WO2008059774A1 - Humidity conditioning unit - Google Patents
Humidity conditioning unit Download PDFInfo
- Publication number
- WO2008059774A1 WO2008059774A1 PCT/JP2007/071877 JP2007071877W WO2008059774A1 WO 2008059774 A1 WO2008059774 A1 WO 2008059774A1 JP 2007071877 W JP2007071877 W JP 2007071877W WO 2008059774 A1 WO2008059774 A1 WO 2008059774A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- humidity control
- air
- control unit
- fan
- casing
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
- F24F3/1423—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/80—Water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1004—Bearings or driving means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1016—Rotary wheel combined with another type of cooling principle, e.g. compression cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1056—Rotary wheel comprising a reheater
- F24F2203/106—Electrical reheater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1068—Rotary wheel comprising one rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1084—Rotary wheel comprising two flow rotor segments
Definitions
- the present invention relates to a humidity control unit, and more particularly to a humidity control unit that is installed outside a room and supplies air conditioned through a duct or the like to the room.
- a non-water supply humidification unit using an adsorbent is known.
- a humidification unit mainly includes a humidity control rotor including an adsorbent, a moisture absorption fan, a humidification fan, and a heater.
- the humidity control rotor rotates so that its disk-shaped surface sequentially passes through the moisture absorption (adsorption) flow path and the humidification (regeneration) passage.
- a moisture absorption fan is disposed in the moisture absorption channel, and a humidification fan and a heater are disposed in the humidification channel (see, for example, Patent Documents 1 and 2).
- Patent Document 1 Japanese Patent No. 3438672
- Patent Document 2 Publication No. 2002-98365
- the vertical size may be a problem. Is not a problem because it only needs to fit the outdoor unit's plane size.
- An object of the present invention is to realize a compact unhumidified humidifying unit using a humidity control rotor.
- a humidity control unit that is powerful in the first invention includes a humidity control rotor capable of absorbing and desorbing moisture in the air, a casing, a heating mechanism, and a blower fan. Inside the casing, there is formed an air flow path having a moisture absorption path that passes through the humidity control rotor and a humidification path that passes through the humidity control rotor separately from the moisture absorption path.
- the heating mechanism is provided on the upstream side of the humidity control rotor in the humidification channel, and heats the air flowing through the humidification channel.
- the blower fan is disposed in the casing and is driven to rotate by a fan motor to flow air into the air flow path. The fan motor further rotates the humidity control rotor.
- This humidity control unit eliminates the need for a motor dedicated to driving the humidity control rotor, so the unit can be made compact.
- the humidity control unit that provides power to the second invention is the humidity control unit that provides power to the first invention, wherein the fan motor is disposed so as to be sandwiched between the blower fan and the humidity control rotor.
- the rotating shaft extends toward both the blower fan side and the humidity control rotor side!
- the rotation axis of the fan motor can be shortened as much as possible, which contributes to a reduction in the size of the unit rotation axis.
- the humidity control unit according to the third aspect of the invention is the humidity control unit according to the second aspect of the invention.
- the rotation axis of the fan motor is controlled via a speed reduction mechanism that reduces the rotation of the fan motor. Connected to the rotor.
- the rotation of the fan motor can be reduced to match the rotation of the humidity control rotor.
- the humidity control unit according to the fourth aspect of the present invention is the power control unit according to the third aspect of the invention, and the speed reduction mechanism can decelerate the rotation of the fan motor in multiple stages.
- the rotation ratio between the rotation of the fan motor and the rotation of the humidity control rotor is multistage. Since it can be changed to different floors, the humidity control capacity of the unit can be changed in multiple stages.
- the humidity control unit according to the fifth invention is the humidity control unit according to the third or fourth invention, wherein the rotation center of the humidity control rotor is substantially concentric with the rotation axis of the fan motor. .
- the humidity control rotor and the blower fan are arranged side by side in the direction of the rotation axis, which can contribute to downsizing the unit in the direction perpendicular to the rotation axis.
- the humidity control unit according to the sixth aspect of the invention is the humidity control unit according to the fifth aspect of the invention, wherein the deceleration mechanism has a plurality of gears for decelerating the rotation of the fan motor.
- the humidity control rotor is a substantially ring-shaped member, and the inner periphery of the humidity control unit is an annular door constituting one of a plurality of gears.
- the driven gear is not the outer periphery of the humidity control rotor but the inner periphery. Therefore, when the speed reduction mechanism is viewed from the rotation axis direction of the fan motor, the speed reduction mechanism is arranged so as not to overlap the humidity control rotor as much as possible. It is easy to secure a flow path through the wet mouth.
- the humidity control unit according to the seventh invention is the humidity control unit according to any one of the first to sixth inventions, wherein the fan motor is disposed upstream of the heating mechanism in the humidification flow path.
- the air flowing through the humidification flow path can be heated by the waste heat of the fan motor, so that the desorption of moisture from the humidity control rotor can be promoted.
- the humidity control unit according to the eighth invention is the humidity control unit according to any one of the first to seventh inventions, wherein the heating mechanism is a refrigerant circulating in the vapor compression refrigerant circuit. Includes flowing heat exchanger.
- this humidity control unit for example, when the air conditioning apparatus is provided with the air conditioner, the heat of the refrigerant circulating in the refrigerant circuit can be used effectively, so that the power consumption used in the unit can be suppressed. .
- the humidity control unit according to the ninth invention is the humidity control unit according to any one of the first to eighth inventions, wherein the air that has passed through the humidification channel is supplied into the room and the moisture absorption channel.
- Humidification operation switching state that exhausts air that has passed through the room and air that has passed through the moisture absorption channel
- a dehumidifying / humidifying switching mechanism capable of switching between a dehumidifying operation switching state in which air that has passed through the humidifying flow path is discharged to the outside.
- the humidity control unit according to the tenth aspect of the invention is the humidity control unit according to any of the first to ninth aspects of the invention.
- the casing is supplied with humidity control air that has passed through the humidity control rotor.
- a humidity control air outlet pipe is provided to supply the room.
- the humidity control air outlet pipe is inclined at least 1 degree with respect to the horizontal direction so as to have a downward slope toward the casing.
- this humidity control unit when condensation occurs in the humidity control air outlet pipe, it is possible to return the condensed water to the inside of the casing. Therefore, it is possible to prevent the condensation water from accumulating in the humidity control air outlet pipe. .
- the humidity control unit according to the eleventh aspect of the present invention is the same as the tenth aspect of the invention, and the drainage hole is formed in the casing.
- the condensed water accumulated in the casing can be discharged quickly, so the force S that discharges the condensed water generated in the humidity control air outlet pipe through the casing can be reduced.
- the humidity control unit is the humidity control unit according to any of the first to eleventh aspects of the invention.
- the blower fan is an impeller rotated by a fan motor; ⁇ ⁇ ⁇ It has a fan casing that houses the root car.
- the fan casing has a fan inlet facing one of the impellers in the rotational axis direction, a humidifying fan outlet communicating with the humidifying passage, and a moisture absorbing fan outlet communicating with the moisture absorbing passage! /
- the humidification fan and the moisture absorption fan in the conventional humidity control unit are combined, and only one fan and fan motor are required. This contributes to the compactness of the unit.
- FIG. 1 is an external view of an air conditioner employing a humidity control unit according to an embodiment of the present invention.
- FIG. 2 is a schematic configuration diagram of an air conditioner.
- FIG. 3 is an external perspective view of a humidity control unit.
- FIG. 4 is an exploded perspective view of the humidity control unit.
- FIG. 5 is a front view of the humidity control unit.
- FIG. 6 is a cross-sectional view taken along the line I I in FIG.
- FIG. 7 is a sectional view taken along line II-II in FIG.
- FIG. 8 is a sectional view taken along line III-III in FIG.
- FIG. 9 is a sectional view taken along line IV-IV in FIG.
- FIG. 10 is a cross-sectional view taken along the line V-V in FIG.
- FIG. 11 is a cross-sectional view taken along VI—VI O I in FIG.
- FIG. 12 is a view showing a humidity control unit according to Modification 2 and corresponding to FIG.
- FIG. 13 is a perspective view showing the upper left part of the fan casing of the humidity control unit according to Modification 2.
- FIG. 14 is a view showing an air conditioner according to Modification 3 and corresponding to FIG.
- FIG. 15 is a view showing an air conditioner according to Modification 3 and corresponding to FIG.
- FIG. 16 is a diagram showing an air conditioner according to Modification 3 and corresponding to FIG.
- FIG. 17 is a view showing an air conditioner according to Modification 4 and corresponding to FIG.
- FIG. 18 is a view showing a humidity control unit according to Modification 4 and corresponding to FIG.
- FIG. 19 is a view showing a humidity control unit according to Modification 4 and corresponding to the vicinity of the casing body of FIG.
- FIG. 20 is a view showing a humidity control unit according to Modification 4 and corresponding to FIG.
- FIG. 21 is a cross-sectional view taken along the line VII-VII in FIG. 21, showing only the downstream portion of the blower fan.
- FIG. 22 is a view showing an operation during a humidifying operation according to Modification 4 and corresponding to FIG. 21.
- FIG. 23 is a diagram showing an operation during a dehumidifying operation according to Modification 4 and corresponding to FIG. 21.
- FIG. 1 is an external view of an air conditioner 1 in which a humidity control unit that employs a force in one embodiment of the present invention is employed.
- the air conditioner 1 is mainly composed of an outdoor unit 2 installed outside, an indoor unit 3 attached to the indoor side surface of the wall W, and a humidity control unit 6 attached to the outdoor surface of the wall W, etc. And.
- the outdoor unit 2 and the indoor unit 3 constitute a vapor compression refrigerant circuit 10 by being connected via refrigerant communication pipes 4 and 5, so that indoor air conditioning can be performed.
- the back surface of the humidity control unit 6 ie, the surface close to the outdoor surface of the wall W
- a trachea 9 is provided and is connected to an indoor unit 3 that passes through the wall W and is attached to the indoor side surface of the wall W. For this reason, the length of the air supply pipe 9 is shorter than the configuration in which the conventional humidity control unit is mounted on the outdoor unit 2. It has become.
- FIG. 2 is a schematic configuration diagram of the air conditioner 1. As shown in FIG. 1
- the indoor unit 3 mainly includes an indoor refrigerant circuit 10a that constitutes a part of the refrigerant circuit 10.
- the indoor refrigerant circuit 10a mainly includes an indoor heat exchanger 31.
- the indoor heat exchanger 31 is a heat exchanger that functions as a refrigerant heater during cooling to cool indoor air, and functions as a refrigerant cooler during heating to heat indoor air.
- the indoor unit 3 includes an indoor fan 32 that sucks indoor air into the unit, exchanges heat between the indoor air and the refrigerant in the indoor heat exchanger 31, and supplies the indoor air to the room (see FIG. 1 arrow Fl, see F2).
- the pipe end of the above-described air supply pipe 9 is inserted into the indoor unit 3, and humidified air or the like supplied from the humidity control unit 6 is once blown into the indoor unit 3. After that (see arrow F3 in FIG. 1), the indoor air is supplied to the room together with the room air 32.
- the outdoor unit 2 mainly includes an outdoor refrigerant circuit 10b that constitutes a part of the refrigerant circuit 10.
- the outdoor refrigerant circuit 10b mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an expansion valve 24, and closing valves 25 and 26.
- the compressor 21 is a compressor for compressing a refrigerant in the present embodiment.
- the four-way switching valve 22 is a valve for switching the direction of the refrigerant flow.
- the outdoor heat exchanger 23 serves as a cooler for the refrigerant discharged from the compressor 21, and the indoor heat exchange.
- the converter 31 In order for the converter 31 to function as a heater for the refrigerant reduced in pressure at the expansion valve 24, the discharge side of the compressor 21 and one end side of the outdoor heat exchanger 23 are connected, and the suction side of the compressor 21 and the refrigerant Connect to the connecting pipe 5 side (see the solid line of the four-way selector valve 22 in Fig. 1).
- the discharge side of the compressor 21 Can be connected to the refrigerant communication pipe 5 side, and the suction side of the compressor 21 and one end side of the outdoor heat exchanger 23 can be connected (see the broken line of the four-way switching valve 22 in FIG. 1).
- the outdoor heat exchanger 23 is a heat exchanger that functions as a refrigerant cooler using outdoor air as a cooling source during cooling, and functions as a refrigerant heater using outdoor air as a heating source during heating. is there.
- the outdoor heat exchanger 23 has one end connected to the four-way selector valve 22 and the other end connected to the refrigerant communication pipe 4! /.
- the expansion valve 24 decompresses the refrigerant that is cooled in the outdoor heat exchanger 23 during cooling and is sent to the indoor heat exchanger 31, and is cooled in the indoor heat exchanger 31 during heating operation and is cooled in the outdoor heat exchanger 23. It is an electric expansion valve which decompresses the refrigerant
- the outdoor unit 2 includes an outdoor fan 27 for sucking outdoor air into the unit, supplying the outdoor air to the outdoor heat exchanger 23, and then discharging the air to the outdoor (arrows F4 and F5 in FIG. 1). reference).
- the shut-off valves 25 and 26 are valves provided at connection ports with external equipment pipes (specifically, refrigerant communication pipes 4 and 5).
- the closing valve 25 is connected to the expansion valve 24.
- the shut-off valve 26 is connected to the four-way selector valve 22! /.
- the refrigerant circuit 10 of the air conditioner 1 is configured by connecting the indoor refrigerant circuit 10a, the outdoor refrigerant circuit 10b, and the refrigerant communication pipes 4 and 5.
- the air conditioner 1 of the present embodiment can be operated by switching between cooling and heating by the four-way switching valve 22.
- the four-way selector valve 22 is in the state indicated by the solid line in FIG.
- the discharge side is connected to one end side of the outdoor heat exchanger 23, and the suction side of the compressor 21 is connected to the refrigerant communication pipe 5 side.
- the closing valves 25 and 26 are opened, and the opening degree of the expansion valve 24 is adjusted.
- the low-pressure refrigerant is sucked into the compressor 21, compressed, and discharged as high-pressure refrigerant.
- This high-pressure refrigerant is sent to the outdoor heat exchanger 23 via the four-way switching valve 22, and exchanges heat with the outdoor air (see arrows F4 and F5 in Fig. 1) supplied by the outdoor fan 27.
- the high-pressure refrigerant cooled in the outdoor heat exchanger 23 is reduced in pressure by the expansion valve 24 to become low-pressure refrigerant, and then is sent to the indoor unit 3 via the closing valve 25 and the refrigerant communication pipe 4. It is done.
- the low-pressure refrigerant sent to the indoor unit 3 is sent to the indoor heat exchanger 31 and heated by exchanging heat with the indoor air (see arrows Fl and F2 in FIG. 1) supplied by the indoor fan 32. Is done. Then, the low-pressure refrigerant heated in the indoor heat exchanger 31 is sent to the outdoor unit 2 through the refrigerant communication pipe 5, and again through the closing valve 26 and the four-way switching valve 22, Inhaled by the compressor 21. In this way, cooling operation is performed.
- the four-way selector valve 22 is in the state shown by the broken line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the refrigerant communication pipe 5 side, and the suction side of the compressor 21 is the outdoor heat exchanger 23 It is in the state connected to the one end side.
- the closing valves 25 and 26 are opened, and the opening degree of the expansion valve 24 is adjusted.
- the low-pressure refrigerant is sucked into the compressor 21, compressed, and discharged as high-pressure refrigerant. It is sent to the indoor unit 3 via the four-way switching valve 22, the closing valve 26 and the refrigerant communication pipe 5.
- the high-pressure refrigerant sent to the indoor unit 3 is cooled in the indoor heat exchanger 31 by exchanging heat with the indoor air (see arrows F1 and F2 in FIG. 1) supplied by the indoor fan 32.
- the high-pressure refrigerant cooled in the indoor heat exchanger 31 is sent to the outdoor unit 2 via the refrigerant communication pipe 4 and the shut-off valve 25.
- the high-pressure refrigerant sent to the knit 2 is decompressed by the expansion valve 24 to become low-pressure refrigerant, and then flows into the outdoor heat exchanger 23 and is supplied by the outdoor fan 27 (see arrow F4 in FIG. 1). And heat exchange with F5).
- the low-pressure refrigerant heated in the outdoor heat exchanger 23 is again sucked into the compressor 21 via the four-way switching valve 22. In this way, the heating operation is performed.
- FIG. 3 is an external perspective view of the humidity control unit 6.
- FIG. FIG. 4 is an exploded perspective view of the humidity control unit 6.
- FIG. 5 is a front view of the humidity control unit 6.
- 6 is a cross-sectional view taken along the line II of FIG. 7 is a cross-sectional view taken along the line II-II in FIG.
- FIG. 8 is a sectional view taken along line III-III in FIG.
- Fig. 9 is a sectional view taken along line IV-IV in Fig. 6.
- the surface where the humidity control unit 6 is close to the outdoor surface of the wall W is referred to as the “rear surface”, and the surface farther from the wall W than the rear surface.
- a surface “front” is defined as a “left surface”, a right surface “right surface”, a lower surface “lower surface”, and an upper surface “upper surface”.
- the humidity control unit 6 generates humidified air by absorbing and desorbing moisture in the outdoor air, and supplies the humidified air to the room through the air supply pipe 9.
- a humidity control rotor 61 capable of absorbing and desorbing moisture in the air, a casing main body 62 and a casing lid 63 as a casing, a heater 64 as a heating mechanism, and a blower fan 65 It has.
- the casing main body 62 is a substantially rectangular box that is open on the front side, and mainly includes a back surface portion 71, a left side surface portion 72, a right side surface portion 73, a lower surface portion 74, and an upper surface portion 75.
- a back surface portion 71 a back surface portion 71, a left side surface portion 72, a right side surface portion 73, a lower surface portion 74, and an upper surface portion 75.
- the back surface portion 71 is mainly formed with an inner tubular portion 71a, an outer tubular portion 71b, a back through-hole 71c, and a back drain hole 71d.
- the inner cylindrical portion 71a is a cylindrical portion that extends from the substantially central position of the back surface portion 71 to the front side. On the front side end of the inner cylindrical part 71a, further toward the front side A cylindrical first cylindrical support portion 71e and a second cylindrical support portion 71f that extend are formed.
- the first cylindrical support portion 71e has an outer diameter that is smaller than the outer diameter of the inner cylindrical portion 71a, and has an inner diameter that is larger than the inner diameter of the inner cylindrical portion 71a. This is a cylindrical portion concentric with a (hereinafter, centered on the circle center of the inner cylindrical portion 71a).
- the second cylindrical support portion 71f is a small-diameter cylindrical portion disposed on the upper side of the first cylindrical support portion 71e at the lower end of the inner cylindrical portion 71a (not shown in FIG. 4).
- the outer cylindrical portion 71b is a cylindrical portion having a center as the center O and extending from the substantially central position of the rear surface portion 71 to the front side so as to surround the outer side of the inner cylindrical portion 71a.
- a plurality of rectangular square holes 71g penetrating from the inner peripheral side to the outer peripheral side of the outer cylindrical portion 71b are formed in the right half portion of the outer cylindrical portion 71b.
- the rear through-hole 71c is a round hole formed so as to penetrate the upper left portion of the region between the inner cylindrical portion 71a and the outer cylindrical portion 71b in the front view of the rear portion 71. It is.
- An air supply pipe 9 is inserted into the rear through-hole 71c from the front side of the rear portion 71.
- an annular flange portion 9a having a diameter larger than that of the rear through hole 71c is provided.
- the air supply pipe 9 is attached to the casing body 62 at the flange portion 9a.
- the air supply pipe 9 is attached to the casing body 62 in a state where it is inclined at least 1 degree with respect to the horizontal direction so as to be inclined downward toward the casing body 62. Further, on the front side of the rear surface portion 71, an annular partition portion 76 that extends radially from the front side end of the outer cylindrical portion 71b toward the left side surface portion 72, the right side surface portion 73, the lower surface portion 74, and the upper surface portion 75 is provided. ing.
- the space inside the casing main body 62 is formed by the annular partitioning portion 76 so that the rear surface portion 71, the left side surface portion 72, the right side surface portion 73, the lower surface portion 74, the upper surface portion 75, the outer cylindrical portion 71b, and the annular partitioning portion 76 are formed.
- the first space S1 is surrounded by a first space SI and another space, and the first space S1 communicates with the other spaces by a plurality of square holes 71g formed in the outer cylindrical portion 71b.
- the upper left portion of the region between the inner cylindrical portion 71a and the outer cylindrical portion 71b in the front view of the rear portion 71 has a substantially arc-shaped cylindrical shape with the front side and the rear side opened.
- An arcuate cylindrical portion 77 is provided.
- the arcuate cylindrical portion 77 mainly has an outer arc portion 77a, an inner arc portion 77b, a right side surface portion 77c, and a lower surface portion 77d.
- the outer circular arc portion 77a has an outer cylindrical shape.
- the inner arc portion 77b is close to the outer peripheral side of the upper left portion of the inner cylindrical portion 7la.
- the right side surface portion 77c and the lower surface portion 77d are formed as a second space S2 that communicates the annular space surrounded by the back surface portion 71, the inner cylindrical portion 71a, and the outer cylindrical portion 71b with the rear through-hole 71c, and the outer cylindrical portion 71b. It is partitioned into a third space S3 communicating with the formed plurality of square holes 71 g.
- the back drain hole 71d is formed so as to pass through the inside of the back surface portion 71 directly below the back surface through hole 71c and from the position in contact with the top surface of the bottom surface portion 77d of the circular arc tubular portion 77 toward the lower end of the back surface portion 71. It is the made flow path.
- a rectangular right side surface discharge hole 73a is formed in a portion of the right side surface portion 73 near the back surface portion 71 so as to communicate with the first space S1.
- the right side surface discharge hole 73a is formed from the vicinity of the upper end of the right side surface portion 73 to the vicinity of the lower end thereof.
- a rectangular lower surface discharge hole 74a is formed in a portion of the lower surface portion 74 near the rear surface portion 71 so as to communicate with the first space S1.
- the lower surface discharge hole 74a is formed from the vicinity of the center of the lower surface portion 74 in the left-right direction to the vicinity of the right end.
- a rectangular upper surface discharge hole 75a is formed in a portion of the upper surface portion 75 near the rear surface portion 71 so as to communicate with the first space S1.
- the upper surface discharge hole 75a is formed from the center of the upper surface portion 75 in the left-right direction to the vicinity of the right end.
- the casing lid 63 is a member that covers the opening on the front side of the casing body 62.
- the casing lid 63 is a substantially rectangular box that is open on the back side, and mainly includes a front surface portion 81, a left side surface portion 82, a right side surface portion 83, a lower surface portion 84, and an upper surface portion 85.
- a suction grill 81a is formed in the front portion 81 so that outdoor air can be sucked into the casing body 62 (see arrow F6 in FIGS. 1, 3 and 4).
- the left side surface portion 82 is a portion disposed on the outer peripheral side of the left side surface portion 72 of the casing main body 62 in a state where the opening on the front side of the casing main body 62 is covered by the casing lid 63.
- the main body 62 extends to the back surface 71.
- the right side surface portion 83 is a portion disposed on the outer peripheral side of the right side surface portion 73 of the casing body 62 in a state where the opening on the front side of the casing body 62 is covered by the casing lid 63. And the end on the back surface side extends to the back surface portion 71 of the casing body 62.
- the right side surface 83 is formed with a right side blowing grill 83a so as to face the right side surface discharge hole 73a formed in the right side surface 73 of the casing body 62, and the humidity adjusting rotor 61 is provided from the inside of the casing body 62. It is possible to blow out the moisture-absorbing air after moisture has been adsorbed in Fig. 1, 3 and 4 (see arrow F7).
- the lower surface portion 84 is a portion disposed on the outer peripheral side of the lower surface portion 74 of the casing main body 62 in a state where the casing lid 63 covers the opening on the front side of the casing main body 62. The portion extends to the back surface portion 71 of the casing body 62.
- the lower surface portion 84 is formed with a lower surface blowing grill 84a so as to face the lower surface discharge hole 74a formed in the lower surface portion 74 of the casing main body 62, and the internal force of the casing main body 62 is also moisture in the humidity control rotor 61. It is possible to blow out the moisture-absorbing air after it has been adsorbed (see arrow F8 in Figs. 1, 3 and 4).
- a lower surface drain hole 84d is formed in the lower surface portion 84 so as to communicate with a back surface drain hole 71d formed in the back surface portion 71 of the casing body 62.
- the drain drain hole is comprised by the above-mentioned back surface drain hole 71d and the lower surface drain hole 84d.
- the upper surface portion 85 is a portion disposed on the outer peripheral side of the upper surface portion 75 of the casing main body 62 in a state where the casing lid 63 covers the opening on the front surface side of the casing main body 62.
- the portion extends to the back surface portion 71 of the casing body 62.
- An upper surface blowing grill 85a is formed on the upper surface portion 85 so as to face the upper surface discharge hole 75a formed in the upper surface portion 75 of the casing main body 62, and the internal force of the casing main body 62 is also moisture in the humidity control rotor 61. It is possible to blow out the moisture-absorbing air after it has been adsorbed (see arrow F9 in Figs. 1, 3 and 4).
- the humidity control rotor 61 is a ceramic rotor having a substantially annular honeycomb structure, and has a structure through which air can easily pass. Specifically, the humidity control rotor 61 is substantially annular in a front view, and has a fine honeycomb shape in a cross section cut by a vertical plane.
- the main part of the humidity control port 61 is obtained by baking an adsorbent such as zeolite, silica gel, or alumina. This adsorbent such as zeolite adsorbs moisture in the air that comes into contact with it. It has the property of desorbing moisture adsorbed by heating.
- the inner peripheral edge of the humidity control rotor 61 is fitted to the outer peripheral side of the first cylindrical support portion 71e and is rotatable around the center O.
- An annular second driven gear 61 a is provided on the inner peripheral edge of the humidity control rotor 61. Further, the outer peripheral edge of the humidity control rotor 61 is close to the inner peripheral surface of the outer cylindrical portion 71b.
- the space in the casing body 62 is divided into first to third spaces S 1 to S 3 and other spaces by the humidity control rotor 61, the outer cylindrical portion 71 b and the annular partitioning portion 76.
- the heater 64 is provided so as to face the second space S2 across the humidity control rotor 61 so that air flowing into the portion of the humidity control rotor 61 facing the second space S2 can be heated. It is summer.
- the heater 64 is an electric heater.
- the blower fan 65 is disposed in the casing main body 62 on the front side of the humidity control rotor 61 and mainly includes an impeller 86 and a fan casing 87.
- the impeller 86 mainly has a disk-shaped main plate 86a and a plurality of blades 86b arranged in an annular manner and fixed to the outer peripheral portion of the main plate 86a.
- the impeller 86 is rotationally driven by a fan motor 92.
- the fan motor 92 is arranged on the back side of the impeller 86, on the front side of the force and humidity control rotor 61, and its rotating shaft 92a passes through the center O, and on the vane wheel 86 side and humidity control side. It extends toward both sides of the rotor 61.
- a portion of the rotating shaft 92a extending toward the impeller 86 is connected to the main plate 86a through a central hole of a fan casing disc 89 which is a part of the fan casing 87.
- the fan casing 87 mainly includes a fan casing main body 88 that surrounds the impeller 86 from the front side, the left and right side faces, the lower face side, and the upper face side, and a fan casing circle disposed on the rear face side of the impeller 86. It has a plate part 89 and a fan casing left upper part 90 provided so as to face the second space S2 with the heater 64 and the humidity control rotor 61 sandwiched in the rotation axis direction.
- the fan casing main body 88 has a scroll portion 88a and a box-shaped portion 88b.
- the scroll portion 88a is a tapered portion formed such that the diameter increases toward the back side in the direction of the rotation axis, and the fan suction port 88c facing the front side in the direction of the rotation axis and the front view.
- a humidifying fan outlet 88d that opens toward the upper left portion is formed.
- a bell mouth 91 having an opening having a substantially bell-shaped cross section is provided so as to face the fan suction port 88c.
- the box-shaped part 88b is a substantially rectangular box formed on the back side in the rotation axis direction of the scroll part 88a and having an open rear side, and the upper left part in front view is cut away.
- the fan casing disk part 89 is arranged with a space in the direction of the rotation axis from the box-shaped part 88b, and an annular moisture-absorption-side fan outlet 89a is formed between the box-shaped part 88b and the direction of the rotation axis. is doing.
- the upper left portion 90 of the fan casing includes a cylindrical portion 90a that communicates with the humidifying fan outlet 88d of the scroll portion 88a, a heater accommodating portion 90b that accommodates the heater 64, and the cylindrical portion 90a and the heater accommodating portion 90b.
- a communication portion 90c for communication, and a fourth space S4 that opposes the second space S2 with the humidity control rotor 61 sandwiched in the rotation axis direction is formed.
- the portion other than the upper left portion of the box-shaped portion 88b communicates with the moisture absorption side fan blowout port 89a, and the fifth space facing the third space S3 of the humidity control rotor 61 is provided.
- a space S 5 is formed.
- the outdoor air (Figs. 1, 3 and 4) sucked from the suction grill 81a is placed in the casing (that is, the casing body 62 and the casing lid 63) of the humidity control unit 6 of the present embodiment.
- the heater 64 since the air flowing through the humidification flow path passes through the heater 64 before passing through the humidity control rotor 61, the heater 64 is provided upstream of the humidity control rotor 61 in the humidification flow path. Thus, the air flowing through the humidification channel is heated.
- a portion of the rotating shaft 92a of the fan motor 92 that extends toward the humidity control rotor 61 is connected to the humidity control rotor 61 via a speed reduction mechanism 66 that reduces the rotation of the fan motor 92.
- the reduction mechanism 66 has a plurality of gears for reducing the rotation of the fan motor 92.
- the first drive gear 92b provided on the rotary shaft 92a and the rotary shaft 92a are Another rotating shaft 66a, a first driven gear 66b provided on the rotating shaft 66a, a second drive gear 66c provided on the rotating shaft 66a, and a second driven gear 61a provided on the humidity control rotor 61 have.
- the first drive gear 92b is provided at a portion of the rotating shaft 92a that extends toward the humidity control rotor 61 side.
- the rotary shaft 66a is arranged immediately below the rotary shaft 92a, and the rear side end thereof is pivotally supported by the second cylindrical support portion 71f, and the front side end is a third cylinder formed in the fan casing disc 89. Axis-supporting part 89b is pivotally supported.
- the first driven gear 66b is a gear that meshes with the first drive gear 92b and has more teeth than the first drive gear 92b.
- the second drive gear 66c is a gear that meshes with the second driven gear 61a, and has fewer teeth than the second driven gear 61a.
- the humidity control rotor 61 of the humidity control unit 6 of the present embodiment is rotationally driven by the fan motor 92.
- the humidity control unit 6 rotates and drives the impeller 86 of the blower fan 65 by the fan motor 92, so that outdoor air is sucked into the fan casing 87 through the suction flow path (Fig .; arrows F6 to! -4) , Fl, f2).
- the humidity control rotor 61 is also rotationally driven.
- the outdoor air sent to the moisture absorption channel passes through a portion other than the upper left portion of the humidity control rotor 61, and becomes dehumidified air from which moisture contained in the air is adsorbed and removed. (See arrows f5 and f6 in Figures 2 and 4.)
- the dehumidified air is sent from the third space S3 to the first space S1 through the plurality of square holes 71g, and the discharge holes 73a, 74a, 75a of the casing body 62 and the casing It is discharged to the outside through the blow grills 83a, 84a and 85a of the lid 63 (see arrows F7, F8 and F9 in Figs. 1, 3 and 4).
- the portion other than the upper left part of the humidity control rotor 61 that has adsorbed moisture in the air is rotated by the humidity control rotor 61, so that the upper left part of the humidity control rotor 61 to which no moisture is adsorbed is The portion other than the upper left portion of the humidity control rotor 61 that has adsorbed moisture moves to the moisture absorption flow path.
- the outdoor air sent to the humidification flow path is heated by the heater 64 and then passes through the upper left part of the humidity control heater 61.
- the moisture adsorbed on the humidity control rotor 61 by this heat is removed.
- the dehumidified air becomes humidified air to which the desorbed moisture is added (see arrows f 7, f8, and f9 in FIGS. 2 and 4).
- the humidified air is sent to the indoor unit 3 through the rear through-hole 71c and the air supply pipe 9 (see arrows f7, f8, f9, and F3 in FIGS. 1 to 4).
- the upper left portion of the humidity control rotor 61 from which moisture in the air has been desorbed rotates the humidity control rotor 61, so that the portion other than the upper left portion of the humidity control rotor 61 to which moisture has been adsorbed It moves to the path, and the upper left part of the humidity control rotor 61 to which moisture is not adsorbed moves to the moisture absorption channel.
- moisture in the air is continuously absorbed and desorbed in the humidity control rotor 61.
- the humidified air sent to the indoor unit 3 is supplied into the room by the operation of the indoor unit 3 (see arrows Fl and F2 in Fig. 1).
- the humidity control unit 6 of the present embodiment has the following characteristics.
- the fan motor 92 for the blower fan 65 is configured to further rotate the humidity control motor 61, so a motor dedicated for driving the humidity control rotor 61 is not required.
- the unit can be made compact.
- the fan motor 92 is disposed so as to be sandwiched between the blower fan 65 and the humidity control rotor 61, and the rotation shaft 92a is connected to the blower fan 65 side and the humidity control unit. Since it extends toward both sides of the rotor 61, the rotating shaft 92a of the fan motor 92 can be shortened as much as possible, and this contributes to a reduction in the size of the unit in the rotating shaft direction.
- the rotation shaft 92a of the fan motor 92 is connected to the humidity control rotor 61 via the speed reduction mechanism 66 that decelerates the rotation of the fan motor 92. It becomes possible to decelerate the rotation of the unmotor 92 so as to match the rotation of the humidity control rotor 61.
- the rotational force of the fan motor 92 is arranged so that the speed reduction mechanism 66 does not overlap the humidity control rotor 61 as much as possible when the speed reduction mechanism 66 is viewed. As a result, it is easy to secure a flow path (here, the fifth space S 5 of the moisture absorption flow path) of the air flow path that passes through the humidity control rotor 61.
- the humidity control unit 6 of the present embodiment is provided with an air supply pipe 9 on the back surface thereof (that is, the surface close to the outer surface of the wall W). Since it is connected to the indoor unit 3 mounted on the inner surface, the length of the air supply pipe 9 can be shortened compared to the configuration in which the conventional humidity control unit is mounted on the outdoor unit 2. It is possible to reduce the amount of condensation in the air supply pipe 9.
- the air supply pipe 9 that supplies the humidity-controlled air into the room is inclined at least 1 degree with respect to the horizontal direction so as to be inclined downward toward the casing body 62. Therefore, in the unlikely event that condensation occurs in the air supply pipe 9, the condensed water can be returned into the casing main body 62, and the condensation water can be prevented from accumulating in the air supply pipe 9.
- the blower fan 65 has an impeller 86 that is rotated by a fan motor 92 and a fan casing 87 in which the impeller 86 is accommodated.
- the fan casing 87 has a fan suction port 88c facing one side in the rotational axis direction of the impeller 86, a humidifying fan outlet 88d communicating with the humidifying channel, and a moisture absorbing fan outlet 89a communicating with the moisture absorbing channel. Since the humidifying fan and the hygroscopic fan in the conventional humidity control unit are combined, only one fan and fan motor are required, which contributes to the compactness of the unit.
- the force fan provided with the speed reduction mechanism 66 that reduces the rotation ratio between the rotation of the fan motor 92 and the rotation of the humidity control rotor 61 to a predetermined one rotation ratio.
- more gears may be combined.
- the humidity control capability of the humidity control unit 6 can be changed in multiple stages.
- the force with which the fan motor 92 is disposed in the fifth space S5 of the moisture absorption channel for example, in FIG. 12 and FIG.
- the fan motor 92 is provided with a motor enclosure 90d that surrounds the periphery of the fan motor 92 in the upper left corner 90 of the fan casing and communicates with the fourth space S4 formed by the upper left corner 90 of the fan casing. May be arranged not in the moisture absorption channel but in the humidification channel and on the upstream side of the heater 64 in the humidification channel.
- the air flowing through the humidification flow path can be heated by the waste heat of the fan motor 92, and the desorption of moisture from the humidity control rotor 61 can be promoted. It can also contribute to power saving of the heater 64.
- the air conditioner 1 including the vapor compression refrigerant circuit 10 If it is installed as part of the A heat exchanger in which the refrigerant circulating in the refrigerant circuit 10 flows may be used.
- a high-pressure refrigerant is introduced into the humidity control unit 6 from the refrigerant communication pipe 4 that connects the unit 3 to the indoor unit 3, and a heat exchanger that uses this high-pressure refrigerant as a heat source can be used as the heater 64.
- a heat exchanger 64a and an electric heater 64b are connected. It may be configured to be used together.
- the heat exchanger 64a is arranged upstream of the electric heater 64b in the humidification flow path in consideration of the available temperature level, thereby circulating in the refrigerant circuit 10. Since the heat of the refrigerant can be used effectively, the power consumption used in the humidity control unit 6 can be suppressed.
- the humidity control unit 6 has the force S that enables the humidification operation to supply humidified air indoors, as shown in FIGS. 17 to 21, the humidification operation. Not only the dehumidifying operation but also switching can be performed.
- the configuration of the humidity control unit 6 will be described with reference to this modified example.
- the bell mouth 91, the blower fan 65, the fan motor 92, the speed reduction mechanism 66, the heater 64, and the humidity control rotor 61 have the same structure as the above-described embodiment and modifications;! To 3.
- the explanation will be omitted, focusing on the newly added members, such as the casing body 62, the casing lid 63, the annular partitioning portion 76, the arcuate cylindrical portion 77, etc. having different structures.
- the humidity control unit 6 will be described with reference to FIG.
- the humidified air generated through the humidification flow path that is, the spaces S4 and S2
- the moisture absorption unit 6 Force that dehumidified air generated through the flow path i.e., spaces S5, S3, and SI
- Supply air that communicates with both the humidification channel (see Fig. 2; spaces S4 and S21 in! ⁇ 23) and the moisture absorption channel (see spaces S5 and S31 in Fig. 20 to Fig.
- the air supply pipe 9 Provide a channel (see space S20 in Fig. 20 to Fig. 23), provide a channel (see spaces S22 and S11 in Fig. 21 to 23, etc.) for exhausting humidified air to the outside, and pass through the humidification channel
- the humidified operation switching state in which the air that has passed through the moisture absorption channel through the flow path (see spaces S32 and S12 in FIGS. 20 to 23, etc.) is exhausted to the outside of the room and the moisture absorption channel has been passed. It is possible to switch between the dehumidifying operation switching state in which air is supplied into the room and the air that has passed through the humidifying channel through the channel (see spaces S22 and S11 in FIGS. It is assumed to have a humidification switching mechanism 98, 99.
- the humidified air that has passed through the humidification flow path is close to the rear surface 71 of the left side surface 72 of the casing body 62, as shown in FIGS.
- a rectangular left side discharge hole 73a is formed in this part, and the left side discharge port 73a is opposed to the left side surface part 82 of the casing body 62 and the left side surface discharge hole 72a formed in the left side part 72 of the casing body 62.
- a grill 82a is formed (see arrow F10 in FIG. 18).
- left side surface discharge hole 73a is formed in the left side surface portion 72, the rear surface portion 71, the left side surface portion 72, the right side surface portion 73, the lower surface portion 74, the upper surface portion 75, the outer cylindrical portion 71b, and the annular partition portion 76 are used.
- the upper surface discharge holes 75a of the upper surface portion 75 A first discharge space partition 75b extending downward from the left side toward the outer cylindrical part 71b, and a right side toward the inner cylindrical part 71a from a position below the left side discharge hole 72a of the left side part 72 And a second discharge space partition 72b extending in the direction. Further, a square hole 71h is formed in the upper left part of the outer cylindrical portion 71b.
- the area between 71a and the outer cylindrical portion 71b is divided into a second space S2 in which only humidified air flows and a third space S3 in which only dehumidified air flows.
- the inner cylindrical portion In order to divide the space above 71a as a supply air flow path, two supply air flow path partition parts 78 and 79 are formed. Then, a back through hole 7 lc is formed at a position facing the supply air flow path of the back surface portion 71, and the air supply pipe 9 is inserted. Further, the annular partitioning portion 76 contacts the outer cylindrical portion 71b.
- the direction force is further directed to the inner peripheral side, so that the region between the inner cylindrical portion 71a and the outer cylindrical portion 71b of the annular partition portion 76 is formed by the supply air flow path partition portions 78 and 79.
- the front / rear partition part 93 is formed so as to be divided into a front side region and a back side region.
- a front side space and a rear side space (hereinafter referred to as humidified air space S22) partitioned by the front / rear partition 93 are communicated.
- a front-side space and a back-side space (hereinafter referred to as dehumidification) partitioned by the front and rear partition portions 93 are formed in the vicinity of the supply air flow path partition portion 79 of the front and rear partition portions 93.
- a discharge side opening 93b communicating with the air space S32) is formed.
- a supply-side opening 78a that connects the front-side space partitioned by the front-and-rear partitioning portion 93 and the supply-air flow passage is formed in a portion on the front side of the front-rear partitioning portion 93 of the supply air passage partitioning portion 78.
- a supply-side opening 79a that connects the front-side space partitioned by the front-and-rear partition 93 and the supply-air flow path to a portion of the supply air flow-path partition 79 on the front side of the front and rear partition 93. Is formed.
- An arcuate cylindrical portion 77 is disposed on the front side of the front / rear partition portion 93 to form a humidified air space S21.
- a portion other than the humidified air space S21 in the portion on the front side of the front / rear partition part 93 forms a dehumidified air space S31.
- the arcuate cylindrical part 77 is formed with a right side opening 77f facing the supply side opening 78a and a cover part 77e covering the opening on the front side of the supply air flow path.
- the dehumidifying / humidifying switching mechanisms 98 and 99 are composed of dampers, and the dehumidifying / humidifying switching mechanism 98 is disposed at a corner formed by the right side surface portion 77c of the arcuate cylindrical portion 77 and the front and rear partition portions 93.
- the mechanism 99 is disposed at a corner formed by the supply air flow path partitioning portion 79 and the front and rear partitioning portion 93.
- the dehumidifying / humidifying switching mechanism 98 closes the discharge side opening 93a and opens the right side opening 77f and the supply side opening 78a. And the dehumidifying / humidifying switching mechanism 99 is operated to open the discharge side opening 93b and close the supply side opening 79a, so that the humidified air flows into the humidifying flow path (that is, the space S4 and the humidified air space S21). ) Flows into the supply air flow path (ie, space S20) and is supplied to the room through the air supply pipe 9 (see arrow F3 in FIGS. 18 and 19).
- the discharge side opening 93a is opened, and the right side opening 77f and the supply side opening 78a are closed.
- the humidification switching mechanism 98, closing the discharge side opening 93b, and operating the dehumidification switching mechanism 99 so as to open the supply side opening 79a the dehumidified air flows into the dehumidification channel (i.e., the space S5 and the dehumidified air space S31) flow into the supply air flow path (ie, space S20) and are supplied to the room through the air supply pipe 9 (see arrow F3 in FIGS.
- the humidity control unit according to the present invention is applied to an air conditioner having a configuration in which one indoor unit 3 is connected to one outdoor unit 2 has been described.
- the present invention is not limited to this, and in a configuration in which a plurality of indoor units are connected to a single outdoor unit, a humidity control unit that applies power to the present invention may be applied to each indoor unit.
- the humidity control unit may be installed independently regardless of the indoor unit. In this case, for example, by providing a blow grill or the like at the tip of the air supply pipe penetrating the wall, the humidity-controlled air can be supplied into the room.
- the present invention is used, it is possible to achieve a compact size of a non-water supply humidification unit using a humidity control rotor.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Central Air Conditioning (AREA)
- Drying Of Gases (AREA)
- Air Humidification (AREA)
Abstract
A non-water supply humidification unit employing a humidity conditioning rotor is made compact. The humidity conditioning unit (6) comprises a humidity conditioning rotor (61) which can adsorb/desorb moisture in the air, a casing, a heater (64), and an air supply fan (65). An air channel having a moisture absorption channel passing the humidity conditioning rotor (61), and a humidification channel passing the humidity conditioning rotor separately from the moisture absorption channel is formed in the casing. The heater (64) is provided on the upstream side of the humidity conditioning rotor (61) in the humidification channel and heats the air flowing through the humidification channel. The air supply fan (65) is arranged in the casing and rotary driven by a fan motor (92) to feed air into the air channel. The fan motor (92) additionally rotary drives the humidity conditioning rotor (61).
Description
明 細 書 Specification
調湿ユニット Humidity control unit
技術分野 Technical field
[0001] 本発明は、調湿ユニット、特に、室外に設置され、ダクト等を通じて調湿された空気 を室内に供給する調湿ユニットに関する。 TECHNICAL FIELD [0001] The present invention relates to a humidity control unit, and more particularly to a humidity control unit that is installed outside a room and supplies air conditioned through a duct or the like to the room.
背景技術 Background art
[0002] 従来より、調湿ユニットの 1つとして、吸着材を用いた無給水の加湿ユニットが知ら れている。このような加湿ユニットは、主として、吸着材を含む調湿ロータと、吸湿ファ ンと、加湿ファンと、ヒータとを備えている。この調湿ロータは、その円板状表面が吸 湿(吸着)流路及び加湿(再生)通路を順に通過するように回転する。吸湿流路には 、吸湿ファンが配置され、加湿流路には、加湿ファン及びヒータが配置されている(例 えば、特許文献 1、 2参照。)。 [0002] Conventionally, as one of humidity control units, a non-water supply humidification unit using an adsorbent is known. Such a humidification unit mainly includes a humidity control rotor including an adsorbent, a moisture absorption fan, a humidification fan, and a heater. The humidity control rotor rotates so that its disk-shaped surface sequentially passes through the moisture absorption (adsorption) flow path and the humidification (regeneration) passage. A moisture absorption fan is disposed in the moisture absorption channel, and a humidification fan and a heater are disposed in the humidification channel (see, for example, Patent Documents 1 and 2).
そして、調湿ロータの円板状表面の一部が吸湿流路を通過するとき、吸湿ファンに よって吸湿用空気が吸着材に供給されて、吸湿用空気に含まれる水分は、吸着材に 吸着される。一方、調湿ロータの円板状表面の一部が加湿流路を通過するとき、ヒー タによって加熱された加湿用空気が、加湿ファンによって吸着材に供給されて、吸着 材が加湿用空気の熱によって加熱されることによって吸着材から水分が脱離する。そ の結果、加湿用空気に吸着材から脱離した水分が付与されることによって、加湿空 気が生成される。加湿空気は、ダクト等を通じて室内に供給される。 When a part of the disk-shaped surface of the humidity control rotor passes through the moisture absorption flow path, moisture absorption air is supplied to the adsorbent by the moisture absorption fan, and the moisture contained in the moisture absorption air is adsorbed by the adsorbent. Is done. On the other hand, when a part of the disk-shaped surface of the humidity control rotor passes through the humidification flow path, the humidifying air heated by the heater is supplied to the adsorbent by the humidifying fan, and the adsorbent becomes the humidifying air. Moisture is desorbed from the adsorbent by being heated by heat. As a result, humidified air is generated by adding moisture desorbed from the adsorbent to the humidifying air. Humidified air is supplied indoors through a duct or the like.
特許文献 1:特許 3438672号 Patent Document 1: Japanese Patent No. 3438672
特許文献 2 : 2002— 98365号公報 Patent Document 2: Publication No. 2002-98365
発明の開示 Disclosure of the invention
[0003] 上述の加湿ユニットは、セパレート型の空気調和装置を構成する室外ユニットの上 に搭載されることを前提としたものであるため、上下方向のサイズが問題となる場合は ある力 平面サイズについては、室外ユニットの平面サイズに適合すればよいため、 それほど問題とはならない。 [0003] Since the above-mentioned humidifying unit is assumed to be mounted on an outdoor unit that constitutes a separate type air conditioner, the vertical size may be a problem. Is not a problem because it only needs to fit the outdoor unit's plane size.
しかし、複数の室内に加湿空気を供給することができるように各室の近傍に設置す
る場合や、ダクト等を短くしてダクト等の内部における結露量を減らすことができるよう に建物の壁面に設置する場合等を考慮すると、さらにコンパクト化が必要となり、室外 ユニットの上に搭載することを前提とした加湿ユニットの構成をそのまま使用したので は、コンパクト化に対応することができない。 However, it should be installed near each room so that humid air can be supplied to multiple rooms. If it is installed on the wall of a building so that the amount of condensation inside the duct can be reduced by shortening the duct, etc., it will be necessary to make it more compact and mount it on the outdoor unit If the configuration of the humidifying unit is used as it is, it cannot be made compact.
本発明の課題は、調湿ロータを用いた無給水の加湿ユニットのコンパクト化を実現 することにある。 An object of the present invention is to realize a compact unhumidified humidifying unit using a humidity control rotor.
[0004] 第 1の発明に力、かる調湿ユニットは、空気中の水分を吸脱着することが可能な調湿 ロータと、ケーシングと、加熱機構と、送風ファンとを備えている。ケーシングの内部に は、調湿ロータを経由する吸湿流路と、吸湿流路とは別に調湿ロータを経由する加 湿流路とを有する空気流路が形成されている。加熱機構は、加湿流路の調湿ロータ の上流側に設けられ、加湿流路を流れる空気を加熱する。送風ファンは、ケーシング 内に配置され、ファンモータによって回転駆動されて空気流路内に空気を流す。そし て、ファンモータは、調湿ロータをさらに回転駆動する。 [0004] A humidity control unit that is powerful in the first invention includes a humidity control rotor capable of absorbing and desorbing moisture in the air, a casing, a heating mechanism, and a blower fan. Inside the casing, there is formed an air flow path having a moisture absorption path that passes through the humidity control rotor and a humidification path that passes through the humidity control rotor separately from the moisture absorption path. The heating mechanism is provided on the upstream side of the humidity control rotor in the humidification channel, and heats the air flowing through the humidification channel. The blower fan is disposed in the casing and is driven to rotate by a fan motor to flow air into the air flow path. The fan motor further rotates the humidity control rotor.
この調湿ユニットでは、調湿ロータ駆動専用のモータ不要となるため、ユニットのコ ンパクト化が可能になる。 This humidity control unit eliminates the need for a motor dedicated to driving the humidity control rotor, so the unit can be made compact.
[0005] 第 2の発明に力、かる調湿ユニットは、第 1の発明に力、かる調湿ユニットにおいて、フ アンモータは、送風ファンと調湿ロータとによって挟まれるように配置されており、その 回転軸は、送風ファン側及び調湿ロータ側の両方に向かって延びて!/、る。 [0005] The humidity control unit that provides power to the second invention is the humidity control unit that provides power to the first invention, wherein the fan motor is disposed so as to be sandwiched between the blower fan and the humidity control rotor. The rotating shaft extends toward both the blower fan side and the humidity control rotor side!
この調湿ユニットでは、ファンモータの回転軸を極力短くすることができるため、ュニ ットの回転軸方向のサイズのコンパクト化に寄与できる。 In this humidity control unit, the rotation axis of the fan motor can be shortened as much as possible, which contributes to a reduction in the size of the unit rotation axis.
[0006] 第 3の発明に力、かる調湿ユニットは、第 2の発明に力、かる調湿ユニットにおいて、フ アンモータの回転軸は、ファンモータの回転を減速する減速機構を介して調湿ロータ に連結されている。 [0006] The humidity control unit according to the third aspect of the invention is the humidity control unit according to the second aspect of the invention. In the humidity control unit, the rotation axis of the fan motor is controlled via a speed reduction mechanism that reduces the rotation of the fan motor. Connected to the rotor.
この調湿ユニットでは、ファンモータの回転を調湿ロータの回転に適合するように減 速することが可能になる。 In this humidity control unit, the rotation of the fan motor can be reduced to match the rotation of the humidity control rotor.
[0007] 第 4の発明に力、かる調湿ユニットは、第 3の発明に力、かる調湿ユニットにおいて、減 速機構は、ファンモータの回転を多段階に減速することが可能である。 [0007] The humidity control unit according to the fourth aspect of the present invention is the power control unit according to the third aspect of the invention, and the speed reduction mechanism can decelerate the rotation of the fan motor in multiple stages.
この調湿ユニットでは、ファンモータの回転と調湿ロータとの回転との回転比を多段
階に変化させることができるため、ユニットの調湿能力を多段階に変化させることが可 能になる。 In this humidity control unit, the rotation ratio between the rotation of the fan motor and the rotation of the humidity control rotor is multistage. Since it can be changed to different floors, the humidity control capacity of the unit can be changed in multiple stages.
[0008] 第 5の発明に力、かる調湿ユニットは、第 3又は第 4の発明にかかる調湿ユニットにお いて、調湿ロータの回転中心は、ファンモータの回転軸と略同心である。 [0008] The humidity control unit according to the fifth invention is the humidity control unit according to the third or fourth invention, wherein the rotation center of the humidity control rotor is substantially concentric with the rotation axis of the fan motor. .
この調湿ユニットでは、調湿ロータと送風ファンとが回転軸方向に並んで配置される ため、ユニットの回転軸直交方向のサイズのコンパクト化に寄与できる。 In this humidity control unit, the humidity control rotor and the blower fan are arranged side by side in the direction of the rotation axis, which can contribute to downsizing the unit in the direction perpendicular to the rotation axis.
[0009] 第 6の発明に力、かる調湿ユニットは、第 5の発明に力、かる調湿ユニットにおいて、減 速機構は、ファンモータの回転を減速するための複数のギアを有している。調湿ロー タは、略環状の部材であり、その内周縁には、複数のギアの一つを構成する環状のド この調湿ユニットでは、ドリブンギアが調湿ロータの外周縁ではなく内周縁に設けら れているため、ファンモータの回転軸方向から減速機構を見た際に、減速機構が調 湿ロータに極力重なることがないように配置されることになり、空気流路のうち調湿口 ータを通過する部分の流路が確保されやすくなる。 [0009] The humidity control unit according to the sixth aspect of the invention is the humidity control unit according to the fifth aspect of the invention, wherein the deceleration mechanism has a plurality of gears for decelerating the rotation of the fan motor. Yes. The humidity control rotor is a substantially ring-shaped member, and the inner periphery of the humidity control unit is an annular door constituting one of a plurality of gears. In this humidity control unit, the driven gear is not the outer periphery of the humidity control rotor but the inner periphery. Therefore, when the speed reduction mechanism is viewed from the rotation axis direction of the fan motor, the speed reduction mechanism is arranged so as not to overlap the humidity control rotor as much as possible. It is easy to secure a flow path through the wet mouth.
[0010] 第 7の発明に力、かる調湿ユニットは、第 1〜第 6の発明のいずれかにかかる調湿ュ ニットにおいて、ファンモータは、加湿流路内の加熱機構の上流側に配置されている[0010] The humidity control unit according to the seventh invention is the humidity control unit according to any one of the first to sixth inventions, wherein the fan motor is disposed upstream of the heating mechanism in the humidification flow path. Has been
〇 Yes
この調湿ユニットでは、ファンモータの廃熱で加湿流路を流れる空気を加熱すること ができるため、調湿ロータからの水分の脱離を促進することができる。 In this humidity control unit, the air flowing through the humidification flow path can be heated by the waste heat of the fan motor, so that the desorption of moisture from the humidity control rotor can be promoted.
[0011] 第 8の発明に力、かる調湿ユニットは、第 1〜第 7の発明のいずれかにかかる調湿ュ ニットにおいて、加熱機構は、蒸気圧縮式の冷媒回路内を循環する冷媒が流れる熱 交換器を含んでいる。 [0011] The humidity control unit according to the eighth invention is the humidity control unit according to any one of the first to seventh inventions, wherein the heating mechanism is a refrigerant circulating in the vapor compression refrigerant circuit. Includes flowing heat exchanger.
この調湿ユニットでは、例えば、空気調和装置と併設される場合において、冷媒回 路内を循環する冷媒の熱を有効利用することができるため、ユニットで使用される消 費電力を抑えることができる。 In this humidity control unit, for example, when the air conditioning apparatus is provided with the air conditioner, the heat of the refrigerant circulating in the refrigerant circuit can be used effectively, so that the power consumption used in the unit can be suppressed. .
[0012] 第 9の発明に力、かる調湿ユニットは、第 1〜第 8の発明のいずれかにかかる調湿ュ ニットにおいて、加湿流路を通過した空気を室内に供給するとともに吸湿流路を通過 した空気を室外に排出する加湿運転切換状態と、吸湿流路を通過した空気を室内
に供給するとともに加湿流路を通過した空気を室外に排出する除湿運転切換状態と を切り換え可能な除加湿切換機構をさらに有している。 [0012] The humidity control unit according to the ninth invention is the humidity control unit according to any one of the first to eighth inventions, wherein the air that has passed through the humidification channel is supplied into the room and the moisture absorption channel. Humidification operation switching state that exhausts air that has passed through the room and air that has passed through the moisture absorption channel And a dehumidifying / humidifying switching mechanism capable of switching between a dehumidifying operation switching state in which air that has passed through the humidifying flow path is discharged to the outside.
この調湿ユニットでは、加湿運転と除湿運転とを切り換えて行うことができる。 In this humidity control unit, it is possible to switch between the humidifying operation and the dehumidifying operation.
[0013] 第 10の発明に力、かる調湿ユニットは、第 1〜第 9の発明のいずれかに力、かる調湿ュ ニットにおいて、ケーシングには、調湿ロータを通過した調湿空気を室内に供給する 調湿空気出口管が設けられている。調湿空気出口管は、ケーシングに向かって下り 勾配になるように、水平方向に対して 1度以上傾斜している。 [0013] The humidity control unit according to the tenth aspect of the invention is the humidity control unit according to any of the first to ninth aspects of the invention. In the humidity control unit, the casing is supplied with humidity control air that has passed through the humidity control rotor. A humidity control air outlet pipe is provided to supply the room. The humidity control air outlet pipe is inclined at least 1 degree with respect to the horizontal direction so as to have a downward slope toward the casing.
この調湿ユニットでは、調湿空気出口管において結露が生じた場合にケーシング 内に結露水が戻るようにできるため、調湿空気出口管に結露水が溜まらないようにす ること力 Sでさる。 In this humidity control unit, when condensation occurs in the humidity control air outlet pipe, it is possible to return the condensed water to the inside of the casing. Therefore, it is possible to prevent the condensation water from accumulating in the humidity control air outlet pipe. .
[0014] 第 11の発明に力、かる調湿ユニットは、第 10の発明に力、かる調湿ユニットにお!/、て、 ケーシングには、ドレン抜き孔が形成されて!/、る。 [0014] The humidity control unit according to the eleventh aspect of the present invention is the same as the tenth aspect of the invention, and the drainage hole is formed in the casing.
この調湿ユニットでは、ケーシング内に溜まった結露水を速やかに排出することが できるため、ケーシングを通じて、調湿空気出口管において生じた結露水を排出する こと力 Sでさる。 In this humidity control unit, the condensed water accumulated in the casing can be discharged quickly, so the force S that discharges the condensed water generated in the humidity control air outlet pipe through the casing can be reduced.
[0015] 第 12の発明に力、かる調湿ユニットは、第 1〜第 11の発明のいずれかに力、かる調湿 ユニットにおいて、送風ファンは、ファンモータによって回転駆動される羽根車と、习习 根車が収容されるファンケーシングとを有している。ファンケーシングは、羽根車の回 転軸方向一方に面するファン吸入口と、加湿流路に連通する加湿側ファン吹出口と 、吸湿流路に連通する吸湿側ファン吹出口とを有して!/、る。 [0015] The humidity control unit according to the twelfth aspect of the present invention is the humidity control unit according to any of the first to eleventh aspects of the invention. In the humidity control unit, the blower fan is an impeller rotated by a fan motor;フ ァ ン It has a fan casing that houses the root car. The fan casing has a fan inlet facing one of the impellers in the rotational axis direction, a humidifying fan outlet communicating with the humidifying passage, and a moisture absorbing fan outlet communicating with the moisture absorbing passage! /
この調湿ユニットでは、従来の調湿ユニットにおける加湿ファンと吸湿ファンとが兼 用されており、ファン及びファンモータが 1つで済むようになるため、ユニットのコンパ タト化に寄与できる。 In this humidity control unit, the humidification fan and the moisture absorption fan in the conventional humidity control unit are combined, and only one fan and fan motor are required. This contributes to the compactness of the unit.
図面の簡単な説明 Brief Description of Drawings
[0016] [図 1]本発明の一実施形態にかかる調湿ユニットが採用された空気調和装置の外観 図である。 FIG. 1 is an external view of an air conditioner employing a humidity control unit according to an embodiment of the present invention.
[図 2]空気調和装置の概略構成図である。 FIG. 2 is a schematic configuration diagram of an air conditioner.
[図 3]調湿ユニットの外観斜視図である。
[図 4]調湿ユニットの分解斜視図である。 FIG. 3 is an external perspective view of a humidity control unit. FIG. 4 is an exploded perspective view of the humidity control unit.
[図 5]調湿ユニットの正面図である。 FIG. 5 is a front view of the humidity control unit.
[図 6]図 5の I I断面図である。 FIG. 6 is a cross-sectional view taken along the line I I in FIG.
[図 7]図 6の II II断面図である。 FIG. 7 is a sectional view taken along line II-II in FIG.
[図 8]図 6の III III断面図である。 FIG. 8 is a sectional view taken along line III-III in FIG.
[図 9]図 6の IV— IV断面図である。 FIG. 9 is a sectional view taken along line IV-IV in FIG.
[図 10]図 6の V— V断面図である。 FIG. 10 is a cross-sectional view taken along the line V-V in FIG.
[図 11]図 7の VI— VI O I断面図である。 FIG. 11 is a cross-sectional view taken along VI—VI O I in FIG.
[図 12]変形例 2にかかる調湿ユニットを示す図であって、図 6に相当する図である。 FIG. 12 is a view showing a humidity control unit according to Modification 2 and corresponding to FIG.
[図 13]変形例 2にかかる調湿ユニットのファンケーシング左上部を示す斜視図である FIG. 13 is a perspective view showing the upper left part of the fan casing of the humidity control unit according to Modification 2.
[図 14]変形例 3にかかる空気調和装置を示す図であって、図 2に相当する図である。 FIG. 14 is a view showing an air conditioner according to Modification 3 and corresponding to FIG.
[図 15]変形例 3にかかる空気調和装置を示す図であって、図 2に相当する図である。 FIG. 15 is a view showing an air conditioner according to Modification 3 and corresponding to FIG.
[図 16]変形例 3にかかる空気調和装置を示す図であって、図 11に相当する図である FIG. 16 is a diagram showing an air conditioner according to Modification 3 and corresponding to FIG.
[図 17]変形例 4にかかる空気調和装置を示す図であって、図 2に相当する図である。 FIG. 17 is a view showing an air conditioner according to Modification 4 and corresponding to FIG.
[図 18]変形例 4にかかる調湿ユニットを示す図であって、図 3に相当する図である。 FIG. 18 is a view showing a humidity control unit according to Modification 4 and corresponding to FIG.
[図 19]変形例 4にかかる調湿ユニットを示す図であって、図 4のケーシング本体付近 に相当する図である。 FIG. 19 is a view showing a humidity control unit according to Modification 4 and corresponding to the vicinity of the casing body of FIG.
[図 20]変形例 4にかかる調湿ユニットを示す図であって、図 6に相当する図である。 FIG. 20 is a view showing a humidity control unit according to Modification 4 and corresponding to FIG.
[図 21]図 21の VII— VII断面図であって、送風ファンの下流側の部分のみを示す図 である。 FIG. 21 is a cross-sectional view taken along the line VII-VII in FIG. 21, showing only the downstream portion of the blower fan.
[図 22]変形例 4にかかる加湿運転時の動作を示す図であって、図 21に相当する図で ある。 FIG. 22 is a view showing an operation during a humidifying operation according to Modification 4 and corresponding to FIG. 21.
[図 23]変形例 4にかかる除湿運転時の動作を示す図であって、図 21に相当する図で ある。 FIG. 23 is a diagram showing an operation during a dehumidifying operation according to Modification 4 and corresponding to FIG. 21.
符号の説明 Explanation of symbols
6 調湿ユニット
9 給気管 (調湿空気出口管) 6 Humidity control unit 9 Air supply pipe (Humidity control air outlet pipe)
10 冷媒回路 10 Refrigerant circuit
61 調湿ロータ 61 Humidity control rotor
61a 第 2ドリブンギア 61a Second driven gear
64 ヒータ(加熱機構) 64 Heater (heating mechanism)
65 送風ファン 65 Blower fan
66 減速機構 66 Deceleration mechanism
86 羽根車 86 impeller
88c ファン吸人口 88c Fan sucking population
88d 加湿側ファン吹出口 88d Humidification side fan outlet
89a 吸湿側ファン吹出口 89a Moisture absorption side fan outlet
92 ファンモータ 92 Fan motor
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、図面に基づいて、本発明にかかる調湿ユニットの実施形態について説明す Hereinafter, an embodiment of a humidity control unit according to the present invention will be described based on the drawings.
(1)空気調和装置の概略構成 (1) Schematic configuration of air conditioner
図 1は、本発明の一実施形態に力、かる調湿ユニットが採用された空気調和装置 1の 外観図である。 FIG. 1 is an external view of an air conditioner 1 in which a humidity control unit that employs a force in one embodiment of the present invention is employed.
この空気調和装置 1は、主として、室外に設置される室外ユニット 2と、壁 Wの室内 側の面等に取り付けられる室内ユニット 3と、壁 Wの室外側の面等に取り付けられる 調湿ユニット 6とを備えている。室外ユニット 2と室内ユニット 3とは、冷媒連絡管 4、 5を 介して接続されることで蒸気圧縮式の冷媒回路 10を構成しており、室内の空気調和 を行うことができるようになつている。また、本実施形態において、調湿ユニット 6の背 面(すなわち、壁 Wの室外側の面と近接する面)には、後述の加湿空気等を室内に 供給する調湿空気出口管としての給気管 9が設けられており、壁 Wを貫通して壁 W の室内側の面に取り付けられた室内ユニット 3に接続されている。このため、従来の 調湿ユニットが室外ユニット 2の上に搭載された構成に比べて、給気管 9の長さが短く
なっている。 The air conditioner 1 is mainly composed of an outdoor unit 2 installed outside, an indoor unit 3 attached to the indoor side surface of the wall W, and a humidity control unit 6 attached to the outdoor surface of the wall W, etc. And. The outdoor unit 2 and the indoor unit 3 constitute a vapor compression refrigerant circuit 10 by being connected via refrigerant communication pipes 4 and 5, so that indoor air conditioning can be performed. Yes. Further, in the present embodiment, the back surface of the humidity control unit 6 (ie, the surface close to the outdoor surface of the wall W) is supplied as a humidity control air outlet pipe for supplying humidified air and the like to be described later to the room. A trachea 9 is provided and is connected to an indoor unit 3 that passes through the wall W and is attached to the indoor side surface of the wall W. For this reason, the length of the air supply pipe 9 is shorter than the configuration in which the conventional humidity control unit is mounted on the outdoor unit 2. It has become.
[0019] (2)室内ユニット及び室外ユニットの概略構成 [2] (2) Schematic configuration of indoor unit and outdoor unit
以下、室内ユニット 3及び室外ユニット 2の概略構成について、図 1及び図 2を用い て説明する。ここで、図 2は、空気調和装置 1の概略構成図である。 Hereinafter, schematic configurations of the indoor unit 3 and the outdoor unit 2 will be described with reference to FIG. 1 and FIG. Here, FIG. 2 is a schematic configuration diagram of the air conditioner 1. As shown in FIG.
<室内ユニット〉 <Indoor unit>
まず、室内ユニット 3の概略構成について説明する。室内ユニット 3は、主として、冷 媒回路 10の一部を構成する室内側冷媒回路 10aを備えている。この室内側冷媒回 路 10aは、主として、室内熱交換器 31を備えている。 First, a schematic configuration of the indoor unit 3 will be described. The indoor unit 3 mainly includes an indoor refrigerant circuit 10a that constitutes a part of the refrigerant circuit 10. The indoor refrigerant circuit 10a mainly includes an indoor heat exchanger 31.
室内熱交換器 31は、冷房時には冷媒の加熱器として機能して室内空気を冷却し、 暖房時には冷媒の冷却器として機能して室内空気を加熱する熱交換器である。 室内ユニット 3は、本実施形態において、ユニット内に室内空気を吸入して、室内空 気と冷媒とを室内熱交換器 31において熱交換させて室内に供給する室内ファン 32 を備えている(図 1の矢印 Fl、 F2参照)。 The indoor heat exchanger 31 is a heat exchanger that functions as a refrigerant heater during cooling to cool indoor air, and functions as a refrigerant cooler during heating to heat indoor air. In this embodiment, the indoor unit 3 includes an indoor fan 32 that sucks indoor air into the unit, exchanges heat between the indoor air and the refrigerant in the indoor heat exchanger 31, and supplies the indoor air to the room (see FIG. 1 arrow Fl, see F2).
[0020] また、室内ユニット 3内には、上述の給気管 9の管端部が挿入されており、調湿ュニ ット 6から供給される加湿空気等が室内ユニット 3内に一旦吹き出された後(図 1の矢 印 F3参照)、室内空気とともに室内ファン 32によって室内に供給されるようになって いる。 [0020] In addition, the pipe end of the above-described air supply pipe 9 is inserted into the indoor unit 3, and humidified air or the like supplied from the humidity control unit 6 is once blown into the indoor unit 3. After that (see arrow F3 in FIG. 1), the indoor air is supplied to the room together with the room air 32.
<室外ユニット〉 <Outdoor unit>
次に、室外ユニット 2の概略構成について説明する。室外ユニット 2は、主として、冷 媒回路 10の一部を構成する室外側冷媒回路 10bを備えている。この室外側冷媒回 路 10bは、主として、圧縮機 21と、四路切換弁 22と、室外熱交換器 23と、膨張弁 24 と、閉鎖弁 25、 26とを備えている。 Next, a schematic configuration of the outdoor unit 2 will be described. The outdoor unit 2 mainly includes an outdoor refrigerant circuit 10b that constitutes a part of the refrigerant circuit 10. The outdoor refrigerant circuit 10b mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an expansion valve 24, and closing valves 25 and 26.
圧縮機 21は、本実施形態において、冷媒を圧縮するための圧縮機である。 The compressor 21 is a compressor for compressing a refrigerant in the present embodiment.
[0021] 四路切換弁 22は、冷媒の流れの方向を切り換えるための弁であり、冷房時には、 室外熱交換器 23を圧縮機 21から吐出された冷媒の冷却器として、かつ、室内熱交 換器 31を膨張弁 24において減圧された冷媒の加熱器として機能させるために、圧 縮機 21の吐出側と室外熱交換器 23の一端側とを接続するとともに圧縮機 21の吸入 側と冷媒連絡管 5側とを接続し(図 1の四路切換弁 22の実線を参照)、暖房時には、
室内熱交換器 31を圧縮機 21において吐出された冷媒の冷却器として、かつ、室外 熱交換器 23を膨張弁 24で減圧された冷媒の加熱器として機能させるために、圧縮 機 21の吐出側と冷媒連絡管 5側とを接続するとともに圧縮機 21の吸入側と室外熱交 換器 23の一端側とを接続することが可能である(図 1の四路切換弁 22の破線を参照[0021] The four-way switching valve 22 is a valve for switching the direction of the refrigerant flow. During cooling, the outdoor heat exchanger 23 serves as a cooler for the refrigerant discharged from the compressor 21, and the indoor heat exchange. In order for the converter 31 to function as a heater for the refrigerant reduced in pressure at the expansion valve 24, the discharge side of the compressor 21 and one end side of the outdoor heat exchanger 23 are connected, and the suction side of the compressor 21 and the refrigerant Connect to the connecting pipe 5 side (see the solid line of the four-way selector valve 22 in Fig. 1). In order to function the indoor heat exchanger 31 as a cooler for the refrigerant discharged from the compressor 21 and the outdoor heat exchanger 23 as a heater for the refrigerant depressurized by the expansion valve 24, the discharge side of the compressor 21 Can be connected to the refrigerant communication pipe 5 side, and the suction side of the compressor 21 and one end side of the outdoor heat exchanger 23 can be connected (see the broken line of the four-way switching valve 22 in FIG. 1).
)。 ).
室外熱交換器 23は、本実施形態において、冷房時には室外空気を冷却源とする 冷媒の冷却器として機能し、暖房時には室外空気を加熱源とする冷媒の加熱器とし て機能する熱交換器である。室外熱交換器 23は、その一端側が四路切換弁 22に接 続され、その他端側が冷媒連絡管 4に接続されて!/、る。 In this embodiment, the outdoor heat exchanger 23 is a heat exchanger that functions as a refrigerant cooler using outdoor air as a cooling source during cooling, and functions as a refrigerant heater using outdoor air as a heating source during heating. is there. The outdoor heat exchanger 23 has one end connected to the four-way selector valve 22 and the other end connected to the refrigerant communication pipe 4! /.
[0022] 膨張弁 24は、冷房時には室外熱交換器 23において冷却されて室内熱交換器 31 に送られる冷媒を減圧し、暖房運転時には室内熱交換器 31において冷却されて室 外熱交換器 23に送られる冷媒を減圧する電動膨張弁である。 [0022] The expansion valve 24 decompresses the refrigerant that is cooled in the outdoor heat exchanger 23 during cooling and is sent to the indoor heat exchanger 31, and is cooled in the indoor heat exchanger 31 during heating operation and is cooled in the outdoor heat exchanger 23. It is an electric expansion valve which decompresses the refrigerant | coolant sent to.
室外ユニット 2は、本実施形態において、ユニット内に室外空気を吸入して、室外熱 交換器 23に供給した後に室外に排出するための室外ファン 27を備えている(図 1の 矢印 F4、F5参照)。 In the present embodiment, the outdoor unit 2 includes an outdoor fan 27 for sucking outdoor air into the unit, supplying the outdoor air to the outdoor heat exchanger 23, and then discharging the air to the outdoor (arrows F4 and F5 in FIG. 1). reference).
閉鎖弁 25、 26は、外部の機器'配管 (具体的には、冷媒連絡管 4、 5)との接続口 に設けられた弁である。閉鎖弁 25は、膨張弁 24に接続されている。閉鎖弁 26は、四 路切換弁 22に接続されて!/、る。 The shut-off valves 25 and 26 are valves provided at connection ports with external equipment pipes (specifically, refrigerant communication pipes 4 and 5). The closing valve 25 is connected to the expansion valve 24. The shut-off valve 26 is connected to the four-way selector valve 22! /.
以上のように、室内側冷媒回路 10aと室外側冷媒回路 10bと冷媒連絡管 4、 5とが 接続されて、空気調和装置 1の冷媒回路 10が構成されている。そして、本実施形態 の空気調和装置 1は、四路切換弁 22により冷房と暖房とを切り換えて運転できるよう になっている。 As described above, the refrigerant circuit 10 of the air conditioner 1 is configured by connecting the indoor refrigerant circuit 10a, the outdoor refrigerant circuit 10b, and the refrigerant communication pipes 4 and 5. The air conditioner 1 of the present embodiment can be operated by switching between cooling and heating by the four-way switching valve 22.
[0023] (3)冷房運転及び暖房運転 [0023] (3) Cooling operation and heating operation
次に、空気調和装置 1の冷房運転及び暖房運転について、図 1及び図 2を用いて 説明する。 Next, the cooling operation and the heating operation of the air conditioner 1 will be described with reference to FIGS.
<冷房運転 > <Cooling operation>
まず、冷房運転について説明する。 First, the cooling operation will be described.
冷房運転時は、四路切換弁 22が図 1の実線で示される状態、すなわち、圧縮機 21
の吐出側が室外熱交換器 23の一端側に接続され、かつ、圧縮機 21の吸入側が冷 媒連絡管 5側に接続された状態となっている。また、閉鎖弁 25、 26は開にされ、膨張 弁 24は開度調節されるようになっている。 During cooling operation, the four-way selector valve 22 is in the state indicated by the solid line in FIG. The discharge side is connected to one end side of the outdoor heat exchanger 23, and the suction side of the compressor 21 is connected to the refrigerant communication pipe 5 side. In addition, the closing valves 25 and 26 are opened, and the opening degree of the expansion valve 24 is adjusted.
この冷媒回路 10の状態で、圧縮機 21、室外ファン 27及び室内ファン 32を運転す ると、低圧の冷媒は、圧縮機 21に吸入されて圧縮されて高圧の冷媒となって吐出さ れる。この高圧の冷媒は、四路切換弁 22を経由して室外熱交換器 23に送られて、 室外ファン 27によって供給される室外空気(図 1の矢印 F4、F5参照)と熱交換を行 つて冷却される。そして、この室外熱交換器 23において冷却された高圧の冷媒は、 膨張弁 24によって減圧されて低圧の冷媒となった後に、閉鎖弁 25及び冷媒連絡管 4を経由して、室内ユニット 3に送られる。そして、室内ユニット 3に送られた低圧の冷 媒は、室内熱交換器 31に送られ、室内ファン 32によって供給される室内空気(図 1 の矢印 Fl、 F2参照)と熱交換を行って加熱される。そして、この室内熱交換器 31に おいて加熱された低圧の冷媒は、冷媒連絡管 5を経由して室外ユニット 2に送られ、 閉鎖弁 26及び四路切換弁 22を経由して、再び、圧縮機 21に吸入される。このように して、冷房運転が行われる。 When the compressor 21, the outdoor fan 27, and the indoor fan 32 are operated in the state of the refrigerant circuit 10, the low-pressure refrigerant is sucked into the compressor 21, compressed, and discharged as high-pressure refrigerant. This high-pressure refrigerant is sent to the outdoor heat exchanger 23 via the four-way switching valve 22, and exchanges heat with the outdoor air (see arrows F4 and F5 in Fig. 1) supplied by the outdoor fan 27. To be cooled. The high-pressure refrigerant cooled in the outdoor heat exchanger 23 is reduced in pressure by the expansion valve 24 to become low-pressure refrigerant, and then is sent to the indoor unit 3 via the closing valve 25 and the refrigerant communication pipe 4. It is done. The low-pressure refrigerant sent to the indoor unit 3 is sent to the indoor heat exchanger 31 and heated by exchanging heat with the indoor air (see arrows Fl and F2 in FIG. 1) supplied by the indoor fan 32. Is done. Then, the low-pressure refrigerant heated in the indoor heat exchanger 31 is sent to the outdoor unit 2 through the refrigerant communication pipe 5, and again through the closing valve 26 and the four-way switching valve 22, Inhaled by the compressor 21. In this way, cooling operation is performed.
<暖房運転〉 <Heating operation>
次に、通常運転モードにおける暖房について、図 1及び図 2を用いて説明する。 暖房運転時は、四路切換弁 22が図 1の破線で示される状態、すなわち、圧縮機 21 の吐出側が冷媒連絡管 5側に接続され、かつ、圧縮機 21の吸入側が室外熱交換器 23の一端側に接続された状態となっている。また、閉鎖弁 25、 26は開にされ、膨張 弁 24は開度調節されるようになっている。 Next, heating in the normal operation mode will be described with reference to FIGS. During the heating operation, the four-way selector valve 22 is in the state shown by the broken line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the refrigerant communication pipe 5 side, and the suction side of the compressor 21 is the outdoor heat exchanger 23 It is in the state connected to the one end side. In addition, the closing valves 25 and 26 are opened, and the opening degree of the expansion valve 24 is adjusted.
この冷媒回路 10の状態で、圧縮機 21、室外ファン 27及び室内ファン 32を運転す ると、低圧の冷媒は、圧縮機 21に吸入されて圧縮されて高圧の冷媒となって吐出さ れ、四路切換弁 22、閉鎖弁 26及び冷媒連絡管 5を経由して、室内ユニット 3に送ら れる。そして、室内ユニット 3に送られた高圧の冷媒は、室内熱交換器 31において、 室内ファン 32によって供給される室内空気(図 1の矢印 F1、F2参照)と熱交換を行 つて冷却される。そして、この室内熱交換器 31において冷却された高圧の冷媒は、 冷媒連絡管 4及び閉鎖弁 25を経由して、室外ユニット 2に送られる。そして、室外ュ
ニット 2に送られた高圧の冷媒は、膨張弁 24によって減圧されて低圧の冷媒となった 後に、室外熱交換器 23に流入し、室外ファン 27によって供給される室外空気(図 1 の矢印 F4、 F5参照)と熱交換を行って加熱される。そして、この室外熱交換器 23に おいて加熱された低圧の冷媒は、四路切換弁 22を経由して、再び、圧縮機 21に吸 入される。このようにして、暖房運転が行われる。 When the compressor 21, the outdoor fan 27, and the indoor fan 32 are operated in the state of the refrigerant circuit 10, the low-pressure refrigerant is sucked into the compressor 21, compressed, and discharged as high-pressure refrigerant. It is sent to the indoor unit 3 via the four-way switching valve 22, the closing valve 26 and the refrigerant communication pipe 5. The high-pressure refrigerant sent to the indoor unit 3 is cooled in the indoor heat exchanger 31 by exchanging heat with the indoor air (see arrows F1 and F2 in FIG. 1) supplied by the indoor fan 32. The high-pressure refrigerant cooled in the indoor heat exchanger 31 is sent to the outdoor unit 2 via the refrigerant communication pipe 4 and the shut-off valve 25. And outdoor The high-pressure refrigerant sent to the knit 2 is decompressed by the expansion valve 24 to become low-pressure refrigerant, and then flows into the outdoor heat exchanger 23 and is supplied by the outdoor fan 27 (see arrow F4 in FIG. 1). And heat exchange with F5). The low-pressure refrigerant heated in the outdoor heat exchanger 23 is again sucked into the compressor 21 via the four-way switching valve 22. In this way, the heating operation is performed.
[0025] (4)調湿ユニットの構成 [0025] (4) Configuration of humidity control unit
次に、本実施形態の調湿ユニット 6の構成について、図 1〜図 11を用いて説明する 。ここで、図 3は、調湿ユニット 6の外観斜視図である。図 4は、調湿ユニット 6の分解 斜視図である。図 5は、調湿ユニット 6の正面図である。図 6は、図 5の I— I断面図であ る。図 7は、図 6の II— II断面図である。図 8は、図 6の III— III断面図である。図 9は、 図 6の IV— IV断面図である。図 10は、図 6の V— V断面図である。図 11は、図 7の VI —VI— O— I断面図である。尚、以下の調湿ユニット 6の説明においては、調湿ュニ ット 6が壁 Wの室外側の面に近接する面を「背面」とし、この背面に対して壁 Wから遠 い側の面「正面」とし、この正面から見て左側の面を「左側面」、右側の面を「右側面」 、下側の面を「下面」、上側の面を「上面」とする。 Next, the configuration of the humidity control unit 6 of the present embodiment will be described with reference to FIGS. Here, FIG. 3 is an external perspective view of the humidity control unit 6. FIG. FIG. 4 is an exploded perspective view of the humidity control unit 6. FIG. 5 is a front view of the humidity control unit 6. 6 is a cross-sectional view taken along the line II of FIG. 7 is a cross-sectional view taken along the line II-II in FIG. FIG. 8 is a sectional view taken along line III-III in FIG. Fig. 9 is a sectional view taken along line IV-IV in Fig. 6. FIG. 10 is a cross-sectional view taken along the line V-V in FIG. Fig. 11 is a cross-sectional view taken along VI-VI-O-I in Fig. 7. In the following description of the humidity control unit 6, the surface where the humidity control unit 6 is close to the outdoor surface of the wall W is referred to as the “rear surface”, and the surface farther from the wall W than the rear surface. A surface “front” is defined as a “left surface”, a right surface “right surface”, a lower surface “lower surface”, and an upper surface “upper surface”.
[0026] 調湿ユニット 6は、本実施形態において、室外空気中の水分を吸脱着することによ つて加湿空気を生成し、給気管 9を通じて加湿空気を室内に供給する無給水式の加 湿ユニットであり、主として、空気中の水分を吸脱着することが可能な調湿ロータ 61と 、ケーシングとしてのケーシング本体 62及びケーシング蓋 63と、加熱機構としてのヒ ータ 64と、送風ファン 65とを備えている。 In this embodiment, the humidity control unit 6 generates humidified air by absorbing and desorbing moisture in the outdoor air, and supplies the humidified air to the room through the air supply pipe 9. A humidity control rotor 61 capable of absorbing and desorbing moisture in the air, a casing main body 62 and a casing lid 63 as a casing, a heater 64 as a heating mechanism, and a blower fan 65 It has.
<ケーシング本体及びケーシング蓋〉 <Case body and casing lid>
ケーシング本体 62は、本実施形態において、正面側が開口した略長方形状の箱 体であり、主として、背面部 71と、左側面部 72と、右側面部 73と、下面部 74と、上面 部 75とを有している。 In the present embodiment, the casing main body 62 is a substantially rectangular box that is open on the front side, and mainly includes a back surface portion 71, a left side surface portion 72, a right side surface portion 73, a lower surface portion 74, and an upper surface portion 75. Have.
背面部 71には、主として、内側筒状部 71aと、外側筒状部 71bと、背面貫通孔 71c と、背面ドレン孔 71dが形成されている。 The back surface portion 71 is mainly formed with an inner tubular portion 71a, an outer tubular portion 71b, a back through-hole 71c, and a back drain hole 71d.
[0027] 内側筒状部 71aは、背面部 71の正面視略中央の位置から正面側に向かって延び る円筒状の部分である。内側筒状部 71aの正面側端には、さらに正面側に向かって
延びる円筒状の第 1筒状支持部 71e及び第 2筒状支持部 71fが形成されている。第 1筒状支持部 71eは、内側筒状部 71aの外径よりも小径の外径を有し、かつ、内側筒 状部 71 aの内径よりも大径の内径を有する内側筒状部 71 aと同心(以下、内側筒状 部 71 aの円中心を中心 Oとする)の円筒状部分である。第 2筒状支持部 71fは、内側 筒状部 71 aの下端において、第 1筒状支持部 71eの上側に配置された小径の筒状 部分である(図 4における図示は省略)。 [0027] The inner cylindrical portion 71a is a cylindrical portion that extends from the substantially central position of the back surface portion 71 to the front side. On the front side end of the inner cylindrical part 71a, further toward the front side A cylindrical first cylindrical support portion 71e and a second cylindrical support portion 71f that extend are formed. The first cylindrical support portion 71e has an outer diameter that is smaller than the outer diameter of the inner cylindrical portion 71a, and has an inner diameter that is larger than the inner diameter of the inner cylindrical portion 71a. This is a cylindrical portion concentric with a (hereinafter, centered on the circle center of the inner cylindrical portion 71a). The second cylindrical support portion 71f is a small-diameter cylindrical portion disposed on the upper side of the first cylindrical support portion 71e at the lower end of the inner cylindrical portion 71a (not shown in FIG. 4).
外側筒状部 71bは、中心を中心 Oとし内側筒状部 71aの外側を囲むように背面部 7 1の正面視略中央の位置から正面側に向かって延びる円筒状の部分である。外側筒 状部 71bの右半分の部分には、外側筒状部 71bの内周側から外周側に向かって貫 通する長方形状の複数の角孔 71gが形成されている。 The outer cylindrical portion 71b is a cylindrical portion having a center as the center O and extending from the substantially central position of the rear surface portion 71 to the front side so as to surround the outer side of the inner cylindrical portion 71a. A plurality of rectangular square holes 71g penetrating from the inner peripheral side to the outer peripheral side of the outer cylindrical portion 71b are formed in the right half portion of the outer cylindrical portion 71b.
[0028] 背面貫通孔 71cは、背面部 71の正面視における内側筒状部 71aと外側筒状部 71 bとの間の領域のうちの左上側の部分を貫通するように形成された丸孔である。この 背面貫通孔 71cには、給気管 9が背面部 71の正面側から揷入されている。給気管 9 の調湿ユニット 6側の端部には、背面貫通孔 71cよりも大径の環状のフランジ部 9aが 設けられている。給気管 9は、フランジ部 9aにおいて、ケーシング本体 62に装着され ている。そして、給気管 9は、ケーシング本体 62に向かって下り勾配になるように、水 平方向に対して 1度以上傾斜した状態で、ケーシング本体 62に装着されている。 また、背面部 71の正面側には、外側筒状部 71bの正面側端から左側面部 72、右 側面部 73、下面部 74及び上面部 75に向かって放射状に延びる環状仕切部 76が 設けられている。そして、ケーシング本体 62内の空間は、この環状仕切部 76によつ て、背面部 71、左側面部 72、右側面部 73、下面部 74、上面部 75、外側筒状部 71b 及び環状仕切部 76によって囲まれる第 1空間 S Iと他の空間とに区切られており、第 1空間 S 1は、外側筒状部 71bに形成された複数の角孔 71gによって他の空間と連通 している。 [0028] The rear through-hole 71c is a round hole formed so as to penetrate the upper left portion of the region between the inner cylindrical portion 71a and the outer cylindrical portion 71b in the front view of the rear portion 71. It is. An air supply pipe 9 is inserted into the rear through-hole 71c from the front side of the rear portion 71. At the end of the air supply pipe 9 on the humidity control unit 6 side, an annular flange portion 9a having a diameter larger than that of the rear through hole 71c is provided. The air supply pipe 9 is attached to the casing body 62 at the flange portion 9a. The air supply pipe 9 is attached to the casing body 62 in a state where it is inclined at least 1 degree with respect to the horizontal direction so as to be inclined downward toward the casing body 62. Further, on the front side of the rear surface portion 71, an annular partition portion 76 that extends radially from the front side end of the outer cylindrical portion 71b toward the left side surface portion 72, the right side surface portion 73, the lower surface portion 74, and the upper surface portion 75 is provided. ing. The space inside the casing main body 62 is formed by the annular partitioning portion 76 so that the rear surface portion 71, the left side surface portion 72, the right side surface portion 73, the lower surface portion 74, the upper surface portion 75, the outer cylindrical portion 71b, and the annular partitioning portion 76 are formed. The first space S1 is surrounded by a first space SI and another space, and the first space S1 communicates with the other spaces by a plurality of square holes 71g formed in the outer cylindrical portion 71b.
[0029] また、背面部 71の正面視における内側筒状部 71aと外側筒状部 71bとの間の領域 のうちの左上側の部分には、正面側及び背面側が開口した略円弧筒状の円弧筒状 部 77が設けられている。円弧筒状部 77は、主として、外側円弧部 77aと、内側円弧 部 77bと、右側面部 77c、下面部 77dとを有している。外側円弧部 77aは、外側筒状
部 71bの左上側の部分の内周側に近接しており、内側円弧部 77bは、内側筒状部 7 laの左上側の部分の外周側に近接している。右側面部 77c及び下面部 77dは、背 面部 71、内側筒状部 71a及び外側筒状部 71bによって囲まれる環状の空間を背面 貫通孔 71cに連通する第 2空間 S2と、外側筒状部 71bに形成された複数の角孔 71 gに連通する第 3空間 S3とに区切っている。 [0029] In addition, the upper left portion of the region between the inner cylindrical portion 71a and the outer cylindrical portion 71b in the front view of the rear portion 71 has a substantially arc-shaped cylindrical shape with the front side and the rear side opened. An arcuate cylindrical portion 77 is provided. The arcuate cylindrical portion 77 mainly has an outer arc portion 77a, an inner arc portion 77b, a right side surface portion 77c, and a lower surface portion 77d. The outer circular arc portion 77a has an outer cylindrical shape. The inner arc portion 77b is close to the outer peripheral side of the upper left portion of the inner cylindrical portion 7la. The right side surface portion 77c and the lower surface portion 77d are formed as a second space S2 that communicates the annular space surrounded by the back surface portion 71, the inner cylindrical portion 71a, and the outer cylindrical portion 71b with the rear through-hole 71c, and the outer cylindrical portion 71b. It is partitioned into a third space S3 communicating with the formed plurality of square holes 71 g.
背面ドレン孔 71dは、背面貫通孔 71cの直下で、かつ、円弧筒状部 77の下面部 77 dの上面に接する位置から背面部 71の下端に向かって背面部 71内を貫通するよう に形成された流路である。 The back drain hole 71d is formed so as to pass through the inside of the back surface portion 71 directly below the back surface through hole 71c and from the position in contact with the top surface of the bottom surface portion 77d of the circular arc tubular portion 77 toward the lower end of the back surface portion 71. It is the made flow path.
[0030] 右側面部 73の背面部 71寄りの部分には、第 1空間 S 1に連通するように、長方形状 の右側面排出孔 73aが形成されている。この右側面排出孔 73aは、右側面部 73の 上端付近から下端付近にわたって形成されている。 [0030] A rectangular right side surface discharge hole 73a is formed in a portion of the right side surface portion 73 near the back surface portion 71 so as to communicate with the first space S1. The right side surface discharge hole 73a is formed from the vicinity of the upper end of the right side surface portion 73 to the vicinity of the lower end thereof.
下面部 74の背面部 71寄りの部分には、第 1空間 S 1に連通するように、長方形状の 下面排出孔 74aが形成されている。この下面排出孔 74aは、下面部 74の左右方向 中央付近から右端付近にわたって形成されてレ、る。 A rectangular lower surface discharge hole 74a is formed in a portion of the lower surface portion 74 near the rear surface portion 71 so as to communicate with the first space S1. The lower surface discharge hole 74a is formed from the vicinity of the center of the lower surface portion 74 in the left-right direction to the vicinity of the right end.
上面部 75の背面部 71寄りの部分には、第 1空間 S 1に連通するように、長方形状の 上面排出孔 75aが形成されている。この上面排出孔 75aは、上面部 75の左右方向 中央付近から右端付近にわたって形成されてレ、る。 A rectangular upper surface discharge hole 75a is formed in a portion of the upper surface portion 75 near the rear surface portion 71 so as to communicate with the first space S1. The upper surface discharge hole 75a is formed from the center of the upper surface portion 75 in the left-right direction to the vicinity of the right end.
ケーシング蓋 63は、ケーシング本体 62の正面側の開口を覆う部材である。ケーシ ング蓋 63は、本実施形態において、背面側が開口した略長方形状の箱体であり、主 として、正面部 81と、左側面部 82と、右側面部 83と、下面部 84と、上面部 85とを有 している。 The casing lid 63 is a member that covers the opening on the front side of the casing body 62. In this embodiment, the casing lid 63 is a substantially rectangular box that is open on the back side, and mainly includes a front surface portion 81, a left side surface portion 82, a right side surface portion 83, a lower surface portion 84, and an upper surface portion 85. Have.
[0031] 正面部 81には、吸入グリル 81aが形成されており、ケーシング本体 62内に室外空 気を吸入することができるようになつている(図 1、 3及び 4の矢印 F6参照)。 [0031] A suction grill 81a is formed in the front portion 81 so that outdoor air can be sucked into the casing body 62 (see arrow F6 in FIGS. 1, 3 and 4).
左側面部 82は、ケーシング蓋 63によってケーシング本体 62の正面側の開口を覆 つた状態において、ケーシング本体 62の左側面部 72の外周側に配置される部分で あり、その背面側の端部は、ケーシング本体 62の背面部 71まで延びている。 The left side surface portion 82 is a portion disposed on the outer peripheral side of the left side surface portion 72 of the casing main body 62 in a state where the opening on the front side of the casing main body 62 is covered by the casing lid 63. The main body 62 extends to the back surface 71.
右側面部 83は、ケーシング蓋 63によってケーシング本体 62の正面側の開口を覆 つた状態において、ケーシング本体 62の右側面部 73の外周側に配置される部分で
あり、その背面側の端部は、ケーシング本体 62の背面部 71まで延びている。右側面 部 83には、ケーシング本体 62の右側面部 73に形成された右側面排出孔 73aに対 向するように、右側面吹出グリル 83aが形成されており、ケーシング本体 62内から調 湿ロータ 61において水分が吸着された後の吸湿空気を吹き出すことができるように なっている(図 1、 3及び 4の矢印 F7参照)。 The right side surface portion 83 is a portion disposed on the outer peripheral side of the right side surface portion 73 of the casing body 62 in a state where the opening on the front side of the casing body 62 is covered by the casing lid 63. And the end on the back surface side extends to the back surface portion 71 of the casing body 62. The right side surface 83 is formed with a right side blowing grill 83a so as to face the right side surface discharge hole 73a formed in the right side surface 73 of the casing body 62, and the humidity adjusting rotor 61 is provided from the inside of the casing body 62. It is possible to blow out the moisture-absorbing air after moisture has been adsorbed in Fig. 1, 3 and 4 (see arrow F7).
[0032] 下面部 84は、ケーシング蓋 63によってケーシング本体 62の正面側の開口を覆つ た状態において、ケーシング本体 62の下面部 74の外周側に配置される部分であり、 その背面側の端部は、ケーシング本体 62の背面部 71まで延びている。下面部 84に は、ケーシング本体 62の下面部 74に形成された下面排出孔 74aに対向するように、 下面吹出グリル 84aが形成されており、ケーシング本体 62内力も調湿ロータ 61にお いて水分が吸着された後の吸湿空気を吹き出すことができるようになつている(図 1、 3及び 4の矢印 F8参照)。また、下面部 84には、ケーシング本体 62の背面部 71に形 成された背面ドレン孔 71dに連通するように下面ドレン孔 84dが形成されている。そし て、上述の背面ドレン孔 71dと下面ドレン孔 84dとによって、ドレン抜き孔が構成され ている。 [0032] The lower surface portion 84 is a portion disposed on the outer peripheral side of the lower surface portion 74 of the casing main body 62 in a state where the casing lid 63 covers the opening on the front side of the casing main body 62. The portion extends to the back surface portion 71 of the casing body 62. The lower surface portion 84 is formed with a lower surface blowing grill 84a so as to face the lower surface discharge hole 74a formed in the lower surface portion 74 of the casing main body 62, and the internal force of the casing main body 62 is also moisture in the humidity control rotor 61. It is possible to blow out the moisture-absorbing air after it has been adsorbed (see arrow F8 in Figs. 1, 3 and 4). In addition, a lower surface drain hole 84d is formed in the lower surface portion 84 so as to communicate with a back surface drain hole 71d formed in the back surface portion 71 of the casing body 62. And the drain drain hole is comprised by the above-mentioned back surface drain hole 71d and the lower surface drain hole 84d.
[0033] 上面部 85は、ケーシング蓋 63によってケーシング本体 62の正面側の開口を覆つ た状態において、ケーシング本体 62の上面部 75の外周側に配置される部分であり、 その背面側の端部は、ケーシング本体 62の背面部 71まで延びている。上面部 85に は、ケーシング本体 62の上面部 75に形成された上面排出孔 75aに対向するように、 上面吹出グリル 85aが形成されており、ケーシング本体 62内力も調湿ロータ 61にお いて水分が吸着された後の吸湿空気を吹き出すことができるようになつている(図 1、 3及び 4の矢印 F9参照)。 [0033] The upper surface portion 85 is a portion disposed on the outer peripheral side of the upper surface portion 75 of the casing main body 62 in a state where the casing lid 63 covers the opening on the front surface side of the casing main body 62. The portion extends to the back surface portion 71 of the casing body 62. An upper surface blowing grill 85a is formed on the upper surface portion 85 so as to face the upper surface discharge hole 75a formed in the upper surface portion 75 of the casing main body 62, and the internal force of the casing main body 62 is also moisture in the humidity control rotor 61. It is possible to blow out the moisture-absorbing air after it has been adsorbed (see arrow F9 in Figs. 1, 3 and 4).
<吸湿ロータ〉 <Hygroscopic rotor>
調湿ロータ 61は、略環状のハニカム構造のセラミックロータであり、空気が容易に 通過できる構造となっている。具体的には、調湿ロータ 61は、その正面視において 略環状であり、垂直面で切った断面において細かいハニカム状になっている。調湿口 ータ 61の主たる部分は、ゼォライト、シリカゲル、あるいはアルミナといった吸着剤を 焼成したものである。このゼォライト等の吸着剤は、接触する空気中の水分を吸着し
、加熱されることで吸着した水分を脱着する性質を有している。そして、調湿ロータ 61 の内周縁は、第 1筒状支持部 71eの外周側に嵌っており、中心 Oまわりに回転可能 な状態になっている。また、調湿ロータ 61の内周縁には、環状の第 2ドリブンギア 61 a が設けられている。また、調湿ロータ 61の外周縁は、外側筒状部 71bの内周面に近 接している。そして、ケーシング本体 62内の空間は、調湿ロータ 61、外側筒状部 71 b及び環状仕切部 76によって、第 1〜第 3空間 S 1〜S3と、他の空間とに区切られて いる。 The humidity control rotor 61 is a ceramic rotor having a substantially annular honeycomb structure, and has a structure through which air can easily pass. Specifically, the humidity control rotor 61 is substantially annular in a front view, and has a fine honeycomb shape in a cross section cut by a vertical plane. The main part of the humidity control port 61 is obtained by baking an adsorbent such as zeolite, silica gel, or alumina. This adsorbent such as zeolite adsorbs moisture in the air that comes into contact with it. It has the property of desorbing moisture adsorbed by heating. The inner peripheral edge of the humidity control rotor 61 is fitted to the outer peripheral side of the first cylindrical support portion 71e and is rotatable around the center O. An annular second driven gear 61 a is provided on the inner peripheral edge of the humidity control rotor 61. Further, the outer peripheral edge of the humidity control rotor 61 is close to the inner peripheral surface of the outer cylindrical portion 71b. The space in the casing body 62 is divided into first to third spaces S 1 to S 3 and other spaces by the humidity control rotor 61, the outer cylindrical portion 71 b and the annular partitioning portion 76.
[0034] <ヒータ〉 [0034] <Heater>
ヒータ 64は、調湿ロータ 61を挟んで第 2空間 S2に対向するように設けられており、 調湿ロータ 61の第 2空間 S2に対向する部分に流入する空気を加熱することができる ようになつている。尚、本実施形態において、ヒータ 64は、電気ヒータである。 The heater 64 is provided so as to face the second space S2 across the humidity control rotor 61 so that air flowing into the portion of the humidity control rotor 61 facing the second space S2 can be heated. It is summer. In the present embodiment, the heater 64 is an electric heater.
<送風ファン〉 <Blower fan>
送風ファン 65は、ケーシング本体 62内において、調湿ロータ 61の正面側に配置さ れており、主として、羽根車 86と、ファンケーシング 87とを有している。 The blower fan 65 is disposed in the casing main body 62 on the front side of the humidity control rotor 61 and mainly includes an impeller 86 and a fan casing 87.
羽根車 86は、主として、円板状の主板 86aと、主板 86aの外周部に環状に配置さ れて固定された複数の翼 86bとを有している。羽根車 86は、ファンモータ 92によって 回転駆動されるようになっている。このファンモータ 92は、羽根車 86の背面側で、力、 つ、調湿ロータ 61の正面側に配置されており、その回転軸 92aは、中心 Oを通り、羽 根車 86側及び調湿ロータ 61側の両方に向かって延びている。そして、回転軸 92aの うち羽根車 86側に延びる部分は、ファンケーシング 87の一部であるファンケーシング 円板部 89の中心孔を貫通して主板 86aに連結されている。 The impeller 86 mainly has a disk-shaped main plate 86a and a plurality of blades 86b arranged in an annular manner and fixed to the outer peripheral portion of the main plate 86a. The impeller 86 is rotationally driven by a fan motor 92. The fan motor 92 is arranged on the back side of the impeller 86, on the front side of the force and humidity control rotor 61, and its rotating shaft 92a passes through the center O, and on the vane wheel 86 side and humidity control side. It extends toward both sides of the rotor 61. A portion of the rotating shaft 92a extending toward the impeller 86 is connected to the main plate 86a through a central hole of a fan casing disc 89 which is a part of the fan casing 87.
[0035] ファンケーシング 87は、主として、羽根車 86を正面側、左右両側面側、下面側及 び上面側から囲むファンケーシング本体 88と、羽根車 86の背面側に配置されたファ ンケーシング円板部 89と、ヒータ 64及び調湿ロータ 61を回転軸方向に挟んで、第 2 空間 S2に対向するように設けられたファンケーシング左上部 90とを有している。 ファンケーシング本体 88は、スクロール部 88aと、箱状部 88bとを有している。スクロ ール部 88aは、回転軸方向背面側に向力、うにつれて径が大きくなるように形成された テーパ状の部分であり、回転軸方向正面側に面するファン吸入口 88cと、正面視に
おける左上部分に向かって開口する加湿側ファン吹出口 88dとが形成されている。ス クロール部 88aの正面側には、ファン吸入口 88cに対向するように、略ベル形状の断 面を有する開口が形成されたベルマウス 91が設けられている。箱状部 88bは、スクロ ール部 88aの回転軸方向背面側に形成された背面側が開口した略長方形状の箱体 であり、正面視における左上部分が切り欠かれている。 [0035] The fan casing 87 mainly includes a fan casing main body 88 that surrounds the impeller 86 from the front side, the left and right side faces, the lower face side, and the upper face side, and a fan casing circle disposed on the rear face side of the impeller 86. It has a plate part 89 and a fan casing left upper part 90 provided so as to face the second space S2 with the heater 64 and the humidity control rotor 61 sandwiched in the rotation axis direction. The fan casing main body 88 has a scroll portion 88a and a box-shaped portion 88b. The scroll portion 88a is a tapered portion formed such that the diameter increases toward the back side in the direction of the rotation axis, and the fan suction port 88c facing the front side in the direction of the rotation axis and the front view. In A humidifying fan outlet 88d that opens toward the upper left portion is formed. On the front side of the scroll portion 88a, a bell mouth 91 having an opening having a substantially bell-shaped cross section is provided so as to face the fan suction port 88c. The box-shaped part 88b is a substantially rectangular box formed on the back side in the rotation axis direction of the scroll part 88a and having an open rear side, and the upper left part in front view is cut away.
[0036] ファンケーシング円板部 89は、箱状部 88bと回転軸方向に間隔を空けて配置され ており、箱状部 88bとの回転軸方向間に環状の吸湿側ファン吹出口 89aを形成して いる。 [0036] The fan casing disk part 89 is arranged with a space in the direction of the rotation axis from the box-shaped part 88b, and an annular moisture-absorption-side fan outlet 89a is formed between the box-shaped part 88b and the direction of the rotation axis. is doing.
ファンケーシング左上部 90は、スクロール部 88aの加湿側ファン吹出口 88dに連通 する筒状部 90aと、ヒータ 64が収容されるヒータ収容部 90bと、筒状部 90aとヒータ収 容部 90bとを連通させる連通部 90cとを有しており、調湿ロータ 61を回転軸方向に挟 んで第 2空間 S2と対向する第 4空間 S4を形成している。また、ファンケーシング左上 部 90が設けられることで、箱状部 88bの左上部以外の部分によって、吸湿側ファン 吹出口 89aに連通するとともに、調湿ロータ 61の第 3空間 S3に対向する第 5空間 S 5 が形成されている。 The upper left portion 90 of the fan casing includes a cylindrical portion 90a that communicates with the humidifying fan outlet 88d of the scroll portion 88a, a heater accommodating portion 90b that accommodates the heater 64, and the cylindrical portion 90a and the heater accommodating portion 90b. A communication portion 90c for communication, and a fourth space S4 that opposes the second space S2 with the humidity control rotor 61 sandwiched in the rotation axis direction is formed. Further, by providing the fan casing upper left portion 90, the portion other than the upper left portion of the box-shaped portion 88b communicates with the moisture absorption side fan blowout port 89a, and the fifth space facing the third space S3 of the humidity control rotor 61 is provided. A space S 5 is formed.
[0037] このように、本実施形態の調湿ユニット 6のケーシング(すなわち、ケーシング本体 6 2及びケーシング蓋 63)内には、吸入グリル 81aから吸入される室外空気(図 1、 3及 び 4の矢印 F6参照)がベルマウス 91の開口及びファン吸入口 88cを経由してファン ケーシング 87内に至る吸入流路と、羽根車 86によって昇圧された後に吸湿側ファン 吹出口 89a、第 5空間 S 5及び調湿ロータ 61 (より具体的には、正面視における左上 部以外の部分)を経由して第 3空間 S3に至る吸湿流路と、羽根車 86によって昇圧さ れた後に加湿側ファン吹出口 88d、第 4空間 S4、ヒータ 64及び調湿ロータ 61 (より具 体的には、正面視における左上部の部分)を経由して第 2空間 S2に至る加湿流路と が形成されている。ここで、加湿流路を流れる空気は、調湿ロータ 61を通過する前に ヒータ 64を通過することになるため、ヒータ 64は、加湿流路内において、調湿ロータ 6 1の上流側に設けられて、加湿流路を流れる空気を加熱することになる。 [0037] As described above, the outdoor air (Figs. 1, 3 and 4) sucked from the suction grill 81a is placed in the casing (that is, the casing body 62 and the casing lid 63) of the humidity control unit 6 of the present embodiment. (See arrow F6) is the suction flow path to the fan casing 87 through the opening of the bell mouth 91 and the fan suction port 88c, and the moisture absorption side fan outlet 89a after the pressure is increased by the impeller 86, the fifth space S 5 and the humidity control rotor 61 (more specifically, the part other than the upper left part in the front view) and the moisture absorption flow path leading to the third space S3 and the humidifying side fan blow after being pressurized by the impeller 86 A humidification flow path that reaches the second space S2 via the outlet 88d, the fourth space S4, the heater 64, and the humidity control rotor 61 (more specifically, the upper left portion in front view) is formed. . Here, since the air flowing through the humidification flow path passes through the heater 64 before passing through the humidity control rotor 61, the heater 64 is provided upstream of the humidity control rotor 61 in the humidification flow path. Thus, the air flowing through the humidification channel is heated.
[0038] また、ファンモータ 92の回転軸 92aのうち調湿ロータ 61側に延びる部分は、ファン モータ 92の回転を減速する減速機構 66を介して調湿ロータ 61に連結されている。
減速機構 66は、ファンモータ 92の回転を減速するための複数のギアを有しており、 本実施形態においては、回転軸 92aに設けられた第 1ドライブギア 92bと、回転軸 92 aとは別の回転軸 66aと、この回転軸 66aに設けられた第 1ドリブンギア 66bと、回転 軸 66aに設けられた第 2ドライブギア 66cと、調湿ロータ 61に設けられた第 2ドリブン ギア 61aとを有している。 Further, a portion of the rotating shaft 92a of the fan motor 92 that extends toward the humidity control rotor 61 is connected to the humidity control rotor 61 via a speed reduction mechanism 66 that reduces the rotation of the fan motor 92. The reduction mechanism 66 has a plurality of gears for reducing the rotation of the fan motor 92. In the present embodiment, the first drive gear 92b provided on the rotary shaft 92a and the rotary shaft 92a are Another rotating shaft 66a, a first driven gear 66b provided on the rotating shaft 66a, a second drive gear 66c provided on the rotating shaft 66a, and a second driven gear 61a provided on the humidity control rotor 61 have.
第 1ドライブギア 92bは、回転軸 92aのうち調湿ロータ 61側に延びる部分に設けら れている。回転軸 66aは、回転軸 92aの直下に配置されており、その背面側端が第 2 筒状支持部 71fに軸支され、正面側端がファンケーシング円板部 89に形成された第 3筒状支持部 89bに軸支されている。第 1ドリブンギア 66bは、第 1ドライブギア 92bに 嚙み合うギアであり、第 1ドライブギア 92bよりも歯数が多い。また、第 2ドライブギア 66 cは、第 2ドリブンギア 61 aに嚙み合うギアであり、第 2ドリブンギア 61aよりも歯数が少 ない。 The first drive gear 92b is provided at a portion of the rotating shaft 92a that extends toward the humidity control rotor 61 side. The rotary shaft 66a is arranged immediately below the rotary shaft 92a, and the rear side end thereof is pivotally supported by the second cylindrical support portion 71f, and the front side end is a third cylinder formed in the fan casing disc 89. Axis-supporting part 89b is pivotally supported. The first driven gear 66b is a gear that meshes with the first drive gear 92b and has more teeth than the first drive gear 92b. The second drive gear 66c is a gear that meshes with the second driven gear 61a, and has fewer teeth than the second driven gear 61a.
[0039] このように、本実施形態の調湿ユニット 6の調湿ロータ 61は、ファンモータ 92によつ て回転駆動されるようになっている。 As described above, the humidity control rotor 61 of the humidity control unit 6 of the present embodiment is rotationally driven by the fan motor 92.
(5)調湿ユニットの動作 (5) Operation of humidity control unit
以下、調湿ユニット 6の動作について説明する。 Hereinafter, the operation of the humidity control unit 6 will be described.
調湿ユニット 6は、送風ファン 65の羽根車 86をファンモータ 92によって回転駆動す ることによって、吸入流路を通じて、室外空気がファンケーシング 87内に吸入される( 図;!〜 4の矢印 F6、 fl、 f2参照)。また、ファンモータ 92による羽根車 86の回転駆動 とともに、調湿ロータ 61も回転駆動される。 The humidity control unit 6 rotates and drives the impeller 86 of the blower fan 65 by the fan motor 92, so that outdoor air is sucked into the fan casing 87 through the suction flow path (Fig .; arrows F6 to! -4) , Fl, f2). In addition to the rotational drive of the impeller 86 by the fan motor 92, the humidity control rotor 61 is also rotationally driven.
そして、送風ファン 65の運転により、ファンケーシング 87内に吸入された室外空気 は、羽根車 86によって昇圧された後に、その一部が加湿側ファン吹出口 88dを通じ て加湿流路に送られ、その残りが吸湿側ファン吹出口 89aを通じて吸湿流路に送ら れる(図 2及び 4の矢印 f 3、 f4)。 Then, by the operation of the blower fan 65, the outdoor air sucked into the fan casing 87 is pressurized by the impeller 86, and then a part thereof is sent to the humidification passage through the humidification side fan outlet 88d. The rest is sent to the moisture absorption passage through the moisture absorption side fan outlet 89a (arrows f3 and f4 in Figs. 2 and 4).
[0040] そして、吸湿流路に送られた室外空気は、調湿ロータ 61の左上部以外の部分を通 過し、空気中に含まれている水分が吸着'除去された除湿空気となる。 (図 2及び 4の 矢印 f5、 f6参照)。そして、この除湿空気は、複数の角孔 71gを通じて第 3空間 S3か ら第 1空間 S 1に送られ、ケーシング本体 62の排出孔 73a、 74a、 75a及びケーシング
蓋 63の吹出グリル 83a、 84a、 85aを通じて、室外に排出される(図 1、 3及び 4の矢 印 F7、F8、 F9参照)。 [0040] The outdoor air sent to the moisture absorption channel passes through a portion other than the upper left portion of the humidity control rotor 61, and becomes dehumidified air from which moisture contained in the air is adsorbed and removed. (See arrows f5 and f6 in Figures 2 and 4.) The dehumidified air is sent from the third space S3 to the first space S1 through the plurality of square holes 71g, and the discharge holes 73a, 74a, 75a of the casing body 62 and the casing It is discharged to the outside through the blow grills 83a, 84a and 85a of the lid 63 (see arrows F7, F8 and F9 in Figs. 1, 3 and 4).
このとき、この空気中の水分を吸着した調湿ロータ 61の左上部以外の部分は、調 湿ロータ 61が回転することによって、水分が吸着されていない調湿ロータ 61の左上 部が吸湿流路に移動し、水分を吸着した調湿ロータ 61の左上部以外の部分が吸湿 流路に移動することなる。 At this time, the portion other than the upper left part of the humidity control rotor 61 that has adsorbed moisture in the air is rotated by the humidity control rotor 61, so that the upper left part of the humidity control rotor 61 to which no moisture is adsorbed is The portion other than the upper left portion of the humidity control rotor 61 that has adsorbed moisture moves to the moisture absorption flow path.
[0041] 一方、加湿流路に送られた室外空気は、ヒータ 64によって加熱された後に、調湿口 ータ 61の左上部を通過し、この熱によって調湿ロータ 61に吸着された水分を脱離さ せ、そして、この脱離された水分が付与された加湿空気となる(図 2及び 4の矢印 f 7、 f8、 f9参照)。そして、この加湿空気は、背面貫通孔 71c及び給気管 9を通じて室内 ユニット 3に送られる(図 1〜4の矢印 f 7、 f8、 f9、 F3参照)。 [0041] On the other hand, the outdoor air sent to the humidification flow path is heated by the heater 64 and then passes through the upper left part of the humidity control heater 61. The moisture adsorbed on the humidity control rotor 61 by this heat is removed. The dehumidified air becomes humidified air to which the desorbed moisture is added (see arrows f 7, f8, and f9 in FIGS. 2 and 4). Then, the humidified air is sent to the indoor unit 3 through the rear through-hole 71c and the air supply pipe 9 (see arrows f7, f8, f9, and F3 in FIGS. 1 to 4).
このとき、この空気中の水分が脱離した調湿ロータ 61の左上部は、調湿ロータ 61 が回転することによって、水分が吸着された調湿ロータ 61の左上部以外の部分が加 湿流路に移動し、水分が吸着されていない調湿ロータ 61の左上部が吸湿流路に移 動することなる。これにより、調湿ロータ 61において、連続的に空気中の水分の吸脱 着が行われることになる。 At this time, the upper left portion of the humidity control rotor 61 from which moisture in the air has been desorbed rotates the humidity control rotor 61, so that the portion other than the upper left portion of the humidity control rotor 61 to which moisture has been adsorbed It moves to the path, and the upper left part of the humidity control rotor 61 to which moisture is not adsorbed moves to the moisture absorption channel. Thus, moisture in the air is continuously absorbed and desorbed in the humidity control rotor 61.
[0042] そして、この室内ユニット 3へ送られた加湿空気は、室内ユニット 3の運転によって、 室内に供給される(図 1の矢印 Fl、 F2参照)。 [0042] The humidified air sent to the indoor unit 3 is supplied into the room by the operation of the indoor unit 3 (see arrows Fl and F2 in Fig. 1).
(6)調湿ユニットの特徴 (6) Features of humidity control unit
本実施形態の調湿ユニット 6には、以下のような特徴がある。 The humidity control unit 6 of the present embodiment has the following characteristics.
(A)本実施形態の調湿ユニット 6では、送風ファン 65用のファンモータ 92が調湿口 ータ 61をさらに回転駆動する構成となっているため、調湿ロータ 61駆動専用のモー タ不要となり、ユニットのコンパクト化が可能である。 (A) In the humidity control unit 6 of the present embodiment, the fan motor 92 for the blower fan 65 is configured to further rotate the humidity control motor 61, so a motor dedicated for driving the humidity control rotor 61 is not required. Thus, the unit can be made compact.
(B)本実施形態の調湿ユニット 6では、ファンモータ 92が送風ファン 65と調湿ロー タ 61とによって挟まれるように配置されており、その回転軸 92aが送風ファン 65側及 び調湿ロータ 61側の両方に向かって延びているため、ファンモータ 92の回転軸 92a を極力短くすることができるようになり、ユニットの回転軸方向のサイズのコンパクト化 に寄与できる。
[0043] (C)本実施形態の調湿ユニット 6では、ファンモータ 92の回転軸 92aがファンモー タ 92の回転を減速する減速機構 66を介して調湿ロータ 61に連結されているため、フ アンモータ 92の回転を調湿ロータ 61の回転に適合するように減速することが可能に なる。 (B) In the humidity control unit 6 of the present embodiment, the fan motor 92 is disposed so as to be sandwiched between the blower fan 65 and the humidity control rotor 61, and the rotation shaft 92a is connected to the blower fan 65 side and the humidity control unit. Since it extends toward both sides of the rotor 61, the rotating shaft 92a of the fan motor 92 can be shortened as much as possible, and this contributes to a reduction in the size of the unit in the rotating shaft direction. (C) In the humidity control unit 6 of the present embodiment, the rotation shaft 92a of the fan motor 92 is connected to the humidity control rotor 61 via the speed reduction mechanism 66 that decelerates the rotation of the fan motor 92. It becomes possible to decelerate the rotation of the unmotor 92 so as to match the rotation of the humidity control rotor 61.
(D)本実施形態の調湿ユニット 6では、調湿ロータ 61の回転中心(すなわち、中心 O)がファンモータ 92の回転軸 92aと略同心であるため、調湿ロータ 61と送風ファン 6 5とが回転軸方向に並んで配置されるようになり、ユニットの回転軸直交方向のサイズ のコンパクト化に寄与できる。また、送風ファン 65の正面視におけるサイズが比較的 大きい場合には、調湿ロータ 61の正面視におけるサイズもそれに適合する程度に大 きくすることができるため、調湿ロータの薄型化も可能になる。 (D) In the humidity control unit 6 of the present embodiment, since the rotation center (that is, the center O) of the humidity control rotor 61 is substantially concentric with the rotation shaft 92a of the fan motor 92, the humidity control rotor 61 and the blower fan 6 5 Are arranged side by side in the direction of the rotation axis, which can contribute to a compact size of the unit in the direction perpendicular to the rotation axis. In addition, when the size of the blower fan 65 in the front view is relatively large, the size of the humidity control rotor 61 in the front view can be increased to such an extent that the humidity control rotor can be made thinner. Become.
[0044] (E)本実施形態の調湿ユニット 6では、調湿ロータ 61に設けられる第 2ドリブンギア (E) In the humidity control unit 6 of the present embodiment, the second driven gear provided in the humidity control rotor 61
61aが調湿ロータ 61の内周縁に設けられているため、ファンモータ 92の回転軸方向 力も減速機構 66を見た際に、減速機構 66が調湿ロータ 61に極力重なることがない ように配置されることになり、空気流路のうち調湿ロータ 61を通過する部分の流路 (こ こでは、吸湿流路の第 5空間 S 5)が確保されやすくなる。 Since 61a is provided on the inner periphery of the humidity control rotor 61, the rotational force of the fan motor 92 is arranged so that the speed reduction mechanism 66 does not overlap the humidity control rotor 61 as much as possible when the speed reduction mechanism 66 is viewed. As a result, it is easy to secure a flow path (here, the fifth space S 5 of the moisture absorption flow path) of the air flow path that passes through the humidity control rotor 61.
(F)本実施形態の調湿ユニット 6は、その背面(すなわち、壁 Wの室外側の面と近 接する面)に給気管 9が設けられており、壁 Wを貫通して壁 Wの室内側の面に取り付 けられた室内ユニット 3に接続されているため、従来の調湿ユニットが室外ユニット 2 の上に搭載された構成に比べて、給気管 9の長さを短くすることができ、給気管 9に おける結露量を少なくすることができる。 (F) The humidity control unit 6 of the present embodiment is provided with an air supply pipe 9 on the back surface thereof (that is, the surface close to the outer surface of the wall W). Since it is connected to the indoor unit 3 mounted on the inner surface, the length of the air supply pipe 9 can be shortened compared to the configuration in which the conventional humidity control unit is mounted on the outdoor unit 2. It is possible to reduce the amount of condensation in the air supply pipe 9.
[0045] (G)本実施形態の調湿ユニット 6では、調湿空気を室内に供給する給気管 9がケー シング本体 62に向かって下り勾配になるように水平方向に対して 1度以上傾斜して いるため、万が一、給気管 9において結露が生じた場合にケーシング本体 62内に結 露水が戻るようにできるようになり、給気管 9に結露水が溜まらないようにすることがで きる。 (G) In the humidity control unit 6 of the present embodiment, the air supply pipe 9 that supplies the humidity-controlled air into the room is inclined at least 1 degree with respect to the horizontal direction so as to be inclined downward toward the casing body 62. Therefore, in the unlikely event that condensation occurs in the air supply pipe 9, the condensed water can be returned into the casing main body 62, and the condensation water can be prevented from accumulating in the air supply pipe 9.
(H)本実施形態の調湿ユニット 6では、ケーシング本体 62にドレン抜き孔はり具体 的には、背面ドレン孔 71d及び下面ドレン孔 84d)が形成されているため、ケーシング 本体 62内に溜まった結露水を速やかに排出することができるようになり、ケーシング
本体 62を通じて、給気管 9において生じた結露水を排出することができる。 (H) In the humidity control unit 6 of the present embodiment, since the drain hole (specifically, the back drain hole 71d and the bottom drain hole 84d) are formed in the casing body 62, the casing body 62 has accumulated in the casing body 62. Condensed water can be discharged quickly, and the casing Condensed water generated in the supply pipe 9 can be discharged through the main body 62.
(I)本実施形態の調湿ユニット 6では、送風ファン 65が、ファンモータ 92によって回 転駆動される羽根車 86と、羽根車 86が収容されるファンケーシング 87とを有してお り、このファンケーシング 87が、羽根車 86の回転軸方向一方に面するファン吸入口 8 8cと、加湿流路に連通する加湿側ファン吹出口 88dと、吸湿流路に連通する吸湿側 ファン吹出口 89aとを有しており、従来の調湿ユニットにおける加湿ファンと吸湿ファ ンとを兼用するようにしているため、ファン及びファンモータが 1つで済むようになり、 ユニットのコンパクト化に寄与できる。 (I) In the humidity control unit 6 of the present embodiment, the blower fan 65 has an impeller 86 that is rotated by a fan motor 92 and a fan casing 87 in which the impeller 86 is accommodated. The fan casing 87 has a fan suction port 88c facing one side in the rotational axis direction of the impeller 86, a humidifying fan outlet 88d communicating with the humidifying channel, and a moisture absorbing fan outlet 89a communicating with the moisture absorbing channel. Since the humidifying fan and the hygroscopic fan in the conventional humidity control unit are combined, only one fan and fan motor are required, which contributes to the compactness of the unit.
[0046] (7)変形例 1 [0046] (7) Modification 1
上述の実施形態にかかる調湿ユニット 6では、ファンモータ 92の回転と調湿ロータ 6 1との回転との回転比を所定の 1つの回転比に減速する減速機構 66が設けられてい る力 ファンモータの回転と調湿ロータとの回転との回転比を多段階に変化させるた めに、さらに多くのギアを組み合わせたものにしてもよい。 In the humidity control unit 6 according to the above-described embodiment, the force fan provided with the speed reduction mechanism 66 that reduces the rotation ratio between the rotation of the fan motor 92 and the rotation of the humidity control rotor 61 to a predetermined one rotation ratio. In order to change the rotation ratio between the rotation of the motor and the rotation of the humidity control rotor in multiple stages, more gears may be combined.
これにより、調湿ユニット 6の調湿能力を多段階に変化させることが可能になる。 Thereby, the humidity control capability of the humidity control unit 6 can be changed in multiple stages.
(8)変形例 2 (8) Modification 2
上述の実施形態及び変形例 1にかかる調湿ユニット 6では、図 6に示されるように、 ファンモータ 92が吸湿流路の第 5空間 S5に配置されている力 例えば、図 12及び 図 13に示されるように、ファンケーシング左上部 90にファンモータ 92の周囲を囲み、 かつ、ファンケーシング左上部 90によって形成される第 4空間 S4に連通するモータ 囲み部 90dを設けるようにして、ファンモータ 92が吸湿流路ではなく加湿流路に配置 され、かつ、加湿流路内のヒータ 64の上流側に配置されるようにしてもよい。 In the humidity control unit 6 according to the above-described embodiment and Modification 1, as shown in FIG. 6, the force with which the fan motor 92 is disposed in the fifth space S5 of the moisture absorption channel, for example, in FIG. 12 and FIG. As shown in the figure, the fan motor 92 is provided with a motor enclosure 90d that surrounds the periphery of the fan motor 92 in the upper left corner 90 of the fan casing and communicates with the fourth space S4 formed by the upper left corner 90 of the fan casing. May be arranged not in the moisture absorption channel but in the humidification channel and on the upstream side of the heater 64 in the humidification channel.
[0047] これにより、ファンモータ 92の廃熱で加湿流路を流れる空気を加熱することができ るようになり、調湿ロータ 61からの水分の脱離を促進することができる。また、ヒータ 6 4の省電力化にも寄与できる。 [0047] Thereby, the air flowing through the humidification flow path can be heated by the waste heat of the fan motor 92, and the desorption of moisture from the humidity control rotor 61 can be promoted. It can also contribute to power saving of the heater 64.
(9)変形例 3 (9) Modification 3
上述の実施形態及び変形例 1、 2にかかる調湿ユニット 6では、ヒータ 64として電気 ヒータを使用している力 本実施形態のように、蒸気圧縮式の冷媒回路 10を備えた 空気調和装置 1の一部として設置するような場合には、ヒータ 64として、蒸気圧縮式
の冷媒回路 10内を循環する冷媒が流れる熱交換器を使用するようにしてもよい。こ の場合には、室外空気を加熱する能力を確保するために、冷媒回路 10内を循環す る冷媒のうちで冷凍サイクルの高圧側の冷媒を使用することが望ましい。具体的には 、暖房運転を行う際において圧縮機 21の吐出側から膨張弁 24までの間には、高圧 の冷媒が流れることになるため、例えば、図 14に示されるように、室外ユニット 2と室 内ユニット 3とを接続する冷媒連絡管 4から調湿ユニット 6に高圧の冷媒を導入し、こ の高圧の冷媒を熱源とする熱交換器をヒータ 64とすることができる。 In the humidity control unit 6 according to the above-described embodiment and modification examples 1 and 2, force using an electric heater as the heater 64 As in this embodiment, the air conditioner 1 including the vapor compression refrigerant circuit 10 If it is installed as part of the A heat exchanger in which the refrigerant circulating in the refrigerant circuit 10 flows may be used. In this case, in order to ensure the ability to heat outdoor air, it is desirable to use the refrigerant on the high-pressure side of the refrigeration cycle among the refrigerant circulating in the refrigerant circuit 10. Specifically, since high-pressure refrigerant flows between the discharge side of the compressor 21 and the expansion valve 24 during the heating operation, for example, as shown in FIG. A high-pressure refrigerant is introduced into the humidity control unit 6 from the refrigerant communication pipe 4 that connects the unit 3 to the indoor unit 3, and a heat exchanger that uses this high-pressure refrigerant as a heat source can be used as the heater 64.
[0048] また、図 14のように、冷媒を熱源とする熱交換器にヒータ 64を完全に置き換えるの ではなぐ図 15及び図 16に示されるように、熱交換器 64aと電気ヒータ 64bとを併用 した構成にしてもよい。この場合には、利用可能な温度レベルを考慮して、加湿流路 内において、熱交換器 64aを電気ヒータ 64bよりも上流側に配置することが考えられ これにより、冷媒回路 10内を循環する冷媒の熱を有効利用することができるため、 調湿ユニット 6で使用される消費電力を抑えることができる。 In addition, as shown in FIG. 15 and FIG. 16 in which the heater 64 is not completely replaced with a heat exchanger using a refrigerant as a heat source as shown in FIG. 14, a heat exchanger 64a and an electric heater 64b are connected. It may be configured to be used together. In this case, it is conceivable that the heat exchanger 64a is arranged upstream of the electric heater 64b in the humidification flow path in consideration of the available temperature level, thereby circulating in the refrigerant circuit 10. Since the heat of the refrigerant can be used effectively, the power consumption used in the humidity control unit 6 can be suppressed.
(10)変形例 4 (10) Modification 4
上述の実施形態及び変形例 1〜3にかかる調湿ユニット 6は、加湿空気を室内に供 給する加湿運転が可能になっている力 S、図 17〜図 21に示されるように、加湿運転だ けではなく除湿運転も切り換えて行うことができるようにしてもよい。 The humidity control unit 6 according to the above-described embodiment and the modified examples 1 to 3 has the force S that enables the humidification operation to supply humidified air indoors, as shown in FIGS. 17 to 21, the humidification operation. Not only the dehumidifying operation but also switching can be performed.
[0049] 以下、本変形例に力、かる調湿ユニット 6の構成について説明する。尚、以下の説明 では、ベルマウス 91、送風ファン 65、ファンモータ 92、減速機構 66、ヒータ 64、調湿 ロータ 61については、上述の実施形態及び変形例;!〜 3と同じ構造であるため、説 明を省略し、構造の異なるケーシング本体 62、ケーシング蓋 63、環状仕切部 76及 び円弧筒状部 77等と、新たに追加される部材を中心に説明する。 [0049] Hereinafter, the configuration of the humidity control unit 6 will be described with reference to this modified example. In the following description, the bell mouth 91, the blower fan 65, the fan motor 92, the speed reduction mechanism 66, the heater 64, and the humidity control rotor 61 have the same structure as the above-described embodiment and modifications;! To 3. The explanation will be omitted, focusing on the newly added members, such as the casing body 62, the casing lid 63, the annular partitioning portion 76, the arcuate cylindrical portion 77, etc. having different structures.
まず、図 17を用いて、調湿ユニット 6の概略構成を説明する。上述の実施形態及び 変形例;!〜 3にかかる調湿ユニット 6では、加湿流路(すなわち、空間 S4及び S2)を 通じて生成した加湿空気が給気管 9を通じて室内に供給され、かつ、吸湿流路 (すな わち、空間 S5、 S3及び S I)を通じて生成した除湿空気が吹出グリル 83a〜85aから 室外に排出されるようになっているだけである力 本変形例においては、ユニット内に
、加湿流路(図 2;!〜 23の空間 S4及び S21等参照)及び吸湿流路(図 20〜図 23の 空間 S5及び S31参照)の両方に連通するとともに給気管 9に連通する供給空気流路 (図 20〜図 23の空間 S20参照)を設け、加湿空気を室外に排出する流路(図 21〜2 3の空間 S22及び S 11等参照)を設け、さらに、加湿流路を通過した空気を室内に供 給するとともに流路(図 20〜図 23の空間 S32及び S12等参照)を通じて吸湿流路を 通過した空気を室外に排出する加湿運転切換状態と、吸湿流路を通過した空気を 室内に供給するとともに流路(図 21〜図 23の空間 S22及び S 11等参照)を通じて加 湿流路を通過した空気を室外に排出する除湿運転切換状態とを切り換え可能にす る除加湿切換機構 98、 99を有するものとしている。 First, the schematic configuration of the humidity control unit 6 will be described with reference to FIG. In the humidity control unit 6 according to the above-described embodiments and modifications;! To 3, the humidified air generated through the humidification flow path (that is, the spaces S4 and S2) is supplied to the room through the air supply pipe 9, and the moisture absorption unit 6 Force that dehumidified air generated through the flow path (i.e., spaces S5, S3, and SI) is only discharged outside the blow grills 83a to 85a. Supply air that communicates with both the humidification channel (see Fig. 2; spaces S4 and S21 in! ~ 23) and the moisture absorption channel (see spaces S5 and S31 in Fig. 20 to Fig. 23) and the air supply pipe 9 Provide a channel (see space S20 in Fig. 20 to Fig. 23), provide a channel (see spaces S22 and S11 in Fig. 21 to 23, etc.) for exhausting humidified air to the outside, and pass through the humidification channel The humidified operation switching state in which the air that has passed through the moisture absorption channel through the flow path (see spaces S32 and S12 in FIGS. 20 to 23, etc.) is exhausted to the outside of the room and the moisture absorption channel has been passed. It is possible to switch between the dehumidifying operation switching state in which air is supplied into the room and the air that has passed through the humidifying channel through the channel (see spaces S22 and S11 in FIGS. It is assumed to have a humidification switching mechanism 98, 99.
[0050] そして、加湿流路を通過した加湿空気を室外に排出することができるように、図 18、 図 19及び図 21に示されるように、ケーシング本体 62の左側面部 72の背面部 71寄り の部分に、長方形状の左側面排出孔 73aを形成し、ケーシング蓋 63の左側面部 82 に、ケーシング本体 62の左側面部 72に形成された左側面排出孔 72aに対向するよ うに、左側面吹出グリル 82aを形成している(図 18の矢印 F10参照)。また、左側面部 72に左側面排出孔 73aを形成したことに伴い、背面部 71、左側面部 72、右側面部 7 3、下面部 74、上面部 75、外側筒状部 71b及び環状仕切部 76によって囲まれて形 成された第 1空間 S1を、加湿空気が流れる加湿空気排出空間 S 11と除湿空気が流 れる除湿空気排出空間 S 12とに分けるために、上面部 75の上面排出孔 75aの左側 の位置から外側筒状部 71bに向かって下方に延びる第 1排出空間仕切部 75bと、左 側面部 72の左側面排出孔 72aの下側の位置から内側筒状部 71aに向かって右方に 延びる第 2排出空間仕切部 72bとを形成している。さらに、外側筒状部 71bの左上部 に角孔 71hを形成している。 [0050] Then, as shown in FIGS. 18, 19, and 21, the humidified air that has passed through the humidification flow path is close to the rear surface 71 of the left side surface 72 of the casing body 62, as shown in FIGS. A rectangular left side discharge hole 73a is formed in this part, and the left side discharge port 73a is opposed to the left side surface part 82 of the casing body 62 and the left side surface discharge hole 72a formed in the left side part 72 of the casing body 62. A grill 82a is formed (see arrow F10 in FIG. 18). In addition, since the left side surface discharge hole 73a is formed in the left side surface portion 72, the rear surface portion 71, the left side surface portion 72, the right side surface portion 73, the lower surface portion 74, the upper surface portion 75, the outer cylindrical portion 71b, and the annular partition portion 76 are used. In order to divide the enclosed first space S1 into a humidified air discharge space S11 through which humidified air flows and a dehumidified air discharge space S12 through which dehumidified air flows, the upper surface discharge holes 75a of the upper surface portion 75 A first discharge space partition 75b extending downward from the left side toward the outer cylindrical part 71b, and a right side toward the inner cylindrical part 71a from a position below the left side discharge hole 72a of the left side part 72 And a second discharge space partition 72b extending in the direction. Further, a square hole 71h is formed in the upper left part of the outer cylindrical portion 71b.
[0051] また、上述の実施形態及び変形例;!〜 3においては、環状仕切部 76を内側筒状部 [0051] In the above-described embodiments and modifications;! To 3, the annular partitioning portion 76 is replaced with the inner cylindrical portion.
71aと外側筒状部 71bとの間の領域は、加湿空気のみが流れる第 2空間 S2と除湿空 気のみが流れる第 3空間 S3とに分けられている力 本変形例では、内側筒状部 71a の上側の空間を供給空気流路として区切るために、 2つの供給空気流路仕切部 78、 79を形成している。そして、背面部 71の供給空気流路に面する位置に背面貫通孔 7 lcを形成し、給気管 9を揷入している。また、環状仕切部 76が外側筒状部 71bに当
接した位置からさらに内周側に向力、つて、環状仕切部 76を内側筒状部 71aと外側筒 状部 71bとの間の領域を、供給空気流路仕切部 78、 79によって形成された供給空 気流路を除いて、前面側の領域と背面側の領域とに分けるように、前後仕切部 93を 形成している。そして、前後仕切部 93の供給空気流路仕切部 78の近傍には、前後 仕切部 93によって仕切られた前面側の空間と背面側の空間(以下、加湿空気空間 S 22とする)とを連通する排出側開口 93aが形成されており、前後仕切部 93の供給空 気流路仕切部 79の近傍には、前後仕切部 93によって仕切られた前面側の空間と背 面側の空間(以下、除湿空気空間 S32とする)とを連通する排出側開口 93bが形成さ れている。また、供給空気流路仕切部 78の前後仕切部 93よりも前面側の部分には、 前後仕切部 93によって仕切られた前面側の空間と供給空気流路とを連通する供給 側開口 78aが形成されており、供給空気流路仕切部 79の前後仕切部 93よりも前面 側の部分には、前後仕切部 93によって仕切られた前面側の空間と供給空気流路と を連通する供給側開口 79aが形成されている。そして、前後仕切部 93よりも前面側 の部分には、円弧筒状部 77が配置されて、加湿空気空間 S21を形成している。これ により、前後仕切部 93よりも前面側の部分のうち加湿空気空間 S21以外の部分は、 除湿空気空間 S31を形成している。また、円弧筒状部 77には、供給側開口 78aに対 向する右側面開口 77fと、供給空気流路の前面側の開口を覆う覆い部 77eがと形成 されている。そして、除加湿切換機構 98、 99はダンパーからなり、除加湿切換機構 9 8は、円弧筒状部 77の右側面部 77cと前後仕切部 93とがなす角部に配置されており 、除加湿切換機構 99は、供給空気流路仕切部 79と前後仕切部 93とがなす角部に 配置されている。 The area between 71a and the outer cylindrical portion 71b is divided into a second space S2 in which only humidified air flows and a third space S3 in which only dehumidified air flows.In this modification, the inner cylindrical portion In order to divide the space above 71a as a supply air flow path, two supply air flow path partition parts 78 and 79 are formed. Then, a back through hole 7 lc is formed at a position facing the supply air flow path of the back surface portion 71, and the air supply pipe 9 is inserted. Further, the annular partitioning portion 76 contacts the outer cylindrical portion 71b. From the contact position, the direction force is further directed to the inner peripheral side, so that the region between the inner cylindrical portion 71a and the outer cylindrical portion 71b of the annular partition portion 76 is formed by the supply air flow path partition portions 78 and 79. Except for the supply air flow path, the front / rear partition part 93 is formed so as to be divided into a front side region and a back side region. In addition, in the vicinity of the supply air flow path partition 78 of the front / rear partition 93, a front side space and a rear side space (hereinafter referred to as humidified air space S22) partitioned by the front / rear partition 93 are communicated. A front-side space and a back-side space (hereinafter referred to as dehumidification) partitioned by the front and rear partition portions 93 are formed in the vicinity of the supply air flow path partition portion 79 of the front and rear partition portions 93. A discharge side opening 93b communicating with the air space S32) is formed. Further, a supply-side opening 78a that connects the front-side space partitioned by the front-and-rear partitioning portion 93 and the supply-air flow passage is formed in a portion on the front side of the front-rear partitioning portion 93 of the supply air passage partitioning portion 78. A supply-side opening 79a that connects the front-side space partitioned by the front-and-rear partition 93 and the supply-air flow path to a portion of the supply air flow-path partition 79 on the front side of the front and rear partition 93. Is formed. An arcuate cylindrical portion 77 is disposed on the front side of the front / rear partition portion 93 to form a humidified air space S21. As a result, a portion other than the humidified air space S21 in the portion on the front side of the front / rear partition part 93 forms a dehumidified air space S31. Further, the arcuate cylindrical part 77 is formed with a right side opening 77f facing the supply side opening 78a and a cover part 77e covering the opening on the front side of the supply air flow path. The dehumidifying / humidifying switching mechanisms 98 and 99 are composed of dampers, and the dehumidifying / humidifying switching mechanism 98 is disposed at a corner formed by the right side surface portion 77c of the arcuate cylindrical portion 77 and the front and rear partition portions 93. The mechanism 99 is disposed at a corner formed by the supply air flow path partitioning portion 79 and the front and rear partitioning portion 93.
このような構成を有する調湿ユニット 6では、図 22に示されるように、排出側開口 93 aを閉止し、かつ、右側面開口 77f及び供給側開口 78aを開けるように除加湿切換機 構 98を操作するとともに、排出側開口 93bを開け、かつ、供給側開口 79aを閉止する ように除加湿切換機構 99を操作することによって、加湿空気が加湿流路(すなわち、 空間 S4及び加湿空気空間 S21)を通じて供給空気流路(すなわち、空間 S20)に流 入し、そして、給気管 9を通じて室内に供給され(図 18及び図 19の矢印 F3参照)、一 方、除湿空気が除湿流路 (すなわち、空間 S5及び除湿空気空間 S31)を通じて除湿
空気空間 S32に流入し、そして、角孔 71g、除湿空気排出空間 S12、排出孔 73a、 7 4a、 75a及び吹出グリル 83a、 84a、 85aからなる流路を通じて室外に排出されること で(図 18及び図 19の矢印 F7、 F8、 F9参照)、加湿運転が行われる。 In the humidity control unit 6 having such a configuration, as shown in FIG. 22, the dehumidifying / humidifying switching mechanism 98 closes the discharge side opening 93a and opens the right side opening 77f and the supply side opening 78a. And the dehumidifying / humidifying switching mechanism 99 is operated to open the discharge side opening 93b and close the supply side opening 79a, so that the humidified air flows into the humidifying flow path (that is, the space S4 and the humidified air space S21). ) Flows into the supply air flow path (ie, space S20) and is supplied to the room through the air supply pipe 9 (see arrow F3 in FIGS. 18 and 19). Dehumidification through space S5 and dehumidified air space S31) The air flows into the air space S32 and is discharged to the outside through a flow path composed of the 71g square hole, the dehumidified air discharge space S12, the discharge holes 73a, 74a, 75a and the blow grills 83a, 84a, 85a (Fig. 18). And the arrows F7, F8, F9 in Fig. 19), humidification operation is performed.
[0053] また、このような構成を有する調湿ユニット 6では、図 23に示されるように、排出側開 口 93aを開け、かつ、右側面開口 77f及び供給側開口 78aを閉止するように除加湿 切換機構 98を操作するとともに、排出側開口 93bを閉止し、かつ、供給側開口 79a を開けるように除加湿切換機構 99を操作することによって、除湿空気が除湿流路 (す なわち、空間 S5及び除湿空気空間 S31)を通じて供給空気流路 (すなわち、空間 S2 0)に流入し、そして、給気管 9を通じて室内に供給され(図 18及び図 19の矢印 F3参 照)、一方、加湿空気が(すなわち、空間 S4及び加湿空気空間 S21)を通じて加湿 空気空間 S22に流入し、そして、角孔 71h、加湿空気排出空間 Sl l、左側面排出孔 72a及び吹出グリル 82aからなる流路を通じて室外に排出されることで(図 18及び図 19の矢印 F10参照)、除湿運転が行われる。 Further, in the humidity control unit 6 having such a configuration, as shown in FIG. 23, the discharge side opening 93a is opened, and the right side opening 77f and the supply side opening 78a are closed. By operating the humidification switching mechanism 98, closing the discharge side opening 93b, and operating the dehumidification switching mechanism 99 so as to open the supply side opening 79a, the dehumidified air flows into the dehumidification channel (i.e., the space S5 and the dehumidified air space S31) flow into the supply air flow path (ie, space S20) and are supplied to the room through the air supply pipe 9 (see arrow F3 in FIGS. 18 and 19), while the humidified air Flows into the humidified air space S22 through the space S4 and the humidified air space S21, and goes outside through the flow path including the square hole 71h, the humidified air discharge space Sl l, the left side discharge hole 72a, and the blow grill 82a. (Figure 18 and Figure 19) Reference mark F10), dehumidifying operation is performed.
[0054] (11)他の実施形態 (11) Other embodiments
以上、本発明の実施形態及びその変形例について図面に基づいて説明したが、 具体的な構成は、これらの実施形態及びその変形例に限られるものではなぐ発明 の要旨を逸脱しなレ、範囲で変更可能である。 As mentioned above, although embodiment of this invention and its modification were demonstrated based on drawing, specific structure is not restricted to these embodiment and its modification, the range which does not deviate from the summary of invention. Can be changed.
(A) (A)
上述の実施形態及びその変形例では、 1台の室外ユニット 2に 1台の室内ユニット 3 が接続された構成を有する空気調和装置に本発明にかかる調湿ユニットを適用した 例を説明したが、これに限定されず、 1台の室外ユニットに複数台の室内ユニットが 接続された構成において、各室内ユニットに対して本発明に力、かる調湿ユニットを適 用してもよい。 In the above-described embodiment and its modification, the example in which the humidity control unit according to the present invention is applied to an air conditioner having a configuration in which one indoor unit 3 is connected to one outdoor unit 2 has been described. However, the present invention is not limited to this, and in a configuration in which a plurality of indoor units are connected to a single outdoor unit, a humidity control unit that applies power to the present invention may be applied to each indoor unit.
(B) (B)
上述の実施形態及びその変形例では、室内ユニットとともに調湿ユニットを設置し た例を説明したが、室内ユニットとは無関係に、単独で調湿ユニットを設置してもよい 。この場合には、例えば、壁を貫通した給気管の先端に吹出グリル等を設ける等によ り、室内に調湿空気を供給することができる。
産業上の利用可能性 In the above-described embodiment and its modification, the example in which the humidity control unit is installed together with the indoor unit has been described. However, the humidity control unit may be installed independently regardless of the indoor unit. In this case, for example, by providing a blow grill or the like at the tip of the air supply pipe penetrating the wall, the humidity-controlled air can be supplied into the room. Industrial applicability
本発明を利用すれば、調湿ロータを用いた無給水の加湿ユニットのコンパクト化を 実現すること力 Sでさる。
If the present invention is used, it is possible to achieve a compact size of a non-water supply humidification unit using a humidity control rotor.
Claims
[1] 空気中の水分を吸脱着することが可能な調湿ロータ(61)と、 [1] A humidity control rotor (61) capable of absorbing and desorbing moisture in the air;
前記調湿ロータを経由する吸湿流路と前記吸湿流路とは別に前記調湿ロータを経 由する加湿流路とを有する空気流路が内部に形成されたケーシングと、 A casing in which an air flow path having a moisture absorption channel passing through the humidity control rotor and a humidification channel passing through the humidity control rotor is formed inside;
前記加湿流路の前記調湿ロータの上流側に設けられ、前記加湿流路を流れる空 気を加熱する加熱機構(64)と、 A heating mechanism (64) that is provided on the upstream side of the humidity control rotor of the humidification flow path and heats the air flowing through the humidification flow path;
前記ケーシング内に配置され、ファンモータ(92)によって回転駆動されて前記空 気流路内に空気を流す送風ファン(65)とを備え、 A blower fan (65) disposed in the casing and driven to rotate by a fan motor (92) to flow air into the air flow path;
前記ファンモータは、前記調湿ロータをさらに回転駆動する、 The fan motor further rotates the humidity control rotor.
調湿ユニット(6)。 Humidity control unit (6).
[2] 前記ファンモータ(92)は、前記送風ファン(65)と前記調湿ロータ(61)とによって 挟まれるように配置されており、その回転軸は、前記送風ファン側及び前記調湿ロー タ側の両方に向かって延びて!/、る、請求項 1に記載の調湿ユニット(6)。 [2] The fan motor (92) is disposed so as to be sandwiched between the blower fan (65) and the humidity control rotor (61). The humidity control unit (6) according to claim 1, wherein the humidity control unit (6) extends toward both sides of the sensor.
[3] 前記ファンモータ(92)の回転軸は、前記ファンモータの回転を減速する減速機構( [3] The rotation axis of the fan motor (92) is a speed reduction mechanism that decelerates the rotation of the fan motor (
66)を介して前記調湿ロータ(61)に連結されている、請求項 2に記載の調湿ユニット (6)。 The humidity control unit (6) according to claim 2, being connected to the humidity control rotor (61) via 66).
[4] 前記減速機構(66)は、前記ファンモータ(92)の回転を多段階に減速することが可 能である、請求項 3に記載の調湿ユニット (6)。 [4] The humidity control unit (6) according to claim 3, wherein the speed reduction mechanism (66) can reduce the rotation of the fan motor (92) in multiple stages.
[5] 前記調湿ロータ(61)の回転中心は、前記ファンモータ(92)の回転軸と略同心であ る、請求項 3又は 4に記載の調湿ユニット(6)。 [5] The humidity control unit (6) according to claim 3 or 4, wherein a rotation center of the humidity control rotor (61) is substantially concentric with a rotation shaft of the fan motor (92).
[6] 前記減速機構(66)は、前記ファンモータ(92)の回転を減速するための複数のギ ァを有しており、 [6] The reduction mechanism (66) has a plurality of gears for reducing the rotation of the fan motor (92),
前記調湿ロータ(61)は、略環状の部材であり、その内周縁には、前記複数のギア の一つを構成する環状のドリブンギア(6 la)が設けられている、請求項 5に記載の調 湿ユニット(6)。 The humidity control rotor (61) is a substantially annular member, and an annular driven gear (6 la) constituting one of the plurality of gears is provided on an inner peripheral edge thereof. Humidity control unit (6) as described.
[7] 前記ファンモータ(92)は、前記加湿流路内の前記加熱機構(64)の上流側に配置 されて!/、る、請求項;!〜 6の!/、ずれかに記載の調湿ユニット(6)。 [7] The fan motor (92) may be arranged on the upstream side of the heating mechanism (64) in the humidification flow path! /! Humidity control unit (6).
[8] 前記加熱機構(64)は、蒸気圧縮式の冷媒回路(10)内を循環する冷媒が流れる
熱交換器を含んで!/、る、請求項;!〜 7の!/、ずれかに記載の調湿ユニット(6)。 [8] In the heating mechanism (64), the refrigerant circulating in the vapor compression refrigerant circuit (10) flows. A humidity control unit (6) according to any one of claims 1 to 8, including a heat exchanger.
[9] 前記加湿流路を通過した空気を室内に供給するとともに前記吸湿流路を通過した 空気を室外に排出する加湿運転切換状態と、前記吸湿流路を通過した空気を室内 に供給するとともに前記加湿流路を通過した空気を室外に排出する除湿運転切換 状態とを切り換え可能な除加湿切換機構をさらに有している、請求項 1〜8のいずれ かに記載の調湿ユニット (6)。 [9] Supplying air that has passed through the humidification channel into the room and exhausting the air that has passed through the moisture absorption channel to the outside of the room, and supplying air that has passed through the moisture absorption channel into the room The humidity control unit (6) according to any one of claims 1 to 8, further comprising a dehumidification / humidity switching mechanism capable of switching between a dehumidification operation switching state in which the air that has passed through the humidification flow path is discharged to the outside. .
[10] 前記ケーシングには、前記調湿ロータ(61)を通過した調湿空気を室内に供給する 調湿空気出口管(9)が設けられており、 [10] The casing is provided with a humidity control air outlet pipe (9) for supplying humidity control air that has passed through the humidity control rotor (61) to the room,
前記調湿空気出口管は、前記ケーシングに向かって下り勾配になるように、水平方 向に対して 1度以上傾斜している、請求項 1〜9のいずれかに記載の調湿ユニット(6 The humidity control unit (6) according to any one of claims 1 to 9, wherein the humidity control air outlet pipe is inclined at least 1 degree with respect to a horizontal direction so as to have a downward slope toward the casing.
)。 ).
[11] 前記ケーシングには、ドレン抜き孔が形成されている、請求項 10に記載の調湿ュニ ット½)。 [11] The humidity control unit according to claim 10, wherein a drain hole is formed in the casing.
[12] 前記送風ファン(65)は、前記ファンモータ(92)によって回転駆動される羽根車(8 6)と、前記羽根車が収容されるファンケーシング(87)とを有しており、 [12] The blower fan (65) includes an impeller (86) that is rotationally driven by the fan motor (92), and a fan casing (87) in which the impeller is accommodated,
前記ファンケーシングは、前記羽根車の回転軸方向一方に面するファン吸入口(8 8c)と、前記加湿流路に連通する加湿側ファン吹出口(88d)と、前記吸湿流路に連 通する吸湿側ファン吹出口(89a)とを有している、 The fan casing communicates with the fan suction port (88c) facing one side in the rotational axis direction of the impeller, the humidification side fan outlet (88d) communicating with the humidification channel, and the moisture absorption channel. A moisture absorption side fan outlet (89a),
請求項 1〜; 1 1のいずれかに記載の調湿ユニット(6)。
The humidity control unit (6) according to any one of claims 1 to 11.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-308289 | 2006-11-14 | ||
JP2006308289A JP4135025B2 (en) | 2006-11-14 | 2006-11-14 | Humidity control unit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008059774A1 true WO2008059774A1 (en) | 2008-05-22 |
Family
ID=39401581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/071877 WO2008059774A1 (en) | 2006-11-14 | 2007-11-12 | Humidity conditioning unit |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4135025B2 (en) |
WO (1) | WO2008059774A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018179365A (en) * | 2017-04-07 | 2018-11-15 | ダイキン工業株式会社 | Humidity control unit |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56154823U (en) * | 1980-04-18 | 1981-11-19 | ||
JPS6370036A (en) * | 1986-09-09 | 1988-03-30 | Matsushita Refrig Co | Humidifier for air conditioner |
JPH06193908A (en) * | 1992-12-25 | 1994-07-15 | Nippondenso Co Ltd | Air conditioner |
JP2003314858A (en) * | 2002-04-22 | 2003-11-06 | Daikin Ind Ltd | Air conditioner |
JP2004144455A (en) * | 2002-10-28 | 2004-05-20 | Max Co Ltd | Drier for storage chamber |
JP2005185930A (en) * | 2003-12-25 | 2005-07-14 | Matsushita Electric Ind Co Ltd | Dehumidification apparatus |
-
2006
- 2006-11-14 JP JP2006308289A patent/JP4135025B2/en active Active
-
2007
- 2007-11-12 WO PCT/JP2007/071877 patent/WO2008059774A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56154823U (en) * | 1980-04-18 | 1981-11-19 | ||
JPS6370036A (en) * | 1986-09-09 | 1988-03-30 | Matsushita Refrig Co | Humidifier for air conditioner |
JPH06193908A (en) * | 1992-12-25 | 1994-07-15 | Nippondenso Co Ltd | Air conditioner |
JP2003314858A (en) * | 2002-04-22 | 2003-11-06 | Daikin Ind Ltd | Air conditioner |
JP2004144455A (en) * | 2002-10-28 | 2004-05-20 | Max Co Ltd | Drier for storage chamber |
JP2005185930A (en) * | 2003-12-25 | 2005-07-14 | Matsushita Electric Ind Co Ltd | Dehumidification apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2008122017A (en) | 2008-05-29 |
JP4135025B2 (en) | 2008-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4337402B2 (en) | Air conditioner, operation method of air conditioner | |
JP7464868B2 (en) | Air quality control system | |
KR20040107521A (en) | Heat exchanger unit | |
JP3786090B2 (en) | Air conditioner and control method of air conditioner | |
JP3608548B2 (en) | Ventilator and air conditioner | |
JP2008249211A (en) | Air conditioner | |
KR101398897B1 (en) | Ventilation unit and air conditioner having the same | |
WO2005095874A1 (en) | Humidity controller | |
JP4961987B2 (en) | Air conditioner indoor unit and air conditioner equipped with the same | |
JP2010043848A (en) | Air conditioner | |
JP4135025B2 (en) | Humidity control unit | |
JP2004069173A (en) | Air conditioner | |
JP2005155977A (en) | Air conditioner, humidified air delivering path member and connection unit | |
WO2022172485A1 (en) | Ventilator and air conditioner equipped with ventilator | |
JP2007101140A (en) | Air conditioner | |
JP2008025923A (en) | Humidity conditioning device and air conditioner | |
JP7445149B2 (en) | ventilation system | |
JP4752429B2 (en) | Humidity control apparatus and air conditioning system equipped with the same | |
JP3731570B2 (en) | Humidification unit for air conditioner and air conditioner | |
JP4066984B2 (en) | Oxygen enrichment device and air conditioning device | |
JP2005233549A (en) | Air conditioner | |
JP2004077084A (en) | Air supply-exhaust unit, outdoor machine for air conditioner and air exhaust unit | |
JP4706303B2 (en) | Humidity control device | |
JP3858914B2 (en) | Ventilator and air conditioner | |
JP2007101057A (en) | Humidification unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07831607 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07831607 Country of ref document: EP Kind code of ref document: A1 |