[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008056501A1 - Process for coproduction of normal butanol and isobutyraldehyde - Google Patents

Process for coproduction of normal butanol and isobutyraldehyde Download PDF

Info

Publication number
WO2008056501A1
WO2008056501A1 PCT/JP2007/069711 JP2007069711W WO2008056501A1 WO 2008056501 A1 WO2008056501 A1 WO 2008056501A1 JP 2007069711 W JP2007069711 W JP 2007069711W WO 2008056501 A1 WO2008056501 A1 WO 2008056501A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
reaction
liquid
catalyst
Prior art date
Application number
PCT/JP2007/069711
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiko Inoue
Yoshiyuki Tanaka
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to BRPI0718007-1A priority Critical patent/BRPI0718007B1/en
Priority to CN2007800364966A priority patent/CN101522598B/en
Publication of WO2008056501A1 publication Critical patent/WO2008056501A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/44Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon double or triple bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation

Definitions

  • the present invention relates to a method for co-production of normal butanol and isobutyraldehyde, and more particularly to a method for co-production of normal butanol and isobutyraldehyde using propylene as a raw material.
  • a method for producing aldehydes by reacting an olefinic compound with hydrogen and carbon monoxide in the presence of a catalyst comprising a transition metal belonging to Groups 8 to 10 of the periodic table and an organophosphorus ligand Is widely known as a hydroformylation reaction.
  • a catalyst comprising a transition metal belonging to Groups 8 to 10 of the periodic table and an organophosphorus ligand
  • organophosphorus ligands Is widely known as a hydroformylation reaction.
  • aldehydes having higher linearity are useful among the obtained aldehydes, and various organophosphorus ligands have been developed to enhance the linearity selectivity.
  • the high linearity aldehyde obtained in this way usually has the ability to make an alcohol by a hydrogenation reaction, and a hydrogenation reaction after converting it to an aldehyde having a high molecular weight by a condensation reaction. By converting it to alcohol, it is used as a raw material for plasticizers, adhesives and paints.
  • Patent Document 1 European Patent No. 0420510
  • Non-patent document 1 Journal ⁇ Ob ⁇ The ⁇ Chemical Society ⁇ Chemical ⁇ Communications (J. Chem. 3 ⁇ 4oc., Chem. Commun.), 1990
  • Non-Patent Document 2 Journal ⁇ Ob ⁇ The ⁇ Chemical Society ⁇ Dalton'Transactions (J. Chem. Soc., Dalton Trans.), 1996, 1st dish
  • the reaction process is also one step, and if a new method that can produce the by-product to be produced in a more valuable form is presented, it will become one of the economically advantageous and effective methods and is very important. It can be said that it is expensive.
  • isobutyraldehyde which is a similar compound to isobutanol, is an extremely valuable product compared to isobutanol!
  • isobutyraldehyde from isobutanol In order to achieve this, a dehydrogenation reaction step is required, and accordingly, the production cost is increased.
  • the conventional method for producing butyraldehyde from propylene by hydroformylation has a certain power. In this method, isobutyraldehyde can be obtained in the first stage, but in order to obtain normal butanol, normal butylation produced by hydroformylation of propylene is required. As described above, this method has a high manufacturing cost.
  • the present invention has been made in view of the above problems.
  • an object of the present invention is to provide a new and simple method capable of co-producing normal butanol and isobutyraldehyde by reacting propylene with hydrogen and carbon monoxide in the presence of a catalyst.
  • the present inventors have found that propylene in a proton solvent in the presence of a compound of a metal element belonging to Group 8 to Group 10 of the periodic table and an organophosphorus compound. This was reacted with hydrogen and carbon monoxide to find a method for producing both normal butanol and isobutyraldehyde in a yield of 10% or more, and the present invention was completed based on the strength and knowledge. That is, the gist of the present invention resides in the following (1) to (11).
  • Step A React propylene with hydrogen and carbon monoxide in a proton solvent in the presence of the catalyst containing a metal element compound belonging to Groups 8 to 10 of the periodic table in the reactor.
  • organophosphorus compounds, proton solvents normal butanol, isobutanol, normal butyraldehyde, isobutyraldehyde and low boiling point compounds.
  • Step B The reaction product stream obtained in Step A is flowed into the first distillation column, and a column containing normal butyraldehyde, isobutyraldehyde and a low boiling point compound from the top of the first distillation column.
  • the top distillate is withdrawn, a liquid containing normal butanol and isobutanol is withdrawn as a side stream, and a column bottom liquid containing a compound of a metal element belonging to Group 8 to Group 10 and an organophosphorus compound is obtained. Circulating to the reactor;
  • Step C The column top distillate obtained in Step B is allowed to flow into a second distillation column, and a low boiling point compound is withdrawn as a distillate from the top of the second distillation column. Extracting aldehyde as a side stream and extracting normal butyraldehyde as a bottom liquid;
  • Step D The side stream obtained in Step B is allowed to flow into a third distillation column, isobutanol is extracted as a distillate from the top of the third distillation column, and normal butanol is removed from the bottom of the column.
  • isobutanol is extracted as a distillate from the top of the third distillation column, and normal butanol is removed from the bottom of the column.
  • Step A Propylene is hydrogenated and monooxidized in a proton solvent in the presence of the catalyst containing a compound of a metal element belonging to Groups 8 to 10 of the periodic table in the reactor. Reaction with carbon and reaction products containing the above-mentioned compounds of metal elements belonging to Group 8 to Group 10, organophosphorus compounds, proton solvents, normal butanol, isobutanol, normal butyraldehyde, isobutyraldehyde and low boiling point compounds A process of obtaining logistics;
  • Step ⁇ The reaction product stream obtained in step ⁇ is flowed into the first distillation column, and isobutanol, normal butyraldehyde, isobutyl aldehyde, and low boiling point from the top of the first distillation column.
  • a column top distillate containing a compound is withdrawn, normal butanol is withdrawn as a side stream, and a column bottom liquor containing a metal compound belonging to Group 8 to Group 10 and an organic phosphorous compound is added to the reactor.
  • Step C ' The column top distillate obtained in step B' is caused to flow into a second distillation column, and a low boiling point compound is withdrawn as a distillate from the top of the second distillation column.
  • both normal butanol and isobutyraldehyde can be simultaneously produced in a yield of 10% or more.
  • FIG. 1 is a diagram illustrating a reaction flow in the present embodiment.
  • FIG. 2 is a view showing a preferred embodiment in the reaction flow of FIG.
  • FIG. 3 is a diagram for explaining a second reaction flow in the present embodiment.
  • FIG. 4 is a view showing a preferred embodiment in the reaction flow of FIG.
  • the method of co-production of normal butanol and isobutyraldehyde is a compound of a metal element belonging to Group 8 to Group 10 of the periodic table (hereinafter simply referred to as “metal compound” or “Group 8 to Group 10”.
  • metal compound a metal element belonging to Group 8 to Group 10 of the periodic table
  • propylene is reacted with hydrogen and carbon monoxide in the presence of an organic phosphorus compound, and the propylene feed rate F (mol / hr) and isobutyl are reacted with the reaction system.
  • Aldehyde formation rate F (mol / hr) is
  • a compound of a metal element belonging to Group 8 to Group 10 of the periodic table and an organophosphorus compound is a catalyst used in the present embodiment.
  • the metal compound used in the present embodiment is a transition metal compound selected from the group consisting of metal elements belonging to Groups 8 to 10 of the periodic table (according to the IUPAC Inorganic Chemical Nomenclature Revised Edition (1998)). Can be mentioned. As a force and metal compound, it contains one or more transition metals. Compound is used.
  • Such metal compounds include iron compounds, ruthenium compounds, osmium compounds, cobalt compounds, rhodium compounds, iridium compounds, nickel compounds, palladium compounds, and platinum compounds.
  • a ruthenium compound, a rhodium compound, an iridium compound, a nickel compound, a noradium compound, and a platinum compound are preferable, and a rhodium compound is particularly preferable.
  • the types of these metal compounds are arbitrary, but specific examples include the above transition metal acetates, acetyl acetylates, halides, sulfates, nitrates, organic salts, inorganic salts, alkene coordination compounds.
  • Iron compounds include Fe (OAc), Fe (acac),
  • Ruthenium compounds include RuCl, Ru (OA
  • cobalt compound examples include Co (OAc), Co (acac), CoBr, Co (NO), and the like.
  • Rhodium compounds include RhCl, Rhl, Rh (NO), Rh (OAc), RhCl (CO)
  • Examples of the iridium compound include IrCl, Ir (OAc), and [IrCl (cod)].
  • Compounds include NiCl, NiBr, Ni (NO), NiSO, Ni (cod) NiCl (PPh), etc.
  • Palladium compounds include PdCl, PdCl (cod), PdCl (PPh), P
  • Platinum compounds include Pt (acac), PtCl (cod), PtCl (CH CN), PtCl (PhCN
  • cod is 1,5-cyclooctagen and dba is dibenzylic.
  • Acac is acetylylacetonate
  • Ac is a acetylyl group
  • Ph Each group represents a phenyl group.
  • the type of the metal compound is not particularly limited, and any monomer, dimer and / or multimer can be used as long as they are active metal complex species.
  • the amount of the metal compound used is not particularly limited, but from the viewpoint of catalyst activity and economy, the concentration of the metal compound in the reaction medium is usually 0.1 ppm or more, preferably Ippm or more, more preferably ⁇ 10 ppm.
  • the above is usually 10, OOOppm or less, preferably ⁇ 1, OOOppm or less, more preferably 500ppm or less.
  • organophosphorus compound used in this embodiment examples include phosphine or phosphite having the ability as a monodentate ligand or a polydentate ligand.
  • the organic phosphine compound (hereinafter, sometimes referred to as “monodentate phosphine”) having the ability as a monodentate ligand used in the present embodiment is represented by the following general formula.
  • the organic phosphine compound preferably has a molecular weight of 1,500 or less, preferably 1,000 or less, which is preferably dissolved under the reaction conditions in order to sufficiently exhibit the catalytic activity.
  • it is 800 or less.
  • R, R and R each independently represent a C 1 to C 30 alkyl group or aryl group which may have a substituent.
  • a halogen atom hydroxy group, formyl group, chain or cyclic alkyl group, aryl group, alkoxy group, aryl group alkoxy group, aryl group. It is selected from a single-oxy group, an alkylary single-oxy group, an alkylthio group, an arylthio group, an amino group, an amide group, an acyl group or an acyloxy group.
  • organic phosphine compound examples include triphenylphosphine, tri-tolylphosphine, 1-naphthyldiphenylphosphine, 4-methoxyphenyldiphenylphosphine, and tris (2, 4, 6 trimethoxyphenylenole).
  • Phosphine Tris (3,5 Diphenylenolene) Triaryl type monodentate phosphine such as phosphine, 4-dimethylaminophenyl 2-naphthylphosphine; diphenyl-n-propylphosphine, n-octadecyldiphenylphosphine
  • Triaryl type monodentate phosphine such as phosphine, 4-dimethylaminophenyl 2-naphthylphosphine; diphenyl-n-propylphosphine, n-octadecyldiphenylphosphine
  • Diaryl monoalkyl-type monodentate phosphines such as di (3-t-butyl-2-naphthinore) methylphosphine, isopropyl-1-naphthyl-p-tolylphosphine, 2-ethylhexyl
  • At least one of the substituents is a dialyl monoalkyl type monodentate phosphine, a monoaryldialkyl type monodentate phosphine, or tri Alkyl-type monodentate phosphines are preferred.
  • Trialkyl-type monodentate phosphines in which all substituents of R, R, and R are alkyl groups are more preferred.
  • R, R, and R are primary alkyl groups, that is, alkyl groups in which the carbon atom bonded to the P atom is a CH group.
  • Tri (primary alkyl) type monodentate phosphines are more preferred.
  • it is most preferable that all the substituents of R, R, and R are unsubstituted linear alkyl groups.
  • the most preferred monodentate phosphines are trimethylphosphine, tritylphosphine, tri-n-propylphosphine, tri-n-butylphosphine, tri-n-octylphosphine, tree-n.
  • Jetyl-n-octylphosphine ethylmethyl-n-propylphosphine are listed with the power S.
  • a phosphine having the ability as a bidentate ligand or a polydentate ligand can also be used as the phosphine compound.
  • Examples of phosphites having the ability as monodentate ligands include phosphite compounds represented by the following formulas (2) to (5).
  • examples of the optionally substituted monovalent hydrocarbon group include an alkyl group, an aryl group, a cycloalkyl group, and the like.
  • Specific examples of the compound represented by the formula (2) include, for example, trimethyl phosphite, triethyl phosphite, n-butyl jetyl phosphite, tri-n butyl phosphite, tri-n-propyl phosphite, tricyclo Trialkyl phosphites such as hexyl phosphite, tri-n-octyl phosphite, tri-n dodecyl phosphite; triaryl phosphites such as triphenyl phosphite, trinaphthyl phosphite; dimethyl phenyl phosphite, dimethyl Examples thereof include alkyl phosphites such as phenyl phosphite and ethyl diphenyl phosphite.
  • a substituent may be present on the aryl group of these phosphites.
  • bis (3, 6, 8 tri-t-butyl 2- Naphthinole) phenyl phosphite, bis (3, 6, 8 tri-tert-butyl-2-naphthyl) (4-biphenyl) phosphite, etc. may be used. The most preferred of these! / Is triphenyl phosphite.
  • R 4 is substituted! /, May be! /
  • a divalent hydrocarbon group, R 5 is substituted! /, May be monovalent carbon Represents a hydrogen group.
  • the optionally substituted divalent hydrocarbon group represented by R 4 includes an alkylene group which may contain an oxygen, nitrogen, sulfur atom or the like in the middle of the carbon chain; A cycloalkylene group which may contain an oxygen, nitrogen, sulfur atom or the like in the middle; a divalent aromatic group such as phenylene or naphthylene; a divalent aromatic ring directly or in the middle of an alkylene group, oxygen, nitrogen A divalent aromatic group bonded through an atom such as elemental or sulfur; a divalent aromatic group and an alkylene group bonded directly or in the middle through an atom such as oxygen, nitrogen or sulfur Is
  • Examples of the optionally substituted monovalent hydrocarbon group represented by R 5 include an alkyl group, an aryl group, and a cycloalkyl group.
  • Specific examples of the compound represented by the formula (3) include, for example, ethylene (2, 4, 6 tri-t-butyl-phenolino phosphite), 1, 2 butylene (2, 6-di-t-butyl thiolene). And enyl) phosphites and the like, which are described in US Pat. No. 3,415,906.
  • R 1 () has the same meaning as R 5 in formula (3), and Ar 1 and Ar 2 each independently represent an optionally substituted arylene group.
  • X and y each independently represent 0 or 1
  • Q is a bridging group selected from the group consisting of CR U R 12 OS—, — NR 13 —, — SiR 14 R 15 and one CO.
  • R 11 and R 12 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a phenyl group, a tolyl group, or an anisyl group
  • R 13 , R 14, and R 15 each independently represent Represents a hydrogen atom or a methyl group, and n represents 0 or 1.
  • Specific examples of the compound represented by the formula (4) include, for example, US Patent No. 4 such as 1, 1 ′ bif ⁇ nluo 2, 2 ′ diluo (2, 6 di-tert-butyl-4-methylphenyl) phosphite. No. 599206, 3, 3′-di-t-butyl-5,5′-dimethoxy 1,1,2′-biphenyl 1,2,2,1-di-yl (2-t-butyl 4-methoxyphenyl) Nore) Phosphite and the like are described in US Pat. No. 4,717,775.
  • R 6 represents a cyclic or acyclic trivalent hydrocarbon group which may be substituted.
  • multidentate phosphite examples include phosphite compounds represented by the formulas (6) to (11).
  • R 7 has the same meaning as R 4 in Formula (3), R 8 and R 9 each independently represent a hydrocarbon group that may be substituted; And b each represents an integer of 0 to 6, the sum of a and b is 2 to 6, and X represents a (a + b) -valent hydrocarbon group.
  • Preferred examples of the compound represented by the formula (6) include, for example, 6, 6 ′-[[3,3 ′, 5,5, -tetrakis (1,1, -dimethylethyl)-[1,1, -biphenyl] 2, 2, benzyl] bis (oxy)] bis-benzo [d, f] [l, 3, 2] dioxaphosphevin and the compounds described in JP-A-2-231497 Is mentioned.
  • X represents alkylene, arylene, and one Ar 1 — (CH) x-Qn- (CH) y-Ar 2
  • R 16 and R 17 each independently represent an optionally substituted hydrocarbon group.
  • Ar 2 , Q, x, y, n are synonymous with the formula (4).
  • Specific examples of the compound represented by formula (7) include, for example, JP-A-62-116535. And compounds described in JP-A-62-116587.
  • R iy and R 2 ° each independently represents an aromatic hydrocarbon group, and at least one of the aromatic hydrocarbon groups is bonded to a carbon atom to which an oxygen atom is bonded. It has a hydrocarbon group at the adjacent carbon atom, m represents an integer of 2 to 4, and each —O—P (OR 19 ) (OR 2 °) group may be different from each other.
  • M) -valent hydrocarbon group which may be represented by the formula (9)
  • the compounds represented by the formula (9) for example, compounds described in JP-A-5-178779 and 2,2′-bis (Di 1-naphthyl phosphite) 3, 3 ', 5, 5'-tetra-t-butyl 6, 6'-dimethyl-1, 1' Biphenyl etc. are described in Japanese Patent Laid-Open No. 10-45776! Preferable compounds such as /!
  • R 21 to R 24 represent an optionally substituted hydrocarbon group, and even if they are independent of each other, R 21 and R 22 , R 23 and R 24 may be bonded to each other to form a ring
  • W represents a divalent aromatic hydrocarbon group which may have a substituent
  • L represents a substituent! / Y! / Represents a saturated or unsaturated divalent aliphatic hydrocarbon group.
  • R 25 to R 28 represent an optionally substituted monovalent hydrocarbon group, and R 25 and R 26 , R 27 and R 28 are bonded to each other to form a ring.
  • W and B which may be formed independently represent a divalent aromatic hydrocarbon group which may have a substituent, and n represents an integer of 0 or 1.
  • a combination of these organic phosphorus compounds can also be used.
  • the catalyst system used in the method for co-production of normal butanol and isobutyraldehyde to which the present embodiment is applied is provided. It is formed.
  • the amount of the organophosphorus compound used in the catalyst system is not particularly limited, but is arbitrarily set so that desirable results can be obtained with respect to reaction results, catalyst activity and catalyst stability.
  • the organophosphorus compound is usually 0.1 mole or more, preferably 1 mole or more, more preferably 2 moles or more, usually 1,000 moles or less, preferably 500 moles or less, more preferably 1 mole or more per mole of the metal compound. Is less than 100 moles.
  • the catalyst used in the present embodiment may be prepared in advance in a catalyst preparation zone provided separately, and then the catalyst may be added to the reaction zone, or each catalyst may be individually added to the reaction zone to prepare the catalyst in the reaction zone. It's okay to go!
  • the preferred method for preparing the catalyst is as follows: normal butanol and isobutyl After the aldehyde co-production reaction, there is a method of separating the product system and the catalyst system and recycling the catalyst to the reaction zone again. In this case, depending on the degree of deterioration or disappearance of the catalyst, a metal compound is appropriately used. Desirable to supplement with organic phosphorus compounds! /
  • the metal compound and the organic phosphorus compound may be mixed as they are to prepare the catalyst, or those previously dissolved in an organic solvent or the like are mixed. May be.
  • the catalyst is guided to the reaction zone in a dissolved state so that the catalyst reaction is quickly started in the reaction zone.
  • a gas treatment necessary for heat treatment or conversion to a catalytically active species for example, a pressure contact with a gas such as hydrogen or carbon monoxide is performed in advance. Once done, the catalyst may be introduced into the reaction zone.
  • the co-production of normal butanol and isobutyraldehyde to which this embodiment is applied is carried out in a protic solvent.
  • the protic solvent is a solvent that can be dissociated and easily release protons (H +).
  • protic solvent examples include methanol, ethanol, n propanol, isopropanol, n butanol, isobutanol, t butyl alcohol, n pentanol, neopentyl alcohol, n hexanol, 2-ethylhexanol, and n otano.
  • alcohol is a preferred protic solvent.
  • Load of purification process From the viewpoint of reduction, it is preferable to use alcohol produced as a product as a protic solvent.
  • the amount of the protic solvent used in the present embodiment is usually 5% by weight or more, preferably 10% by weight or more, and usually 95% by weight or less, preferably based on the total weight of the reaction medium. 90% by weight or less.
  • the solvent may be formed of a single compound or a mixture of a plurality of compounds, but it is at least 1% by weight, preferably 5% by weight or more, more preferably, based on the total weight of the solvent. It is necessary to contain 10% by weight or more of a protic solvent.
  • the other solvent that can be used is one that dissolves the catalyst and the raw material compound and does not adversely affect the catalyst activity. Any solvent can be used, and the type is not particularly limited.
  • solvents include, for example, ethers such as diglyme, diphenyl ether, dibenzyl ether, dialyl ether, tetrahydrofuran (THF), dioxane; N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, etc.
  • ethers such as diglyme, diphenyl ether, dibenzyl ether, dialyl ether, tetrahydrofuran (THF), dioxane; N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, etc.
  • Ketones such as acetone, methyl ethyl ketone, methyl t-butyl ketone, cyclohexanone, etc .
  • esters such as ethylhexyl terephthalate; aromatic hydrocarbons such as benzene, toluene, xylene, and dodecylbenzene; aliphatic hydrocarbons such as pentane, hexane, and octane.
  • the reaction pressure formed by the sum of the partial pressure of hydrogen, carbon monoxide, vapor pressure of raw materials, products, solvents, etc. is usually 0. OlMPa or higher, preferably 0. IMPa or higher, more preferably 0.5 MPa
  • the above is usually 30 MPa or less, preferably 20 MPa or less, more preferably lOMPa or less. If the reaction pressure is excessively low, there is a concern that the metal compound may be deactivated and metallized, and the catalytic activity itself is not sufficiently exhibited, and the alcohol yield is expected to decrease. Further, when the reaction pressure is excessively high, the straight chain selectivity of the resulting alcohol tends to decrease.
  • the hydrogen partial pressure is preferably 0.005 MPa or more, more preferably 0. OlMPa or more, preferably 20 MPa or less, more preferably lOMPa or less. If the hydrogen partial pressure is too low, there is a concern that the reaction activity will decrease, and if it is too high, waste due to the hydrogenation reaction of the raw olefinic compound is expected.
  • the carbon monoxide partial pressure is preferably 0.005 MPa or more, more preferably 0.0 OlMPa or more, preferably 15 MPa or less, more preferably 8 MPa or less. If the carbon monoxide partial pressure is too low, there is a concern that the reaction activity will decrease, particularly metalation of metal compounds, and if the hydrogen partial pressure is too high, the linear selectivity of the resulting alcohol is expected to decrease.
  • the molar ratio of hydrogen to carbon monoxide is 1:10 to 10: 1, more preferably 1: 2 to 8: 1, and still more preferably 1:;! To 5: 1.
  • the reaction temperature is usually 25 ° C or higher, preferably 50 ° C or higher, more preferably 70 ° C or higher, and usually 300 ° C or lower, preferably 250 ° C or lower, more preferably. 200 ° C or less. If the reaction temperature is too low, it is expected that the reaction activity itself will not be sufficiently obtained, and if the reaction temperature is too high, it will be caused by a decrease in the linear selectivity of the resulting alcohol or thermal decomposition of the ligand. Disappearance is expected.
  • any of a continuous type, semi-continuous type or batch type operation can be easily carried out in a stirred tank type reaction tank or a bubble column type reaction tank.
  • the yields of normal butanol and isobutyraldehyde are both 10% or more.
  • reaction conditions such as reactor scale, catalyst concentration, feed amount, reaction temperature, and reaction pressure.
  • a process that produces both normal butanol and isobutyraldehyde often takes a flow reaction process because of its cost advantage.
  • the raw material propylene is supplied to the reaction system at a supply rate of F (mol / hr).
  • isoformaldehyde, normal butyraldehyde, isobutanol, and normal butanol are produced by the hydroformylation reaction and subsequent hydrogenation reaction in the reaction system, respectively, and each component from the reaction system is F (mol / hr), F (mol / hr), F (mol / hr),
  • Outflow amount (mol / hr) The amount calculated by the amount flowing into the reaction system (mol / hr) ⁇ When the desired product such as S, isobutyl aldehyde, normal butyraldehyde, isobutanol, normal butanol is not supplied
  • the amount of each component flowing out from the reaction system, that is, F 1, F 2, F 3, and F (mol / hr) is the production rate of each component.
  • the increase rate (mol / hr) per unit time for each component is the production rate.
  • Methods for controlling the F / F value include the size of the reactor and the catalyst used in the reaction.
  • the value By manipulating the reaction conditions such as selection and catalyst concentration, feed amount, reaction temperature, reaction pressure, etc., the value can be controlled. In addition, if the optimum conditions are selected from these reaction conditions according to the process in which isobutyraldehyde and normal butanol are co-produced, the condition of formula (in) can be satisfied.
  • As a guideline for selecting reaction conditions it is preferable to first employ a catalyst system capable of adding hydrogen to aldehyde. Even in the case of a catalyst system that is slightly poor in hydrogenation capacity, It is preferable to increase the residence time and increase the catalyst concentration. Furthermore, it is preferable that normal butyraldehyde is separated from the reaction product flowing out of the reactor and recycled to the reactor.
  • the value of F / F is a force S that is 0.5 or more, preferably 0.7 or more,
  • Methods for controlling the F / F value include the size of the reactor and the catalyst used in the reaction.
  • the value can be controlled.
  • the condition of formula (IV) can be satisfied.
  • As a guideline for selecting the reaction conditions it is preferable to employ a catalyst system that has a high selectivity for normal to the iso form.
  • isobutanol is produced sequentially from propylene via isobutyraldehyde, it is also preferable to reduce the catalyst concentration, which is preferable to shorten the residence time in the reactor.
  • normal butyraldehyde is separated from the reaction product flowing out of the reactor and recycled to the reactor.
  • the value of F / F is 0.5
  • it is 0.7 or more, More preferably, it is 1.0 or more.
  • Methods for controlling the F / F value include the size of the reactor and the catalyst used in the reaction.
  • the value can be controlled by manipulating the reaction conditions such as selection and catalyst concentration, feed amount, reaction temperature, and reaction pressure.
  • the condition of formula (V) can be satisfied.
  • isobutanol is produced sequentially from propylene via isobutyraldehyde, so it is preferable to reduce the residence time in the reactor. .
  • normal methyl aldehyde is separated from the reaction product flowing out of the reactor and recycled to the reactor.
  • F / F is 0.
  • the force S is 5 or more, preferably 0.7 or more, more preferably 1.0 or more.
  • FIG. 1 is a diagram for explaining a reaction flow in the present embodiment.
  • FIG. 1 shows a reactor 2, a separator (first distillation column) 5, a separator (second distillation column) 10, and a separator (third distillation column) 14.
  • the raw materials propylene, hydrogen and carbon monoxide are supplied to the reactor 2 via the line 1. These raw materials may be supplied to the reactor 2 all at once or may be supplied separately. Most of the catalyst solution may be supplied from the line 8 to the reactor 2 as a circulating catalyst, or may be supplied from the line 9 as necessary. The supplied raw material reacts in the reactor 2 in the presence of a catalyst to obtain a reaction liquid containing normal butanol and isobutanol.
  • reaction liquid containing the unreacted raw material is supplied to the reactor by the line 4 provided on the side of the reactor 2.
  • the gas component may be supplied to the separator (first distillation column) 5 using the line 4 or recycled to the reactor 2 using the line 3 provided at the top of the reactor 2. Moyo! /, And all or part of it may be purged out of the system.
  • the catalyst solution is also supplied to the separator (first distillation column) 5 through the line 4 together with the reaction solution.
  • the separator first distillation column
  • the catalyst remains in the reactor 2 and components other than the catalyst flow out of the reactor 2.
  • a reaction product containing a Group 8 to Group 10 metal compound, an organophosphorus compound, a protic solvent, a normal low boiling point compound is separated through a line 4 provided on the side of the reactor 2 (first Of the distillation column).
  • the separator (first distillation column) 5 the separator (second distillation column) 10
  • the separator (third distillation column) 14 the unreacted raw material olefinic compound, products, Separation of the catalyst or the like is performed.
  • These separation operations are usually carried out by distillation operations such as simple distillation, rectification, thin film distillation, and steam distillation.
  • Distillation conditions are not particularly limited.
  • Product volatility, thermal stability, and catalyst Force arbitrarily set to obtain the desired result in consideration of the volatility and thermal stability of the components Usually selected at a temperature of 50 ° C 300 ° C, IMPa ⁇ ;! ⁇ Pressure condition of OOmmHg
  • the separator (first distillation column) 5 is subjected to distillation separation to extract a separator (first distillation and a distillate containing a low-boiling point compound (column top distillate)).
  • a separator first distillation and a distillate containing a low-boiling point compound (column top distillate)
  • First distillation column A liquid containing normal butanol and isobutanol is withdrawn as a side stream through a line 7 provided on the column side of 5.
  • the bottom liquid containing Group 8 to Group 10 metal compound, organophosphorus compound and proton solvent is circulated to reactor 2 through line 8 provided at the bottom of separator (first distillation column) 5.
  • the distillate (column distillate) extracted from the top of the separator (first distillation column) 5 through the line 6 is allowed to flow into the separator (second distillation column) 10.
  • a low boiling point compound is withdrawn from the top of the separator (second distillation column) 10 as a distillate, and from the column side of the separator (second distillation column) 10.
  • Isobutyraldehyde is withdrawn from line 12 as a side stream
  • normal butyraldehyde is withdrawn from line 13 from the bottom of the separator (second distillation column) 10 as line bottom liquid.
  • the side stream extracted from the column side of the separator (first distillation column) 5 through the line 7 is caused to flow into the separator (third distillation column) 14.
  • isobutanol is extracted as a distillate through a line 15 provided at the top of the separator (third distillation column) 14, and the separator (third distillation column).
  • Tower) Normal butanol is withdrawn from line 16 from the bottom of 14 as bottom liquid.
  • FIG. 2 is a diagram showing a preferred embodiment in the reaction flow of FIG. That is, as shown in FIG. 2, the total amount or a part of the normal methyl aldehyde extracted as the bottom liquid from the bottom of the separator (second distillation column) 10 is recycled to the reactor 2 via the line 13. Do it Yes.
  • FIG. 3 is a diagram for explaining a second reaction flow in the present embodiment.
  • FIG. 3 shows a reactor 2, a separator (first distillation column) 5, and a separator (second distillation column) 10.
  • reactor 2 contains Group 8 to Group 10 metal compounds, organophosphorus compounds, proton solvents, normal butanol, isobutanol, normal butyraldehyde, isobutyraldehyde, and low boiling point compounds.
  • a reaction product stream is obtained.
  • the obtained reaction product stream is allowed to flow from the reactor 2 through the line 4 to the separator (first distillation column) 5. Subsequently, a column top distillate containing isobutanol, normal butyraldehyde, isobutyraldehyde and a low-boiling point compound is withdrawn from the top of the separator (first distillation column) 5 through a line 6, and the separator (first distillation column).
  • the reactor 2 is filled with the total amount or one of them as necessary. Recycle the club and get ready.
  • FIG. 4 is a diagram showing a preferred embodiment in the reaction flow of FIG. That is, as shown in FIG. 4, the isobutanol and normal butyraldehyde extracted from the line 13 as the bottom liquid from the bottom of the separator (second distillation column) 10 are separated from the total amount or part of the separator ( (Third distillation column) 18 and normal butyraldehyde and isobutanol are separated. The separated normal butyraldehyde is also withdrawn from the top of the separator (third distillation column) 18, and all or a part thereof may be recycled to the reactor 2 using the line 19.
  • Normal butanol and isobutyraldehyde are obtained in high yields by carrying out the reaction under the reaction conditions as described above using the metal compound, organophosphorus compound, and protic solvent as described above.
  • the obtained reaction product can be obtained as normal butanol and isobutyraldehyde products as follows.
  • Rh ( acac ) (CO) (11.2 mg, 0.04 in a nitrogen atmosphere.
  • trioctenolephosphine 64.dmg, 0.174mmol
  • the mixed gas was introduced through the feed tube attached in the autoclave while being published into the reaction solution, and the reaction solution was stirred with a magnetic stirrer placed in advance in the autoclave. .
  • the mixed gas is automatically supplied from the accumulator through the secondary pressure regulator, so that the internal pressure can be constantly maintained at 2.0 MPa. I made it.
  • the reaction was monitored until the internal pressure of the pressure accumulator was monitored and the pressure drop due to gas consumption almost stopped.
  • the autoclave was cooled to room temperature, the reaction solution was taken out and analyzed by gas chromatography, and the product concentration was measured. As a result, the normal butanol yield was 56.5%, and the isobutyraldehyde yield was 16.4%.
  • Example 1 the amount of trioctylphosphine added was 370 ⁇ Omg (0. 998 mmol, R h (acac) (CO) 1 monole to 23 monole), and the reaction temperature was 160 ° C. Pressure 5MP
  • Example 5 [0087] In Example 1, triethyl phosphine was used instead of trioctyl phosphine, and the addition amount was 51.3 mg (0.0434 mmol, 10 mol relative to 1 mol of Rh (acac) (CO)).
  • Example 5 the reaction was carried out in the same manner except that the amount of triethylphosphine added was 20.5 mg (0.174 mmol, 4 mol relative to 1 mol of Rh (acac) (CO)). Analysis
  • the reaction is carried out at a temperature of 120 ° C. and a pressure of 2 MPa, the propylene conversion is 100%, and the product selectivity is the same as that of Example 1.
  • the separator (first distillation column) 5, the separator (second distillation column) 10, and the separator (third distillation column) 14 are all distillation columns, and the conditions are shown in Table 1.
  • Table 2 shows the results of simulation under the above conditions.
  • IBD Isobutyraldehyde
  • propylene is supplied at 10 kmol / hr
  • 7_K element is supplied at 20 kmol / hr
  • carbon monoxide is supplied at 10 kmol / hr from line 1 to reactor 2.
  • normal butanol is used as a solvent instead of ethanol, and the catalyst solution is circulated through the line 8 to the reactor 2 at 2,000 kg / hr.
  • the reaction is carried out at a temperature of 120 ° C. and a pressure of 2 MPa, the propylene conversion is 100%, and the product selectivity is the same as in Example 1.
  • the separator (first distillation column) 5, the separator (second distillation column) 10, and the separator (third distillation column) 14 are all distillation columns, and the conditions are shown in Table 3.
  • Table 4 shows the results of simulation under the above conditions.
  • Fig. 3 propylene is supplied at 10 kmol / hr, hydrogen is supplied at 20 kmol / hr, and carbon monoxide is supplied at 10 kmol / hr from line 1 to reactor 2. Further, in the catalyst of Example 1, normal butanol was used as a solvent instead of ethanol, and the catalyst solution was circulated through the line 8 to the reactor 2 at 2, 0 OO kg / hr.
  • the reaction is carried out at a temperature of 120 ° C. and a pressure of 2 MPa. It is assumed that the conversion of propylene is 100% and the selectivity of the product is the same as that of Example 1.
  • the separator (first distillation tower) 5 and the separator (second distillation tower) 10 are both distillation towers, and the conditions are shown in Table 5.
  • Table 6 shows the results of simulation under the above conditions.
  • Fig. 4 propylene is supplied to reactor 2 from line 1 at 10 kmol / hr, hydrogen at 20 kmol / hr, and carbon monoxide at 10 kmol / hr.
  • the catalyst of Example 1 normal butanol is used as a solvent instead of ethanol, and the catalyst solution is circulated through the line 8 to the reactor 2 at 2,000 kg / hr.
  • the reaction is carried out at a temperature of 120 ° C. and a pressure of 2 MPa. It is assumed that the conversion of propylene is 100% and the selectivity of the product is the same as that of Example 1.
  • the separator (first distillation column) 5, the separator (second distillation column) 10, and the separator (third distillation column) 18 are all distillation columns, and the conditions are shown in Table 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The invention relates to a process for the coproduction of normal butanol and isobutyraldehyde by reacting propylene with hydrogen and carbon monoxide. The process comprises the step (A) of reacting propylene with hydrogen and carbon monoxide in a reactor (2) in the presence of a catalyst containing a compound of a Group 8, 9 or 10 metal element of the periodic table, the step (B) of withdrawing an overhead product containing normal butyraldehyde and so on and a sidestream containing isobutanol and so on from the reaction product stream with a separator (the first distilling column) (5), and the step (C) of separating the overhead product into normal butyraldehyde and isobutyraldehyde by fractional distillation with a separator (the second distilling column) (10) while separating the sidestream into isobutanol and normal butanol by fractional distillation with a separator (the third distilling column) (14), and withdrawing them separately.

Description

明 細 書  Specification
ノルマルブタノールとイソブチルアルデヒドの併産方法  Co-production method of normal butanol and isobutyraldehyde
技術分野  Technical field
[0001] 本発明は、ノルマルブタノールとイソブチルアルデヒドの併産方法に関し、より詳しく は、プロピレンを原料とするノルマルブタノールとイソブチルアルデヒドの併産方法に 関する。  The present invention relates to a method for co-production of normal butanol and isobutyraldehyde, and more particularly to a method for co-production of normal butanol and isobutyraldehyde using propylene as a raw material.
背景技術  Background art
[0002] 周期表の第 8族〜第 10族に属する遷移金属と有機リン配位子からなる触媒の存在 下に、ォレフィン性化合物を水素及び一酸化炭素と反応させてアルデヒド類を製造 する方法は、ヒドロホルミル化反応として広く知られている。一般的に、得られるアル デヒド類のうち、より直鎖性の高いアルデヒドが有用であり、その直鎖選択性を高める ために様々な有機リン配位子が開発されている。  [0002] A method for producing aldehydes by reacting an olefinic compound with hydrogen and carbon monoxide in the presence of a catalyst comprising a transition metal belonging to Groups 8 to 10 of the periodic table and an organophosphorus ligand Is widely known as a hydroformylation reaction. In general, aldehydes having higher linearity are useful among the obtained aldehydes, and various organophosphorus ligands have been developed to enhance the linearity selectivity.
そのようにして得られた直鎖性の高いアルデヒドは、通常、水素化反応によりアルコ ールにする力、、縮合反応によって分子量の大きなアルデヒドに変換した後に水素化 反応を行い、より分子量の大きなアルコールに変換することで、可塑剤の原料、接着 剤や塗料の原料等に用いられている。  The high linearity aldehyde obtained in this way usually has the ability to make an alcohol by a hydrogenation reaction, and a hydrogenation reaction after converting it to an aldehyde having a high molecular weight by a condensation reaction. By converting it to alcohol, it is used as a raw material for plasticizers, adhesives and paints.
[0003] 縮合工程の必要のないアルコールの製造に注目するならば、ォレフィン性化合物 力、らー段階の反応工程で直接アルコールが得ることができれば、別途、水素化反応 工程や水素化反応用の触媒を持つ必要がなくなり、経済的に有利なプロセスとなりう そのようなォレフィン性化合物から一段階の反応工程でアルコールを得る触媒系と しては、古くはトリアルキルホスフィンを配位子として持つコバルト系の触媒が知られ ている。一方、コバルト系の触媒を用いる場合では、通常、反応温度として 160°C〜 200°C、反応圧力として 5MPa〜30MPaといった厳しい反応条件が必要であるため 、近年、より穏和な条件で反応が進行するロジウム触媒に注目が集まっている。 ロジウム一有機リン系化合物からなる触媒系による一段階反応でのアルコール類の 製造に関する例としては、アルコール溶媒中で、ロジウムとトリアルキルホスフィンから なる触媒の存在下、ォレフィン性化合物を水素及び一酸化炭素と反応させる方法が 知られている (非特許文献 1、非特許文献 2、特許文献 1参照)。 [0003] If attention is focused on the production of an alcohol that does not require a condensation process, if the alcohol can be obtained directly in the reaction step of the olefinic compound, or if it can be obtained directly in the reaction process, the hydrogenation reaction process or hydrogenation reaction It is no longer necessary to have a catalyst, and this can be an economically advantageous process. In the past, a catalyst system for obtaining an alcohol from such an olefinic compound in a one-step reaction step was cobalt with a trialkylphosphine as a ligand. System catalysts are known. On the other hand, in the case of using a cobalt-based catalyst, usually, severe reaction conditions such as a reaction temperature of 160 ° C. to 200 ° C. and a reaction pressure of 5 MPa to 30 MPa are required, and in recent years, the reaction proceeds under milder conditions. Attention has been focused on rhodium catalysts. An example of the production of alcohols in a one-step reaction with a catalyst system comprising a rhodium monoorganophosphorus compound is as follows: There is known a method of reacting an olefinic compound with hydrogen and carbon monoxide in the presence of a catalyst (see Non-Patent Document 1, Non-Patent Document 2, and Patent Document 1).
[0004] 特許文献 1:欧州特許第 0420510号公報 [0004] Patent Document 1: European Patent No. 0420510
非特許文献 1:ジャーナル ·ォブ ·ザ ·ケミカルソサイティ ·ケミカル ·コミュニケイシヨンズ (J. Chem. ¾oc. , Chem. Commun. )、 1990年、 丄 65貞  Non-patent document 1: Journal · Ob · The · Chemical Society · Chemical · Communications (J. Chem. ¾oc., Chem. Commun.), 1990
非特許文献 2:ジャーナル ·ォブ ·ザ ·ケミカルソサイティ ·ダルトン'トランスアクションズ (J. Chem. Soc. , Dalton Trans. )、 1996年、第 1皿頁  Non-Patent Document 2: Journal · Ob · The · Chemical Society · Dalton'Transactions (J. Chem. Soc., Dalton Trans.), 1996, 1st dish
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、従来のロジウム一有機リン系化合物からなる触媒を用いる反応の場 合、 目的とする直鎖型のアルコールの選択性は低ぐ副生成物である分岐型アルコ ールに対する直鎖型アルコールの生成比は、反応を押し切った状態で 2. 5程度(直 鎖性 = 71 %)と低い値である。従って、残り 29%の副生成物は分岐型アルコールと なる力 S、この分岐型アルコールの製品としての価値は著しく低いという問題がある。 特に、プロピレンを原料として製造されるノルマルブタノールは、需要量が大きぐそ のため安価に効率よく製造する技術の要求が高!/、。このノルマルブタノール製造時 に副生するイソブタノールは、市場価格が非常に安い。し力、しながら一方で、従来の ォキソ法で生成するイソブチルアルデヒドは、需要量が大きく市場価格も高い。  [0005] However, in the case of a reaction using a catalyst composed of a conventional rhodium monoorganophosphorus compound, the linearity of the target linear alcohol is low relative to the branched alcohol, which is a byproduct. The production ratio of type alcohol is as low as about 2.5 (straight chain = 71%) with the reaction stopped. Therefore, the remaining 29% of the by-product has a problem that it has the power S to become a branched alcohol, and the value of this branched alcohol as a product is remarkably low. In particular, normal butanol produced using propylene as a raw material has a high demand, so there is a high demand for technology to produce it efficiently at low cost! The isobutanol produced as a by-product during the production of normal butanol has a very low market price. However, isobutyraldehyde produced by the conventional oxo method has a large demand and a high market price.
[0006] このように、ロジウム トリアルキルホスフィン触媒を用いれば、一段階の反応工程 で原料のォレフィン性化合物からアルコールを製造することは可能であるが、 目的と する直鎖型アルコールの選択性が低ぐ副生物のほとんどが分岐型アルコールであ ることが大きな問題として残って!/、る。  [0006] As described above, when a rhodium trialkylphosphine catalyst is used, alcohol can be produced from a raw olefinic compound in a single-step reaction process. However, the selectivity of the target linear alcohol is high. The main problem is that most of the low by-products are branched alcohols!
即ち、プロピレンを原料としてノルマルブタノールを製造する場合においては、副生 するイソブタノールは極めて価値の低いものである。そのため、反応工程は同じく一 段階であり、生成する副生物がより有価な形で製造できる新たな方法が提示されれ ば、経済的に有利な有効な方法の一つとなり、非常に重要性が高いと言える。  That is, in the case of producing normal butanol using propylene as a raw material, the by-product isobutanol is extremely low in value. Therefore, the reaction process is also one step, and if a new method that can produce the by-product to be produced in a more valuable form is presented, it will become one of the economically advantageous and effective methods and is very important. It can be said that it is expensive.
[0007] 特にイソブタノールの類似化合物であるイソブチルアルデヒドは、イソブタノールに 比べ極めて価値の高!/、製品である。イソブタノールからイソブチルアルデヒドを得るた めには、脱水素反応工程が必要となり、従ってその分製造コストが余分に力、かる。 一方、従来のヒドロホルミル化法によりプロピレンからブチルアルデヒドを製造する 方法はある力 この方法ではイソブチルアルデヒドがー段階で得られるものの、ノルマ ルブタノールを得るためには、プロピレンのヒドロホルミル化で生成するノルマルブチ 化する必要があり、上記に述べたようにこの方法では製造コストが高い。 [0007] In particular, isobutyraldehyde, which is a similar compound to isobutanol, is an extremely valuable product compared to isobutanol! To obtain isobutyraldehyde from isobutanol In order to achieve this, a dehydrogenation reaction step is required, and accordingly, the production cost is increased. On the other hand, the conventional method for producing butyraldehyde from propylene by hydroformylation has a certain power. In this method, isobutyraldehyde can be obtained in the first stage, but in order to obtain normal butanol, normal butylation produced by hydroformylation of propylene is required. As described above, this method has a high manufacturing cost.
[0008] 本発明は、上述の課題に鑑みてなされたものである。  The present invention has been made in view of the above problems.
即ち、本発明の目的は、触媒の存在下、プロピレンを水素及び一酸化炭素と反応 させて、ノルマルブタノールとイソブチルアルデヒドを併産できる新規かつシンプルな 方法を提供することにある。  That is, an object of the present invention is to provide a new and simple method capable of co-producing normal butanol and isobutyraldehyde by reacting propylene with hydrogen and carbon monoxide in the presence of a catalyst.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者らは、上記課題を解決すべく鋭意検討した結果、周期表の第 8族〜第 10 族に属する金属元素の化合物及び有機リン化合物の存在下、プロトン溶媒中、プロ ピレンを水素及び一酸化炭素と反応させ、ノルマルブタノールとイソブチルアルデヒド を共に収率 10%以上で製造する方法を見出し、力、かる知見に基づき本発明を完成 するに至った。即ち、本発明の要旨は下記(1)〜(11)に存する。  [0009] As a result of intensive studies to solve the above problems, the present inventors have found that propylene in a proton solvent in the presence of a compound of a metal element belonging to Group 8 to Group 10 of the periodic table and an organophosphorus compound. This was reacted with hydrogen and carbon monoxide to find a method for producing both normal butanol and isobutyraldehyde in a yield of 10% or more, and the present invention was completed based on the strength and knowledge. That is, the gist of the present invention resides in the following (1) to (11).
[0010] (1) 周期表の第 8族〜第 10族に属する金属元素の化合物を含有する触媒の存在 下、 プロトン溶媒中でプロピレンを水素及び一酸化炭素と反応させ、ノルマルブタノ ールとイソブチルアルデヒドを共に収率 10%以上で生成することを特徴とするノルマ ルブタノールとイソブチルアルデヒドの併産方法。  [0010] (1) In the presence of a catalyst containing a metal element compound belonging to Group 8 to Group 10 of the periodic table, propylene is reacted with hydrogen and carbon monoxide in a proton solvent, and then normal butanol and isobutyl. A method for co-production of normal butanol and isobutyraldehyde, characterized in that both aldehydes are produced in a yield of 10% or more.
[0011] (2) 周期表の第 8族〜第 10族に属する金属元素の化合物を含有する触媒の存在 下、 プロトン溶媒中でプロピレンを水素及び一酸化炭素と反応させ、ノルマルブタノ ールとイソブチルアルデヒドを併産するにあたり、反応系へのプロピレンの供給速度 F (mol/hr)とイソブチルアルデヒドの生成速度 F (mol/ hr)が下記式 (I)を満足する [0011] (2) Propylene is reacted with hydrogen and carbon monoxide in a proton solvent in the presence of a catalyst containing a metal element compound belonging to Group 8 to Group 10 of the periodic table, and then normal butanol and isobutyl. When co-producing aldehyde, the supply rate F (mol / hr) of propylene to the reaction system and the formation rate F (mol / hr) of isobutyraldehyde satisfy the following formula (I)
PPY IBD PPY IBD
ノルマルブタノールとイソブチルアルデヒドの併産方法。  A method of co-production of normal butanol and isobutyraldehyde.
1. 1 ≤ F /F ≤ 10. 0 - - - (1)  1. 1 ≤ F / F ≤ 10. 0---(1)
PPY IBD  PPY IBD
(3) 反応系へのプロピレンの供給速度 F (mol/hr)とノルマルブタノールの生成速  (3) Feed rate of propylene to the reaction system F (mol / hr) and normal butanol production rate
PPY  PPY
度 F (mol/ hr)が下記式 (Π)を満足する(1)又は(2)に記載の併産方法。 1. 1 ≤ F /F ≤ 10. 0 …(Π) The co-production method according to (1) or (2), wherein the degree F (mol / hr) satisfies the following formula (Π). 1. 1 ≤ F / F ≤ 10. 0… (Π)
PPY NBA  PPY NBA
(4) イソブチルアルデヒドの生成速度 F (mol/ hr)、イソブタノールの生成速度 F  (4) Isobutyraldehyde formation rate F (mol / hr), Isobutanol formation rate F
IBD IBA  IBD IBA
(mol/ hr)、ノルマルブチルアルデヒドの生成速度 F (mol/ hr)、及びノルマルブタ  (mol / hr), normal butyraldehyde formation rate F (mol / hr), and normal buta
NBD  NBD
ノールの生成速度 F (mol /hr)が下記式 (III)〜(V)を満足することを特徴とする(1 The production rate F (mol / hr) of the diol satisfies the following formulas (III) to (V) (1
NBA  NBA
)〜(3)の!/、ずれかに記載の併産方法。  ) To (3)! /, The method of co-production as described in any of the above.
F /¥ ≥ 0. 5 · · · (III)  F / ¥ ≥ 0.5 (III)
NBA NBD  NBA NBD
F /F ≥ 0. 5 · · · (IV)  F / F ≥ 0.5 (IV)
NBA IBA  NBA IBA
F /F ≥ 0· 5 …(V)  F / F ≥ 0 · 5… (V)
IBD IBA  IBD IBA
(5) (A工程):反応器中、周期表の第 8族〜第 10族に属する金属元素の化合物を 含有する前記触媒の存在下、プロトン溶媒中でプロピレンを水素及び一酸化炭素と 反応させ、第 8族〜第 10族に属する金属元素の前記化合物、有機リン化合物、プロ トン溶媒、ノルマルブタノール、イソブタノール、ノルマルブチルアルデヒド、イソブチ ルアルデヒド及び低沸点化合物を含有する反応生成物流を得る工程と、 (5) (Step A): React propylene with hydrogen and carbon monoxide in a proton solvent in the presence of the catalyst containing a metal element compound belonging to Groups 8 to 10 of the periodic table in the reactor. To obtain a reaction product stream containing the above-mentioned compounds of metal elements belonging to Group 8 to Group 10, organophosphorus compounds, proton solvents, normal butanol, isobutanol, normal butyraldehyde, isobutyraldehyde and low boiling point compounds. Process,
(B工程):前記 A工程で得られた前記反応生成物流を第 1の蒸留塔に流入させ、 当該第 1の蒸留塔の塔頂よりノルマルブチルアルデヒド、イソブチルアルデヒド及び 低沸点化合物を含有する塔頂留出液を抜き出し、ノルマルブタノール及びイソブタノ ールを含有する液を側流液として抜き出し、第 8族〜第 10族に属する金属元素の化 合物及び有機リン化合物を含有する塔底液を前記反応器に循環させる工程と、 (Step B): The reaction product stream obtained in Step A is flowed into the first distillation column, and a column containing normal butyraldehyde, isobutyraldehyde and a low boiling point compound from the top of the first distillation column. The top distillate is withdrawn, a liquid containing normal butanol and isobutanol is withdrawn as a side stream, and a column bottom liquid containing a compound of a metal element belonging to Group 8 to Group 10 and an organophosphorus compound is obtained. Circulating to the reactor;
(C工程):前記 B工程で得られた前記塔頂留出液を第 2の蒸留塔に流入させ、当 該第 2の蒸留塔の塔頂より低沸点化合物を留出液として抜き出し、イソブチルアルデ ヒドを側流液として抜き出し、ノルマルブチルアルデヒドを塔底液として抜き出す工程 と、 (Step C): The column top distillate obtained in Step B is allowed to flow into a second distillation column, and a low boiling point compound is withdrawn as a distillate from the top of the second distillation column. Extracting aldehyde as a side stream and extracting normal butyraldehyde as a bottom liquid;
(D工程):前記 B工程で得られた前記側流液を第 3の蒸留塔に流入させ、当該第 3 の蒸留塔の塔頂よりイソブタノールを留出液として抜き出し、ノルマルブタノールを塔 底液として抜き出す工程と、を有することを特徴とする(1)〜(4)の!/、ずれかに記載 のノルマルブタノールとイソブチルアルデヒドの併産方法。  (Step D): The side stream obtained in Step B is allowed to flow into a third distillation column, isobutanol is extracted as a distillate from the top of the third distillation column, and normal butanol is removed from the bottom of the column. (1) to (4)! /, The method of co-production of normal butanol and isobutyraldehyde according to any one of the above.
(6) 前記 C工程で得られた塔底液を前記反応器に循環させることを特徴とする(5) に記載のノルマルブタノールとイソブチルアルデヒドの併産方法。 [0013] (7) (A工程):反応器中、周期表の第 8族〜第 10族に属する金属元素の化合物を 含有する前記触媒の存在下、プロトン溶媒中でプロピレンを水素及び一酸化炭素と 反応させ、第 8族〜第 10族に属する金属元素の前記化合物、有機リン化合物、プロ トン溶媒、ノルマルブタノール、イソブタノール、ノルマルブチルアルデヒド、イソブチ ルアルデヒド及び低沸点化合物を含有する反応生成物流を得る工程と、 (6) The method for co-production of normal butanol and isobutyraldehyde according to (5), wherein the column bottom liquid obtained in the step C is circulated to the reactor. [0013] (7) (Step A): Propylene is hydrogenated and monooxidized in a proton solvent in the presence of the catalyst containing a compound of a metal element belonging to Groups 8 to 10 of the periodic table in the reactor. Reaction with carbon and reaction products containing the above-mentioned compounds of metal elements belonging to Group 8 to Group 10, organophosphorus compounds, proton solvents, normal butanol, isobutanol, normal butyraldehyde, isobutyraldehyde and low boiling point compounds A process of obtaining logistics;
(Β'工程):前記 Α工程で得られた前記反応生成物流を第 1の蒸留塔に流入させ、 当該第 1の蒸留塔の塔頂よりイソブタノール、ノルマルブチルアルデヒド、イソブチル アルデヒド、及び低沸点化合物を含有する塔頂留出液を抜き出し、ノルマルブタノ一 ルを側流液として抜き出し、第 8族〜第 10族に属する金属の化合物及び有機リン化 合物を含有する塔底液を前記反応器に循環させる工程と、  (Step Β): The reaction product stream obtained in step Α is flowed into the first distillation column, and isobutanol, normal butyraldehyde, isobutyl aldehyde, and low boiling point from the top of the first distillation column. A column top distillate containing a compound is withdrawn, normal butanol is withdrawn as a side stream, and a column bottom liquor containing a metal compound belonging to Group 8 to Group 10 and an organic phosphorous compound is added to the reactor. Circulating to the process,
(C'工程):前記 B'工程で得られた前記塔頂留出液を第 2の蒸留塔に流入させ、 当該第 2の蒸留塔の塔頂より低沸点化合物を留出液として抜き出し、イソブチルアル デヒドを側流として抜き出し、イソブタノール及びノルマルブチルアルデヒドを塔底液 として抜き出す工程と、を有することを特徴とする(5)に記載のノルマルブタノールと  (Step C '): The column top distillate obtained in step B' is caused to flow into a second distillation column, and a low boiling point compound is withdrawn as a distillate from the top of the second distillation column. A step of extracting isobutyl aldehyde as a side stream and extracting isobutanol and normal butyraldehyde as a bottom liquid, and the normal butanol according to (5),
[0014] (8) 前記 C'工程で得られた塔底液を前記反応器に循環させることを特徴とする(7) に記載の併産方法。 [0014] (8) The co-production method according to (7), wherein the column bottom liquid obtained in the step C 'is circulated to the reactor.
(9) 周期表の第 8族〜第 10族に属する前記金属元素が、ロジウムであることを特徴 とする(1)〜(8)の!/、ずれかに記載の併産方法。  (9) The co-production method according to (1) to (8), wherein the metal element belonging to Group 8 to Group 10 of the periodic table is rhodium.
(10) 周期表の第 8族〜第 10族に属する金属元素の化合物を含有する前記触媒 1S 配位子として有機リン化合物を含有することを特徴とする(1)〜(9)の!/、ずれかに 記載の併産方法。  (10) (1)-(9) characterized by containing an organophosphorus compound as the catalyst 1S ligand containing a compound of a metal element belonging to Groups 8 to 10 of the periodic table , The method of co-production described in any one of the above.
(11) 前記有機リン化合物が、アルキルホスフィンであることを特徴とする(10)に記 載の併産方法。  (11) The co-production method according to (10), wherein the organophosphorus compound is an alkylphosphine.
発明の効果  The invention's effect
[0015] 本発明によれば、ノルマルブタノールとイソブチルアルデヒドとを共に収率 10%以 上で同時に製造することが可能となる。  [0015] According to the present invention, both normal butanol and isobutyraldehyde can be simultaneously produced in a yield of 10% or more.
図面の簡単な説明 [0016] [図 1]図 1は、本実施の形態における反応フローを説明する図である。 Brief Description of Drawings FIG. 1 is a diagram illustrating a reaction flow in the present embodiment.
[図 2]図 2は、図 1の反応フローにおける好ましい態様を示す図である。  FIG. 2 is a view showing a preferred embodiment in the reaction flow of FIG.
[図 3]図 3は、本実施の形態における第 2の反応フローを説明する図である。  FIG. 3 is a diagram for explaining a second reaction flow in the present embodiment.
[図 4]図 4は、図 3の反応フローにおける好ましい態様を示す図である。  FIG. 4 is a view showing a preferred embodiment in the reaction flow of FIG.
符号の説明  Explanation of symbols
[0017] 1、 3、 4、 6、 7、 8、 9、 11、 12、 13、 15、 16、 17、 19、 20…ライン、  [0017] 1, 3, 4, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20 ... line,
2· · ·反応器、  2 ··· Reactor,
5· · ·分離機 (第 1の蒸留塔)、  5 ··· Separator (first distillation column),
10…分離機 (第 2の蒸留塔)、  10… Separator (second distillation column)
14, 18· · ·分離機 (第 3の蒸留塔)  14, 18 ··· Separator (third distillation column)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明を実施するための最良の形態(以下、発明の実施の形態)について 詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなぐその 要旨の範囲内で種々変形して実施することができる。 Hereinafter, the best mode for carrying out the present invention (hereinafter, an embodiment of the present invention) will be described in detail. It should be noted that the present invention is not limited to the following embodiments and can be implemented with various modifications within the scope of the gist thereof.
本実施の形態におけるノルマルブタノールとイソブチルアルデヒドの併産方法は、 周期表の第 8族〜第 10族に属する金属元素の化合物(以下、単に「金属化合物」又 は「第 8族〜第 10族金属化合物」と記すことがある。)及び有機リン化合物の存在下、 プロトン溶媒中、プロピレンを水素及び一酸化炭素と反応させ、反応系へのプロピレ ンの供給速度 F (mol/hr)とイソブチルアルデヒドの生成速度 F (mol/ hr)が下記  In this embodiment, the method of co-production of normal butanol and isobutyraldehyde is a compound of a metal element belonging to Group 8 to Group 10 of the periodic table (hereinafter simply referred to as “metal compound” or “Group 8 to Group 10”. In the presence of an organophosphorus compound, propylene is reacted with hydrogen and carbon monoxide in the presence of an organic phosphorus compound, and the propylene feed rate F (mol / hr) and isobutyl are reacted with the reaction system. Aldehyde formation rate F (mol / hr) is
PPY IBD  PPY IBD
式 (I)を満足することを特徴とする。  It satisfies the formula (I).
1. 1 ≤ F /F ≤ 10. 0 · · · (I)  1. 1 ≤ F / F ≤ 10. 0 (1)
PPY IBD  PPY IBD
本実施の形態において、「周期表の第 8族〜第 10族に属する金属元素の化合物 及び有機リン化合物」が本実施の形態で使用される触媒である。  In the present embodiment, “a compound of a metal element belonging to Group 8 to Group 10 of the periodic table and an organophosphorus compound” is a catalyst used in the present embodiment.
[0019] 初めに、本実施の形態が適用されるノルマルブタノールとイソブチルアルデヒドの併 産方法で使用される触媒について説明する。 [0019] First, the catalyst used in the method for co-production of normal butanol and isobutyraldehyde to which the present embodiment is applied will be described.
本実施の形態で使用する金属化合物は、周期表の第 8族〜第 10族 (IUPAC無機 化学命名法改訂版(1998)による)に属する金属元素からなる群より選ばれる遷移金 属の化合物が挙げられる。力、かる金属化合物としては、一以上の遷移金属を含む化 合物が使用される。 The metal compound used in the present embodiment is a transition metal compound selected from the group consisting of metal elements belonging to Groups 8 to 10 of the periodic table (according to the IUPAC Inorganic Chemical Nomenclature Revised Edition (1998)). Can be mentioned. As a force and metal compound, it contains one or more transition metals. Compound is used.
このような金属化合物の具体例として、例えば、鉄化合物、ルテニウム化合物、ォス ミゥム化合物、コバルト化合物、ロジウム化合物、イリジウム化合物、ニッケル化合物、 パラジウム化合物及び白金化合物等が挙げられる。これらの中でも、ルテニウム化合 物、ロジウム化合物、イリジウム化合物、ニッケル化合物、ノ ラジウム化合物及び白金 化合物が好ましぐ特に、ロジウム化合物が好ましい。  Specific examples of such metal compounds include iron compounds, ruthenium compounds, osmium compounds, cobalt compounds, rhodium compounds, iridium compounds, nickel compounds, palladium compounds, and platinum compounds. Among these, a ruthenium compound, a rhodium compound, an iridium compound, a nickel compound, a noradium compound, and a platinum compound are preferable, and a rhodium compound is particularly preferable.
これらの金属化合物の種類は任意であるが、具体例としては、上記遷移金属の酢 酸塩、ァセチルァセトネイト化合物、ハライド、硫酸塩、硝酸塩、有機塩、無機塩、ァ ルケン配位化合物、アミン配位化合物、ピリジン配位化合物、一酸化炭素配位化合 物、ホスフィン配位化合物、ホスファイト配位化合物等が挙げられる。  The types of these metal compounds are arbitrary, but specific examples include the above transition metal acetates, acetyl acetylates, halides, sulfates, nitrates, organic salts, inorganic salts, alkene coordination compounds. Amine coordination compounds, pyridine coordination compounds, carbon monoxide coordination compounds, phosphine coordination compounds, phosphite coordination compounds, and the like.
[0020] 以下、金属化合物の具体例を列記する。鉄化合物としては、 Fe(OAc) 、 Fe(acac  [0020] Specific examples of metal compounds are listed below. Iron compounds include Fe (OAc), Fe (acac
2  2
) 、 FeCl、 Fe(NO ) 等が挙げられる。ルテニウム化合物としては、 RuCl、 Ru(OA ), FeCl, Fe (NO 3) and the like. Ruthenium compounds include RuCl, Ru (OA
3 2 3 3 3 c) 、Ru(acac) 、 RuCl (PPh ) 等が挙げられる。オスミウム化合物としては、〇sCl3 2 3 3 3 c), Ru (acac), RuCl (PPh) and the like. As an osmium compound, ○ sCl
3 3 2 3 3 33 3 2 3 3 3
、 Os(OAc) 等が挙げられる。 , Os (OAc) and the like.
3  Three
[0021] コバルト化合物としては、 Co (OAc) 、 Co(acac) 、 CoBr、 Co (NO ) 等が挙げら  [0021] Examples of the cobalt compound include Co (OAc), Co (acac), CoBr, Co (NO), and the like.
2 2 2 3 2 れる。ロジウム化合物としては、 RhCl、 Rhl、 Rh(NO ) 、 Rh(OAc) 、 RhCl (CO)  2 2 2 3 2 Rhodium compounds include RhCl, Rhl, Rh (NO), Rh (OAc), RhCl (CO)
3 3  3 3
(PPh ) 、 RhH(CO) (PPh ) 、 RhCl (PPh ) 、Rh(acac) 、 Rh(acac) (C〇) 、R  (PPh), RhH (CO) (PPh), RhCl (PPh), Rh (acac), Rh (acac) (C〇), R
3 2 3 3 3 3 3 2 h(acac) (cod)、 [Rh(OAc) ] 、 [Rh (OAc) (cod)] 、 [RhCl (CO)] 、 [RhCl(co  3 2 3 3 3 3 3 2 h (acac) (cod), [Rh (OAc)], [Rh (OAc) (cod)], [RhCl (CO)], [RhCl (co
2 2 2 2  2 2 2 2
d)] 、Rh (CO) 等が挙げられる。  d)], Rh (CO) and the like.
2 4 12  2 4 12
[0022] イリジウム化合物としては、 IrCl、 Ir(OAc) 、 [IrCl(cod)] が挙げられる。ニッケル  [0022] Examples of the iridium compound include IrCl, Ir (OAc), and [IrCl (cod)]. Nickel
3 3 2  3 3 2
化合物としては、 NiCl、 NiBr、 Ni(NO ) 、 NiSO、 Ni(cod) NiCl (PPh ) 等  Compounds include NiCl, NiBr, Ni (NO), NiSO, Ni (cod) NiCl (PPh), etc.
2 2 3 2 4 2 2 3 3 が挙げられる。パラジウム化合物としては、 PdCl、 PdCl (cod)、 PdCl (PPh ) 、 P  2 2 3 2 4 2 2 3 3 Palladium compounds include PdCl, PdCl (cod), PdCl (PPh), P
2 2 2 3 2 d(PPh ) 、 Pd (dba) 、 K PdCl、 PdCl (CH CN) 、 Pd(NO ) 、 Pd(OAc) 、 P  2 2 2 3 2 d (PPh), Pd (dba), K PdCl, PdCl (CHCN), Pd (NO), Pd (OAc), P
3 4 2 3 2 4 2 3 2 3 2 2 dSO , Pd(acac) 等が挙げられる。  3 4 2 3 2 4 2 3 2 3 2 2 dSO, Pd (acac) and the like.
4 2  4 2
[0023] 白金化合物としては、 Pt(acac) 、 PtCl (cod)、 PtCl (CH CN) 、 PtCl (PhCN  [0023] Platinum compounds include Pt (acac), PtCl (cod), PtCl (CH CN), PtCl (PhCN
2 2 2 3 2 2  2 2 2 3 2 2
) 、 Pt(PPh ) 、 K PtCl、 Na PtCl、 H PtClが挙げられる。  ), Pt (PPh), K PtCl, Na PtCl, H PtCl.
2 3 4 2 4 2 6 2 6  2 3 4 2 4 2 6 2 6
尚、以上の例示において、 codは 1, 5—シクロォクタジェンであり、 dbaはジベンジリ  In the above example, cod is 1,5-cyclooctagen and dba is dibenzylic.
)、 acacはァセチルァセトネイトであり、 Acはァセチル基であり、 Ph 基はフエ二ル基をそれぞれ表す。 ), Acac is acetylylacetonate, Ac is a acetylyl group, Ph Each group represents a phenyl group.
[0024] 金属化合物の種類は特に制限されず、活性な金属錯体種であれば、単量体、二 量体及び/又は多量体の何れも使用することができる。 [0024] The type of the metal compound is not particularly limited, and any monomer, dimer and / or multimer can be used as long as they are active metal complex species.
金属化合物の使用量は特に制限はないが、触媒活性と経済性の観点から、通常、 反応媒体中の金属化合物濃度として、通常 0. Ippm以上、好ましくは Ippm以上、よ り好まし <は lOppm以上であり、通常 10, OOOppm以下、好まし <は 1 , OOOppm以 下、より好ましくは 500ppm以下である。  The amount of the metal compound used is not particularly limited, but from the viewpoint of catalyst activity and economy, the concentration of the metal compound in the reaction medium is usually 0.1 ppm or more, preferably Ippm or more, more preferably <10 ppm. The above is usually 10, OOOppm or less, preferably <1, OOOppm or less, more preferably 500ppm or less.
[0025] 続いて、有機リン化合物について説明する。 [0025] Next, the organic phosphorus compound will be described.
本実施の形態で使用する有機リン化合物は、単座配位子又は多座配位子としての 能力を有するホスフィン又はホスファイト等が挙げられる。  Examples of the organophosphorus compound used in this embodiment include phosphine or phosphite having the ability as a monodentate ligand or a polydentate ligand.
本実施の形態で使用する単座配位子としての能力を有する有機ホスフィン化合物( 以下、「単座ホスフィン」と記すことがある。)は、下記一般式で表される。特に、当該 有機ホスフィン化合物は、触媒活性を十分に発揮させるためにも、反応条件下で溶 解しているものが好ましぐその分子量は、通常 1 , 500以下、好ましくは 1 , 000以下 The organic phosphine compound (hereinafter, sometimes referred to as “monodentate phosphine”) having the ability as a monodentate ligand used in the present embodiment is represented by the following general formula. In particular, the organic phosphine compound preferably has a molecular weight of 1,500 or less, preferably 1,000 or less, which is preferably dissolved under the reaction conditions in order to sufficiently exhibit the catalytic activity.
、より好ましくは 800以下である。 More preferably, it is 800 or less.
[0026] [化 1] [0026] [Chemical 1]
Figure imgf000010_0001
Figure imgf000010_0001
[0027] (上記式中、 R、R、R は、それぞれ独立に、置換基を有していても良い炭素数 1〜 炭素数 30のアルキル基、ァリール基を表す。置換基としては、反応系に悪影響を及 ぼす虞のないものであれば特に制限されないが、ハロゲン原子、ヒドロキシ基、ホルミ ル基、鎖状又は環状のアルキル基、ァリール基、アルコキシ基、ァリールアルコキシ 基、ァリ一口キシ基、アルキルァリ一口キシ基、アルキルチオ基、ァリールチオ基、アミ ノ基、アミド基、ァシル基又はァシロキシ基の中から選ばれるものである。 ) [0028] 有機ホスフィン化合物の具体例としては、トリフエニルホスフィン、トリー o トリルホス フィン、 1—ナフチルジフエニルホスフィン、 4—メトキシフエニルジフエニルホスフィン 、トリス(2, 4, 6 トリメトキシフエ二ノレ)ホスフィン、トリス(3, 5 ジフエ二ノレフエ二ノレ) ホスフィン、 4 -ジメチルァミノフエ二ルジー 2 -ナフチルホスフィン等のトリアリール型 の単座ホスフィン;ジフエ二ルー n プロピルホスフィン、 n ォクタデシルジフエニル ホスフィン、ジ(3— t ブチル 2 ナフチノレ)メチルホスフィン、イソプロピル一 2— ナフチル p トリルホスフィン、 2 -ェチルへキシルジ(4 -フルオロフェニル)ホスフ イン等のジァリールモノアルキル型の単座ホスフィン;ジメチルフエニルホスフィン、ジ ェチルー 4ーメトキシフエ二ルホスフィン、ジ n ォクチルフエニルホスフィン、 tーブ チル一 n ォクチルー 3, 5 ジメチルフエニルホスフィン、ジイソプロピル一 2 ナフ チルホスフィン、イソブチル n ペンチルー 4—ァセチルフエニルホスフィン等のモ ノアリールジアルキル型の単座ホスフィン;トリメチルホスフィン、トリェチルホスフィン、 トリ一 n プロピルホスフィン、トリ一 n ブチルホスフィン、トリ一 n ォクチルホスフィ (In the above formula, R, R and R each independently represent a C 1 to C 30 alkyl group or aryl group which may have a substituent. There is no particular limitation as long as there is no risk of adversely affecting the system, but a halogen atom, hydroxy group, formyl group, chain or cyclic alkyl group, aryl group, alkoxy group, aryl group alkoxy group, aryl group. It is selected from a single-oxy group, an alkylary single-oxy group, an alkylthio group, an arylthio group, an amino group, an amide group, an acyl group or an acyloxy group. [0028] Specific examples of the organic phosphine compound include triphenylphosphine, tri-tolylphosphine, 1-naphthyldiphenylphosphine, 4-methoxyphenyldiphenylphosphine, and tris (2, 4, 6 trimethoxyphenylenole). Phosphine, Tris (3,5 Diphenylenolene) Triaryl type monodentate phosphine such as phosphine, 4-dimethylaminophenyl 2-naphthylphosphine; diphenyl-n-propylphosphine, n-octadecyldiphenylphosphine Diaryl monoalkyl-type monodentate phosphines such as di (3-t-butyl-2-naphthinore) methylphosphine, isopropyl-1-naphthyl-p-tolylphosphine, 2-ethylhexyldi (4-fluorophenyl) phosphine; dimethylphenyl Phosphine, dimethyl 4-methoxyphenol Monoaryl dialkyls such as diphosphine, di-n-octylphenylphosphine, tert-butyl-1-n-octyl- 3,5 dimethylphenylphosphine, diisopropyl-1-naphthylphosphine, isobutyl-n-pentyl-4-acetylphenylphosphine Type monodentate phosphine; trimethylphosphine, triethylphosphine, tri-n-propylphosphine, tri-n-butylphosphine, tri-n-octylphosphite
—n ォクチルホスフィン、ェチルメチルー n—プロピルホスフィン、トリー 2—エトキシ ェチルホスフィン、イソブチルネオペンチルー n へキシルホスフィン、トリー 2—ェチ ノレへキシルホスフィン、トリベンジルホスフィン、トリネオペンチルホスフィン、トリイソプ 口ピルホスフィン、トリ一 t ブチルホスフィン、トリ一 2—ブチルホスフィン、ジ一 n へ キシルー 1 , 1ージメチルプロピルホスフィン、 3—フエニルプロピルジー tーブチルホ スフイン、 2 ブチルー n—プロピル 3, 3 ジメトキシプロピルホスフィン等のトリァ ルキル型の単座ホスフィンが挙げられる。 —N Octylphosphine, Ethylmethyl-n-Propylphosphine, Tree 2-Ethoxyethylphosphine, Isobutylneopentyl-n Hexylphosphine, Tree2-Ethenohexylphosphine, Tribenzylphosphine, Trineopentylphosphine, Triisopropylene Pyrphosphine, tri-t-butylphosphine, tri-l-butylphosphine, di-n-hexylol, 1,1-dimethylpropylphosphine, 3-phenylpropyldi-t-butylphosphine, 2-butyl-n-propyl-3,3 dimethoxypropylphosphine And trialkyl type monodentate phosphines.
[0029] これらの中でも、 R、 R、 R の置換基の内、少なくとも一つの置換基がアルキル基 であるようなジァリールモノアルキル型の単座ホスフィン、モノアリールジアルキル型 の単座ホスフィン、若しくはトリアルキル型の単座ホスフィンが好ましぐ R、 R、 R の すべての置換基がアルキル基であるようなトリアルキル型の単座ホスフィンがより好ま しい。 [0029] Among these, among the substituents of R, R and R, at least one of the substituents is a dialyl monoalkyl type monodentate phosphine, a monoaryldialkyl type monodentate phosphine, or tri Alkyl-type monodentate phosphines are preferred Trialkyl-type monodentate phosphines in which all substituents of R, R, and R are alkyl groups are more preferred.
トリアルキル型の単座ホスフィンの中でも、 R、 R、 R のすベての置換基が第一級ァ ルキル基、即ち、 P原子に結合する炭素原子が CH基であるアルキル基であるような トリ(第一級アルキル)型の単座ホスフィンが一層好ましい。特に R、 R、 R のすベて の置換基が無置換の直鎖型のアルキル基であるものがもっとも好ましい。 Among trialkyl type monodentate phosphines, all substituents of R, R, and R are primary alkyl groups, that is, alkyl groups in which the carbon atom bonded to the P atom is a CH group. Tri (primary alkyl) type monodentate phosphines are more preferred. In particular, it is most preferable that all the substituents of R, R, and R are unsubstituted linear alkyl groups.
[0030] 上記の具体例の内、最も好ましい単座ホスフィンとしては、トリメチルホスフィン、トリ ェチルホスフィン、トリ一 n プロピルホスフィン、トリ一 n ブチルホスフィン、トリ一 n ォクチルホスフィン、トリー n
Figure imgf000012_0001
[0030] Among the above specific examples, the most preferred monodentate phosphines are trimethylphosphine, tritylphosphine, tri-n-propylphosphine, tri-n-butylphosphine, tri-n-octylphosphine, tree-n.
Figure imgf000012_0001
スフイン、ジェチルー n ォクチルホスフィン、ェチルメチルー n—プロピルホスフィン を挙げること力 Sでさる。  Suffine, Jetyl-n-octylphosphine, ethylmethyl-n-propylphosphine are listed with the power S.
尚、ホスフィン化合物として二座配位子又は多座配位子としての能力を有するホス フィンも使用することカできる。  A phosphine having the ability as a bidentate ligand or a polydentate ligand can also be used as the phosphine compound.
[0031] また、単座配位子としての能力を有するホスファイトの例としては、下記の式(2)〜 式(5)で示されるホスファイト化合物が挙げられる。 [0031] Examples of phosphites having the ability as monodentate ligands include phosphite compounds represented by the following formulas (2) to (5).
[0032] [化 2] [0032] [Chemical 2]
Figure imgf000012_0002
Figure imgf000012_0002
[0033] (式中、 1〜!^はそれぞれ独立して、置換されていてもよい 1価の炭化水素基を示す o ) [0033] (wherein 1 to! ^ Each independently represents a monovalent hydrocarbon group which may be substituted o)
式(2)中、置換されていてもよい 1価の炭化水素基としては、アルキル基、ァリール 基、シクロアルキル基等が挙げられる。  In the formula (2), examples of the optionally substituted monovalent hydrocarbon group include an alkyl group, an aryl group, a cycloalkyl group, and the like.
[0034] 式(2)で表される化合物の具体例としては、例えば、トリメチルホスファイト、トリェチ ノレホスファイト、 n ブチルジェチルホスファイト、トリー n ブチルホスファイト、トリー n —プロピルホスファイト、トリシクロへキシルホスファイト、トリ一 n ォクチルホスファイト 、トリ n ドデシルホスファイト等のトリアルキルホスファイト;トリフエニルホスファイト、 トリナフチルホスファイト等のトリアリールホスファイト;ジメチルフエニルホスファイト、ジ ェチルフエニルホスファイト、ェチルジフエニルホスファイト等のアルキルァリールホス ファイト等が挙げられる。  [0034] Specific examples of the compound represented by the formula (2) include, for example, trimethyl phosphite, triethyl phosphite, n-butyl jetyl phosphite, tri-n butyl phosphite, tri-n-propyl phosphite, tricyclo Trialkyl phosphites such as hexyl phosphite, tri-n-octyl phosphite, tri-n dodecyl phosphite; triaryl phosphites such as triphenyl phosphite, trinaphthyl phosphite; dimethyl phenyl phosphite, dimethyl Examples thereof include alkyl phosphites such as phenyl phosphite and ethyl diphenyl phosphite.
[0035] これらのホスファイトのァリール基には置換基が存在していてもよい。また、例えば、 特開平 6— 122642号公報に記載されているビス(3, 6, 8 トリ— t ブチル 2— ナフチノレ)フエニルホスファイト、ビス(3, 6, 8 トリー tーブチルー 2 ナフチル)(4 -ビフエ二ル)ホスファイト等を用いてもよ!/、。これらの中で最も好まし!/、ものはトリフエ ニルホスファイトである。 A substituent may be present on the aryl group of these phosphites. Further, for example, bis (3, 6, 8 tri-t-butyl 2- Naphthinole) phenyl phosphite, bis (3, 6, 8 tri-tert-butyl-2-naphthyl) (4-biphenyl) phosphite, etc. may be used. The most preferred of these! / Is triphenyl phosphite.
[0036] [化 3]  [0036] [Chemical 3]
Figure imgf000013_0001
Figure imgf000013_0001
[0037] (式(3)中、 R4は置換されて!/、てもよ!/、2価の炭化水素基を示し、 R5は置換されて!/、 てもよい 1価の炭化水素基を示す。 ) (In the formula (3), R 4 is substituted! /, May be! /, A divalent hydrocarbon group, R 5 is substituted! /, May be monovalent carbon Represents a hydrogen group.)
式(3)中、 R4で示される置換されていてもよい 2価の炭化水素基としては、炭素鎖 の中間に酸素、窒素、硫黄原子等を含んでいてもよいアルキレン基;炭素鎖の中間 に酸素、窒素、硫黄原子等を含んでいてもよいシクロアルキレン基;フエ二レン、ナフ チレン等の 2価の芳香族基; 2価の芳香環が直接又は中間にアルキレン基、酸素、窒 素、硫黄等の原子を介して結合した 2価の芳香族基; 2価の芳香族基とアルキレン基 とが直接又は中間に酸素、窒素、硫黄等の原子を介して結合したもの等が挙げられ In the formula (3), the optionally substituted divalent hydrocarbon group represented by R 4 includes an alkylene group which may contain an oxygen, nitrogen, sulfur atom or the like in the middle of the carbon chain; A cycloalkylene group which may contain an oxygen, nitrogen, sulfur atom or the like in the middle; a divalent aromatic group such as phenylene or naphthylene; a divalent aromatic ring directly or in the middle of an alkylene group, oxygen, nitrogen A divalent aromatic group bonded through an atom such as elemental or sulfur; a divalent aromatic group and an alkylene group bonded directly or in the middle through an atom such as oxygen, nitrogen or sulfur Is
R5で示される置換されていてもよい 1価の炭化水素基としては、アルキル基、ァリー ル基、シクロアルキル基等が挙げられる。 Examples of the optionally substituted monovalent hydrocarbon group represented by R 5 include an alkyl group, an aryl group, and a cycloalkyl group.
[0038] 式(3)で表される化合物の具体例としては、例えば、エチレン(2, 4, 6 トリー t ブチルーフエ二ノレ)ホスファイト、 1 , 2 ブチレン(2, 6 ジ tーブチノレーフエニル) ホスファイト等の米国特許第 3415906号公報に記載されている化合物等が挙げら れる。 [0038] Specific examples of the compound represented by the formula (3) include, for example, ethylene (2, 4, 6 tri-t-butyl-phenolino phosphite), 1, 2 butylene (2, 6-di-t-butyl thiolene). And enyl) phosphites and the like, which are described in US Pat. No. 3,415,906.
[0039] [化 4] [0039] [Chemical 4]
Figure imgf000014_0001
Figure imgf000014_0001
[0040] (式 (4)中、 R1()は、式(3)における R5と同義であり、 Ar1及び Ar2は、それぞれ独立し て、置換されていてもよいァリーレン基を示し、 X及び yは、それぞれ独立して、 0又は 1を示し、 Qは、 CRUR12 O S— , — NR13— , — SiR14R15 及び一 C O よりなる群から選ばれる架橋基であり、 R11及び R12はそれぞれ独立して水素原 子、炭素数 1〜炭素数 12のアルキル基、フエニル基、トリル基又はァニシル基を示し 、 R13、 R14及び R15は、それぞれ独立して水素原子又はメチル基を示し、 nは 0又は 1 を示す。 ) (In formula (4), R 1 () has the same meaning as R 5 in formula (3), and Ar 1 and Ar 2 each independently represent an optionally substituted arylene group. , X and y each independently represent 0 or 1, Q is a bridging group selected from the group consisting of CR U R 12 OS—, — NR 13 —, — SiR 14 R 15 and one CO. R 11 and R 12 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a phenyl group, a tolyl group, or an anisyl group, and R 13 , R 14, and R 15 each independently represent Represents a hydrogen atom or a methyl group, and n represents 0 or 1.)
[0041] 式(4)で表される化合物の具体例としては、例えば、 1 , 1 ' ビフヱ二ルー 2, 2' ジィルー(2, 6 ジ tーブチルー 4 メチルフエニル)ホスファイト等の米国特許第 4 599206号公報に記載されている化合物、 3, 3'—ジ— t ブチル—5, 5'—ジメトキ シ一 1 , 1 '—ビフエニル一 2, 2, 一ジィル一(2— t ブチル 4 メトキシフエ二ノレ)ホ スフアイト等の米国特許第 4717775号公報に記載されている化合物等が挙げられる  [0041] Specific examples of the compound represented by the formula (4) include, for example, US Patent No. 4 such as 1, 1 ′ bif ヱ nluo 2, 2 ′ diluo (2, 6 di-tert-butyl-4-methylphenyl) phosphite. No. 599206, 3, 3′-di-t-butyl-5,5′-dimethoxy 1,1,2′-biphenyl 1,2,2,1-di-yl (2-t-butyl 4-methoxyphenyl) Nore) Phosphite and the like are described in US Pat. No. 4,717,775.
[0042] [化 5] [0042] [Chemical 5]
Figure imgf000014_0002
Figure imgf000014_0002
(式(5)中、 R6は環状又は非環状の置換されていてもよい 3価の炭化水素基を示す。 (In formula (5), R 6 represents a cyclic or acyclic trivalent hydrocarbon group which may be substituted.
)  )
式(5)で表される化合物の具体例としては、例えば、 4 ェチル—2, 6, 7 トリオ キサ一 1—ホスフアビシクロ一 [2, 2, 2]—オクタン等の米国特許第 4567306号公報 に記載されて!/、る化合物等が挙げられる。 Specific examples of the compound represented by the formula (5) include, for example, U.S. Pat. No. 4,567,306 such as 4 ethyl-2,6,7 trioxane 1-phosphabicyclo [2,2,2] -octane. And / or the like.
[0044] また、多座ホスファイトの例としては、式(6)〜式(11)で示されるホスファイト化合物 が挙げられる。  [0044] Examples of the multidentate phosphite include phosphite compounds represented by the formulas (6) to (11).
[0045] [化 6] 6 )
Figure imgf000015_0001
[0045] [Chemical 6] 6)
Figure imgf000015_0001
[0046] (式(6)中、 R7は、式(3)における R4と同義であり、 R8及び R9はそれぞれ独立して置 換されていてもよい炭化水素基を示し、 a及び bはそれぞれ 0〜6の整数を示し、 aと b の和は 2〜6であり、 Xは(a + b)価の炭化水素基を示す。 ) (In Formula (6), R 7 has the same meaning as R 4 in Formula (3), R 8 and R 9 each independently represent a hydrocarbon group that may be substituted; And b each represents an integer of 0 to 6, the sum of a and b is 2 to 6, and X represents a (a + b) -valent hydrocarbon group.
式(6)で表される化合物のうち好ましいものとしては、例えば、 6, 6 ' - [ [3, 3' , 5, 5,ーテトラキス(1 , 1,ージメチルェチル)ー[1 , 1,ービフエニル ] 2, 2,ージィル] ビス(ォキシ)]ビス一べンゾ [d、 f] [l , 3, 2]ジォキサホスフエビン等の特開平 2— 23 1497号公報に記載されている化合物等が挙げられる。  Preferred examples of the compound represented by the formula (6) include, for example, 6, 6 ′-[[3,3 ′, 5,5, -tetrakis (1,1, -dimethylethyl)-[1,1, -biphenyl] 2, 2, benzyl] bis (oxy)] bis-benzo [d, f] [l, 3, 2] dioxaphosphevin and the compounds described in JP-A-2-231497 Is mentioned.
[0047] [化 7]  [0047] [Chemical 7]
Figure imgf000015_0002
Figure imgf000015_0002
[0048] (式(7)中、 Xはアルキレン、ァリ一レン及び一 Ar1— (CH ) x-Qn- (CH )y-Ar2 [0048] (In the formula (7), X represents alkylene, arylene, and one Ar 1 — (CH) x-Qn- (CH) y-Ar 2
2 2 一よりなる群から選ばれた 2価の基を示し、 R16及び R17は、それぞれ独立して、置換 されていてもよい炭化水素基を示す。 Ar2、 Q、 x、 y、 nは式 (4)と同義である。 ) 式(7)で表される化合物の具体例としては、例えば、特開昭 62— 116535号公報 及び特開昭 62— 116587号公報に記載されている化合物等が挙げられる。 2 2 represents a divalent group selected from the group consisting of one, and R 16 and R 17 each independently represent an optionally substituted hydrocarbon group. Ar 2 , Q, x, y, n are synonymous with the formula (4). Specific examples of the compound represented by formula (7) include, for example, JP-A-62-116535. And compounds described in JP-A-62-116587.
[0049] [化 8] [0049] [Chemical 8]
18 ( 8 )
Figure imgf000016_0001
1 8 (8)
Figure imgf000016_0001
[0050] (式(8)中、 X、
Figure imgf000016_0002
Ar2、 Q、 x、 y、 nは、式(7)と同義であり、 は、式(3)における R4と同義である。 )
[0050] (In formula (8), X,
Figure imgf000016_0002
Ar 2 , Q, x, y, and n are synonymous with the formula (7), and are synonymous with R 4 in the formula (3). )
[0051] [化 9]  [0051] [Chemical 9]
Figure imgf000016_0003
Shi
Figure imgf000016_0003
[0052] (式 (9)中、 Riy及び R2°はそれぞれ独立して芳香族炭化水素基を示し、かつ少なくと も一方の芳香族炭化水素基は、酸素原子が結合する炭素原子に隣接する炭素原子 に炭化水素基を有しており、 mは 2〜4の整数を示し、各— O— P (OR19) (OR2°)基 は互いに異なっていてもよぐ Xは置換されていてもよい m価の炭化水素基を示す。 ) 式(9)で表される化合物の中では、例えば、特開平 5— 178779号公報に記載され ている化合物や 2, 2 '—ビス(ジ 1 ナフチルホスファイト) 3, 3' , 5, 5 '—テトラ — t ブチル 6, 6 '—ジメチル— 1 , 1 ' ビフエ二ル等の特開平 10— 45776号公 報に記載されて!/、る化合物等が好まし!/、。 (In Formula (9), R iy and R 2 ° each independently represents an aromatic hydrocarbon group, and at least one of the aromatic hydrocarbon groups is bonded to a carbon atom to which an oxygen atom is bonded. It has a hydrocarbon group at the adjacent carbon atom, m represents an integer of 2 to 4, and each —O—P (OR 19 ) (OR 2 °) group may be different from each other. M) -valent hydrocarbon group, which may be represented by the formula (9) Among the compounds represented by the formula (9), for example, compounds described in JP-A-5-178779 and 2,2′-bis (Di 1-naphthyl phosphite) 3, 3 ', 5, 5'-tetra-t-butyl 6, 6'-dimethyl-1, 1' Biphenyl etc. are described in Japanese Patent Laid-Open No. 10-45776! Preferable compounds such as /!
[0053] [化 10]
Figure imgf000016_0004
[0054] (式(10)中、 R21〜R24は、置換されていてもよい炭化水素基を示し、これらは互いに 独立したものであっても、 R21と R22、 R23と R24が互いに結合して環を形成していてもよ ぐ Wは置換基を有していてもよい 2価の芳香族炭化水素基を示し、 Lは置換基を有 して!/、てもよ!/、飽和又は不飽和の 2価の脂肪族炭化水素基を示す。 )
[0053] [Chemical 10]
Figure imgf000016_0004
(In the formula (10), R 21 to R 24 represent an optionally substituted hydrocarbon group, and even if they are independent of each other, R 21 and R 22 , R 23 and R 24 may be bonded to each other to form a ring W represents a divalent aromatic hydrocarbon group which may have a substituent, and L represents a substituent! / Y! / Represents a saturated or unsaturated divalent aliphatic hydrocarbon group.)
式(10)で表される化合物としては、例えば、特開平 8— 259578号公報に記載のも のが用いられる。  As the compound represented by the formula (10), for example, those described in JP-A-8-259578 are used.
[0055] [化 11]
Figure imgf000017_0001
[0055] [Chemical 11]
Figure imgf000017_0001
[0056] (式(11)中、 R25〜R28は、置換されていてもよい 1価の炭化水素基を示し、 R25と R26 、 R27と R28は互いに結合して環を形成していてもよぐ W及び Bはそれぞれ独立して、 置換基を有していてもよい 2価の芳香族炭化水素基を示し、 nは 0又は 1の整数を示 す。) (In the formula (11), R 25 to R 28 represent an optionally substituted monovalent hydrocarbon group, and R 25 and R 26 , R 27 and R 28 are bonded to each other to form a ring. W and B which may be formed independently represent a divalent aromatic hydrocarbon group which may have a substituent, and n represents an integer of 0 or 1.)
またこれらの有機リン化合物を複数組み合わせて使用することもできる。  A combination of these organic phosphorus compounds can also be used.
[0057] 以上説明した第 8族〜第 10族の金属化合物及び有機リン系化合物を用いることに よって、本実施の形態が適用されるノルマルブタノールとイソブチルアルデヒドの併産 方法に使用する触媒系が形成される。 [0057] By using the Group 8 to Group 10 metal compound and organophosphorus compound described above, the catalyst system used in the method for co-production of normal butanol and isobutyraldehyde to which the present embodiment is applied is provided. It is formed.
力、かる触媒系に用いる有機リン化合物の量は特に制限されるものではないが、反 応成績、触媒活性及び触媒安定性等に対して望ましい結果が得られるように任意に 設定される。有機リン化合物は、金属化合物 1モル当たり通常 0. 1モル以上、好まし くは 1モル以上、より好ましくは 2モル以上であり、通常 1 , 000モル以下、好ましくは 5 00モノレ以下、より好ましくは 100モル以下である。  The amount of the organophosphorus compound used in the catalyst system is not particularly limited, but is arbitrarily set so that desirable results can be obtained with respect to reaction results, catalyst activity and catalyst stability. The organophosphorus compound is usually 0.1 mole or more, preferably 1 mole or more, more preferably 2 moles or more, usually 1,000 moles or less, preferably 500 moles or less, more preferably 1 mole or more per mole of the metal compound. Is less than 100 moles.
[0058] 続いて触媒の調製方法について述べる。 [0058] Next, a method for preparing the catalyst will be described.
本実施の形態で使用する触媒は、別途設けた触媒調製ゾーンで予め調製してから 当該触媒を反応ゾーンに加えても良いし、それぞれを個別に反応ゾーンに添加して 反応ゾーン内で触媒調製を行っても良!/、。  The catalyst used in the present embodiment may be prepared in advance in a catalyst preparation zone provided separately, and then the catalyst may be added to the reaction zone, or each catalyst may be individually added to the reaction zone to prepare the catalyst in the reaction zone. It's okay to go!
触媒の調製方法の好ましレ、実施の態様としては、ノルマルブタノールとイソブチル アルデヒドの併産反応後、生成物系と触媒系とを分離し、その触媒を再び反応ゾー ンにリサイクルする方法があるが、この場合、触媒の劣化や消失の度合いに応じて、 適宜金属化合物、有機リン化合物を追加して補うことが望まし!/、。 The preferred method for preparing the catalyst is as follows: normal butanol and isobutyl After the aldehyde co-production reaction, there is a method of separating the product system and the catalyst system and recycling the catalyst to the reaction zone again. In this case, depending on the degree of deterioration or disappearance of the catalyst, a metal compound is appropriately used. Desirable to supplement with organic phosphorus compounds! /
[0059] 具体的な触媒の調製方法においては、金属化合物、有機リン化合物のそれぞれを そのまま混合して触媒調製を行っても良いし、予めそれぞれを有機溶媒等で溶解さ せたものを混合しても良い。これらの調製方法において、反応ゾーンで速やかに触 媒反応を開始させるようにするためにも、触媒は溶解した状態で反応ゾーンに導かれ ること力 S好ましい。また、場合によっては、触媒を調製して反応ゾーンに導入する前に 、加熱処理や触媒活性種への変換に必要なガス処理、例えば水素や一酸化炭素等 のガスとの加圧接触を予め行ってから触媒を反応ゾーンに導入しても良い。  [0059] In a specific method for preparing the catalyst, the metal compound and the organic phosphorus compound may be mixed as they are to prepare the catalyst, or those previously dissolved in an organic solvent or the like are mixed. May be. In these preparation methods, it is preferable that the catalyst is guided to the reaction zone in a dissolved state so that the catalyst reaction is quickly started in the reaction zone. In some cases, before the catalyst is prepared and introduced into the reaction zone, a gas treatment necessary for heat treatment or conversion to a catalytically active species, for example, a pressure contact with a gas such as hydrogen or carbon monoxide is performed in advance. Once done, the catalyst may be introduced into the reaction zone.
[0060] 本実施の形態が適用されるノルマルブタノールとイソブチルアルデヒドの併産は、 プロトン性溶媒中で実施する。ここで、プロトン性溶媒とは、解離して容易にプロトン( H+)を放出することが可能な溶媒である。  [0060] The co-production of normal butanol and isobutyraldehyde to which this embodiment is applied is carried out in a protic solvent. Here, the protic solvent is a solvent that can be dissociated and easily release protons (H +).
プロトン性溶媒の具体例としては、メタノール、エタノール、 n プロパノール、イソプ ロパノール、 n ブタノール、イソブタノール、 t ブチルアルコール、 n ペンタノール 、ネオペンチルアルコール、 n へキサノール、 2—ェチルへキサノール、 n オタタノ 一ノレ、 n ノナノール、 n デカノール等のアルコール;フエノール、 2—メチルフエノ ール、 3 メチルフエノーノレ、 4 メチルフエノーノレ、 4 t ブチルフエノール、 2, 4— ジー t ブチルフエノール、 4 フルオロフェノール、 4 トリフルォロメチルフエノール 、 2—二トロフエノール等のフエノール;酢酸、プロピオン酸、酪酸、吉草酸、カプロン 酸、力プリル酸、力プリン酸、ラウリン酸、シクロへキサンカルボン酸等のカルボン酸; ホルムアミド、ァセトアミド、 N メチルァセトアミド、プロピオンアミド等のように窒素原 子上に少なくとも一つの水素原子を有するアミド;メチルチオール、ェチルチオール、 n プロピルチオール、イソプロピルチオール等のチオール;ベンゼンチオール、 p— トルエンチオール等のチォフエノルマロン酸ジェチル、ァセト酢酸ェチル、ニトロエタ ン、マロノ二トリル等のように活性メチレン基を有する化合物;水を挙げることができる Specific examples of the protic solvent include methanol, ethanol, n propanol, isopropanol, n butanol, isobutanol, t butyl alcohol, n pentanol, neopentyl alcohol, n hexanol, 2-ethylhexanol, and n otano. Alcohol, n-nonanol, n-decanol, etc .; phenol, 2-methylphenol, 3-methylphenol, 4-methylphenol, 4-t-butylphenol, 2, 4--z-butylphenol, 4-fluorophenol, 4 Phenols such as trifluoromethylphenol and 2-nitrophenol; acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, strong prillic acid, strong puric acid, lauric acid, cyclohexanecarboxylic acid and other carboxylic acids; formamide , Acetamide, N-methylaceto Amides having at least one hydrogen atom on the nitrogen atom such as amide, propionamide, etc .; Thiols such as methylthiol, ethylthiol, n-propylthiol and isopropylthiol; Thiophenomalon such as benzenethiol and p-toluenethiol Compounds having an active methylene group such as decyl acid, cetyl acetate, nitroethane, malononitrile, etc .; can include water
Yes
これらの中で、特にアルコールが好ましいプロトン性溶媒である。精製工程の負荷 低減という観点からすると、製品として製造するアルコールをプロトン性溶媒として用 いるのが好ましい。 Of these, alcohol is a preferred protic solvent. Load of purification process From the viewpoint of reduction, it is preferable to use alcohol produced as a product as a protic solvent.
[0061] 本実施の形態で使用するプロトン性溶媒の量は、反応媒体の総重量に対して通常 5重量%以上、好ましくは 10重量%以上であり、通常 95重量%以下であり、好ましく は 90重量%以下である。溶媒は、単一の化合物で形成されていても複数の化合物 の混合物で形成されていても良いが、溶媒の全重量において、少なくとも 1重量%以 上、好ましくは 5重量%以上、更に好ましくは 10重量%以上のプロトン性溶媒を含有 していることが必要である。  [0061] The amount of the protic solvent used in the present embodiment is usually 5% by weight or more, preferably 10% by weight or more, and usually 95% by weight or less, preferably based on the total weight of the reaction medium. 90% by weight or less. The solvent may be formed of a single compound or a mixture of a plurality of compounds, but it is at least 1% by weight, preferably 5% by weight or more, more preferably, based on the total weight of the solvent. It is necessary to contain 10% by weight or more of a protic solvent.
[0062] 溶媒がプロトン性溶媒以外の成分を含有している場合、用いることのできるその他 の溶媒については、触媒及び原料化合物とを溶解するものであって、触媒活性に悪 影響を及ぼさないものであれば、任意の溶媒を使用可能であり、その種類には特に 限定はない。  [0062] When the solvent contains a component other than the protic solvent, the other solvent that can be used is one that dissolves the catalyst and the raw material compound and does not adversely affect the catalyst activity. Any solvent can be used, and the type is not particularly limited.
その他の溶媒として、例えば、ジグライム、ジフエニルエーテル、ジベンジルエーテ ル、ジァリールエーテル、テトラヒドロフラン (THF)、ジォキサン等のエーテル; N メ チルー 2—ピロリドン、ジメチルホルムアミド、ジメチルァセトアミド等のように窒素原子 上に水素原子を持たないアミド;アセトン、メチルェチルケトン、メチルー tーブチルケ トン、シクロへキサノン等のケトン;酢酸ェチル、酢酸ブチル、 g ブチロラタトン、ジー n ォクチルフタレイト、ジ 2—ェチルへキシルテレフタレイト等のエステル;ベンゼ ン、トルエン、キシレン、ドデシルベンゼン等の芳香族炭化水素;ペンタン、へキサン 、オクタン等の脂肪族炭化水素等が挙げられる。  Other solvents include, for example, ethers such as diglyme, diphenyl ether, dibenzyl ether, dialyl ether, tetrahydrofuran (THF), dioxane; N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, etc. Amide that does not have a hydrogen atom on the nitrogen atom; Ketones such as acetone, methyl ethyl ketone, methyl t-butyl ketone, cyclohexanone, etc .; Examples thereof include esters such as ethylhexyl terephthalate; aromatic hydrocarbons such as benzene, toluene, xylene, and dodecylbenzene; aliphatic hydrocarbons such as pentane, hexane, and octane.
[0063] その他、原料のォレフィン性化合物の過剰量をその他の溶媒として使用することも 可能であり、また、本実施の形態における反応系中で生成するアルデヒド類やアルコ ール類に基づ!/、た縮合二量体や縮合三量体、ァセタール化生成物等の高沸点化 合物を使用することも可能である。本発明においては、特に、原料のォレフィン性化 合物から生成されるアルコールを、そのままプロトン性溶媒として用いると、経済的に 有利なプロセスとなり得る。具体的には、プロトン性溶媒として n ブタノールやイソブ タノールを用いることが好まし!/、。  [0063] In addition, it is possible to use an excess amount of the raw olefinic compound as another solvent, and it is based on aldehydes and alcohols generated in the reaction system in the present embodiment! It is also possible to use high-boiling compounds such as /, condensation dimers, condensation trimers, and acetalization products. In the present invention, in particular, when an alcohol produced from the raw olefinic compound is used as it is as a protic solvent, it can be an economically advantageous process. Specifically, it is preferable to use n-butanol or isobutanol as the protic solvent!
[0064] 次に、本実施の形態が適用されるノルマルブタノール及びイソブチルアルデヒドの 併産反応を行うための反応条件について説明する。 Next, normal butanol and isobutyraldehyde to which the present embodiment is applied The reaction conditions for carrying out the co-production reaction will be described.
水素分圧、一酸化炭素分圧、原料、生成物、溶媒等の蒸気圧の総和で形成される 反応圧力は、通常 0. OlMPa以上、好ましくは 0. IMPa以上、より好ましくは 0. 5M Pa以上であり、通常 30MPa以下、好ましくは 20MPa以下、より好ましくは lOMPa以 下である。反応圧力が過度に低いと、金属化合物が失活してメタル化してしまう懸念 がある他、触媒活性自体十分に発現せず、アルコール収率が低下することが予想さ れる。また、反応圧力が過度に高いと、得られるアルコールの直鎖選択性が低下する 傾向が見られる。  The reaction pressure formed by the sum of the partial pressure of hydrogen, carbon monoxide, vapor pressure of raw materials, products, solvents, etc. is usually 0. OlMPa or higher, preferably 0. IMPa or higher, more preferably 0.5 MPa The above is usually 30 MPa or less, preferably 20 MPa or less, more preferably lOMPa or less. If the reaction pressure is excessively low, there is a concern that the metal compound may be deactivated and metallized, and the catalytic activity itself is not sufficiently exhibited, and the alcohol yield is expected to decrease. Further, when the reaction pressure is excessively high, the straight chain selectivity of the resulting alcohol tends to decrease.
[0065] また、特に、水素分圧は好ましくは 0. 005MPa以上、より好ましくは 0. OlMPa以 上であり、好ましくは 20MPa以下、より好ましくは lOMPa以下である。水素分圧が過 度に低いと、反応活性の低下が懸念され、高すぎると原料ォレフィン性化合物の水 素化反応の進行に伴う浪費が予想される。一酸化炭素分圧は好ましくは 0. 005MP a以上、より好ましくは 0. OlMPa以上であり、好ましくは 15MPa以下、より好ましくは 8MPa以下である。一酸化炭素分圧が低すぎると反応活性の低下、特に金属化合 物のメタル化が懸念され、水素分圧が過度に高いと、得られるアルコールの直鎖選 択性の低下が予想される。  [0065] In particular, the hydrogen partial pressure is preferably 0.005 MPa or more, more preferably 0. OlMPa or more, preferably 20 MPa or less, more preferably lOMPa or less. If the hydrogen partial pressure is too low, there is a concern that the reaction activity will decrease, and if it is too high, waste due to the hydrogenation reaction of the raw olefinic compound is expected. The carbon monoxide partial pressure is preferably 0.005 MPa or more, more preferably 0.0 OlMPa or more, preferably 15 MPa or less, more preferably 8 MPa or less. If the carbon monoxide partial pressure is too low, there is a concern that the reaction activity will decrease, particularly metalation of metal compounds, and if the hydrogen partial pressure is too high, the linear selectivity of the resulting alcohol is expected to decrease.
水素と一酸化炭素のモル比は、 1: 10〜; 10 : 1であり、より好ましくは 1: 2〜8: 1であ り、更に好ましくは 1 :;!〜 5 : 1である。  The molar ratio of hydrogen to carbon monoxide is 1:10 to 10: 1, more preferably 1: 2 to 8: 1, and still more preferably 1:;! To 5: 1.
[0066] また、反応温度は、通常、 25°C以上、好ましくは 50°C以上、より好ましくは 70°C以 上であり、通常 300°C以下、好ましくは 250°C以下、より好ましくは 200°C以下である 。反応温度が過度に低いと、反応活性自体が十分に得られないことが予想され、反 応温度が過度に高いと、得られるアルコールの直鎖選択性の低下や配位子の熱分 解による消失等が予想される。  [0066] The reaction temperature is usually 25 ° C or higher, preferably 50 ° C or higher, more preferably 70 ° C or higher, and usually 300 ° C or lower, preferably 250 ° C or lower, more preferably. 200 ° C or less. If the reaction temperature is too low, it is expected that the reaction activity itself will not be sufficiently obtained, and if the reaction temperature is too high, it will be caused by a decrease in the linear selectivity of the resulting alcohol or thermal decomposition of the ligand. Disappearance is expected.
[0067] 本実施の形態における反応方式としては、攪拌槽型反応槽、又は気泡塔型反応槽 中で、連続式、半連続式、又はバッチ式操作のいずれでも容易に実施し得る。  [0067] As a reaction system in the present embodiment, any of a continuous type, semi-continuous type or batch type operation can be easily carried out in a stirred tank type reaction tank or a bubble column type reaction tank.
また、本実施の形態においては、ノルマルブタノール及びイソブチルアルデヒドの 収率がともに 10%以上であることが好ましい。  In the present embodiment, it is preferable that the yields of normal butanol and isobutyraldehyde are both 10% or more.
また、本実施の形態にぉレ、て、イソブチルアルデヒドの生成速度 F (mol/ hr)、イソ ブタノールの生成速度 F (mol/ hr)、ノルマルブチルアルデヒドの生成速度 F (mIn addition, in this embodiment, the production rate F (mol / hr) of isobutyraldehyde, Butanol production rate F (mol / hr), normal butyraldehyde production rate F (m
IBA NBD IBA NBD
ol/ hr)、及びノルマルブタノールの生成速度 F (mol /hr)が下記式(III)〜(V)を満 ol / hr) and normal butanol production rate F (mol / hr) satisfy the following formulas (III) to (V):
NBA  NBA
足するように反応器スケール、触媒の濃度、原料フィード量、反応温度、反応圧力等 の反応諸条件を選択することにある。 It is to select various reaction conditions such as reactor scale, catalyst concentration, feed amount, reaction temperature, and reaction pressure.
F ≥ 0.5 • (in)  F ≥ 0.5 • (in)
NBA NBD  NBA NBD
F ≥ 0.5 ■(IV)  F ≥ 0.5 (IV)
NBA IBA  NBA IBA
F ≥ 0.5 (V)  F ≥ 0.5 (V)
IBD IBA  IBD IBA
ここで生成速度について説明する。  Here, the generation speed will be described.
本発明の実施の態様として、ノルマルブタノールやイソブチルアルデヒドを併産す るプロセスは、そのコスト面での優位性から多くの場合流通反応プロセスをとることが 多!/、。この場合、反応系には原料のプロピレンが F (mol/hr)の供給速度で供給さ  As an embodiment of the present invention, a process that produces both normal butanol and isobutyraldehyde often takes a flow reaction process because of its cost advantage. In this case, the raw material propylene is supplied to the reaction system at a supply rate of F (mol / hr).
PPY  PPY
れる。一方、反応系中でヒドロホルミル化反応及びそれに続く水添反応によりイソプチ ルアルデヒド、ノルマルブチルアルデヒド、イソブタノール、ノルマルブタノールがそれ ぞれ生成し、反応系から各成分がそれぞれ F (mol/hr), F (mol/hr)、 F (mol/hr), It is. On the other hand, isoformaldehyde, normal butyraldehyde, isobutanol, and normal butanol are produced by the hydroformylation reaction and subsequent hydrogenation reaction in the reaction system, respectively, and each component from the reaction system is F (mol / hr), F (mol / hr), F (mol / hr),
IBD NBD IBA  IBD NBD IBA
F (mol/hr)の流量で流出する。一般に流通系における生成速度は、 {反応系から It flows out at a flow rate of F (mol / hr). In general, the production rate in the distribution system is {from the reaction system
NBA NBA
流出する量 (mol/hr)—反応系に流入する量 (mol/hr)}により算出される力 S、イソブチル ァノレデヒド、ノルマルブチルアルデヒド、イソブタノール、ノルマルブタノール等の目的 生成物を供給しない場合には、反応系から流出するそれぞれの成分の量、すなわち F 、 F 、 F , F (mol/hr)がそれぞれの成分の生成速度となる。 Outflow amount (mol / hr) —The amount calculated by the amount flowing into the reaction system (mol / hr)} When the desired product such as S, isobutyl aldehyde, normal butyraldehyde, isobutanol, normal butanol is not supplied The amount of each component flowing out from the reaction system, that is, F 1, F 2, F 3, and F (mol / hr) is the production rate of each component.
IBD NBD IBA NBA  IBD NBD IBA NBA
一方、回分反応プロセスにおいては、それぞれの成分に関して単位時間当たりの 増加分 (mol/hr)が生成速度となる。  On the other hand, in the batch reaction process, the increase rate (mol / hr) per unit time for each component is the production rate.
F /F の値を制御する方法としては、反応器の大きさ、反応に使用する触媒の Methods for controlling the F / F value include the size of the reactor and the catalyst used in the reaction.
NBA NBD NBA NBD
選定及びその触媒の濃度、原料フィード量、反応温度、反応圧力等の反応諸条件を 操作することによって、その値を制御すること力 sできる。また、イソブチルアルデヒドと ノルマルブタノールを併産する際のプロセスに応じて、これらの反応条件から最適な 条件を選定すれば、式 (in)の条件を満足させること可能となる。反応条件の選定の 指針としては、まず、アルデヒドに対して水素添加能力のある触媒系を採用すること が好ましい。また、この水素添加能力にやや乏しい触媒系の場合でも、反応器にお ける滞留時間をのばし、且つ、その触媒濃度を上げることが好ましい。更に、反応器 から流出する反応生成物からノルマルブチルアルデヒドを分離し、反応器にリサイク ルすることが好ましい。 F /F の値は、 0. 5以上である力 S、好ましくは、 0. 7以上、 By manipulating the reaction conditions such as selection and catalyst concentration, feed amount, reaction temperature, reaction pressure, etc., the value can be controlled. In addition, if the optimum conditions are selected from these reaction conditions according to the process in which isobutyraldehyde and normal butanol are co-produced, the condition of formula (in) can be satisfied. As a guideline for selecting reaction conditions, it is preferable to first employ a catalyst system capable of adding hydrogen to aldehyde. Even in the case of a catalyst system that is slightly poor in hydrogenation capacity, It is preferable to increase the residence time and increase the catalyst concentration. Furthermore, it is preferable that normal butyraldehyde is separated from the reaction product flowing out of the reactor and recycled to the reactor. The value of F / F is a force S that is 0.5 or more, preferably 0.7 or more,
NBA NBD  NBA NBD
更に好ましくは 1. 0以上である。 More preferably, it is 1.0 or more.
F /F の値を制御する方法としては、反応器の大きさ、反応に使用する触媒の Methods for controlling the F / F value include the size of the reactor and the catalyst used in the reaction.
NBA IBA NBA IBA
選定及びその触媒の濃度、原料フィード量、反応温度、反応圧力等の反応諸条件を 操作することによって、その値を制御すること力 sできる。また、イソブチルアルデヒドと ノルマルブタノールを併産する際のプロセスに応じて、これらの反応条件から最適な 条件を選定すれば、式 (IV)の条件を満足させること可能となる。反応条件の選定の 指針としては、まずイソ体に対してノルマル体の選択性が高!/、触媒系を採用すること が好ましい。また、イソブタノールはプロピレンからイソブチルアルデヒドを経由して逐 次的に生成するため、反応器における滞留時間を短くすることが好ましぐ触媒濃度 を下げることも好ましい。更に、反応器から流出する反応生成物からノルマルブチル アルデヒドを分離し、反応器にリサイクルすることが好ましい。 F /F の値は、 0. 5 By manipulating the reaction conditions such as selection and catalyst concentration, feed amount, reaction temperature, reaction pressure, etc., the value can be controlled. In addition, if the optimum conditions are selected from these reaction conditions according to the process when isobutyraldehyde and normal butanol are co-produced, the condition of formula (IV) can be satisfied. As a guideline for selecting the reaction conditions, it is preferable to employ a catalyst system that has a high selectivity for normal to the iso form. In addition, since isobutanol is produced sequentially from propylene via isobutyraldehyde, it is also preferable to reduce the catalyst concentration, which is preferable to shorten the residence time in the reactor. Furthermore, it is preferable that normal butyraldehyde is separated from the reaction product flowing out of the reactor and recycled to the reactor. The value of F / F is 0.5
NBA IBA  NBA IBA
以上であるが、好ましくは、 0. 7以上、更に好ましくは 1. 0以上である。 Although it is above, Preferably it is 0.7 or more, More preferably, it is 1.0 or more.
F /F の値を制御する方法としては、反応器の大きさ、反応に使用する触媒の Methods for controlling the F / F value include the size of the reactor and the catalyst used in the reaction.
IBD IBA IBD IBA
選定及びその触媒の濃度、原料フィード量、反応温度、及び反応圧力等の反応諸 条件を操作することによって、その値を制御すること力 sできる。また、イソブチルアル デヒドとノルマルブタノールを併産する際のプロセスに応じて、これらの反応条件から 最適な条件を選定すれば、式 (V)の条件を満足させること可能となる。反応条件の選 定の指針としては、イソブタノールはプロピレンからイソブチルアルデヒドを経由して 逐次的に生成するため、反応器における滞留時間を短くすることが好ましぐ触媒濃 度を下げること力 S好ましい。更に、反応器から流出する反応生成物からノルマルプチ ルアルデヒドを分離し、反応器にリサイクルすることが好ましい。 F /F の値は、 0. The value can be controlled by manipulating the reaction conditions such as selection and catalyst concentration, feed amount, reaction temperature, and reaction pressure. In addition, if the optimum conditions are selected from these reaction conditions according to the process when isobutyl aldehyde and normal butanol are co-produced, the condition of formula (V) can be satisfied. As a guideline for selecting reaction conditions, isobutanol is produced sequentially from propylene via isobutyraldehyde, so it is preferable to reduce the residence time in the reactor. . Furthermore, it is preferable that normal methyl aldehyde is separated from the reaction product flowing out of the reactor and recycled to the reactor. The value of F / F is 0.
IBD IBA  IBD IBA
5以上である力 S、好ましくは、 0. 7以上、更に好ましくは 1. 0以上である。  The force S is 5 or more, preferably 0.7 or more, more preferably 1.0 or more.
以上のことから、式 (III)から式 (V)を同時に満足させるためには、まず適切な触 媒系の選択し、力、つ選択した触媒系において滞留時間と触媒の濃度を調整すること が好ましい。また、ノルマルブチルアルデヒドの循環量、原料フィード量、反応温度、 及び反応圧力を調整することで式 (III)〜式 (V)を同時に満足させることも可能である From the above, in order to simultaneously satisfy the formulas (III) to (V), first select an appropriate catalyst system, and adjust the residence time and catalyst concentration in the selected catalyst system. Is preferred. In addition, normal butyraldehyde circulation rate, raw material feed rate, reaction temperature, It is also possible to satisfy equations (III) to (V) at the same time by adjusting the reaction pressure.
[0068] 次に、本実施の形態における反応フローについて説明する。 [0068] Next, the reaction flow in the present embodiment will be described.
図 1は、本実施の形態における反応フローを説明する図である。図 1には、反応器 2 、分離機 (第 1の蒸留塔) 5、分離機 (第 2の蒸留塔) 10、分離機 (第 3の蒸留塔) 14が 示されている。  FIG. 1 is a diagram for explaining a reaction flow in the present embodiment. FIG. 1 shows a reactor 2, a separator (first distillation column) 5, a separator (second distillation column) 10, and a separator (third distillation column) 14.
先ず、原料のプロピレン、水素及び一酸化炭素は、ライン 1により反応器 2に供給さ れる。これらの原料は、反応器 2に一括供給してもよいし、また別々に供給してもよい 。触媒液は、その殆どは循環触媒としてライン 8から反応器 2に供給してもよいし、ま た必要に応じてライン 9から供給してもよい。供給された原料は触媒存在下、反応器 2内で反応し、ノルマルブタノール及びイソブタノールを含む反応液が得られる。  First, the raw materials propylene, hydrogen and carbon monoxide are supplied to the reactor 2 via the line 1. These raw materials may be supplied to the reactor 2 all at once or may be supplied separately. Most of the catalyst solution may be supplied from the line 8 to the reactor 2 as a circulating catalyst, or may be supplied from the line 9 as necessary. The supplied raw material reacts in the reactor 2 in the presence of a catalyst to obtain a reaction liquid containing normal butanol and isobutanol.
[0069] 次に、未反応原料を含む反応液は、反応器 2の側部に設けたライン 4により反応器 [0069] Next, the reaction liquid containing the unreacted raw material is supplied to the reactor by the line 4 provided on the side of the reactor 2.
2から抜き出され、分離機 (第 1の蒸留塔) 5に供給される。その際、ガス成分もライン 4 を用いて分離機 (第 1の蒸留塔) 5に供給してもよいし、反応器 2の上部に設けたライ ン 3を用いて反応器 2にリサイクルしてもよ!/、し、またその全量あるいは一部を系外に パージしてもよい。  Extracted from 2 and supplied to the separator (first distillation column) 5. At that time, the gas component may be supplied to the separator (first distillation column) 5 using the line 4 or recycled to the reactor 2 using the line 3 provided at the top of the reactor 2. Moyo! /, And all or part of it may be purged out of the system.
[0070] また、反応器 2では、通常、溢流方式をとるので、触媒液も反応液と共にライン 4を 通じて分離機 (第 1の蒸留塔) 5に供給される。尚、ストリツビング方式をとる場合は、 触媒は反応器 2中に残り、触媒以外の成分が反応器 2から流出する。  [0070] In addition, since the reactor 2 normally uses an overflow method, the catalyst solution is also supplied to the separator (first distillation column) 5 through the line 4 together with the reaction solution. When the stripping method is used, the catalyst remains in the reactor 2 and components other than the catalyst flow out of the reactor 2.
好ましくは、第 8族〜第 10族金属化合物、有機リン化合物、プロトン性溶媒、ノルマ 低沸点化合物を含有する反応生成物が、反応器 2の側部に設けたライン 4を通じて 分離機 (第 1の蒸留塔) 5に供給される。  Preferably, a reaction product containing a Group 8 to Group 10 metal compound, an organophosphorus compound, a protic solvent, a normal low boiling point compound is separated through a line 4 provided on the side of the reactor 2 (first Of the distillation column).
[0071] 分離機 (第 1の蒸留塔) 5,分離機 (第 2の蒸留塔) 10,分離機 (第 3の蒸留塔) 14に おいて、未反応原料ォレフィン性化合物、生成物類、触媒等の分離が行われる。こ れら分離操作は、通常、単蒸留、精留、薄膜蒸留、水蒸気蒸留等の蒸留操作によつ てネ亍われる。 [0071] In the separator (first distillation column) 5, the separator (second distillation column) 10, the separator (third distillation column) 14, the unreacted raw material olefinic compound, products, Separation of the catalyst or the like is performed. These separation operations are usually carried out by distillation operations such as simple distillation, rectification, thin film distillation, and steam distillation.
蒸留条件は特に制限されるものではなぐ生成物の揮発性、熱安定性、及び触媒 成分の揮発性、熱安定性を考慮して望ましい結果が得られるように任意に設定され る力 通常、 50°C 300°Cの温度、 IMPa〜; ! · OOmmHgの圧力条件から選ばれる Distillation conditions are not particularly limited. Product volatility, thermal stability, and catalyst. Force arbitrarily set to obtain the desired result in consideration of the volatility and thermal stability of the components Usually selected at a temperature of 50 ° C 300 ° C, IMPa ~;! · Pressure condition of OOmmHg
[0072] 好ましくは、分離機 (第 1の蒸留塔) 5において蒸留分離により、分離機 (第 1の蒸留 び低沸点化合物を含有する留出液 (塔頂留出液)を抜き出し、分離機 (第 1の蒸留塔 ) 5の塔側に設けたライン 7によりノルマルブタノール及びイソブタノールを含有する液 を側流液として抜き出す。 [0072] Preferably, the separator (first distillation column) 5 is subjected to distillation separation to extract a separator (first distillation and a distillate containing a low-boiling point compound (column top distillate)). (First distillation column) A liquid containing normal butanol and isobutanol is withdrawn as a side stream through a line 7 provided on the column side of 5.
また、分離機 (第 1の蒸留塔) 5の塔底に設けたライン 8により、第 8族〜第 10族金属 化合物、有機リン化合物及びプロトン溶媒を含有する塔底液を反応器 2に循環させる  Also, the bottom liquid containing Group 8 to Group 10 metal compound, organophosphorus compound and proton solvent is circulated to reactor 2 through line 8 provided at the bottom of separator (first distillation column) 5. Make
[0073] 次に、分離機 (第 1の蒸留塔) 5の塔頂からライン 6により抜き出した留出液 (塔頂留 出液)を分離機 (第 2の蒸留塔) 10に流入させる。分離機 (第 2の蒸留塔) 10において 、分離機 (第 2の蒸留塔) 10の塔頂より低沸点化合物を留出液として抜き出し、分離 機 (第 2の蒸留塔) 10の塔側からイソブチルアルデヒドを側流液としてライン 12より抜 き出し、分離機 (第 2の蒸留塔) 10の塔底からノルマルブチルアルデヒドを塔底液とし てライン 13より抜き出す。 Next, the distillate (column distillate) extracted from the top of the separator (first distillation column) 5 through the line 6 is allowed to flow into the separator (second distillation column) 10. In the separator (second distillation column) 10, a low boiling point compound is withdrawn from the top of the separator (second distillation column) 10 as a distillate, and from the column side of the separator (second distillation column) 10. Isobutyraldehyde is withdrawn from line 12 as a side stream, and normal butyraldehyde is withdrawn from line 13 from the bottom of the separator (second distillation column) 10 as line bottom liquid.
この場合、分離機 (第 2の蒸留塔) 10の塔頂より抜き出される低沸点化合物 (留出 液)に未反応原料が含まれている場合、必要に応じ反応器 2に、全量もしくはその一 部をリサイクルしてもよい。  In this case, if unreacted raw materials are contained in the low boiling point compound (distillate) extracted from the top of the separator (second distillation column) 10, the entire amount or its Some may be recycled.
[0074] さらに、分離機 (第 1の蒸留塔) 5の塔側からライン 7により抜き出した側流液を分離 機 (第 3の蒸留塔) 14に流入させる。分離機 (第 3の蒸留塔) 14において、分離機 (第 3の蒸留塔) 14の塔頂に設けたライン 15により、イソブタノールを留出液として抜き出 し、分離機(第 3の蒸留塔) 14の塔底からノルマルブタノールを塔底液としてライン 16 から抜き出す。  [0074] Further, the side stream extracted from the column side of the separator (first distillation column) 5 through the line 7 is caused to flow into the separator (third distillation column) 14. In the separator (third distillation column) 14, isobutanol is extracted as a distillate through a line 15 provided at the top of the separator (third distillation column) 14, and the separator (third distillation column). Tower) Normal butanol is withdrawn from line 16 from the bottom of 14 as bottom liquid.
[0075] 図 2は、図 1の反応フローにおける好ましい態様を示す図である。即ち、図 2に示す ように、分離機 (第 2の蒸留塔) 10の塔底から塔底液として抜き出されるノルマルプチ ルアルデヒドのその全量または一部を、ライン 13により反応器 2にリサイクルしてもよ い。 FIG. 2 is a diagram showing a preferred embodiment in the reaction flow of FIG. That is, as shown in FIG. 2, the total amount or a part of the normal methyl aldehyde extracted as the bottom liquid from the bottom of the separator (second distillation column) 10 is recycled to the reactor 2 via the line 13. Do it Yes.
[0076] 図 3は、本実施の形態における第 2の反応フローを説明する図である。図 3には、反 応器 2、分離機 (第 1の蒸留塔) 5、分離機 (第 2の蒸留塔) 10が示されている。  FIG. 3 is a diagram for explaining a second reaction flow in the present embodiment. FIG. 3 shows a reactor 2, a separator (first distillation column) 5, and a separator (second distillation column) 10.
図 3に示すように、反応器 2において、第 8族〜第 10族金属化合物、有機リン化合 物、プロトン溶媒、ノルマルブタノール、イソブタノール、ノルマルブチルアルデヒド、ィ ソブチルアルデヒド及び低沸点化合物を含有する反応生成物流を得る。  As shown in Figure 3, reactor 2 contains Group 8 to Group 10 metal compounds, organophosphorus compounds, proton solvents, normal butanol, isobutanol, normal butyraldehyde, isobutyraldehyde, and low boiling point compounds. A reaction product stream is obtained.
[0077] 得られた反応生成物流は、反応器 2からライン 4を通じて分離機(第 1の蒸留塔) 5 に流入させる。続いて、分離機(第 1の蒸留塔) 5の塔頂から、イソブタノール、ノルマ ルブチルアルデヒド、イソブチルアルデヒド及び低沸点化合物を含有する塔頂留出 液をライン 6により抜き出し、分離機(第 1の蒸留塔) 5の塔側から、カレマルブタノ一 ルを側流液としてライン 7から抜き出し、分離機 (第 1の蒸留塔) 5の塔底から、第 8族 〜第 10族金属化合物、有機リン化合物及びプロトン溶媒を含有する塔底液を抜き出 し、これをライン 8を通じて反応器 2に循環させる。  [0077] The obtained reaction product stream is allowed to flow from the reactor 2 through the line 4 to the separator (first distillation column) 5. Subsequently, a column top distillate containing isobutanol, normal butyraldehyde, isobutyraldehyde and a low-boiling point compound is withdrawn from the top of the separator (first distillation column) 5 through a line 6, and the separator (first distillation column). (Distillation column 1) From the side of column 5, Kalemarubutanol was extracted as a side stream from line 7, and from the bottom of separator (first distillation column) 5, group 8 to group 10 metal compound, organic A column bottom liquid containing a phosphorus compound and a proton solvent is withdrawn and circulated through the line 8 to the reactor 2.
[0078] さらに、分離機 (第 1の蒸留塔) 5の塔頂から抜き出した塔頂留出液をライン 6により 分離機 (第 2の蒸留塔) 10に流入させる。続いて、分離機 (第 2の蒸留塔) 10の塔頂 より低沸点化合物を留出物としてライン 11より抜き出し、分離機 (第 2の蒸留塔) 10 の塔側からイソブチルアルデヒドを側流としてライン 12より抜き出し、分離機 (第 2の蒸 留塔) 10の塔底から、イソブタノール及びノルマルブチルアルデヒドを塔底液としてラ イン 13より抜き出す。  Further, the overhead distillate extracted from the top of the separator (first distillation column) 5 is caused to flow into the separator (second distillation column) 10 through the line 6. Subsequently, a low boiling point compound is withdrawn from the top of the separator (second distillation column) 10 as a distillate from line 11, and isobutyraldehyde is taken as a side stream from the column side of the separator (second distillation column) 10. Extract from line 12, and from isolator (normal distillation tower) 10 bottom, isobutanol and normal butyraldehyde are extracted from line 13 as bottom liquid.
[0079] この場合、分離機 (第 2の蒸留塔) 10の塔頂より抜き出される低沸点化合物に未反 応原料が含まれている場合、必要に応じ反応器 2に、全量もしくはその一部をリサイ クノレしてあよレヽ。  [0079] In this case, when the low-boiling compound extracted from the top of the separator (second distillation column) 10 contains unreacted raw materials, the reactor 2 is filled with the total amount or one of them as necessary. Recycle the club and get ready.
[0080] 図 4は、図 3の反応フローにおける好ましい態様を示す図である。即ち、図 4に示す ように、分離機 (第 2の蒸留塔) 10の塔底から塔底液としてライン 13より抜き出される イソブタノール及びノルマルブチルアルデヒドは、その全量または一部を分離機(第 3 の蒸留塔) 18に送られ、ノルマルブチルアルデヒドとイソブタノールとが分離される。 分離されたノルマルブチルアルデヒドは、分離機 (第 3の蒸留塔) 18の塔頂力も抜き 出され、その全量または一部が、ライン 19を用いて反応器 2にリサイクルされてもよい [0081] 上記のような金属化合物、有機リン化合物、プロトン性溶媒を用いて、上記のような 反応条件で反応を行うことにより、ノルマルブタノール及びイソブチルアルデヒドが高 収率で得られる。この得られた反応生成物は、以下のようにしてノルマルブタノール 及びイソブチルアルデヒドのそれぞれの製品として得ることができる。 FIG. 4 is a diagram showing a preferred embodiment in the reaction flow of FIG. That is, as shown in FIG. 4, the isobutanol and normal butyraldehyde extracted from the line 13 as the bottom liquid from the bottom of the separator (second distillation column) 10 are separated from the total amount or part of the separator ( (Third distillation column) 18 and normal butyraldehyde and isobutanol are separated. The separated normal butyraldehyde is also withdrawn from the top of the separator (third distillation column) 18, and all or a part thereof may be recycled to the reactor 2 using the line 19. [0081] Normal butanol and isobutyraldehyde are obtained in high yields by carrying out the reaction under the reaction conditions as described above using the metal compound, organophosphorus compound, and protic solvent as described above. The obtained reaction product can be obtained as normal butanol and isobutyraldehyde products as follows.
[0082] 以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明は、その 要旨を越えない限り以下の実施例に限定されるものではなレ、。  [0082] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples as long as it does not exceed the gist thereof.
実施例 1  Example 1
[0083] 触媒調製用のガラス容器に、窒素雰囲気下で Rh (acac) (CO) (11. 2mg、 0. 04 [0083] In a glass container for catalyst preparation, Rh ( acac ) (CO) (11.2 mg, 0.04 in a nitrogen atmosphere.
2  2
34mmol)、トリオクテノレホスフィン (64. dmg、 0. 174mmol、 Rh (acac) (CO) 1  34mmol), trioctenolephosphine (64.dmg, 0.174mmol, Rh (acac) (CO) 1
2 モルに対して 4モル)を仕込み、エタノール(11. 4ml、反応媒体の総重量に対して 8 3. 6重量%)とガスクロマトグラフィー分析用の内部標準である n—ヘプタン(0. 8ml) を加えて溶解させ、当該溶液を別途用意した内容量 50mlのステンレス鋼オートタレ ーブに窒素雰囲気下で仕込んだ。更にプロピレン(1. 15g、 27. 33mmol)を圧入し た後、オートクレープを密閉した。当該オートクレープを 120度まで昇温した後、水素 及び一酸化炭素の混合ガス(混合比:水素/一酸化炭素 = 1/1)を系内圧力が 2. OMPaになるように圧入して反応を開始した。なお、混合ガスはオートクレーブ内に 取り付けられたフィード管を通して、反応液中にパブリングさせながら導入し、反応液 の攪拌はオートクレープ内に磁性攪拌機を予め入れておき、磁性攪拌機を用いて攪 拌した。また、混合ガスは、反応器内でガスが消費され内圧が低下した場合には、蓄 圧器から二次圧力調整器を通して自動供給されるようにし、絶えず系内圧力が 2. 0 MPaに保てるようにした。反応は、蓄圧器の内圧をモニタリングし、ガス消費に伴う蓄 圧器の圧力低下がほぼ停止するまで継続した。  4 mol per 2 mol), ethanol (11.4 ml, 83.6 wt% based on the total weight of the reaction medium) and n-heptane (0.8 ml, internal standard for gas chromatography analysis) ) Was added and dissolved, and the solution was charged in a separately prepared 50 ml stainless steel autotarve under nitrogen atmosphere. Further, propylene (1.15 g, 27.33 mmol) was injected, and the autoclave was sealed. After raising the temperature of the autoclave to 120 ° C, the reaction was performed by injecting a mixed gas of hydrogen and carbon monoxide (mixing ratio: hydrogen / carbon monoxide = 1/1) so that the internal pressure was 2. OMPa. Started. The mixed gas was introduced through the feed tube attached in the autoclave while being published into the reaction solution, and the reaction solution was stirred with a magnetic stirrer placed in advance in the autoclave. . In addition, when the gas is consumed in the reactor and the internal pressure drops, the mixed gas is automatically supplied from the accumulator through the secondary pressure regulator, so that the internal pressure can be constantly maintained at 2.0 MPa. I made it. The reaction was monitored until the internal pressure of the pressure accumulator was monitored and the pressure drop due to gas consumption almost stopped.
反応終了後、オートクレープを室温まで冷却し、反応液を取り出してガスクロマトグ ラフィ一で分析し、生成物濃度を測定した。その結果、ノルマルブタノール収率は 56 . 5%、イソブチルアルデヒド収率は 16· 4%であった。  After completion of the reaction, the autoclave was cooled to room temperature, the reaction solution was taken out and analyzed by gas chromatography, and the product concentration was measured. As a result, the normal butanol yield was 56.5%, and the isobutyraldehyde yield was 16.4%.
(この他の物質の収率は、プロパン 0· 4%、ノルマルブチルアルデヒド 9· 7%、イソブ タノール 17. 0%であり、生成速度の比は、それぞれ F /F = 5.8, F /F = 3.3, F /F = 1.0であった。また、原料プロピレンのフィード量に対する生成速(The yields of these other substances are propane 0.4%, normal butyraldehyde 9-7%, isobutanol 17.0%, and the ratios of production rates are F / F = 5.8, F / F, respectively. = 3.3, F / F = 1.0. Also, the production rate relative to the feed amount of raw material propylene
IBD IBA IBD IBA
度の比は、それぞれ F /F =6.1, F /F = 1.8であった。  The ratio of degrees was F / F = 6.1 and F / F = 1.8, respectively.
PPY IBD PPY NBA  PPY IBD PPY NBA
実施例 2  Example 2
[0084] 実施例 1において、トリオクチルホスフインの添加量を 160· 9mg (0. 434mmol、 R h (acac) (CO) 1モルに対して 10モル)とした以外は同様にして反応を実施し、分  [0084] The reaction was carried out in the same manner as in Example 1, except that the amount of trioctylphosphine added was 160 · 9 mg (0.443 mmol, 10 mol relative to 1 mol of R h (acac) (CO)). And minutes
2  2
析を行った。なお、エタノールは反応媒体の総重量に対して 82. 8重量%であった。 その結果、ノルマルブタノール収率は 57. 3%、イソブチルアルデヒド収率は 12. 8% であり、生成速度の比は、それぞれ F /F =8.1, F /F =3.0, F /F =0  Analysis was performed. Ethanol was 82.8% by weight based on the total weight of the reaction medium. As a result, the normal butanol yield was 57.3%, the isobutyraldehyde yield was 12.8%, and the ratios of formation rates were F / F = 8.1, F / F = 3.0, and F / F = 0, respectively.
NBA NBD NBA IBA IBD IBA  NBA NBD NBA IBA IBD IBA
• 7であった。 また、原料プロピレンの反応器へのフィード量に対する生成速度の比は 、それぞれ F /F =7.8, F /F = 1.7であった。  • 7. The ratio of the production rate to the feed amount of the raw material propylene to the reactor was F / F = 7.8 and F / F = 1.7, respectively.
PPY IBD PPY NBA  PPY IBD PPY NBA
実施例 3  Example 3
[0085] 実施例 1において、反応温度を 140°C、反応圧力を 5MPaとした以外は同様にして 反応を実施し、分析を行った。なお、エタノールは反応媒体の総重量に対して 83. 6 重量%であった。その結果、ノルマルブタノール収率は 31. 2%、イソブチルアルデヒ ド収率は 27. 3%であり、生成速度の比は、それぞれ F /F = 1.0, F /F =3  [0085] In Example 1, the reaction was carried out and analyzed in the same manner except that the reaction temperature was 140 ° C and the reaction pressure was 5 MPa. Ethanol was 83.6% by weight based on the total weight of the reaction medium. As a result, the normal butanol yield was 31.2%, the isobutyl aldehyde yield was 27.3%, and the ratios of production rates were F / F = 1.0 and F / F = 3 respectively.
NBA NBD NBA IBA  NBA NBD NBA IBA
• 6、F /F =3.1であった。 また、原料プロピレンの反応器へのフィード量に対する • 6, F / F = 3.1. Also, relative to the feed amount of raw material propylene to the reactor
IBD IBA IBD IBA
生成速度の比は、それぞれ F /F =3.7, F /F =3.2であった。  The production rate ratios were F / F = 3.7 and F / F = 3.2, respectively.
PPY IBD PPY NBA  PPY IBD PPY NBA
実施例 4  Example 4
[0086] 実施例 1において、トリオクチルホスフインの添加量を 370· Omg (0. 998mmol、 R h (acac) (CO) 1モノレに対して 23モノレ)とし、反応温度を 160°C、反応圧力を 5MP  [0086] In Example 1, the amount of trioctylphosphine added was 370 · Omg (0. 998 mmol, R h (acac) (CO) 1 monole to 23 monole), and the reaction temperature was 160 ° C. Pressure 5MP
2  2
aとした以外は同様にして反応を実施し、分析を行った。なお、エタノールは反応媒 体の総重量に対して 81. 3重量%であった。その結果、ノルマルブタノール収率は 3 4. 8%、イソブチルアルデヒド収率は 23. 6%であり、生成速度の比は、それぞれ F  The reaction was carried out and analyzed in the same manner except for a. Ethanol was 81.3% by weight based on the total weight of the reaction medium. As a result, the normal butanol yield was 34.8% and the isobutyraldehyde yield was 23.6%.
NB  NB
/F = 1.5, F /F =2.4, F /F = 1.6であった。また、原料プロピレンの反 /F=1.5, F / F = 2.4, F / F = 1.6. In addition, the raw material propylene
A NBD NBA IBA IBD IBA A NBD NBA IBA IBD IBA
応器へのフィード量に対する生成速度の比は、それぞれ F /¥ =4.2, F ·  The ratio of the production rate to the feed amount to the reactor is F / ¥ = 4.2, F
PPY IBD PPY NBA  PPY IBD PPY NBA
= 2.9であった。  = 2.9.
実施例 5 [0087] 実施例 1において、トリオクチルホスフィンの代わりにトリェチルホスフィンを用い、そ の添加量を 51 · 3mg (0. 0434mmol、 Rh (acac) (CO) 1モルに対して 10モル)と Example 5 [0087] In Example 1, triethyl phosphine was used instead of trioctyl phosphine, and the addition amount was 51.3 mg (0.0434 mmol, 10 mol relative to 1 mol of Rh (acac) (CO)).
2  2
し、反応温度を 140°C、反応圧力を 5MPaとした以外は同様にして反応を実施し、分 析を行った。なお、エタノールは反応媒体の総重量に対して 83. 7重量%であった。 その結果、ノルマルブタノール収率は 51. 2%、イソブチルアルデヒド収率は 18. 4% であり、生成速度の比は、それぞれ F /F =3.9, F /F =3.3, F /F = 1  Then, the reaction was conducted in the same manner except that the reaction temperature was 140 ° C and the reaction pressure was 5 MPa, and the analysis was performed. Ethanol was 83.7% by weight based on the total weight of the reaction medium. As a result, the normal butanol yield was 51.2% and the isobutyraldehyde yield was 18.4%, and the ratios of formation rates were F / F = 3.9, F / F = 3.3, and F / F = 1, respectively.
NBA NBD NBA IBA IBD IBA  NBA NBD NBA IBA IBD IBA
• 2であった。 また、原料プロピレンの反応器へのフィード量に対する生成速度の比は 、それぞれ F /¥ =5.4, F /¥ =2.0であった。  • 2 The ratios of the production rate to the feed amount of the raw material propylene to the reactor were F / ¥ = 5.4 and F / ¥ = 2.0, respectively.
PPY IBD PPY NBA  PPY IBD PPY NBA
実施例 6  Example 6
[0088] 実施例 5において、トリェチルホスフィンの添加量を 20. 5mg (0. 174mmol、 Rh ( acac) (CO) 1モルに対して 4モル)とした以外は同様にして反応を実施し、分析を  [0088] In Example 5, the reaction was carried out in the same manner except that the amount of triethylphosphine added was 20.5 mg (0.174 mmol, 4 mol relative to 1 mol of Rh (acac) (CO)). Analysis
2  2
行った。なお、エタノールは反応媒体の総重量に対して 83. 9重量%であった。その 結果、ノルマルブタノール収率は 11. 0%、イソブチルアルデヒド収率は 30. 8%であ り、生成速度の比は、それぞれ F /F =0.2, F /F =3.1 , F /F =8.7で  went. Ethanol was 83.9% by weight based on the total weight of the reaction medium. As a result, the normal butanol yield was 11.0% and the isobutyraldehyde yield was 30.8%, and the ratios of formation rates were F / F = 0.2, F / F = 3.1 and F / F = 8.7, respectively. so
NBA NBD NBA IBA IBD IBA  NBA NBD NBA IBA IBD IBA
あった。また、原料プロピレンの反応器へのフィード量に対する生成速度の比は、そ れぞれ F /¥ =3.3, F /¥ =9.1であった。  there were. Further, the ratio of the production rate to the feed amount of the raw material propylene to the reactor was F / ¥ = 3.3 and F / ¥ = 9.1, respectively.
PPY IBD PPY NBA  PPY IBD PPY NBA
実施例 7  Example 7
[0089] 実施 ί列 5において、トリェチノレホスフィンの添カロ量を 30. 8mg (0. 260mmol、 Rh ( acac) (CO) 1モルに対して 6モル)とし、反応圧力を 2· 2MPaとした以外は同様に  [0089] In implementation column 5, the amount of added carotene of trietinolephosphine was 30.8 mg (0.260 mmol, 6 mol for 1 mol of Rh (acac) (CO)), and the reaction pressure was 2.2 MPa. The same except
2  2
して反応を実施し、分析を行った。なお、エタノールは反応媒体の総重量に対して 8 3. 8重量%であった。その結果、ノルマルブタノール収率は 18. 6%、イソブチルァ ルデヒド収率は 13· 7%であり、生成速度の比は、それぞれ F /F =0.6, F /  The reaction was carried out and analyzed. Ethanol was 83.8% by weight based on the total weight of the reaction medium. As a result, the normal butanol yield was 18.6%, the isobutyl aldehyde yield was 13.7%, and the production rate ratios were F / F = 0.6 and F / F, respectively.
NBA NBD NBA  NBA NBD NBA
F =5.2、 F /F =3.9であった。また、原料プロピレンの反応器へのフィード量に F = 5.2 and F / F = 3.9. In addition, the feed amount of raw material propylene to the reactor
IBA IBD IBA IBA IBD IBA
対する生成速度の比は、それぞれ F /F =7.3, F /F =5.4であった。  The ratios of the production rates were F / F = 7.3 and F / F = 5.4, respectively.
PPY IBD PPY NBA  PPY IBD PPY NBA
以下、実施例 8〜実施例 11においては、プロセスシミュレーション計算に基づく実 施例により、本発明をさらに詳細に説明する。  Hereinafter, in Examples 8 to 11, the present invention will be described in more detail by examples based on process simulation calculation.
実施例 8  Example 8
[0090] 図 1のプロセスについてシミュレーションを行った。 図 1において、プロピレンを 10kmol/hr、水素を 20kmol/hr、一酸化炭素を 10k mol/hrでライン 1から反応器 2に供給する。そして、実施例 1で調製した触媒で、溶 媒としてエタノールのかわりにノルマルブタノールを用い、触媒液は、ライン 8を通つ て 2, 000kg/hrで反応器 2に循環する。 [0090] A simulation was performed for the process of FIG. In Fig. 1, propylene is supplied at 10 kmol / hr, hydrogen is supplied at 20 kmol / hr, and carbon monoxide is supplied at 10 kmol / hr from line 1 to reactor 2. Then, in the catalyst prepared in Example 1, normal butanol is used as a solvent instead of ethanol, and the catalyst solution is circulated through the line 8 to the reactor 2 at 2,000 kg / hr.
反応は、温度 120°C、圧力 2MPaで行い、プロピレンの転化率は 100%、生成物の 選択率は、実施例 1の成績と同一とする。  The reaction is carried out at a temperature of 120 ° C. and a pressure of 2 MPa, the propylene conversion is 100%, and the product selectivity is the same as that of Example 1.
分離機 (第 1の蒸留塔) 5、分離機 (第 2の蒸留塔) 10、分離機 (第 3の蒸留塔) 14 はいずれも蒸留塔とし、各条件は表 1に示す。  The separator (first distillation column) 5, the separator (second distillation column) 10, and the separator (third distillation column) 14 are all distillation columns, and the conditions are shown in Table 1.
[表 1]  [table 1]
Figure imgf000029_0001
Figure imgf000029_0001
[0092] 以上の条件下でシミュレーションを行った結果を表 2に示す。 [0092] Table 2 shows the results of simulation under the above conditions.
[0093] [表 2]
Figure imgf000030_0001
[0093] [Table 2]
Figure imgf000030_0001
[0094] 尚、表中の略語は以下の通りである。なお、 Stream.No.は図に示されたプロセスの ライン番号に対応する。  [0094] Abbreviations in the table are as follows. Stream.No. Corresponds to the line number of the process shown in the figure.
PPA :プロパン  PPA: Propane
IBD:イソブチルアルデヒド  IBD: Isobutyraldehyde
NBA:ノルマルブタノール NBA: Normal butanol
IBA:イソブチルアルコール  IBA: Isobutyl alcohol
Total : PPA, IBD, NBD, NBA, IBAの合計  Total: Total of PPA, IBD, NBD, NBA, IBA
[0095] この結果、ライン 12からは、純度 99· 9wt%のイソブチルアルデヒド力 収率 15. 3 %で得られ、ライン 16から純度 99· 9wt%のノルマルブタノールが収率 55· 6%で得 られることが分かる。この反応系において生成する各成分のトータルの値から算出し た生成速度の比は、それぞれ F /F =5.9、 F /F =3.3、 F /F = 1.0 [0095] As a result, from line 12, an isobutyraldehyde power yield of 15.3% was obtained with a purity of 99.9% by weight, and normal butanol with a purity of 99.9% by weight was obtained from line 16 with a yield of 55.6%. You can see that The ratio of the production rate calculated from the total value of each component produced in this reaction system is F / F = 5.9, F / F = 3.3, F / F = 1.0, respectively.
NBA NBD NBA IBA IBD IBA  NBA NBD NBA IBA IBD IBA
であった。また、原料プロピレンの反応器へのフィード量に対する生成速度の比は、 それぞれ F /F =6.1, F /F = 1.8であった。  Met. The ratio of the production rate to the feed amount of the raw material propylene to the reactor was F / F = 6.1 and F / F = 1.8, respectively.
PPY IBD PPY NBA  PPY IBD PPY NBA
実施例 9  Example 9
[0096] 図 2のプロセスについてシミュレーションを行った。  [0096] A simulation was performed for the process of FIG.
図 2において、プロピレンを 10kmol/hr、 7_K素を 20kmol/hr、一酸化炭素を 10k mol/hrでライン 1から反応器 2に供給する。また実施例 1の触媒で、溶媒としてエタ ノールのかわりにノルマルブタノールを用い、触媒液は、ライン 8を通って 2, 000kg /hrで反応器 2に循環させる。 反応は、温度 120°C、圧力 2MPaで行い、プロピレンの転化率は 100%、生成物の 選択率は、実施例 1の成績と同一とする。 In Fig. 2, propylene is supplied at 10 kmol / hr, 7_K element is supplied at 20 kmol / hr, and carbon monoxide is supplied at 10 kmol / hr from line 1 to reactor 2. Further, in the catalyst of Example 1, normal butanol is used as a solvent instead of ethanol, and the catalyst solution is circulated through the line 8 to the reactor 2 at 2,000 kg / hr. The reaction is carried out at a temperature of 120 ° C. and a pressure of 2 MPa, the propylene conversion is 100%, and the product selectivity is the same as in Example 1.
また、ライン 13を通って反応器 2にリサイクルされたノルマルブチルアルデヒドは、反 応器 2内で全てノルマルブタノールに転化すると仮定した。  It was also assumed that normal butyraldehyde recycled to reactor 2 through line 13 was all converted to normal butanol in reactor 2.
分離機 (第 1の蒸留塔) 5、分離機 (第 2の蒸留塔) 10、分離機 (第 3の蒸留塔) 14は いずれも蒸留塔とし、各条件は表 3に示す。  The separator (first distillation column) 5, the separator (second distillation column) 10, and the separator (third distillation column) 14 are all distillation columns, and the conditions are shown in Table 3.
[表 3]  [Table 3]
Figure imgf000031_0001
Figure imgf000031_0001
[0098] 以上の条件下でシミュレーションを行った結果を表 4に示す。 [0098] Table 4 shows the results of simulation under the above conditions.
[0099] [表 4] Stream No. 4 6 7 8 1 1 1 2 1 3 1 5 1 6 [0099] [Table 4] Stream No. 4 6 7 8 1 1 1 2 1 3 1 5 1 6
生成速度  Generation speed
PPA [mol/Hr] 37.7 32.9 0.2 0.0 31.3 0.2 0.0 0.2 0.0  PPA [mol / Hr] 37.7 32.9 0.2 0.0 31.3 0.2 0.0 0.2 0.0
IBD /Hr 1635.5 1566.8 58.5 0.0 42.2 1524.2 0.4 58.5 0.0  IBD / Hr 1635.5 1566.8 58.5 0.0 42.2 1524.2 0.4 58.5 0.0
NBD mol/Hr 966.9 898.5 64.2 0.1 0.0 1.4 897.1 64.2 0.0  NBD mol / Hr 966.9 898.5 64.2 0.1 0.0 1.4 897.1 64.2 0.0
NBA mol/Hr 33489.7 0.0 6533.4 26956.3 0.0 0.0 0.0 84.6 6448.8  NBA mol / Hr 33489.7 0.0 6533.4 26956.3 0.0 0.0 0.0 84.6 6448.8
IBA [mol/Hr] 1726.4 0.5 1698.9 27.0 0.0 0.0 0.5 1692.5 6.4  IBA [mol / Hr] 1726.4 0.5 1698.9 27.0 0.0 0.0 0.5 1692.5 6.4
Total /Hrl 37856.1 2498.7 8355.3 26983.3 73.6 1525.7 898.0 1900.1 6455.1  Total / Hrl 37856.1 2498.7 8355.3 26983.3 73.6 1525.7 898.0 1900.1 6455.1
組成  Composition
PPA [wt%] 0.06 0.81 0.00 0.00 31.20 0.01 0.00 0.01 0.00  PPA [wt%] 0.06 0.81 0.00 0.00 31.20 0.01 0.00 0.01 0.00
IBD [wt%] 4.21 63.03 0.68 0.00 68.78 99.90 0.04 3.00 0.00  IBD [wt%] 4.21 63.03 0.68 0.00 68.78 99.90 0.04 3.00 0.00
NBD %l 2.49 36.14 0.75 0.00 0.01 0.09 99.90 3.29 0.00  NBD% l 2.49 36.14 0.75 0.00 0.01 0.09 99.90 3.29 0.00
NBA 「wt% 88.67 0.00 78.23 99.90 0.00 0.00 0.00 4.46 99.90  NBA `` wt% 88.67 0.00 78.23 99.90 0.00 0.00 0.00 4.46 99.90
IBA wt% 4.57 0.02 20.34 0.10 0.00 0.00 0.06 89.24 0.10  IBA wt% 4.57 0.02 20.34 0.10 0.00 0.00 0.06 89.24 0.10
Total %l 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00  Total% l 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
[0100] この結果、ライン 12力、らは、純度 99. 9wt%のイソブチルアルデヒド力 収率 15. 3 %で得られ、ライン 16から純度 99. 9wt%のノルマルブタノールが収率 64. 6%で得 られることが分かる。この反応系において生成する各成分のトータルの値から算出し た生成速度の比は、それぞれ F /F = 102.4、 F /F =3.8, F /F = 1.0  [0100] As a result, the line 12 force was obtained with a purity of 99.9 wt% isobutyraldehyde with a yield of 15.3%, and from the line 16, a normal butanol with a purity of 99.9 wt% was obtained 64.6% It can be seen that The ratio of the production rate calculated from the total value of each component produced in this reaction system is F / F = 102.4, F / F = 3.8, F / F = 1.0, respectively.
NBA NBD NBA IBA IBD IBA  NBA NBD NBA IBA IBD IBA
であった。また、原料プロピレンの反応器へのフィード量に対する生成速度の比は、 それぞれ F /¥ =6.2, F /¥ = 1.5であった。  Met. The ratio of the production rate to the feed amount of the raw material propylene to the reactor was F / ¥ = 6.2 and F / ¥ = 1.5, respectively.
PPY IBD PPY NBA  PPY IBD PPY NBA
実施例 10  Example 10
[0101] 図 3のプロセスについてシミュレーションを行った。  [0101] The process of Fig. 3 was simulated.
図 3において、プロピレンを 10kmol/hr、水素を 20kmol/hr、一酸化炭素を 10k mol/hrでライン 1から反応器 2に供給する。また実施例 1の触媒において、溶媒とし てエタノールのかわりにノルマルブタノールを用い、触媒液は、ライン 8を通って 2, 0 OOkg/hrで反応器 2に循環させる。  In Fig. 3, propylene is supplied at 10 kmol / hr, hydrogen is supplied at 20 kmol / hr, and carbon monoxide is supplied at 10 kmol / hr from line 1 to reactor 2. Further, in the catalyst of Example 1, normal butanol was used as a solvent instead of ethanol, and the catalyst solution was circulated through the line 8 to the reactor 2 at 2, 0 OO kg / hr.
反応は、温度 120°C、圧力 2MPaで行い、プロピレンの転化率は 100%、生成物の 選択率は、実施例 1の成績と同一と仮定する。  The reaction is carried out at a temperature of 120 ° C. and a pressure of 2 MPa. It is assumed that the conversion of propylene is 100% and the selectivity of the product is the same as that of Example 1.
分離機 (第 1の蒸留塔) 5、分離機 (第 2の蒸留塔) 10はいずれも蒸留塔とし、各条 件は表 5に示す。  The separator (first distillation tower) 5 and the separator (second distillation tower) 10 are both distillation towers, and the conditions are shown in Table 5.
[0102] [表 5] 分離機 No. 5 1 0 [0102] [Table 5] Separator No. 5 1 0
理 全段数 (段) 35 63  Total number of stages (stages) 35 63
5冊  5 books
濃縮段 (段) 16 32  Concentration stage (stage) 16 32
 Steps
数 回収段 (段) 19 31 圧 塔頂 (kPa) 88.4 64.2  Number Recovery stage (stage) 19 31 Pressure Tower top (kPa) 88.4 64.2
力 塔底 (kPa) 125.4 87.5  Force Tower bottom (kPa) 125.4 87.5
塔頂 (°c) 106.3 106.3  Tower top (° c) 106.3 106.3
塔底 (°c) 131.0 149.6  Tower bottom (° c) 131.0 149.6
フィ —ド量 (kg/Hr) 2733.4 31 7.8  Feed amount (kg / Hr) 2733.4 31 7.8
a; m(kg/Hr) 4599.3 1035.2  a; m (kg / Hr) 4599.3 1035.2
還流比 (kg/Hr) 14.4 108.4  Reflux ratio (kg / Hr) 14.4 108.4
留出量 (kg/Hr) 318.4 9.5  Distillate (kg / Hr) 318.4 9.5
側流量 (kg/Hr) (#19) 415.1 (#4) 1 10.0  Side flow rate (kg / Hr) (# 19) 415.1 (# 4) 1 10.0
缶出量 (kg/Hr) 2000.0 198.3  Canned amount (kg / Hr) 2000.0 198.3
[0103] 以上の条件下でシミュレーションを行った結果を表 6に示す。 [0103] Table 6 shows the results of simulation under the above conditions.
[0104] [表 6] [0104] [Table 6]
Figure imgf000033_0001
Figure imgf000033_0001
[0105] この結果、ライン 12からは、純度 99. 9wt%のイソブチルアルデヒド力 収率 15. 3 %で得られ、ライン 16から純度 99. 9wt%のノルマルブタノールが収率 56. 0%で得 られることが分かる。この反応系において生成する各成分のトータルの値から算出し た生成速度の比は、それぞれ F /F =5.8, F /F =3.3, F /F = 1.0で  As a result, from line 12, an isobutyraldehyde power yield of 15.3% was obtained with a purity of 99.9 wt%, and from line 16, a normal butanol with a purity of 99.9 wt% was obtained with a yield of 56.0%. You can see that The ratio of the production rate calculated from the total value of each component produced in this reaction system is F / F = 5.8, F / F = 3.3, F / F = 1.0, respectively.
NBA NBD NBA IBA IBD IBA  NBA NBD NBA IBA IBD IBA
あった。また、原料プロピレンの反応器へのフィード量に対する生成速度の比は、そ れぞれ F /F =6.1 , F /F = 1.8であった。 there were. The ratio of the production rate to the feed amount of the raw material propylene to the reactor is F / F = 6.1 and F / F = 1.8, respectively.
PPY IBD PPY NBA  PPY IBD PPY NBA
実施例 11  Example 11
[0106] 図 4のプロセスについてシミュレーションを行った。  [0106] The process of Fig. 4 was simulated.
図 4において、プロピレンを 10kmol/hr、水素を 20kmol/hr、一酸化炭素を 10k mol/hrでライン 1から反応器 2に供給する。また実施例 1の触媒で、溶媒としてエタ ノールのかわりにノルマルブタノールを用い、触媒液は、ライン 8を通って 2, 000kg /hrで反応器 2に循環させる。  In Fig. 4, propylene is supplied to reactor 2 from line 1 at 10 kmol / hr, hydrogen at 20 kmol / hr, and carbon monoxide at 10 kmol / hr. Further, in the catalyst of Example 1, normal butanol is used as a solvent instead of ethanol, and the catalyst solution is circulated through the line 8 to the reactor 2 at 2,000 kg / hr.
反応は、温度 120°C、圧力 2MPaで行い、プロピレンの転化率は 100%、生成物の 選択率は、実施例 1の成績と同一と仮定する。  The reaction is carried out at a temperature of 120 ° C. and a pressure of 2 MPa. It is assumed that the conversion of propylene is 100% and the selectivity of the product is the same as that of Example 1.
また、ライン 19を通って反応器 2にリサイクルされたノルマルブチルアルデヒドは、反 応器 2内で全てノルマルブタノールに転化すると仮定した。  It was also assumed that normal butyraldehyde recycled to reactor 2 through line 19 was all converted to normal butanol in reactor 2.
分離機 (第 1の蒸留塔) 5、分離機 (第 2の蒸留塔) 10、分離機 (第 3の蒸留塔) 18 はいずれも蒸留塔とし、各条件は表 7に示す。  The separator (first distillation column) 5, the separator (second distillation column) 10, and the separator (third distillation column) 18 are all distillation columns, and the conditions are shown in Table 7.
[0107] [表 7] 分離機 No. 5 1 0 1 8 [0107] [Table 7] Separator No. 5 1 0 1 8
理 全段数 (段) 35 63 28  Total number of stages (stages) 35 63 28
S冊  S books
濃縮段 (段) 16 32 16  Concentration stage (stage) 16 32 16
 Steps
数 回収段 (段) 19 31 12 圧 塔頂 (kPa) 88.4 64.3 76.3  Number Recovery stage (stage) 19 31 12 Pressure Tower top (kPa) 88.4 64.3 76.3
力 塔底 (kPa) 125.4 101.9 104.6  Force Tower bottom (kPa) 125.4 101.9 104.6
塔頂 (°c) 106.3 106.3 106.3  Tower top (° c) 106.3 106.3 106.3
度 塔底 (°c) 131.0 149.6 126.3  Degree Tower bottom (° c) 131.0 149.6 126.3
フィ —卜夏 (kg/Hn 2798.4 31 7.8 198.3  卜 — Summer (kg / Hn 2798.4 31 7.8 198.3
還流量 (kg/Hr) 4696.2 1034.9 189.9  Reflux (kg / Hr) 4696.2 1034.9 189.9
還流比 (kg/Hr) 14.8 108.5 1.3  Reflux ratio (kg / Hr) 14.8 108.5 1.3
留出量 (kg/Hr) 318.4 9.5 140.6  Distillate (kg / Hr) 318.4 9.5 140.6
側流量 (kg/Hr) (#19) 480.0 (#4) 1 10.0 一  Side flow rate (kg / Hr) (# 19) 480.0 (# 4) 1 10.0
缶出量 (kg/Hr) 2000.0 198.3 134.9 [0108] 以上の条件下でシミュレーションを行った結果を表 8に示す。 Canned amount (kg / Hr) 2000.0 198.3 134.9 [0108] Table 8 shows the results of simulation under the above conditions.
[0109] [表 8] [0109] [Table 8]
Figure imgf000035_0001
Figure imgf000035_0001
[0110] この結果、ライン 12からは、純度 99. 9wt%のイソブチルアルデヒド力 収率 15. 3 %で得られ、ライン 7から純度 99. 9wt%のノルマルブタノールが収率 64. 8%で得ら れること力 S分力、る。この反応系において生成する各成分のトータルの値から算出した 生成速度の比は、それぞれ F /F =73.4, F /F =3.8, F /F = 1.0であ  As a result, from line 12, an isobutyraldehyde power yield of 15.3% was obtained with a purity of 99.9 wt%, and normal butanol with a purity of 99.9 wt% was obtained from line 7 with a yield of 64.8%. The power that can be obtained. The ratio of the production rate calculated from the total value of each component produced in this reaction system is F / F = 73.4, F / F = 3.8, F / F = 1.0, respectively.
NBA NBD NBA IBA IBD IBA  NBA NBD NBA IBA IBD IBA
つた。また、原料プロピレンの反応器へのフィード量に対する生成速度の比は、それ ぞれ F I got it. In addition, the ratio of the production rate to the feed amount of raw material propylene to the reactor is F
Y /¥ =6.1, F  Y / ¥ = 6.1, F
IBD PPY /¥ = 1.5であった。  IBD PPY /¥=1.5.
PP NBA  PP NBA
[0111] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら 力、である。  [0111] Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. It is.
本出願 (ま、 2006年 11月 9曰出願の曰本特許出願(特願 2006— 304151) ίこ基づ くものであり、その内容はここに参照として取り込まれる。  This application is based on this patent application (patent application No. 2006-304151) filed on Nov. 9, 2006, the contents of which are incorporated herein by reference.
産業上の利用可能性  Industrial applicability
[0112] 本発明によれば、ノルマルブタノールとイソブチルアルデヒドとを併産することができ る。 よって、本発明の工業的価値は顕著である。  [0112] According to the present invention, normal butanol and isobutyraldehyde can be produced together. Therefore, the industrial value of the present invention is remarkable.

Claims

請求の範囲 The scope of the claims
[1] 周期表の第 8族〜第 10族に属する金属元素の化合物を含有する触媒の存在下、 プロトン溶媒中でプロピレンを水素及び一酸化炭素と反応させ、ノルマルブタノール とイソブチルアルデヒドを共に収率 10%以上で生成することを特徴とするノルマルブ タノールとイソブチルアルデヒドの併産方法。  [1] Propylene is reacted with hydrogen and carbon monoxide in a proton solvent in the presence of a catalyst containing a metal element compound belonging to Group 8 to Group 10 of the periodic table, and both normal butanol and isobutyraldehyde are collected. A method for co-production of normal butanol and isobutyraldehyde, characterized in that it is produced at a rate of 10% or more.
[2] 周期表の第 8族〜第 10族に属する金属元素の化合物を含有する触媒の存在下、 プロトン溶媒中でプロピレンを水素及び一酸化炭素と反応させ、ノルマルブタノール とイソブチルアルデヒドを併産するにあたり、反応系へのプロピレンの供給速度 F (  [2] Propylene is reacted with hydrogen and carbon monoxide in a protic solvent in the presence of a catalyst containing a metal element compound belonging to Group 8 to Group 10 of the Periodic Table to produce both normal butanol and isobutyraldehyde. In doing so, the supply rate of propylene to the reaction system F (
PPY  PPY
mol/hr)とイソブチルアルデヒドの生成速度 F (mol/ hr)が下記式 (I)を満足するノル
Figure imgf000036_0001
mol / hr) and isobutyraldehyde formation rate F (mol / hr) satisfying the following formula (I)
Figure imgf000036_0001
≤ F ≤ 10. 0 (I)  ≤ F ≤ 10. 0 (I)
PPY IBD  PPY IBD
[3] 反応系へのプロピレンの供給速度 F (mol/hr)とノルマルブタノールの生成速度 F  [3] Propylene feed rate F (mol / hr) and normal butanol production rate F to the reaction system
PPY  PPY
( mo 下記式 (Π)を満足する請求項 1又は 2に記載の併産方法。  (mo The co-production method according to claim 1 or 2, which satisfies the following formula (ii).
BA  BA
≤ F ≤ 10. 0 (II)  ≤ F ≤ 10. 0 (II)
PPY NBA  PPY NBA
[4] 〉生成速度 F (mo 、イソブタノールの生成速度 F (m  [4]〉 Formation rate F (mo, Isobutanol formation rate F (m
IBD IBA  IBD IBA
〉生成速度 F (mo  〉 Generation rate F (mo
NBD  NBD
ールの生成速度 F うが下記式 (III)〜 (V)を満足することを特徴とする請  The production rate F of the fuel satisfies the following formulas (III) to (V):
NBA  NBA
求項 1又は 2に記載の併産方法。  The co-production method according to claim 1 or 2.
F ≥ 0. 5 • (in)  F ≥ 0.5 • (in)
NBA NBD  NBA NBD
F ≥ 0. 5 ■(IV)  F ≥ 0.5 (IV)
NBA IBA  NBA IBA
F ≥ 0. 5 (V)  F ≥ 0.5 (V)
IBD IBA  IBD IBA
[5] (A工程):反応器中、周期表の第 8族〜第 10族に属する金属元素の化合物を含 有する前記触媒の存在下、プロトン溶媒中でプロピレンを水素及び一酸化炭素と反 応させ、第 8族〜第 10族に属する金属元素の前記化合物、有機リン化合物、プロトン 溶媒、ノルマルブタノール、イソブタノール、ノルマルブチルアルデヒド、イソブチルァ ルデヒド及び低沸点化合物を含有する反応生成物流を得る工程と、  [5] (Step A): Propylene is reacted with hydrogen and carbon monoxide in a proton solvent in the presence of the catalyst containing a metal element compound belonging to Groups 8 to 10 of the periodic table in the reactor. And obtaining a reaction product stream containing the above-mentioned compounds of metal elements belonging to Group 8 to Group 10, organophosphorus compounds, proton solvents, normal butanol, isobutanol, normal butyraldehyde, isobutyl aldehyde, and low boiling point compounds. When,
(B工程):前記 A工程で得られた前記反応生成物流を第 1の蒸留塔に流入させ、 当該第 1の蒸留塔の塔頂 低低沸沸点点化化合合物物をを含含有有すするる塔塔頂頂留留出出液液をを抜抜きき出出しし、、ノノルルママルルブブタタノノーールル及及びびイイソソブブタタノノ ーールルをを含含有有すするる液液をを側側流流液液ととししてて抜抜きき出出しし、、第第 88族族〜〜第第 1100族族にに属属すするる金金属属元元素素のの化化 合合物物及及びび有有機機リリンン化化合合物物をを含含有有すするる塔塔底底液液をを前前記記反反応応器器にに循循環環ささせせるる工工程程とと、、(Step B): The reaction product stream obtained in Step A is introduced into the first distillation column, and the top of the first distillation column is A column top distillate containing a low and low boiling point compound is extracted and extracted, and then, The liquid containing and containing butabutanol is extracted as a side-stream liquid and extracted, and it belongs to Group 88 to Group 1100. The reaction of the bottom liquid liquid of the tower column containing the compound of the elemental element of the gold metal genus and the organic phosphorus-containing compound and the organic phosphorus-containing compound is described above. A process that allows the instrument to circulate and circulate,
((CC工工程程))::前前記記 BB工工程程でで得得らられれたた前前記記塔塔頂頂留留出出液液をを第第 22のの蒸蒸留留塔塔にに流流入入ささせせ、、当当 該該第第 22のの蒸蒸留留塔塔のの塔塔頂頂よよりり低低沸沸点点化化合合物物をを留留出出液液ととししてて抜抜きき出出しし、、イイソソブブチチルルアアルルデデ ヒヒドドをを側側流流液液ととししてて抜抜きき出出しし、、ノノルルママルルブブチチルルアアルルデデヒヒドドをを塔塔底底液液ととししてて抜抜きき出出すす工工程程 とと、、 ((CC process step)) :: The above-mentioned tower top distillate obtained in the above-mentioned BB process step is used as the 22nd distillation column tower. And the low-boiling-point boiling point compound from the top of the twenty-second distillation distillation tower is distilled off. And extract it as a side-flowing liquid, and extract it as a side stream liquid, and then extract it into a non-normarum butyl butyryl aldede. A process of extracting and extracting hydride as a liquid at the bottom of the tower,
((DD工工程程))::前前記記 BB工工程程でで得得らられれたた前前記記側側流流液液をを第第 33のの蒸蒸留留塔塔にに流流入入ささせせ、、当当該該第第 33 のの蒸蒸留留塔塔のの塔塔頂頂よよりりイイソソブブタタノノーールルをを留留出出液液ととししてて抜抜きき出出しし、、ノノルルママルルブブタタノノーールルをを塔塔 底底液液ととししてて抜抜きき出出すす工工程程とと、、をを有有すするるここととをを特特徴徴ととすするる請請求求項項 11又又はは 22にに記記載載ののカカレレママ ルルブブタタノノーールルととイイソソブブチチルルアアルルデデヒヒドドのの併併産産方方法法。。  ((DD process step)) :: The above-mentioned side stream liquid obtained in the above-mentioned BB process step flows into the 33rd distillation column tower. From the top of the thirty-third distillation distillation tower, the isosorb butanol is extracted as the distillation liquid. And a process step of extracting and extracting the nonorle mamarrub butabutanolol as a liquid liquid at the bottom of the tower, and Co-productive production of Kacarelemama rurubutabutanoorru and isisobubutytilularrudedehydride as described in claim 11 or 22 Method method. .
[[66]] 前前記記 CC工工程程でで得得らられれたた塔塔底底液液をを前前記記反反応応器器にに循循環環ささせせるるここととをを特特徴徴ととすするる請請求求項項 55 にに記記載載ののノノルルママルルブブタタノノーールルととイイソソブブチチルルアアルルデデヒヒドドのの併併産産方方法法。。 [[66]] The above-mentioned reaction liquid reactor is used to circulate the tower bottom liquid liquid obtained in the CC process mentioned above in the reaction reactor described above. A method for the co-production of nonorlumarmalbubutanonolulu and isosobubutyrylruarrudedehydride as described in claim 55, which is a characteristic feature. .
[[77]] ((AA工工程程))::反反応応器器中中、、周周期期表表のの第第 88族族〜〜第第 1100族族にに属属すするる金金属属元元素素のの化化合合物物をを含含 有有すするる前前記記触触媒媒のの存存在在下下、、ププロロトトンン溶溶媒媒中中ででププロロピピレレンンをを水水素素及及びび一一酸酸化化炭炭素素とと反反 応応ささせせ、、第第 88族族〜〜第第 1100族族にに属属すするる金金属属元元素素のの前前記記化化合合物物、、有有機機リリンン化化合合物物、、ププロロトトンン 溶溶媒媒、、ノノルルママルルブブタタノノーールル、、イイソソブブタタノノーールル、、ノノルルママルルブブチチルルアアルルデデヒヒドド、、イイソソブブチチルルァァ ルルデデヒヒドド及及びび低低沸沸点点化化合合物物をを含含有有すするる反反応応生生成成物物流流をを得得るる工工程程とと、、 [[77]] ((AA process)) :: In the reaction reactor, gold belonging to Group 88 to Group 1100 of the periodic table In the presence of the catalyst catalyst medium, the propylopirylene is removed in the presence of the catalyst catalyst medium in the presence of the catalyst catalyst compound. Reacts with hydrogen and hydrogenated monocarbon and carbon monoxide, and the elements of gold metal genus elements belonging to Group 88 to Group 1100. The above-mentioned chemical compound, organic organic relinned compound, propylotoneton solvent medium, nonorumumarububutanonolulu, isosobubutanonolulu, nonorlumamarububutyryl Containing arrudedehydride, isoisobutybutyl aldehyde, and low-boiling point compound A process for obtaining a reaction flow of reaction product and product flow,
((ΒΒ''工工程程))::前前記記 ΑΑ工工程程でで得得らられれたた前前記記反反応応生生成成物物流流をを第第 11のの蒸蒸留留塔塔にに流流入入ささせせ、、 当当該該第第 11のの蒸蒸留留塔塔のの塔塔頂頂よよりりイイソソブブタタノノーールル、、ノノルルママルルブブチチルルアアルルデデヒヒドド、、イイソソブブチチルル アアルルデデヒヒドド、、及及びび低低沸沸点点化化合合物物をを含含有有すするる塔塔頂頂留留出出液液をを抜抜きき出出しし、、ノノルルママルルブブタタノノ一一 ルルをを側側流流液液ととししてて抜抜きき出出しし、、第第 88族族〜〜第第 1100族族にに属属すするる金金属属のの化化合合物物及及びび有有機機リリンン化化 合合物物をを含含有有すするる塔塔底底液液をを前前記記反反応応器器にに循循環環ささせせるる工工程程とと、、  ((ΒΒ''construction process)) :: The above reaction reaction product product stream obtained in the above-mentioned process is used as the eleventh distillation distillation column. In the first eleventh distillation distillation column, the top of the top of the eleventh distillation distillation column is lysosobbutabutanol. Draw off the top distillate from the top of the column containing dodo, bisisobutylbutyryl, allyldehydride, and low low boiling point compound. Extracted and extracted nonoruru mamarurububutanonoru ruru as side stream liquid liquid, and from the 88th group to the 1100th group The reaction liquid reactor described above is used to remove the bottom liquid liquid of the tower column containing the compound compound of the genus Gold metal and the organic phosphorus compound. Circulate in the vessel With the process of making the circulation ring,
((CC''工工程程))::前前記記 BB''工工程程でで得得らられれたた前前記記塔塔頂頂留留出出液液をを第第 22のの蒸蒸留留塔塔にに流流入入ささせせ、、 当当該該第第 22のの蒸蒸留留塔塔のの塔塔頂頂よよりり低低沸沸点点化化合合物物をを留留出出液液ととししてて抜抜きき出出しし、、イイソソブブチチルルアアルル デデヒヒドドをを側側流流ととししてて抜抜きき出出しし、、イイソソブブタタノノーールル及及びびノノルルママルルブブチチルルアアルルデデヒヒドドをを塔塔底底液液 ととししてて抜抜きき出出すす工工程程とと、、をを有有すするるここととをを特特徴徴ととすするる請請求求項項 55にに記記載載ののノノルルママルルブブタタノノ一一 * [8] 前記 C'工程で得られた塔底液を前記反応器に循環させることを特徴とする請求項 7に記載の併産方法。 ((CC '' process step)) :: The above-mentioned tower top distillate obtained in the above-mentioned BB '' process step is used as the 22nd steam. The distilling column is allowed to flow into the distillation column, and the low-boiling-point boiling point compound is distilled from the top of the 22nd steam distillation column. Extracted and discharged as the effluent liquid, extracted and extracted with isoisobutybutyryl arrualdedehydride as a side stream, and isoisobutabutanol And a process for extracting and extracting the nonorlumalalbutbutyrylrualdedehydride as the liquid at the bottom of the tower. As described in claim 55, which is a special feature 8. The co-production method according to claim 7, wherein the column bottom liquid obtained in the step C ′ is circulated to the reactor.
[9] 周期表の第 8族〜第 10族に属する前記金属元素が、ロジウムであることを特徴とす る請求項 1又は 2に記載の併産方法。  [9] The co-production method according to claim 1 or 2, wherein the metal element belonging to Group 8 to Group 10 of the periodic table is rhodium.
[10] 周期表の第 8族〜第 10族に属する金属元素の化合物を含有する前記触媒が、配 位子として有機リン化合物を含有することを特徴とする請求項 1又は 2に記載の併産 方法。 [10] The combined production according to claim 1 or 2, wherein the catalyst containing a compound of a metal element belonging to Group 8 to Group 10 of the periodic table contains an organophosphorus compound as a ligand. Method.
[11] 前記有機リン化合物が、アルキルホスフィンであることを特徴とする請求項 10に記 載の併産方法。  11. The co-production method according to claim 10, wherein the organophosphorus compound is an alkyl phosphine.
PCT/JP2007/069711 2006-11-09 2007-10-09 Process for coproduction of normal butanol and isobutyraldehyde WO2008056501A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BRPI0718007-1A BRPI0718007B1 (en) 2006-11-09 2007-10-09 METHOD OF CO-PRODUCTION OF NORMAL BUTANOL AND ISOBUTYLIC VILLAGE
CN2007800364966A CN101522598B (en) 2006-11-09 2007-10-09 Process for coproduction of normal butanol and isobutyraldehyde

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006304151 2006-11-09
JP2006-304151 2006-11-09

Publications (1)

Publication Number Publication Date
WO2008056501A1 true WO2008056501A1 (en) 2008-05-15

Family

ID=39364325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069711 WO2008056501A1 (en) 2006-11-09 2007-10-09 Process for coproduction of normal butanol and isobutyraldehyde

Country Status (6)

Country Link
JP (1) JP2008137996A (en)
KR (1) KR101539779B1 (en)
CN (1) CN101522598B (en)
BR (1) BRPI0718007B1 (en)
TW (1) TWI399364B (en)
WO (1) WO2008056501A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102267880A (en) * 2010-06-01 2011-12-07 中国石油化工集团公司 Apparatus for switchable production of by products of isobutanol and isobutyraldehyde
CN102267873A (en) * 2010-06-01 2011-12-07 中国石油化工集团公司 Method capable of switching by-product isobutanol or isobutyraldehyde
US10435346B2 (en) 2016-04-21 2019-10-08 Johnson Matthey Davy Technologies Limited Process for the distillation of an aldehyde mixture
GB2575146A (en) * 2018-04-13 2020-01-01 Johnson Matthey Davy Technologies Ltd Process

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101338646B1 (en) * 2010-03-03 2013-12-06 주식회사 엘지화학 A process for production of aldehyde having high yield from olefin
KR101253219B1 (en) 2011-05-12 2013-04-16 (주)클레슨 A large size box for automatic washing machine and automatic washing machine of washing method
WO2014112810A1 (en) 2013-01-16 2014-07-24 주식회사 엘지화학 Device for preparing alkanol
CN107032953B (en) * 2017-05-10 2023-08-04 张家港市华昌新材料科技有限公司 Device and conversion method suitable for octanol and butanol conversion production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026566A (en) * 1999-06-02 2001-01-30 Oxeno Olefinchemie Gmbh Method for catalytically performing multiphase reaction and use of the resultant reaction product
JP2001163820A (en) * 1999-11-30 2001-06-19 Oxeno Olefinchemie Gmbh Method for hydroformylation of olefin

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1206063A (en) * 1967-10-24 1970-09-23 Montedison Spa Hydroformylation of olefins

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026566A (en) * 1999-06-02 2001-01-30 Oxeno Olefinchemie Gmbh Method for catalytically performing multiphase reaction and use of the resultant reaction product
JP2001163820A (en) * 1999-11-30 2001-06-19 Oxeno Olefinchemie Gmbh Method for hydroformylation of olefin

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102267880A (en) * 2010-06-01 2011-12-07 中国石油化工集团公司 Apparatus for switchable production of by products of isobutanol and isobutyraldehyde
CN102267873A (en) * 2010-06-01 2011-12-07 中国石油化工集团公司 Method capable of switching by-product isobutanol or isobutyraldehyde
CN102267873B (en) * 2010-06-01 2013-11-06 中国石油化工集团公司 Method capable of switching by-product isobutanol or isobutyraldehyde
CN102267880B (en) * 2010-06-01 2013-11-06 中国石油化工集团公司 Apparatus for switchable production of by products of isobutanol and isobutyraldehyde
US10435346B2 (en) 2016-04-21 2019-10-08 Johnson Matthey Davy Technologies Limited Process for the distillation of an aldehyde mixture
GB2575146A (en) * 2018-04-13 2020-01-01 Johnson Matthey Davy Technologies Ltd Process
GB2575146B (en) * 2018-04-13 2021-12-22 Johnson Matthey Davy Technologies Ltd Process for the production of normal butanol, iso-butanol and 2-alkyl alkanol
US11312674B2 (en) 2018-04-13 2022-04-26 Johnson Matthey Davy Technologies Limited Process for making a feed of normal butanol, iso-butanol and 2-alkyl alkanol

Also Published As

Publication number Publication date
KR101539779B1 (en) 2015-07-27
JP2008137996A (en) 2008-06-19
TW200827329A (en) 2008-07-01
KR20090078779A (en) 2009-07-20
BRPI0718007B1 (en) 2017-10-24
TWI399364B (en) 2013-06-21
CN101522598A (en) 2009-09-02
CN101522598B (en) 2012-06-27
BRPI0718007A2 (en) 2013-11-19

Similar Documents

Publication Publication Date Title
US7935850B2 (en) Process for hydroformylation of propylene
KR102507703B1 (en) Hydroformylation process
KR830001167B1 (en) Hydroformylation Method for Making n-Valer Aldehyde
CN102741209B (en) Controlling the normal:iso aldehyde ratio in a mixed ligand hydroformylation process by controlling the olefin partial pressure
CN102741210B (en) Control the positive structure in mixed ligand hydroformylation process: isomery aldehyde ratio
EP0096986B1 (en) Hydroformylation process
WO2008056501A1 (en) Process for coproduction of normal butanol and isobutyraldehyde
CN102365258B (en) Hydroformylation process with a doubly open-ended bisphosphite ligand
CN102753511B (en) Controlling the normal:iso aldehyde ratio in a mixed ligand hydroformylation process by controlling the syngas partial pressure
CA1090823A (en) Cyclic hydroformylation process
CN104725170A (en) Hydroformylation process
US10478812B2 (en) Methods to store transition metal organophosphorous ligand based catalysts
CN113179638B (en) Hydroformylation process
JP6516670B2 (en) Method of replenishing catalyst in continuous hydroformylation
US11370737B2 (en) Co-feeding ethylene with allyl alcohol in hydroformylation to make 1,4-butanediol and n-propanol
JP5487537B2 (en) Method for producing alcohol
JPH06279345A (en) Production of hydroxybutyraldehyde
JPH0662480B2 (en) Method for producing α, ω-dialdehyde
JP2014189525A (en) Method for producing linear dialdehyde
JP2006312612A (en) Method for producing alcohol
KR20230115558A (en) Hydroformylation process

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036496.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829449

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097005310

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2596/DELNP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0718007

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090427