[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008041700A1 - Dispositif de disque optique - Google Patents

Dispositif de disque optique Download PDF

Info

Publication number
WO2008041700A1
WO2008041700A1 PCT/JP2007/069283 JP2007069283W WO2008041700A1 WO 2008041700 A1 WO2008041700 A1 WO 2008041700A1 JP 2007069283 W JP2007069283 W JP 2007069283W WO 2008041700 A1 WO2008041700 A1 WO 2008041700A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
defect
data
recording
optical disc
Prior art date
Application number
PCT/JP2007/069283
Other languages
English (en)
French (fr)
Inventor
Shinichi Kimura
Hiroshi Ueda
Kiyohiko Tamai
Kenji Takauchi
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to EP07829023.6A priority Critical patent/EP2073208A4/en
Priority to JP2008537533A priority patent/JPWO2008041700A1/ja
Priority to US12/443,990 priority patent/US20100097903A1/en
Publication of WO2008041700A1 publication Critical patent/WO2008041700A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1883Methods for assignment of alternate areas for defective areas
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/0037Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs
    • G11B7/00375Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs arrangements for detection of physical defects, e.g. of recording layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1883Methods for assignment of alternate areas for defective areas
    • G11B2020/1893Methods for assignment of alternate areas for defective areas using linear replacement to relocate data from a defective block to a non-contiguous spare area, e.g. with a secondary defect list [SDL]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2541Blu-ray discs; Blue laser DVR discs

Definitions

  • the present invention relates to an optical disc apparatus and an optical disc defect management method, and in particular, when a recording error is caused by a recording area having a defect over a wide area such as a bubble, depending on the size of the defect area.
  • the present invention relates to a technology for performing defect replacement processing.
  • a known optical disc is an information recording medium having a sector structure.
  • Optical disks can be broadly classified into three types according to their characteristics. The first is a read-only disc, in which data is recorded by the unevenness of the disc, and the user can not record data newly.
  • the second is a write-once type disk that has an organic dye or the like as a recording film and can record data only once.
  • the third is a rewritable disc provided with a phase change material or the like as a recording film and capable of recording (rewriting) a plurality of times.
  • AV data audio and video data
  • the recording layer secures about twice the capacity of one optical disc by forming two recording layers on one optical disc.
  • FIG. 11 shows an area layout of the recording layer 21 provided in the conventional rewritable optical disc.
  • a disc information area 26 and a defect management area 27 (DMA) are provided in the recording layer 21 and the lead-in area 22 shown in FIG. Further, in the lead-out area 25, a defect management area 27 is provided. Also, spare areas 23 are provided between the lead-in area 22 and the user data area 24 and between the user data area 24 and the lead-out area 25 respectively.
  • the disk information area 26 stores information on parameters and physical characteristics necessary for recording and reproduction of data on the optical disk.
  • the defect management area 27 and the spare area 23 can not correctly record / reproduce on the user data area 24! /,
  • the sector (this is called a defective sector) is in the state! It is an area prepared for defect management that alternates between sectors.
  • Spare area 23 is an area including a sector for replacing a defective sector (referred to as a spare sector, and in particular, a defective sector and a replaced sector are referred to as a replacement sector).
  • the spare area 23 is disposed at two positions on the inner circumferential side and the outer circumferential side of the user data area 24.
  • the spare area 23 is disposed on the outer circumferential side to cope with the case where the number of defective sectors increases more than expected. 23 has become able to expand the size.
  • the defect management area 27 has a disk definition structure (DDS) 28 that holds a format related to defect management including management of the size and location of the spare area 23, the position of the defective sector, and the position of its replacement sector. And the listed defect list (DL) 29.
  • DDS disk definition structure
  • DL listed defect list
  • the write-once type medium the information once recorded can not be erased! Because of this characteristic, instead of rewriting the information previously recorded, the new information is added to other places. In other words, new information is added elsewhere. For this reason, the write-once medium has management information different from that of the rewritable medium.
  • FIG. 12 shows the area layout of the recording layer 31 of the DVD-R, which is a conventional write-once optical disc.
  • the recording layer 31 includes an R information area (R-Info) 32, a read in area 33, a user data area 34, and a lead out area 35 from the inner periphery toward the outer periphery.
  • R-Info R information area
  • a disc information area 37 is provided.
  • R-Info 32 is an area unique to a write-once disc, and R-Info 32 includes a recording management area 36 (hereinafter referred to as RMA).
  • RMA recording management area 36
  • the RMA 36 is composed of recording management data 38 (hereinafter referred to as RMD) representing the recording state of the disc.
  • RMD recording management data 38
  • FIG. 13 shows an area layout of the recording layer 41 of the conventional write-once optical disc including defect management information.
  • the recording layer 41 has a lead-in area 42 and a spare area 43-1 from the inner circumference toward the outer circumference.
  • a disc information area 46 In the lead-in area 42, a disc information area 46, a defect management area 47-1 and a defect management work area group 48 are provided. In the lead-out area 45, a defect management area 47-2 is provided.
  • the defect management area 47-1 includes defect management information (DDS) 49 and defect management information (DU 5).
  • a defect management work area group 48 is provided to ensure compatibility with the rewritable optical disc.
  • the defect management work area group 48 is composed of N (N is a positive number of 1 or more) defect management work areas 51.
  • the defect management work area 51 is an area for temporarily recording the defect management information updated before the finalizing process is performed on the write-once type optical disc.
  • the information to be stored includes the temporary defect list (TDU 52 and the temporary defect list 52 start position information including temporary defect list head position information etc.) which is restored to the position of the defective sector and its replacement sector.
  • the disk definition structure (TDDS) 53 The finalizing process is a process to make the write-once optical disc a data structure compatible with the rewritable optical disc, and the content of the latest defect management work area 51. Recording in the defect management area 47.
  • disc information areas 26 (FIG. 11), 37 (FIG. 12) and 46 (FIG. 13)
  • information is recorded by the concavo-convex pits or recorded in the data area before shipping the disc. Pre-recording is performed in the disc information area in the same way as the method used.
  • defect management information (DDS, DL, TDL, TDDS) and recording management data (RMD) are recorded by an optical disc drive etc. after disc shipment.
  • Patent Document 1 discloses such a defect management method for DVD + RW.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-184116
  • air may be mixed between the light transmission layer and the substrate main body to form air bubbles.
  • the effect of such air bubbles is not a problem with conventional optical disks where the light transmission layer is sufficiently thick.
  • the light transmission layer is curved due to the influence of air bubbles, the flatness is locally lost, and air bubbles are further generated. Is a large defect area that spans tens to hundreds of clusters or tracks.
  • FIG. 14 (a) schematically shows the BD 10 in which the air bubble 11 is present.
  • Figs. 15 (a) and 15 (b) are diagrams showing the shape of the convex portion of the disc surface (the surface of the light transmitting layer) actually measured using the BD in which the air bubble is formed.
  • a typical bubble size (diameter) is about 500 m to about 1000 m.
  • the surface of the light transmission layer is locally localized as shown in FIG. 15 because the light transmission layer is thin (thickness: about 100 in). It is exciting.
  • the reflected light hardly returns, but even at the raised portion around the bubble, the transmission of the light beam becomes abnormal.
  • the NA of the objective lens used for BD recording and playback is focused on the information layer located at a shallow position from the disc surface, the spherical aberration changes significantly even for a slight distortion of the light transmission layer, Light intensity is likely to fluctuate.
  • air bubbles may or may not be formed easily.
  • BD in which the light transmission layer is formed by spin coating tends to contain many air bubbles, but BD in which the light transmission layer (protective sheet) is attached by lamination is less in air bubbles. It is in.
  • air bubbles can also be formed by the latter method.
  • FIG. 14 (b) shows the relationship between the air bubble 11 on the BD 10 and the track.
  • the air bubbles 11 are present on the outer circumferential side (track 12c side) from the track 12b among the tracks 12a to 12c.
  • the parts 11a and l ib of the bubble 11 are present on the recording positions of the clusters 13a and 13b respectively.
  • FIG. 16 shows the configuration of the large scale defect area 14. Portions 11a and 111 ⁇ of air bubbles shown in FIG. 14 (b) exist over clusters 13a and 13b of different tracks.
  • the servo is in an unstable state over the maximum of about 1 mm along the track direction due to the influence of the air bubbles.
  • recording retry due to tracking deviation, track jump, etc. and defect replacement processing due to recording error are executed, and it takes a long time for recording. If the recording time is long, data may be lost during recording, or dubbing may take more time.
  • the large-scale defect area 14 As mentioned above, the number of clusters included in such hundreds of tracks may be several thousand. Since the large defect area 14 may include accessible clusters, in such a case, the large defect area 14 can be defined in cluster units. Note that the large defect area does not have to be limited to a plurality of forces defined as “an area across multiple tracks that can not be accessed”. Even if there is only one track that can not be accessed, it may be included in the "large-scale defect area”.
  • FIG. 17 shows an operation procedure in the case where the recording process is performed by the conventional method on a large scale defect area. Operation procedure The contents of each of a to e are as follows.
  • Patent Document 1 instead of assigning a replacement area to each defect, an area from a detection position of a defect to a predetermined range after the detection position is regarded as a defect area and a fixed length replacement area is Disclose the technology to assign.
  • FIG. 18 shows a process e of treating a fixed length area as a defective area when recording errors b and b ′ occur.
  • the fixed length area is smaller than the bubble area. Therefore, when writing data larger than the size of the defect area by processing e, access occurs to the defect area (bubble area) after finishing the fixed length area and writing of data fails (processing f). As a result, there is a problem that the access time becomes long. [0040] Still other problems may occur.
  • FIG. 19 shows a process e of treating an area of relatively large fixed length as a defective area when recording errors b and b ′ occur. Since the fixed length alternate area is secured in the spare area, as shown in the figure, the fixed length alternate area is larger than the bubble area, and in the case where no defect exists, There is a problem that spare area is set up and waste space is consumed.
  • the problem shown in FIG. 18 and the problem shown in FIG. 19 may occur when adopting a defect management method in which a fixed length area is treated as a defect area.
  • the size of the spare area capable of securing a spare area in a recording medium such as BD is limited. Even if it is not air bubbles, even if there are defects due to dirt etc. and blocks after the defective block always appear as defects continuously (for example, if there is a defect due to a widely spread dirt such as a fingerprint), alternate areas one after another As a result, if you use up the spare area in a blink of an eye!
  • FIG. 20 (a) is a diagram showing unevenness of the disk surface due to air bubbles
  • FIG. 20 (b) is a waveform diagram of a TE signal and a drive signal measured when the light beam crosses the air bubbles.
  • Light beam force When tracking the center line of the S track, the amplitude of the TE signal is at zero level.
  • the TE signal has a nonzero amplitude component. Will appear.
  • the disc radial position of the objective lens in the optical pickup is adjusted so as to eliminate the positional deviation (off track) of the light beam with respect to the center line of the track.
  • the position of the objective lens in the disc radial direction is adjusted by the function of the lens actuator in the optical pickup, and the "drive signal" shown in FIG. 20 (b) shows the waveform of the drive current supplied to the lens actuator. Teru.
  • FIG. 21 schematically shows an abnormal track jump. While writing data on track 12 b, the light beam spot jumps to the adjacent track 12 a due to the air bubble 11. At this time, the writing process is continued to the track 12a, which causes a very serious problem that the existing data is destroyed. For example, if AV data is destroyed, a temporary playback failure will occur. In addition, if the management information required for playback is destroyed, the recorded content may not be played back, or in the worst case, it may not be possible to play back from the disc.
  • the object of the present invention is to determine that an error occurs in data writing when the error occurs in a large defect area due to air bubbles or the like, and when an error occurs in a large defect area due to air bubbles or the like. Replacement processing is performed according to the size of the large-scale defect area.
  • the optical disc apparatus detects an error caused by a defect area in the recording area while writing data to the recording area of the optical disc, and writes data in a replacement area instead of the defect area.
  • the optical disk apparatus irradiates a light beam to an optical disk, generates a light reception signal based on the light beam reflected by the optical disk, and controls the optical pickup to control data on a recording area of the optical disk.
  • a recording control unit that controls writing, and a defect determination that determines the recording area where the error occurs when the error occurs during writing of the data as a defect area and measures the size of the defect area And an alternate area of a size determined based on the measured size of the defective area in response to an instruction for writing the data and the data, and securing the spare area of the size determined on the optical disc, and writing the data in the reserved alternate area.
  • a defect management unit for instructing the recording control unit.
  • a plurality of tracks are formed on the optical disc, and when the error occurs, the defect determination unit instructs the optical pickup to intermittently access the plurality of tracks. Result: The area where a predetermined error has occurred is the defect area It may be determined that there is.
  • the recording control unit detects a servo error based on a time when a signal level of a servo signal generated from the light reception signal is larger than a predetermined threshold, and the defect determination unit detects the servo error. Even if it is judged that the generated area is a defective area,
  • the defect determination unit may instruct the optical pickup to access a plurality of tracks at a predetermined interval, and determine an area in which a plurality of servo errors have occurred as the defect area.
  • the recording control unit can detect a servo error based on a servo signal generated from the light reception signal, and the defect determination unit detects that the error is a servo error during a seek. Also, start measuring the size of the defect area.
  • the defect determination unit may start measurement of the size of the defect area when the error is a data recording error and a recording error occurs a predetermined number of times.
  • the defect management unit may secure, on the optical disc, a spare area having a size equal to or less than the size of the defect area, according to the measured size of the defect area and the size of the data.
  • the defect area may be an area including a bubble formed at the time of manufacturing the optical disc.
  • the defect area may be an area across a plurality of tracks formed on the optical disc.
  • the defect management unit may secure, on the optical disc, the replacement area having the same size as the size of the measured defect area.
  • the defect management unit may secure, on the optical disc, a spare area having the same size as the smaller one of the measured size of the defect area and the size of the data not yet recorded.
  • the optical disk may be provided with a user data area and a spare area, and the defect management unit may reserve the spare area in the spare area!
  • the optical disc may be provided with a user data area and a spare area, and the defect management unit may secure the spare area in the user data area. [0061] When an error occurs during writing of the data to the spare area, the defect management unit further secures another spare area in the spare area, and saves the spare area in the spare area. The recording control unit may be instructed to continue writing the data.
  • the defect management unit When an error occurs during the writing of the data to the spare area, the defect management unit further secures another spare area of a predetermined size in the spare area and secures the spare area.
  • the recording control unit may be instructed to subsequently write the data in the other replacement area.
  • the optical disc device determines that the recording area in which the error has occurred is a defect area, and measures the size of the defect area. Then, a spare area of a size equal to or less than the measured size is secured on the optical disc, and the recording area is managed so that data is not written in the defective area.
  • the size of the replacement area is ensured to be equal to or less than the size of the measured defect area, wasteful and efficient use is realized. For example, if the size of the remaining data not yet written is equal to or less than the size of the measured defect area, a spare area of that size is secured at the time of writing, and the remaining data is written. On the other hand, if the size of the remaining data is equal to or larger than the size of the defect area, a spare area for the size of the defect area is secured first, the data is written, and the remaining data is a normal recording area after the defect area. Will be written to As a result, the use of the spare area can be minimized without excess or deficiency, and the recordable area of the entire optical disc can be efficiently used.
  • FIG. 1 (a) and (b) are diagrams showing a recording method according to the present embodiment, (c) is a diagram showing another recording method according to the present embodiment, (d) is a diagram It is a figure which shows the recording method when two bubble area
  • FIG. 2 is a diagram showing a configuration of functional blocks of a BD recorder 100 according to the present embodiment.
  • FIG. 3 is a diagram showing an example of the hardware configuration of the optical disc drive 102 according to the present embodiment. 4) is a flowchart showing the procedure of recording processing including replacement processing of a large scale defect area of the optical disc drive 102.
  • FIG. 6 (a) is a conceptual diagram for explaining the bubble measurement process from step S56 to step S58 in FIG. 5, and (b) is a diagram showing the process related to error detection in FIG. It is.
  • FIG. 8 (a) is a diagram showing a calculation model and calculation formula of execution time by the conventional defect processing method, and (b) shows a calculation model and calculation formula of execution time by the defect processing method of the present embodiment FIG.
  • FIG. 9 A diagram showing changes in execution time Ta and Tb when the number of processing clusters is changed.
  • FIG. 10 A diagram showing changes in execution times Ta and Tb when the number of processing clusters is changed.
  • 11 A diagram showing an area layout of the recording layer 21 provided in the conventional rewritable optical disc.
  • FIG. 16 is a diagram showing an area layout of the recording layer 31 provided in the DVD-R, which is a write-once optical disc of
  • FIG. 13 is a diagram showing an area layout of the recording layer 41 of the conventional write-once-type optical disc including defect management information.
  • FIG. 14 (a) is a view schematically showing BD 10 in which air bubbles 11 are present
  • FIG. 14 (b) is a view showing a relationship between air bubbles 11 on the BD 10 and a track.
  • FIG. 15 (a) and (b) are views showing the shape of a convex portion of the disk surface (the surface of the light transmission layer) actually measured using BD in which air bubbles are formed.
  • FIG. 17 is a diagram showing an operation procedure in the case where the recording process is performed by a conventional method on a large scale defect area.
  • FIG. 20 (a) is a diagram showing the unevenness of the disk surface due to the air bubble, and (b) is a waveform diagram of the TE signal and the drive signal measured when the light beam crosses the air bubble.
  • FIG. 21 schematically shows an abnormal track jump.
  • the defect management method according to the present invention originates, for example, in a defect area of an optical disc during data writing to the optical disc (typically BD). Defect area when an error is detected An alternative replacement area is reserved in the spare area and used to write data in the replacement area.
  • the defect determination unit of the optical disk device determines that the recording area in which the error has occurred is a defect area, and measures the size of the defect area. Then, in response to the data writing instruction, the defect management unit secures the replacement area of the determined size based on the measured size of the defect area on the optical disc, and the data is written to the defect area. Manage the recording area so that it does not happen.
  • the defect area when the protective layer of the optical disc is formed by spin coating or the like, a bubble area in which data writing or reading operation can be affected by air bubbles mixed in the protective layer can be mentioned. .
  • Data can not be written to the determined bubble area, or it takes a lot of time S to write and read data, so it is not used for writing.
  • the defect management method including measurement of the bubble area will be specifically described with reference to FIG.
  • FIG. 1 (a) shows a first recording method according to the present embodiment.
  • the description of this figure conforms to the description of FIG.
  • One unit of the user data area is a cluster (or ECC block).
  • One cluster is a set of a plurality of sectors.
  • the measurement of the size of the defect area is performed on a cluster basis as an example, but it is also possible to measure the size of the defect area on a sector basis. In the latter example, the size of the defect area may be roughly measured in cluster units and precisely measured in sector units.
  • the process proceeds to the measurement processing of the large scale defect area caused by the air bubble.
  • the process a in FIG. 1 is the process before the air bubble detection process (air bubble temporary detection process a).
  • Measurement process of large defect area b is measured from the next cluster of two clusters detected as being a large defect area.
  • a servo error does not occur! /
  • the track is discretely accessed by, for example, 10 m until the track. Then, assuming that up to the track before the track where no servo error occurs is a large defect area, the size of the area is measured. In the present embodiment, such a large scale defect area is regarded as a bubble area.
  • FIG. 1 (b) shows a recording method in the case where the recording is ended halfway in the large scale defect area.
  • the difference from 1 (a) is the method of securing a replacement area when the size of the remaining data excluding the data already written out of all the data to be written is smaller than the size of the large-scale defect area. That is, processing c for securing the replacement area is performed only for the size of the remaining data (for recording size to the large scale defect area), and then processing d for writing the remaining data in the secured replacement area Do. Note that a large-scale defect area (the unrecorded area in Fig. 1 (b)) for which there is no recording request may be registered as a defect area.
  • FIG. 1 (c) shows a second recording method according to the present embodiment.
  • the difference from Fig. 1 (a) is that when a second write error occurs, measurement process b of a large-scale defect area is performed without replacement recording in the spare area.
  • the large defect area measurement process b is measured from the cluster where the second writing error occurred in the large defect area. The rest is the same as processing c and d in Fig. 1 (a).
  • the size of the spare area reserved for the spare recording is not fixed, but the size of the remaining data and the size of the large scale defect area. It is understood that it is variable depending on the relationship with.
  • FIG. 1 (d) shows a recording method when two bubble areas are present during writing of a series of data.
  • the symbols a to d shown in FIG. 1 (d) are as shown in FIGS. 1 (a) to (c) respectively.
  • A indicates temporary bubble detection processing
  • b indicates air bubble measurement processing
  • c indicates a batch replacement processing for write (Write) request
  • d indicates a write processing for a spare area! /.
  • FIG. 1 (d) the process according to FIG. 1 (a) is performed each time a bubble is found.
  • spare areas are secured by a size corresponding to the measured bubble size, and data is recorded in the secured spare areas.
  • the alternate areas where the bubble areas are alternated are adjacent to each other, but this is an example. Alternate areas of other user data areas may be reserved between them.
  • the large-scale defect area is regarded as a bubble area. This is because the bubble generates the large-scale defect area most remarkably at present. If large defect areas occur due to factors other than air bubbles, of course it is necessary to consider them as air bubble areas. In that case, it is possible to apply the present invention by replacing “bubble area” with “large-scale defect area” and replacing “bubble” with the other factors in the following description. is there.
  • FIG. 2 shows a configuration of functional blocks of the BD recorder 100 according to the present embodiment.
  • the BD recorder 100 writes and reads data on a BD, which is an optical disc, typically a rewritable BD (not shown).
  • the BD recorder 100 has an optical disk drive 102, a central processing unit (CPU) 104, an encoder / decoder 106, a tuner 108, and an I / O bus 170 enabling mutual communication between them. .
  • the CPU 104 is a host computer that controls the overall operation of the BD recorder 100.
  • the encoder / decoder 106 encodes / decodes video and audio.
  • the tuner 108 receives an analog broadcast wave or a digital broadcast wave to acquire a program signal.
  • the optical disk drive 102 includes an instruction processing unit 110, a recording control unit 120, a reproduction control unit 130, a defect management unit 140, a large scale defect determination unit 150, and a buffer 160.
  • the instruction processing unit 110 processes an instruction received from the CPU 104 via the bus 170.
  • Record The control unit 120 performs control at the time of data recording on the optical disc.
  • the reproduction control unit 130 performs control at the time of data reproduction from the optical disc.
  • the defect management unit 140 performs processing on defect management information. That is, the defect management unit 140 reads the defect management information recorded on the optical disc into the defect management information buffer 160a described later. When the defect information changes, the defect management information is updated, and the contents of the defect management information buffer 160a are also updated. The updated defect management information is recorded on the optical disc.
  • the large scale defect determination unit 150 determines various large scale defect areas including air bubbles and the like.
  • large defect information for identifying the continuous area is generated or updated and stored in the large defect information buffer 160c.
  • the buffer 160 includes a defect management information buffer 160a, a data buffer 160b, a large defect information buffer 160c, and a large defect temporary detection information buffer 160c.
  • the defect management information buffer 160a stores defect management information reproduced from the optical disc.
  • the data buffer 160b temporarily stores the data to be recorded and the reproduced data.
  • the large defect information buffer 160 c stores the large defect information determined and generated by the large defect determining unit 150.
  • the large-scale defect temporary detection information buffer 160 d stores the information of the area where the recording error has occurred in the large-scale defect determination unit 150.
  • FIG. 3 shows an example of the hardware configuration of the optical disc drive 102 according to the present embodiment.
  • the optical disk drive 102 comprises a disk motor 140, an optical pickup 610, an optical disk controller (ODC) 620, a drive unit 630, and a system controller 630.
  • ODC optical disk controller
  • the system controller 630 controls the overall operation of the optical disc drive 102 in accordance with the built-in control program.
  • the optical pickup 610 includes a light source 204, a coupling lens 205, a deflection beam splitter 206, an objective lens 203, a condenser lens 207, and a light detector 208.
  • the light source 204 is preferably a semiconductor laser, and in the present embodiment emits a light beam having a wavelength of 415 nm or less.
  • the light beam emitted from the light source 204 is linearly polarized light, and the polarization direction can be arbitrarily adjusted by rotating the direction of the light source 204 with respect to the optical axis of the emitted light beam.
  • Coupling lens 205 emits light emitted from light source 204.
  • the beam is converted to collimated light and is incident on polarizing beam splitter 206.
  • the polarized beam splitter 206 has the property of reflecting linearly polarized light polarized in a specific direction, but transmitting linearly polarized light polarized in a direction perpendicular to the specified direction !.
  • the polarization beam splitter 206 of this embodiment is configured to reflect the light beam converted into parallel light by the coupling lens 205 toward the objective lens 203.
  • the objective lens 203 focuses the light beam reflected by the polarized beam splitter 206 to form a light beam spot on the recording layer of the BD 10.
  • the light beam reflected by the BD 10 is converted into a parallel light beam by the objective lens 203 of the optical pickup 610, and then enters the polarization beam splitter 206. Since the light beam at this time is rotated 90 ° from the polarization direction of the light beam when it is incident on the polarization direction force D 10, it is transmitted through the deflection beam splitter 206 and passes through the condensing lens 207 as it is for light detection. It will be incident on the vessel 208.
  • the light detector 208 receives the light passing through the condenser lens 207 and converts the light into an electrical signal (current signal).
  • the illustrated light detector 208 has areas A, B, C and D divided into four on the light receiving surface, and outputs an electric signal corresponding to the light received in each of the areas A to D. To force.
  • the light beam reflected by BD 10 may be used to ) It is necessary to detect the signal. These are generated by ODC 620.
  • the optical disk drive 102 generates the TE signal by the push-pull method at the time of writing, and generates the TE signal by the phase difference method at the time of reading.
  • the optical disc drive 102 is characterized by the processing when an error is detected during the data writing to the optical disc, and therefore, in the following, the processing for generating the push-pull TE signal will be described first.
  • the adder 408 of the ODC 620 outputs the sum signal of the areas B and D of the light detector 208, and the adder 4
  • Differential amplifier 410 is an adder 4 It receives the output from 08, 414 and outputs a push-pull TE signal representing the difference.
  • a gain switching circuit 416 adjusts the push-pull TE signal to a predetermined amplitude (gain).
  • the AD converter 420 converts the push-pull TE signal from the gain switching circuit 416 into a digital signal and outputs the digital signal to the DSP 412.
  • phase difference TE signal is obtained as follows.
  • the adder circuit 344 outputs a signal A + D corresponding to the sum of the output of the area A and the output of the area D, and the adder circuit 346 sums the output of the area B and the output of the area C. Output a signal B + C corresponding to the magnitude. It is also possible to generate other signals by changing the manner of addition.
  • the comparators 352 and 354 binarize the signals from the addition circuits 344 and 346, respectively.
  • the phase comparator 356 performs phase comparison of the signals from the comparators 352, 354.
  • Differential amplifier 360 receives the signal from phase comparator 356 and outputs a phase difference TE signal. This phase difference TE signal is used to control the light beam to scan correctly on the track of the optical disc 102.
  • the gain switching circuit 366 adjusts the phase difference TE signal to a predetermined amplitude.
  • An AD (analog-digital) converter 370 converts the phase difference TE signal output from the gain switching circuit 366 into a digital signal.
  • the FE signal is generated by a differential amplifier 358.
  • the detection method of the FE signal is not particularly limited, and may be one using an astigmatism method, one using a knife edge method, or the SSD (spot 'size' ⁇ detection) method. It may be The circuit configuration will be changed appropriately according to the detection method.
  • the gain switching circuit 364 adjusts the FE signal to a predetermined amplitude.
  • the AD converter 368 converts the FE signal output from the gain switching circuit 364 into a digital signal.
  • the DSP 412 controls the drive unit 630 based on the TE signal, the FE signal, and the like.
  • the control signal FEPWM for focus control and the control signal TEPWM for tracking control, which are output from the DSP 4 12, are sent to the drive circuit 136 and the drive circuit 138 of the drive unit 630, respectively.
  • Drive circuit 136 drives focus actuator 143 in accordance with control signal FEPWM.
  • the focus actuator 143 has an objective lens 203 as a recording layer of the optical disc 102. Move in the direction approximately perpendicular to.
  • the drive circuit 138 drives the tracking actuator 202 in response to the control signal TEPWM.
  • the tracking actuator 202 moves the objective lens 203 in a direction substantially parallel to the recording layer of the optical disc 102.
  • the drive unit 630 also includes a drive circuit (not shown) of a transfer stand on which the optical pickup 610 is placed. The optical pickup 610 can be moved to any position in the radial direction by driving the transfer table by the voltage applied to the drive circuit.
  • the adder circuit 372 adds the outputs of the regions A, B, C, and D of the light detector 208 to generate a total light amount sum signal (A + B + C + D).
  • the total light amount sum signal (A + B + C + D) is input to the H PF 373 of the ODC 620.
  • the addition signal from which low frequency components have been removed by the HPF 373 is binarized by the binarization unit 375 via the equalizer unit 374 and processed by the ECC / modulation circuit 376 such as PLL, error correction, and demodulation. And are temporarily stored in buffer 377.
  • the capacity of buffer 377 is determined in consideration of various playback conditions!
  • the data in the server 377 is read according to the playback timing of the video and the like, and is output as playback data to the host computer 104 or the encoder / decoder 106 (FIG. 2) via the I / O bus 170. .
  • the video and the like are reproduced.
  • the data stored in the knocker 377 is added with an error correction code by an ECC / modulation / demodulation circuit 376 and becomes encoded data.
  • the encoded data is modulated by the ECC / modulation circuit 376 to be modulated data.
  • the modulation data is input to the laser drive circuit 378.
  • the laser drive circuit 378 controls the light source 204 based on the modulation data to power-modulate the laser light.
  • FIG. 2 corresponds to the system controller 630 in FIG.
  • the recording control unit 120 in FIG. 2 corresponds to the system controller 630 which receives the data to be written and supports the writing.
  • the recording control unit 120 also generates a tracking signal generator (caro calculators 408, 4) in the ODC 620 for generating the push-pull TE signal of FIG. 14, a differential amplifier 410, a gain switching circuit 416 and an AD converter 420), and a focus signal generation unit (adder, differential amplifier 358, gain switching circuit 364 and AD converter 368) for generating an FE signal. Also includes).
  • the recording control unit 120 also includes a drive unit 630.
  • the recording control unit 120 also includes an ECC / modulation / demodulation circuit 376 and a laser drive circuit 378.
  • the playback control unit 130 in FIG. 2 corresponds to the system controller 630 that supports data readout.
  • the playback control unit 130 also includes the components 372 to 377 in FIG. 3 for obtaining playback data.
  • the reproduction control unit 130 also includes components 354 to 370 for obtaining the phase difference TE signal and a focus signal generation unit for obtaining the FE signal.
  • the reproduction control unit 130 also includes a drive unit 630.
  • the defect management unit 140 and the large-scale defect determination unit 150 in FIG. 2 correspond to the processing of the system controller 630.
  • Data buffer 160 b of FIG. 2 corresponds to buffer 377 of FIG.
  • the defect management information buffer 160a, the large defect information buffer 160c, and the large defect temporary detection information buffer 160d shown in FIG. 2 correspond to buffers (not shown) in the system controller 630.
  • FIG. 4 shows the procedure of the recording process including the replacement process of the large scale defect area of the optical disk drive 102.
  • step S41 the recording control unit 120 determines whether or not the data recording for the size requested for recording has been completed. If there is data to be recorded, the process proceeds to step S42. If not, the process ends.
  • step S42 the defect management unit 140 refers to the large scale defect area information held in the large scale defect information buffer 160c to determine whether the recording area is a bubble area specified in advance or not. Do.
  • the large defect area information is held at step S59 in FIG. The details will be described later with reference to FIG. If it is a bubble area, the process proceeds to step S43. If it is not a bubble area, the process proceeds to step S44.
  • step S43 the defect management unit 140 assigns a replacement area to replace the defect area, and registers a defect. Note that replacement areas of large-scale defect areas are continuously allocated. Is desirable.
  • step S44 the recording control unit 120 executes data recording. Then, in step S45, the recording control unit 120 determines whether an error has occurred. If no error occurs, the process from step S41 is repeated. If an error occurs, the process proceeds to step S46.
  • error includes various types. For example, recording error confirmed as a result of verification, servo control error in which focus control or tracking control fails during recording, seek error while moving the optical pickup 610 to a data recording area (target position), etc. It is.
  • the verification is a process of recording data in a cluster, reading out the data from the cluster, and comparing the data with the original data to be recorded to verify whether the data can be recorded correctly. .
  • step S46 defect replacement processing is performed on the recording area in which the error has occurred in step S45. That is, a replacement area to be substituted for the defect area is allocated to the spare area, defect registration is performed, and recording is performed on the replacement area.
  • step S47 the large scale defect determination unit 150 performs temporary detection of a large scale defect area and a large scale defect area measurement process. The details of this process will be described later with reference to FIG.
  • FIG. 5 shows a detailed procedure of provisional detection of a large scale defect and large scale defect measurement processing shown in step S47 of FIG.
  • the BD recorder 100 identifies a high probability of being a bubble area! /, And then determines if the area is actually a bubble area and if the bubble area is a bubble area Measure the size of
  • the method of specifying the area is high in probability that the area is a bubble area, for example, when a servo system error occurs, for example, when tracking control for a track in that area fails, or the recording error is a predetermined number of times. For example, when it occurs continuously or when a recording error occurs a predetermined number of times in a predetermined area.
  • step S50 the defect management unit 140 determines whether the spare area is dead or not. It is necessary to consider the usage condition of the spare area, since it is possible to use and exhaust the spare area in replacement processing for the bubble area. For example, 75% or less of spare area If it is used above, it is judged that it is dead and the processing is ended. On the other hand, it is judged that the spare area is less than 75% and used! /, !, if it is dead! /!,!, And the process proceeds to step S51.
  • step S 51 the defect management unit 140 refers to the defect management information to determine whether the recording area in which the error has occurred is a cluster for which replacement processing has already been performed. If it is a cluster that has already been subjected to replacement processing, the processing ends, and if it is a cluster that has not been replaced, processing proceeds to step S52.
  • step S 52 the large scale defect determination unit 150 determines the target position of the optical pickup unit 610.
  • the force that is an error during movement (seek) to (the area to be recorded) is determined, and the bubble area is temporarily detected.
  • the "provisional detection” is a process to detect that there is a high possibility of the presence of air bubbles due to a predetermined condition or not, at a stage where it is unclear whether the generated error is caused by the presence of air bubbles. means.
  • step S56 the large-scale defect determination unit 150 proceeds to step S56 to execute further processing to confirm the presence or absence of bubbles. If there is no seek failure or the like, the process proceeds to step S53.
  • step S53 the recording control unit 120 generates the error that has occurred in step S45 of FIG.
  • step S54 If it is not a recording error, the process proceeds to step S55.
  • step S54 the recording control unit 120 registers information (recording error information) of the area in which the recording error has occurred in the large-scale defect temporary detection information buffer 160d.
  • step S55 the large-scale defect determination unit 150 tentatively detects a large-scale defect area based on the recording error information registered in step S54. For example, when a recording error occurs a predetermined number of times in a predetermined recording area (for example, when a recording error of 3 clusters occurs in 15 clusters), it is judged as a large scale defect area. This is because, in the large-scale defect area, an unstable state in which recording can not be performed or can not be generated in each cluster in one track may occur, and in such a state, recording errors may continue. It is because it is preferable to perform processing because the reliability can be improved and the processing can be speeded up.
  • step S56 If the large-scale defect area has been tentatively detected, the process proceeds to step S56, and if the areas do not match, the process ends.
  • the provisional detection of the large-scale defect area may be performed as follows.
  • the number of recording errors described above is specified by the number registered in the large-scale defect temporary detection information buffer 160 d in step S 54.
  • step S55 when step S55 is executed through step S51, the replaced cluster is excluded from the target of provisional detection of the large defect area.
  • Step S56, step S57 and step S58 are processes for specifying whether or not a bubble area is present, and measuring the size of the bubble area if it is present.
  • the time allowed for these processes is short. The reason is that these processes need to record within a predetermined time, the force S being performed while temporarily interrupting the data recording process.
  • step S56 the large scale defect determination unit 150 determines whether or not a bubble area is present.
  • the presence or absence of a bubble is determined by the presence or absence of a servo defect (servo error).
  • Air bubbles are typical defects of large size, but even general defects such as scratches may make the size larger than the size of air bubbles. Therefore, it is difficult to distinguish from conventional defects only by the size of the defect.
  • a major difference between defects such as air bubbles and flaws is in the behavior of the servo.
  • defects caused by a fingerprint in general, the servo is not deviated, and although recording to the block is performed correctly, the data can not be read correctly and it is often determined as an error in verification.
  • defects caused by flaws often result in errors due to complete deviation of servo tracking control.
  • tracking control is deviated from the track to be recorded, but tracking control is often performed on the adjacent track! /.
  • tracking control is often performed on adjacent tracks that have already been recorded, and the data is often destroyed. Therefore, it is appropriate to determine air bubbles by using servo defects caused by servo signals (tracking signals).
  • step S57 the large scale defect determination unit 150 determines whether or not a bubble area is present. If it is determined that the bubble area is present, the process proceeds to step S58, and if it is determined that the bubble area is not present, the process ends.
  • step S58 the size of the bubble area present is measured. Details of this process will also be described later with reference to FIGS. 6 and 7.
  • step S59 the defect management unit 140 holds the measured bubble area information in the large-scale defect information buffer 160c.
  • the present inventors assume two types of operations in relation to the processing from step S56 to step S58.
  • the first is an operation of measuring the size from the beginning to the end of the bubble according to step S58 after confirming the presence of the bubble in step S56.
  • the second is an operation to start bubble size measurement on the premise that bubbles are present. For the latter, if it is determined that bubbles do not occur in the process of bubble size measurement, measurement is terminated.
  • the difference between the first and second operation is that after confirming that a bubble is present due to a servo defect, its size is Either to return to the initial position where the servo defect occurred for measurement or to continue scanning to the position where the servo defect disappears as it is.
  • the first air bubble measuring operation will be described first, and then the second air bubble measuring operation will be described with reference to FIG. 6 (b).
  • FIG. 6 (a) is a conceptual diagram illustrating the air bubble measurement process from step S56 to step S58 in FIG.
  • step S56 will be described. No servo defect occurs when writing data to track 0, but on track 1 with air bubbles, servo defects occur due to air bubbles.
  • Detection of servo defects is performed, for example, as follows.
  • Figure 7 shows the waveforms of tracking errors including servo defects.
  • the large scale defect determination unit 150 acquires the TE signal for a time slightly exceeding the track 1 rotation targeted for the BD 10. Then, it is determined whether or not the TE signal includes the component of the servo defect caused by the track jump. For example, after the TE signal exceeds a predetermined detection threshold (threshold level) P (> 0), it is determined whether or not it is a servo defect based on the length of time Q until it becomes less than P.
  • a predetermined detection threshold threshold level
  • the large scale defect determination unit 150 When the large scale defect determination unit 150 detects the defect D1 based on the TE signal waveform, it instructs the optical pickup 610 to access a track distant to the outer peripheral side by a predetermined interval (for example, about 10 m). In the next track, the large scale defect determination unit 150 also detects the defect D2. The large scale defect determination unit 150 further instructs the optical pick-up 610 to access a track distant to the outer peripheral side by a predetermined interval (for example, about 10 m). Then, the defect D3 is detected again, and the large scale defect judging unit 150 judges that the bubble area exists.
  • a predetermined interval for example, about 10 m
  • step S57 in FIG. 5 proceeds to step S58.
  • step S58 a size measurement process is performed.
  • the large scale defect determination unit 150 returns to the first track 1 (FIG. 6 (a)) where the servo defect has occurred again and starts scanning. Then, the access to the track is sequentially instructed at a predetermined interval (for example, 10 m) until the servo defect does not occur.
  • a servo defect occurs up to track k, and It is assumed that no servo defect occurs on the track m which has been read. As a result, it is specified that the air bubbles cross at least from track 1 to track k.
  • the bubble size S obtained in this way is calculated as the range from track 1 to the track immediately preceding track m where no servo defect occurred.
  • the measurement is performed in a situation where an error occurs while writing the data, if it takes too long, the recording time will be long and the subsequent data to be written can not be buffered, so the measurement of air bubbles May be kept within the specified range and the measurement may be discontinued thereafter
  • the access interval to the track is 10 m.
  • each step may be accessed at different intervals. For example, access may be made at SO ⁇ m intervals at step S56, and at 10 ⁇ m intervals at step S58, or vice versa.
  • FIG. 6 (b) is a diagram showing error detection processing by the second bubble measurement operation in time series.
  • Servo defect After the detection of D1, check the presence of servo defect for each track 10 mm away.
  • the large defect judgment unit 150 detects the third servo defect D3, it judges that there is a bubble. If the servo defect D3 does not exist, the bubble measurement process is ended.
  • the presence or absence of a servo defect is checked for each track 10 m apart sequentially.
  • the large-scale defect determination unit 150 determines that the end of the bubble area is present between the track where the servo defect Dk is generated and the last checked track m. judge. Thereby, the size of the bubble area size S can be almost identified.
  • the presence or absence of the bubble area in step S56 may be determined based on the presence or absence of the servo defect of only the track of the area provisionally detected as the large scale defect area.
  • FIG. 8 (a) shows a calculation model and a calculation formula of execution time according to the conventional defect processing method. Assuming that the time until a recording error occurs is Wtl, the seek time between the user data area and the spare area is St, the write time in the spare area is Wt2, and the number of write clusters is C, the execution time Ta is
  • Ta (Wtl + St + Wt2 + St) * C
  • FIG. 8 (b) shows a calculation model and a calculation formula of execution time by the defect processing method of the present embodiment.
  • the execution time Tb is
  • FIG. 9 and FIG. 10 show changes in execution time Ta and Tb when the number of processing clusters is changed.
  • the straight lines shown in FIG. 9 and FIG. 10 are obtained when the parameters are set as follows in the above-mentioned model case.
  • the defect processing method according to the present embodiment has a shorter execution time than the conventional method. It is clear that the shorter is preferable, considering the case of alternate recording due to an error during data writing.
  • the recording method of the present embodiment secures the replacement area according to the size of the bubble area and the recording size
  • the spare area can be used more efficiently than the conventional method.
  • the force described as securing the spare area in the spare area is an example. You may reserve the spare area in the user data area! /.
  • the defect management unit 140 may further secure another spare area in the spare area or user data area, and may instruct the recording control section 120 to continue writing data in the other spare area secured.
  • the defect management unit 140 may secure the replacement area with a fixed length, and as in the above-described embodiment, the large-scale defect determination unit 150 measures the size of the replacement area in which the error occurs. Another spare area of the same size as the designated size may be secured.
  • BD has been described as a rewritable optical disc (so-called BD-RE), it may be an optical disc (so-called BD-R) which can be written only once.
  • the large scale defect is generated based on the error of the servo control. Identify the size of the area, and record data alternately in a spare area that has a size according to that size. Since the bubble area is unstable in servo, stable writing and reading can be realized by alternately recording data in the replacement area in which no bubble exists. In addition, since the size of the replacement area is secured according to the size of the identified bubble area, the minimum and efficient use of spare area free from excess and deficiency is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Description

技術分野
[0001] 本発明は、光ディスク装置および光ディスクの欠陥管理方法に関し、特に、記録ェ ラーが気泡のような広範囲に跨る欠陥を有する記録領域によって生じたときにその欠 陥領域の大きさに応じて欠陥交替処理を行う技術に関する。
背景技術
[0002] 公知の光ディスクは、セクタ構造を有する情報記録媒体である。光ディスクは、その 特性によって、大きく 3種類に分類され得る。 1つめは、データがディスクの凹凸によ つて記録されており、ユーザが新たにデータの記録ができない再生専用ディスクであ る。 2つめは、有機色素等を記録膜として備え、 1度のみ記録が可能な追記型デイス クである。 3つめは、相変化材料等を記録膜として備え、複数回の記録 (書換え)が可 能な書換え型ディスクである。
[0003] 近年、オーディオやビデオなどの音響'映像データ(以下、「AVデータ」と称する。 ) がディジタル化され、放送または配信されるようになってきたため、より高密度で大容 量な光ディスクが要望されている。記憶容量を大きくする上で、記録層を複数にする ことが有用である。例えば、 DVDの再生専用ディスクでは、 1枚の光ディスクに 2つの 記録層を形成することにより、記録層が 1つの光ディスクの約 2倍の容量を確保してい
[0004] 図 11は、従来の書換え型光ディスクが備える記録層 21の領域レイアウトを示す。図 11に示す記録層 21にお!/、てリードイン領域 22の中には、ディスク情報領域 26と欠 陥管理領域 27 (DMA)が設けられている。又、リードアウト領域 25の中には、欠陥管 理領域 27が設けられている。又、リードイン領域 22とユーザデータ領域 24との間と、 ユーザデータ領域 24とリードアウト領域 25との間には、それぞれスペア領域 23が設 けられる。
[0005] ディスク情報領域 26は、光ディスクのデータの記録再生に必要なパラメータや物理 的な特性に関する情報が格納されている。 [0006] 欠陥管理領域 27とスペア領域 23とは、ユーザデータ領域 24上の記録再生が正し くできな!/、セクタ(これを欠陥セクタと呼ぶ)を、状態のよ!/、他のセクタで交替する欠陥 管理の為に用意された領域である。
[0007] スペア領域 23は、欠陥セクタを交替するためのセクタ(スペアセクタと呼ぶ。また特 に欠陥セクタと交替済みのセクタを交替セクタと呼ぶ)を含む領域である。 DVD-R AMではスペア領域 23はユーザデータ領域 24の内周側と外周側との 2箇所に配置 され、欠陥セクタが予想以上に増加した場合に対応できるように外周側に配置された スペア領域 23はサイズを拡張できるようになつている。
[0008] 欠陥管理領域 27は、スペア領域 23のサイズや配置場所の管理を含む欠陥管理に 関するフォーマットを保持するディスク定義構造 (DDS) 28と、欠陥セクタの位置とそ の交替セクタの位置をリストアップした欠陥リスト (DL) 29とを含む。欠陥管理領域 27 については、ロバストネスを考慮して、同じ内容を、内周側と外周側の欠陥管理領域 27のそれぞれに 2重ずつの計 4重で記録する仕様の光ディスクが多い。
[0009] 一方、追記型の媒体では、一度記録した情報を消すことができな!/、。この特性のた めに、以前に記録した情報を書き換える代わりに、他の場所に新しい情報を継ぎ足 す。換言すると、他の場所に新しい情報を追記する。このため、追記型の媒体は書換 え型の媒体とは異なる管理情報を有する。
[0010] 図 12は、従来の追記型光ディスクである DVD— Rが備える記録層 31の領域レイァ ゥトを示す。記録層 31は、内周から外周へ向かって、 R情報領域 (R— Info) 32と、リ ードイン領域 33と、ユーザデータ領域 34と、リードアウト領域 35とを含む。
[0011] リードイン領域 33の中には、ディスク情報領域 37が設けられている。
[0012] R— Info32は、追記型ディスクに特有の領域であり、 R— Info32の中には、記録管 理領域 36 (以下、 RMAと記す)を含む。
[0013] RMA36は、ディスクの記録状態を表している記録管理データ 38 (以下、 RMDと 記す)から構成される。最新の RMD38を取得することにより、追記可能なアドレスな どを取得することができる。
[0014] 図 13は、欠陥管理情報を含む従来の追記型光ディスクの記録層 41の領域レイァ ゥトを示す。 [0015] 記録層 41は、内周から外周へ向かって、リードイン領域 42と、スペア領域 43— 1と
、ユーザデータ領域 44と、スペア領域 43— 2と、リードアウト領域 45とを含む。
[0016] リードイン領域 42の中には、ディスク情報領域 46と欠陥管理領域 47— 1と欠陥管 理作業領域群 48が設けられている。又、リードアウト領域 45の中には、欠陥管理領 域 47— 2が設けられている。
[0017] 欠陥管理領域 47— 1には、欠陥管理情報 (DDS) 49および欠陥管理情報 (DU 5
0が格納されている。
[0018] 追記型光ディスクの場合は、欠陥管理領域 47への記録も 1回しか出来ないため、 書換え型光ディスクと同様の方法で常に所定位置の欠陥管理領域 47へ最新の欠陥 管理情報を記録しておくことは出来ない。そのため、書き換え型の光ディスクとの互 換を確保するために欠陥管理作業領域群 48が設けられている。
[0019] 欠陥管理作業領域群 48は、 N個(Nは 1以上の正数)の欠陥管理作業領域 51から 構成される。欠陥管理作業領域 51は、追記型の光ディスクに対してフアイナライズ処 理を実施する以前において更新された欠陥管理情報を一時的に記録するための領 域である。格納される情報は、欠陥セクタの位置とその交替セクタの位置をリストアツ プした一時欠陥リスト (TDU 52と、一時欠陥リスト 52の先頭位置の情報である一時 欠陥リスト先頭位置情報などを含む一時ディスク定義構造 (TDDS) 53から構成され る。なおフアイナライズ処理とは、追記型の光ディスクを書換え型の光ディスクと互換 のあるデータ構造にするための処理であり、最新の欠陥管理作業領域 51の内容を 欠陥管理領域 47に記録することをいう。
[0020] また、ディスク情報領域 26 (図 11)、 37 (図 12)および 46 (図 13)は、凹凸ピットによ り情報が記録されているか、ディスク出荷前等に、データ領域に記録を行う方法と同 じ方法でディスク情報領域にプリ記録がなされている。一方、欠陥管理情報 (DDS、 DL、 TDL、 TDDS)や、記録管理データ (RMD)は、ディスク出荷後に、光ディスクド ライブなどにより記録される。
[0021] 欠陥が検出されると、その位置から所定範囲後までの領域を欠陥領域として捉え、 固定長の交替領域を割り当てることもできる。たとえば特許文献 1は、 DVD + RWに 対するそのような欠陥管理方法を開示する。 特許文献 1 :日本国特開 2002— 184116号公報
発明の開示
発明が解決しょうとする課題
[0022] 従来は、光ディスクには数クラスタや数トラックに跨る大規模な欠陥領域の個数は少 な力、つたため、欠陥領域に対して固定長の交替領域を割り当てれば十分であった。
[0023] し力、し、近年開発されたブルーレイ.ディスク(BD ; Blu— rayディスク)においては、 状況は大きく変化しており、欠陥領域に対して固定長の交替領域を割り当てる方法 では新たな問題が発生して!/、る。
[0024] たとえば光透過層を BDの基板上に形成する際、スピンコート法が利用されると、光 透過層と基板本体との間に空気が混入して気泡が形成されることがある。このような 気泡の影響は光透過層が十分厚い従来の光ディスクでは問題とはならな力、つた。
[0025] しかし BDのような、光透過層がより薄ぐかつトラックピッチがより狭い光ディスクに おいては、気泡の影響で光透過層は湾曲し、平坦性が局所的に失われ、さらに気泡 が存在する領域は数十〜数百のクラスタまたはトラックに跨る大規模欠陥領域となる
。 BDにおいては、そのような大規模欠陥領域の発生頻度は高まっている。
[0026] 以下、より詳しく説明する。図 14 (a)は、気泡 11が存在する BD10を模式的に示す
。理解の容易のため気泡 11を視認できるように記載している力 視認できない気泡も 存在する。
[0027] 図 15 (a)および (b)は、気泡が形成された BDを用いて実際に測定されたディスク 表面(光透過層の表面)の凸部形状を示す図である。典型的な気泡の大きさ(直径) は、 500 m〜; 1000 m程度である。 BDの情報層と光透過層との間に気泡が形成 されると、光透過層が薄い(厚さ:約 100 in)ため、図 15に示すように光透過層の表 面が局所的に盛り上がつている。気泡の中心部(核の部分)では、反射光が殆ど戻つ てこないが、気泡の周囲において盛り上がった部分でも、光ビームの透過に異常が 生じる。 BDの記録 '再生に用いられる対物レンズの NAは高ぐディスク表面から浅 い位置の情報層に焦点を結ぶため、光透過層の僅かな歪みに対しても、球面収差 が大きく変化し、反射光強度が変動しやすい。
[0028] 気泡は、 BDの製造工程の種類により、形成されやすい場合と、形成されにくい場 合がある。上述のようにスピンコート法によって光透過層が形成された BDは、気泡を 多く含む傾向にあるが、貼り合わせ法によって光透過層(保護シート)が貼り付けられ た BDには気泡が少ない傾向にある。ただし、後者の方法によっても気泡は形成され 得る。
[0029] 再び図 14を参照する。図 14 (b)は、 BD10上の気泡 11とトラックとの関係を示す。
図示される例では、気泡 11は、トラック 12a〜12cのうち、トラック 12bから外周側(トラ ック 12c側)に存在している。各トラックには、 ECCブロックほたは「クラスタ」ともいう) と呼ばれるデータ単位でデータが格納される。光ディスクのデータの最小単位である セクタ(サイズ: 2KByte)という単位を用いて説明すると、 BDでは、 1クラスタ = 32セ クタとなる。気泡 11の一部 11aおよび l ibは、それぞれクラスタ 13aおよび 13bの記 録位置上に存在している。
[0030] BDのトラックピッチは 0· 32〃mであるのに対して、 1つの気泡(核)のサイズが約 1 00〃mであるとすると、 1つの気泡によって最大約 300トラック(100/0. 32)が影響 を受ける。また、気泡周辺も影響を受けるため、典型的には 200um (600トラック程度 )の区間に渡って欠陥が継続する。よって、気泡の核が存在する領域およびその周 辺領域は、大規模欠陥領域となる。
[0031] 図 16は、大規模欠陥領域 14の構成を示す。図 14 (b)に示す気泡の一部 11aおよ び 111^、それぞれ異なるトラックのクラスタ 13aおよび 13bに跨って存在している。
[0032] データの書き込みや読み出しは、クラスタを最小単位として行われる。クラスタ境界 に気泡が存在する場合には、複数のクラスタにわたってデータの書き込みや読み出 しができなくなる。さらに、気泡の影響で気泡の周辺のクラスタはデータの書き込みや 読み出しができな!/、ことが多!/、。
[0033] また、気泡の影響で、トラック方向に沿って最大 lmm程度にわたり、サーボが不安 定状態となるという問題がある。サーボが不安定となる領域では、トラッキングはずれ やトラックジャンプ等に起因する記録リトライや、記録エラーによる欠陥交替処理が実 行され、記録時間が長くかかる。記録時間が長くかかると録画中にデータの欠落が生 じたり、ダビングにより多くの時間が力、かるおそれがある。
[0034] BDの 1周に 1箇所の気泡が存在する場合には、クラスタごとにアクセスできたりでき なかったり、という状態が発生しうる。たとえば、最内周には 2つのクラスタしか設けら れないため、 1つのクラスタへのアクセスに失敗するとそのトラック全体のアクセスがで きなくなることがある。そこで、最悪の状況を考慮して、アクセスができない複数のトラ ックに跨る領域を「大規模欠陥領域 14」と呼ぶ。上述したように、このような数百のトラ ックに含まれるクラスタの数は数千にも上ることがある。なお、大規模欠陥領域 14に はアクセスが可能なクラスタが含まれ得るため、そのような場合にはクラスタ単位で大 規模欠陥領域 14を定義することも可能である。なお、大規模欠陥領域は「アクセスが できない複数のトラックに跨る領域」であると定義した力 複数に限る必要はない。ァ クセスができないトラックが 1つであっても「大規模欠陥領域」に含めてもよい。
[0035] 図 17は、大規模欠陥領域に対して、従来の手法で記録処理を行った場合の動作 手順を示す。動作手順 aから eの各内容は以下のとおりである。
a.ユーザデータ領域(User Area)のクラスタにデータを書き込む
b.ユーザデータ領域中のクラスタ Uへのデータ書き込み失敗
cスペア領域内の交替領域 Sを交替先として割り当て、光ヘッドを移動(シーク)して 交替先の交替領域 Sへデータを書き込む
d.次のクラスタ U+ 1へ移動するがクラスタ U+ 1へのデータ書き込み失敗(b ' ) [0036] 上述の cおよび dの処理力 大規模欠陥領域を抜けるまで繰り返されることになる。
このように、交替記録に伴って、ユーザデータ領域とスペア領域との記録位置間の移 動(シーク)が多発する結果となり、多大な処理時間を要することになる。
[0037] 一方、上述した特許文献 1は、個々の欠陥に対して交替領域を割り当てるのではな ぐ欠陥の検出位置から所定範囲後までの領域を欠陥領域として捉え、固定長の交 替領域を割り当てる技術を開示してレ、る。
[0038] しかし、固定長の交替領域を割り当てると他の問題が発生する。
[0039] 図 18は、記録エラー bおよび b'が発生したときに、固定長の領域を欠陥領域として 取り扱う処理 eを示している。図 18の例では、固定長の領域は気泡領域よりも小さい 。よって、処理 eによる欠陥領域のサイズ以上のデータを書き込むときは、固定長の 領域を終えた後の欠陥領域 (気泡領域)にアクセスが発生し、データの書き込みに失 敗する(処理 f)。この結果、アクセス時間は長くなつてしまうという問題がある。 [0040] さらに他の問題も生じ得る。図 19は、記録エラー bおよび b'が発生したときに、比較 的大きい固定長の領域を欠陥領域として取り扱う処理 eを示している。固定長の交替 領域がスペア領域内に確保されるため、図示されるように固定長の交替領域の方が 気泡領域よりも大きレ、場合には、欠陥が存在しなレ、領域 Dにつ!/、てまで交替領域が 設定され、スペア領域を無駄に消費するという問題がある。
[0041] 気泡のサイズはまちまちであるため、固定長の領域を欠陥領域として取り扱う欠陥 管理方法を採用すると図 18に示す問題および図 19に示す問題が発生し得る。
[0042] また、 BD等の記録媒体において交替領域を確保可能なスペア領域のサイズは有 限である。気泡でなくとも汚れによる欠陥等に対しても常に欠陥ブロック以降のブロッ クも連続して欠陥として极うと(例えば指紋のような広範囲に薄く広がった汚れによる 欠陥が存在すると)、次々と交替領域が確保される結果、瞬く間にスペア領域を使い 尽くしてしまうと!/、う問題がある。
[0043] さらに図 18の処理 fに示すような気泡領域へのアクセスが発生する場合には、光ビ 一ムスポットが、データ書き込み対象のトラックからジャンプし、隣接するトラックのデ ータを破壊してしまうという問題もある。
[0044] 図 20 (a)は、気泡によるディスク表面の凹凸を示す図であり、図 20 (b)は、光ビーム が気泡を横切るときに測定される TE信号および駆動信号の波形図である。光ビーム 力 Sトラックの中心線上を追従しているとき、 TE信号の振幅はゼロレベルにある力 光 ビームがトラックの中心線からディスク径方向にシフトすると、 TE信号にはゼロではな い振幅成分が現れる。このとき、トラックの中心線に対する光ビームの位置ズレ (オフ トラック)を解消するように、光ピックアップ内の対物レンズのディスク径方向位置が調 整される。対物レンズのディスク径方向位置は、光ピックアップ内のレンズァクチユエ ータの働きによって調整され、図 20 (b)に示す「駆動信号」は、レンズァクチユエータ に供給される駆動電流の波形を示してレ、る。
[0045] 図 20に示すように、 BDの気泡を光ビームが通過するとき、擬似的にオフトラックを 示す波形成分 (擬似オフトラック成分)が TE信号に現れる。擬似オフトラック成分は、 光ビームがトラックの中心線上にあっても気泡に起因して出現する。このような擬似ォ フトラック成分力 信号に現れると、擬似オフトラック成分に応答してトラッキング制 御が行われるため、光ビームスポットが目的トラックから外れるアブノーマルトラックジ ヤンプが発生するという問題がある。
[0046] 図 21は、アブノーマルトラックジャンプを模式的に示す。トラック 12bにデータを書き 込んでいる最中に、気泡 11に起因して隣接するトラック 12aへ光ビームスポットがジャ ンプしている。このとき、書き込み処理がトラック 12aに対して継続され、既存のデータ が破壊されるという非常に大きな問題が生じる。例えば、 AVデータが破壊された場 合には一時的な再生の不具合が生じる。また、再生に必須の管理情報が破壊された 場合には、記録されたコンテンツが再生できなくなったり、最悪の場合にはそのディス クから再生ができなくなることもある。
[0047] 本発明の目的は、データ書き込み中にエラーが生じたときにおいて、気泡などによ る大規模欠陥領域におけるエラーであることを判定し、気泡などによる大規模欠陥領 域によって生じたときにはその大規模欠陥領域の大きさに応じて交替処理を行うこと である。
課題を解決するための手段
[0048] 本発明による光ディスク装置は、光ディスクの記録領域へのデータ書き込み中に、 前記記録領域内の欠陥領域に起因するエラーを検出して前記欠陥領域に代わる交 替領域にデータを書き込む。前記光ディスク装置は、光ディスクに光ビームを照射し 、前記光ディスクによって反射された光ビームに基づいて受光信号を生成する光ピッ クアップと、前記光ピックアップを制御して前記光ディスクの記録領域へのデータの 書き込みを制御する記録制御部と、前記データの書き込み中にエラーが発生したと きに前記エラーが発生した記録領域を欠陥領域であると判定し、前記欠陥領域のサ ィズを測定する欠陥判定部と、前記データの書き込みの指示を受けて、測定された 前記欠陥領域のサイズに基づいて決定されたサイズの交替領域を前記光ディスク上 に確保し、確保した前記交替領域に前記データを書き込むよう前記記録制御部に指 示する欠陥管理部とを備えている。
[0049] 前記光ディスク上には複数のトラックが形成されており、前記エラーが発生したとき に、前記欠陥判定部は前記複数のトラックへ間欠的にアクセスするよう前記光ピック アップに指示し、その結果予め定められたエラーが発生した領域を前記欠陥領域で あると判定してもよい。
[0050] 前記記録制御部は、前記受光信号から生成されるサーボ信号の信号レベルが所 定の閾値よりも大きかった時間に基づいてサーボエラーを検出し、前記欠陥判定部 は、前記サーボエラーが発生した領域を欠陥領域であると判定してもよレ、。
[0051] 前記欠陥判定部は予め定められた間隔の複数トラックへのアクセスを前記光ピック アップに指示し、複数回のサーボエラーが発生した領域を前記欠陥領域として判定 してもよい。
[0052] 前記記録制御部は、前記受光信号から生成されるサーボ信号に基づいてサーボ エラーを検出することが可能であり、前記欠陥判定部は、前記エラーがシーク中のサ ーボエラーである場合には、前記欠陥領域のサイズの測定を開始してもよレ、。
[0053] 前記欠陥判定部は、前記エラーがデータの記録エラーであって、かつ記録エラー が所定回数発生した場合には、前記欠陥領域のサイズの測定を開始してもよい。
[0054] 前記欠陥管理部は、測定された前記欠陥領域のサイズと前記データのサイズとに 応じて、前記欠陥領域のサイズ以下のサイズの交替領域を前記光ディスク上に確保 してもよい。
[0055] 前記欠陥領域は、前記光ディスクの製造時に形成された気泡を含む領域であって あよい。
[0056] 前記欠陥領域は、前記光ディスクに形成された複数のトラックに跨る領域であって あよい。
[0057] 前記欠陥管理部は、測定された前記欠陥領域のサイズと同じサイズの前記交替領 域を前記光ディスク上に確保してもよレ、。
[0058] 前記欠陥管理部は、測定された前記欠陥領域のサイズ、および、未だ記録されて いないデータのサイズのうちの小さい方と同じサイズの交替領域を前記光ディスク上 に確保してもよい。
[0059] 前記光ディスクにはユーザデータ領域およびスペア領域が設けられており、前記欠 陥管理部は、前記交替領域を前記スペア領域内に確保してもよ!/、。
[0060] 前記光ディスクにはユーザデータ領域およびスペア領域が設けられており、前記欠 陥管理部は、前記交替領域を前記ユーザデータ領域内に確保してもよい。 [0061] 前記交替領域への前記データの書き込み中にエラーが発生したときにおいて、前 記欠陥管理部は、前記スペア領域内に他の交替領域をさらに確保し、確保した前記 他の交替領域に引き続き前記データを書き込むよう前記記録制御部に指示してもよ い。
[0062] 前記交替領域への前記データの書き込み中にエラーが発生したときにおいて、前 記欠陥管理部は、前記スペア領域内に予め定められたサイズの他の交替領域をさら に確保し、確保した前記他の交替領域に引き続き前記データを書き込むよう前記記 録制御部に指示してもよい。
発明の効果
[0063] 本発明によれば、光ディスク装置は、書き込み中にエラーが発生したときにそのェ ラーが発生した記録領域を欠陥領域であると判定し、欠陥領域のサイズを測定する。 そして、測定されたそのサイズ以下のサイズの交替領域を光ディスク上に確保して、 欠陥領域にデータが書き込まれないよう記録領域を管理する。
[0064] 交替領域のサイズは測定された欠陥領域のサイズ以下で確保されるため、無駄な く効率的な利用が実現される。たとえば、まだ書き込まれていない残りのデータのサ ィズが測定された欠陥領域のサイズ以下であれば、書き込み時にそのサイズの交替 領域が確保されて残りのデータが書き込まれる。一方、残りのデータのサイズが欠陥 領域のサイズ以上であれば、まず欠陥領域のサイズ分の交替領域が確保されてデ ータが書き込まれ、さらに残ったデータが欠陥領域後の正常な記録領域に書き込ま れる。これにより、スペア領域の利用を過不足なく最小限にとどめ、光ディスク全体の 記録可能領域を効率的に利用できる。
図面の簡単な説明
[0065] [図 l] (a)および (b)は本実施形態による記録方法を示す図であり、(c)は本実施形 態による他の記録方法を示す図であり、 (d)は一連のデータの書き込み中に気泡領 域が 2つ存在したときの記録方法を示す図である。
[図 2]本実施形態による BDレコーダ 100の機能ブロックの構成を示す図である。
[図 3]本実施形態による光ディスクドライブ 102のハードウェア構成の例を示す図であ 園 4]光ディスクドライブ 102の大規模欠陥領域の交替処理を含む記録処理の手順 を示すフローチャートである。
園 5]図 4のステップ S47に示す大規模欠陥の仮検出および大規模欠陥測定処理の 詳細な手順を示すフローチャートである。
[図 6] (a)は図 5のステップ S56から S58までの気泡測定処理を説明する概念図であ り、 (b)は図 6 (a)のエラー検出に関する処理を時系列に表示した図である。
園 7]サーボ欠陥を含むトラッキングエラーの波形を示す図である。
[図 8] (a)は従来の欠陥処理方法による実行時間の計算モデルおよび計算式を示す 図であり、 (b)は本実施形態の欠陥処理方法による実行時間の計算モデルおよび計 算式を示す図である。
[図 9]処理クラスタ数を変化させたときの実行時間 Taおよび Tbの変化を示す図であ
[図 10]処理クラスタ数を変化させたときの実行時間 Taおよび Tbの変化を示す図であ 園 11]従来の書換え型光ディスクが備える記録層 21の領域レイアウトを示す図である 園 12]従来の追記型光ディスクである DVD— Rが備える記録層 31の領域レイアウト を示す図である。
園 13]欠陥管理情報を含む従来の追記型光ディスクの記録層 41の領域レイアウトを 示す図である。
[図 14] (a)は気泡 11が存在する BD10を模式的に示す図であり、(b)は BD10上の 気泡 11とトラックとの関係を示す図である。
[図 15] (a)および (b)は、気泡が形成された BDを用いて実際に測定されたディスク表 面(光透過層の表面)の凸部形状を示す図である。
園 16]大規模欠陥領域 (気泡領域) 14の構成を示す図である。
[図 17]大規模欠陥領域に対して、従来の手法で記録処理を行った場合の動作手順 を示す図である。
園 18]記録エラー bおよび b'が発生したときに、固定長の領域を欠陥領域として取り 扱う処理 eを示す図である。
園 19]記録エラー bおよび b'が発生したときに、比較的大きい固定長の領域を欠陥 領域として取り扱う処理 eを示す図である。
[図 20] (a)は気泡によるディスク表面の凹凸を示す図であり、 (b)は光ビームが気泡を 横切るときに測定される TE信号および駆動信号の波形図である。
[図 21]アブノーマルトラックジャンプを模式的に示す図である。
符号の説明
100 BDレコーダ
102 光ディスクドライブ
104 CPU
106 エンコーダ/デコーダ 106
108 チューナ
110 命令処理部
120 記録制御部
130 再生制御部
140 欠陥管理部
150 大規模欠陥判定部
160 バッファ
160a 欠陥管理情報バッファ
160b データバッファ
160c 大規模欠陥情報バッファ
160d 大規模欠陥仮検出情報バッファ
170 I/Oバス
発明を実施するための最良の形態
以下、添付の図面を参照して、本発明による光ディスク装置の実施形態を説明する 本発明による欠陥管理方法は光ディスク(典型的には BD)へのデータ書き込み中 に、たとえば光ディスクの欠陥領域に起因するエラーが検出されたときに、欠陥領域 に代わる交替領域をスペア領域内に確保し、その交替領域にデータを書き込むため に利用される。
[0069] データの書き込み中にエラーが発生したときに、光ディスク装置の欠陥判定部は、 エラーが発生した記録領域を欠陥領域であると判定し、欠陥領域のサイズを測定す る。そして欠陥管理部は、データの書き込みの指示を受けて、測定された欠陥領域 のサイズに基づ!/、て決定されたサイズの交替領域を光ディスク上に確保し、欠陥領 域にデータが書き込まれないよう記録領域を管理する。
[0070] 欠陥領域の一例として、スピンコート法などで光ディスクの保護層を形成した場合に 、データの書き込み動作または読み出し動作が、保護層に混入した気泡の影響を受 けうる気泡領域が挙げられる。
[0071] 判定された気泡領域にはデータの書き込みができず、またはデータの書き込みや 読み出しに多くの時間力 Sかかるため書き込みに利用しない。
[0072] 図 1を参照しながら、気泡領域の測定を含む欠陥管理方法を具体的に説明する。
[0073] 図 1 (a)は、本実施形態による第 1の記録方法を示す。この図の記載は図 17の記載 に準ずる。ユーザデータ領域(User Area)の 1単位はクラスタ(または ECCブロック )である。 1クラスタは複数のセクタの集合である。
[0074] 以下の実施形態の説明では、例としてクラスタ単位で欠陥領域のサイズの測定が 行われるとするが、セクタ単位で欠陥領域のサイズを測定することも可能である。後者 の例では、クラスタ単位で粗く欠陥領域のサイズを測定し、セクタ単位で精密に測定 すればよい。
[0075] ユーザデータ領域にデータを書き込み中に、「X」で示す書き込みエラーが発生し たとする。するとその領域は欠陥としてスペア領域内の交替領域に記録される。交替 記録後、再度ユーザデータ領域に次のクラスタのデータを書き込もうとして再度書き 込みエラーが発生する。このときもその領域は欠陥として取り扱われ、スペア領域内 の交替領域に記録される。
[0076] 図 1 (a)の例では、書き込みエラーが 2回連続して発生したときは気泡に起因する 大規模欠陥領域の測定処理に移る。その意味において図 1の処理 aは気泡の検出 処理の前段階の処理 (気泡仮検出処理 a)である。 [0077] 大規模欠陥領域の測定処理 bは、大規模欠陥領域であるとして検出された 2つのク ラスタの次のクラスタから測定される。
[0078] 例えば、大規模欠陥領域の測定処理 bは、サーボエラーが生じな!/、トラックまで、た とえば 10 mずつ離散的にトラックにアクセスする。そして、サーボエラーが生じない トラックの前のトラックまでが大規模欠陥領域であるとして、その領域の大きさを測定 する。本実施形態においては、このような大規模欠陥領域を気泡領域とみなす。
[0079] 大規模欠陥領域が特定されると、その領域の情報をバッファに格納する。当該大規 模欠陥領域に対して記録要求があると、その領域を欠陥領域として登録する処理を 行い、また大規模欠陥領域と同じデータサイズを有する交替領域を確保する処理 c が行われる。その後、後続のデータを交替領域に書き込む処理 dが行われる。その 後のデータの書き込みは、気泡領域の後から開始される。
[0080] 図 1 (b)は、記録が大規模欠陥領域の途中で終了する場合の記録方法を示す。図
1 (a)との違いは、書き込まれる全データのうち、既に書き込まれたデータを除く残り のデータのサイズが大規模欠陥領域のサイズ以下の場合の交替領域の確保の仕方 である。すなわち、残りのデータのサイズ分 (大規模欠陥領域への記録サイズ分)だ け交替領域を確保する処理 cが行われ、その後、当該残りのデータを確保された交 替領域に書き込む処理 dを行う。なお、記録要求がない大規模欠陥領域(図 1 (b)の 未記録領域)を欠陥領域として欠陥登録してもよレ、。
[0081] 図 1 (c)は、本実施形態による第 2の記録方法を示す。図 1 (a)との違いは、 2回目 の書き込みエラーが発生したときに、スペア領域に交替記録せずに、大規模欠陥領 域の測定処理 bが実行されることにある。大規模欠陥領域の測定処理 bは、大規模欠 陥領域の 2回目の書き込みエラーが発生したクラスタから測定される。後は図 1 (a)の 処理 cおよび dと同じである。
[0082] 図 l (a)〜(c)から明らかなように、交替記録のために確保される交替領域のサイズ は固定されているのではなぐ残りのデータのサイズと大規模欠陥領域のサイズとの 関係によって可変であることが理解される。
[0083] 次に、図 1 (d)は、一連のデータの書き込み中に気泡領域が 2つ存在したときの記 録方法を示す。図 1 (d)に示された符号 a〜dは、それぞれ図 1 (a)〜(c)に示すとおり 、 aは気泡仮検出処理、 bは気泡測定処理、 cは書き込み (Write)要求分の一括交替 処理、 dはスペア(Spare)領域へ書き込み処理を示して!/、る。
[0084] 図 1 (d)では、気泡が発見されるごとに図 1 (a)による処理が行われる。その結果、 交替領域は、測定された気泡のサイズに相当するサイズだけそれぞれ確保され、確 保された各交替領域にデータが記録される。気泡領域が 3以上存在する場合も同様 である。なお、図 1 (d)では各気泡領域が交替されるそれぞれの交替領域同士は隣 接しているが、これは例である。他のユーザデータ領域の交替領域がそれらの間に 確保されてもよい。
[0085] なお、本実施形態においては大規模欠陥領域を気泡領域とみなしている力 これ は気泡が現在最も顕著に大規模欠陥領域を発生させるためである。気泡以外の他 の要因で大規模欠陥領域が発生する場合には、もちろん気泡領域とみなす必要は なレ、。その場合には以下の説明におレ、て「気泡領域」を「大規模欠陥領域」と読み替 え、「気泡」を当該他の要因に読み替えることにより、本発明を適用することが可能で ある。
[0086] 以下、本実施形態にかかる光ディスク装置の構成および動作を詳細に説明する。
[0087] 図 2は、本実施形態による BDレコーダ 100の機能ブロックの構成を示す。 BDレコ ーダ 100は、光ディスクである BD、典型的には書き換え可能な BD (図示せず)に対 し、データの書き込みおよび読み出しを行う。
[0088] BDレコーダ 100は、光ディスクドライブ 102と、中央演算ユニット (CPU) 104と、ェ ンコーダ/デコーダ 106と、チューナ 108と、それらの相互通信を可能とする I/Oバ ス 170とを有する。
[0089] CPU104は、 BDレコーダ 100の全体の動作を制御するホストコンピュータである。
光ディスクドライブ 102との関係では「上位制御装置」とも称される。エンコーダ/デコ ーダ 106は、映像、音声の符号化/複号化を行う。チューナ 108は、アナログ放送波 またはディジタル放送波を受信して番組の信号を取得する。
[0090] 光ディスクドライブ 102は、命令処理部 110と、記録制御部 120と、再生制御部 130 と、欠陥管理部 140と、大規模欠陥判定部 150と、バッファ 160とを含んでいる。
[0091] 命令処理部 110は、バス 170を介して CPU104から受けた命令を処理する。記録 制御部 120は、光ディスクへのデータ記録時の制御を行う。再生制御部 130は、光 ディスクからのデータ再生時の制御を行う。
[0092] 欠陥管理部 140は、欠陥管理情報に関する処理を行う。すなわち欠陥管理部 140 は、光ディスクに記録された欠陥管理情報を後述の欠陥管理情報バッファ 160aに読 み出す。また、欠陥情報が変化した場合には欠陥管理情報を更新するとともに、欠 陥管理情報バッファ 160aの内容も更新する。更新された欠陥管理情報は光ディスク に記録される。
[0093] 大規模欠陥判定部 150は、気泡などを含む種々の大規模欠陥領域を判定する。
大規模欠陥領域であると判定した場合はその連続領域を特定する大規模欠陥情報 を生成し、または更新して、大規模欠陥情報バッファ 160cに格納する。
[0094] バッファ 160は、欠陥管理情報バッファ 160aと、データノ ッファ 160bと、大規模欠 陥情報バッファ 160cと大規模欠陥仮検出情報バッファ 160cとを含む。欠陥管理情 報バッファ 160aは光ディスクから再生した欠陥管理情報を格納する。データバッファ 160bは記録されるデータおよび再生されたデータを一時的に格納する。大規模欠 陥情報バッファ 160cは、大規模欠陥判定部 150で判定され生成された大規模欠陥 情報を格納する。大規模欠陥仮検出情報バッファ 160dは、大規模欠陥判定部 150 で、記録エラーが発生した領域の情報を格納する。
[0095] 図 3は、本実施形態による光ディスクドライブ 102のハードウェア構成の例を示す。
[0096] 光ディスクドライブ 102は、ディスクモータ 140と、光ピックアップ 610と、光ディスクコ ントローラ(ODC) 620と、駆動部 630とシステムコントローラ 630を備えて!/、る。
[0097] システムコントローラ 630は、内蔵された制御プログラムに従って、光ディスクドライ ブ 102の全体動作を制御する。
[0098] 光ピックアップ 610は、光源 204、カップリングレンズ 205、偏向ビームスプリッタ 20 6、対物レンズ 203、集光レンズ 207、光検出器 208を備えている。
[0099] 光源 204は、好適には半導体レーザであり、本実施形態では波長 415nm以下の 光ビームを放射する。光源 204から放射された光ビームは直線偏光であり、その偏光 方向は、放射される光ビームの光軸に関して光源 204の向きを回転させることにより 任意に調整することができる。カップリングレンズ 205は、光源 204から放射された光 ビームを平行光に変換し、偏光ビームスプリッタ 206に入射させる。偏向ビームスプリ ッタ 206は、特定方向に偏光した直線偏光は反射するが、その特定方向に対して垂 直な方向に偏光した直線偏光は透過する特性を有して!/、る。本実施形態の偏光ビ 一ムスプリッタ 206は、カップリングレンズ 205で平行光に変換された光ビームは対物 レンズ 203に向けて反射するよう構成されている。対物レンズ 203は、偏向ビームス プリッタ 206で反射された光ビームを集束し、 BD10の記録層上に光ビームスポットを 形成する。
[0100] BD10で反射された光ビームは、光ピックアップ 610の対物レンズ 203で平行な光 ビームに変換された後、偏向ビームスプリッタ 206に入射する。このときの光ビームは 、その偏光方向力 ¾D10に入射するときの光ビームの偏光方向から 90° 回転したも のになるため、偏向ビームスプリッタ 206を透過し、そのまま集光レンズ 207を経て光 検出器 208に入射することになる。
[0101] 光検出器 208は、集光レンズ 207を通過してきた光を受け、その光を電気信号(電 流信号)に変換する。図示されている光検出器 208は、受光面上で 4分割された領 域 A、 B、 C、 Dを有しており、領域 A〜Dの各々力 受けた光に応じた電気信号を出 力する。
[0102] ディスクモータ 140によって所定速度で回転している BD10の記録層上において所 望のトラックを光ビームの焦点が追従するためには、 BD10で反射された光ビームに 号およびフォーカスエラー(FE)信号を検出する必要がある。これらは ODC620によ つて生成される。
[0103] TE信号について説明すると、光ディスクドライブ 102は、書き込み時にはプッシュ プル法により TE信号を生成し、読み出し時には位相差法により TE信号を生成する。
[0104] 本実施形態による光ディスクドライブ 102は、光ディスクへのデータ書き込み中にェ ラーを検出した場合の処理を特徴とするため、以下ではまずプッシュプル TE信号を 生成する処理から説明する。
[0105] ODC620の加算器 408は光検出器 208の領域 Bと Dの和信号を出力し、加算器 4
14は光検出器 208の領域 Aと Cの和信号を出力する。差動増幅器 410は、加算器 4 08、 414からの出力を受け取り、その差を表すプッシュプル TE信号を出力する。ゲ イン切換回路 416は、プッシュプル TE信号を所定の振幅 (ゲイン)に調整する。 AD 変換器 420は、ゲイン切換回路 416からのプッシュプル TE信号をディジタル信号に 変換して DSP412に出力する。
[0106] 次に、位相差 TE信号は以下のようにして得られる。加算回路 344は、領域 Aの出 力と領域 Dの出力とを合計した大きさに相当する信号 A+Dを出力し、加算回路 346 は、領域 Bの出力と領域 Cの出力とを合計した大きさに相当する信号 B + Cを出力す る。加算の仕方を変更することにより、他の信号を生成することも可能である。
[0107] コンパレータ 352, 354は、それぞれ、加算回路 344, 346からの信号を 2値化する 。位相比較器 356は、コンパレータ 352, 354からの信号の位相比較を行う。差動増 幅器 360は、位相比較器 356からの信号を入力して位相差 TE信号を出力する。こ の位相差 TE信号は、光ビームが光ディスク 102のトラック上を正しく走査するように 制御するために用いられる。
[0108] ゲイン切換回路 366は、位相差 TE信号を所定の振幅に調整する。 AD (アナログ- ディジタル)変換器 370は、ゲイン切換回路 366から出力された位相差 TE信号をデ イジタル信号に変換する。
[0109] FE信号は、差動増幅器 358によって生成される。 FE信号の検出法は特に限定さ れず、非点収差法を用いたものでもよいし、ナイフエッジ法を用いたものであってもよ いし、 SSD (スポット 'サイズド ' ·ディテクシヨン)法を用いたものであってもよい。検出法 に応じて回路構成を適宜変更することになる。ゲイン切換回路 364は、 FE信号を所 定の振幅に調整する。 AD変換器 368は、ゲイン切換回路 364から出力される FE信 号をディジタル信号に変換する。
[0110] DSP412は、 TE信号および FE信号等に基づいて駆動部 630を制御する。 DSP4 12から出力されるフォーカス制御のための制御信号 FEPWMおよびトラッキング制 御のための制御信号 TEPWMは、それぞれ、駆動部 630の駆動回路 136および駆 動回路 138に送られる。
[0111] 駆動回路 136は、制御信号 FEPWMに応じてフォーカスァクチユエータ 143を駆 動する。フォーカスァクチユエータ 143は、対物レンズ 203を光ディスク 102の記録層 と略垂直な方向に移動させる。駆動回路 138は、制御信号 TEPWMに応じてトラツキ ングァクチユエータ 202を駆動する。トラッキングァクチユエータ 202は、対物レンズ 2 03を光ディスク 102の記録層と略平行な方向に移動させる。なお、駆動部 630は、 光ピックアップ 610を載置する移送台の駆動回路(図示せず)も備えている。駆動回 路への印加電圧によって移送台を駆動することにより、光ピックアップ 610は半径方 向の任意の位置に移動することができる。
[0112] 次に、データを読み出すための構成を説明する。
[0113] 加算回路 372は、光検出器 208の領域 A, B, C, Dの出力を加算して、全光量和 信号(A + B + C + D)を生成する。全光量和信号(A+B + C + D)は ODC620の H PF373に入力される。
[0114] HPF373で低周波成分が除去された加算信号は、イコライザ部 374を介して 2値 化部 375で 2値化され、 ECC/変復調回路 376で PLL、エラー訂正、復調などの処 理が行われ、バッファ 377に一時的に蓄積される。バッファ 377の容量は、種々の再 生条件を考慮して決定されて!/、る。
[0115] ノ ッファ 377内のデータは映像等の再生タイミングに応じて読み出され、再生デー タとして I/Oバス 170を介してホストコンピュータ 104やエンコーダ/デコーダ 106 ( 図 2)へ出力される。これにより、映像等が再生される。
[0116] 次に、データを書き込むための構成を説明する。
[0117] ノ ッファ 377内に格納されたデータは、 ECC/変復調回路 376によりエラー訂正 符号を付加されて符号化データとなる。次いで、符号化データは ECC/変復調回路 376により変調されて変調データとなる。さらに、変調データはレーザ駆動回路 378 に入力される。レーザ駆動回路 378が変調データに基づいて光源 204を制御するこ とにより、レーザ光がパワー変調される。
[0118] 図 2および図 3の対応関係を説明する。図 2の命令処理部 110は図 3のシステムコ ントローラ 630に対応する。
[0119] また図 2の記録制御部 120は、書き込むべきデータを受け取って書き込みを支持 するシステムコントローラ 630に対応する。また記録制御部 120は、図 3のプッシュプ ル TE信号を生成するための ODC620内のトラッキング信号生成部(カロ算器 408, 4 14、差動増幅器 410、ゲイン切換回路 416および AD変換器 420)、および、 FE信 号を生成するためのフォーカス信号生成部 (加算器、差動増幅器 358、ゲイン切換 回路 364および AD変換器 368)をも含む。また記録制御部 120は駆動部 630も含 む。また記録制御部 120は ECC/変復調回路 376、レーザ駆動回路 378も含む。
[0120] 図 2の再生制御部 130は、データの読み出しを支持するシステムコントローラ 630 に対応する。再生制御部 130は、再生データを得るための図 3の構成要素 372から 3 77までの構成要素も含む。また再生制御部 130は、位相差 TE信号を得るための構 成要素 354から 370および FE信号を得るためのフォーカス信号生成部をも含む。ま た再生制御部 130は駆動部 630も含む。
[0121] 図 2の欠陥管理部 140および大規模欠陥判定部 150は、システムコントローラ 630 の処理に対応する。
[0122] 図 2のデータバッファ 160bは、図 3のバッファ 377に対応する。図 2の欠陥管理情 報バッファ 160a、大規模欠陥情報バッファ 160cおよび大規模欠陥仮検出情報バッ ファ 160dは、システムコントローラ 630内のバッファ(図示せず)に対応する。
[0123] 次に、図 4から図 7を参照しながら、光ディスクドライブ 102の動作を説明する。
[0124] 図 4は、光ディスクドライブ 102の大規模欠陥領域の交替処理を含む記録処理の手 順を示す。まず命令処理部 110が CPU104等の上位制御装置から書き込み命令( Writeコマンド)を受け取ると処理が開始される。
[0125] ステップ S41にお!/、て、記録制御部 120は記録要求されたサイズ分のデータ記録 が完了したか否かを判断する。記録すべきデータが存在する場合にはステップ S42 へ進み、存在しない場合には処理は終了する。
[0126] ステップ S42において、欠陥管理部 140は大規模欠陥情報バッファ 160cに保持さ れる大規模欠陥領域情報を参照して、記録する領域が予め特定されている気泡領 域か否力、を判断する。大規模欠陥領域情報は、図 5のステップ S59で保持される。詳 細は図 5を参照しながら後述する。気泡領域である場合には処理はステップ S43に 進み、気泡領域ではない場合には処理はステップ S44に進む。
[0127] ステップ S43において、欠陥管理部 140はその欠陥領域に代わる交替領域を割り 当て、欠陥登録する。なお、大規模欠陥領域の交替領域は、連続的に割り当てられ るのが望ましい。
[0128] ステップ S44において、記録制御部 120はデータの記録を実行する。そしてステツ プ S45において、記録制御部 120はエラーが発生したか否かを判定する。エラーが 発生しない場合にはステップ S41からの処理を繰り返す。エラーが発生した場合には 、ステップ S46に進む。
[0129] ここでいう「エラー」には様々な種類が含まれている。例えば、ベリファイの結果確認 された記録エラーや、記録時にフォーカス制御やトラッキング制御に失敗するサーボ 制御のエラー、データを記録する領域(目的位置)へ光ピックアップ 610を移動して いる間のシークエラーなどである。なお、ベリファイとは、データをクラスタに記録した 後にそのクラスタからそのデータを読み出して、記録しょうとした元のデータと比較す ることによって、データが正しく記録できているかどうかを照合する処理をいう。
[0130] ステップ S46では、ステップ S45においてエラーの発生した記録領域に対して、欠 陥交替処理を行う。すなわち、欠陥領域に代わる交替領域をスペア領域に割り当て 欠陥登録し、交替領域に記録を行う。
[0131] ステップ S47において、大規模欠陥判定部 150が大規模欠陥領域の仮検出およ び大規模欠陥領域測定処理を行う。この処理の詳細は、図 5を参照しながら後述す
[0132] 図 5は、図 4のステップ S47に示す大規模欠陥の仮検出および大規模欠陥測定処 理の詳細な手順を示す。以下に詳細に説明するように、 BDレコーダ 100は気泡領 域である蓋然性が高!/、領域を特定し、その後にその領域が実際に気泡領域であるか 、および気泡領域であるときにはその気泡のサイズを測定する。
[0133] 気泡領域である蓋然性が高!/、領域の特定方法は、たとえばその領域のトラックに対 するトラッキング制御が失敗した場合などのサーボ系エラーが生じたときや、記録エラ 一が所定回数連続して発生したときや所定領域内に記録エラーが所定回数発生し たときなどである。
[0134] ステップ S50において、欠陥管理部 140はスペア領域が枯渴しているか否かを判 断する。気泡領域に対する交替処理でスペア領域を使!、尽くしてしまう可能性がある ため、スペア領域の使用状況を考慮する必要がある。例えば、スペア領域が 75%以 上使用されている場合には枯渴していると判断し、処理を終了する。一方、スペア領 域が 75%未満し力、使用されて!/、な!/、場合には枯渴して!/、な!/、と判断して処理はステ ップ S 51に進む。
[0135] ステップ S51において、欠陥管理部 140は欠陥管理情報を参照して、エラーが発 生した記録領域が既に交替処理が行われているクラスタであるか否かを判定する。 既に交替処理が行われているクラスタである場合には処理は終了し、交替処理が行 われていないクラスタである場合には処理はステップ S52に進む。
[0136] ステップ S52において、大規模欠陥判定部 150は光ピックアップ部 610を目的位置
(記録する領域)へ移動(シーク)中のエラーである力、を判定し、気泡領域の仮検出を 行う。「仮検出」とは、発生したエラーが気泡の存在に起因するか否か不明な段階に ぉレ、て、所定の条件によって気泡が存在する可能性が高!/、ことを検出する処理を意 味する。
[0137] シークが所定回数 (例えば 32回)失敗した場合や、シークは完了したがその領域の トラックに対するトラッキング制御が所定回数 (例えば 5回)失敗した場合には、気泡 が存在する可能性が高いと考えられる。その場合には、大規模欠陥判定部 150は気 泡の有無を確認する更なる処理を実行するため、ステップ S 56に進む。シークの失 敗等がない場合には処理はステップ S53に進む。
[0138] ステップ S53において、記録制御部 120は、図 4のステップ S45で発生したエラー
1S データ記録中の記録エラーであるか否かを判定する。記録エラーであれば処理 はステップ S54に進み、記録エラーでなければ処理はステップ S55に進む。
[0139] ステップ S54では、記録制御部 120は記録エラーが発生した領域の情報(記録エラ 一情報)を大規模欠陥仮検出情報バッファ 160dに登録する。
[0140] ステップ S55において、大規模欠陥判定部 150はステップ S54で登録されている記 録エラー情報に基づいて大規模欠陥領域の仮検出を行う。例えば、記録エラーが所 定記録領域内に所定回数発生したとき(一例を挙げると 15クラスタ中に 3クラスタの記 録エラーが発生したとき)に大規模欠陥領域であると判定する。これは、大規模欠陥 領域内では、 1トラック中の各クラスタにおいて記録できたりできなかったりという不安 定な状態が発生しうるため、そのような状態にあっては記録エラーが連続するとして 処理する方が信頼性が向上し、処理が高速化できるため、好ましいからである。
[0141] 大規模欠陥領域の仮検出された場合には、ステップ S 56に進み、合致しない場合 には処理は終了する。
[0142] なお、大規模欠陥領域の仮検出は以下のようにしてもよい。
1)記録エラーが所定回数連続して発生したとき
2)記録エラーの要因がサーボエラー (アドレス取得失敗やトラッキングはずれゃフォ 一カスはずれ等)であるとき
3) 2)のサーボエラーが所定回数連続したとき
4) 2)のサーボエラーが所定記録領域内に所定回数発生したとき
[0143] 上述の記録エラーの回数は、ステップ S54において大規模欠陥仮検出情報バッフ ァ 160dに登録された数によって特定される。
[0144] なお、本実施形態においてはユーザデータ領域に存在する気泡領域に起因して 発生する記録エラーの検出を想定している。既交替クラスタは交替領域に対するァク セスとなり、大規模欠陥領域の仮検出の対象から除外する必要がある。ステップ S51 を経てステップ S 55が実行される場合には、既交替クラスタが大規模欠陥領域の仮 検出の対象から除外されてレ、ることに留意されたレ、。
[0145] ステップ S56、ステップ S57およびステップ S58は、気泡領域が存在するか否かを 特定し、気泡領域が存在する場合にはそのサイズを測定する処理である。これらの 処理に費やすことが許容される時間は短い。その理由は、これらの処理はデータの 記録処理を一時中断して行われている力 S、所定時間内に記録する必要があるからで ある。
[0146] ステップ S56において、大規模欠陥判定部 150は気泡領域が存在するか否かを特 定する。本実施形態においては、気泡の有無はサーボ欠陥(サーボエラー)の有無 によって判定される。
[0147] 気泡領域であると判定するためには、複数トラックに跨った連続的な欠陥領域を検 出する必要がある。よって近傍トラックの状態を確認する。エラー検出した位置から外 周方向に 10トラック移動した位置を 2回検査し、両方においてサーボ欠陥が検出さ れた場合に、気泡ほたはサーボ欠陥)を確定とする。一方、 3回検査してもサーボ欠 陥が現われなかった場合には、気泡は存在しな!/、として測定は終了する。
[0148] 気泡はサイズが大きい典型的な欠陥であるが、傷などの一般的な欠陥であってもそ のサイズが気泡のサイズよりも大きくなる場合がある。よって、欠陥の大きさだけでは、 従来の欠陥と区別することは困難である。
[0149] 気泡と傷等の欠陥の大きな違いは、サーボの振る舞いにある。たとえば指紋に起因 して生じる欠陥では一般にサーボは外れることはなぐそのブロックへの記録は正しく 行われるが、正しくデータを読み出すことができずにベリファイでエラーと判定される ことが多い。また、傷に起因して生じる欠陥はサーボのトラッキング制御が完全に外 れてエラーになることが多い。
[0150] 一方、気泡の場合は、トラッキング制御が記録すべきトラックから外れてしまうが、隣 接トラックに対してトラッキング制御が行われることが多!/、。特に記録時には、記録済 みの隣接トラックにトラッキング制御が行われてそのデータを破壊してしまうことが多 い。そこで、サーボ信号(トラッキング信号)によるサーボ欠陥を利用して気泡を判定 することが適切である。
[0151] 上述の処理の詳細は図 6および図 7を参照しながら後述する。
[0152] ステップ S57において、大規模欠陥判定部 150は気泡領域が存在するか否かを判 断する。気泡領域が存在すると判断した場合には処理はステップ S58に進み、気泡 領域が存在しないと判断した場合には処理は終了する。
[0153] ステップ S58において、存在する気泡領域のサイズが測定される。この処理の詳細 もまた図 6および図 7を参照しながら後述する。
[0154] ステップ S59において、欠陥管理部 140は、測定された気泡領域の情報を大規模 欠陥情報バッファ 160cに保持する。
[0155] ステップ S56から S58までの処理に関連して、本願発明者らは 2種類の動作を想定 している。第 1は、ステップ S56において気泡の存在を確認すると、気泡の先頭から 最後までのサイズをステップ S58によって測定する動作である。第 2は気泡が存在す るという前提で気泡のサイズ測定を開始する動作である。後者については、気泡のサ ィズ測定の過程で気泡がしな!/、と判断した場合には測定を終了する。第 1および第 2 の動作の相違は、サーボ欠陥によって気泡が存在すると確認した後、そのサイズを 測定するためにサーボ欠陥が発生した最初の位置まで戻るか、そのままサーボ欠陥 がなくなる位置まで走査を継続するかにある。以下では、まず第 1の気泡測定動作を 説明し、その後図 6 (b)を参照しながら第 2の気泡測定動作を説明する。
[0156] 図 6 (a)は、図 5のステップ S56から S58までの気泡測定処理を説明する概念図で ある。
[0157] まずステップ S56を説明する。トラック 0へのデータ書き込み時にはサーボ欠陥は発 生していないが、気泡が存在するトラック 1では気泡に起因してサーボ欠陥が発生す
[0158] サーボ欠陥の検出は、例えば以下のように行う。図 7は、サーボ欠陥を含むトラツキ ングエラーの波形を示す。大規模欠陥判定部 150は、 BD10の対象となるトラック 1 回転を若干超える時間だけ TE信号を取得する。そして、その TE信号にトラックジャ ンプに起因するサーボ欠陥の成分が含まれるか否力、を判断する。例えば、 TE信号 が所定の検出閾値(閾値レベル) P (〉0)を超えた後、 P以下になるまでの時間 Qの 長さに基づいてサーボ欠陥か否かが判定される。さらに、 TE信号が所定の検出閾値 (閾値レベル) P' (< 0)以下になった後、 P'以上になるまでの時間 Q'の長さに基づ いてサーボ欠陥か否かを判定することも可能である。
[0159] 再び図 6 (a)を参照する。大規模欠陥判定部 150が TE信号波形に基づいて欠陥 D1を検出すると、予め定められた間隔分 (たとえば約 10 m)外周側に離れたトラッ クにアクセスするよう光ピックアップ 610に指示する。次のトラックでも、大規模欠陥判 定部 150はやはり欠陥 D2を検出する。大規模欠陥判定部 150はさらに予め定めら れた間隔分 (たとえば約 10 m)外周側に離れたトラックにアクセスするよう光ピックァ ップ 610に指示する。そして再度の欠陥 D3を検出して、大規模欠陥判定部 150は気 泡領域が存在すると判定する。
[0160] この結果、図 5のステップ S57の処理はステップ S58へ進む。
[0161] ステップ S58では、サイズ測定処理が行われる。大規模欠陥判定部 150は再びサ ーボ欠陥が発生した最初のトラック 1 (図 6 (a) )に戻って走査を開始する。そしてサー ボ欠陥が発生しなくなるまで、予め定められた間隔 (たとえば 10 m)で順次トラック へのアクセスを指示する。図 6 (a)ではトラック kまでサーボ欠陥が発生し、次にァクセ スしたトラック mにはサーボ欠陥が発生しなかったとする。その結果、気泡は少なくと もトラック 1からトラック kまでに跨っていることが特定される。
[0162] 大規模欠陥判定部 150は、サーボ欠陥が発生しなくなるまでのトラックの数 (合計 m )に走査したトラックの間隔(10 H m)を乗算して、気泡のサイズ S ( = lO 'm m)を 求める。このようにして得られた気泡のサイズ Sは、トラック 1から、サーボ欠陥が発生 しなかったトラック mの 1つ前の隣接するトラックまでの範囲として計算されている。な お、データの書き込み中にエラーが発生した状況で測定を行うため、あまりに長い時 間を要すると、記録時間が長くなつたり、書き込むべき後続のデータがバッファできな くなるため、気泡の測定を所定の範囲にとどめ、それ以降は測定を打ち切ってもよい
[0163] 上述のように、気泡領域の測定に時間を費やせないため、 10 mごとにチェックし ている。 BDのトラックピッチは 0· 32 であるため、約 30トラック (10/0. 32)ごとに チェックしているといえる。これにより、 1トラックずつチェックするよりはすばやく気泡 領域サイズの測定を行うことができる。なお一部分のトラックについてはトラックごとに サーボ欠陥の有無を判定してもよい。例えば、 10 mごとにトラックをチェックした結 果、サーボ欠陥が生じなくなったトラック mが特定されたときにおいて、そのトラック m と最後にサーボ欠陥を生じたトラック kとの間のトラックごとにサーボ欠陥の有無を判 定してもよい。これにより、気泡領域の正確なサイズを特定できる。
[0164] なお、上述の説明ではサーボ欠陥がないトラックが現われたときに、気泡領域では ないと判断し、トラックのサーボ欠陥チェックを終了した。しかし、サーボ欠陥がないト ラックが所定領域内に所定回数 (例えば 3回)現われない場合および/または所定回 数連続して現われない場合に、気泡領域ではないと判断してチェックを終了してもよ い。一方、サーボ欠陥がないトラックが現われるまでではなぐチェックに要する処理 時間を考慮するとチェックを行うトラック長の上限を決める必要がある。上限を決めて 測定を打ち切った場合には、測定した領域の次の領域、または、測定した領域の所 定範囲以内の領域に記録する際には、再度大規模欠陥領域判定を実行し、大規模 欠陥領域を測定し、大規模欠陥領域を特定すればょレ、。
[0165] なお、上述のステップ S 56および S58ではトラックへのアクセス間隔を 10 mである として説明しているが、各ステップでは異なる間隔でアクセスしてもよい。たとえばステ ップ S56では SO ^ m間隔、ステップ S58では 10 ^ m間隔でアクセスしてもよいし、そ の逆であってもよい。
[0166] つぎに、上述の第 2の気泡測定動作を説明する。図 6 (b)は、第 2の気泡測定動作 によるエラー検出処理を時系列に表示した図である。サーボ欠陥 D1の検出後、 10 a m離れたトラックごとにサーボ欠陥の有無をチェックする。大規模欠陥判定部 150 は 3つ目のサーボ欠陥 D3を検出すると、気泡が存在すると判定する。仮にサーボ欠 陥 D3が存在しなかった場合には、気泡の測定処理は終了する。
[0167] その後も順次 10 m離れたトラックごとにサーボ欠陥の有無をチェックする。そして サーボ欠陥 Dkの検出後、トラック mにおいてサーボ欠陥が現われなくなると、大規模 欠陥判定部 150はサーボ欠陥 Dkが生じたトラックと最後にチェックしたトラック mとの 間に気泡領域の終端が存在すると判定する。これにより気泡領域サイズ Sの大きさを ほぼ特定できる。
[0168] なお、ステップ S56の気泡領域の有無確認は、大規模欠陥領域であるとして仮検 出された領域のトラックのみのサーボ欠陥の有無によって判定してもよい。
[0169] 次に、図 8から図 10を参照しながら、本実施形態による気泡領域の測定および欠 陥処理の利点を説明する。
[0170] 図 8 (a)は、従来の欠陥処理方法による実行時間の計算モデルおよび計算式を示 す。記録エラーが生じるまでの時間を Wtl、ユーザデータ領域とスペア領域間のシ ーク時間を St、スペア領域における記録時間を Wt2、記録クラスタ数を Cとしたとき、 実行時間 Taは、
Ta= (Wtl + St + Wt2 + St) * C
によって得られる。
[0171] 一方、図 8 (b)は、本実施形態の欠陥処理方法による実行時間の計算モデルおよ び計算式を示す。記録エラーが生じるまでの時間を Wtl、ユーザデータ領域とスぺ ァ領域間のシーク時間を St、スペア領域における記録時間を Wt2、記録クラスタ数 を C、大規模欠陥領域のサイズ測定時間を Btとしたとき、実行時間 Tbは、
Tb= (Wtl + Bt + St) + (Wt2■ C) によって得られる。
[0172] 図 9および図 10は、処理クラスタ数を変化させたときの実行時間 Taおよび Tbの変 化を示す。図 9および図 10に示す直線は、上述のモデルケースでパラメータを以下 のように設定したとさに得られる。
Wtl:記録エラー時の実行時間 [ms]: 100
Wt2:記録の実行時間 [ms]: 250
St :シーク時間 [ms] : 250
Bt:大規模欠陥領域のサイズ測定時間 [ms]: 1200
[0173] 図 9および図 10によれば、処理クラスタ数が 3以上になると、本実施形態による欠陥 処理方法の方が従来の方法よりも実行時間が短い。データ書き込み中のエラーに起 因して交替記録を行う場合を考慮すると、短いほうが好ましいことは明らかである。
[0174] さらに本実施形態の記録方法は気泡領域のサイズと記録サイズに応じて交替領域 を確保するため、従来の方法よりもスペア領域を効率的に使用できる。本実施形態に おいては、交替領域をスペア領域内に確保するとして説明した力、これは例である。 交替領域をユーザデータ領域内に確保してもよ!/、。
[0175] また、交替領域へのデータの書き込み中にエラーが発生したときに、どのような交 替方法を採用するかについては任意である。たとえば欠陥管理部 140は、スペア領 域内、またはユーザデータ領域内に他の交替領域をさらに確保し、確保した他の交 替領域に引き続きデータを書き込むよう記録制御部 120に指示してもよい。またこの とき、欠陥管理部 140は交替領域を固定長で確保してもよいし、上述の実施形態と 同様、大規模欠陥判定部 150にエラーが発生した交替領域のサイズを測定させて、 測定されたサイズと同じサイズ他の交替領域を確保してもよい。
[0176] なお、上述した BDは、書き換え可能な光ディスク(いわゆる BD— RE)であるとして 説明したが、一回に限り書き込むことが可能な光ディスク(いわゆる BD— R)であって あよい。
産業上の利用可能性
[0177] 本発明に力、かる光ディスクドライブによれば、光ディスクに気泡などを含む大規模欠 陥領域が存在している場合には、サーボ制御のエラーに基づいてその大規模欠陥 領域のサイズを特定し、そのサイズに応じたサイズを有する交替領域にデータを交替 記録する。気泡領域はサーボが不安定であるため、気泡が存在しない交替領域にデ ータを交替記録することによって安定的な書き込みおよび読み出しが実現される。ま た、交替領域のサイズは特定された気泡領域のサイズに応じて確保されるため、過 不足がなぐスペア領域の最小限かつ効率的な利用が実現される。

Claims

請求の範囲
[1] 光ディスクの記録領域へのデータ書き込み中に、前記記録領域内の欠陥領域に起 因するエラーを検出して前記欠陥領域に代わる交替領域にデータを書き込む光ディ スク装置であって、
光ディスクに光ビームを照射し、前記光ディスクによって反射された光ビームに基づ
V、て受光信号を生成する光ピックアップと、
前記光ピックアップを制御して前記光ディスクの記録領域へのデータの書き込みを 制御する記録制御部と、
前記データの書き込み中にエラーが発生したときに前記エラーが発生した記録領 域を欠陥領域であると判定し、前記欠陥領域のサイズを測定する欠陥判定部と、 前記データの書き込みの指示を受けて、測定された前記欠陥領域のサイズに基づ
V、て決定されたサイズの交替領域を前記光ディスク上に確保し、確保した前記交替 領域に前記データを書き込むよう前記記録制御部に指示する欠陥管理部と を備えた光ディスク装置。
[2] 前記光ディスク上には複数のトラックが形成されており、
前記エラーが発生したときに、前記欠陥判定部は前記複数のトラックへ間欠的にァ クセスするよう前記光ピックアップに指示し、その結果予め定められたエラーが発生し た領域を前記欠陥領域であると判定する、請求項 1に記載の光ディスク装置。
[3] 前記記録制御部は、前記受光信号から生成されるサーボ信号の信号レベルが所 定の閾値よりも大きかった時間に基づいてサーボエラーを検出し、
前記欠陥判定部は、前記サーボエラーが発生した領域を欠陥領域であると判定す る、請求項 2に記載の光ディスク装置。
[4] 前記欠陥判定部は予め定められた間隔の複数トラックへのアクセスを前記光ピック アップに指示し、複数回のサーボエラーが発生した領域を前記欠陥領域として判定 する、請求項 3に記載の光ディスク装置。
[5] 前記記録制御部は、前記受光信号から生成されるサーボ信号に基づいてサーボ エラーを検出することが可能であり、
前記欠陥判定部は、前記エラーがシーク中のサーボエラーである場合には、前記 欠陥領域のサイズの測定を開始する、請求項 1に記載の光ディスク装置。
[6] 前記欠陥判定部は、前記エラーがデータの記録エラーであって、かつ記録エラー が所定回数発生した場合には、前記欠陥領域のサイズの測定を開始する、請求項 1 に記載の光ディスク装置。
[7] 前記欠陥管理部は、測定された前記欠陥領域のサイズと前記データのサイズとに 応じて、前記欠陥領域のサイズ以下のサイズの交替領域を前記光ディスク上に確保 する、請求項 1に記載の光ディスク装置。
[8] 前記欠陥領域は、前記光ディスクの製造時に形成された気泡を含む領域である、 請求項 1に記載の光ディスク装置。
[9] 前記欠陥領域は、前記光ディスクに形成された複数のトラックに跨る領域である、請 求項 8に記載の光ディスク装置。
[10] 前記欠陥管理部は、測定された前記欠陥領域のサイズ、および、未だ記録されて いないデータのサイズのうちの小さい方と同じサイズの交替領域を前記光ディスク上 に確保する、請求項 1に記載の光ディスク装置。
[11] 前記光ディスクにはユーザデータ領域およびスペア領域が設けられており、
前記交替領域への前記データの書き込み中にエラーが発生したときにおいて、 前記欠陥管理部は、前記スペア領域内に他の交替領域をさらに確保し、確保した 前記他の交替領域に引き続き前記データを書き込むよう前記記録制御部に指示す る、請求項 1に記載の光ディスク装置。
PCT/JP2007/069283 2006-10-04 2007-10-02 Dispositif de disque optique WO2008041700A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07829023.6A EP2073208A4 (en) 2006-10-04 2007-10-02 OPTICAL DATA DISTRIBUTION EQUIPMENT
JP2008537533A JPWO2008041700A1 (ja) 2006-10-04 2007-10-02 光ディスク装置
US12/443,990 US20100097903A1 (en) 2006-10-04 2007-10-02 Optical disc device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006272744 2006-10-04
JP2006-272744 2006-10-04

Publications (1)

Publication Number Publication Date
WO2008041700A1 true WO2008041700A1 (fr) 2008-04-10

Family

ID=39268554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069283 WO2008041700A1 (fr) 2006-10-04 2007-10-02 Dispositif de disque optique

Country Status (4)

Country Link
US (1) US20100097903A1 (ja)
EP (1) EP2073208A4 (ja)
JP (1) JPWO2008041700A1 (ja)
WO (1) WO2008041700A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004707A1 (ja) * 2008-07-10 2010-01-14 パナソニック株式会社 光ディスク、光ディスク装置、光ディスクの欠陥登録方法、光ディスクの記録方法および光ディスクの再生方法
US8174943B2 (en) 2007-11-12 2012-05-08 Panasonic Corporation Optical disk device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088597B1 (en) * 2006-11-07 2015-08-19 Panasonic Corporation Optical disc device
JP5614213B2 (ja) * 2010-10-01 2014-10-29 日本電気株式会社 記憶領域提供装置、記憶領域提供方法、及び、記憶領域提供プログラム
KR20120039985A (ko) * 2010-10-18 2012-04-26 삼성전자주식회사 기록매체에 대한 리드 또는 라이트 처리 방법, 파라미터 조정 방법, 이를 적용한 저장 장치, 컴퓨터 시스템 및 저장매체
US9286159B2 (en) * 2013-11-06 2016-03-15 HGST Netherlands B.V. Track-band squeezed-sector error correction in magnetic data storage devices
US9368152B1 (en) 2014-11-25 2016-06-14 Seagate Technology Llc Flexible virtual defect padding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167751A (ja) * 1997-12-03 1999-06-22 Hitachi Ltd 光ディスクの初期欠陥登録方法およびそのための装置、並びに初期欠陥登録された光ディスク
JP2001176204A (ja) * 1999-12-14 2001-06-29 Ricoh Co Ltd 光学的情報記録再生装置
JP2002184116A (ja) 2000-12-15 2002-06-28 Sony Corp 欠陥処理方法および光ディスク装置
JP2007035153A (ja) * 2005-07-27 2007-02-08 Ricoh Co Ltd 記録方法、光ディスク装置、プログラム及び記録媒体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034831A (en) * 1997-05-09 2000-03-07 International Business Machines Corporation Dynamic reverse reassign apparatus and method for a data recording disk drive
CN1716393B (zh) * 1999-07-15 2011-01-26 皇家飞利浦电子股份有限公司 扫描记录盘发现缺陷的方法和在盘形记录媒体上记录信息的记录设备
JP2005327405A (ja) * 2004-05-17 2005-11-24 Ricoh Co Ltd 記録方法、情報記録装置、情報再生装置、プログラム及び記録媒体
US20070074087A1 (en) * 2005-09-27 2007-03-29 Hong-Jing Lo System and method for writing information to an optical medium with predicting of defect characteristics
JPWO2008099590A1 (ja) * 2007-02-14 2010-05-27 パナソニック株式会社 光ディスク装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167751A (ja) * 1997-12-03 1999-06-22 Hitachi Ltd 光ディスクの初期欠陥登録方法およびそのための装置、並びに初期欠陥登録された光ディスク
JP2001176204A (ja) * 1999-12-14 2001-06-29 Ricoh Co Ltd 光学的情報記録再生装置
JP2002184116A (ja) 2000-12-15 2002-06-28 Sony Corp 欠陥処理方法および光ディスク装置
JP2007035153A (ja) * 2005-07-27 2007-02-08 Ricoh Co Ltd 記録方法、光ディスク装置、プログラム及び記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2073208A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8174943B2 (en) 2007-11-12 2012-05-08 Panasonic Corporation Optical disk device
WO2010004707A1 (ja) * 2008-07-10 2010-01-14 パナソニック株式会社 光ディスク、光ディスク装置、光ディスクの欠陥登録方法、光ディスクの記録方法および光ディスクの再生方法
US8274870B2 (en) 2008-07-10 2012-09-25 Panasonic Corporation Optical disk, optical disk device, optical disk defect registering method, optical disk recording method, and optical disk reproducing method
JP2013239232A (ja) * 2008-07-10 2013-11-28 Panasonic Corp 光ディスク、光ディスク装置、光ディスクの欠陥登録方法、光ディスクの記録方法および光ディスクの再生方法

Also Published As

Publication number Publication date
EP2073208A1 (en) 2009-06-24
JPWO2008041700A1 (ja) 2010-02-04
EP2073208A4 (en) 2013-10-23
US20100097903A1 (en) 2010-04-22

Similar Documents

Publication Publication Date Title
US8164998B2 (en) Optical disc device
WO2008041700A1 (fr) Dispositif de disque optique
JP2003323769A (ja) 多層情報記録媒体、再生装置、記録装置、再生方法および記録方法
US8027235B2 (en) Defect managing method and defect managing device
JP2013239232A (ja) 光ディスク、光ディスク装置、光ディスクの欠陥登録方法、光ディスクの記録方法および光ディスクの再生方法
JP5307214B2 (ja) 情報記録媒体における欠陥を管理する方法、記録/再生装置、及び情報記録媒体
KR101615623B1 (ko) 정보 저장 매체, 기록 재생 방법 및 기록 재생 장치
JP2007012248A (ja) 多層情報記録媒体および情報装置
US7782729B2 (en) Digital data recording method and data recording/reproducing apparatus
JP5291468B2 (ja) 光ディスク装置
JP2012185874A (ja) 記録再生装置及び記録再生方法
JP2010097685A (ja) 記録方法、情報記録装置、情報記録媒体、再生方法及び情報再生装置
WO2004038704A1 (ja) 再生専用の記録媒体
JP4598677B2 (ja) 検査用光ディスク及びその製造方法
JP2007200417A (ja) 情報記録再生装置及び光ディスク媒体の管理情報の更新方法
JP2006164462A (ja) 設定方法、情報記録媒体、情報記録装置、プログラム及び記録媒体
JP2011134377A (ja) 多層光ディスクの再フォーマット処理方法
JP2010003366A (ja) 情報処理方法、集積回路、及び情報記録装置
JP2006209847A (ja) ディスク装置及びディスク再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829023

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008537533

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12443990

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007829023

Country of ref document: EP