethers such as tetrahydrofuran or 1,4-dioxane, acetonitrile, aromatic solvents such as toluene or xylene or chlorides of toluene. alkyl.
  • the preferred organic solvent is methanol.
  • the anti-abrasion coating compositions according to the invention comprise, after hydrolysis, preferably at least 1% by weight of water relative to the mass of said composition.
  • This water can come from an incomplete hydrolysis of starting silanes, the condensation reaction of the silanols formed during this hydrolysis or the use of an excess of water.
  • At least one condensation catalyst and / or at least one hardening catalyst may optionally be added in the lower and / or upper abrasion-resistant compositions to decrease the temperature and the duration of the condensation and hardening.
  • Many examples of useful condensation and / or curing catalysts are given in the "Chemistry and Technology of Epoxy Resins", B. EINS (Ed.) Chapman Hall, New York, 1993 and "Epoxy Resins Chemistry and Technology” 2nd edition, CA May (Ed.), Marcel Dekker, New York, 1988.
  • condensation catalysts of the hydrolysed compounds I to IV which may be used, mention may be made of saturated or unsaturated polyfunctional acids or acid anhydrides.
  • polyfunctional acid or anhydride is meant an acid or an acid anhydride containing several acid or acid anhydride functions.
  • the curing catalysts act in particular at the level of the polymerization of the epoxy functions and facilitate the action of the condensation catalysts.
  • mention may be made of the imidazole derivatives and their imidazolium salts, N-cyanoguanidine (H 2 CN ( NH) NHCN, cyanamide dimer), which is also known as the name of dicyandiamide, the metal salts of acetylacetone having the formula
  • M (CH 3 COCHCOCH 3 ) n
  • M represents a metal ion, preferably Zn 2+ , Co 3+ , Fe 3+ or Cr 3+ , and n an integer generally ranging from 1 to 3, preferably equal to degree of oxidation of the metal M, ammonium tetrathiocyanatodiamminechromate (III) NH 4 [Cr (SCN) 4 (NH 3 )], which is also known as Reinecke salt, aluminum-based compounds, carboxylates of metals such as zinc, titanium, zirconium, tin or magnesium, for example zinc octoate or stannous octoate, iodonium salts such as hexafluoroantimonates and diaryliodonium tetrakis (pentafluorophenyl) borate , sulfonium salts such as triarylsulfonium hexafluorophosphates and hexafluoroantimonates and mixture
  • Non-limiting examples of imidazole derivatives usable as curing catalysts are 2-alkylimidazoles such as 2-methylimidazole, 2-phenyl-4-methylimidazole or 2-propyl-4-methylimidazole, 1-cyanoalkylimidazoles. such as 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2,4-dimethylimidazole or 1-cyanoethyl-2-phenyl-4,5-dicyanoethoxymethylimidazole, and 5-hydroxyalkylimidazoles such as 2-phenyl-4 -methyl-5-hydroxymethylimidazole or 2-phenyl-4,5-dihydroxymethylimidazole. Other examples of these compounds are given in US Patent 4294950.
  • Nonlimiting examples of aluminum-based compounds useful as curing catalysts are aluminum chelates and aluminum acylates and alcoholates (III) having the general preferred formulas AI (OC (O) R) n ( OR ') 3 - n and AI (OSiR “ 3 ) n (OR') 3-n, wherein R and R 'are straight or branched chain alkyl groups having 1 to 10 carbon atoms, R" is a straight or branched chain alkyl group having 1 to 10 carbon atoms, a phenyl group, an acylate group of the formula OC (O) R where R has the meaning indicated above, and n is an integer of 1 to 3
  • R ' is an isopropyl or ethyl group, R and R "are methyl groups.
  • the aluminum chelates can be formed by reacting an alcoholate or an aluminum acylate with nitrogen and sulfur-free chelating agents containing oxygen as a coordination atom, for example acetylacetone, acetoacetate of ethyl or diethyl malonate.
  • They can be chosen from aluminum acetylacetonate (Al) (acac) 3 , aluminum bisacetylacetonate mono (ethyl acetoacetate), aluminum monoacetylacetonate bis (ethyl acetoacetate), di-n-butoxy mono aluminum (ethyl acetoacetate) and di-i-propoxy aluminum mono (ethyl acetoacetate).
  • Al aluminum acetylacetonate
  • Al aluminum bisacetylacetonate mono (ethyl acetoacetate)
  • aluminum monoacetylacetonate bis ethyl acetoacetate
  • di-n-butoxy mono aluminum ethyl aceto
  • the coating composition preferably comprises an organic solvent whose boiling point at atmospheric pressure is between 70.degree. and 140 X, for example ethanol, isopropanol, ethyl acetate, methyl ethyl ketone or tetrahydropyran.
  • compositions of the invention a itaconic acid combination of ⁇ -cyanoguanidine or an aluminum chelate such as aluminum acetylacetonate.
  • the compositions of anti-abrasion coating comprising a mixture of 1/11 or III / IV compounds, for example the top layer compositions, as well as the lower layer compositions, preferably comprise a combination of itaconic acid / ⁇ / -cyanoguanidine as a catalytic system .
  • the lower layer compositions comprising more than 10% by weight of compounds IV relative to the weight of the composition do not include aluminum chelate.
  • the catalysts of curing and condensation are used in conventional amounts to obtain the condensation curing of the compositions according to the invention over a period of the order of several hours at temperatures of about 100 0 C.
  • Hardening catalysts are generally used in an amount of 0 to 5% by weight, based on the total weight of the top (or bottom) layer composition, preferably from 0.1 to 3%.
  • the condensation catalysts are generally used in an amount of 0 to 10% by weight, based on the total weight of the upper (or lower) layer composition, preferably 0 to 8%.
  • the two anti-abrasion coating compositions of the invention may contain additives conventionally used in anti-abrasion and / or anti-scratch coating compositions, such as surfactants which promote the optical quality of the deposit, preferably fluorinated or silicone surfactants.
  • stabilizers for example additives for prolonging the storage time of compositions such as chelating agents of a ⁇ -diketone or ⁇ -ketoester nature such as acetylacetone or ethyl acetoacetate, fillers, pigments, dyes UV absorbers, antioxidants, additional crosslinking agents and optionally photoinitiators if they contain photopolymerizable compounds.
  • top or bottom layer compositions of the invention may contain low proportion fillers, typically one or more mineral fillers to increase the hardness and / or refractive index of the coating once cured.
  • the mineral fillers may be chosen from oxides or fluorides of metals or metalloids such as Si, Sb, Ti, Ta, Zr, Al, Ce, Sn, In, W and their mixtures, preferably silica, titanium dioxide, Sb 2 O 5 , ZrO 2 , Al 2 O 3 and / or mixed oxides such as TiO 2 / ZrO 2 , TiO 2 / ZrO 2 / SiO 2 , and TiO 2 / Fe 2 O 3 (composite particles of these oxides) .
  • oxides or fluorides of metals or metalloids such as Si, Sb, Ti, Ta, Zr, Al, Ce, Sn, In, W and their mixtures, preferably silica, titanium dioxide, Sb 2 O 5 , ZrO 2 , Al 2 O 3 and / or mixed oxides such as TiO 2 / ZrO 2 , TiO 2 / ZrO 2 / SiO 2 , and TiO 2 / Fe 2 O 3 (composite
  • the mineral fillers are employed in colloidal form, that is to say in the form of fine particles whose diameter (or largest dimension) is preferably less than 1 ⁇ m, better still less than 150 nm and more preferably less than 100 nm, dispersed in a dispersing medium, such as water, an alcohol, a ketone, an ester or mixtures thereof, preferably an alcohol.
  • a dispersing medium such as water, an alcohol, a ketone, an ester or mixtures thereof, preferably an alcohol.
  • colloidal silica for example Nissan Sun Colloid Mast silica which contains 30% by weight of solid SiO 2 suspended in methanol.
  • the top layer composition and / or the lower layer composition of the invention comprise less than 10% by weight of filler (solids) relative to the total mass of the composition, better still do not understand.
  • the top layer composition and / or the lower layer composition of the invention comprise less than 10% by weight of colloidal silica with respect to the total mass of the composition, better do not include .
  • the total mass of the fillers present in the top layer composition and / or the lower layer composition ie the mass of the theoretical solids content in the feedstock represents less than 30% of the mass of the theoretical solids content. composition, better less than 20% and even better less than 10%.
  • mass of the theoretical solids content of colloidal silica is meant the theoretical mass of solid matter represented by this constituent in said composition, that is to say its mass contribution to the mass of the composition. theoretical dry extract of the composition.
  • the mass of the theoretical solids content of a composition is defined as the sum of the mass of the theoretical solids content in each of its constituents.
  • mass of theoretical solids content by component I, II, III or IV is meant: for compounds I and III, the mass of said compounds calculated in units R n Y m Si (O) (4-nm) / 2 or FT n 'Y' m 'Si (O) (4-rv-m') / 2 wherein R, Y, n, m, R ', Y', n 'and m' are as previously defined;
  • the mass of the theoretical solids content by composing I, II, III or IV is lower than the mass of component I, II, III or IV actually used.
  • the mass of the theoretical solids content in catalysts or mineral fillers is generally equal to the mass of compounds actually used.
  • the top and bottom anti-abrasion layer compositions of the invention may contain in certain embodiments the same classes of compounds, but are distinguished by their component contents.
  • the ratio Rs is less than or equal to 2.3, preferably less than or equal to 2.0, more preferably less than or equal to 1.5, more preferably less than or equal to 1.25, and optimally is less than or equal to equal to 1, 1, Rs being defined as follows:
  • This definition of the ratio Rs implies that a composition of upper layer not comprising component II does not meet the definition of the invention.
  • Rs is from preferably greater than or equal to 0.85, more preferably greater than or equal to 0.9, more preferably greater than or equal to 0.95.
  • the mass of the theoretical solids content of compounds I represents preferably from 30 to 60% of the mass of the solids content of the topcoat composition, more preferably from 40 to 55%.
  • the mass of the theoretical solids content of compounds II preferably represents from 30 to 60% of the mass of the solids content of the topcoat composition, more preferably from 40 to 55%.
  • the sum of the mass of the theoretical dry extracts of compounds I and II preferably represents at least 75% of the dry weight mass of the lower layer composition, more preferably at least 80%, more preferably at least 85%.
  • the theoretical solids content of the topcoat composition is preferably 5 to 40%, more preferably 15 to 25% by weight, based on the total weight of the composition.
  • the topcoat composition preferably contains from 5 to 30% by weight of compounds I relative to the weight of the composition, preferably from 10 to 25%, more preferably from 10 to 20%.
  • the topcoat composition preferably contains from 15 to 50% by weight of compounds II relative to the mass of the composition, preferably from 20 to 40%, more preferably from 25 to 40%.
  • the sum of the weight of the compounds I and II is preferably 25 to 65% of the weight of the topcoat composition, preferably 30 to 60%, more preferably 35 to 55%.
  • the ratio of the mass of compounds I to the mass of compounds II in this composition is preferably from 0.25 to 0.60, better from 0.30 to 0.60, and still more preferably from 0.35 to 0.45. .
  • the ratio Ri is greater than 2.3, preferably greater than or equal to 3.0, better still greater than or equal to 3.5, more preferably greater than or equal to 4.5, and optimally greater than or equal to 10, Ri being defined as follows:
  • the mass of the theoretical solids content of compounds III preferably represents more than 40% of the mass of the solids content of the lower layer composition, better more than 50%, better still more than 60% and more optimally.
  • the mass of the theoretical solids content of compounds IV represents preferably less than 30% of the dry weight of the composition of the lower layer composition, better less than 25%, better still less than 20% and optimally less than 10%.
  • the sum of the mass of the theoretical dry extracts of compounds III and IV preferably represents at least 70% of the solids content of the lower layer composition, more preferably at least 75%, more preferably at least 80%.
  • the theoretical solids content of the lower layer composition is preferably 10 to 50%, more preferably 25 to 40% by weight, based on the total weight of the composition.
  • the lower layer composition preferably contains from 15 to 70% by weight of compounds III relative to the mass of the composition, preferably from 20 to 60%, more preferably 25 to 55%.
  • the lower layer composition preferably contains from 0 to 35% by weight of compounds IV relative to the weight of the composition, preferably from 0 to 25%, more preferably from 0 to 15% and most preferably from 0 to 10%.
  • the lower layer composition does not comprise compounds of formula IV or of a hydrolyzate of compounds of formula IV.
  • the sum of the weight of the compounds III and IV is preferably 25 to 75% of the weight of the lower layer composition, preferably 30 to 70%, more preferably 35 to 65%.
  • the ratio of the mass of compounds III to the mass of compounds IV in this composition is preferably greater than or equal to 1.25, better still greater than or equal to 1.50, and more preferably greater than or equal to 1.75. According to a particular embodiment, this ratio is greater than or equal to 4.
  • the thickness of the anti-abrasion and anti-scratch coating of the invention generally varies from 1 to 15 ⁇ m, preferably from 1 to 10 ⁇ m, better still from 2 to 8 ⁇ m, and even better from 3 to 6 ⁇ m.
  • the thickness of the lower layer of the abrasion-resistant coating preferably ranges from 1 to 6 ⁇ m, better still from 2 to 5 ⁇ m, and more preferably from 3 to 5 ⁇ m, and the thickness of the upper layer of the abrasion-resistant coating varies. , independently, preferably from 0.5 to 4 ⁇ m, better from 0.7 to 2 ⁇ m and more preferably from 0.7 to 1.5 ⁇ m.
  • the ratio of the thickness of the lower layer to the thickness of the upper layer is preferably greater than or equal to 1.5, more preferably greater than or equal to 2.0, and more preferably greater than or equal to 3.0.
  • An additional layer of anti-abrasion and / or anti-scratch coating may optionally be deposited on the upper layer of the bilayer coating of the invention. It will usually be called "extra anti-abrasion and / or anti-scratch layer.” This additional layer and said upper layer are preferably adjacent, that is to say directly in contact and adhering to each other.
  • the additional anti-abrasion and / or anti-scratch layer is a layer of a hardened anti-abrasion and / or anti-scratch supplementary layer composition which comprises: - at least one organosilane compound, or hydrolyzate thereof, of the formula :
  • HSS - mass of theoretical dry extract of X compounds in the additional layer composition being less than or equal to 2.3 and strictly less than the Rs ratio previously defined, the mass of the theoretical solids content of X compounds representing at least 45% of the mass of the dry extract of the additional anti-abrasion layer composition and / or anti-scratch and the thickness of the additional anti-abrasion and / or anti-scratch layer being lower than that of the upper layer of the bilayer coating of the invention.
  • the structural characteristics of the additional anti-abrasion and / or anti-scratch layer may be chosen from those which have been previously described in the case of the upper layer of the bilayer coating of the invention, and will not be therefore for this reason not repeated, except for the characteristics relating to the ratio Rss, to the thickness of this layer and to the proportion of the mass of the theoretical dry extract epoxysilanes of formula X with respect to the mass of the dry extract of the composition, which differ.
  • the epoxysilanes of formula IX may be chosen from the compounds mentioned above in the context of the description of the compounds of formula I, and the compounds of formula X may be chosen from the compounds mentioned above in the context of the description. compounds of formula II.
  • the mass of the theoretical solids content of compounds X represents at least 50% of the mass of the dry extract of the additional anti-abrasion and / or anti-scratch layer composition, and preferably 65% or less. better 60% or less, the ideal range being 55-60%.
  • the thickness of the additional anti-abrasion and / or anti-scratch layer while being lower than that of the upper layer of the bilayer coating of the invention, preferably varies from 0.5 at 2 .mu.m, better from 0.5 to 1, 5 .mu.m.
  • the Rss ratio is strictly lower than the Rs ratio, which makes it possible to obtain a hardness gradient by increasing the level of type II / IV / X compounds of the abrasion-resistant layer lower than the additional anti-abrasion layer and / or anti-scratch.
  • Rss is preferably less than or equal to 2.0, more preferably less than or equal to 1.5, more preferably less than or equal to 1.25, and optimally less than or equal to 1.1.
  • Rss is preferably greater than or equal to 0.85, more preferably greater than or equal to 0.9, more preferably greater than or equal to 0.95.
  • the optical article of the invention comprises 4 or fewer layers of anti-abrasion and / or anti-scratch coating, better 3 or less layers of anti-abrasion and / or anti-scratch coating and even better two layers of anti-abrasion and anti-scratch coating, that is to say that it has no other anti-abrasion and / or anti-scratch layers than those of the bilayer coating of the invention.
  • An anti-reflection coating may optionally be deposited on the anti-abrasion and anti-scratch coating, that is to say on the upper layer thereof, or on the additional anti-abrasion and / or anti-scratch layer.
  • An anti-reflection coating is defined as a coating, deposited on the surface of an optical article, which improves the antireflective properties of the final optical article. It reduces the reflection of light at the article-air interface over a relatively large portion of the visible spectrum.
  • Anti-reflection coatings are well known and typically comprise a monolayer or multilayer stack of dielectric materials such as SiO, SiO 2 , Al 2 O 3 , MgF 2 , LiF, Si 3 N 4 , TiO 2 , ZrO 2 , Nb 2 O 5 , Y 2 O 3 , HfO 2 , Sc 2 O 3 , Ta 2 O 5 , Pr 2 O 3 , or mixtures thereof.
  • the antireflection coatings are preferably multilayer coatings alternately comprising high refractive index layers (H1) and low refractive index layers (B1).
  • the layers B1 of the antireflection coating comprise a mixture of SiO 2 and Al 2 O 3 .
  • a layer of an antireflection stack is said layer of high refractive index when its refractive index is greater than 1, 55, preferably greater than or equal to 1, 6, better than or equal to 1 , 8 and even better than or equal to 2.0.
  • a layer of an antireflection stack is called a low refractive index layer when its refractive index is less than or equal to 1.55, preferably less than or equal to 1.50, better still less than or equal to 1.45.
  • the refractive indices which reference is made in the present invention are expressed at 25 ⁇ C for a wavelength of 550 nm.
  • the total physical thickness of the antireflection coating is less than 1 micrometer, better still less than or equal to 500 nm and better still less than or equal to 250 nm.
  • the total physical thickness of the antireflection coating is generally greater than 100 nm, preferably greater than 150 nm. It is possible to interpose an underlayer, generally made of SiO 2 , between the anti-reflection coating and the underlying coating, which is generally the anti-abrasion and anti-scratch coating, in order to improve the resistance. abrasion and / or scratches of the anti-reflective coating and improve its adhesion to the underlying coating.
  • the anti-reflection coating is generally applied by vacuum deposition according to one of the following methods: i) by evaporation, possibly assisted by an ion beam; ii) ion beam sputtering; iii) sputtering; iv) plasma enhanced chemical vapor deposition.
  • a multilayer anti-reflective coating wet in particular by centrifugal deposition of liquid compositions containing a hydrolyzate of silanes and colloidal materials of high or low refractive index.
  • Such coatings whose layers comprise an organic / inorganic hybrid matrix based on silanes in which colloidal materials for adjusting the refractive index of each layer are dispersed are described, for example, in patent FR 2858420.
  • a coating anti-reflection comprising only a stack of mineral dielectric layers is preferred. It preferably comprises a stack of at least three dielectric layers having alternating layers H1 and B1.
  • the optical article according to the invention may also comprise coatings formed on the anti-reflection coating and capable of modifying its surface properties, such as hydrophobic and / or oleophobic coatings (anti-fouling top coat). These coatings are preferably deposited on the outer layer of the antireflection coating. Their thickness is generally less than or equal to 10 nm, preferably from 1 to 10 nm, more preferably from 1 to 5 nm.
  • fluorosilane or fluorosilazane type coatings are generally fluorosilane or fluorosilazane type coatings. They can be obtained by depositing a fluorosilane or fluorosilazane precursor, preferably comprising at least two hydrolyzable groups per molecule.
  • the precursor fluorosilanes preferentially contain fluoropolyether groups and better still perfluoropolyether groups.
  • fluorosilanes are well known and are described, inter alia, in US Patents 5,081,192, US 5,763,061, US 6,183,872, US 5,739,639, US 5,922,787, US 6,337,235, US 6,277,485 and EP 0933377.
  • an optical article according to the invention comprises a substrate successively coated with a layer of anti-shock primer, the anti-abrasion and anti-bilayer coating of the invention, an antireflection stack and a hydrophobic and / or oleophobic coating.
  • the article according to the invention is preferably an optical lens, better an ophthalmic lens for glasses, or an optical or ophthalmic lens blank.
  • the lens may be a polarized lens or a photochromic lens.
  • the invention also relates to a process for the preparation of an abrasion-resistant and scratch-resistant optical article as defined above, comprising at least the following steps: a) providing an optical article comprising a substrate having at least one main surface; b) depositing on a main surface of the substrate a layer of lower layer composition as defined above; c) at least partially curing said lower layer composition thermally; d) depositing on the layer resulting from the preceding step a top layer composition layer as defined above; e) curing said topcoat composition thermally; f) recovering an optical article comprising a substrate having a major surface coated with an anti-abrasion and anti-scratch coating composed of a lower layer adhered to a top layer.
  • the lower layer composition may be deposited on the substrate of the optical article by any suitable technique, for example by dipping, centrifugation, spraying, watering or brush or roller application, preferably by dipping or centrifugation.
  • the lower layer composition is completely cured thermally before the deposition of the top layer composition, during step c). Its curing is carried out preferably at a temperature of 80 to 150 ° C, preferably 90-120 ° C, for generally 30 minutes to 4 hours.
  • the surface of the optical article resulting from step c), that is to say the lower layer, is subjected to a surface preparation treatment before step d) of deposition on its surface of the top layer composition.
  • This physical or chemical activation treatment intended to increase the adhesion of the upper layer, is generally conducted under vacuum. It may be a bombardment with previously defined energetic species, for example an ion beam ("Ion Pre-
  • Cleaning "or” IPC or an electron beam, a corona discharge treatment, effluvage, a UV treatment, a vacuum plasma treatment, generally an oxygen or argon plasma, an acidic or basic treatment and / or by solvents (water or organic solvent) Several of these treatments can be combined.
  • the intermediate step of surface preparation is preferably a treatment with a basic solution, which typically comprises a chemical etching of a few minutes (1-3 minutes) at temperatures in the region of 40-50 ° C. in a sodium hydroxide bath. mass% optionally in the presence of surfactants.
  • the topcoat composition may be deposited on the lower layer of the abrasion-resistant coating by the same techniques as the lower layer composition and may be thermally cured under the same conditions.
  • the lower layer composition is only partially cured thermally before the deposition of the top layer composition, in step c).
  • This step which can be described as pre-polymerisation or pre-baking is usually performed at a temperature of 70 to 120 0 C, preferably 80 to 120 ° C, more preferably 85-110 ° C, more preferably 90-100 ° C, for a relatively short time, typically 1 to 30 minutes, better 3 to 20 minutes and even better 5-10 minutes.
  • the second variant of the process of the invention makes it possible surprisingly to overcome the intermediate surface preparation step previously described between the deposition of the lower layer and that of the upper layer, which is particularly advantageous in terms of implementation on the industrial level. Despite the suppression of the intermediate step of preparing the surface of the lower layer, a very good adhesion is obtained in the final product between the two layers of the abrasion-resistant coating.
  • the surface of the article resulting from step c) is not subjected to a surface preparation treatment before step d) and the top layer composition can be deposited directly. on the lower layer of anti-abrasion coating resulting from step c), according to the same techniques as previously exposed.
  • the topcoat composition can then be thermally cured preferentially at a temperature of 80 to 150 ° C, preferably 90-120 ° C, for typically 30 minutes to 4 hours, which also completes the curing of the composition. lower layer.
  • steps e) and f) of the process according to the invention become: e) harden least partially said topcoat composition thermally; e1) depositing on the layer resulting from the preceding step a layer of additional anti-abrasion and / or anti-scratch layer composition as defined above; e2) curing said additional layer composition thermally; f) recovering an optical article comprising a substrate having a major surface coated with an anti-abrasion and anti-scratch coating composed of a lower layer adhered to a top layer, and coated with an additional layer of abrasion-resistant coating and / or anti-scratch adhering to said upper layer.
  • Said upper layer may be subjected to a surface preparation treatment before the step of depositing the additional layer composition on its surface.
  • This physical or chemical activation treatment intended to increase the adhesion of the additional layer, may be chosen, without limitation, from the lower layer activation treatments described above.
  • the topcoat composition is completely cured thermally before the deposition of the additional anti-abrasion and / or anti-scratch layer composition. Its curing is carried out preferably at a temperature of 80 to 150 0 C, preferably 90-120 0 C, for generally 30 minutes to 4 hours.
  • said topcoat composition may be only partially cured thermally prior to deposition of the additional layer composition.
  • This step which may be described as prepolymerization or precooking, is generally carried out at a temperature of 80 to 120.degree. C., preferably 85.degree.-100.degree.
  • the surface of the upper layer of the bilayer coating of the invention is preferably not subjected before the step of depositing the additional anti-abrasion and / or anti-scratch layer to a preparation treatment of surface and the additional layer composition can be deposited directly on the upper layer of the bilayer coating.
  • the intermediate step of preparing the surface of the lower layer a very good adhesion is obtained in the final product between the upper layer of the abrasion-resistant coating and said additional layer.
  • the additional layer composition can then be thermally cured preferably at a temperature of 80 to 150 0 C, preferably 90-120 ° C, for typically 30 minutes to 4 hours, which also completes the curing of the compositions of the invention. upper layer and possibly lower.
  • the additional anti-abrasion and / or anti-scratch layer composition may be deposited by any suitable technique, for example by soaking, centrifugation, spraying, watering or brush or roller application, preferably by dipping or centrifugation.
  • the optical article comprising a substrate on which is formed the anti-abrasion and anti-scratch coating of the invention may also be a temporary support, on which said coating is stored, waiting for transfer to another substrate, which is generally the definitive substrate, such as an ophthalmic lens substrate.
  • the lower layer and the upper layer of the bilayer coating must be deposited on the temporary support in the reverse order with respect to the desired stacking order on the final support.
  • the invention thus also relates to a method for preparing an abrasion-resistant and scratch-resistant optical article as defined above, comprising at least the following steps: a) providing a temporary support having at least one surface main; b) depositing on a main surface of the support a layer of top layer composition as defined above; c) at least partially curing said topcoat composition thermally; d) depositing on the layer resulting from the preceding step a layer of lower layer composition as defined above; e) curing said lower layer composition thermally; f) transferring the layers present on the main surface of the temporary support to a main surface of the substrate of an optical article; g) recovering an optical article comprising a substrate having a major surface coated with an anti-abrasion and anti-scratch coating composed of a lower layer adhered to an upper layer.
  • Said temporary support may be rigid or flexible, preferably flexible. It is a removable medium, that is to say it is intended to be removed once the transfer of the abrasion-resistant and scratch-resistant coating of the invention on the support which is generally the definitive support.
  • the temporary support may be employed having been previously coated with a layer of release agent to facilitate the transfer. This layer may optionally be eliminated at the end of the transfer step.
  • the flexible temporary supports are generally thin elements of a few millimeters thick, preferably from 0.2 to 5 mm, better from 0.5 to 2 mm, made of a plastic material, preferably a thermoplastic material.
  • Thinner films can also be used as temporary supports.
  • thermoplastic (co) polymers that can be used for the manufacture of the temporary support are polysulfones, aliphatic poly (meth) acrylates, such as poly (meth) acrylate, polyethylene, polypropylene, polystyrene, SBM block copolymers (styrene-butadiene-methyl methacrylate), polyphenylene sulphide (PPS), arylene polyoxides, polyimides, polyesters, polycarbonates such as bisphenol A polycarbonate, polyvinyl chloride, polyamides such as nylons, copolymers thereof and mixtures thereof.
  • the preferred thermoplastic material is polycarbonate.
  • the main surface of the temporary support may comprise a stack of one or more functional coatings (already described) which will be transferred together with the anti-abrasion and anti-scratch coating of the invention to the final support, in particular a layer additional anti-abrasion and / or anti-scratch as defined above.
  • the coatings to be transferred were deposited on the temporary support in the reverse order with respect to the desired stacking order on the final support.
  • the invention also relates to a method of transferring the anti-abrasion and anti-scratch coating of the invention (or a stack of coatings comprising said anti-abrasion and anti-scratch coating) from the temporary support to a final substrate.
  • the transfer of the coating or coatings carried by the temporary support can be carried out according to any appropriate technique known to those skilled in the art.
  • the variants of the conventional deposition process may be adapted to the method including a transfer step.
  • the topcoat composition may be completely thermally cured prior to deposition of the lower layer composition, the topcoat may be subjected to a surface preparation treatment prior to the deposition step on its surface.
  • the lower layer composition, and the top layer composition may be only partially cured thermally prior to deposition of the lower layer composition.
  • the two layers of the anti-abrasion and bilayer anti-scratch coating of the invention can be transferred separately to a substrate, as well as any other coating such as an additional anti-abrasion and / or anti-scratch layer.
  • optical articles employed in Examples 1 -8 and 1 1 -15 comprise a ORMA ® ESSILOR lens substrate 65 mm in diameter, having a power of -2.00 diopters and a thickness of 1.2 mm, the face of which convex is successively coated:
  • a layer 2.5 ⁇ m thick of an additional anti-abrasion and / or anti-scratch monolayer coating based on an epoxysilane hydrolyzate (only Example 18).
  • the constitution and the method of preparation of this coating are described in more detail below; a bilayer anti-abrasion and anti-scratch coating according to the invention, in which the hardness gradient is obtained by increasing the level of TEOS between the lower anti-abrasion layer and the upper anti-abrasion layer;
  • Example 20 optionally an additional layer of anti-abrasion and / or anti-scratch coating (Example 20); and - optionally an anti-reflective coating composed of a stack of four layers ZrO 2 ZSiO 2 ZZrO 2 ZSiO 2 formed by vacuum evaporation to respective thicknesses of 27, 21, 80 and 81 nm (only Examples 1, 2, 4, 5).
  • Examples 9, 10, 16 and 17 are comparative examples involving lower and / or higher layer compositions not in accordance with the invention.
  • the theoretical solids content (EST) of this composition is about 35% by weight.
  • A2 bottom layer composition :
  • A3 bottom layer composition :
  • A4 lower layer composition (comparative composition):
  • the hydrolysed solution is stirred for 24 hours at room temperature and then added
  • colloidal silica dispersion Suncolloid MAST from the company Nissan, 30% solids in methanol, 10.5 g of aluminum acetylacetonate, 31.5 g of methyl ethyl ketone, 35.2 g of methanol and 1.5 g of surfactant FC 430.
  • the theoretical solids content (TSE) of this composition is 35% by weight.
  • Lower Layer Composition A5 2.15 g of phosphoric acid (purity: 99%) is dripped into a solution which contains 271.3 g of Glymo and 166.4 g of TEOS. During the hydrolysis, the temperature rises up to 45 ° C. The hydrolysed solution is stirred for 24 hours at room temperature, then 9.6 g of N-cyanoguanidine, 239.3 g of deionized water, 1 10.4 g are added.
  • 1-methoxypropan-2-ol sold under the name Dowanol PM ® by Dow Chemical and 0.8 g of surfactant EFKA ® 3034 (Ciba Specialty Chemicals) to improve the spreadability of this formulation.
  • the theoretical solids content (TSE) of this composition is 31.2% by weight.
  • composition A5 was used as a topcoat composition.
  • the composition is obtained by mixing the components listed in the table below.
  • the resulting layer has a high refractive index due to the presence of the titanium colloid.
  • Top layer composition B is a mixture of top layer composition B:
  • Top layer composition B1 152.3 g of 0.1 N hydrochloric acid are dripped into a solution which contains 141.3 g of Glymo and 346.7 g of TEOS. During the hydrolysis, the temperature rises to 47 9 C. The hydrolysed solution is stirred for 24 hours at room temperature, then 12 g of aluminum acetylacetonate, 346 g of methanol and 1.5 g of surfactant FC 430 are added in order to reduce the temperature. improve the spreadability of this formulation. The theoretical solids content (EST) of this composition is 20% by weight.
  • EST theoretical solids content
  • B2 top layer composition (comparative composition):
  • composition of upper layer B3 is Composition of upper layer B3:
  • B4 top layer composition (comparative composition):
  • An ORMA ® ophthalmic lens substrate (optionally coated with a primer layer, Example 15) is dip-coated with a lower-layer composition. The dewetting speed of these lenses is adjusted so that the thickness deposited is
  • the lower layer composition is then polymerized in an oven for 3 hours at
  • the lens coated with the lower abrasion-resistant layer is subjected to an intermediate surface-treatment treatment for the purpose of activating the surface of the lower abrasion-resistant layer to facilitate attachment of the upper abrasion-resistant layer.
  • the lens is coated by dip-coating with a top layer composition, adjusting the dewetting speed to obtain a deposited thickness of 1 micron.
  • the upper layer composition is then cured in an oven for 3 hours at 100 C. 9
  • An ORMA ® ophthalmic lens substrate is dipped coated with a lower layer composition.
  • the dewetting speed of these lenses is adjusted so that the thickness deposited is 3.5 ⁇ m.
  • the lower layer composition is then prepolymerized in an oven for 10 min at 90 ° C.
  • the lens cools for 15 minutes at room temperature and is then directly coated by dip-coating with a topcoat composition by adjusting the dewetting speed so as to obtain a deposited thickness of 1 micron.
  • This upper layer composition is then polymerized in an oven for 3 hours at 100 ° C. which also completes the polymerization of the lower layer composition.
  • the ORMA ® ophthalmic lens substrate is dip-coated with an additional anti-abrasion and / or anti-scratch coating monolayer (dewetting speed of the lens adjusted so that the deposited thickness is of 2.5 microns), which is pre-polymerized in an oven for 30 min at 100 C. 9
  • the dewetting speed of the lenses is adjusted so that the thickness of the deposited lower layer composition is 2 ⁇ m and the thickness of the deposited topcoat composition is 1.5 ⁇ m.
  • the said additional monolayer anti-abrasion and / or anti-scratch coating is formed from a composition obtained as follows:
  • the ORMA ® ophthalmic lens substrate is dip-coated with a pre-polymerized, 0.8 ⁇ m thick, anti-shock primer layer. for 30 minutes at 90 ° C.
  • the primer layer is formed from a composition prepared by successively mixing 225.7g of Witcobond ® 234 polyurethane latex, 774.4g of deionized water,
  • the dewetting speed of the lenses is adjusted so that the thickness of the deposited lower layer composition is 3 ⁇ m and the pre-polymerization step of the lower layer is carried out at 90 ° C. for 30 minutes.
  • Procedure 9 An ORMA ® ophthalmic lens substrate is dipped coated with a lower layer composition. The dewetting speed of these lenses is adjusted so that the thickness deposited is 2.5 ⁇ m. The lower layer composition is then prepolymerized in an oven for 30 min at 100 ° C.
  • the lens cools for 15 minutes at room temperature and is then directly dip coated with a topcoat composition by adjusting the dewetting rate to obtain a deposited thickness of 1.5 ⁇ m.
  • the top layer composition is then prepolymerized in an oven for 30 min at 90 ° C.
  • the lens is cooled for 15 minutes at room temperature and is then directly coated by dipping an additional layer of anti-abrasion and / or anti-scratch coating (dewetting speed of the lens adjusted so that the thickness deposited is of 1 ⁇ m), this deposit being followed by a final stage of polymerization of the assembly conducted at 90 1 C for 30 minutes.
  • the additional monolayer anti-abrasion and / or anti-scratch coating layer is formed from a composition obtained as follows: 2.45 g of phosphoric acid (purity: 99%) are dripped in a solution that contains 90.4g of Glymo and 332.9g of TEOS. During the hydrolysis, the temperature rises to 45 ° C.
  • the hydrolysed solution is stirred for 24 hours at room temperature, then 9.6 g of N-cyanoguanidine, 271.7 g of deionized water, 95.3 g of 1-methoxypropan-2-ol sold under the name Dowanol PM ® by Dow Chemical and 0.8 g of surfactant EFKA ® 3034 (Ciba Specialty Chemicals) in order to improve the spreading ability of this formulation.
  • the theoretical solids content (TSE) of this composition is 20.8% by weight.
  • the primer layer is formed from a composition prepared by successively mixing 171, 81g of Witcobond ® 234 polyurethane latex, 201, 8g of deionized water, 196.98g of colloidal silica fillers.
  • the lenses coated with the lower abrasion-resistant layer are immersed in a 5% sodium hydroxide bath at a temperature of 50 ° C. (except for tests 1 and 15, 40 ° C.), equipped with ultrasound, for 1 minute. They are then rinsed in demineralised water and dried. Plasma surface preparation
  • the lenses coated with the lower abrasion-resistant layer are subjected to an oxygen plasma treatment (power 1200W for 4.5 minutes, flow O 2 : 20OmL / min, pressure 0.2 bar).
  • oxygen plasma treatment power 1200W for 4.5 minutes, flow O 2 : 20OmL / min, pressure 0.2 bar.
  • the lenses coated with the lower abrasion-resistant layer are subjected to a corona treatment (distance between the glass and the electrode 1cm to 2cm, treatment time 10 seconds, power of the transmitter 100W).
  • the abrasion resistance the value obtained with the BAYER ISTM test, the scratch resistance by the iron straw test, and the adhesion were measured. anti-abrasion coating by means of a cross-hatch test.
  • a high value in the BAYER ISTM test indicates a high degree of abrasion resistance, whereas a low value in the iron straw test indicates a high degree of scratch resistance.
  • Abrasion resistance was evaluated by determining BAYER ISTM values on substrates coated with the abrasion-resistant coating of the invention or a comparative anti-abrasion coating on substrates coated with the abrasion-resistant coating of the invention.
  • invention and an anti-reflection coating Examples 1, 2, 4, 5 on substrates coated with a primer coating and the abrasion-resistant coating of the invention (Examples 15, 19, 21, 22) , on substrates coated with an additional anti-abrasion and / or anti-scratch coating and the bilayer anti-abrasion coating of the invention (Example 18), or on substrates coated with the bilayer anti-abrasion coating of the invention and an additional layer of abrasion-resistant and / or anti-scratch coating (Example 20).
  • This test consists in simultaneously shaking a sample glass and a standard glass of a determined reciprocating movement in a tank containing the abrasive powder (approximately 500 g) of defined particle size at a frequency of 100 cycles / minute for 3 minutes.
  • the "before / after" diffusion measurement H "of the sample glass is compared with that of a glass standard, in this case a CR-39 ® bare glass, for which the BAYER ISTM value is set to 1.
  • the diffusion measurements were made using a Hazeguard model XL-21 system 1 produced by Pacific Scientific.
  • the Bayer ISTM value is rated good when R is greater than or equal to 3 and less than 4.5, and excellent for values of 4.5 and above.
  • the scratch resistance was measured using the iron straw test (pdf, or steel wool test), which consists of making 5 rounds by hand rubbing with an amplitude of 4 to 5 cm. a glass coated according to the invention with an iron straw, in the direction of the fibers, while applying a constant pressure on the straw of iron during this operation (5 kg during the go, 2.5 kg during the return).
  • a piece of about 3 cm by 3 cm of STARWAX extra fine steel wool (grade 000) folded on itself was used.
  • the adhesion test was carried out according to the ASTM D3359-93 standard and leads to a qualitative classification ranging from 0 to 5, 0 being the best result.
  • This adhesion test can also be performed after the lens substrate coated with the bilayer abrasion-resistant coating of the invention has been immersed in a boiling water bath for 30 minutes.
  • the anti-abrasion coatings according to the invention have much higher performances than would have been obtained if a monolayer coating had been used.
  • the performance is also much higher than that which would have been obtained if a monolayer coating had been used.
  • Examples 1-3 show that an intermediate sodium surface preparation is preferable to a plasma or corona treatment.
  • compositions A and B which contain a mixture of GLYMO and TEOS and use the itaconic acid / ⁇ / -cyanoguanidine catalyst system, are more efficient than compositions A3 and B1, in which the Al (acac) 3 catalyst is used.
  • Comparative Examples 9 and 10 which use colloidal silica instead of TEOS, are much lower in terms of abrasion and scratch resistance.
  • the cross hatch test shows very good adhesion
  • the first variant of the process of the invention is used (Examples 1 - 8 and 15, with intermediate surface preparation) or the second variant of the process of the invention (Examples 11-14, without intermediate surface preparation).
  • the adhesion between the two layers of the anti-abrasion coating is obtained by pre-polymerization of the lower layer.
  • Examples 19, 21 and 22 illustrate the invention for a stack containing a colloid-loaded primer (SiO 2 for Example 21 and SnO 2 for Examples 19 and 22) and the lower layer of the bilayer coating itself loaded with colloid (Example 22).

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Eyeglasses (AREA)
  • Surface Treatment Of Glass (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Silicon Polymers (AREA)
  • Decoration By Transfer Pictures (AREA)
  • Wrappers (AREA)

Abstract

L'invention concerne un article d'optique comprenant un substrat revêtu d'un revêtement anti-abrasion et anti-rayures composé d'une couche inférieure et d'une couche supérieure adhérant entre elles, la couche supérieure et la couche inférieure étant des couches de compositions de couche supérieure et inférieure durcies, ladite composition de couche supérieure comprenant au moins un organosilane, ou hydrolysat de celui-ci, de formule RnYmSi(X)4-n-m et au moins un composé, ou hydrolysat de celui-ci, de formule M(Z)x, le ratio suivant étant inférieur à 2,3 : Rs=masse de l' extrait sec théorique en composés I dans la composition de couche supérieure/masse de l' extrait sec théorique en composés II dans la composition de couche supérieure,ladite composition de couche inférieure comprenant au moins un organosilane, ou hydrolysat de celui-ci, de formule R'n'Y'm'Si(X')4-n-m' et, optionnellement, au moins un composé, ou hydrolysat de celui-ci, de formule M'(Z')y, le ratio suivant étant supérieur à 2,3 : Ri = masse de l' extrait sec théorique en composés III dans la composition de couche inférieure/masse de l' extrait sec théorique en composés IV dans la composition de couche inférieure, Dans les formules ci-dessus, M et M' désignent des métaux ou métalloïdes de valences x et y, au moins égales à 4, les groupes R et R' sont des groupes organiques monovalents liés au silicium par un atome de carbone et contenant au moins une fonction époxy, les groupes X, X', Z et Z' sont des groupes hydrolysables, Y et Y' sont des groupes organiques monovalents liés au silicium par un atome de carbone, n, m, n' et m' étant des entiers tels que n et n' = 1 ou 2 avec n+m et n'+m' = 1 ou 2.

Description

Article d'optique comportant un revêtement anti-abrasion et anti-rayures bicouche, et procédé de fabrication
La présente invention concerne un article d'optique, tel qu'une lentille ophtalmique en verre organique, revêtu d'un revêtement bicouche à base notamment de compositions polysiloxanes thermodurcissables lui conférant simultanément des performances en termes de résistance à l'abrasion et aux rayures proches de celles du verre minéral, et un procédé de fabrication de cet article d'optique.
Les lentilles ophtalmiques en matériau organique transparent, ou verre organique, plus léger que le verre minéral, sont maintenant d'un usage très répandu. Les verres organiques présentent cependant l'inconvénient d'être plus sensibles aux rayures et à l'abrasion que ne le sont les verres minéraux classiques.
Il est classique de revêtir une lentille ophtalmique de divers revêtements afin de conférer à cette lentille des propriétés mécaniques et/ou optiques améliorées. Ainsi, classiquement, on forme sur une lentille ophtalmique successivement des revêtements tels que des revêtements anti-chocs, anti-abrasion et/ou anti-rayures et anti-reflets.
Les revêtements anti-abrasion et/ou anti-rayures utilisés pour protéger la surface des verres organiques sont généralement des revêtements durs monocouches de nature poly(méth)acrylique ou à base d'hydrolysats de silanes. Une technique connue pour former des revêtements anti-abrasion consiste à polymériser des alcoxysilanes en présence de catalyseurs de durcissement tels que des dérivés de l'aluminium. A titre d'exemple de littérature portant sur cette technique, on peut citer le brevet US 4211823, décrivant des compositions renfermant un hydrolysat d'un silane possédant un groupement époxy et pas moins de deux groupements alcoxy directement liés à l'atome de silicium, de fines particules de silice, certains chélates d'aluminium, dans un milieu solvant renfermant plus de 1 % en masse d'eau, et qui sont utilisés pour revêtir des substrats en matière plastique.
Le brevet US 5916669 décrit un revêtement bicouche dont la couche supérieure, de nature poly(uréthane-acrylate) est une couche dure, plus fragile que la couche inférieure, qui elle est une couche plus souple de nature acrylate. La couche supérieure est une couche conférant une protection contre les rayures, alors que la couche inférieure permet d'augmenter la résistance à l'abrasion de la couche supérieure sans nuire aux propriétés de résistance aux rayures de celle-ci. Le brevet indique que la combinaison de ces deux couches permet d'obtenir simultanément une bonne résistance à l'abrasion et aux rayures. Les brevets US 5254395 et US 51 14783 décrivent également des revêtements antiabrasion et anti-rayures bicouches, comprenant une couche supérieure dure à base d'un copolymère acrylique hautement réticulé, adhérant à une couche inférieure souple formée à partir d'un mélange d'un copolymère uréthane-acrylate aliphatique réticulé et d'une plus faible proportion d'un monomère acrylique multifonctionnel. Le brevet US 6808812 décrit une composition de revêtement anti-abrasion ou antirayures, comprenant le produit de la réaction entre l'acide oxalique et un dérivé organométallique, de préférence un titanate tel que le tétra-isopropoxytitane, un époxyalcoxysilane tel que le γ-glycidoxypropyltriméthoxysilane (GLYMO) et optionnellement un second alcoxysilane tel que le diméthyldiéthoxysilane (DMDES).
Selon un mode de réalisation décrit dans ce brevet, cette composition peut être déposée sur un substrat déjà revêtu d'un revêtement anti-abrasion de nature (méth)acrylique ou polysiloxane, par exemple à base d'un hydrolysat d'époxyalcoxysilane et de silice colloïdale. Un tel revêtement bicouche présente une combinaison d'excellentes propriétés de résistance à l'abrasion et aux rayures.
Le brevet FR 2721720 divulgue un revêtement bicouche comprenant une couche supérieure de primaire anti-chocs de nature polysiloxane (méthyl-GLYMO ou GLYMO) et une couche inférieure anti-abrasion également de nature polysiloxane, comprenant une matrice de méthyl-GLYMO (γ-glycidoxypropylméthyldiméthoxysilane) dans laquelle est dispersée de la silice colloïdale.
Il est souhaitable d'améliorer les propriétés anti-rayures de ces revêtements.
La présente invention a donc pour objectif de fournir un article d'optique transparent, notamment une lentille ophtalmique, comprenant un substrat en verre minéral ou organique et un revêtement lui conférant des propriétés de résistance aux rayures et à l'abrasion significativement améliorées, l'obtention de l'une de ces deux propriétés ne devant pas se faire au détriment de l'autre, et ceci même lorsque ledit revêtement est associé à un revêtement antireflets.
La présente invention a également pour objectif de fournir un revêtement anti-rayures et anti-abrasion tel que ci-dessus, qui ne fragilise pas le substrat sur lequel il est appliqué. Le revêtement anti-rayures et anti-abrasion doit posséder la transparence requise pour l'application au domaine optique et présenter une bonne adhérence aux substrats, notamment ceux en matériau organique. En outre, les couches le composant doivent présenter une bonne adhérence les unes aux autres.
Un autre objectif de l'invention est de fournir un procédé de préparation de tels articles d'optique, qui s'intègre aisément dans le processus classique de fabrication des articles d'optique.
Les buts fixés ci-dessus sont atteints selon l'invention par un article d'optique comprenant un substrat ayant au moins une surface principale revêtue d'un revêtement antiabrasion et anti-rayures, ledit revêtement étant composé, en partant du substrat, d'une couche inférieure et d'une couche supérieure adhérant entre elles, la couche supérieure étant une couche de composition de couche supérieure durcie et la couche inférieure étant une couche de composition de couche inférieure durcie, ladite composition de couche supérieure comprenant :
- au moins un composé organosilane, ou hydrolysat de celui-ci, de formule : RπYmSi(X)4-π-m (I) dans laquelle les groupes R, identiques ou différents, sont des groupes organiques monovalents liés au silicium par un atome de carbone et contenant au moins une fonction époxy, les groupes X, identiques ou différents, sont des groupes hydrolysables, Y est un groupe organique monovalent lié au silicium par un atome de carbone, n et m étant des entiers tels que n = 1 ou 2 avec n+m = 1 ou 2, et
- au moins un composé, ou hydrolysat de celui-ci, de formule :
M(Z)x (II) dans laquelle M désigne un métal ou un métalloïde, les groupes Z, identiques ou différents, sont des groupes hydrolysables et x, égal ou supérieur à 4, est la valence du métal ou métalloïde M, le ratio : masse de l' extrait sec théorique en composés I dans la composition de couche supérieure
HS = masse de /' extrait sec théorique en composés II dans la composition de couche supérieure étant inférieur ou égal à 2,3, et ladite composition de couche inférieure comprenant :
- au moins un composé organosilane, ou hydrolysat de celui-ci, de formule :
R'nY'mSi(X')4 n m (III) dans laquelle les groupes R', identiques ou différents, sont des groupes organiques monovalents liés au silicium par un atome de carbone et contenant au moins une fonction époxy, les groupes X', identiques ou différents, sont des groupes hydrolysables, Y' est un groupe organique monovalent lié au silicium par un atome de carbone, n' et m' étant des entiers tels que n' = 1 ou 2 avec n'+m' = 1 ou 2, et - optionnellement, au moins un composé, ou hydrolysat de celui-ci, de formule :
M'(Z')y (IV) dans laquelle M' désigne un métal ou un métalloïde, les groupes Z', identiques ou différents, sont des groupes hydrolysables et y, égal ou supérieur à 4, est la valence du métal ou métalloïde M', le ratio : . masse de /' extrait sec théorique en composes III dans la composition de couche inférieure masse de /' extrait sec théorique en composes IV dans la composition de couche inférieure étant supérieur à 2,3.
Dans la présente demande, lorsqu'un article d'optique comprend un ou plusieurs revêtements à sa surface, l'expression "déposer une couche ou un revêtement sur l'article" signifie qu'une couche ou un revêtement est déposé sur la surface à découvert (exposée) du revêtement externe de l'article, c'est-à-dire son revêtement le plus éloigné du substrat.
Un revêtement qui est "sur" un substrat ou qui a été déposé "sur" un substrat est défini comme un revêtement qui (i) est positionné au-dessus du substrat, (ii) n'est pas nécessairement en contact avec le substrat, c'est-à-dire qu'un ou plusieurs revêtements intermédiaires peuvent être disposés entre le substrat et le revêtement en question, et (iii) ne recouvre pas nécessairement le substrat complètement.
L'article d'optique de l'invention comprend un substrat, de préférence transparent, en verre organique ou minéral, ayant des faces principales avant et arrière, l'une au moins desdites faces principales comportant un revêtement anti-abrasion et anti-rayures bicouche, de préférence les deux faces principales. Dans le reste de la demande, le revêtement anti- abrasion et anti-rayures de l'invention sera généralement simplement nommé "revêtement antiabrasion" ou "revêtement bicouche."
De manière générale, le revêtement anti-abrasion de l'article d'optique selon l'invention peut être déposé sur tout substrat, et de préférence sur des substrats en verre organique, par exemple une matière plastique thermoplastique ou thermodurcissable.
Parmi les matériaux thermoplastiques convenant pour les substrats, on peut citer les (co)polymères (méth)acryliques, en particulier le poly(méthacrylate de méthyle) (PMMA), les (co)polymères thio(méth)acryliques, le polyvinylbutyral (PVB), les polycarbonates (PC), les polyuréthanes (PU), les poly(thiouréthanes), les (co)polymères d'allylcarbonates de polyols, les copolymères thermoplastiques éthylène/acétate de vinyle, les polyesters tels que le poly(téréphtalate d'éthylène) (PET) ou le poly(téréphtalate de butylène) (PBT), les polyépisulfures, les polyépoxydes, les copolymères polycarbonates/polyesters, les copolymères de cyclooléfines tels que les copolymères éthylène/norbornène ou éthylène/cyclopentadiène et leurs combinaisons. Par (co)polymère, on entend un copolymère ou un polymère. Par (méth)acrylate, on entend un acrylate ou un méthacrylate.
Parmi les substrats préférés selon l'invention, on peut citer des substrats obtenus par polymérisation des (métha)crylates d'alkyle, en particulier des (méth)acrylates d'alkyle en Ci-C4, tels que le (méth)acrylate de méthyle et le (méth)acrylate d'éthyle, des (méth)acrylates aromatiques polyéthoxylés tels que les di(méth)acrylates de bisphénols polyéthoxylés, des dérivés allyles tels que les allylcarbonates de polyols aliphatiques ou aromatiques, linéaires ou ramifiés, des thio(méth)acrylates, des épisulfures et de mélanges précurseurs polythiols/polyisocyanates (pour l'obtention de polythiouréthanes).
Par polycarbonate (PC), on entend au sens de la présente invention aussi bien les homopolycarbonates que les copolycarbonates et les copolycarbonates séquences. Les polycarbonates sont disponibles dans le commerce, par exemple auprès des sociétés GENERAL ELECTRIC COMPANY sous la marque LEXAN®, TEIJIN sous la marque PANLITE®, BAYER sous la marque BAYBLEND®, MOBAY CHEMICHAL Corp. sous la marque MAKROLON® et DOW CHEMICAL Co. sous la marque CALIBRE®. Comme exemples de (co)polymères d'allyl carbonates de polyols, on peut citer les
(co)polymères d'éthylèneglycol bis (allyl carbonate), de diéthylèneglycol bis 2-méthyl carbonate, de diéthylèneglycol bis (allyl carbonate), d'éthylèneglycol bis (2-chloro allyl carbonate), de triéthylèneglycol bis (allyl carbonate), de 1 ,3-propanediol bis (allyl carbonate), de propylèneglycol bis (2-éthyl allyl carbonate), de 1 ,3-butènediol bis (allyl carbonate), de 1 ,4- butènediol bis (2-bromo allyl carbonate), de dipropylèneglycol bis (allyl carbonate), de triméthylèneglycol bis (2-éthyl allyl carbonate), de pentaméthylèneglycol bis (allyl carbonate), d'isopropylène bisphénol A bis (allyl carbonate).
Les substrats particulièrement recommandés sont les substrats obtenus par (co)polymérisation du bis allyl carbonate du diéthylèneglycol, vendu, par exemple, sous la dénomination commerciale CR-39® par la société PPG Industries (lentilles ORMA® ESSILOR). Parmi les substrats également particulièrement recommandés, on peut citer les substrats obtenus par polymérisation des monomères thio(méth)acryliques, tels que ceux décrits dans la demande de brevet français FR 2734827.
Bien évidemment, les substrats peuvent être obtenus par polymérisation de mélanges des monomères ci-dessus, ou peuvent encore comprendre des mélanges de ces polymères et (co) polymères.
Selon un mode de réalisation de l'invention, le substrat comprend une face avant et une face arrière, le revêtement anti-abrasion pouvant être appliqué sur au moins l'une des deux. Il est de préférence appliqué sur les faces avant et arrière du substrat. Par face arrière (généralement concave) du substrat, on entend la face qui, lors de l'utilisation de l'article, est la plus proche de l'œil du porteur. Inversement, par face avant (généralement convexe) du substrat, on entend la face qui, lors de l'utilisation de l'article, est la plus éloignée de l'œil du porteur.
Avant le dépôt du revêtement anti-abrasion sur le substrat éventuellement revêtu, par exemple d'une couche de primaire anti-chocs, il est courant de soumettre la surface dudit substrat éventuellement revêtue à un traitement destiné à augmenter l'adhésion de la couche anti-abrasion inférieure, qui est généralement conduit sous vide, tel qu'un bombardement avec des espèces énergétiques, par exemple un faisceau d'ions ("Ion Pre-Cleaning" ou "IPC"), un traitement par décharge corona, par effluvage ou un traitement par plasma sous vide. Grâce à ces traitements de nettoyage, la propreté de la surface du substrat est optimisée. Un traitement par bombardement ionique est préféré, qui utilise de préférence en tant que gaz ionisant l'argon, l'oxygène, ou leurs mélanges, sous une tension d'accélération allant généralement de 50 à 200 V.
Par espèces énergétiques, on entend des espèces ayant une énergie allant de 1 à 150 eV, de préférence de 10 à 150 eV, et mieux de 40 à 150 eV. Les espèces énergétiques peuvent être des espèces chimiques telles que des ions, des radicaux, ou des espèces telles que des photons ou des électrons.
Un pré-traitement de surface chimique acide, basique ou au moyen d'un solvant ou mélange de solvants peut également être employé. Selon la présente invention, le revêtement anti-abrasion et anti-rayures bicouche peut être déposé directement sur un substrat nu. Dans certaines applications, il est préférable que la surface principale du substrat soit revêtue d'un ou plusieurs revêtements fonctionnels préalablement au dépôt du revêtement anti-abrasion de l'invention. Ces revêtements fonctionnels peuvent être, sans limitation, une couche de primaire anti-chocs, un revêtement polarisé, un revêtement photochrome, un revêtement antistatique, un revêtement anti-abrasion et/ou anti-rayures additionnel ou un revêtement coloré.
Le revêtement anti-abrasion bicouche de l'invention est de préférence déposé sur un substrat nu, sur un substrat revêtu d'un revêtement anti-abrasion et/ou anti-rayures additionnel qui est de préférence monocouche, ou sur un substrat revêtu d'une couche de primaire améliorant la résistance aux chocs et/ou l'adhésion des couches ultérieures dans le produit final.
Ce revêtement peut être toute couche de primaire anti-chocs classiquement utilisée pour les articles en matériau polymère transparent, tels que des lentilles ophtalmiques. Parmi les compositions de primaire préférées, on peut citer les compositions à base de polyuréthanes thermoplastiques, telles que celles décrites dans les brevets japonais JP 63- 141001 et JP 63-87223, les compositions de primaire poly(méth)acryliques, telles que celles décrites dans le brevet LJS 5,015,523, les compositions à base de polyuréthanes thermodurcissables, telles que celles décrites dans le brevet EP 04041 1 1 et les compositions à base de latex poly(méth)acryliques ou de latex de type polyuréthane, telles que celles décrites dans les brevets US 5,316,791 et EP 0680492.
Les compositions de primaire préférées sont les compositions à base de polyuréthanes et les compositions à base de latex, en particulier les latex de polyuréthane.
Les latex poly(méth)acryliques sont des latex de copolymères constitués principalement par un (méth)acrylate, tel que par exemple le (méth)acrylate d'éthyle, de butyle, de méthoxyéthyle ou d'éthoxyéthyle, avec une proportion généralement mineure d'au moins un autre co-monomère, tel que par exemple du styrène.
Les latex poly(méth)acryliques préférés sont les latex de copolymères acrylate-styrène. De tels latex de copolymères acrylate-styrène sont disponibles commercialement auprès de la société ZENECA RESINS sous la dénomination NEOCRYL®.
Les latex de polyuréthane sont également connus et disponibles dans le commerce. A titre d'exemple, on peut citer les latex de polyuréthane contenant des motifs polyesters. De tels latex sont également commercialisés par la société ZENECA RESINS sous la dénomination NEOREZ® et par la société BAXENDEN CHEMICALS sous la dénomination WITCOBOND® Parmi les compositions de primaire commerciales convenant pour l'invention, on peut citer les compositions Witcobond® 232, Witcobond® 234, Witcobond® 240, Witcobond® 242, Neorez® R-962, Neorez® R-972, Neorez® R-986 et Neorez® R-9603.
On peut également utiliser dans les compositions de primaire des mélanges de ces latex, en particulier de latex polyuréthane et de latex poly(méth)acrylique. La composition de primaire comprend de préférence des charges, qui sont généralement des nanoparticules, afin d'augmenter la dureté et/ou l'indice de réfraction du revêtement durci, et également empêcher une diffusion éventuelle de la couche immédiatement déposée sur le primaire. Les nanoparticules peuvent être organiques ou inorganiques. Un mélange de nanoparticules organiques et inorganiques peut également être utilisé. De préférence, des nanoparticules inorganiques sont utilisées, en particulier des nanoparticules de nature oxyde métallique ou de métalloïde, nitrure ou fluorure, ou leurs mélanges.
Des exemples de nanoparticules convenant pour l'invention sont par exemple des nanoparticules des composés suivants : SiO2, AI2O3, ZrO2, TiO2, Sb2O5, Ta2O5, ZnO2, oxyde d'étain, oxyde d'indium, oxyde de cérium, WO3, Y2O3, et leurs mélanges. Les charges sont de préférence utilisées sous forme de colloïdes, c'est-à-dire sous la forme de fines particules, dont le diamètre (ou la plus grande dimension) est inférieur à 1 μm, de préférence inférieur à 150 nm, mieux inférieur à 100 nm, encore mieux allant de 10 à 80 nm, dispersées dans un milieu dispersant tel que l'eau, un alcool, une cétone, un ester ou leurs mélanges, de préférence un alcool.
Les charges sont de préférence des colloïdes de haut indice de réfraction (ou des précurseurs de ceux-ci), c'est-à-dire des colloïdes constitués d'un matériau ayant un indice de réfraction supérieur à 1 ,55. En particulier, les charges peuvent être des colloïdes de TiO2, ZrO2, Sb2O5, SnO2, WO3, AI2O3, Y2O3, Ta2O5 et leurs mélanges. La composition de primaire comprend de préférence de 5% à 65%, préférentiellement de 5 à 50% en masse de charges.
Les charges peuvent également être des particules composites, de préférence des colloïdes de particules composites, par exemple à base des oxydes suivants : SiO2/TiO2, SiO2/ZrO2, SiO2/TiO2/ZrO2, Ti02/Si02/Zr02/Sn02. De tels colloïdes de particules composites sont disponibles auprès de la société Catalysts and Chemical. Des particules composites particulièrement recommandées sont décrits dans les brevets
EP 730168, JP 1 1310755, JP 200204301 et JP 2002363442.
Ces compositions de primaire peuvent être déposées sur les faces de l'article par trempage ou centrifugation puis séchées à une température d'au moins 70 °C et pouvant aller jusqu'à 100 0C, de préférence de l'ordre de 90 °C, pendant une durée de 2 minutes à 2 heures, généralement de l'ordre de 15 minutes, pour former des couches de primaire ayant des épaisseurs, après cuisson, de 0,2 à 2,5 μm, de préférence de 0,5 à 1 ,5 μm.
Le revêtement optionnel anti-abrasion et/ou anti-rayures sur lequel peut être déposé le revêtement anti-abrasion et anti-rayures bicouche de l'invention sera généralement nommé "revêtement anti-abrasion et/ou anti-rayures additionnel." Ce revêtement anti-abrasion et/ou anti-rayures additionnel est de préférence un revêtement monocouche.
Il peut être formé de toute couche classiquement utilisée comme revêtement antiabrasion et/ou anti-rayures dans le domaine des lentilles ophtalmiques. Il s'agit de préférence d'un revêtement dur à base de poly(méth)acrylates ou de silicones comprenant généralement une ou plusieurs charges minérales destinées à augmenter la dureté et/ou l'indice de réfraction du revêtement une fois durci. Parmi les revêtements durs anti-abrasion et/ou anti-rayures additionnels recommandés dans la présente invention, on peut citer les revêtements obtenus à partir de compositions comprenant au moins un silane, de préférence un alcoxysilane et/ou un hydrolysat de celui-ci, obtenu par exemple par hydrolyse avec une solution d'acide chlorhydrique et optionnellement des catalyseurs de condensation et/ou de durcissement. Les revêtements anti-abrasion et/ou anti-rayures additionnels préférés dans la présente invention sont les revêtements à base d'hydrolysats d'époxysilanes, en particulier ceux décrits dans la demande de brevet français FR 2702486 et dans les brevets US 4,21 1 ,823 et US 5,015,523, ou les revêtements à base de poly(méth)acrylates tels que ceux décrits dans la demande WO 2007/051841. La composition de revêtement anti-abrasion et/ou anti-rayures additionnel peut être déposée sur la face principale du substrat par trempage ou centrifugation. Elle est ensuite durcie par la voie appropriée (de préférence thermique, ou UV).
Dans l'article d'optique final, l'épaisseur de ce revêtement anti-abrasion et/ou anti- rayures additionnel varie généralement de 2 à 10 μm, préférentiellement de 2 à 5 μm.
Le revêtement résistant à l'abrasion et aux rayures de l'invention est composé de deux couches adjacentes ayant des caractéristiques différentes et présentant une très bonne adhésion l'une à l'autre. Les compositions servant à la préparation des deux couches, la composition de couche anti-abrasion supérieure et la composition de couche anti-abrasion inférieure sont formulées de sorte que ledit revêtement présente un gradient de dureté, la couche supérieure étant plus dure que la couche inférieure.
Par couche supérieure du revêtement anti-abrasion, que l'on appellera simplement "couche supérieure," on entend la couche du revêtement anti-abrasion la plus éloignée du substrat. Par couche inférieure du revêtement anti-abrasion, que l'on appellera simplement
"couche inférieure," on entend la couche du revêtement anti-abrasion la plus proche du substrat.
Les deux compositions de revêtement anti-abrasion de l'invention sont des compositions thermodurcissables conduisant, après application sur une surface principale du substrat de l'article d'optique puis durcissement, à un revêtement anti-abrasion et anti-rayures bicouche, préférentiellement de nature polysiloxane.
La composition de couche supérieure comprend nécessairement un agent réticulant de formule II, alors que la présence de l'agent réticulant de formule IV n'est qu'optionnelle dans la composition de couche inférieure. Sa quantité est volontairement limitée afin d'obtenir une couche inférieure plus souple que la couche supérieure qui possède quant à elle, du fait de son taux de réticulation plus élevé, une dureté supérieure.
Dans la présente demande, les caractéristiques et préférences indiquées pour les composés de formules I à IV s'appliquent également à leurs hydrolysats.
Les composés époxysilanes de formules I et III vont tout d'abord être décrits simultanément. Bien entendu, la nature du composé I présent dans la couche supérieure et celle du composé III présent dans la couche inférieure sont indépendantes. Ceci signifie, par exemple, que les valeurs des entiers n et m sont indépendantes de celles des entiers n' et m'.
Les composés de formules I ou III comportent deux ou trois groupes X ou X' hydrolysables directement liés à l'atomes de silicium conduisant chacun à un groupe OH après hydrolyse, un ou deux groupes organiques R ou R' monovalents liés au silicium par un atome de carbone et contenant au moins une fonction époxy, et zéro ou un groupe organique monovalent Y ou Y' (m et m' = O ou 1 ). Il est à noter que des fonctions Si-OH peuvent être initialement présentes dans les composés de formules I ou III, auquel cas ils sont considérés comme des hydrolysats. Les entiers n et m tels que définis ci-dessus définissent trois catégories de composés I.
Les composés de formule RYSi(X)2, les composés de formule R2Si(X)2, et enfin les composés de formule RSi(X)3. Parmi ceux-ci, les époxysilanes de formule RSi(X)3, qui comportent trois groupes hydrolysables liés à l'atome de silicium, sont préférés. Les mêmes conclusions s'appliquent aux composés de formule III définis par les entiers n' et m'.
Les groupes hydrolysables X ou X' peuvent désigner, indépendamment les uns des autres et sans limitation, des groupes alcoxy -0-R1 , où R1 désigne de préférence un groupe alkyle linéaire ou ramifié, de préférence en C1-C4, ou un groupe alcoxyalkyle, des groupes acyloxy -0-C(O)R3 où R3 est un groupe alkyle, préférentiellement en CrC6, de préférence méthyle ou éthyle, les halogènes tels que Cl et Br, les groupes amino éventuellement substitués par un ou deux groupes fonctionnels tels qu'un groupe alkyle ou silane, par exemple le groupe -NHSiMe3.
De préférence, les groupes X ou X' sont des groupes alcoxy, et en particulier méthoxy, éthoxy, propoxy ou butoxy, mieux méthoxy ou éthoxy, ce qui fait des composés de formules I ou III des époxyalcoxysilanes.
Les groupes R ou R' monovalents liés au silicium par un atome de carbone sont des groupes organiques dans la mesure où ils contiennent au moins une fonction époxy, de préférence une seule fonction époxy.
Par fonction époxy, on entend un groupe d'atomes dans lequel un atome d'oxygène est directement lié à deux atomes de carbone adjacents ou non-adjacents d'une chaîne carbonée ou d'un système carboné cyclique. Parmi les fonctions époxy, les fonctions oxiranes sont préférées, c'est-à-dire les groupes éthers cycliques saturés à trois chaînons.
Les groupes R ou R' préférés répondent aux formules V et Vl suivantes :
Figure imgf000011_0001
dans lesquelles R2 est un groupe alkyle, de préférence un groupement méthyle, ou un atome d'hydrogène, idéalement un atome d'hydrogène, a et c sont des nombres entiers allant de 1 à 6, et b représente O, 1 ou 2.
Le groupe de formule V préféré est le groupe γ-glycidoxypropyle (R2 = H, a = 3, b = 0) et le groupe (3,4-époxycyclohexyl)alkyle de formule Vl préféré est le groupe β-(3,4- époxycyclohexyl)éthyle (c = 1 ). Le groupe γ-glycidoxyéthoxypropyle peut également être employé (R2 = H, a = 3, b = 1 ).
Les époxysilanes de formule I ou III préférés sont les époxyalcoxysilanes, comportant de préférence un groupe R ou R' et trois groupes alcoxy, ces derniers étant directement liés à l'atome de silicium. Les époxytrialcoxysilanes particulièrement préférés répondent aux formules
VII et VIII suivantes :
VII (R1OLSi(CHJ - (OCH2CH2)b-O O
Figure imgf000012_0001
dans lesquelles R1 est un groupement alkyle ayant de 1 à 6 atomes de carbone, préférentiellement un groupement méthyle ou éthyle, et a, b et c sont tels que définis ci-dessus.
Des exemples de tels époxysilanes sont le γ-glycidoxypropyl triéthoxysilane, le γ- glycidoxypropyl triméthoxysilane, le 2-(3,4-époxycyclohexyl) éthyltriméthoxysilane, le 2-(3,4- époxycyclohexyl) éthyltriéthoxysilane. D'autres exemples d'époxytrialcoxysilanes utilisables sont donnés dans le brevet US 4294950. Parmi ceux-ci, le γ-glycidoxypropyltriméthoxysilane (GLYMO) est préféré.
Les époxysilanes I ou I II peuvent optionnellement comprendre un groupe organique monovalent Y ou Y' lié directement à l'atome de silicium par une liaison Si-C. Ces groupes peuvent être des groupes hydrocarbonés saturés ou non, de préférence en Ci-C10 et mieux en CrC4, par exemple un groupe alkyle, préférentiellement en CrC4, tel que méthyle ou éthyle, un groupe alcényle tel que le groupe vinyle, un groupe aryle en C6-Ci0, par exemple phényle, éventuellement substitués, notamment par un ou plusieurs groupes alkyles en Ci-C4, un groupe (méth)acryloxyalkyle, ou représentent les groupes analogues fluorés ou perfluorés des groupes hydrocarbonés précités, par exemple des groupes fluoroalkyles ou perfluoroalkyles, ou bien des groupes (poly)fluoro ou perfluoro alcoxy[(poly)alkylènoxy]alkyle.
De préférence, les groupes Y (ou Y') ne comportent pas de fonction susceptibles de réagir avec les silanes hydrolyses présents dans la composition de couche supérieure (ou inférieure), et notamment avec les groupements SiOH et/ou époxy de ces silanes. Idéalement, Y (ou Y') représente un groupe alkyle, préférentiellement en d-C4, et mieux un groupe méthyle. Les époxysilanes I ou III préférés comportant un groupe Y ou Y' sont des époxydialcoxysilanes tels que le γ-glycidoxypropyl(méthyl) diméthoxysilane, le γ- glycidoxypropyl(méthyl) diéthoxysilane et le γ-glycidoxyéthoxypropyl(méthyl) diméthoxysilane. Lorsqu'ils sont employés, les époxydialcoxysilanes sont de préférence combinés à des époxytrialcoxysilanes tels que ceux décrits ci-dessus, et sont alors préférentiellement utilisés à des teneurs plus faibles que lesdits époxytrialcoxysilanes.
Les composés de formules II et IV vont maintenant être décrits simultanément. Bien entendu, la nature du composé II présent dans la couche supérieure et celle du composé IV présent dans la couche inférieure sont indépendantes. Ceci signifie, par exemple, que la nature des groupes Z est indépendante de celle des groupes Z'. Les groupes Z ou Z' sont des groupes hydrolysables pouvant être choisis, indépendamment les uns des autres, parmi les groupes hydrolysables précédemment cités dans le cadre de la description des groupes X et X'. Il est à noter que des fonctions M-OH ou M'-OH peuvent être initialement présentes dans les composés de formules II ou IV, auquel cas ils sont considérés comme des hydrolysats.
M ou M' représentent, indépendamment l'un de l'autre, des métaux ou métalloïdes, dont les valences respectives x ou y sont égales ou supérieures à 4, et varient généralement de 4 à 6. Ils sont préférentiellement tétravalents ou pentavalents. De préférence, les composés II ou IV sont des espèces tétravalentes (x =4, y = 4). Parmi les atomes représentés par M ou M', on peut citer des métaux tels que Sn, des métaux de transition tels que Zr, Hf, Nb, Cr, Ta, W ou Ti ou des métalloïdes tels que le silicium ou le germanium. L'antimoine sous sa forme pentavalente peut également convenir. M ou M' représentent de préférence le silicium, le zirconium, l'aluminium ou le titane, idéalement le silicium.
Ainsi, le composé II préféré est un composé de formule Si(Z)4, dans laquelle les groupes Z, identiques ou différents, sont des groupes hydrolysables, et le composé IV préféré est un composé de formule Si(Z')4, dans laquelle les groupes 71, identiques ou différents, sont des groupes hydrolysables.
Parmi ceux-ci, les composés II ou IV préférés sont les orthosilicates de tétraalkyle (ou tétraalcoxysilanes). On utilise avantageusement le tétraéthoxysilane (ou orthosilicate de tétraéthyle) Si(OC2Hs)4 noté TEOS, le tétraméthoxysilane Si(OCH3)4 noté TMOS, le tétra(n- propoxy)silane, le tétra(i-propoxy)silane, le tétra(n-butoxy)silane, le tétra(sec-butoxy)silane ou le tétra(t-butoxy)silane, et de préférence le TEOS.
De façon surprenante, les inventeurs ont trouvé que l'emploi d'un précurseur d'une matrice de silice tel que le TEOS était préférable à l'emploi de silice colloïdale, ce qui apparaîtra clairement à la lecture des exemples. Les revêtements à base d'une composition comprenant un mélange d'un époxyalcoxysilane et de silice colloïdale, largement employés dans l'art antérieur, conduisent à des revêtements dont les performances en termes de résistance à l'abrasion et/ou aux rayures, en particulier à l'abrasion, sont inférieures à celles des revêtements anti-abrasion conformes à l'invention.
Dans les compositions de couche supérieure ou inférieure de l'invention, les composés I à IV peuvent être hydrolyses, partiellement ou totalement. Avantageusement, ils sont complètement hydrolyses. On préfère utiliser pour l'hydrolyse une quantité d'eau au moins stcechiométrique, c'est à dire une quantité molaire en eau correspondant au moins au nombre de moles de groupes hydrolysables.
Les hydrolysats sont préparés de façon connue en soi. Les techniques exposées dans les brevets FR 2702486 et US 4,21 1 ,823 peuvent notamment être employées. Les hydrolysats des composés I à IV peuvent être préparés en ajoutant dans les compositions de l'eau ou un solvant organique ou un mélange d'eau et de solvant organique et de préférence un catalyseur d'hydrolyse des groupes X, X', Z ou Z', tel qu'un acide minéral, typiquement une solution aqueuse d'acide chlorhydrique, sulfurique, nitrique ou phosphorique ou un acide organique tel que l'acide acétique, de préférence HCI ou H3PO4. Les solvants organiques ou le mélange de solvants organiques convenant pour l'étape d'hydrolyse sont de préférence des solvants polaires, notamment les alcanols comme le méthanol, l'éthanol, l'isopropanol, l'isobutanol, le n-butanol, les éthers méthyliques du propylène glycol et leurs mélanges. D'autres solvants peuvent être employés, par exemple des cétones telles que l'acétone, des éthers tels que le tétrahydrofurane ou le 1 ,4-dioxane, l'acétonitrile, des solvants aromatiques tels que le toluène ou le xylène ou des chlorures d'alkyle. Le solvant organique préféré est le méthanol.
Les compositions de revêtement anti-abrasion selon l'invention comprennent, après hydrolyse, de préférence au moins 1 % en masse d'eau par rapport à la masse de ladite composition. Cette eau peut provenir d'une hydrolyse incomplète des silanes de départ, de la réaction de condensation des silanols formés au cours de cette hydrolyse ou de l'utilisation d'un excès d'eau.
Après l'étape d'hydrolyse des composés précurseurs I à IV, dont la durée est généralement comprise entre 1 h et 24h, préférentiellement entre 2h et 6h, au moins un catalyseur de condensation et/ou au moins un catalyseur de durcissement peuvent optionnellement être ajoutés dans les compositions de couche anti-abrasion inférieure et/ou supérieure afin de diminuer la température et la durée de la condensation et du durcissement. De nombreux exemples de catalyseurs de condensation et/ou de durcissement utilisables sont donnés dans les ouvrages "Chemistry and Technology of the Epoxy Resins", B. EINs (Ed.) Chapman Hall, New York, 1993 et "Epoxy Resins Chemistry and Technology" 2eme édition, C. A. May (Ed.), Marcel Dekker, New York, 1988.
Parmi les catalyseurs de condensation des composés I à IV hydrolyses utilisables, on peut citer les acides ou anhydrides d'acides polyfonctionnels saturés ou insaturés. Par acide ou anhydride polyfonctionnel, on entend un acide ou un anhydride d'acide contenant plusieurs fonctions acide ou anhydride d'acide. Ce sont de préférence des composés de nature carboxylique, parmi lesquels on peut citer les acides maléique, chloromaléique, fumarique, itaconique, citraconique, tétrahydrophthalique, triméllitique, oxalique, chlorendique (acide 1 ,4,5,6,7,7-hexachlorobicyclo[2.2.1 ]-hept-5-ène-2,3-dicarboxylique) et les anhydrides maléique, itaconique, phtalique, hexahydrophthalique, hexahydro-4-méthylphthalique, tétrachlorophthalique, citraconique, 1 ,2-triméllitique (1 ,2,4-benzènetήcarboxylique), 1 ,2- cyclohexanedicarboxylique, bicyclo[2.2.1 ]hept-5-ène-2,3-dicarboxylique, méthylbicyclo[2.2.1]hept-5-ène-2,3-dicarboxylique, bicyclo[2.2.1 ]hept-5-ène-2,3-dicarboxylique, dodécènylsuccinique, dichloromaléique, le dianhydride pyroméllitique, et leurs mélanges. Des acides ou anhydrides non carboxyliques tels que l'anhydride vanadique peuvent également être employés. Les catalyseurs de condensation préférés sont l'acide maléique, l'acide itaconique, l'acide triméllitique et l'anhydride triméllitique.
Les catalyseurs de durcissement agissent notamment au niveau de la polymérisation des fonctions époxy et facilitent l'action des catalyseurs de condensation. Parmi les composés utilisables, on peut citer les dérivés de l'imidazole et leurs sels d'imidazolium, la N- cyanoguanidine (H2NC(=NH)NHCN, dimère du cyanamide), qui est également connue sous le nom de dicyandiamide, les sels métalliques d'acétylacétone ayant pour formule
M(CH3COCHCOCH3)n, dans laquelle M représente un ion métallique, de préférence Zn2+, Co3+, Fe3+ ou Cr3+, et n un entier allant généralement de 1 à 3, de préférence égal au degré d'oxydation du métal M, le tétrathiocyanatodiamminechromate(lll) d'ammonium NH4[Cr(SCN)4(NH3^], qui est également connue sous le nom de sel de Reinecke, les composés à base d'aluminium, les carboxylates de métaux tels que le zinc, le titane, le zirconium, rétain ou le magnésium, par exemple l'octoate de zinc ou l'octoate stanneux, les sels d'iodonium tels que les hexafluoroantimonates et tétrakis(pentafluorophényl)borate de diaryliodonium, les sels de sulfonium tels que les hexafluorophosphates et hexafluoroantimonates de triarylsulfonium et leurs mélanges.
Des exemples non limitatifs de dérivés de l'imidazole utilisables en tant que catalyseurs de durcissement sont les 2-alkylimidazoles tels que le 2-méthylimidazole, 2-phenyl-4- méthylimidazole ou le 2-propyl-4-méthylimidazole, les 1 -cyanoalkylimidazoles tels que le 1 - cyanoéthyl-2-méthylimidazole, le 1 -cyanoethyl-2,4-diméthylimidazole ou le 1 -cyanoéthyl-2- phényl-4,5-dicyanoéthoxyméthylimidazole, et les 5-hydroxyalkylimidazoles tels que le 2-phényl- 4-méthyl-5-hydroxyméthylimidazole ou le 2-phényl-4,5-dihydroxyméthylimidazole. D'autres exemples de ces composés sont donnés dans le brevet US 4294950.
Des exemples non limitatifs de composés à base d'aluminium utilisables en tant que catalyseurs de durcissement sont les chélates d'aluminium et les acylates et alcoolates d'aluminium(lll) ayant pour formules générales préférées AI(OC(O)R)n(OR')3-n et AI(OSiR"3)n(OR')3-n, dans lesquelles R et R' sont des groupes alkyle à chaîne linéaire ou ramifiée ayant de 1 à 10 atomes de carbone, R" est un groupe alkyle à chaîne linéaire ou ramifiée ayant de 1 à 10 atomes de carbone, un groupement phényle, un groupement acylate de formule OC(O)R où R a la signification indiquée ci-dessus, et n est un nombre entier de 1 à 3. De préférence, R' est un groupe isopropyle ou éthyle, R et R" sont des groupes méthyle.
Les chélates d'aluminium peuvent être formés en faisant réagir un alcoolate ou un acylate d'aluminium avec des agents chélatants exempts d'azote et de soufre, contenant de l'oxygène comme atome de coordination, par exemple l'acétylacétone, l'acétoacétate d'éthyle ou le malonate de diéthyle. Ils peuvent être choisis parmi l'acétylacétonate d'aluminium noté Al(acac)3, le bisacétylacétonate d'aluminium mono(acétoacétate d'éthyle), le monoacétylacétonate d'aluminium bis(acétoacétate d'éthyle), le di-n-butoxy aluminium mono(acétoacétate d'éthyle) et le di-i-propoxy aluminium mono(acétoacétate d'éthyle). D'autres exemples de ces composés sont donnés dans le brevet EP 0614957. Lorsque le catalyseur de durcissement est un chélate d'aluminium, la composition de revêtement comprend de préférence un solvant organique dont la température d'ébullition à pression atmosphérique est comprise entre 70 et 140 X^, par exemple l'éthanol, l'isopropanol, l'acétate d'éthyle, la méthyléthylcétone ou le tétrahydropyrane.
De préférence, on utilise en tant que systèmes catalytiques dans les compositions de revêtement anti-abrasion de l'invention une combinaison acide itaconique//V-cyanoguanidine ou bien un chélate d'aluminium tel que l'acétylacétonate d'aluminium. Les compositions de revêtement anti-abrasion comprenant un mélange de composés l/ll ou III/IV, par exemples les compositions de couches supérieures, de même que les compositions de couches inférieures, comprennent préférentiellement une combinaison acide itaconique/Λ/-cyanoguanidine en tant que système catalytique. Sans vouloir être limités par une quelconque théorie, les inventeurs pensent qu'au-delà d'une certaine teneur en agents réticulants de nature II ou IV, l'emploi d'un système catalytique aussi actif qu'un chélate d'aluminium conduit à une couche durcie dont le taux de réticulation est trop élevé.
Il est donc préférable que les compositions de couches inférieures comprenant plus de 10 % en masse de composés IV par rapport à la masse de la composition, ne comprennent pas de chélate d'aluminium.
Les catalyseurs de durcissement et de condensation sont utilisés dans des proportions classiques permettant d'obtenir la condensation le durcissement des compositions selon l'invention en une durée de l'ordre de quelques heures à des températures de l'ordre de 100 0C. Les catalyseurs de durcissement sont généralement utilisés dans une proportion de 0 à 5 % en masse par rapport à la masse totale de la composition de couche supérieure (ou inférieure), de préférence de 0,1 à 3 %. Les catalyseurs de condensation sont généralement utilisés dans une proportion de 0 à 10 % en masse par rapport à la masse totale de la composition de couche supérieure (ou inférieure), de préférence de 0 à 8 %. Les deux compositions de revêtement anti-abrasion de l'invention peuvent contenir des additifs classiquement employés dans les compositions de revêtement anti-abrasion et/ou antirayures, tels que des tensioactifs qui favorisent la qualité optique du dépôt, de préférence des tensioactifs fluorés ou siliconés, des stabilisants, par exemple des additifs pour prolonger la durée de stockage des compositions tels que des agents chélatants de nature β-dicétone ou β- cétoester comme l'acétylacétone ou l'acétoacétate d'éthyle, des charges, des pigments, des colorants, des absorbeurs d'UV, des antioxydants, des agents de réticulation additionnels et éventuellement des photo-initiateurs si elles contiennent des composés photo-polymérisables.
Les compositions de couche supérieure ou inférieure de l'invention peuvent contenir des charges en faible proportion, généralement une ou plusieurs charges minérales destinées à augmenter la dureté et/ou l'indice de réfraction du revêtement une fois durci.
Les charges minérales peuvent être choisies parmi les oxydes ou fluorures de métaux ou métalloïdes tels que Si, Sb, Ti, Ta, Zr, Al, Ce, Sn, In, W et leurs mélanges, de préférence la silice, le dioxyde de titane, Sb2O5, ZrO2, AI2O3 et/ou des oxydes mixtes tels que TiO2/ZrO2, TiO2/ZrO2/SiO2, et TiO2/Fe2O3 (particules composites de ces oxydes). De préférence, les charges minérales sont employées sous forme colloïdale, c'est-à-dire sous forme de fines particules dont le diamètre (ou la plus grande dimension) est, de préférence, inférieur à 1 μm, mieux inférieur à 150 nm et mieux encore inférieur à 100 nm, en dispersion dans un milieu dispersant, tel que de l'eau, un alcool, une cétone, un ester ou leurs mélanges, préférentiellement un alcool. Un exemple d'une telle charge est la silice colloïdale, par exemple la silice Nissan Sun Colloid Mast qui renferme 30 % en masse de matière solide SiO2 en suspension dans le méthanol.
Selon un mode de réalisation préférentiel, la composition de couche supérieure et/ou la composition de couche inférieure de l'invention comprennent moins de 10 % en masse de charges (matières solides) par rapport à la masse totale de la composition, mieux n'en comprennent pas. En particulier, il est souhaitable que la composition de couche supérieure et/ou la composition de couche inférieure de l'invention comprennent moins de 10 % en masse de silice colloïdale par rapport à la masse totale de la composition, mieux n'en comprennent pas. De préférence, la masse totale des charges présentes dans la composition de couche supérieure et/ou la composition de couche inférieure, autrement dit la masse de l'extrait sec théorique en charges représente moins de 30 % de la masse de l'extrait sec théorique de la composition, mieux moins de 20 % et encore mieux moins de 10 %. Ces préférences s'appliquent également à la masse de l'extrait sec théorique en silice colloïdale. Par "masse de l'extrait sec théorique en un constituant d'une composition," on entend la masse théorique de matière solide représentée par ce constituant dans ladite composition, c'est-à-dire sa contribution en masse à la masse de l'extrait sec théorique de la composition.
La masse de l'extrait sec théorique d'une composition est défini comme la somme de la masse de l'extrait sec théorique en chacun de ses constituants. Par "masse de l'extrait sec théorique en composant I, II, III ou IV" on entend : pour les composés I et III, la masse desdits composés calculée en unités RnYm Si(O)(4-n-m)/2 ou FTn' Y'm' Si(O) (4-rv-m')/2 dans lesquelles R, Y, n, m, R', Y', n' et m' sont tels que définis précédemment ;
- pour les composés II et IV, la masse desdits composés calculée en unités M(O)x/2 ou M'(O)y/2 où M, M', x et y sont tels que définis précédemment.
La masse de l'extrait sec théorique en composant I, II, III ou IV est plus faible que la masse de composant I, II, III ou IV réellement utilisée. La masse de l'extrait sec théorique en catalyseurs ou charges minérales est généralement égale à la masse de composés réellement utilisée. Les compositions de couche anti-abrasion supérieure et inférieure de l'invention peuvent contenir dans certains modes de réalisation les mêmes catégories de composés, mais se distinguent par leurs teneurs en constituants.
Ainsi, le ratio Rs est inférieur ou égal à 2,3, de préférence inférieur ou égal à 2,0, mieux inférieur ou égal à 1 ,5, encore mieux inférieur ou égal à 1 ,25, et de façon optimale est inférieur ou égal à 1 ,1 , Rs étant défini de la façon suivante :
_ masse de l' extrait sec théorique en composes I dans la composition de couche supérieure masse de /' extrait sec théorique en composés II dans la composition de couche supérieure
Cette définition du ratio Rs implique qu'une composition de couche supérieure ne comprenant pas de composant II ne répond pas à la définition de l'invention. Rs est de préférence supérieur ou égal à 0,85, mieux supérieur ou égal à 0,9, encore mieux supérieur ou égal à 0,95.
La masse de l'extrait sec théorique en composés I représente de préférence de 30 à 60 % de la masse de l'extrait sec de la composition de couche supérieure, mieux de 40 à 55 %. La masse de l'extrait sec théorique en composés II représente de préférence de 30 à 60 % de la masse de l'extrait sec de la composition de couche supérieure, mieux de 40 à 55 %. La somme de la masse des extraits secs théoriques en composés I et II représente de préférence au moins 75 % de la masse de l'extrait sec de la composition de couche inférieure, mieux au moins 80 %, mieux encore au moins 85 %. L'extrait sec théorique de la composition de couche supérieure représente de préférence de 5 à 40 %, mieux de 15 à 25 % en masse, par rapport à la masse totale de la composition.
La composition de couche supérieure contient de préférence de 5 à 30 % en masse de composés I par rapport à la masse de la composition, de préférence de 10 à 25 %, mieux de 10 à 20 %. La composition de couche supérieure contient de préférence de 15 à 50 % en masse de composés II par rapport à la masse de la composition, de préférence de 20 à 40 %, mieux de 25 à 40 %.
La somme de la masse des composés I et II représente de préférence de 25 à 65 % de la masse de la composition de couche supérieure, de préférence de 30 à 60 %, mieux de 35 à 55 %. Le ratio de la masse de composés I sur la masse de composés II dans cette composition va de préférence de 0,25 à 0,60, mieux de 0,30 à 0,60, et encore mieux de 0,35 à 0,45.
Le ratio Ri est supérieur à 2,3, de préférence supérieur ou égal à 3,0, mieux supérieur ou égal à 3,5, encore mieux supérieur ou égal à 4,5, et de façon optimale est supérieur ou égal à 10, Ri étant défini de la façon suivante :
_ . masse de /' extrait sec théorique en composes III dans la composition de couche inférieure masse de /' extrait sec théorique en composes IV dans la composition de couche inférieure Cette définition du ratio Ri implique qu'une composition de couche inférieure ne comprenant pas de composant IV répond à la définition de l'invention, Ri tendant en effet vers une valeur infinie.
La masse de l'extrait sec théorique en composés III représente de préférence plus de 40 % de la masse de l'extrait sec de la composition de couche inférieure, mieux plus de 50 %, mieux encore plus de 60 % et de façon optimale plus de 65 % La masse de l'extrait sec théorique en composés IV représente de préférence moins de 30 % de la masse de l'extrait sec de la composition de couche inférieure, mieux moins de 25 %, mieux encore moins de 20 % et de façon optimale moins de 10 %. La somme de la masse des extraits secs théoriques en composés III et IV représente de préférence au moins 70 % de la masse de l'extrait sec de la composition de couche inférieure, mieux au moins 75 %, mieux encore au moins 80 %.
L'extrait sec théorique de la composition de couche inférieure représente de préférence de 10 à 50 %, mieux de 25 à 40 % en masse, par rapport à la masse totale de la composition.
La composition de couche inférieure contient de préférence de 15 à 70 % en masse de composés III par rapport à la masse de la composition, de préférence de 20 à 60 %, mieux de 25 à 55 %. La composition de couche inférieure contient de préférence de O à 35 % en masse de composés IV par rapport à la masse de la composition, de préférence de O à 25 %, mieux de O à 15 % et encore mieux de O à 10 %. Selon un mode de réalisation particulier, la composition de couche inférieure ne comprend pas de composés de formule IV ou d'hydrolysat de composés de formule IV.
La somme de la masse des composés III et IV représente de préférence de 25 à 75 % de la masse de la composition de couche inférieure, de préférence de 30 à 70 %, mieux de 35 à 65 %. Le ratio de la masse de composés III sur la masse de composés IV dans cette composition est de préférence supérieur ou égal à 1 ,25, mieux supérieur ou égal à 1 ,50, encore mieux supérieur ou égal à 1 ,75. Selon un mode de réalisation particulier, ce ratio est supérieur ou égal à 4.
Dans l'article d'optique final, l'épaisseur du revêtement anti-abrasion et anti-rayures de l'invention varie généralement de 1 à 15 μm, préférentiellement de 1 à 10 μm, mieux de 2 à 8 μm, et encore mieux de 3 à 6 μm. L'épaisseur de la couche inférieure du revêtement anti- abrasion varie de préférence de 1 à 6 μm, mieux de 2 à 5 μm, et mieux encore de 3 à 5 μm et l'épaisseur de la couche supérieure du revêtement anti-abrasion varie, de façon indépendante, de préférence de 0,5 à 4 μm, mieux de 0,7 à 2 μm et mieux encore de 0,7 à 1 ,5 μm . Le ratio de l'épaisseur de la couche inférieure sur l'épaisseur de la couche supérieure est de préférence supérieur ou égal à 1 ,5, mieux supérieur ou égal à 2,0, et encore mieux supérieur ou égal à 3,0. Une couche supplémentaire de revêtement anti-abrasion et/ou anti-rayures peut optionnellement être déposée sur la couche supérieure du revêtement bicouche de l'invention. Elle sera généralement nommée "couche supplémentaire anti-abrasion et/ou anti-rayures." Cette couche supplémentaire et ladite couche supérieure sont de préférence adjacentes, c'est- à-dire directement en contact et adhérant entre elles. La couche supplémentaire anti-abrasion et/ou anti-rayures est une couche de composition de couche supplémentaire anti-abrasion et/ou anti-rayures durcie, qui comprend : - au moins un composé organosilane, ou hydrolysat de celui-ci, de formule :
R"π.Y"m.Si(X")4-π--m' (IX) dans laquelle les groupes R", identiques ou différents, sont des groupes organiques monovalents liés au silicium par un atome de carbone et contenant au moins une fonction époxy, les groupes X", identiques ou différents, sont des groupes hydrolysables, Y" est un groupe organique monovalent lié au silicium par un atome de carbone, n" et m" étant des entiers tels que n" = 1 ou 2 avec n"+m" = 1 ou 2, et au moins un composé, ou hydrolysat de celui-ci, de formule : M"(Z")Z (X) dans laquelle M" désigne un métal ou un métalloïde, les groupes Z", identiques ou différents, sont des groupes hydrolysables et z, égal ou supérieur à 4, de préférence de 4 à 6 est la valence du métal ou métalloïde M", le ratio :
D masse de /' extrait sec théorique en composés IX dans la composition de couche supplémentaire
HSS — masse de /' extrait sec théorique en composés X dans la composition de couche supplémentaire étant inférieur ou égal à 2,3 et strictement inférieur au ratio Rs précédemment défini, la masse de l'extrait sec théorique en composés X représentant au moins 45 % de la masse de l'extrait sec de la composition de couche supplémentaire anti-abrasion et/ou anti-rayures et l'épaisseur de la couche supplémentaire anti-abrasion et/ou anti-rayures étant inférieure à celle de la couche supérieure du revêtement bicouche de l'invention.
Les caractéristiques structurelles de la couche supplémentaire anti-abrasion et/ou antirayures, et celles relatives à sa préparation, peuvent être choisies parmi celles qui ont été précédemment décrites dans le cas de la couche supérieure du revêtement bicouche de l'invention, et ne seront donc pour cette raison pas répétées, à l'exception toutefois des caractéristiques relatives au ratio Rss, à l'épaisseur de cette couche et à la proportion de la masse de l'extrait sec théorique en époxysilanes de formule X par rapport à la masse de l'extrait sec de la composition, qui diffèrent.
Ainsi, par exemple, les époxysilanes de formule IX peuvent être choisis parmi les composés précédemment cités dans le cadre de la description des composés de formule I, et les composés de formule X peuvent être choisis parmi les composés précédemment cités dans le cadre de la description des composés de formule II.
De préférence, la masse de l'extrait sec théorique en composés X représente au moins 50% de la masse de l'extrait sec de la composition de couche supplémentaire anti-abrasion et/ou anti-rayures, et de préférence 65% ou moins, mieux 60% ou moins, la gamme idéale étant 55-60%.
Dans l'article d'optique final, l'épaisseur de la couche supplémentaire anti-abrasion et/ou anti-rayures, tout en étant inférieure à celle de la couche supérieure du revêtement bicouche de l'invention, varie préférentiellement de 0,5 à 2μm, mieux de 0,5 à 1 ,5μm.
Le ratio Rss est strictement inférieur au ratio Rs, ce qui permet d'obtenir un gradient de dureté par augmentation du taux de composés de type II/IV/X de la couche anti-abrasion inférieure à la couche supplémentaire anti-abrasion et/ou anti-rayures. Rss est de préférence inférieur ou égal à 2,0, mieux inférieur ou égal à 1 ,5, encore mieux inférieur ou égal à 1 ,25, et de façon optimale est inférieur ou égal à 1 ,1. Rss est de préférence supérieur ou égal à 0,85, mieux supérieur ou égal à 0,9, encore mieux supérieur ou égal à 0,95. De préférence, l'article d'optique de l'invention comporte 4 couches ou moins de revêtement anti-abrasion et/ou anti-rayures, mieux 3 couches ou moins de revêtement antiabrasion et/ou anti-rayures et encore mieux deux couches de revêtement anti-abrasion et antirayures, c'est-à-dire qu'il ne comporte pas d'autres couches anti-abrasion et/ou anti-rayures que celles du revêtement bicouche de l'invention. Un revêtement anti-reflets peut optionnellement être déposé sur le revêtement antiabrasion et anti-rayures, c'est-à-dire sur la couche supérieure de celui-ci, ou sur la couche supplémentaire anti-abrasion et/ou anti-rayures. Un revêtement anti-reflets se définit comme un revêtement, déposé à la surface d'un article d'optique, qui améliore les propriétés antiréfléchissantes de l'article d'optique final. Il permet de réduire la réflexion de la lumière à l'interface article-air sur une portion relativement large du spectre visible. Les revêtements anti-reflets sont bien connus et comprennent classiquement un empilement monocouche ou multicouches de matériaux diélectriques tels que SiO, SiO2, AI2O3, MgF2, LiF, Si3N4, TiO2, ZrO2, Nb2O5, Y2O3, HfO2, Sc2O3, Ta2O5, Pr2O3, ou leurs mélanges.
Comme cela est bien connu également, les revêtements anti-reflets sont, de préférence, des revêtements multicouches comprenant alternativement des couches de haut indice de réfraction (Hl) et des couches de bas indice de réfraction (Bl). Avantageusement, les couches Bl du revêtement anti-reflets comprennent un mélange de SiO2 et d'AI2O3.
Dans la présente demande, une couche d'un empilement anti-reflets est dite couche de haut indice de réfraction lorsque son indice de réfraction est supérieur à 1 ,55, de préférence supérieur ou égal à 1 ,6, mieux supérieur ou égal à 1 ,8 et encore mieux supérieur ou égal à 2,0. Une couche d'un empilement anti-reflets est dite couche de bas indice de réfraction lorsque son indice de réfraction est inférieur ou égal à 1 ,55, de préférence inférieur ou égal à 1 ,50, mieux inférieur ou égal à 1 ,45.
Sauf indication contraire, les indices de réfraction auxquels il est fait référence dans la présente invention sont exprimés à 25 <C pour une longueur d'onde de 550 nm.
Préférentiellement, l'épaisseur physique totale du revêtement anti-reflets est inférieure à 1 micromètre, mieux inférieure ou égale à 500 nm et mieux encore inférieure ou égale à 250 nm. L'épaisseur physique totale du revêtement anti-reflets est généralement supérieure à 100 nm, de préférence supérieure à 150 nm. II est possible d'interposer une sous-couche, généralement en SiO2, entre le revêtement anti-reflets et le revêtement sous-jacent, qui est généralement le revêtement anti-abrasion et anti-rayures, dans le but d'améliorer la résistance à l'abrasion et/ou aux rayures du revêtement anti-reflets et d'améliorer son adhésion au revêtement sous-jacent.
Le revêtement anti-reflets est généralement appliqué par dépôt sous vide selon l'une des méthodes suivantes : i) par évaporation, éventuellement assistée par un faisceau ionique; ii) par pulvérisation par faisceau d'ion ; iii) par pulvérisation cathodique ; iv) par dépôt chimique en phase vapeur assisté par plasma.
En plus des méthodes de dépôt sous vide, il est possible de déposer un revêtement anti-reflets multicouches par voie humide, notamment par dépôt centrifuge de compositions liquides contenant un hydrolysat de silanes et des matériaux colloïdaux de haut ou de bas indice de réfraction. De tels revêtements dont les couches comprennent une matrice hybride organique/inorganique à base de silanes dans laquelle sont dispersés des matériaux colloïdaux permettant d'ajuster l'indice de réfraction de chaque couche sont décrits par exemple dans le brevet FR 2858420. Toutefois, un revêtement anti-reflets comprenant uniquement un empilement de couches diélectriques minérales est préféré. Il comprend de préférence un empilement d'au moins trois couches diélectriques présentant une alternance de couches Hl et Bl.
L'article d'optique selon l'invention peut également comporter des revêtements formés sur le revêtement anti-reflets et capables de modifier ses propriétés de surface, tels que des revêtements hydrophobes et/ou oléophobes (top coat anti-salissures). Ces revêtements sont de préférence déposés sur la couche externe du revêtement anti-reflets. Leur épaisseur est en général inférieure ou égale à 10 nm, de préférence de 1 à 10 nm, mieux de 1 à 5 nm.
Il s'agit généralement de revêtements de type fluorosilane ou fluorosilazane. Ils peuvent être obtenus par dépôt d'un fluorosilane ou fluorosilazane précurseur, comprenant de préférence au moins deux groupes hydrolysables par molécule. Les fluorosilanes précurseurs contiennent préférentiellement des groupements fluoropolyéthers et mieux des groupements perfluoropolyéthers. Ces fluorosilanes sont bien connus et sont décrits, entre autres, dans les brevets US 5,081 ,192, US 5,763,061 , US 6,183, 872, US 5,739, 639, US 5,922,787, US 6,337,235, US 6,277,485 et EP 0933377. Une composition de revêtement hydrophobe et/ou oléophobe préférée est commercialisée par Shin-Etsu Chemical sous la dénomination KP 801 M®. Une autre composition de revêtement hydrophobe et/ou oléophobe préférée est commercialisée par Daikin Industries sous la dénomination OPTOOL DSX®. Il s'agit d'une résine fluorée comprenant des groupes perfluoropropylène. Typiquement, un article d'optique selon l'invention comprend un substrat successivement revêtu d'une couche de primaire anti-chocs, du revêtement anti-abrasion et anti-rayures bicouche de l'invention, d'un empilement anti-reflets et d'un revêtement hydrophobe et/ou oléophobe. L'article selon l'invention est de préférence une lentille optique, mieux une lentille ophtalmique pour lunettes, ou une ébauche de lentille optique ou ophtalmique. La lentille peut être une lentille polarisée ou une lentille photochromique.
L'invention concerne également un procédé de préparation d'un article d'optique résistant à l'abrasion et aux rayures tel que défini ci-dessus, comprenant au moins les étapes suivantes : a) fournir un article d'optique comprenant un substrat ayant au moins une surface principale; b) déposer sur une surface principale du substrat une couche de composition de couche inférieure telle que définie précédemment; c) durcir au moins partiellement ladite composition de couche inférieure par voie thermique; d) déposer sur la couche résultant de l'étape précédente une couche de composition de couche supérieure telle que définie précédemment; e) durcir ladite composition de couche supérieure par voie thermique; f) récupérer un article d'optique comprenant un substrat ayant une surface principale revêtue d'un revêtement anti-abrasion et anti-rayures composé d'une couche inférieure adhérant à une couche supérieure.
La composition de couche inférieure peut être déposée sur le substrat de l'article d'optique selon toute technique appropriée, par exemple par trempage, centrifugation, pulvérisation, arrosage ou application à la brosse ou au rouleau, de préférence par trempage ou centrifugation. Selon une première variante du procédé, la composition de couche inférieure est complètement durcie par voie thermique avant le dépôt de la composition de couche supérieure, au cours de l'étape c). Son durcissement est mis en œuvre de façon préférentielle à une température de 80 à 150 °C, de préférence 90-120 °C, pendant généralement 30 minutes à 4 heures.
Préférentiellement, la surface de l'article d'optique résultant de l'étape c), c'est-à-dire la couche inférieure, est soumise à un traitement de préparation de surface avant l'étape d) de dépôt à sa surface de la composition de couche supérieure.
Ce traitement d'activation physique ou chimique, destiné à augmenter l'adhésion de la couche supérieure, est généralement conduit sous vide. Il peut s'agir d'un bombardement avec les espèces énergétiques précédemment définies, par exemple un faisceau d'ions ("Ion Pre-
Cleaning" ou "IPC") ou un faisceau d'électrons, un traitement par décharge corona, par effluvage, un traitement UV, un traitement par plasma sous vide, généralement un plasma d'oxygène ou d'argon, un traitement acide ou basique et/ou par solvants (eau ou solvant organique). Plusieurs de ces traitements peuvent être combinés.
L'étape intermédiaire de préparation de surface est de préférence un traitement par une solution basique, qui comprend typiquement une attaque chimique de quelques minutes (1 -3 minutes) à des températures voisines de 40-50 °C dans un bain de soude à 5 % massique éventuellement en présence d'agents tensioactifs. La composition de couche supérieure peut être déposée sur la couche inférieure du revêtement anti-abrasion selon les mêmes techniques que la composition de couche inférieure et peut être durcie par voie thermique dans les mêmes conditions qu'elle.
Selon une deuxième variante du procédé, la composition de couche inférieure est seulement partiellement durcie par voie thermique avant le dépôt de la composition de couche supérieure, au cours de l'étape c). Cette étape, qui peut être qualifiée de pré-polymérisation ou pré-cuisson, est généralement effectuée à une température de 70 à 120 0C, de préférence 80 à 120 °C, mieux 85-110 °C, encore mieux 90-100 °C, pendant un temps relativement court, typiquement 1 à 30 minutes, mieux 3 à 20 minutes et encore mieux 5-10 minutes.
De façon inattendue, les présents inventeurs ont constaté qu'un temps de cuisson trop élevé pouvait entraîner une diminution des propriétés de résistance à l'abrasion du revêtement final.
La deuxième variante du procédé de l'invention permet de s'affranchir de façon surprenante de l'étape de préparation de surface intermédiaire précédemment décrite entre le dépôt de la couche inférieure et celui de la couche supérieure, ce qui est particulièrement avantageux en termes de mise en œuvre sur le plan industriel. Malgré la suppression de l'étape intermédiaire de préparation de la surface de la couche inférieure, une très bonne adhérence est obtenue dans le produit final entre les deux couches du revêtement anti-abrasion.
Ainsi, selon la deuxième variante du procédé, la surface de l'article résultant de l'étape c) n'est pas soumise avant l'étape d) à un traitement de préparation de surface et la composition de couche supérieure peut être déposée directement sur la couche inférieure du revêtement anti-abrasion résultant de l'étape c), selon les mêmes techniques qu'exposées précédemment.
La composition de couche supérieure peut alors être durcie par voie thermique de façon préférentielle à une température de 80 à 150 °C, de préférence 90-120 °C, pendant généralement 30 minutes à 4 heures, ce qui achève également le durcissement de la composition de couche inférieure.
Lorsqu'une couche supplémentaire de revêtement anti-abrasion et/ou anti-rayures doit être déposée sur la couche supérieure du revêtement bicouche de l'invention, les étapes e) et f) du procédé selon l'invention deviennent : e) durcir au moins partiellement ladite composition de couche supérieure par voie thermique; e1 ) déposer sur la couche résultant de l'étape précédente une couche de composition de couche supplémentaire anti-abrasion et/ou anti-rayures telle que définie précédemment; e2) durcir ladite composition de couche supplémentaire par voie thermique; f) récupérer un article d'optique comprenant un substrat ayant une surface principale revêtue d'un revêtement anti-abrasion et anti-rayures composé d'une couche inférieure adhérant à une couche supérieure, et revêtu d'une couche supplémentaire de revêtement antiabrasion et/ou anti-rayures adhérant à ladite couche supérieure.
Ladite couche supérieure peut être soumise à un traitement de préparation de surface avant l'étape de dépôt à sa surface de la composition de couche supplémentaire. Ce traitement d'activation physique ou chimique, destiné à augmenter l'adhésion de la couche supplémentaire, peut être choisi, sans limitation, parmi les traitements d'activation de la couche inférieure décrits ci-dessus.
Selon une première variante, la composition de couche supérieure est complètement durcie par voie thermique avant le dépôt de la composition de couche supplémentaire antiabrasion et/ou anti-rayures. Son durcissement est mis en œuvre de façon préférentielle à une température de 80 à 150 0C, de préférence 90-120 0C, pendant généralement 30 minutes à 4 heures.
Selon une deuxième variante, ladite composition de couche supérieure peut être seulement partiellement durcie par voie thermique avant le dépôt de la composition de couche supplémentaire. Cette étape, qui peut être qualifiée de pré-polymérisation ou pré-cuisson, est généralement effectuée à une température de 80 à 120 °C, de préférence 85-1 10 "C, mieux 90-
100 0C, pendant un temps relativement court, typiquement 1 à 30 minutes, mieux 3 à 20 minutes et encore mieux 5-10 minutes. Selon cette deuxième variante, la surface de la couche supérieure du revêtement bicouche de l'invention n'est de préférence pas soumise avant l'étape de dépôt de la couche supplémentaire anti-abrasion et/ou anti-rayures à un traitement de préparation de surface et la composition de couche supplémentaire peut être déposée directement sur la couche supérieure du revêtement bicouche. Malgré la suppression de l'étape intermédiaire de préparation de la surface de la couche inférieure, une très bonne adhérence est obtenue dans le produit final entre la couche supérieure du revêtement anti-abrasion et ladite couche supplémentaire.
La composition de couche supplémentaire peut alors être durcie par voie thermique de façon préférentielle à une température de 80 à 150 0C, de préférence 90-120 °C, pendant généralement 30 minutes à 4 heures, ce qui achève également le durcissement des compositions de couche supérieure et éventuellement inférieure.
La composition de couche supplémentaire anti-abrasion et/ou anti-rayures peut être déposée selon toute technique appropriée, par exemple par trempage, centrifugation, pulvérisation, arrosage ou application à la brosse ou au rouleau, de préférence par trempage ou centrifugation.
L'article d'optique comprenant un substrat sur lequel est formé le revêtement antiabrasion et anti-rayures de l'invention peut également être un support temporaire, sur lequel ledit revêtement est stocké, en attente d'un transfert sur un autre substrat, qui est généralement le substrat définitif, tel qu'un substrat de lentille ophtalmique. Dans ce cas, la couche inférieure et la couche supérieure du revêtement bicouche doivent être déposées sur le support temporaire dans l'ordre inverse par rapport à l'ordre d'empilement souhaité sur le support définitif.
L'invention concerne ainsi également un procédé de préparation d'un article d'optique résistant à l'abrasion et aux rayures tel que défini ci-dessus, comprenant au moins les étapes suivantes : a) fournir un support temporaire ayant au moins une surface principale; b) déposer sur une surface principale du support une couche de composition de couche supérieure telle que définie précédemment; c) durcir au moins partiellement ladite composition de couche supérieure par voie thermique; d) déposer sur la couche résultant de l'étape précédente une couche de composition de couche inférieure telle que définie précédemment; e) durcir ladite composition de couche inférieure par voie thermique; f) transférer les couches présentes sur la surface principale du support temporaire vers une surface principale du substrat d'un article d'optique; g) récupérer un article d'optique comprenant un substrat ayant une surface principale revêtue d'un revêtement anti-abrasion et anti-rayures composé d'une couche inférieure adhérant à une couche supérieure. Ledit support temporaire peut être rigide ou flexible, de préférence flexible. Il s'agit d'un support amovible, c'est-à-dire qu'il est destiné à être retiré une fois effectué le transfert du revêtement anti-abrasion et anti-rayures de l'invention sur le support qui est généralement le support définitif. Le support temporaire peut être employé en ayant au préalable été revêtu d'une couche d'agent de démoulage destinée à faciliter le transfert. Cette couche peut éventuellement être éliminée à la fin de l'étape de transfert.
Les supports temporaires flexibles sont généralement des éléments fins de quelques millimètres d'épaisseur, de préférence de 0,2 à 5 mm, mieux de 0,5 à 2 mm, faits d'une matière plastique, de préférence un matériau thermoplastique.
Des films plus minces peuvent également être utilisés comme supports temporaires.
Des exemples de (co)polymères thermoplastiques pouvant être employés pour la fabrication du support temporaire sont les polysulfones, les poly(méth)acrylates aliphatiques, tels que le poly(méth)acrylate de méthyle, le polyéthylène, le polypropylène, le polystyrène, les copolymères à blocs SBM (styrène-butadiène-méthacrylate de méthyle), le sulfure de polyphénylène (PPS), les polyoxydes d'arylène, les polyimides, les polyesters, les polycarbonates tels que le polycarbonate de bisphénol A, le polychlorure de vinyle, les polyamides tels que les nylons, leurs copolymères et leurs mélanges. Le matériau thermoplastique préféré est le polycarbonate.
La surface principale du support temporaire peut comprendre un empilement d'un ou plusieurs revêtements fonctionnels (déjà décrits) qui seront transférés en même temps que le revêtement anti-abrasion et anti-rayures de l'invention sur le support définitif, en particulier une couche supplémentaire anti-abrasion et/ou anti-rayures telle que définie précédemment. Bien évidemment, les revêtements devant être transférés ont été déposés sur le support temporaire dans l'ordre inverse par rapport à l'ordre d'empilement souhaité sur le support définitif.
Par ailleurs, d'autres revêtements fonctionnels peuvent être formés sur la couche inférieure du revêtement bicouche avant de procéder au transfert.
L'invention concerne également un procédé de transfert du revêtement anti-abrasion et anti-rayures de l'invention (ou d'un empilement de revêtements comprenant ledit revêtement anti-abrasion et anti-rayures) du support temporaire vers un substrat définitif.
Le transfert du ou des revêtements portés par le support temporaire peut être réalisé selon toute technique appropriée connue de l'homme du métier.
Il est également possible, au lieu de le transférer, de coller sur le substrat définitif le revêtement anti-abrasion et anti-rayures ayant été formé sur un support temporaire, le support étant alors intégré sur le substrat définitif.
Les variantes du procédé de dépôt classique peuvent être adaptées au procédé incluant une étape de transfert. Ainsi, par exemple, la composition de couche supérieure peut être complètement durcie par voie thermique avant le dépôt de la composition de couche inférieure, la couche supérieure peut être soumise à un traitement de préparation de surface avant l'étape de dépôt à sa surface de la composition de couche inférieure, et la composition de couche supérieure peut être seulement partiellement durcie par voie thermique avant le dépôt de la composition de couche inférieure. En outre, les deux couches du revêtement anti-abrasion et anti-rayures bicouche de l'invention peuvent être transférées séparément vers un substrat, de même que tout autre revêtement tel qu'une couche supplémentaire anti-abrasion et/ou anti-rayures.
Les exemples suivants illustrent l'invention de façon plus détaillée mais non limitative. Sauf indication contraire, tous les pourcentages exprimés sont des pourcentages massiques.
EXEMPLES
1. Procédures générales
Les articles d'optique employés dans les exemples 1 -8 et 1 1 -15 comprennent un substrat de lentille ORMA® ESSILOR de 65 mm de diamètre, de puissance -2,00 dioptries et d'épaisseur 1 ,2 mm, dont la face convexe est successivement revêtue :
- optionnellement d'une couche de 1 μm d'épaisseur d'un primaire anti-chocs de nature polyuréthane à base de Witcobond® 234 éventuellement chargé (exemples 15,19, 21 , 22);
- optionnellement d'une couche de 2,5 μm d'épaisseur d'un revêtement monocouche anti-abrasion et/ou anti-rayures additionnel à base d'un hydrolysat d'époxysilane (uniquement l'exemple 18). La constitution et le mode de préparation de ce revêtement sont décrits plus en détail ci-dessous; - d'un revêtement anti-abrasion et anti-rayures bicouche conforme à l'invention, dans lequel le gradient de dureté est obtenu par augmentation du taux de TEOS entre la couche antiabrasion inférieure et la couche anti-abrasion supérieure;
- optionnellement d'une couche supplémentaire de revêtement anti-abrasion et/ou antirayures (exemple 20); et - optionnellement d'un revêtement anti-reflets composé d'un empilement de quatre couches ZrO2ZSiO2ZZrO2ZSiO2 formées par évaporation sous vide, d'épaisseurs respectives 27, 21 , 80 et 81 nm (uniquement les exemples 1 , 2, 4, 5).
Les exemples 9, 10, 16 et 17 sont des exemples comparatifs mettant en jeu des compositions de couche inférieure et/ou supérieure non-conformes à l'invention.
a) Préparation des compositions de couches anti-abrasion inférieures
Composition de couche inférieure A :
On fait tomber goutte à goutte 180g d'acide chlorhydrique 0,1 N dans une solution qui contient 280g de Glymo et 150g de tétraéthoxysilane (TEOS). Lors de l'hydrolyse, la température monte jusqu'à 45°C. La solution hydrolysée est agitée 24 heures à température ambiante puis on ajoute 45g d'acide itaconique, 14g de N-cyanoguanidine, 330g de méthanol et 1 ,5g de tensioactif FC 430 afin d'améliorer la capacité d'étalement de cette formulation. L'extrait sec théorique (EST) de cette composition est de l'ordre de 30% en masse. Composition de couche inférieure A1 :
On fait tomber goutte à goutte 102,8g d'acide chlorhydrique 0,1 N dans un bêcher qui contient 385,8g de Glymo. Lors de l'hydrolyse, la température monte jusqu'à 40-420C. La solution hydrolysée est agitée 24 heures à température ambiante puis on ajoute 61 ,6g d'acide itaconique, 15,4g de N-cyanoguanidine, 432,9g de méthanol et 1 ,5g de tensioactif FC 430.
L'extrait sec théorique (EST) de cette composition est d'environ 35% massique.
Composition de couche inférieure A2 :
On fait tomber goutte à goutte 101 ,8g d'acide chlorhydrique 0,1 N dans un bêcher qui contient 445,2g de Glymo. Lors de l'hydrolyse, la température monte jusqu'à 43O. La solution hydrolysée est agitée 24 heures à température ambiante puis on ajoute 18,9g d'acétylacétonate d'aluminium, 333g de méthanol et 1 ,5g de tensioactif FC 430. L'extrait sec théorique (EST) de cette composition est de 35% environ en masse.
Composition de couche inférieure A3 :
On fait tomber goutte à goutte 151 ,5g d'acide chlorhydrique 0,1 N dans une solution qui contient 365g de Glymo et 196,6g de tétraéthoxysilane (TEOS). Lors de l'hydrolyse, la température monte jusqu'à 420C. La solution hydrolysée est agitée 24 heures à température ambiante puis on ajoute 18,9g d'acétylacétonate d'aluminium, 166,6g de méthanol et 1 ,35g de tensioactif FC 430. L'extrait sec théorique (EST) de cette composition est de l'ordre de 35% en masse.
Composition de couche inférieure A4 (composition comparative) :
On fait tomber goutte à goutte 64g d'acide chlorhydrique 0,1 N dans 183g de Glymo sous agitation. Lors de l'hydrolyse, la température monte jusqu'à 46°C. Au bout de 30 minutes, la température de l'hydrolysat est redescendue à 28 0C, et on ajoute alors goutte à goutte 91 g de DMDES (diméthyldiéthoxysilane). Cet ajout est légèrement exothermique (290C).
La solution hydrolysée est agitée 24 heures à température ambiante puis on ajoute
583,3g de dispersion de silice colloïdale Suncolloid MAST de la société NISSAN, à 30% d'extrait sec dans le méthanol, 10,5g d'acétylacétonate d'aluminium, 31 ,5g de méthyl éthyl cétone, 35,2g de méthanol et 1 ,5g de tensioactif FC 430. L'extrait sec théorique (EST) de cette composition est de 35% en masse.
Composition de couche inférieure A5 : On fait tomber goutte à goutte 2,15g d'acide phosphorique (pureté : 99%) dans une solution qui contient 271 ,3g de Glymo et 166,4g de TEOS. Lors de l'hydrolyse, la température monte jusqu'à 450C. La solution hydrolysée est agitée 24 heures à température ambiante puis on ajoute 9,6g de N-cyanoguanidine, 239,3g d'eau désionisée, 1 10,4 g de 1-méthoxypropan-2- ol commercialisé sous le nom DOWANOL PM® par Dow Chemical et 0,8g de tensioactif EFKA® 3034 (Ciba Specialty Chemicals) afin d'améliorer la capacité d'étalement de cette formulation. L'extrait sec théorique (EST) de cette composition est de 31 ,2% en masse.
Remarque : dans l'essai comparatif 16, la composition A5 a été employée en tant que composition de couche supérieure.
Composition de couche inférieure A6 :
On fait tomber goutte à goutte 77,6g d'acide chlorhydrique 0,1 N dans un bêcher qui contient 339,2g de Glymo. Lors de l'hydrolyse, la température monte jusqu'à 40-420C. La solution hydrolysée est agitée 24 heures à température ambiante puis on ajoute 10,8g d'acide itaconique, 3,4g de N-cyanoguanidine, 367,9g de méthanol et 1 ,2g de tensioactif EFKA® 3034 (Ciba Specialty Chemicals). L'extrait sec théorique (EST) de cette composition est de 31 ,35% massique.
Composition de couche inférieure A7 :
On fait tomber goutte à goutte 102,4g d'acide chlorhydrique 0,1 N dans un bêcher qui contient 224g de Glymo et 120g de TEOS. Lors de l'hydrolyse, la température monte jusqu'à 450C. La solution hydrolysée est agitée 24 heures à température ambiante puis on ajoute 36g d'acide itaconique, 1 1 ,2g de N-cyanoguanidine, 264g de méthanol et 0,8g de tensioactif EFKA® 3034 (Ciba Specialty Chemicals). L'extrait sec théorique (EST) de cette composition est de 30% massique.
Composition de couche inférieure A8 :
La composition est obtenue en mélangeant les composants figurant dans le tableau ci- après. La couche résultante présente un indice de réfraction élevé en raison de la présence du colloïde de titane.
Figure imgf000029_0001
b) Préparation des compositions de couches anti-abrasion supérieures
Composition de couche supérieure B :
On fait tomber goutte à goutte 130,5g d'acide chlorhydrique 0,1 N dans une solution qui contient 126,1g de Glymo et 294,4g de TEOS. Lors de l'hydrolyse, la température monte jusqu'à 490C. La solution hydrolysée est agitée 24 heures à température ambiante puis on ajoute 20,8g d'acide itaconique, 5g de N-cyanoguanidine, 423,1g de méthanol et 1 ,5g de tensioactif FC 430 afin d'améliorer la capacité d'étalement de cette formulation. L'extrait sec théorique (EST) de cette composition est de l'ordre de 20% en masse.
Composition de couche supérieure B1 : On fait tomber goutte à goutte 152,3g d'acide chlorhydrique 0,1 N dans une solution qui contient 141 ,3g de Glymo et 346,7g de TEOS. Lors de l'hydrolyse, la température monte jusqu'à 479C. La solution hydrolysée est agitée 24 heures à température ambiante puis on ajoute 12g d'acétylacétonate d'aluminium, 346g de méthanol et 1 ,5g de tensioactif FC 430 afin d'améliorer la capacité d'étalement de cette formulation. L'extrait sec théorique (EST) de cette composition est de 20% en masse.
Composition de couche supérieure B2 (composition comparative) :
On fait tomber goutte à goutte 29,1g d'acide chlorhydrique 0,1 N dans une solution qui contient 127,2g de Glymo. Lors de l'hydrolyse, la température monte jusqu'à 45°C. La solution hydrolysée est agitée 24 heures à température ambiante puis on ajoute 366,7g de dispersion de silice colloïdale Suncolloid MAST de la société NISSAN, à 30% d'extrait sec dans le méthanol, 6,3g d'acétylacétonate d'aluminium, 18,9g de méthyl éthyl cétone, 450,4g de méthanol et 1 ,5g de tensioactif FC 430. L'extrait sec théorique (EST) de cette composition est de 20% en masse.
Composition de couche supérieure B3 :
On fait tomber goutte à goutte 2,43g d'acide phosphorique (pureté : 99%) dans une solution qui contient 169,6g de Glymo et 277,4g de TEOS. Lors de l'hydrolyse, la température monte jusqu'à 450C. La solution hydrolysée est agitée 24 heures à température ambiante puis on ajoute 9,6g de N-cyanoguanidine, 269,5g d'eau désionisée, 72,3 g de 1-méthoxypropan-2-ol commercialisé sous le nom DOWANOL PM® par Dow Chemical et 0,8g de tensioactif EFKA® 3034 (Ciba Specialty Chemicals) afin d'améliorer la capacité d'étalement de cette formulation. L'extrait sec théorique (EST) de cette composition est de 26% en masse.
Remarque : dans l'essai comparatif 17, la composition B3 a été employée en tant que composition de couche inférieure.
Composition de couche supérieure B4 (composition comparative) :
On fait tomber goutte à goutte 2,45g d'acide phosphorique (pureté : 99%) dans une solution qui contient 90,4g de Glymo et 332,9g de TEOS. Lors de l'hydrolyse, la température monte jusqu'à 450C. La solution hydrolysée est agitée 24 heures à température ambiante puis on ajoute 9,6g de N-cyanoguanidine, 271 ,7g d'eau désionisée, 95,3 g de 1-méthoxypropan-2-ol commercialisé sous le nom DOWANOL PM® par Dow Chemical et 0,8g de tensioactif EFKA®
3034 (Ciba Specialty Chemicals) afin d'améliorer la capacité d'étalement de cette formulation. L'extrait sec théorique (EST) de cette composition est de 20,8% en masse. Composition de couche supérieure B5 :
On fait tomber goutte à goutte 1 ,92g d'acide phosphorique (pureté : 99%) dans une solution qui contient 102,4g de Glymo et 249,6g de TEOS. Lors de l'hydrolyse, la température monte jusqu'à 450C. La solution hydrolysée est agitée 24 heures à température ambiante puis on ajoute 5,6g de N-cyanoguanidine, 219,2g d'eau désionisée, 220,5 g de 1-méthoxypropan-2- ol commercialisé sous le nom DOWANOL PM® par Dow Chemical et 0,8g de tensioactif EFKA® 3034 (Ciba Specialty Chemicals) afin d'améliorer la capacité d'étalement de cette formulation. L'extrait sec théorique (EST) de cette composition est de 18% en masse.
c) Procédures de dépôt du revêtement anti-abrasion bicouche
Mode opératoire 1
Un substrat de lentille ophtalmique ORMA® (éventuellement revêtu d'une couche de primaire, exemple 15) est revêtu par trempage avec une composition de couche inférieure. On règle la vitesse de démouillage de ces lentilles de telle façon que l'épaisseur déposée soit de
3,5μm. La composition de couche inférieure est alors polymérisée en étuve pendant 3h à
1001C.
Après cette polymérisation, la lentille revêtue de la couche anti-abrasion inférieure est soumise à un traitement de préparation de surface intermédiaire ayant pour but d'activer la surface de la couche anti-abrasion inférieure afin de faciliter l'accrochage de la couche antiabrasion supérieure.
Puis la lentille est revêtue par dip-coating avec une composition de couche supérieure, en réglant la vitesse de démouillage de façon à obtenir une épaisseur déposée de 1 μm. Cette composition de couche supérieure est ensuite polymérisée en étuve pendant 3h à 1009C.
Mode opératoire 2
Un substrat de lentille ophtalmique ORMA® est revêtu par trempage avec une composition de couche inférieure. On règle la vitesse de démouillage de ces lentilles de telle façon que l'épaisseur déposée soit de 3,5μm. La composition de couche inférieure est alors pré-polymérisée en étuve pendant 10 min à 900C.
Puis la lentille refroidit pendant 15 minutes à température ambiante et est alors directement revêtue par dip-coating avec une composition de couche supérieure en réglant la vitesse de démouillage de façon à obtenir une épaisseur déposée de 1 μm.
Cette composition de couche supérieure est ensuite polymérisée en étuve pendant 3h à 1000C ce qui achève également la polymérisation de la composition de couche inférieure.
Mode opératoire 3
Identique au mode opératoire 2, hormis l'étape de pré-polymérisation de la couche inférieure qui est effectuée pendant 15 min à 90 0C.
Mode opératoire 4 Identique au mode opératoire 2, hormis l'étape de pré-polymérisation de la couche inférieure qui est effectuée pendant 5 min à 100 0C.
Mode opératoire 5
Identique au mode opératoire 2, hormis l'étape de pré-polymérisation de la couche inférieure qui est effectuée pendant 10 min à 100 0C.
Mode opératoire 6
Identique au mode opératoire 2, hormis l'étape de pré-polymérisation de la couche inférieure qui est effectuée à 100 0C pendant 30 min, et l'étape de polymérisation qui est conduite à 100°C pendant 30 minutes. En outre, la vitesse de démouillage des lentilles est réglée de telle façon que l'épaisseur de composition de couche inférieure déposée soit de 3μm et que l'épaisseur de composition de couche supérieure déposée soit de 1.5μm.
Mode opératoire 7
Identique au mode opératoire 6, excepté qu'avant le dépôt de la composition de couche inférieure, le substrat de lentille ophtalmique ORMA® est revêtu par trempage d'une monocouche de revêtement anti-abrasion et/ou anti-rayures additionnel (vitesse de démouillage de la lentille réglée de telle façon que l'épaisseur déposée soit de 2,5μm), qui est pré- polymérisée en étuve pendant 30 min à 1009C.
En outre, la vitesse de démouillage des lentilles est réglée de telle façon que l'épaisseur de composition de couche inférieure déposée soit de 2μm et que l'épaisseur de composition de couche supérieure déposée soit de 1.5μm.
Ledit revêtement anti-abrasion et/ou anti-rayures monocouche additionnel est formé à partir d'une composition obtenue de la façon suivante :
On fait tomber goutte à goutte 77,6g d'acide chlorhydrique 0,1 N dans un bêcher qui contient 339,2g de Glymo. Lors de l'hydrolyse, la température monte jusqu'à 40-429C. La solution hydrolysée est agitée 24 heures à température ambiante puis on ajoute 10,8g d'acide itaconique, 3,4g de N-cyanoguanidine, 367,9g de méthanol et 1 ,2g de tensioactif EFKA® 3034 (Ciba Specialty Chemicals). L'extrait sec théorique (EST) de cette composition est de 31 ,35% massique. Mode opératoire 8
Identique au mode opératoire 2, excepté qu'avant le dépôt de la composition de couche inférieure, le substrat de lentille ophtalmique ORMA® est revêtu par trempage d'une couche de primaire anti-chocs de 0,8μm d'épaisseur, pré-polymérisée pendant 30 minutes à 90 °C.
La couche de primaire est formée à partir d'une composition préparée en mélangeant successivement 225,7g du latex polyuréthane Witcobond® 234, 774,4g d'eau déminéralisée,
370,8g de charges colloïdales HX305 W1 (colloïde de SnO2) commercialisées par la société
CCIC, et 3g du tensioactif Silwet L-77®. L'extrait sec théorique de cette composition de primaire est de 20%. En outre, la vitesse de démouillage des lentilles est réglée de telle façon que l'épaisseur de composition de couche inférieure déposée soit de 3μm et l'étape de pré-polymérisation de la couche inférieure est effectuée à 900C pendant 30 min.
Mode opératoire 9 Un substrat de lentille ophtalmique ORMA® est revêtu par trempage avec une composition de couche inférieure. On règle la vitesse de démouillage de ces lentilles de telle façon que l'épaisseur déposée soit de 2,5μm. La composition de couche inférieure est alors pré-polymérisée en étuve pendant 30 min à 1000C.
Puis la lentille refroidit pendant 15 minutes à température ambiante et est alors directement revêtue par trempage avec une composition de couche supérieure en réglant la vitesse de démouillage de façon à obtenir une épaisseur déposée de 1 ,5μm. La composition de couche supérieure est ensuite pré-polymérisée en étuve pendant 30 min à 9O0C.
La lentille est refroidie pendant 15 minutes à température ambiante et est alors directement revêtue par trempage d'une couche supplémentaire de revêtement anti-abrasion et/ou anti-rayures (vitesse de démouillage de la lentille réglée de telle façon que l'épaisseur déposée soit de 1 μm), ce dépôt étant suivi d'une étape finale de polymérisation de l'ensemble conduite à 901C pendant 30 minutes.
La couche supplémentaire de revêtement anti-abrasion et/ou anti-rayures monocouche est formée à partir d'une composition obtenue de la façon suivante : On fait tomber goutte à goutte 2,45g d'acide phosphorique (pureté : 99%) dans une solution qui contient 90,4g de Glymo et 332,9g de TEOS. Lors de l'hydrolyse, la température monte jusqu'à 450C. La solution hydrolysée est agitée 24 heures à température ambiante puis on ajoute 9,6g de N-cyanoguanidine, 271 ,7g d'eau désionisée, 95,3 g de 1-méthoxypropan-2-ol commercialisé sous le nom DOWANOL PM® par Dow Chemical et 0,8g de tensioactif EFKA® 3034 (Ciba Specialty Chemicals) afin d'améliorer la capacité d'étalement de cette formulation. L'extrait sec théorique (EST) de cette composition est de 20,8% en masse.
Mode opératoire 10 :
Identique au mode opératoire 8, excepté que la couche de primaire est formée à partir d'une composition préparée en mélangeant successivement 171 ,81g du latex polyuréthane Witcobond® 234, 201 ,8g d'eau déminéralisée, 196,98g de charges colloïdale de silice LUDOX
H540 (à 40% de teneur massique en silice), 531 ,2g d'eau déminéralisée et 1 ,844g du tensioactif Silwet L-77®. L'extrait sec théorique de cette composition de primaire est de 15%.
d) Procédures de pré-traitement de la surface de la couche anti-abrasion inférieure
Préparation de surface sodique
Les lentilles revêtues de la couche anti-abrasion inférieure sont immergées dans un bain de soude à 5% massique à la température de 50 0C (sauf essais 1 et 15, 400C), équipé d'ultrasons, pendant 1 minute. Elles sont ensuite rincées dans de l'eau déminéralisée puis séchées. Préparation de surface plasma
Les lentilles revêtues de la couche anti-abrasion inférieure sont soumises à un traitement plasma oxygène (puissance 1200W pendant 4,5 minutes, débit O2 : 20OmL / min, pression 0,2 bar). Préparation de surface corona
Les lentilles revêtues de la couche anti-abrasion inférieure sont soumises à un traitement corona (distance entre le verre et l'électrode 1cm à 2cm, temps de traitement 10 secondes, puissance de l'émetteur 100W).
2. Caractérisations
Pour l'appréciation des propriétés des verres revêtus obtenus dans les exemples, on a mesuré la résistance à l'abrasion, par la valeur obtenue au test BAYER ISTM, la résistance aux rayures par le test de la paille de fer, et l'adhérence du revêtement anti-abrasion au moyen d'un "cross-hatch test".
Une valeur élevée au test BAYER ISTM indique un degré élevé de résistance à l'abrasion, alors qu'une valeur faible au test de la paille de fer indique un degré élevé de résistance aux rayures.
Les trois tests pratiqués sont décrits ci-dessous.
a) Caractérisation de la résistance à l'abrasion : Test Baver ISTM (Baver alumine)
La résistance à l'abrasion a été évaluée par détermination de valeurs BAYER ISTM sur des substrats revêtus du revêtement anti-abrasion de l'invention ou d'un revêtement anti- abrasion comparatif, sur des substrats revêtus du revêtement anti-abrasion de l'invention et d'un revêtement anti-reflets (exemples 1 , 2, 4, 5), sur des substrats revêtus d'un revêtement de primaire et du revêtement anti-abrasion de l'invention (exemples 15, 19, 21 , 22), sur des substrats revêtus d'un revêtement anti-abrasion et/ou anti-rayures additionnel et du revêtement anti-abrasion bicouche de l'invention (exemple 18), ou sur des substrats revêtus du revêtement anti-abrasion bicouche de l'invention et d'une couche supplémentaire de revêtement antiabrasion et/ou anti-rayures (exemple 20).
La détermination de cette valeur BAYER a été établie en suivant la norme ASTM F735- 81 , avec les modifications suivantes : 300 cycles ont été réalisés au lieu de 200 et la poudre abrasive n'est pas du sable mais de l'alumine (AI2O3) ZF 152412 fournie par la société Ceramic Grains (anciennement Norton Materials, New Bond Street, PO Box 15137 Worcester, Mass. 01615-00137).
Ce test consiste à agiter simultanément un verre échantillon et un verre étalon d'un mouvement alternatif déterminé dans un bac contenant la poudre abrasive (approximativement 500 g) de granulométrie définie à une fréquence de 100 cycles/minute pendant 3 minutes. La mesure de diffusion H "avant / après" du verre échantillon est comparée à celle d'un verre étalon, en l'occurrence un verre nu à base de CR-39®, pour lequel la valeur BAYER ISTM est fixée à 1 . La valeur Bayer ISTM est R = H étalon/H verre échantillon.
Les mesures de diffusion ont été effectuées en utilisant un système Hazeguard modèle XL-21 1 produit par Pacific Scientific. La valeur Bayer ISTM est qualifiée de bonne lorsque R est supérieur ou égal à 3 et inférieur à 4,5, et d'excellente pour des valeurs de 4,5 et plus.
b) Caractérisation de la dureté - résistance aux rayures (test Pdf manuel)
La résistance aux rayures a été mesurée grâce le test à la paille de fer (pdf, ou test à la laine d'acier), qui consiste à effectuer 5 aller-retour en frottant manuellement avec une amplitude de 4 à 5 cm la face d'un verre revêtue conformément à l'invention avec une paille de fer, dans le sens des fibres, tout en appliquant une pression constante sur la paille de fer lors de cette opération (5 kg durant l'aller, 2,5 kg durant le retour). Ici, un morceau d'environ 3 cm sur 3 cm de laine d'acier extra fine STARWAX (grade 000) plié sur lui-même a été employé.
Le verre est ensuite essuyé avec un chiffon sec, rincé à l'alcool, puis inspecté visuellement. On attribue une notation en fonction de la graduation suivante (comportant 3 notes : 1 , 3 ou 5) :
I : aucune rayure observée ou verre très peu rayé (1 à 10 rayures) 3 : verre assez rayé (1 1 à 50 rayures)
5 : verre très rayé (nombre de rayures supérieur à 50)
c) Caractérisation de l'adhérence du revêtement anti-abrasion ("cross-hatch test")
Le test d'adhérence a été effectué suivant la norme ASTM D3359-93 et conduit à un classement qualitatif allant de 0 à 5, 0 étant le meilleur résultat.
II consiste à entailler le revêtement anti-abrasion bicouche de l'invention déposé sur un substrat à l'aide d'un cutter, suivant un réseau quadrillé de lignes d'incision, à appliquer un ruban adhésif sur le revêtement ainsi quadrillé et à essayer de l'arracher à l'aide de celui-ci. Les résultats sont considérés comme bons au degré zéro lorsque les bords des incisions pratiquées demeurent parfaitement lisses, et qu'aucun des carrés qu'elles délimitent ne s'est détaché.
Ce test d'adhérence peut également être réalisé après que le substrat de lentille revêtu du revêtement anti-abrasion bicouche de l'invention a été plongé dans un bain d'eau bouillante pendant 30 minutes.
3. Résultats
Les performances en termes de résistance à l'abrasion et aux rayures des différents articles d'optique préparés sont présentées dans le Tableau 1 . Les résultats des essais comparatifs apparaissent en gras.
W
Figure imgf000036_0001
S = sodique, P = plasma, C = corona. AR = anti-reflets. * Substrat préalablement revêtu d'une couche de primaire anti-chocs.
Les revêtements anti-abrasion conformes à l'invention présentent des performances très supérieures à celles que l'on aurait obtenues si l'on avait utilisé un revêtement monocouche.
Après le dépôt d'un revêtement anti-reflets sur le revêtement anti-abrasion, les performances sont également très supérieures à celles que l'on aurait obtenues si l'on avait utilisé un revêtement monocouche.
Les exemples 1 -3 montrent qu'une préparation intermédiaire de surface sodique est préférable à un traitement plasma ou corona.
Les compositions A et B, qui contiennent un mélange de GLYMO et de TEOS et utilisent le système catalytique acide itaconique/Λ/-cyanoguanidine, sont plus performantes que les compositions A3 et B1 , dans lequel le catalyseur Al(acac)3 est utilisé.
Les résultats des exemples comparatifs 9 et 10, qui utilisent de la silice colloïdale à la place du TEOS, sont très inférieurs en termes de résistance à l'abrasion et à la rayure. De même, les articles des exemples comparatifs 16 et 17, qui ne possèdent pas des ratios Rs et/ou Ri conformes à ceux de l'invention, présentent une faible résistance à l'abrasion. Les tests d'adhérence pratiqués (cross hatch test) révèlent une très bonne adhérence
(score de zéro) entre les couches, même après un passage des verres testés de 30 minutes dans de l'eau à 10O0C, et ce, que l'on utilise la première variante du procédé de l'invention (exemples 1 -8 et 15, avec préparation de surface intermédiaire) ou la deuxième variante du procédé de l'invention (exemples 1 1 -14, sans préparation de surface intermédiaire). Dans le dernier cas, l'adhérence entre les deux couches du revêtement anti-abrasion est obtenue par pré-polymérisation de la couche inférieure.
L'introduction d'un revêtement de primaire ne modifie pas les propriétés de résistance à l'abrasion et aux rayures des articles d'optique (résultats des exemples 1 , 15, 19, 21 et 22).
L'introduction d'un revêtement anti-abrasion supplémentaire entre le substrat et le revêtement bicouche de l'invention conduit aussi à des articles possédant une très bonne résistance à l'abrasion (exemple 18), de même que l'introduction d'une couche supplémentaire de revêtement anti-abrasion et/ou anti-rayures au contact de la couche supérieure du revêtement bicouche de l'invention (exemple 20).
Les exemples 19, 21 et 22 illustrent l'invention pour un empilement contenant un primaire chargé en colloïde (SiO2 pour l'exemple 21 et SnO2 pour les exemples 19 et 22) et la couche inférieure du revêtement bicouche elle-même chargée en colloïde (exemple 22).

Claims

REVENDICATIONS
1. Article d'optique comprenant un substrat ayant au moins une surface principale revêtue d'un revêtement anti-abrasion et anti-rayures, ledit revêtement étant composé, en partant du substrat, d'une couche inférieure et d'une couche supérieure adhérant entre elles, la couche supérieure étant une couche de composition de couche supérieure durcie et la couche inférieure étant une couche de composition de couche inférieure durcie, caractérisé en ce que ladite composition de couche supérieure comprend :
- au moins un composé organosilane, ou hydrolysat de celui-ci, de formule : RnYmSi(X)4-P-P1 (I) dans laquelle les groupes R, identiques ou différents, sont des groupes organiques monovalents liés au silicium par un atome de carbone et contenant au moins une fonction époxy, les groupes X, identiques ou différents, sont des groupes hydrolysables, Y est un groupe organique monovalent lié au silicium par un atome de carbone, n et m étant des entiers tels que n = 1 ou 2 avec n+m = 1 ou 2, et
- au moins un composé, ou hydrolysat de celui-ci, de formule :
M(Z)x (II) dans laquelle M désigne un métal ou un métalloïde, les groupes Z, identiques ou différents, sont des groupes hydrolysables et x, égal ou supérieur à 4, de préférence de 4 à 6 est la valence du métal ou métalloïde M, le ratio :
masse de l' extrait sec théorique en composésl dans la composition de couche supérieure masse de l' extrait sec théorique en composésl I dans la composition de couche supérieure étant inférieur ou égal à 2,3, et en ce que ladite composition de couche inférieure comprend : - au moins un composé organosilane, ou hydrolysat de celui-ci, de formule :
R'n.Y'm.Si(XI)4.n,m. (III) dans laquelle les groupes R1, identiques ou différents, sont des groupes organiques monovalents liés au silicium par un atome de carbone et contenant au moins une fonction époxy, les groupes X', identiques ou différents, sont des groupes hydrolysables, Y' est un groupe organique monovalent lié au silicium par un atome de carbone, n1 et m' étant des entiers tels que n' = 1 ou 2 avec n'+m1 = 1 ou 2, et
- optionnellement, au moins un composé, ou hydrolysat de celui-ci, de formule :
NT(Z)V (IV) dans laquelle M' désigne un métal ou un métalloïde, les groupes Z, identiques ou différents, sont des groupes hydrolysables et y, égal ou supérieur à 4, de préférence de 4 à 6 est la valence du métal ou métalloïde M', le ratio :
. masse de /' extrait sec théorique en composés III dans la composition de couche inférieure masse de /' extrait sec théorique en composés IV dans la composition de couche inférieure étant supérieur à 2,3.
2. Article selon la revendication 1 , caractérisé en ce que le composé (II) répond à la formule Si(Z)4, dans laquelle les groupes Z, identiques ou différents, sont des groupes hydrolysables, et/ou en ce que le composé (IV) répond à la formule Si(Z1J4, dans laquelle les groupes Z1, identiques ou différents, sont des groupes hydrolysables.
3. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que Rs est inférieur ou égal à 2,0, de préférence inférieur ou égal à 1 ,5, mieux inférieur ou égal à 1 ,25, et encore mieux inférieur ou égal à 1 ,1 , et supérieur ou égal à 0,85, mieux supérieur ou égal à 0,9, encore mieux supérieur ou égal à 0,95.
4. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que Ri est supérieur ou égal à 3,0, de préférence supérieur ou égal à 3,5, mieux supérieur ou égal à
4,5, encore mieux supérieur ou égal à 10.
5. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que la masse de l'extrait sec théorique en composés I représente de 30 à 60 % de la masse de l'extrait sec de la composition de couche supérieure, mieux de 40 à 55 %.
6. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que la masse de l'extrait sec théorique en composés III représente plus de 40 % de la masse de l'extrait sec de la composition de couche inférieure, mieux plus de 50 %, mieux encore plus de 60 % et de façon optimale plus de 65 %.
7. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que la masse de l'extrait sec théorique en composés IV représente moins de 30 % de la masse de l'extrait sec de la composition de couche inférieure, mieux moins de 25 %, mieux encore moins de 20 % et de façon optimale moins de 10 %.
8. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que l'épaisseur du revêtement anti-abrasion et anti-rayures varie de 1 à 15 μm, préférentiellement de 1 à 10 μm, mieux de 2 à 8 μm, et encore mieux de 3 à 6 μm.
9. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que le ratio de l'épaisseur de la couche inférieure sur l'épaisseur de la couche supérieure est supérieur ou égal à 1 ,5, mieux supérieur ou égal à 2,0, et encore mieux supérieur ou égal à 3,0.
10. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que les groupes hydrolysables X, X', Z, Z' sont choisis, indépendamment les uns des autres, parmi les groupes alcoxy -O-R1, où R1 désigne un groupe alkyle linéaire ou ramifié, de préférence en C1-C4, ou un groupe alcoxyalkyle, les groupes acyloxy -0-C(O)R3 où R3 est un groupe alkyle, préférentiellement en C1-C6, de préférence méthyle ou éthyle, les halogènes tels que Cl et Br et les groupes amino éventuellement substitués par un ou deux groupes alkyle ou silane.
11. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que les groupes Y ou Y' sont choisis, indépendamment les uns des autres, parmi les groupes alkyle en CrC4, alcényle, aryle en C6-Ci0, méthacryloxyalkyle, acryloxyalkyle, fluoroalkyle, perfluoroalkyle, (poly)fluoro alcoxy[(poly)alkylènoxy]alkyle et perfluoro alcoxy[(poly)alkylènoxy]alkyle.
12. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que les groupes R ou R' sont choisis, indépendamment les uns des autres, parmi les groupes de formules V et Vl :
Figure imgf000040_0001
dans lesquelles R2 est un groupe alkyle, de préférence un groupe méthyle, ou un atome d'hydrogène, a et c sont des nombres entiers allant de 1 à 6, et b représente 0, 1 ou 2.
13. Article selon la revendication 12, caractérisé en ce que les groupes R ou R1 sont choisis, indépendamment les uns des autres, parmi les groupes γ-glycidoxypropyle, β-(3,4- époxycyclohexyl)éthyle et γ-glycidoxyéthoxypropyle, et représentent de préférence le groupe γ- glycidoxypropyle.
14. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que les composés de formule I et/ou III sont choisis, indépendamment les uns des autres, parmi les composés de formules VII et VIII :
VII (R1O)3Si(CH2J3- (OCH2CH2)b-O O
Figure imgf000040_0002
dans lesquelles R1 est un groupement alkyle ayant de 1 à 6 atomes de carbone, préférentiellement un groupement méthyle ou éthyle, a et c sont des nombres entiers allant de 1 à 6, et b représente 0, 1 ou 2.
15. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que les composés de formule II et/ou IV sont choisis, indépendamment les uns des autres, parmi les tétraalcoxysilanes, de préférence parmi le tétraéthoxysilane, le tétraméthoxysilane, le tétra(n- propoxy)silane, le tétra(i-propoxy)silane, le tétra(n-butoxy)silane, le tétra(sec-butoxy)silane et le tétra(t-butoxy)silane.
16. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que les compositions de couche inférieure et/ou supérieure comprennent au moins un catalyseur de condensation et/ou au moins un catalyseur de durcissement.
17. Article selon la revendication 16, caractérisé en ce que le catalyseur de condensation est choisi parmi les acides ou anhydrides d'acides polyfonctionnels saturés ou insaturés, de préférence parmi l'acide maléique, l'acide itaconique, l'acide triméllitique et l'anhydride triméllitique
18. Article selon la revendication 16 ou 17, caractérisé en ce que le catalyseur de durcissement est choisi parmi les dérivés de l'imidazole et leurs sels d'imidazolium, la N- cyanoguanidine, les sels métalliques d'acétylacétone ayant pour formule M(CH3COCHCOCH3)n, dans laquelle M représente un ion métallique, de préférence Zn2+, Co3+, Fe3+ ou Cr3+, et n est un entier allant de 1 à 3, le tétrathiocyanatodiamminechromate(lll) d'ammonium, les composés à base d'aluminium, les carboxylates de métaux tels que le zinc, le titane, le zirconium, l'étain ou le magnésium, de préférence l'octoate de zinc ou l'octoate stanneux, les sels d'iodonium et les sels de sulfonium.
19. Article selon la revendication 18, caractérisé en ce que le composé à base d'aluminium est choisi parmi les chélates d'aluminium, les acylates et alcoolates d'aluminium(lll), de préférence parmi l'acétylacétonate d'aluminium, le bisacétylacétonate d'aluminium mono(acétoacétate d'éthyle), le monoacétylacétonate d'aluminium bis(acétoacétate d'éthyle), le di-n-butoxy aluminium mono(acétoacétate d'éthyle) et le di-i-propoxy aluminium mono(acétoacétate d'éthyle).
20. Article selon l'une quelconque des revendications 1 à 15, caractérisé en ce que les compositions de couche inférieure et/ou supérieure comprennent un système catalytique composé d'acétylacétonate d'aluminium ou composé d'acide itaconique et de N- cyanoguanidine.
21. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que les compositions de couche inférieure et/ou supérieure comprennent moins de 10 % en masse de charges par rapport à la masse totale de la composition, mieux n'en comprennent pas.
22. Article selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend, en partant du substrat, une couche de primaire anti-chocs revêtue par ledit revêtement anti-abrasion et anti-rayures, ladite couche de primaire comprenant de préférence des charges colloïdales.
23. Article selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une couche supplémentaire de revêtement anti-abrasion et/ou anti-rayures au contact de ladite couche supérieure, la couche supplémentaire anti-abrasion et/ou anti-rayures étant une couche de composition de couche supplémentaire anti-abrasion et/ou anti-rayures durcie, ladite composition de couche supplémentaire comprenant :
- au moins un composé organosilane, ou hydrolysat de celui-ci, de formule :
Figure imgf000041_0001
dans laquelle les groupes R", identiques ou différents, sont des groupes organiques monovalents liés au silicium par un atome de carbone et contenant au moins une fonction époxy, les groupes X", identiques ou différents, sont des groupes hydrolysables, Y" est un groupe organique monovalent lié au silicium par un atome de carbone, n" et m" étant des entiers tels que n" = 1 ou 2 avec n"+m" = 1 ou 2, et - au moins un composé, ou hydrolysat de celui-ci, de formule : M"(Z")Z (X) dans laquelle M" désigne un métal ou un métalloïde, les groupes Z", identiques ou différents, sont des groupes hydrolysables et z, égal ou supérieur à 4, de préférence de 4 à 6 est la valence du métal ou métalloïde M", le ratio : p _ masse de ï extrait sec théorique en composés IX dans la composition de couche supplémentaire masse de /' extrait sec théorique en composés X dans la composition de couche supplémentaire
étant inférieur ou égal à 2,3 et strictement inférieur au ratio Rs, la masse de l'extrait sec théorique en composés X représentant au moins 45 % de la masse de l'extrait sec de la composition de couche supplémentaire anti-abrasion et/ou anti-rayures et l'épaisseur de la couche supplémentaire anti-abrasion et/ou anti-rayures étant inférieure à celle de ladite couche supérieure.
24. Article selon la revendication 23, caractérisé en ce que Rss est inférieur ou égal à 2,0, mieux inférieur ou égal à 1 ,5, encore mieux inférieur ou égal à 1,25, et de façon optimale inférieur ou égal à 1 , 1.
25. Article selon la revendication 24, caractérisé en ce que Rss est supérieur ou égal à 0,85, mieux supérieur ou égal à 0,9, encore mieux supérieur ou égal à 0,95.
26. Article selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un revêtement anti-reflets est déposé sur le revêtement anti-abrasion et anti-rayures.
27. Article selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est une lentille optique, de préférence une lentille ophtalmique.
28. Procédé de fabrication d'un article d'optique résistant à l'abrasion et aux rayures comprenant un substrat, comprenant au moins les étapes suivantes : a) fournir un article d'optique comprenant un substrat ayant au moins une surface principale; b) déposer sur une surface principale du substrat une couche de composition de couche inférieure telle que définie dans l'une quelconque des revendications 1 à 21 ; c) durcir au moins partiellement ladite composition de couche inférieure par voie thermique; d) déposer sur la couche résultant de l'étape précédente une couche de composition de couche supérieure telle que définie dans l'une quelconque des revendications 1 à 21 ; e) durcir ladite composition de couche supérieure par voie thermique; f) récupérer un article d'optique comprenant un substrat ayant une surface principale revêtue d'un revêtement anti-abrasion et anti-rayures composé d'une couche inférieure adhérant à une couche supérieure.
29. Procédé selon la revendication 28, caractérisé en ce que la composition de couche inférieure est complètement durcie par voie thermique au cours de l'étape c) à une température allant de 80 à 150 0C, pendant 30 minutes à 4 heures.
30. Procédé selon la revendication 28 ou 29, caractérisé en ce que la surface de l'article résultant de l'étape c) est soumise avant l'étape d) à un traitement de préparation de surface destiné à augmenter l'adhésion de la couche supérieure.
31. Procédé selon la revendication 30, caractérisé en ce que le traitement de préparation de surface est choisi parmi un bombardement avec les espèces énergétiques, de préférence un faisceau d'ions ou un faisceau d'électrons, un traitement par décharge corona, par effluvage, par UV, par plasma sous vide, un traitement acide ou basique et/ou par solvants, ou une combinaison de ces traitements, de préférence un traitement par une solution basique.
32. Procédé selon la revendication 28, caractérisé en ce que la composition de couche inférieure est partiellement durcie par voie thermique au cours de l'étape c) à une température allant de 70 à 120 0C, de préférence 80 à 120 0C, pendant 1 à 30 minutes, mieux 3 à 20 minutes et encore mieux 5-10 minutes et en ce que la surface de l'article résultant de l'étape c) n'est pas soumise avant l'étape d) à un traitement de préparation de surface.
PCT/FR2007/052383 2006-11-23 2007-11-22 Article d'optique comportant un revetement anti-abrasion et anti-rayures bicouche, et procede de fabrication WO2008062142A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AT07866538T ATE545051T1 (de) 2006-11-23 2007-11-22 Optischer artikel mit doppelschichtiger scheuer- und kratzfester beschichtung sowie herstellungsverfahren dafür
ES07866538T ES2382008T3 (es) 2006-11-23 2007-11-22 Artículo de óptica que comprende un revestimiento antiabrasión y antirrayaduras bicapa, y procedimiento de fabricación
EP07866538A EP2092377B1 (fr) 2006-11-23 2007-11-22 Article d'optique comportant un revetement anti-abrasion et anti-rayures bicouche, et procede de fabrication
CN2007800435196A CN101553743B (zh) 2006-11-23 2007-11-22 包括双层耐刮和耐磨涂层的光学制品及其制造方法
BRPI0718835-8A BRPI0718835B1 (pt) 2006-11-23 2007-11-22 Artigo de óptica e processo de fabricação de um artigo de óptica
US12/160,587 US20110058142A1 (en) 2006-11-23 2007-11-22 Optical Article Comprising a Double-Layer Abrasion and Scratch Resistant Coating and Method for Production Thereof
JP2008555854A JP4918101B2 (ja) 2006-11-23 2007-11-22 二層構造の耐スクラッチおよび耐摩耗被膜を含む光学物品、およびこれを生産する方法
PL07866538T PL2092377T3 (pl) 2006-11-23 2007-11-22 Wyrób optyczny zawierający dwuwarstwową powłokę przeciw ścieraniu i przeciw zarysowaniom i sposób jego wytwarzania
US15/264,290 US10222511B2 (en) 2006-11-23 2016-09-13 Optical article comprising a double-layer abrasion and scratch resistant coating and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0655085 2006-11-23
FR0655085A FR2909187B1 (fr) 2006-11-23 2006-11-23 Article d'optique comportant un revetement anti-abrasion et anti-rayures bicouche, et procede de fabrication

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/160,587 A-371-Of-International US20110058142A1 (en) 2006-11-23 2007-11-22 Optical Article Comprising a Double-Layer Abrasion and Scratch Resistant Coating and Method for Production Thereof
US15/264,290 Continuation US10222511B2 (en) 2006-11-23 2016-09-13 Optical article comprising a double-layer abrasion and scratch resistant coating and method for production thereof

Publications (1)

Publication Number Publication Date
WO2008062142A1 true WO2008062142A1 (fr) 2008-05-29

Family

ID=38268898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/052383 WO2008062142A1 (fr) 2006-11-23 2007-11-22 Article d'optique comportant un revetement anti-abrasion et anti-rayures bicouche, et procede de fabrication

Country Status (10)

Country Link
US (2) US20110058142A1 (fr)
EP (1) EP2092377B1 (fr)
JP (1) JP4918101B2 (fr)
CN (1) CN101553743B (fr)
AT (1) ATE545051T1 (fr)
BR (1) BRPI0718835B1 (fr)
ES (1) ES2382008T3 (fr)
FR (1) FR2909187B1 (fr)
PL (1) PL2092377T3 (fr)
WO (1) WO2008062142A1 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010142798A1 (fr) * 2009-06-11 2010-12-16 Essilor International (Compagnie Generale D'optique) Composition de revêtement durcissable modifiée avec un agent tensioactif pouvant être divisé afin d'améliorer l'adhérence dans des piles de revêtement multicouche
WO2012177239A1 (fr) * 2011-06-21 2012-12-27 Essilor International (Compagnie Generale D'optique) Article optique qui contient des revêtements d'auto-réparation et résistants à l'abrasion
FR2977329A1 (fr) * 2011-07-01 2013-01-04 Essilor Int Article optique comprenant un revetement anti-reflets ayant des proprietes de resistance aux fissures sous contrainte mecanique amelioree
WO2013098531A1 (fr) 2011-12-28 2013-07-04 Corporation De L'ecole Polytechnique De Montreal Article revetu d'un revetement interferentiel ayant des proprietes stables dans le temps
EP2660051A1 (fr) 2012-05-04 2013-11-06 ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) Film anti-abrasif et lentille ophtalmique le contenant
US9016858B2 (en) 2011-06-21 2015-04-28 Essilor International (Compagnie Generale D'optique) Optical article containing self-healing and abrasion-resistant coatings
WO2015166144A1 (fr) 2014-04-28 2015-11-05 Corporation De L'ecole Polytechnique De Montreal Article à propriétés thermomécaniques optimisées comportant une couche de nature titano-organique
WO2016001605A1 (fr) 2014-07-03 2016-01-07 Essilor International (Compagnie Generale D'optique) Lentille ophtalmique ayant des proprietes antisalissure differenciees sur ses deux faces et procedes de fabrication
EP3185050A1 (fr) 2015-12-23 2017-06-28 Essilor International (Compagnie Générale D'Optique) Article d'optique comportant un revêtement interférentiel multicouche obtenu à partir d'un précurseur organique ou d'un mélange de précurseurs organiques
EP3287818A1 (fr) 2016-08-23 2018-02-28 Corporation de L'Ecole Polytechnique de Montreal Lentille ophtalmique présentant une résistance accrue à un environnement chaud et humide
EP3306354A1 (fr) 2016-10-07 2018-04-11 Corporation de L'Ecole Polytechnique de Montreal Article comprenant un revêtement nanolaminé
US10401536B2 (en) 2013-06-14 2019-09-03 Essilor International Item coated with a silicon/organic layer improving the performances of an outer coating
WO2020016620A1 (fr) 2018-07-18 2020-01-23 Essilor International Article optique à revêtement antireflet amélioré, et ses procédés de fabrication
US10732324B2 (en) 2015-08-05 2020-08-04 Essilor International Method for laminating an interference coating comprising an organic/inorganic layer, and item thus obtained
EP3693765A1 (fr) 2019-02-05 2020-08-12 Essilor International (Compagnie Generale D'optique) Article revêtu ayant un revêtement antireflet présentant des propriétés optiques améliorées
EP3693766A1 (fr) 2019-02-05 2020-08-12 Corporation de L'Ecole Polytechnique de Montreal Article revêtu d'une couche à faible indice de réfraction basé sur des composés d'organosilicium fluorés
US10830924B2 (en) 2015-10-14 2020-11-10 Essilor International Optical article comprising a precursor coating of an anti-fogging coating having anti-fouling properties obtained from an amphiphilic compound
US10830925B2 (en) 2014-08-05 2020-11-10 Essilor International Method for reducing or preventing the degradation of an antifouling layer or an optical article
CN116261491A (zh) * 2021-01-20 2023-06-13 株式会社丰田自动织机 树脂玻璃用涂覆剂和树脂玻璃
EP4197761A1 (fr) 2021-12-16 2023-06-21 Essilor International Procédé de thermoformage d'un film par rétraction thermique et son laminage sur un article optique
US11707921B2 (en) 2015-08-05 2023-07-25 Essilor International Item having improved thermomechanical properties, comprising an organic-inorganic layer
EP4369062A1 (fr) 2022-11-14 2024-05-15 Essilor International Article revêtu d'une couche à faible indice de réfraction à base de composés silsesquioxanes organiques

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8547635B2 (en) * 2010-01-22 2013-10-01 Oakley, Inc. Lenses for 3D eyewear
US9803105B2 (en) * 2012-02-28 2017-10-31 Bluescope Steel Limited Protective coating compositions for photocatalytic layers on substrates
FR2997943B1 (fr) * 2012-11-09 2014-12-26 Essilor Int Article d'optique comportant un revetement precurseur d'un revetement antibuee et une couche temporaire a base de fluorures metalliques ou de composes comprenant du magnesium et de l'oxygene
WO2014078497A1 (fr) * 2012-11-16 2014-05-22 Liquipel Ip Llc Appareil et procédés pour dépôt chimique en phase vapeur activé par plasma de revêtements diélectriques/polymères
JP2016056025A (ja) * 2013-01-29 2016-04-21 オーエムジー株式会社 光学ガラスフィルタ
DE102013208310B4 (de) 2013-05-06 2019-07-04 Carl Zeiss Vision International Gmbh Optisches Element mit Substratkörper und Hartlackschicht sowie Herstellungsverfahren hierfür
US20150024212A1 (en) * 2013-07-22 2015-01-22 Itoh Optical Industrial Co., Ltd. Hard coating composition
EP2930012B1 (fr) * 2014-04-08 2018-11-14 Essilor Int Procédé de dépôt d'une couche de finition sur une face d'un substrat et dispositif de dépôt flexible
WO2016069807A1 (fr) 2014-10-29 2016-05-06 Ppg Industries Ohio, Inc. Système de revêtement protecteur pour un substrat en matière plastique
KR101796999B1 (ko) 2015-12-18 2017-11-13 (주)그린사이언스 내마모층이 증착된 투명판재 및 투명판재의 내마모층 증착방법
PL3327091T3 (pl) 2016-11-23 2023-07-03 Essilor International Epoksydowa kompozycja funkcjonalna chroniąca barwniki przed fotodegradacją oraz wytworzone z nich utwardzone powłoki
EP3327096A1 (fr) 2016-11-23 2018-05-30 Essilor International Composition époxyde hybride fonctionnelle et revêtements thermodurcissables transparents insensibles à la corrosion et préparés à partir de ladite composition
EP3327488B1 (fr) 2016-11-23 2021-01-06 Essilor International Article d'optique comportant un colorant résistant à la photodégradation
CA3051702C (fr) * 2017-03-01 2022-02-01 Younger Mfg. Co. Dba Younger Optics Articles optiques comprenant du poly (uree-urethane) photochromique
EP3382429A1 (fr) 2017-03-28 2018-10-03 Essilor International Article optique comprenant un revêtement résistant à l'abrasion et/ou aux rayures et présentant une faible sensibilité aux fissures
JP7213177B2 (ja) * 2017-04-27 2023-01-26 日本板硝子株式会社 被膜付き透明基板、被膜付き透明基板の被膜を形成するための塗工液及び被膜付き透明基板の製造方法
KR102707308B1 (ko) * 2017-08-17 2024-09-20 신에쓰 가가꾸 고교 가부시끼가이샤 발수 부재 및 발수 부재의 제조 방법
EP3489270A1 (fr) 2017-11-28 2019-05-29 Essilor International (Compagnie Generale D'optique) Composition époxyde hybride fonctionnelle et revêtements thermodurcissables transparents résistants à l'abrasion et préparés à partir de ladite composition
TWI821234B (zh) 2018-01-09 2023-11-11 美商康寧公司 具光改變特徵之塗覆製品及用於製造彼等之方法
EP3632950B1 (fr) 2018-10-05 2024-07-17 Essilor International Composition époxyde hybride fonctionnelle stable au stockage et revêtements thermodurcissables transparents et préparés à partir de ladite composition
CN117970539A (zh) 2018-10-15 2024-05-03 依视路国际公司 包含光学元件的改进的光学制品及其制造方法
US10723915B2 (en) 2018-11-26 2020-07-28 Itoh Optical Industrial Co., Ltd. Hard coating composition
WO2020116980A1 (fr) * 2018-12-07 2020-06-11 코오롱인더스트리 주식회사 Composition de résine destinée à un revêtement antireflet et film de revêtement antireflet ainsi préparé
JP7101145B2 (ja) * 2019-07-19 2022-07-14 信越化学工業株式会社 プラスチック積層体及びその製造方法
CN112940621B (zh) * 2019-12-11 2022-11-11 中国科学院上海硅酸盐研究所 一种仿生非光滑耐磨涂层及其制备方法和应用
US20210278577A1 (en) * 2020-03-05 2021-09-09 Viavi Solutions Inc. Optical coating for organic surface treatments
PL3896499T3 (pl) 2020-04-17 2024-04-22 Essilor International Ulepszony sposób formowania wyrobu optycznego zawierającego mikrosoczewki
TWI752471B (zh) * 2020-04-20 2022-01-11 占暉光學股份有限公司 複合玻璃/塑膠層化式耐刮光學透鏡裝置
EP3923038A1 (fr) 2020-06-09 2021-12-15 Essilor International Article optique doté d'un revêtement dur à durabilité améliorée
US20220011478A1 (en) 2020-07-09 2022-01-13 Corning Incorporated Textured region of a substrate to reduce specular reflectance incorporating surface features with an elliptical perimeter or segments thereof, and method of making the same
US11512818B2 (en) 2020-07-10 2022-11-29 Junming Ding Multi-mode portable lighting device with novel battery charging unit
US12022583B2 (en) 2020-07-10 2024-06-25 Asiatelco Technologies, Inc. Portable devices, systems and methods with automated heat control assembly
WO2022101786A1 (fr) * 2020-11-10 2022-05-19 3M Innovative Properties Company Procédé de fabrication d'un article revêtu
CN113716882B (zh) * 2021-09-06 2023-09-01 广东中融玻璃科技有限公司 Low-e夹层玻璃的加工工艺
WO2023175193A2 (fr) 2022-03-18 2023-09-21 Carl Zeiss Vision International Gmbh Lentille revêtue et son procédé de fabrication
JP7362860B1 (ja) 2022-08-30 2023-10-17 日東電工株式会社 反射防止フィルムの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614957A1 (fr) * 1993-03-08 1994-09-14 ESSILOR INTERNATIONAL Compagnie Générale d'Optique Compositions de revêtement antiabrasion à base d'hydrolysats de silanes et de composés de l'alumium, et articles revêtus correspondants résistant à l'abrasion et aux chocs
WO1996000403A1 (fr) * 1994-06-27 1996-01-04 Essilor International - Compagnie Generale D'optique Lentille ophtalmique en verre organique a intercouche anti-chocs et son procede de fabrication
US20020034630A1 (en) * 1994-06-27 2002-03-21 Jean-Paul Cano Ophthalmic lens made of organic glass with a shockproof intermediate layer, and method for making same
US6489028B1 (en) * 1997-11-18 2002-12-03 Essilor International Compagnie Generale D'optique Ophthalmic lens made of organic glass with an impact-resistant interlayer, and process for its manufacture

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111336A (en) * 1977-03-11 1978-09-28 Toray Ind Inc Coating composition
DE3407087C3 (de) * 1984-02-27 1994-07-07 Fraunhofer Ges Forschung Verfahren und Lack zur Herstellung von kratzfesten Beschichtungen
US5114783A (en) * 1988-08-23 1992-05-19 Thor Radiation Research, Inc. Protective coating system for imparting resistance to abrasion, impact and solvents
US5254395A (en) * 1988-08-23 1993-10-19 Thor Radiation Research, Inc. Protective coating system for imparting resistance to abrasion, impact and solvents
JP2565565B2 (ja) * 1989-04-18 1996-12-18 日本板硝子株式会社 被覆ポリカーボネート系樹脂成形物品
JPH0610681B2 (ja) * 1989-11-24 1994-02-09 東レ株式会社 染色可能な反射防止性レンズの製造方法
DE4338361A1 (de) * 1993-11-10 1995-05-11 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung von Zusammensetzungen auf der Basis von Epoxidgruppen-haltigen Silanen
US5916669A (en) * 1994-11-10 1999-06-29 2C Optics, Inc. Enhanced abrasion resistance radiation curable coating for substrates
JPH0996702A (ja) * 1995-07-27 1997-04-08 Fukuvi Chem Ind Co Ltd 光学的材料
US6348269B1 (en) 1998-10-23 2002-02-19 Sdc Coatings, Inc. Composition for providing an abrasion resistant coating on a substrate having improved adhesion and improved resistance to crack formation
US6218494B1 (en) 1998-11-18 2001-04-17 Essilor International - Compagnie Generale D'optique Abrasion-resistant coating composition process for making such coating composition and article coated therewith
DE19952040A1 (de) * 1999-10-28 2001-05-03 Inst Neue Mat Gemein Gmbh Substrat mit einem abriebfesten Diffusionssperrschichtsystem
JP2002221602A (ja) * 2001-01-26 2002-08-09 Fukuvi Chem Ind Co Ltd 耐液性に優れた反射防止膜
US6620493B2 (en) 2000-03-07 2003-09-16 Fukuvi Chemcial Industry Co Ltd Reflection-reducing film
US6905772B2 (en) * 2000-05-23 2005-06-14 Triton Systems, Inc. Abrasion and impact resistant coating compositions, and articles coated therewith
JP2002160201A (ja) 2000-11-24 2002-06-04 Matsushita Electric Works Ltd 電動丸鋸
AU2003221044A1 (en) * 2002-03-26 2003-10-08 Tdk Corporation Article with composite hardcoat layer and method for forming composite hardcoat layer
DE10245725A1 (de) * 2002-10-01 2004-04-15 Bayer Ag Schichtsystem und Verfahren zu dessen Herstellung
DE10245726A1 (de) * 2002-10-01 2004-04-15 Bayer Ag Verfahren zur Herstellung eines Kratzfest-Schichtsystems
US20070264508A1 (en) * 2004-10-29 2007-11-15 Gabelnick Aaron M Abrasion Resistant Coatings by Plasma Enhanced Chemical Vapor Diposition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614957A1 (fr) * 1993-03-08 1994-09-14 ESSILOR INTERNATIONAL Compagnie Générale d'Optique Compositions de revêtement antiabrasion à base d'hydrolysats de silanes et de composés de l'alumium, et articles revêtus correspondants résistant à l'abrasion et aux chocs
WO1996000403A1 (fr) * 1994-06-27 1996-01-04 Essilor International - Compagnie Generale D'optique Lentille ophtalmique en verre organique a intercouche anti-chocs et son procede de fabrication
US20020034630A1 (en) * 1994-06-27 2002-03-21 Jean-Paul Cano Ophthalmic lens made of organic glass with a shockproof intermediate layer, and method for making same
US6489028B1 (en) * 1997-11-18 2002-12-03 Essilor International Compagnie Generale D'optique Ophthalmic lens made of organic glass with an impact-resistant interlayer, and process for its manufacture

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010142798A1 (fr) * 2009-06-11 2010-12-16 Essilor International (Compagnie Generale D'optique) Composition de revêtement durcissable modifiée avec un agent tensioactif pouvant être divisé afin d'améliorer l'adhérence dans des piles de revêtement multicouche
US9103969B2 (en) 2009-06-11 2015-08-11 Essilor International (Compagnie Generale D'optique) Curable coating composition modified with a cleavable surfactant for improving adhesion in multilayered coating stacks
US9016858B2 (en) 2011-06-21 2015-04-28 Essilor International (Compagnie Generale D'optique) Optical article containing self-healing and abrasion-resistant coatings
WO2012177239A1 (fr) * 2011-06-21 2012-12-27 Essilor International (Compagnie Generale D'optique) Article optique qui contient des revêtements d'auto-réparation et résistants à l'abrasion
US9709707B2 (en) 2011-06-21 2017-07-18 Essilor International (Compagnie Generale D'optique) Optical article containing self-healing and abrasion-resistant coatings
WO2013004954A1 (fr) * 2011-07-01 2013-01-10 Essilor International (Compagnie Generale D'optique) Article optique comprenant un revêtement anti-reflets ayant des propriétés de résistance aux fissures sous contrainte mécanique améliorée
CN103649785A (zh) * 2011-07-01 2014-03-19 埃西勒国际通用光学公司 机械应力下具有改进抗裂性能的含抗反射涂层光学物品
US20140106163A1 (en) * 2011-07-01 2014-04-17 Essilor International (Compagnie Generale D'optique) Optical article including an antireflection coating having improved crack-resistance properties under mechanical stress
FR2977329A1 (fr) * 2011-07-01 2013-01-04 Essilor Int Article optique comprenant un revetement anti-reflets ayant des proprietes de resistance aux fissures sous contrainte mecanique amelioree
CN103649785B (zh) * 2011-07-01 2016-07-20 埃西勒国际通用光学公司 机械应力下具有改进抗裂性能的含抗反射涂层光学物品
WO2013098531A1 (fr) 2011-12-28 2013-07-04 Corporation De L'ecole Polytechnique De Montreal Article revetu d'un revetement interferentiel ayant des proprietes stables dans le temps
EP2660051A1 (fr) 2012-05-04 2013-11-06 ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) Film anti-abrasif et lentille ophtalmique le contenant
US10401536B2 (en) 2013-06-14 2019-09-03 Essilor International Item coated with a silicon/organic layer improving the performances of an outer coating
WO2015166144A1 (fr) 2014-04-28 2015-11-05 Corporation De L'ecole Polytechnique De Montreal Article à propriétés thermomécaniques optimisées comportant une couche de nature titano-organique
US10585211B2 (en) 2014-04-28 2020-03-10 Corporation De L'ecole Polytechnique De Montreal Article having optimised thermomechanical properties, comprising a layer of titano-organic nature
WO2016001605A1 (fr) 2014-07-03 2016-01-07 Essilor International (Compagnie Generale D'optique) Lentille ophtalmique ayant des proprietes antisalissure differenciees sur ses deux faces et procedes de fabrication
US10830925B2 (en) 2014-08-05 2020-11-10 Essilor International Method for reducing or preventing the degradation of an antifouling layer or an optical article
US11707921B2 (en) 2015-08-05 2023-07-25 Essilor International Item having improved thermomechanical properties, comprising an organic-inorganic layer
US10732324B2 (en) 2015-08-05 2020-08-04 Essilor International Method for laminating an interference coating comprising an organic/inorganic layer, and item thus obtained
US10830924B2 (en) 2015-10-14 2020-11-10 Essilor International Optical article comprising a precursor coating of an anti-fogging coating having anti-fouling properties obtained from an amphiphilic compound
EP3185050A1 (fr) 2015-12-23 2017-06-28 Essilor International (Compagnie Générale D'Optique) Article d'optique comportant un revêtement interférentiel multicouche obtenu à partir d'un précurseur organique ou d'un mélange de précurseurs organiques
WO2018036963A1 (fr) 2016-08-23 2018-03-01 Corporation De L'ecole Polytechnique De Montreal Lentille ophtalmique présentant une résistance accrue à un environnement chaud et humide
EP3287818A1 (fr) 2016-08-23 2018-02-28 Corporation de L'Ecole Polytechnique de Montreal Lentille ophtalmique présentant une résistance accrue à un environnement chaud et humide
WO2018065595A1 (fr) 2016-10-07 2018-04-12 Corporation De L'ecole Polytechnique De Montreal Article comportant un revêtement nanostratifié
EP3306354A1 (fr) 2016-10-07 2018-04-11 Corporation de L'Ecole Polytechnique de Montreal Article comprenant un revêtement nanolaminé
WO2020016620A1 (fr) 2018-07-18 2020-01-23 Essilor International Article optique à revêtement antireflet amélioré, et ses procédés de fabrication
WO2020161141A1 (fr) 2019-02-05 2020-08-13 Essilor International Article revêtu d'un revêtement antireflet ayant des propriétés optiques améliorées
WO2020161128A1 (fr) 2019-02-05 2020-08-13 Corporation De L'ecole Polytechnique De Montreal Article revêtu d'une couche à faible indice de réfraction à base de composés organosiliciques fluorés
EP3693766A1 (fr) 2019-02-05 2020-08-12 Corporation de L'Ecole Polytechnique de Montreal Article revêtu d'une couche à faible indice de réfraction basé sur des composés d'organosilicium fluorés
EP3693765A1 (fr) 2019-02-05 2020-08-12 Essilor International (Compagnie Generale D'optique) Article revêtu ayant un revêtement antireflet présentant des propriétés optiques améliorées
CN116261491A (zh) * 2021-01-20 2023-06-13 株式会社丰田自动织机 树脂玻璃用涂覆剂和树脂玻璃
EP4197761A1 (fr) 2021-12-16 2023-06-21 Essilor International Procédé de thermoformage d'un film par rétraction thermique et son laminage sur un article optique
WO2023110887A1 (fr) 2021-12-16 2023-06-22 Essilor International Procédé pour le thermoformage d'un film par retrait thermique et lamination de celui-ci sur un article optique
EP4369062A1 (fr) 2022-11-14 2024-05-15 Essilor International Article revêtu d'une couche à faible indice de réfraction à base de composés silsesquioxanes organiques
WO2024104972A1 (fr) 2022-11-14 2024-05-23 Essilor International Article revêtu d'une couche à faible indice de réfraction à base de composés silsesquioxane organiques

Also Published As

Publication number Publication date
FR2909187A1 (fr) 2008-05-30
EP2092377B1 (fr) 2012-02-08
CN101553743A (zh) 2009-10-07
CN101553743B (zh) 2011-11-16
FR2909187B1 (fr) 2009-01-02
JP2009527786A (ja) 2009-07-30
BRPI0718835B1 (pt) 2018-07-03
US20110058142A1 (en) 2011-03-10
JP4918101B2 (ja) 2012-04-18
BRPI0718835A2 (pt) 2014-02-04
ATE545051T1 (de) 2012-02-15
US10222511B2 (en) 2019-03-05
US20170003420A1 (en) 2017-01-05
PL2092377T3 (pl) 2012-07-31
ES2382008T3 (es) 2012-06-04
EP2092377A1 (fr) 2009-08-26

Similar Documents

Publication Publication Date Title
EP2092377B1 (fr) Article d&#39;optique comportant un revetement anti-abrasion et anti-rayures bicouche, et procede de fabrication
CA2534183C (fr) Article d&#39;optique comprenant un empilement anti-reflets multicouches et procede de preparation
CA2118566C (fr) Compositions de revetement anti-abrasion a base d&#39;hydrolysats de silanes et de composes de l&#39;aluminium, et articles revetus correspondants resistants a l&#39;abrasion et aux chocs
CA2841414C (fr) Procede permettant d&#39;obtenir des articles optiques offrant des proprietes de resistance a l&#39;abrasion superieures, et articles dotes d&#39;un revetement prepares selon un tel procede
EP2033021B1 (fr) Article d&#39;optique revetu d&#39;une sous-couche et d&#39;un revetement anti-reflets multicouches resistant a la temperature, et procede de fabrication
EP2167997B1 (fr) Article d&#39;optique revetu d&#39;un revetement antireflet comprenant une sous-couche partiellement formee sous assistance ionique et procede de fabrication
FR2904431A1 (fr) Article d&#39;optique a proprietes antistatiques et anti-abrasion, et procede de fabrication
FR2907915A1 (fr) Article d&#39;optique comportant un revetement anti-salissure
WO2011102502A1 (fr) Procédé de production d&#39;une lentille en matière plastique ayant un film antiréfléchissant antistatique, et lentille en matière plastique obtenue par ce procédé
EP2368146B1 (fr) Procede de fabrication d&#39;un article d&#39;optique a proprietes antireflets
FR2874007A1 (fr) Procede de fabrication d&#39;un substrat revetu d&#39;une couche mesoporeuse et son application en optique
EP1505131B1 (fr) Composition de revêtement anti-rayures comportant des particules anisotropes, substrat revêtu correspondant et son application en optique ophtalmique
WO2006087502A1 (fr) Couche dlc antisalissure
JP2009204759A (ja) ミラーコート光学物品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780043519.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007866538

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07866538

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008555854

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2095/DELNP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12160587

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0718835

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090507