[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007139196A1 - Display device and view angle control element used for same - Google Patents

Display device and view angle control element used for same Download PDF

Info

Publication number
WO2007139196A1
WO2007139196A1 PCT/JP2007/061124 JP2007061124W WO2007139196A1 WO 2007139196 A1 WO2007139196 A1 WO 2007139196A1 JP 2007061124 W JP2007061124 W JP 2007061124W WO 2007139196 A1 WO2007139196 A1 WO 2007139196A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
viewing angle
display
alignment film
range
Prior art date
Application number
PCT/JP2007/061124
Other languages
French (fr)
Japanese (ja)
Inventor
Yusuke Kimura
Kimitaka Nomura
Kohji Yabuta
Ryoh Kikuchi
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007139196A1 publication Critical patent/WO2007139196A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle

Definitions

  • the present invention provides a viewing angle control element capable of switching the viewing angle of a display device between a wide viewing angle and a narrow viewing angle, and a display device capable of controlling the viewing angle by using the viewing angle control element. It is related.
  • a display device is generally required to have as wide a viewing angle as possible so that a clear image can be seen at any viewing angle force.
  • liquid crystal display devices that have become widespread recently have been developed in various technologies to achieve a wide viewing angle because the liquid crystal itself has a viewing angle dependency.
  • notebook personal computers, personal digital assistants (PDAs), mobile phones, etc. are highly likely to be used in places where an unspecified number of people can exist such as in trains.
  • the viewing angle of the display device be narrow because it is not desirable for others in the vicinity to view the display content from the viewpoint of confidentiality and privacy protection.
  • This requirement is not limited to the liquid crystal display device, but is a common problem with any display device.
  • This switch liquid crystal display has a liquid crystal layer of homogeneous alignment.
  • a pair of polarizing plates is provided across the liquid crystal layer, and the liquid crystal molecules of the liquid crystal layer are uniaxially aligned so that the major axis direction is substantially parallel to the polarization transmission axis of the pair of polarizing plates.
  • switch If no voltage is applied to the liquid crystal display, the major axis direction of the liquid crystal molecules is parallel to the substrate surface, and the incident light is transmitted through the polarizing plate without being affected by the birefringence of the liquid crystal molecules from any direction.
  • the wide viewing angle mode is set.
  • FIG. 22 is a graph showing transmittance characteristics when the switch liquid crystal display disclosed in Patent Document 1 is set to a narrow viewing angle mode.
  • the elevation angle is the angle between the observer's viewpoint and the normal of the line force display that connects the center of the display surface of the display.
  • the conventional switch liquid crystal display shows the maximum transmittance at an elevation angle of 0 °, and the transmittance decreases as the elevation angle increases.
  • the display on the main display can be clearly seen when observing the force in the front direction, but the transmittance of the switch liquid crystal display is reduced when observing the force in the oblique direction. I ca n’t see the display.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-64882
  • the present invention provides a viewing angle control element capable of narrowing the range of the elevation angle at which the display of the display element can be seen in the narrow viewing angle mode, and a table provided with the viewing angle control element.
  • a display device is disposed on a display element driven according to an image to be displayed, and at least one of a back surface and a front surface of the display element,
  • a display device comprising a viewing angle control element that controls a viewing angle of the display element, wherein the viewing angle control element is provided on each of a pair of translucent substrates and the translucent substrate.
  • a liquid crystal cell having a vertical alignment film and a horizontal alignment film; a hybrid alignment liquid crystal layer sandwiched between the vertical alignment film and the horizontal alignment film; and a drive circuit for applying a voltage to the liquid crystal layer.
  • the cell is disposed between two polarizing plates whose polarization transmission axes are disposed substantially in parallel, and the alignment state of the liquid crystal molecules in the liquid crystal layer of the viewing angle control element is applied by applying a voltage from the driving circuit.
  • the first state providing the first viewing angle range and the second providing the second viewing angle range within the first viewing angle range and narrower than the first viewing angle range. It is possible to switch between these states.
  • the driving circuit does not apply a voltage to the liquid crystal layer of the viewing angle control element, so that the first state is established, and the driving circuit enters the liquid crystal layer of the viewing angle control element. It is preferable that the second state is achieved by applying a predetermined voltage.
  • a negative C plate is provided at least at one position between the liquid crystal cell and the two polarizing plates.
  • the negative C plate By providing the negative C plate, elliptically polarized light generated by birefringence of the liquid crystal layer of the viewing angle control element was optically compensated, and in the first state (wide viewing angle), a viewing angle force with a relatively large elevation angle was observed. In addition to preventing coloration, the viewing angle can be further widened.
  • the driving circuit applies the predetermined voltage V to the liquid crystal layer of the viewing angle control element, so that the second state is achieved.
  • the drive circuit applies a predetermined voltage greater than the predetermined voltage V to the liquid crystal layer of the viewing angle control element.
  • the first state is achieved by applying the voltage V.
  • the predetermined power is a predetermined power
  • the pressure V is a voltage that causes liquid crystal molecules in the liquid crystal layer of the viewing angle control element to be home-orientated.
  • the pressure value is preferable.
  • the display element is a display element that emits linearly polarized light, and one of the two polarizing plates is a polarizing plate provided on the display element. It can be configured.
  • the display element may be a transmissive liquid crystal display element, and may further include a backlight.
  • the viewing angle control element may be arranged between the backlight and the transmissive liquid crystal display element, or the viewing angle control element may be disposed on the front surface of the transmissive liquid crystal display element. An arrangement may be adopted.
  • the display device may be configured such that the display element is a reflective liquid crystal display element or a transflective liquid crystal display element.
  • the display element may be a self-luminous display element.
  • the retardation of the liquid crystal layer of the viewing angle control element is in the range of 600 nm to 2500 nm
  • the pretilt angle on the horizontal alignment film side is in the range of 1 ° to 20 °.
  • the pretilt angle on the vertical alignment film side is preferably in the range of 70 ° to 90 °. If the pretilt angle is set within this range, the second state (narrow viewing angle) is established. In this case, the elevation angle is relatively large and the display shielding performance with respect to the viewing angle can be sufficiently secured.
  • the retardation of the liquid crystal layer of the viewing angle control element is in the range of 600 nm to 2500 nm
  • the pretilt angle on the horizontal alignment film side is in the range of 10 ° to 30 °.
  • the pretilt angle on the vertical alignment film side is preferably in the range of 75 ° to 90 °. If the pretilt angle is set within this range, the display shielding performance for a viewing angle with a relatively high elevation angle can be sufficiently secured in the second state (narrow viewing angle).
  • the retardation of the liquid crystal layer of the viewing angle control element is in the range of 600 nm to 2500 nm, and the pretilt angular force on the horizontal alignment film side is in the range of 3 ⁇ 40 ° to 40 °.
  • the pretilt angle on the vertical alignment film side is preferably in the range of 80 ° to 90 °. If the pretilt angle is set within this range, the display shielding performance for a viewing angle with a relatively high elevation angle can be sufficiently secured in the second state (narrow viewing angle).
  • the viewing angle control element is disposed on at least one of the back surface and the front surface of the display element driven in accordance with an image to be displayed.
  • a viewing angle control element used for controlling a viewing angle of an element comprising a pair of translucent substrates, a vertical alignment film and a horizontal alignment film provided on each of the translucent substrates, and the vertical alignment
  • a liquid crystal cell having a hybrid alignment liquid crystal layer sandwiched between a film and a horizontal alignment film, a drive circuit for applying a voltage to the liquid crystal layer, and at least one polarizing plate, wherein the drive circuit includes the liquid crystal
  • the liquid crystal layer having the no-or-ibrid orientation is provided, whereby the transmittance from a viewing angle with a relatively high elevation angle is increased in the second state (narrow viewing angle). Occurrence of the switching phenomenon can be suppressed as compared with the conventional case.
  • a viewing angle control element capable of narrowing the range of the elevation angle at which the display of the display element can be seen from the conventional one.
  • the range of the elevation angle at which the display can be seen in the narrow viewing angle mode is made larger than in the conventional case. It is possible to provide a viewing angle control device that can be narrowly restricted and a display device that can effectively prevent a person from being seen by others.
  • FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a display device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the relationship between the direction of rubbing treatment for the alignment film and the direction of the polarization transmission axis of the polarizing plate.
  • FIG. 3 Fig. 3 (a) and Fig. 3 (b) show the alignment state of the liquid crystal molecules in the viewing angle control liquid crystal panel when the voltage applied to the liquid crystal layer is switched between OV and a predetermined voltage Va.
  • FIGS. 4 (a) and 4 (b) are charts showing the transmittance of the liquid crystal panel for viewing angle control when the voltage applied to the liquid crystal layer is switched between OV and a predetermined voltage Va, respectively. .
  • FIG. 5 is an explanatory diagram showing definitions of azimuth angle ⁇ and elevation angle ⁇ .
  • FIG. 6 shows the case where the retardation of the liquid crystal layer of the viewing angle control liquid crystal panel is 600 nm, and the pretilt angle on the vertical alignment film side and the pretilt angle on the horizontal alignment film side are set to various values. It is explanatory drawing which shows the evaluation result of the transmittance
  • FIG. 7 shows a case where the retardation of the liquid crystal layer of the liquid crystal panel for viewing angle control is 800 nm, and the pretilt angle on the vertical alignment film side and the pretilt angle on the horizontal alignment film side are set to various values. It is explanatory drawing which shows the evaluation result of the transmittance
  • FIG. 8 shows the case where the retardation of the liquid crystal layer of the liquid crystal panel for viewing angle control is lOOOnm, and the pretilt angle on the vertical alignment film side and the pretilt angle on the horizontal alignment film side are set to various values. It is explanatory drawing which shows the evaluation result of the transmittance
  • FIG. 9 shows the case where the retardation of the liquid crystal layer of the liquid crystal panel for viewing angle control is 1300 nm, and the pretilt angle on the vertical alignment film side and the pretilt angle on the horizontal alignment film side are set to various values. It is explanatory drawing which shows the evaluation result of the transmittance
  • FIG. 10 shows the viewing angle when the retardation of the liquid crystal layer of the viewing angle control liquid crystal panel is 1500 nm and the pretilt angle on the vertical alignment film side and the pretilt angle on the horizontal alignment film side are set to various values. It is explanatory drawing which shows the evaluation result of the transmittance
  • FIG. 11 shows the viewing angle when the retardation of the liquid crystal layer of the liquid crystal panel for viewing angle control is 2500 nm and the pretilt angle on the vertical alignment film side and the pretilt angle on the horizontal alignment film side are set to various values. It is explanatory drawing which shows the evaluation result of the transmittance
  • FIG. 12 shows that the retardation of the liquid crystal layer of the viewing angle control liquid crystal panel is 600 nm, the pretilt angle P on the horizontal alignment film side is set to 10 °, and the pretilt angle P on the vertical alignment film side is b a
  • FIG. 7 is a transmittance characteristic diagram of a liquid crystal panel for viewing angle control when set to 70 °, 75 °, 80 °, and 85 °, respectively.
  • FIG. 13 shows that the retardation of the liquid crystal layer of the viewing angle control liquid crystal panel is 600 nm, the pretilt angle P on the horizontal alignment film side is set to 20 °, and the pretilt angle P on the vertical alignment film side is b a
  • FIG. 7 is a transmittance characteristic diagram of a liquid crystal panel for viewing angle control when set to 70 °, 75 °, 80 °, and 85 °, respectively.
  • FIG. 14 shows that the retardation of the liquid crystal layer of the viewing angle control liquid crystal panel is 600 nm, the pretilt angle P on the horizontal alignment film side is set to 30 °, and the pretilt angle P on the vertical alignment film side is b a
  • FIG. 6 is a transmittance characteristic diagram of a viewing angle control liquid crystal panel when set to 70 °, 75 °, 80 °, and 85 °, respectively.
  • Figure 15 shows that the retardation of the liquid crystal layer of the liquid crystal panel for viewing angle control is 600 nm, the pretilt angle P on the horizontal alignment film side is set to 40 °, and the pretilt angle P on the vertical alignment film side is b a
  • FIG. 6 is a transmittance characteristic diagram of a viewing angle control liquid crystal panel when set to 70 °, 75 °, 80 °, and 85 °, respectively.
  • FIG. 16 (a) is a schematic diagram of a liquid crystal layer in a hybrid orientation in the viewing angle control liquid crystal panel of this embodiment
  • FIG. 16 (b) is a diagram of a conventional switch liquid crystal display with a homogeneous orientation. It is a schematic diagram of a liquid-crystal layer.
  • FIG. 17 (a) shows liquid crystal molecules that sequentially transmit light along the optical path when light passes through the liquid crystal layer shown in FIG. 16 (a) parallel to the xz plane and at an elevation angle ⁇ . M to M
  • Fig. 17 (b) shows the projection on the optical path when light is transmitted through the liquid crystal layer shown in Fig. 16 (b) parallel to the xz plane and at an elevation angle ⁇ . Sequentially transmits light It is a projection view when the liquid crystal molecules m to m are viewed from the optical path direction.
  • FIG. 18 is a schematic cross-sectional view showing a schematic configuration of a display device according to a second embodiment of the present invention.
  • FIGS. 19 (a) and 19 (b) show the alignment state of the liquid crystal molecules in the viewing angle control liquid crystal panel when the voltage applied to the liquid crystal layer is switched between Vb and Va, respectively.
  • FIG. 20 is an explanatory diagram showing a range of preferred values for the retardation of the negative C plate with respect to the retardation value of the liquid crystal layer of the viewing angle control liquid crystal panel according to the present embodiment.
  • FIGS. 21 (a) and 21 (b) show the viewing angle control liquid crystal panel when the voltage applied to the liquid crystal layer is switched between Vb and Va in the state where the negative C plate is laminated. It is a chart which shows each transmittance
  • FIG. 22 is a graph showing the transmittance characteristics of a conventional viewing angle control device.
  • FIG. 23 shows a viewing angle range (A, CI, C2) where the display of the main display can be seen and a viewing angle range (Bl, B2) where the main display can be seen in a display device equipped with a conventional viewing angle control device. It is a schematic diagram which shows distribution.
  • FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a display device 100 according to the first embodiment of the present invention.
  • the display device 100 includes two liquid crystal panels: a display liquid crystal panel 1 (display element) for displaying an image and a viewing angle control liquid crystal panel 2 (viewing angle control element). ing.
  • the display liquid crystal panel 1 in the present embodiment is a transmissive type and has a display device.
  • the device 100 includes a backlight 3 as a light source.
  • a configuration using a liquid crystal panel as the display element is illustrated, but as will be described later, the display element applicable to the present invention is not limited to the liquid crystal panel.
  • the display device 100 by switching the liquid crystal in the viewing angle control liquid crystal panel 2, the display device 100 has a wide viewing angle (wide viewing angle) in which an image on the display liquid crystal panel 1 can be viewed, and the viewing angle is The display state can be switched between a narrow state (narrow viewing angle).
  • the narrow viewing angle is particularly suitable when others do not want to see the image on the LCD panel 1 for display, and the wide viewing angle is used for other normal use or images on the LCD panel 1 for display. It is suitable for use in situations where multiple people see it at the same time.
  • the liquid crystal mode and cell structure of the display liquid crystal panel 1 are arbitrary. Further, the drive mode of the display liquid crystal panel 1 is also arbitrary. That is, as the display liquid crystal panel 1, an arbitrary liquid crystal panel capable of displaying characters, images, or moving images can be used. Therefore, in the present embodiment, the detailed structure of the display liquid crystal panel 1 is not shown, and the description thereof is also omitted. Further, the display liquid crystal panel 1 may be a panel capable of color display or a panel dedicated to monochrome display. Furthermore, since any known backlight without any limitation can be used for the configuration of the backlight 3, illustration and description of the detailed structure of the backlight 3 are also omitted. When the display liquid crystal panel 1 is a reflective liquid crystal panel, no backlight is required.
  • the viewing angle control liquid crystal panel 2 includes a liquid crystal cell 20 having a pair of translucent substrates 21a and 21b, transparent electrodes 22a and 22b, alignment films 23a and 23b, and a liquid crystal layer 24.
  • a pair of polarizing plates 25 and 26 disposed so as to sandwich the liquid crystal cell 20 and a drive circuit 27 for controlling the voltage between the transparent electrodes 22a and 22b are provided.
  • the alignment film 23a is a vertical alignment film
  • the alignment film 23b is a horizontal alignment film. That is, the liquid crystal molecules in the liquid crystal layer 24 are arranged so that the molecular major axis forms an angle of approximately 70 ° to 90 ° with respect to the interface in the vicinity of the interface with the alignment film 23a in a state where no voltage is applied. In the vicinity of the interface with the alignment film 23b, the molecular long axes are arranged so as to form an angle of approximately 0 ° to 30 ° with respect to the interface.
  • the alignment film 23b on the display liquid crystal panel 1 side is a horizontal alignment film
  • the other alignment film 23a is a vertical alignment film.
  • the alignment film 23b on the display liquid crystal panel 1 side may be a vertical alignment film
  • the alignment film 23a may be a horizontal alignment film.
  • the transparent electrodes 22a and 22b are formed using, for example, ITO (Indium Tin Oxide).
  • the liquid crystal panel 1 for display needs to drive the liquid crystal in display units (pixel units or segment units), the liquid crystal for controlling the viewing angle and the liquid crystal for controlling the viewing angle is required.
  • Panel 2 has no restrictions on the electrode structure. For example, in order to perform uniform switching over the entire display surface, a uniform transparent electrode may be formed on the entire surface of the translucent substrates 21a and 21b, or a logo in the narrow viewing angle mode. Alternatively, an electrode structure that displays a unique pattern may be adopted.
  • FIG. 2 is a schematic diagram showing the relationship between the direction of rubbing treatment for the alignment films 23a and 23b and the direction of the polarization transmission axis of the polarizing plates 25 and 26.
  • FIG. 2 the normal direction to the paper surface of FIG. 2 is the z direction, and the plane parallel to the surfaces of the alignment films 23a and 23b and the polarizing plates 25 and 26 is the xy plane.
  • the direction parallel to the rubbing direction is defined as the y direction.
  • the directions of rubbing treatment for the alignment films 23a and 23b of the viewing angle control liquid crystal panel 2 are parallel to each other and opposite to each other (anti-parallel).
  • the direction of rubbing treatment for the alignment films 23a and 23b of the viewing angle control liquid crystal panel 2 may be parallel to each other and in parallel.
  • the polarizing plates 25 and 26 are linear polarizing plates, the polarization transmission axes of which are substantially parallel, and the polarization transmission axes are rubbed with the alignment films 23a and 23b. It is arranged so as to be substantially orthogonal to the direction.
  • the liquid crystal molecules of the liquid crystal layer 24 are in the vicinity of the interface with the alignment film 23a (vertical alignment film) as shown in FIG. 3 (a).
  • the major axis is almost horizontal with respect to the interface, and the direction of the molecular major axis gradually changes between these interfaces. Arrange them in the same state. Note that the pretilt angle P with respect to the interface with the alignment films 23a and 23b is obtained by rubbing.
  • the drive circuit 27 determines that the voltage applied to the liquid crystal layer 24 is OV (state in FIG. 3 (a)) and a predetermined voltage Va (in FIG. 3 (b)).
  • 6 is a chart showing the transmittance of the viewing angle control liquid crystal panel 2 when the state is switched to the state).
  • the measurement was performed with the retardation of the liquid crystal layer 24 set to 1500 nm.
  • the viewing angle from a certain viewing point with respect to the panel surface of the viewing angle control liquid crystal panel 2 is represented by an azimuth angle ⁇ and an elevation angle ⁇ with respect to the center of the panel surface.
  • FIG. 5 is an explanatory diagram showing the definitions of the azimuth angle ⁇ and the elevation angle ⁇ .
  • the azimuth angle ⁇ is the rotation angle of the line connecting the leg of the perpendicular line from the viewpoint to the panel surface and the center of the panel surface.
  • the azimuth angle ⁇ with respect to the center of the panel surface is counterclockwise when viewed from the upper side of the z-axis with the positive direction of the X-axis as 0 °. It shall increase.
  • the elevation angle ⁇ is the angle between the z-axis and the line connecting the viewpoint and the center of the panel surface.
  • FIG. 4 (a) when no voltage is applied, the elevation angle of about 60 ° is sufficient when viewed from a viewing angle of 0 ° and 180 ° with respect to the screen of the display device 100. Since the brightness is obtained, the display content of the display liquid crystal panel 1 can be visually recognized.
  • Fig. 4 (b) when the voltage Va is applied, the luminance is sufficiently high when viewed from the viewing angles of 0 ° and 1800 ° compared to when no voltage is applied as shown in Fig. 4 (a).
  • the applied voltage to the liquid crystal layer 24 of the viewing angle control liquid crystal panel 2 in the display device 100 is set to 0 V, the display liquid crystal panel A wide viewing angle mode can be realized in which the display content of 1 can be viewed from a relatively wide range, and if the applied voltage is a predetermined voltage Va, the display content of the liquid crystal panel for display 1 can be viewed from the elevation angle. A narrow viewing angle mode limited to a relatively narrow range can be realized.
  • the applied voltage Va is about 1.0V to 4.0V.
  • Figs. 6 to 11 show that the retardation of the liquid crystal layer 24 is 600, 800, lOOOnm, 1300nm, 1500nm, 2500nm, respectively.
  • the pretilt angle P on the alignment layer is set to 70 °, 75 °, 80 °, 85 °, and 90 °.
  • the pretilt angle P on the alignment film 23b (horizontal alignment film) side is 1 °, 3 °, 10 °, 20 °, 30 °, 4
  • the evaluation results of the transmittance characteristics of the viewing angle control liquid crystal panel 2 when set to 0 ° and 50 ° are shown. These pretilt angles can be realized by a rubbing method, an oblique deposition method, a photo-alignment method, or the like.
  • FIGS. 6 to 11 indicate that the pounding is suppressed as compared with the prior art and that the maximum transmittance is 10% or less even in the range where the pounding occurs.
  • the conventional switch liquid crystal display with the homogenous alignment described above is used, and the retardation is shown in FIGS. 6 to 11 in the present embodiment.
  • the viewing angle control liquid crystal panel 2 was set to the same value, and the pretilt angle was 3 °.
  • FIGS. 6 to 11 indicate the force S in which the pounding is suppressed as compared with the prior art, and the maximum transmittance in the range where the pounding occurs slightly exceeds 10%, but the display liquid crystal panel 1 This means that the display content was low enough to be invisible.
  • the X marks shown in FIGS. 6 to 11 mean that the casting was performed up to such a high transmittance that the display contents of the display liquid crystal panel 1 can be visually recognized.
  • the pretilt angle P on the horizontal alignment film side is in the range of about 1 ° to 40 ° and the pretilt angle P on the vertical alignment film side is
  • the transmittance is suppressed to 10% or less and good shielding is achieved.
  • the pretilt angle P on the vertical alignment film side is approximately 1 ° to 10 ° when the pretilt angle P on the horizontal alignment film side is approximately 1 ° to 10 °.
  • the transmittance is suppressed to approximately 10% or less, and good shielding characteristics are obtained.
  • the pretilt angle P on the horizontal alignment film side is about 20 ° to 30 °.
  • the pretilt angle P on the vertical alignment film side should be in the range of approximately 75 ° to 90 °.
  • pretilt angle P on the horizontal alignment film side is approximately 40 °
  • the pretilt angle P on the alignment film side is preferably in the range of about 80 ° to 90 °.
  • the pretilt angle P ba on the vertical alignment film side is about 1 ° to 10 ° when the pretilt angle P on the horizontal alignment film side is approximately 1 ° to 10 °. In the range of approximately 70 ° to 90 °, the transmittance was suppressed to approximately 10% or less, and good shielding characteristics were obtained. Also, the pretilt angle P on the horizontal alignment film side is about 20 ° to 30 ° b
  • pretilt angle P on the vertical alignment film side is approximately 75 ° to 90 °
  • the transmittance was suppressed to about 10% or less, and good shielding properties were obtained.
  • the pretilt angle P on the horizontal alignment film side is in the range of about 40 °
  • the pretilt angle P ba on the vertical alignment film side is preferably in the range of about 80 ° to 90 °.
  • the pretilt angle P ba on the vertical alignment film side is about 1 ° to 10 ° when the pretilt angle P on the horizontal alignment film side is in the range of about 1 ° to 10 °.
  • the transmittance is 10 in the range of about 70 ° ⁇ 90 °. /. It was suppressed to a level lower than that, and generally good shielding properties were obtained.
  • the pretilt angle P on the horizontal alignment film side is about 2
  • the pretilt angle P on the vertical alignment film side is approximately 75. ⁇ 90 °
  • pretilt angle P on the horizontal alignment film side is approximately 40 °.
  • the pretilt angle P on the vertical alignment film side should be approximately 80 ° to 90 °.
  • the pretilt angle P on the horizontal alignment film side is in the range of approximately 20 ° to 30 °
  • the pretilt angle P on the vertical alignment film side is approximately 75 ° to 90 ° a
  • the pretilt angle P on the horizontal alignment film side is approximately 40 °.
  • the pretilt angle P on the vertical alignment film side is preferably in the range of about 80 ° to 90 °.
  • the pretilt angle P on the vertical alignment film side is approximately 75 ° to 90 °.
  • the pretilt angle P on the horizontal alignment film side is in the range of about 40 °.
  • the pretilt angle P on the vertical alignment film side is preferably in the range of about 80 ° to 90 °.
  • the pretilt angle on the vertical alignment film side is within the range of the pretilt angle P on the horizontal alignment film side of about 1 ° to 20 °.
  • the angle P is preferably in the range of about 70 ° to 90 °.
  • the pretilt angle P on the horizontal alignment film side is in the range of about 10 ° to 30 °
  • the pretilt angle P on the vertical alignment film side is in the range of about 10 ° to 30 °
  • pretilt angle P on the horizontal alignment film side is approximately 20 ° to 40 °
  • the pretilt angle P on the vertical alignment film side is approximately 80 b a
  • a range of ⁇ 90 ° is preferable.
  • the retardation of the liquid crystal layer 24 is about 1500 nm
  • the pretilt angle P on the horizontal alignment film side is about 3 °
  • the pretilt angle on the vertical alignment film side is
  • the retardation of the liquid crystal layer 24 is 600 nm
  • the pretilt angle P on the alignment film 23b (horizontal alignment film) side is 10 ° (FIG. 12), 20 ° (FIG. 13), 30 ° (Fig. 14), 40 ° (
  • the pretilt angle P on the alignment film 23a (vertical alignment film) side is set to 70 °
  • the transmittance characteristics of the liquid crystal panel 2 for viewing angle control were determined by setting each of 75 °, 80 °, and 85 °.
  • the transmittance characteristics of a conventional switch liquid crystal display with the above-described homogeneous orientation are shown.
  • the retardation is 600 nm and the pretilt angle is 3 °.
  • the liquid crystal panel 2 for controlling the viewing angle which is effective in this embodiment, has an elevation angle larger than 0 ° when the retardation of the liquid crystal layer 24 is 600 nm. In the range where the transmittance decreases and the elevation angle exceeds approximately 35 ° to 45 °, the transmittance is reduced to 0.10. It will not be exceeded.
  • the viewing angle control liquid crystal panel 2 according to the present embodiment has pretilt angles P of 70 °, 75 °, 80 ° and 85 ° a
  • pretilt angle P 10 °, 20 °, 30 °, and 40 ° respectively.
  • the degree of pounding is small compared to the conventional switch LCD. Therefore, in the liquid crystal panel 2 for controlling the viewing angle, which is effective in this embodiment, the retardation of the liquid crystal layer 24 is set to 600 nm, the pretilt angle P is set to 70 ° to 90 °, and the pretilt angle P is set to 0 ° to 40 °.
  • the elevation angle is the ratio b
  • the display contents of the display liquid crystal panel 1 can be shielded more reliably than the conventional switch liquid crystal display for a relatively large viewpoint.
  • the liquid crystal layer 24 of the viewing angle control liquid crystal panel 2 is hybrid-aligned, thereby comparing with a conventional switch liquid crystal display using a homogeneously aligned liquid crystal layer.
  • the display content of the display liquid crystal panel 1 can be shielded over a wider elevation angle range.
  • FIG. 16 (a) is a schematic diagram of the liquid crystal layer 24 of hybrid alignment in the viewing angle control liquid crystal panel 2 of the present embodiment
  • FIG. 16 (b) is a conventional switch of homogeneous alignment.
  • It is a schematic diagram of the liquid crystal layer of a liquid crystal display.
  • FIG. 17 (a) shows the liquid crystal molecules M to M that sequentially transmit light along the optical path when light passes through the liquid crystal layer shown in FIG. 16 (a) parallel to the xz plane and at an elevation angle ⁇ .
  • FIG. FIG. 17 (b) shows a liquid crystal layer shown in FIG. Liquid crystal molecules that sequentially transmit light along the optical path when light is transmitted at an elevation angle ⁇ m
  • the nematic alignment Due to the nematic alignment, it is affected by the optical rotation due to the rotation of the liquid crystal molecules in the long axis direction. Therefore, in the homogeneous orientation, when the narrow viewing angle mode is selected, there is an optimum value of the elevation angle ⁇ for shielding the transmitted light, and when the elevation angle is made larger than that angle, leakage light is generated. On the other hand, in the no-branch alignment, the light shielding state can be maintained even when the elevation angle is large due to the effect of optical rotation.
  • the force exemplifying a configuration in which the polarization transmission axes of the polarizing plates 25 and 26 and the rubbing directions of the alignment films 23a and 23b are substantially orthogonal to each other.
  • the polarization transmission axes of the polarizing plates 25 and 26 and the rubbing direction of the alignment films 23a and 23b may be substantially parallel.
  • the configuration in which the polarization transmission axes of the polarizing plates 25 and 26 and the rubbing directions of the alignment films 23a and 23b are substantially orthogonal is preferable in terms of improving the direction force S and the light shielding level.
  • FIG. 18 is a schematic cross-sectional view showing a schematic configuration of the display device 200 which is particularly useful for the second embodiment.
  • the display device 200 that has the power of the second embodiment includes a negative C plate 31 between a polarizing plate 25 and a light-transmitting substrate 21 a of the liquid crystal cell 20.
  • the polarization transmission axis is parallel to the rubbing direction for the alignment films 23a and 23b of the liquid crystal cell 20.
  • Polarizers 25 and 26 are arranged.
  • the light shielding level is good even if the polarizing plates 25 and 26 are arranged so that the polarization transmission axis is orthogonal to the rubbing direction with respect to the alignment film 23a 23b of the liquid crystal cell 20. In terms of improvement.
  • the drive circuit 27 switches and applies two-level voltages of Vb and Va to the liquid crystal layer 24.
  • Vb is a voltage of about 5.0V to about 10.0V
  • Va is a voltage of about 1.0V 4.0V.
  • the absolute value of the phase difference R of the negative C plate 31 is slightly smaller than the R value if there is a small pretilt angle on the horizontal alignment film 23b side even when the voltage Vb is applied.
  • a high value is preferable.
  • the retardation of the liquid crystal layer 24 of the liquid crystal cell 20 is about 1500 nm, it is preferable to use a film having a retardation of about 1300 nm as the negative C plate 31.
  • FIG. 20 shows a range of preferable values of the retardation R of the negative C plate 31 with respect to the value of the retardation R of the liquid crystal layer 24 of the liquid crystal cell 20 C C
  • the preferred range is a range in which the visibility is good in all directions in the wide viewing angle mode.
  • the optimum range is a range in which better visibility can be obtained in the wide range of viewing angle mode than in the case where the negative C plate 31 is not used.
  • FIG. 21 (a) is a chart showing the transmittance when the voltage Vb is applied to the liquid crystal layer 24 in the viewing angle control liquid crystal panel 2 in a state where the negative C plate 31 is laminated.
  • FIG. 21 (b) is a chart showing the transmittance when the voltage Va is applied to the liquid crystal layer 24. As shown in FIG. 21 (a), when the voltage Vb is applied to the liquid crystal layer 24 by the drive circuit 27, compared to the wide viewing angle mode of the first embodiment (FIG.
  • the display device 100 of the first embodiment when the display device 100 of the first embodiment is observed from a viewing angle with a large elevation angle in the wide viewing angle mode, the display device 100 may be slightly colored. On the other hand, in the display device 200 of the present embodiment, such coloring was not seen. Further, in the display device 200 of the present embodiment, as in the display device 100 of the first embodiment, when the narrow viewing angle mode is set, the pounding in the range where the elevation angle is large can be suppressed more than in the past. It was.
  • the display device 200 of the present embodiment includes the negative C plate 31 between the liquid crystal cell 20 and the polarizing plate 25, thereby preventing coloring in the wide viewing angle mode and sandwiching it. While maintaining the viewing angle in the viewing angle mode in a narrow range, it is possible to further widen the viewing angle in the wide viewing angle mode. As shown in Fig. 19 (a), an effective phase difference occurs when a positive nematic liquid crystal with IJ aligned with the major surface of the substrate is almost perpendicular to the substrate surface (homeotope pick orientation) is seen from an angle. This causes a narrowing of the viewing angle.
  • the negative C-plate 31 can cancel the phase difference and improve the viewing angle.
  • FIG. 18 shows a configuration in which a negative C plate 31 is arranged between the liquid crystal cell 20 and the polarizing plates 25 and 26 and outside the light-transmitting substrate 21a on the vertical alignment film 23a side.
  • a configuration in which the negative C plate 31 is disposed outside the translucent substrate 21b on the side of the horizontal alignment film 23b (that is, between the translucent substrate 21b and the polarizing plate 26) is also acceptable.
  • the configuration in which the negative C plate is arranged on the vertical alignment film 23a side has a higher viewing angle improvement effect. Force to place negative C plate near the vertical alignment film 23a Can the phase difference be canceled without being affected by other optical compensation (for example, by the horizontal alignment part)? That's it.
  • a negative C plate may be arranged between both the translucent substrate 21a and the polarizing plate 25 and between the translucent substrate 21b and the polarizing plate 26.
  • the total force of the phase difference of the two negative C plates should be equal to the phase difference of one negative C plate in the configuration shown in FIG.
  • FIGS. 1 and 18 exemplify a configuration in which the viewing angle control liquid crystal panel 2 is arranged closer to the viewer than the display element (display liquid crystal panel 1).
  • the same effect can be obtained even if the viewing angle control liquid crystal panel 2 is arranged between the display element (display liquid crystal panel 1) and the backlight 3. .
  • the configuration in which the viewing angle control liquid crystal panel 2 has two polarizing plates is exemplified.
  • the display element is different from the first and second embodiments.
  • the polarizing plate (not shown) provided in the display liquid crystal panel 1 can be shared as the polarizing plate of the viewing angle control liquid crystal panel 2.
  • a transmissive liquid crystal panel is provided as a display element.
  • the display element applicable to the display device of the present invention is not limited to this.
  • a reflective or transflective liquid crystal display panel can be used as the display element.
  • liquid crystal display panels for example, CRT (Cathode Ray Tube), plasma display, organic EL (Electronic Luminescence) element, inorganic EL element, LED (Light Emitting Diode) display, vacuum fluorescent display (Vacuum Fluorescent Display), Field emission device.
  • a self-luminous display device such as a ray (Field Emission Display) or a surface-electric emission on-emitter display can also be used.
  • the display element when a self-luminous display device such as an EL element is used as the display element, no light is required.
  • the display element may be disposed on the viewer side with respect to the viewing angle control liquid crystal panel 2, or the viewing angle control liquid crystal panel 2 may be disposed on the viewer side with respect to the display element.
  • the driving circuit 27 of the viewing angle control liquid crystal panel 2 operates in accordance with the content of the image displayed on the display element, and the narrow viewing angle and the wide viewing angle are set. Even if you switch automatically, it is good. For example, when used to view web pages on the Internet, refer to the flag associated with each page according to the content of the web page, and it is preferable that the content is not seen by others.
  • the drive circuit 27 may be controlled to automatically switch to the corner display state. Further, for example, when the browser is activated in the encryption mode, the display state may be switched to a narrow viewing angle.
  • the display device when the display device is a part of the data input device or operates in association with the data input device, the input data type or the data type to be input is confidential. It can also be adjusted to switch the display state to a narrow viewing angle, for example. For example, when the user inputs some personal identification number, the drive circuit 27 may be controlled to automatically switch to the narrow viewing angle.
  • the viewing angle control liquid crystal panel may be formed as a module or a cover that can be removed from the display device, even if the deviation of the above-described embodiment is not sufficient.
  • a removable module is attached to the display device, it can be electrically connected to the display device to obtain appropriate power and control signals.
  • an optical sensor that measures the ambient light of the display device is further provided, and when the measured value of the optical sensor falls below a predetermined threshold value, It is also preferable to set the display state to a narrow viewing angle.
  • the display device and the viewing angle control element that are useful in the present invention have a wide variety of uses.
  • it can be applied to displays such as notebook personal computers, personal digital assistants (PDAs), portable game consoles, or mobile phones, ATMs (automatic cashiers, machines), and public places.
  • PDAs personal digital assistants
  • ATMs automated cashiers, machines
  • public places public places.
  • It is applied to the display of various devices such as information terminals, ticket vending machines, and in-vehicle displays.
  • the viewing angle control element according to the present invention may be implemented in a state of being incorporated in a display device, the viewing angle control element can be manufactured and distributed as a component of the display device. There is also sex. Industrial applicability
  • the present invention can be industrially used as a display adaptable to various usage environments and applications by switching between a wide viewing angle and a narrow viewing angle, and a viewing angle control element used therefor.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)

Abstract

A liquid crystal panel (2) for controlling view angles is arranged at least on the rear plane or the front plane of a liquid crystal panel (1) for display. The liquid crystal panel (2) is provided with a liquid crystal cell (20) wherein liquid crystal is hybrid-oriented between oriented films (23a, 23b) arranged on a pair of light transmitting substrates (21a, 21b), respectively, and a drive circuit (27) for applying a voltage to a liquid crystal layer (24) of a liquid crystal cell (20). The liquid crystal cell (20) is arranged between two polarization plates (25, 26) arranged to have polarization axes in parallel. The drive circuit (27) switches the display status to and from a wide viewing angle and a narrow viewing angle by changing the arrangement of the liquid crystal molecules of the liquid crystal layer (24) of the liquid crystal panel (2).

Description

明 細 書  Specification
表示装置およびそれに用いられる視野角制御素子  Display device and viewing angle control element used therefor
技術分野  Technical field
[0001] 本発明は、表示装置の視野角を広視野角と狭視野角との間で切り替えることができ る視野角制御素子と、それを用いることにより視野角の制御が可能な表示装置に関 するものである。  [0001] The present invention provides a viewing angle control element capable of switching the viewing angle of a display device between a wide viewing angle and a narrow viewing angle, and a display device capable of controlling the viewing angle by using the viewing angle control element. It is related.
背景技術  Background art
[0002] 表示装置は、従来一般的には、どの視角力 見ても鮮明な画像を見ることができる ように、可能な限り広い視野角を有することが求められている。特に、最近広く普及し ている液晶表示装置は、液晶そのものが視角依存性を有することから、広視野角を 実現するために、様々な技術開発がなされてきた。し力 ながら、使用環境によって は、使用者本人にしか表示内容が視認できないよう、視野角が狭い方が好都合であ ることもある。特に、ノート型パーソナルコンピュータ、携帯型情報端末 (PDA)、また は携帯電話等は、電車内などの不特定多数の人間が存在し得る場所で使用される 可能性も高い。そのような使用環境においては、機密保持やプライバシー保護等の 観点から、近傍の他人から表示内容を視かれたくないので、表示装置の視野角が狭 レ、ことが望ましい。このように、近年、 1台の表示装置の視野角を、使用状況に応じて 広視野角と狭視野角との間で切り替えたいという要求が高まっている。なお、この要 求は、液晶表示装置に限らず、任意の表示装置に関して共通の課題である。  [0002] Conventionally, a display device is generally required to have as wide a viewing angle as possible so that a clear image can be seen at any viewing angle force. In particular, liquid crystal display devices that have become widespread recently have been developed in various technologies to achieve a wide viewing angle because the liquid crystal itself has a viewing angle dependency. However, depending on the usage environment, it may be advantageous to have a narrow viewing angle so that only the user can see the displayed content. In particular, notebook personal computers, personal digital assistants (PDAs), mobile phones, etc. are highly likely to be used in places where an unspecified number of people can exist such as in trains. In such a usage environment, it is desirable that the viewing angle of the display device be narrow because it is not desirable for others in the vicinity to view the display content from the viewpoint of confidentiality and privacy protection. Thus, in recent years, there has been an increasing demand for switching the viewing angle of one display device between a wide viewing angle and a narrow viewing angle depending on the usage situation. This requirement is not limited to the liquid crystal display device, but is a common problem with any display device.
[0003] このような課題に対して、従来、画像を表示するメインディスプレイにカ卩えて、どの方 向からでもメインディスプレイの表示画像を視認できる広視野角モードと、特定の方 向からのみメインディスプレイの表示画像を視認できる狭視野角モードとの電気的に 切り替えが可能なスィッチ液晶ディスプレイを備えた表示装置が提案されてレ、る(例 えば、下記の特許文献 1)。  [0003] To deal with such problems, conventionally, a wide viewing angle mode in which the display image on the main display can be viewed from any direction in addition to the main display for displaying an image, and the main display only from a specific direction. A display device including a switch liquid crystal display that can be electrically switched to a narrow viewing angle mode in which a display image on the display can be visually recognized has been proposed (for example, Patent Document 1 below).
[0004] このスィッチ液晶ディスプレイは、ホモジニァス配向の液晶層を有する。液晶層を挟 んで一対の偏光板が設けられており、液晶層の液晶分子は、長軸方向が前記一対 の偏光板の偏光透過軸と略平行になるように、一軸配向されている。そして、スィッチ 液晶ディスプレイに対して電圧を印加しなければ、液晶分子の長軸方向は基板面に 平行となり、どの方向から見ても入射光が液晶分子の複屈折の影響を受けずに偏光 板を透過することにより、上記の広視野角モードとなる。また、スィッチ液晶ディスプレ ィに対して電圧を印加して、液晶分子の長軸方向を基板面に対して傾レ、た状態とす ると、正面方向以外から見た場合、液晶の複屈折の影響を受けてスィッチ液晶ディス プレイを光が透過せず、上記の狭視野角モードとなる。 [0004] This switch liquid crystal display has a liquid crystal layer of homogeneous alignment. A pair of polarizing plates is provided across the liquid crystal layer, and the liquid crystal molecules of the liquid crystal layer are uniaxially aligned so that the major axis direction is substantially parallel to the polarization transmission axis of the pair of polarizing plates. And switch If no voltage is applied to the liquid crystal display, the major axis direction of the liquid crystal molecules is parallel to the substrate surface, and the incident light is transmitted through the polarizing plate without being affected by the birefringence of the liquid crystal molecules from any direction. Thus, the wide viewing angle mode is set. In addition, when a voltage is applied to the switch liquid crystal display so that the major axis direction of the liquid crystal molecules is tilted with respect to the substrate surface, the birefringence of the liquid crystal is observed when viewed from other than the front direction. As a result, light is not transmitted through the switch liquid crystal display and the narrow viewing angle mode described above is entered.
[0005] 図 22は、上記の特許文献 1に開示されたスィッチ液晶ディスプレイを狭視野角モー ドとした場合の透過率特性を示すグラフである。なお、仰角とは、観察者の視点とディ スプレイの表示面の中心とを結ぶ線力 ディスプレイの法線となす角度である。図 22 に示すように、従来のスィッチ液晶ディスプレイは、仰角 0度で最大の透過率を示し、 仰角が大きくなると共に透過率が下がっていく。つまり、狭視野角モードでは、正面 方向力 観察した場合にはメインディスプレイの表示を明瞭に視認できるが、斜め方 向力 観察した場合は、スィッチ液晶ディスプレイの透過率が下がるので、メインディ スプレイの表示を視認できなレ、。 FIG. 22 is a graph showing transmittance characteristics when the switch liquid crystal display disclosed in Patent Document 1 is set to a narrow viewing angle mode. Note that the elevation angle is the angle between the observer's viewpoint and the normal of the line force display that connects the center of the display surface of the display. As shown in FIG. 22, the conventional switch liquid crystal display shows the maximum transmittance at an elevation angle of 0 °, and the transmittance decreases as the elevation angle increases. In other words, in the narrow viewing angle mode, the display on the main display can be clearly seen when observing the force in the front direction, but the transmittance of the switch liquid crystal display is reduced when observing the force in the oblique direction. I ca n’t see the display.
特許文献 1:特開 2006— 64882号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2006-64882
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力、しながら、図 22から分かるように、上記特許文献 1に開示された従来の構成で は、狭視野角モードにおいて、仰角が 0度よりも大きくなると共に透過率が下降する 力 透過率が最小値(およそ 1%)に達した後、透過率が再び上昇していく現象 (この 現象を、以下、「パウンデイング」と称する。)傾向が見られる。パウンデイングの程度 は、特に、液晶のリタデーシヨン値が大きい場合に顕著である。 However, as can be seen from FIG. 22, in the conventional configuration disclosed in Patent Document 1, in the narrow viewing angle mode, the elevation angle becomes larger than 0 degree and the transmittance decreases. There is a tendency for the transmittance to rise again after the force transmittance reaches the minimum value (approximately 1%) (this phenomenon is hereinafter referred to as “pounding”). The degree of pounding is particularly noticeable when the retardation value of the liquid crystal is large.
[0007] 従って、上記特許文献 1に開示された従来の構成では、図 23に示すように、スイツ チ液晶ディスプレイ 91を狭視野角モードにした場合、正面方向を中心とした比較的 狭い視角範囲 Aから観察した場合にメインディスプレイ 92の表示を視認できる。そし て、視角範囲 Aよりも仰角が大きい視角範囲 Bl , B2から観察した場合にメインデイス プレイ 92の表示が遮蔽される。さらに、視角範囲 Bl, B2よりも仰角が大きい視角範 囲 CI , C2において、パウンデイングによって、メインディスプレイ 92の表示が視認で きる、という現象が生じることがあった。すなわち、上記従来の構成では、仰角が大き い視点(視角範囲 CI, C2)に対しての表示遮蔽が必ずしも十分ではないという課題 があった。 Accordingly, in the conventional configuration disclosed in Patent Document 1 described above, as shown in FIG. 23, when the switch liquid crystal display 91 is set to the narrow viewing angle mode, a relatively narrow viewing angle range centering on the front direction is provided. When viewed from A, the display on the main display 92 is visible. Then, the display on the main display 92 is shielded when observed from the viewing angle ranges Bl and B2 having an elevation angle larger than the viewing angle range A. In addition, in the viewing angle ranges CI and C2, where the elevation angle is larger than the viewing angle range Bl and B2, the display on the main display 92 can be visually recognized by the pounding. The phenomenon of being able to occur sometimes occurred. In other words, the conventional configuration described above has a problem that display shielding for a viewpoint with a large elevation angle (viewing angle range CI, C2) is not always sufficient.
[0008] 本発明は、上記の課題に鑑み、狭視野角モードにおいて、表示素子の表示が見え る仰角の範囲を従来よりも狭くすることが可能な視野角制御素子と、それを備えた表 示装置を提供することを目的とする。  [0008] In view of the above problems, the present invention provides a viewing angle control element capable of narrowing the range of the elevation angle at which the display of the display element can be seen in the narrow viewing angle mode, and a table provided with the viewing angle control element. An object is to provide a display device.
課題を解決するための手段  Means for solving the problem
[0009] 上記の目的を達成するために、本発明にかかる表示装置は、表示すべき画像に応 じて駆動される表示素子と、前記表示素子の背面および前面の少なくとも一方に配 置され、前記表示素子の視野角を制御する視野角制御素子とを備えた表示装置で あって、前記視野角制御素子は、一対の透光性基板と、前記透光性基板のそれぞ れに設けられた垂直配向膜および水平配向膜と、前記垂直配向膜および水平配向 膜に挟持されたハイブリッド配向の液晶層とを有する液晶セルと、前記液晶層へ電圧 を印加する駆動回路とを備え、前記液晶セルは、当該表示装置内で、偏光透過軸が 略平行に配置された 2枚の偏光板の間に配置され、前記駆動回路からの電圧印加 によって前記視野角制御素子の液晶層の液晶分子の配列状態を変化させることによ り、表示状態を、第 1の視野角範囲を提供する第 1の状態と、第 1の視野角範囲内に あり第 1の視野角範囲よりも狭い第 2の視野角範囲を提供する第 2の状態との間で切 り替え可能とすることを特徴とする。  In order to achieve the above object, a display device according to the present invention is disposed on a display element driven according to an image to be displayed, and at least one of a back surface and a front surface of the display element, A display device comprising a viewing angle control element that controls a viewing angle of the display element, wherein the viewing angle control element is provided on each of a pair of translucent substrates and the translucent substrate. A liquid crystal cell having a vertical alignment film and a horizontal alignment film; a hybrid alignment liquid crystal layer sandwiched between the vertical alignment film and the horizontal alignment film; and a drive circuit for applying a voltage to the liquid crystal layer. In the display device, the cell is disposed between two polarizing plates whose polarization transmission axes are disposed substantially in parallel, and the alignment state of the liquid crystal molecules in the liquid crystal layer of the viewing angle control element is applied by applying a voltage from the driving circuit. To change The first state providing the first viewing angle range and the second providing the second viewing angle range within the first viewing angle range and narrower than the first viewing angle range. It is possible to switch between these states.
[0010] この構成によれば、視野角制御素子の液晶層をハイブリッド配向とすることにより、 第 2の状態 (狭視野角)とした場合に、仰角が比較的大きい視角力 の透過率が高く なるパウンデイング現象の発生を、従来よりも抑制すること力 Sできる。これにより、狭視 野角モードにおいて、表示素子の表示が見える仰角の範囲を従来よりも狭くすること が可能な表示装置を提供できる。  [0010] According to this configuration, when the liquid crystal layer of the viewing angle control element is in a hybrid orientation, when the second state (narrow viewing angle) is set, the transmittance of viewing force with a relatively high elevation angle is high. It is possible to suppress the occurrence of the pounding phenomenon. Thereby, in the narrow viewing angle mode, it is possible to provide a display device capable of narrowing the range of the elevation angle at which the display of the display element can be seen from the conventional one.
[0011] 本発明にかかる表示装置において、前記駆動回路が前記視野角制御素子の液晶 層へ電圧を印加しないことにより前記第 1の状態となり、前記駆動回路が前記視野角 制御素子の液晶層へ所定電圧を印加することにより前記第 2の状態となることが好ま しい。 [0012] 本発明にかかる表示装置において、前記液晶セルと前記 2枚の偏光板との間の少 なくとも一箇所に、ネガティブ Cプレートを備えたことが好ましい。ネガティブ Cプレート とは、面方向の屈折率を Nx, Nyとし、厚さ方向の屈折率を Nzとしたときに、 Nx = Ny >Nzの関係が成り立つ位相差フィルムである。ネガティブ Cプレートを備えたことによ り、視野角制御素子の液晶層の複屈折により生じる楕円偏光が光学補償され、第 1 の状態(広視野角)において、仰角が比較的大きい視角力 観察した場合の色づき が防止されると共に、視野角をさらに広げることができる。 [0011] In the display device according to the present invention, the driving circuit does not apply a voltage to the liquid crystal layer of the viewing angle control element, so that the first state is established, and the driving circuit enters the liquid crystal layer of the viewing angle control element. It is preferable that the second state is achieved by applying a predetermined voltage. [0012] In the display device according to the present invention, it is preferable that a negative C plate is provided at least at one position between the liquid crystal cell and the two polarizing plates. The negative C plate is a retardation film in which the relationship of Nx = Ny> Nz is established when the refractive index in the plane direction is Nx, Ny and the refractive index in the thickness direction is Nz. By providing the negative C plate, elliptically polarized light generated by birefringence of the liquid crystal layer of the viewing angle control element was optically compensated, and in the first state (wide viewing angle), a viewing angle force with a relatively large elevation angle was observed. In addition to preventing coloration, the viewing angle can be further widened.
[0013] また、上記のネガティブ Cプレートを備えた構成において、前記駆動回路が前記視 野角制御素子の液晶層へ所定電圧 Vを印加することにより前記第 2の状態となり、  [0013] In addition, in the configuration including the negative C plate, the driving circuit applies the predetermined voltage V to the liquid crystal layer of the viewing angle control element, so that the second state is achieved.
2  2
前記駆動回路が前記視野角制御素子の液晶層へ前記所定電圧 Vよりも大きい所定  The drive circuit applies a predetermined voltage greater than the predetermined voltage V to the liquid crystal layer of the viewing angle control element.
2  2
電圧 Vを印加することにより前記第 1の状態となることが好ましい。また、前記所定電 It is preferable that the first state is achieved by applying the voltage V. In addition, the predetermined power
1 1
圧 Vは、前記視野角制御素子の液晶層の液晶分子をホメオト口ピック配向させる電 The pressure V is a voltage that causes liquid crystal molecules in the liquid crystal layer of the viewing angle control element to be home-orientated.
1 1
圧値であることが好ましい。  The pressure value is preferable.
[0014] 本発明にかかる表示装置は、前記表示素子が、直線偏光を出射する表示素子で あって、前記 2枚の偏光板のうち 1枚が、前記表示素子に設けられた偏光板である構 成とすることができる。  In the display device according to the present invention, the display element is a display element that emits linearly polarized light, and one of the two polarizing plates is a polarizing plate provided on the display element. It can be configured.
[0015] 本発明にかかる表示装置は、前記表示素子が透過型液晶表示素子であり、バック ライトをさらに備えた構成とすることができる。この場合、前記視野角制御素子が、前 記バックライトと前記透過型液晶表示素子との間に配置された構成としても良いし、 前記視野角制御素子が、前記透過型液晶表示素子の前面に配置された構成として も良い。  In the display device according to the present invention, the display element may be a transmissive liquid crystal display element, and may further include a backlight. In this case, the viewing angle control element may be arranged between the backlight and the transmissive liquid crystal display element, or the viewing angle control element may be disposed on the front surface of the transmissive liquid crystal display element. An arrangement may be adopted.
[0016] また、本発明にかかる表示装置は、前記表示素子が、反射型液晶表示素子または 半透過型液晶表示素子である構成としても良レ、。あるいは、前記表示素子が、 自発 光型表示素子であっても良い。  [0016] The display device according to the present invention may be configured such that the display element is a reflective liquid crystal display element or a transflective liquid crystal display element. Alternatively, the display element may be a self-luminous display element.
[0017] また、本発明にかかる表示装置は、前記視野角制御素子の液晶層のリタデーショ ンが 600nm〜2500nmの範囲であり、前記水平配向膜側のプレチルト角が 1° 〜2 0° の範囲であり、前記垂直配向膜側のプレチルト角が 70° 〜90° の範囲であるこ とが好ましい。プレチルト角をこの範囲に設定すれば、第 2の状態(狭視野角)とした 場合に、仰角が比較的大きレ、視角に対する表示遮蔽性能を十分に確保できる。 In the display device according to the present invention, the retardation of the liquid crystal layer of the viewing angle control element is in the range of 600 nm to 2500 nm, and the pretilt angle on the horizontal alignment film side is in the range of 1 ° to 20 °. The pretilt angle on the vertical alignment film side is preferably in the range of 70 ° to 90 °. If the pretilt angle is set within this range, the second state (narrow viewing angle) is established. In this case, the elevation angle is relatively large and the display shielding performance with respect to the viewing angle can be sufficiently secured.
[0018] また、本発明にかかる表示装置は、前記視野角制御素子の液晶層のリタデーショ ンが 600nm〜2500nmの範囲であり、前記水平配向膜側のプレチルト角が 10° 〜 30° の範囲であり、前記垂直配向膜側のプレチルト角が 75° 〜90° の範囲である ことが好ましい。プレチルト角をこの範囲に設定すれば、第 2の状態(狭視野角)とし た場合に、仰角が比較的大きい視角に対する表示遮蔽性能を十分に確保できる。  [0018] In the display device according to the present invention, the retardation of the liquid crystal layer of the viewing angle control element is in the range of 600 nm to 2500 nm, and the pretilt angle on the horizontal alignment film side is in the range of 10 ° to 30 °. And the pretilt angle on the vertical alignment film side is preferably in the range of 75 ° to 90 °. If the pretilt angle is set within this range, the display shielding performance for a viewing angle with a relatively high elevation angle can be sufficiently secured in the second state (narrow viewing angle).
[0019] また、本発明にかかる表示装置は、前記視野角制御素子の液晶層のリタデーショ ンが 600nm〜2500nmの範囲であり、前記水平配向膜側のプレチルト角力 ¾0° 〜 40° の範囲であり、前記垂直配向膜側のプレチルト角が 80° 〜90° の範囲である ことが好ましい。プレチルト角をこの範囲に設定すれば、第 2の状態(狭視野角)とし た場合に、仰角が比較的大きい視角に対する表示遮蔽性能を十分に確保できる。  In the display device according to the present invention, the retardation of the liquid crystal layer of the viewing angle control element is in the range of 600 nm to 2500 nm, and the pretilt angular force on the horizontal alignment film side is in the range of ¾0 ° to 40 °. The pretilt angle on the vertical alignment film side is preferably in the range of 80 ° to 90 °. If the pretilt angle is set within this range, the display shielding performance for a viewing angle with a relatively high elevation angle can be sufficiently secured in the second state (narrow viewing angle).
[0020] また、上記の目的を達成するために、本発明にかかる視野角制御素子は、表示す べき画像に応じて駆動される表示素子の背面および前面の少なくとも一方に配置さ れ、前記表示素子の視野角を制御するために用いられる視野角制御素子であって、 一対の透光性基板と、前記透光性基板のそれぞれに設けられた垂直配向膜および 水平配向膜と、前記垂直配向膜および水平配向膜に挟持されたハイブリッド配向の 液晶層とを有する液晶セルと、前記液晶層へ電圧を印加する駆動回路と、少なくとも 1枚の偏光板とを備え、前記駆動回路が、前記液晶層の液晶分子の配列状態を変 ィ匕させることにより、光の出射範囲を、第 1の視野角範囲と、第 1の視野角範囲内にあ り第 1の視野角範囲よりも狭い第 2の視野角範囲との間で切り替え可能とすることを特 徴とする。  [0020] In order to achieve the above object, the viewing angle control element according to the present invention is disposed on at least one of the back surface and the front surface of the display element driven in accordance with an image to be displayed. A viewing angle control element used for controlling a viewing angle of an element, comprising a pair of translucent substrates, a vertical alignment film and a horizontal alignment film provided on each of the translucent substrates, and the vertical alignment A liquid crystal cell having a hybrid alignment liquid crystal layer sandwiched between a film and a horizontal alignment film, a drive circuit for applying a voltage to the liquid crystal layer, and at least one polarizing plate, wherein the drive circuit includes the liquid crystal By changing the alignment state of the liquid crystal molecules in the layer, the light emission range is within the first viewing angle range and the second viewing angle range, which is narrower than the first viewing angle range. Can be switched between different viewing angle ranges The Rukoto and Features.
[0021] この構成によれば、ノ、イブリツド配向の液晶層を備えたことにより、第 2の状態(狭視 野角)とした場合に、仰角が比較的大きい視角からの透過率が高くなるパウンデイン グ現象の発生を、従来よりも抑制することができる。これにより、狭視野角モードにお いて、表示素子の表示が見える仰角の範囲を従来よりも狭くすることが可能な視野角 制御素子を提供できる。  [0021] According to this configuration, the liquid crystal layer having the no-or-ibrid orientation is provided, whereby the transmittance from a viewing angle with a relatively high elevation angle is increased in the second state (narrow viewing angle). Occurrence of the switching phenomenon can be suppressed as compared with the conventional case. Thereby, in the narrow viewing angle mode, it is possible to provide a viewing angle control element capable of narrowing the range of the elevation angle at which the display of the display element can be seen from the conventional one.
発明の効果  The invention's effect
[0022] 本発明によれば、狭視野角モードにおいて表示が見える仰角の範囲を従来よりも 狭く制限することが可能な視野角制御装置と、それを備えたことにより他人からの司見き 見を効果的に防止できる表示装置を提供できる。 [0022] According to the present invention, the range of the elevation angle at which the display can be seen in the narrow viewing angle mode is made larger than in the conventional case. It is possible to provide a viewing angle control device that can be narrowly restricted and a display device that can effectively prevent a person from being seen by others.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、本発明の第 1の実施形態にかかる表示装置の概略構成を示す断面模 式図である。 FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a display device according to a first embodiment of the present invention.
[図 2]図 2は、配向膜に対するラビング処理の方向と、偏光板の偏光透過軸の方向と の関係を示す模式図である。  FIG. 2 is a schematic diagram showing the relationship between the direction of rubbing treatment for the alignment film and the direction of the polarization transmission axis of the polarizing plate.
[図 3]図 3 (a)および図 3 (b)は、液晶層への印加電圧を OVと所定電圧 Vaとで切り替 えた場合の、視野角制御用液晶パネルの液晶分子の配列の状態をそれぞれ示す模 式図である。  [Fig. 3] Fig. 3 (a) and Fig. 3 (b) show the alignment state of the liquid crystal molecules in the viewing angle control liquid crystal panel when the voltage applied to the liquid crystal layer is switched between OV and a predetermined voltage Va. FIG.
[図 4]図 4 (a)および図 4 (b)は、液晶層への印加電圧を OVと所定電圧 Vaとで切り替 えた場合の視野角制御用液晶パネルの透過率をそれぞれ示すチャートである。  [FIG. 4] FIGS. 4 (a) and 4 (b) are charts showing the transmittance of the liquid crystal panel for viewing angle control when the voltage applied to the liquid crystal layer is switched between OV and a predetermined voltage Va, respectively. .
[図 5]図 5は、方位角 φおよび仰角 Θの定義を示す説明図である。 FIG. 5 is an explanatory diagram showing definitions of azimuth angle φ and elevation angle Θ.
[図 6]図 6は、視野角制御用液晶パネルの液晶層のリタデーシヨンを 600nmとし、垂 直配向膜側のプレチルト角と水平配向膜側のプレチルト角を様々な値に設定した場 合の、視野角制御用液晶パネルの透過率特性の評価結果を示す説明図である。 [FIG. 6] FIG. 6 shows the case where the retardation of the liquid crystal layer of the viewing angle control liquid crystal panel is 600 nm, and the pretilt angle on the vertical alignment film side and the pretilt angle on the horizontal alignment film side are set to various values. It is explanatory drawing which shows the evaluation result of the transmittance | permeability characteristic of the liquid crystal panel for viewing angle control.
[図 7]図 7は、視野角制御用液晶パネルの液晶層のリタデーシヨンを 800nmとし、垂 直配向膜側のプレチルト角と水平配向膜側のプレチルト角を様々な値に設定した場 合の、視野角制御用液晶パネルの透過率特性の評価結果を示す説明図である。 [FIG. 7] FIG. 7 shows a case where the retardation of the liquid crystal layer of the liquid crystal panel for viewing angle control is 800 nm, and the pretilt angle on the vertical alignment film side and the pretilt angle on the horizontal alignment film side are set to various values. It is explanatory drawing which shows the evaluation result of the transmittance | permeability characteristic of the liquid crystal panel for viewing angle control.
[図 8]図 8は、視野角制御用液晶パネルの液晶層のリタデーシヨンを lOOOnmとし、垂 直配向膜側のプレチルト角と水平配向膜側のプレチルト角を様々な値に設定した場 合の、視野角制御用液晶パネルの透過率特性の評価結果を示す説明図である。 [FIG. 8] FIG. 8 shows the case where the retardation of the liquid crystal layer of the liquid crystal panel for viewing angle control is lOOOnm, and the pretilt angle on the vertical alignment film side and the pretilt angle on the horizontal alignment film side are set to various values. It is explanatory drawing which shows the evaluation result of the transmittance | permeability characteristic of the liquid crystal panel for viewing angle control.
[図 9]図 9は、視野角制御用液晶パネルの液晶層のリタデーシヨンを 1300nmとし、垂 直配向膜側のプレチルト角と水平配向膜側のプレチルト角を様々な値に設定した場 合の、視野角制御用液晶パネルの透過率特性の評価結果を示す説明図である。 [FIG. 9] FIG. 9 shows the case where the retardation of the liquid crystal layer of the liquid crystal panel for viewing angle control is 1300 nm, and the pretilt angle on the vertical alignment film side and the pretilt angle on the horizontal alignment film side are set to various values. It is explanatory drawing which shows the evaluation result of the transmittance | permeability characteristic of the liquid crystal panel for viewing angle control.
[図 10]図 10は、視野角制御用液晶パネルの液晶層のリタデーシヨンを 1500nmとし 、垂直配向膜側のプレチルト角と水平配向膜側のプレチルト角を様々な値に設定し た場合の、視野角制御用液晶パネルの透過率特性の評価結果を示す説明図である [図 11]図 11は、視野角制御用液晶パネルの液晶層のリタデーシヨンを 2500nmとし 、垂直配向膜側のプレチルト角と水平配向膜側のプレチルト角を様々な値に設定し た場合の、視野角制御用液晶パネルの透過率特性の評価結果を示す説明図である [FIG. 10] FIG. 10 shows the viewing angle when the retardation of the liquid crystal layer of the viewing angle control liquid crystal panel is 1500 nm and the pretilt angle on the vertical alignment film side and the pretilt angle on the horizontal alignment film side are set to various values. It is explanatory drawing which shows the evaluation result of the transmittance | permeability characteristic of the liquid crystal panel for angle control. [FIG. 11] FIG. 11 shows the viewing angle when the retardation of the liquid crystal layer of the liquid crystal panel for viewing angle control is 2500 nm and the pretilt angle on the vertical alignment film side and the pretilt angle on the horizontal alignment film side are set to various values. It is explanatory drawing which shows the evaluation result of the transmittance | permeability characteristic of the liquid crystal panel for angle control.
[図 12]図 12は、視野角制御用液晶パネルの液晶層のリタデーシヨンを 600nmとし、 水平配向膜側のプレチルト角 Pを 10° に設定し、垂直配向膜側のプレチルト角 Pを b a[FIG. 12] FIG. 12 shows that the retardation of the liquid crystal layer of the viewing angle control liquid crystal panel is 600 nm, the pretilt angle P on the horizontal alignment film side is set to 10 °, and the pretilt angle P on the vertical alignment film side is b a
70° , 75° , 80° , 85° のそれぞれに設定した場合の、視野角制御用液晶パネル の透過率特性図である。 FIG. 7 is a transmittance characteristic diagram of a liquid crystal panel for viewing angle control when set to 70 °, 75 °, 80 °, and 85 °, respectively.
[図 13]図 13は、視野角制御用液晶パネルの液晶層のリタデーシヨンを 600nmとし、 水平配向膜側のプレチルト角 Pを 20° に設定し、垂直配向膜側のプレチルト角 Pを b a [FIG. 13] FIG. 13 shows that the retardation of the liquid crystal layer of the viewing angle control liquid crystal panel is 600 nm, the pretilt angle P on the horizontal alignment film side is set to 20 °, and the pretilt angle P on the vertical alignment film side is b a
70° , 75° , 80° , 85° のそれぞれに設定した場合の、視野角制御用液晶パネル の透過率特性図である。 FIG. 7 is a transmittance characteristic diagram of a liquid crystal panel for viewing angle control when set to 70 °, 75 °, 80 °, and 85 °, respectively.
[図 14]図 14は、視野角制御用液晶パネルの液晶層のリタデーシヨンを 600nmとし、 水平配向膜側のプレチルト角 Pを 30° に設定し、垂直配向膜側のプレチルト角 Pを b a [FIG. 14] FIG. 14 shows that the retardation of the liquid crystal layer of the viewing angle control liquid crystal panel is 600 nm, the pretilt angle P on the horizontal alignment film side is set to 30 °, and the pretilt angle P on the vertical alignment film side is b a
70° , 75° , 80° , 85° のそれぞれに設定した場合の、視野角制御用液晶パネル の透過率特性図である。 FIG. 6 is a transmittance characteristic diagram of a viewing angle control liquid crystal panel when set to 70 °, 75 °, 80 °, and 85 °, respectively.
園 15]図 15は、視野角制御用液晶パネルの液晶層のリタデーシヨンを 600nmとし、 水平配向膜側のプレチルト角 Pを 40° に設定し、垂直配向膜側のプレチルト角 Pを b a15] Figure 15 shows that the retardation of the liquid crystal layer of the liquid crystal panel for viewing angle control is 600 nm, the pretilt angle P on the horizontal alignment film side is set to 40 °, and the pretilt angle P on the vertical alignment film side is b a
70° , 75° , 80° , 85° のそれぞれに設定した場合の、視野角制御用液晶パネル の透過率特性図である。 FIG. 6 is a transmittance characteristic diagram of a viewing angle control liquid crystal panel when set to 70 °, 75 °, 80 °, and 85 °, respectively.
[図 16]図 16 (a)は、本実施形態の視野角制御用液晶パネルにおけるハイブリッド配 向の液晶層の模式図であり、図 16 (b)は、ホモジニァス配向の従来のスィッチ液晶 ディスプレイの液晶層の模式図である。  FIG. 16 (a) is a schematic diagram of a liquid crystal layer in a hybrid orientation in the viewing angle control liquid crystal panel of this embodiment, and FIG. 16 (b) is a diagram of a conventional switch liquid crystal display with a homogeneous orientation. It is a schematic diagram of a liquid-crystal layer.
[図 17]図 17 (a)は、図 16 (a)に示した液晶層を、 xz平面に平行かつ仰角 Θで光が透 過する場合に、その光路上において光が順次透過する液晶分子 M〜Mを光路方  [FIG. 17] FIG. 17 (a) shows liquid crystal molecules that sequentially transmit light along the optical path when light passes through the liquid crystal layer shown in FIG. 16 (a) parallel to the xz plane and at an elevation angle Θ. M to M
1 5 向から見た場合の投影図であり、図 17 (b)は、図 16 (b)に示した液晶層を、 xz平面 に平行かつ仰角 Θで光が透過する場合に、その光路上において光が順次透過する 液晶分子 m〜mを光路方向から見た場合の投影図である。 Fig. 17 (b) shows the projection on the optical path when light is transmitted through the liquid crystal layer shown in Fig. 16 (b) parallel to the xz plane and at an elevation angle Θ. Sequentially transmits light It is a projection view when the liquid crystal molecules m to m are viewed from the optical path direction.
1 5  1 5
[図 18]図 18は、本発明の第 2の実施形態にかかる表示装置の概略構成を示す断面 模式図である。  FIG. 18 is a schematic cross-sectional view showing a schematic configuration of a display device according to a second embodiment of the present invention.
[図 19]図 19 (a)および図 19 (b)は、液晶層への印加電圧を Vbと Vaとで切り替えた場 合の、視野角制御用液晶パネルの液晶分子の配列の状態をそれぞれ示す模式図 である。  [FIG. 19] FIGS. 19 (a) and 19 (b) show the alignment state of the liquid crystal molecules in the viewing angle control liquid crystal panel when the voltage applied to the liquid crystal layer is switched between Vb and Va, respectively. FIG.
[図 20]図 20は、本実施形態にかかる視野角制御用液晶パネルの液晶層のリタデー シヨンの値に対する、ネガティブ Cプレートのリタデーシヨンの好適値の範囲を示す説 明図である。  FIG. 20 is an explanatory diagram showing a range of preferred values for the retardation of the negative C plate with respect to the retardation value of the liquid crystal layer of the viewing angle control liquid crystal panel according to the present embodiment.
[図 21]図 21 (a)および図 21 (b)は、ネガティブ Cプレートが積層された状態において 、液晶層への印加電圧を Vbと Vaとで切り替えた場合の視野角制御用液晶パネルの 透過率をそれぞれ示すチャートである。  [FIG. 21] FIGS. 21 (a) and 21 (b) show the viewing angle control liquid crystal panel when the voltage applied to the liquid crystal layer is switched between Vb and Va in the state where the negative C plate is laminated. It is a chart which shows each transmittance | permeability.
[図 22]図 22は、従来の視野角制御装置の透過率特性を示すグラフである。  FIG. 22 is a graph showing the transmittance characteristics of a conventional viewing angle control device.
[図 23]図 23は、従来の視野角制御装置を備えた表示装置において、メインディスプ レイの表示が見える視角範囲(A, CI , C2)と、見えない視角範囲(Bl , B2)との分 布を示す模式図である。  [FIG. 23] FIG. 23 shows a viewing angle range (A, CI, C2) where the display of the main display can be seen and a viewing angle range (Bl, B2) where the main display can be seen in a display device equipped with a conventional viewing angle control device. It is a schematic diagram which shows distribution.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、本発明の実施形態について、図面を参照しながら説明する。ただし、以下で 参照する各図は、説明の便宜上、本発明の実施形態の構成部材のうち、本発明を説 明するために必要な主要部材のみを簡略化して示したものである。従って、本発明 にかかるディスプレイは、本明細書が参照する各図に示されていない任意の構成部 材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法および各部材 の寸法比率等を忠実に表したものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, in the drawings referred to below, for convenience of explanation, among the constituent members of the embodiment of the present invention, only the main members necessary for explaining the present invention are shown in a simplified manner. Therefore, the display according to the present invention can include arbitrary components not shown in the drawings referred to in this specification. In addition, the dimensions of the members in the drawings do not faithfully represent the actual dimensions of the constituent members and the dimensional ratios of the members.
[0025] [第 1の実施形態]  [First Embodiment]
図 1は、本発明の第 1の実施形態にかかる表示装置 100の概略構成を示す断面模 式図である。図 1に示すように、表示装置 100は、画像を表示する表示用液晶パネル 1 (表示素子)と、視野角制御用液晶パネル 2 (視野角制御素子)との 2枚の液晶パネ ルを備えている。本実施形態における表示用液晶パネル 1は透過型であり、表示装 置 100は、光源としてバックライト 3を備えている。なお、本実施形態では、表示素子 として液晶パネルを用いた構成を例示するが、後述するように、本発明に適用可能な 表示素子は液晶パネルに限らない。 FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a display device 100 according to the first embodiment of the present invention. As shown in FIG. 1, the display device 100 includes two liquid crystal panels: a display liquid crystal panel 1 (display element) for displaying an image and a viewing angle control liquid crystal panel 2 (viewing angle control element). ing. The display liquid crystal panel 1 in the present embodiment is a transmissive type and has a display device. The device 100 includes a backlight 3 as a light source. In the present embodiment, a configuration using a liquid crystal panel as the display element is illustrated, but as will be described later, the display element applicable to the present invention is not limited to the liquid crystal panel.
[0026] 表示装置 100は、視野角制御用液晶パネル 2における液晶をスイッチング動作させ ることにより、表示用液晶パネル 1の画像が視認できる視野角が広い状態(広視野角 )と、視野角が狭い状態 (狭視野角)との間で、表示状態を切り替えることができる。狭 視野角は、他人に表示用液晶パネル 1の画像を見られたくない場合に特に好適に用 いられ、広視野角は、それ以外の通常の使用時や、表示用液晶パネル 1の画像を複 数人で同時に見たレ、場合等に好適に用レヽられる。  [0026] In the display device 100, by switching the liquid crystal in the viewing angle control liquid crystal panel 2, the display device 100 has a wide viewing angle (wide viewing angle) in which an image on the display liquid crystal panel 1 can be viewed, and the viewing angle is The display state can be switched between a narrow state (narrow viewing angle). The narrow viewing angle is particularly suitable when others do not want to see the image on the LCD panel 1 for display, and the wide viewing angle is used for other normal use or images on the LCD panel 1 for display. It is suitable for use in situations where multiple people see it at the same time.
[0027] 表示用液晶パネル 1の液晶モードやセル構造は任意である。また、表示用液晶パ ネル 1の駆動モードも任意である。すなわち、表示用液晶パネル 1としては、文字や 画像あるいは動画を表示可能な、任意の液晶パネルを用いることができる。従って、 本実施形態では、表示用液晶パネル 1の詳細な構造を図示せず、その説明も省略 する。また、表示用液晶パネル 1は、カラー表示が可能なパネルであっても良いし、 モノクロ表示専用のパネルであっても良い。さらに、バックライト 3の構成にも何ら限定 がなぐ公知の任意のバックライトを用いることができるので、バックライト 3の詳細な構 造の図示および説明も省略する。なお、表示用液晶パネル 1が反射型液晶パネルで ある場合は、バックライトは不要である。  The liquid crystal mode and cell structure of the display liquid crystal panel 1 are arbitrary. Further, the drive mode of the display liquid crystal panel 1 is also arbitrary. That is, as the display liquid crystal panel 1, an arbitrary liquid crystal panel capable of displaying characters, images, or moving images can be used. Therefore, in the present embodiment, the detailed structure of the display liquid crystal panel 1 is not shown, and the description thereof is also omitted. Further, the display liquid crystal panel 1 may be a panel capable of color display or a panel dedicated to monochrome display. Furthermore, since any known backlight without any limitation can be used for the configuration of the backlight 3, illustration and description of the detailed structure of the backlight 3 are also omitted. When the display liquid crystal panel 1 is a reflective liquid crystal panel, no backlight is required.
[0028] 視野角制御用液晶パネル 2は、一対の透光性基板 21a, 21bと、透明電極 22a, 2 2bと、配向膜 23a, 23bと、液晶層 24とを有する液晶セル 20と、この液晶セル 20を 挟むように配置された一対の偏光板 25, 26と、透明電極 22a, 22b間の電圧を制御 する駆動回路 27とを備えてレ、る。  The viewing angle control liquid crystal panel 2 includes a liquid crystal cell 20 having a pair of translucent substrates 21a and 21b, transparent electrodes 22a and 22b, alignment films 23a and 23b, and a liquid crystal layer 24. A pair of polarizing plates 25 and 26 disposed so as to sandwich the liquid crystal cell 20 and a drive circuit 27 for controlling the voltage between the transparent electrodes 22a and 22b are provided.
[0029] 液晶セル 20において、配向膜 23aは垂直配向膜であり、配向膜 23bは水平配向膜 である。すなわち、液晶層 24の液晶分子は、電圧が印加されない状態において、配 向膜 23aとの界面近傍では、分子長軸が前記界面に対しておよそ 70° 〜90° の角 度をなすよう配列し、配向膜 23bとの界面近傍では、分子長軸が前記界面に対して ほぼ 0° 〜30° の角度をなすよう配列している。なお、図 1では、表示用液晶パネル 1側の配向膜 23bを水平配向膜とし、もう一方の配向膜 23aを垂直配向膜とした構成 を例示したが、これとは逆に、表示用液晶パネル 1側の配向膜 23bを垂直配向膜とし 、配向膜 23aを水平配向膜とした構成であっても良い。 In the liquid crystal cell 20, the alignment film 23a is a vertical alignment film, and the alignment film 23b is a horizontal alignment film. That is, the liquid crystal molecules in the liquid crystal layer 24 are arranged so that the molecular major axis forms an angle of approximately 70 ° to 90 ° with respect to the interface in the vicinity of the interface with the alignment film 23a in a state where no voltage is applied. In the vicinity of the interface with the alignment film 23b, the molecular long axes are arranged so as to form an angle of approximately 0 ° to 30 ° with respect to the interface. In FIG. 1, the alignment film 23b on the display liquid crystal panel 1 side is a horizontal alignment film, and the other alignment film 23a is a vertical alignment film. However, on the contrary, the alignment film 23b on the display liquid crystal panel 1 side may be a vertical alignment film, and the alignment film 23a may be a horizontal alignment film.
[0030] 透明電極 22a, 22bは、例えば ITO (Indium Tin Oxide)を用いて形成されている。 The transparent electrodes 22a and 22b are formed using, for example, ITO (Indium Tin Oxide).
なお、表示用液晶パネル 1は、表示単位(画素単位またはセグメント単位)で液晶を 駆動することが必要であるので、表示単位に応じた電極構造を有している力 s、視野角 制御用液晶パネル 2は、電極構造に関しては制限がない。例えば、表示面全体で一 様なスイッチングを行うために、透光性基板 21a, 21bの全面に一様な透明電極が形 成された構成としても良いし、挟視野角モードとした場合にロゴや固有のパターンが 表示されるような電極構造を採用しても良い。  Since the liquid crystal panel 1 for display needs to drive the liquid crystal in display units (pixel units or segment units), the liquid crystal for controlling the viewing angle and the liquid crystal for controlling the viewing angle is required. Panel 2 has no restrictions on the electrode structure. For example, in order to perform uniform switching over the entire display surface, a uniform transparent electrode may be formed on the entire surface of the translucent substrates 21a and 21b, or a logo in the narrow viewing angle mode. Alternatively, an electrode structure that displays a unique pattern may be adopted.
[0031] 配向膜 23a, 23bのそれぞれには、ラビング処理がなされている。図 2は、配向膜 2 3a, 23bに対するラビング処理の方向と、偏光板 25, 26の偏光透過軸の方向との関 係を示す模式図である。本実施形態では、図 2の紙面に対する法線方向を z方向とし 、配向膜 23a, 23bおよび偏光板 25, 26の表面に平行な平面を xy平面とする。また 、ラビング方向に平行な方向を y方向とする。図 2に示すように、視野角制御用液晶 パネル 2の配向膜 23a, 23bに対するラビング処理の方向は、互いに平行かつ逆向 き(アンチパラレル)である。ただし、視野角制御用液晶パネル 2の配向膜 23a, 23b に対するラビング処理の方向は、互いに平行かつ同じ向き(パラレル)であっても良い [0031] Each of the alignment films 23a and 23b is rubbed. FIG. 2 is a schematic diagram showing the relationship between the direction of rubbing treatment for the alignment films 23a and 23b and the direction of the polarization transmission axis of the polarizing plates 25 and 26. FIG. In the present embodiment, the normal direction to the paper surface of FIG. 2 is the z direction, and the plane parallel to the surfaces of the alignment films 23a and 23b and the polarizing plates 25 and 26 is the xy plane. In addition, the direction parallel to the rubbing direction is defined as the y direction. As shown in FIG. 2, the directions of rubbing treatment for the alignment films 23a and 23b of the viewing angle control liquid crystal panel 2 are parallel to each other and opposite to each other (anti-parallel). However, the direction of rubbing treatment for the alignment films 23a and 23b of the viewing angle control liquid crystal panel 2 may be parallel to each other and in parallel.
[0032] また、図 2に示すように、偏光板 25, 26は、直線偏光板であり、それぞれの偏光透 過軸が略平行になり、かつ、偏光透過軸が配向膜 23a, 23bのラビング方向と略直交 するように配置されている。 Further, as shown in FIG. 2, the polarizing plates 25 and 26 are linear polarizing plates, the polarization transmission axes of which are substantially parallel, and the polarization transmission axes are rubbed with the alignment films 23a and 23b. It is arranged so as to be substantially orthogonal to the direction.
[0033] 液晶層 24の材料としては、ポジ型のネマティック液晶が用いられる。液晶層 24へ電 圧が印加されない状態では、液晶層 24の液晶分子は、図 3 (a)に示すように、配向 膜 23a (垂直配向膜)との界面近傍では、当該界面に対して分子長軸が略垂直となり 、配向膜 23b (水平配向膜)との界面近傍では、当該界面に対して分子長軸がほぼ 水平となり、これらの界面の間で分子長軸の方向が漸次的に変化した状態に配列す る。なお、ラビング処理によって、配向膜 23a, 23bとの界面に対してプレチルト角 P As the material of the liquid crystal layer 24, positive nematic liquid crystal is used. In the state where no voltage is applied to the liquid crystal layer 24, the liquid crystal molecules of the liquid crystal layer 24 are in the vicinity of the interface with the alignment film 23a (vertical alignment film) as shown in FIG. 3 (a). In the vicinity of the interface with the alignment film 23b (horizontal alignment film), the major axis is almost horizontal with respect to the interface, and the direction of the molecular major axis gradually changes between these interfaces. Arrange them in the same state. Note that the pretilt angle P with respect to the interface with the alignment films 23a and 23b is obtained by rubbing.
, Pがそれぞれ生じる。 [0034] 駆動回路 27により液晶層 24へ所定の電圧 Vaが印加されると、液晶層 24の液晶分 子は、図 3 (b)に示すように、ラビング方向に平行な面 (yz平面)内で、分子長軸を電 界の向きに揃えるように旋回する。なお、配向膜 23a, 23bの界面近傍では、配向膜 のアンカリング強度が大きいので、液晶分子の向きはあまり変化せず、プレチルト角 が保たれている。 , P are generated respectively. [0034] When a predetermined voltage Va is applied to the liquid crystal layer 24 by the drive circuit 27, the liquid crystal molecules of the liquid crystal layer 24 are parallel to the rubbing direction (yz plane) as shown in FIG. Rotate to align the long axis of the molecule with the direction of the electric field. In the vicinity of the interface between the alignment films 23a and 23b, since the anchoring strength of the alignment film is large, the orientation of the liquid crystal molecules does not change so much and the pretilt angle is maintained.
[0035] 図 4 (a)および図 4 (b)は、駆動回路 27が、液晶層 24への印加電圧を OV (図 3 (a) の状態)と所定電圧 Va (図 3 (b)の状態)とで切り替えた場合の、視野角制御用液晶 パネル 2の透過率を示すチャートである。なお、図 4 (a)および図 4 (b)は、液晶層 24 のリタデーシヨンを 1500nmとして測定を行った。  In FIG. 4 (a) and FIG. 4 (b), the drive circuit 27 determines that the voltage applied to the liquid crystal layer 24 is OV (state in FIG. 3 (a)) and a predetermined voltage Va (in FIG. 3 (b)). 6 is a chart showing the transmittance of the viewing angle control liquid crystal panel 2 when the state is switched to the state). In FIGS. 4 (a) and 4 (b), the measurement was performed with the retardation of the liquid crystal layer 24 set to 1500 nm.
[0036] なお、本実施形態では、視野角制御用液晶パネル 2のパネル面に対する、ある視 点からの視角を、パネル面中央を基準とした方位角 φおよび仰角 Θによって表す。 図 5は、方位角 φおよび仰角 Θの定義を示す説明図である。図 5に示すように、方位 角 φとは、視点からパネル面へ下ろした垂線の足と、パネル面の中央とを結ぶ線の 回転角である。図 5の例では、パネル面を xy平面とすると、パネル面中央を基準とす る方位角 Φは、 X軸の正方向を 0° として、 z軸方向上側から見た場合に反時計回り に増加するものとする。また、仰角 Θは、視点とパネル面の中央とを結ぶ線と z軸とが なす角度である。  In the present embodiment, the viewing angle from a certain viewing point with respect to the panel surface of the viewing angle control liquid crystal panel 2 is represented by an azimuth angle φ and an elevation angle Θ with respect to the center of the panel surface. FIG. 5 is an explanatory diagram showing the definitions of the azimuth angle φ and the elevation angle Θ. As shown in Fig. 5, the azimuth angle φ is the rotation angle of the line connecting the leg of the perpendicular line from the viewpoint to the panel surface and the center of the panel surface. In the example of Fig. 5, if the panel surface is the xy plane, the azimuth angle Φ with respect to the center of the panel surface is counterclockwise when viewed from the upper side of the z-axis with the positive direction of the X-axis as 0 °. It shall increase. The elevation angle Θ is the angle between the z-axis and the line connecting the viewpoint and the center of the panel surface.
[0037] 図 4 (a)に示すように、電圧無印加時には、表示装置 100の画面に対して、方位角 0° および 180° の視角から見た場合、およそ 60° の仰角まで、十分な輝度が得ら れるので、表示用液晶パネル 1の表示内容が視認できる。一方、図 4 (b)に示すよう に、電圧 Vaの印加時には、図 4 (a)に示す電圧無印加時よりも、方位角 0° および 1 80° の視角から見た場合、十分な輝度が得られる仰角の範囲が、およそ 30° まで であることが分かる、従って、表示装置 100において、視野角制御用液晶パネル 2の 液晶層 24への印加電圧を 0Vとすれば、表示用液晶パネル 1の表示内容を比較的 広い範囲から視認できる広視野角モードが実現でき、印加電圧を所定電圧 Vaとす れば、表示用液晶パネル 1の表示内容を視認できる範囲を、仰角 を中心とした比 較的狭い範囲に制限した挟視野角モードが実現できる。なお、印加電圧 Vaは、約 1 . 0V〜4. 0V程度である。 [0038] ここで、図 6〜図 11に、液晶層 24のリタデーシヨンを 600應, 800應, lOOOnm, 1300nm, 1500nm, 2500nmとした場合のそれぞれにつレヽて、酉己向月莫 23a (垂直 配向膜)側のプレチルト角 Pを 70° , 75° , 80° , 85° , 90° のそれぞれに設定し [0037] As shown in FIG. 4 (a), when no voltage is applied, the elevation angle of about 60 ° is sufficient when viewed from a viewing angle of 0 ° and 180 ° with respect to the screen of the display device 100. Since the brightness is obtained, the display content of the display liquid crystal panel 1 can be visually recognized. On the other hand, as shown in Fig. 4 (b), when the voltage Va is applied, the luminance is sufficiently high when viewed from the viewing angles of 0 ° and 1800 ° compared to when no voltage is applied as shown in Fig. 4 (a). Therefore, if the applied voltage to the liquid crystal layer 24 of the viewing angle control liquid crystal panel 2 in the display device 100 is set to 0 V, the display liquid crystal panel A wide viewing angle mode can be realized in which the display content of 1 can be viewed from a relatively wide range, and if the applied voltage is a predetermined voltage Va, the display content of the liquid crystal panel for display 1 can be viewed from the elevation angle. A narrow viewing angle mode limited to a relatively narrow range can be realized. The applied voltage Va is about 1.0V to 4.0V. [0038] Here, Figs. 6 to 11 show that the retardation of the liquid crystal layer 24 is 600, 800, lOOOnm, 1300nm, 1500nm, 2500nm, respectively. The pretilt angle P on the alignment layer) is set to 70 °, 75 °, 80 °, 85 °, and 90 °.
a  a
、配向膜 23b (水平配向膜)側のプレチルト角 Pを 1° , 3° , 10° , 20° , 30° , 4  The pretilt angle P on the alignment film 23b (horizontal alignment film) side is 1 °, 3 °, 10 °, 20 °, 30 °, 4
b  b
0° , 50° のそれぞれに設定した場合の、視野角制御用液晶パネル 2の透過率特 性の評価結果を示す。なお、これらのプレチルト角は、ラビング法、斜方蒸着法、光 配向法などによって実現できる。  The evaluation results of the transmittance characteristics of the viewing angle control liquid crystal panel 2 when set to 0 ° and 50 ° are shown. These pretilt angles can be realized by a rubbing method, an oblique deposition method, a photo-alignment method, or the like.
[0039] 図 6〜図 11に示す〇印は、従来技術に比較してパウンデイングが抑制されており、 かつ、パウンデイングが生じた範囲においても、最大透過率が 10%以下であったこと を意味する。なお、図 6〜図 11のそれぞれにおいて、比較対象とする従来技術として は、前述のホモジニァス配向の従来のスィッチ液晶ディスプレイを用レ、、リタデーショ ンを図 6〜図 11のそれぞれにおける本実施形態の視野角制御用液晶パネル 2と同 じ値に設定し、プレチルト角を 3° とした。図 6〜図 11に示す△印は、従来技術に比 較してパウンデイングが抑制されている力 S、パウンデイングが生じた範囲の最大透過 率が 10%を若干超えたが、表示用液晶パネル 1の表示内容が明瞭には視認できな い程度の低い透過率であったことを意味する。図 6〜図 11に示す X印は、表示用液 晶パネル 1の表示内容が視認できる程度の高い透過率までのパウンデイングが生じ たことを意味する。 [0039] The circles in FIGS. 6 to 11 indicate that the pounding is suppressed as compared with the prior art and that the maximum transmittance is 10% or less even in the range where the pounding occurs. To do. In each of FIGS. 6 to 11, as a conventional technique to be compared, the conventional switch liquid crystal display with the homogenous alignment described above is used, and the retardation is shown in FIGS. 6 to 11 in the present embodiment. The viewing angle control liquid crystal panel 2 was set to the same value, and the pretilt angle was 3 °. The △ marks shown in FIGS. 6 to 11 indicate the force S in which the pounding is suppressed as compared with the prior art, and the maximum transmittance in the range where the pounding occurs slightly exceeds 10%, but the display liquid crystal panel 1 This means that the display content was low enough to be invisible. The X marks shown in FIGS. 6 to 11 mean that the casting was performed up to such a high transmittance that the display contents of the display liquid crystal panel 1 can be visually recognized.
[0040] 図 6に示すように、液晶層 24のリタデーシヨンが 600nmの場合は、水平配向膜側 のプレチルト角 Pがおよそ 1° 〜40° の範囲、かつ、垂直配向膜側のプレチルト角 P  [0040] As shown in FIG. 6, when the retardation of the liquid crystal layer 24 is 600 nm, the pretilt angle P on the horizontal alignment film side is in the range of about 1 ° to 40 ° and the pretilt angle P on the vertical alignment film side is
b  b
がおよそ 70° 〜90° の範囲において、透過率が 10%以下に抑制され、良好な遮 a  In the range of approximately 70 ° to 90 °, the transmittance is suppressed to 10% or less and good shielding is achieved.
蔽特性が得られた。  The shielding properties were obtained.
[0041] 図 7に示すように、液晶層 24のリタデーシヨンが 800nmの場合は、水平配向膜側 のプレチルト角 Pがおよそ 1° 〜10° の範囲では、垂直配向膜側のプレチルト角 P  [0041] As shown in FIG. 7, when the retardation of the liquid crystal layer 24 is 800 nm, the pretilt angle P on the vertical alignment film side is approximately 1 ° to 10 ° when the pretilt angle P on the horizontal alignment film side is approximately 1 ° to 10 °.
b a がおよそ 70° 〜90° の範囲において、透過率がほぼ 10%以下に抑制され、良好な 遮蔽特性が得られた。しかし、水平配向膜側のプレチルト角 Pがおよそ 20° 〜30°  When b a is in the range of approximately 70 ° to 90 °, the transmittance is suppressed to approximately 10% or less, and good shielding characteristics are obtained. However, the pretilt angle P on the horizontal alignment film side is about 20 ° to 30 °.
b  b
の範囲では、垂直配向膜側のプレチルト角 Pは、およそ 75° 〜90° の範囲とするこ  In this range, the pretilt angle P on the vertical alignment film side should be in the range of approximately 75 ° to 90 °.
a  a
とが好ましい。また、水平配向膜側のプレチルト角 Pがおよそ 40° の範囲では、垂直 配向膜側のプレチルト角 Pは、およそ 80° 〜90° の範囲とすることが好ましい。 And are preferred. When the pretilt angle P on the horizontal alignment film side is approximately 40 °, The pretilt angle P on the alignment film side is preferably in the range of about 80 ° to 90 °.
a  a
[0042] 図 8に示すように、液晶層 24のリタデーシヨンが lOOOnmの場合は、水平配向膜側 のプレチルト角 Pがおよそ 1° 〜10° の範囲では、垂直配向膜側のプレチルト角 P b a がおよそ 70° 〜90° の範囲において、透過率がほぼ 10%以下に抑制され、良好な 遮蔽特性が得られた。また、水平配向膜側のプレチルト角 Pがおよそ 20° 〜30° b  As shown in FIG. 8, when the retardation of the liquid crystal layer 24 is lOOOnm, the pretilt angle P ba on the vertical alignment film side is about 1 ° to 10 ° when the pretilt angle P on the horizontal alignment film side is approximately 1 ° to 10 °. In the range of approximately 70 ° to 90 °, the transmittance was suppressed to approximately 10% or less, and good shielding characteristics were obtained. Also, the pretilt angle P on the horizontal alignment film side is about 20 ° to 30 ° b
の範囲では、垂直配向膜側のプレチルト角 Pがおよそ 75° 〜90° の範囲において  When the pretilt angle P on the vertical alignment film side is approximately 75 ° to 90 °,
a  a
、透過率がほぼ 10%以下に抑制され、良好な遮蔽特性が得られた。しかし、水平配 向膜側のプレチルト角 Pがおよそ 40° の範囲では、垂直配向膜側のプレチルト角 P b a は、およそ 80° 〜90° の範囲とすることが好ましい。  The transmittance was suppressed to about 10% or less, and good shielding properties were obtained. However, when the pretilt angle P on the horizontal alignment film side is in the range of about 40 °, the pretilt angle P ba on the vertical alignment film side is preferably in the range of about 80 ° to 90 °.
[0043] 図 9に示すように、液晶層 24のリタデーシヨンが 1300nmの場合は、水平配向膜側 のプレチルト角 Pがおよそ 1° 〜10° の範囲では、垂直配向膜側のプレチルト角 P b a がおよそ 70° 〜90° の範囲において、透過率が 10。 /。程度より低く抑制され、おお むね良好な遮蔽特性が得られた。しかし、水平配向膜側のプレチルト角 Pがおよそ 2 [0043] As shown in FIG. 9, when the retardation of the liquid crystal layer 24 is 1300 nm, the pretilt angle P ba on the vertical alignment film side is about 1 ° to 10 ° when the pretilt angle P on the horizontal alignment film side is in the range of about 1 ° to 10 °. The transmittance is 10 in the range of about 70 ° ~ 90 °. /. It was suppressed to a level lower than that, and generally good shielding properties were obtained. However, the pretilt angle P on the horizontal alignment film side is about 2
b  b
0。 〜30。 の範囲では、垂直配向膜側のプレチルト角 Pは、およそ 75。 〜90° の  0. ~ 30. In this range, the pretilt angle P on the vertical alignment film side is approximately 75. ~ 90 °
a  a
範囲とすることが好ましい。また、水平配向膜側のプレチルト角 Pがおよそ 40° の範 b  It is preferable to be in the range. In addition, the pretilt angle P on the horizontal alignment film side is approximately 40 °.
囲では、垂直配向膜側のプレチルト角 Pは、およそ 80° 〜90° の範囲とすることが a  The pretilt angle P on the vertical alignment film side should be approximately 80 ° to 90 °.
好ましい。  preferable.
[0044] 図 10に示すように、液晶層 24のリタデーシヨンが 1500nmの場合は、水平配向膜 側のプレチルト角 Pがおよそ 1° 〜10° の範囲では、垂直配向膜側のプレチルト角  As shown in FIG. 10, when the retardation of the liquid crystal layer 24 is 1500 nm, when the pretilt angle P on the horizontal alignment film side is in the range of approximately 1 ° to 10 °, the pretilt angle on the vertical alignment film side
b  b
Pがおよそ 70° 〜90° の範囲において、透過率が 10%程度より低く抑制され、お a  When P is in the range of about 70 ° to 90 °, the transmittance is suppressed below about 10%, and a
おむね良好な遮蔽特性が得られた。しかし、水平配向膜側のプレチルト角 Pがおよ b そ 20° 〜30° の範囲では、垂直配向膜側のプレチルト角 Pは、およそ 75° 〜90° a  In general, good shielding properties were obtained. However, when the pretilt angle P on the horizontal alignment film side is in the range of approximately 20 ° to 30 °, the pretilt angle P on the vertical alignment film side is approximately 75 ° to 90 ° a
の範囲とすることが好ましい。また、水平配向膜側のプレチルト角 Pがおよそ 40° の  It is preferable to set it as the range. In addition, the pretilt angle P on the horizontal alignment film side is approximately 40 °.
b  b
範囲では、垂直配向膜側のプレチルト角 Pは、およそ 80° 〜90° の範囲とすること が好ましい。  In the range, the pretilt angle P on the vertical alignment film side is preferably in the range of about 80 ° to 90 °.
[0045] 図 11に示すように、液晶層 24のリタデーシヨンが 2500nmの場合は、水平配向膜 側のプレチルト角 Pがおよそ 1° 〜10° の範囲では、垂直配向膜側のプレチルト角  As shown in FIG. 11, when the retardation of the liquid crystal layer 24 is 2500 nm, when the pretilt angle P on the horizontal alignment film side is in the range of approximately 1 ° to 10 °, the pretilt angle on the vertical alignment film side
b  b
Pがおよそ 70° 〜90° の範囲において、透過率がほぼ 10%程度より低く抑制され a 、おおむね良好な遮蔽特性が得られた。また、水平配向膜側のプレチルト角 Pがお When P is in the range of about 70 ° to 90 °, the transmittance is suppressed below about 10%. In general, good shielding properties were obtained. In addition, the pretilt angle P on the horizontal alignment film side is large.
b よそ 20° 〜30° の範囲では、垂直配向膜側のプレチルト角 Pは、およそ 75° 〜90  b In the range of approximately 20 ° to 30 °, the pretilt angle P on the vertical alignment film side is approximately 75 ° to 90 °.
a  a
。 の範囲が好ましい。また、水平配向膜側のプレチルト角 Pがおよそ 40° の範囲で  . The range of is preferable. In addition, the pretilt angle P on the horizontal alignment film side is in the range of about 40 °.
b  b
は、垂直配向膜側のプレチルト角 Pは、およそ 80° 〜90° の範囲とすることが好ま  The pretilt angle P on the vertical alignment film side is preferably in the range of about 80 ° to 90 °.
a  a
しい。  That's right.
[0046] 以上のとおり、液晶層 24のリタデーシヨンが 600nm〜2500nmの場合は、水平配 向膜側のプレチルト角 Pがおよそ 1° 〜20° の範囲では、垂直配向膜側のプレチル  [0046] As described above, when the retardation of the liquid crystal layer 24 is 600 nm to 2500 nm, the pretilt angle on the vertical alignment film side is within the range of the pretilt angle P on the horizontal alignment film side of about 1 ° to 20 °.
b  b
ト角 Pがおよそ 70° 〜90° の範囲であることが好ましい。また、水平配向膜側のプ レチルト角 Pがおよそ 10° 〜30° の範囲では、垂直配向膜側のプレチルト角 P  The angle P is preferably in the range of about 70 ° to 90 °. In addition, when the pretilt angle P on the horizontal alignment film side is in the range of about 10 ° to 30 °, the pretilt angle P on the vertical alignment film side is
b a およそ 75° 〜90° の範囲であることが好ましレ、。また、水平配向膜側のプレチルト 角 Pがおよそ 20° 〜40° の範囲では、垂直配向膜側のプレチルト角 Pがおよそ 80 b a b a, preferably in the range of about 75 ° to 90 °. In addition, when the pretilt angle P on the horizontal alignment film side is approximately 20 ° to 40 °, the pretilt angle P on the vertical alignment film side is approximately 80 b a
。 〜90° の範囲であることが好ましい。 . A range of ˜90 ° is preferable.
[0047] なお、発明者らが検討した範囲では、液晶層 24のリタデーシヨンをおよそ 1500nm とし、水平配向膜側のプレチルト角 Pをおよそ 3° とし、垂直配向膜側のプレチルト角 [0047] In the range examined by the inventors, the retardation of the liquid crystal layer 24 is about 1500 nm, the pretilt angle P on the horizontal alignment film side is about 3 °, and the pretilt angle on the vertical alignment film side is
b  b
Pをおよそ 85° とした場合に、最も好ましい結果が得られた。すなわち、この場合、 a  The most favorable results were obtained when P was approximately 85 °. That is, in this case a
透過率が最も低くなる仰角が小さぐそれよりも大きな仰角でのパウンデイングが小さ ぐかつ、パウンデイング時の透過率が低かった。ただし、上記の数値は、あくまでも 一例であり、この数値以外にも最適な結果が得られる可能性はある。  The angle of elevation at which the transmittance was lowest was small, and the pounding at a larger angle of elevation was small, and the transmittance at the time of pounding was low. However, the above figures are only examples, and there is a possibility that optimal results will be obtained other than these figures.
[0048] 例えば、図 12〜図 15は、液晶層 24のリタデーシヨンを 600nmとし、配向膜 23b (水 平配向膜)側のプレチルト角 Pを 10° (図 12) , 20° (図 13) , 30° (図 14) , 40° ( For example, in FIGS. 12 to 15, the retardation of the liquid crystal layer 24 is 600 nm, and the pretilt angle P on the alignment film 23b (horizontal alignment film) side is 10 ° (FIG. 12), 20 ° (FIG. 13), 30 ° (Fig. 14), 40 ° (
b  b
図 15)のそれぞれに設定し、配向膜 23a (垂直配向膜)側のプレチルト角 Pを 70° ,  (Fig. 15), the pretilt angle P on the alignment film 23a (vertical alignment film) side is set to 70 °,
a  a
75° , 80° , 85° のそれぞれに設定して、視野角制御用液晶パネル 2の透過率特 性を求めたものである。比較例として、前述のホモジニァス配向の従来のスィッチ液 晶ディスプレイの透過率特性を示した。この従来のスィッチ液晶ディスプレイにおレヽ ては、リタデーシヨンを 600nmとし、プレチルト角を 3° とした。  The transmittance characteristics of the liquid crystal panel 2 for viewing angle control were determined by setting each of 75 °, 80 °, and 85 °. As a comparative example, the transmittance characteristics of a conventional switch liquid crystal display with the above-described homogeneous orientation are shown. In this conventional switch liquid crystal display, the retardation is 600 nm and the pretilt angle is 3 °.
[0049] 図 12〜図 15から分かるように、本実施形態に力、かる視野角制御用液晶パネル 2は 、液晶層 24のリタデーシヨンを 600nmとした場合、仰角が 0° よりも大きくなるにつれ て透過率が下降し、仰角がおよそ 35° 〜45° を超える範囲では、透過率が 0. 10を 上回ることはない。この点については、図 12〜図 15中に比較例として示した従来の スィッチ液晶ディスプレイについても同様である。しかし、従来のスィッチ液晶ディス プレイでは、透過率が最低値(およそ 0. 01)となった後に、透過率がおよそ 0. 09ま で再び上昇する現象 (パウンデイング)が見られるのに対して、本実施形態にかかる 視野角制御用液晶パネル 2は、プレチルト角 Pを 70° , 75° , 80° , 85° のそれ a [0049] As can be seen from FIGS. 12 to 15, the liquid crystal panel 2 for controlling the viewing angle, which is effective in this embodiment, has an elevation angle larger than 0 ° when the retardation of the liquid crystal layer 24 is 600 nm. In the range where the transmittance decreases and the elevation angle exceeds approximately 35 ° to 45 °, the transmittance is reduced to 0.10. It will not be exceeded. The same applies to the conventional switch liquid crystal display shown as a comparative example in FIGS. However, in the conventional switch liquid crystal display, after the transmittance reaches the lowest value (approximately 0.01), the phenomenon that the transmittance rises again to approximately 0.09 (pounding) is seen. The viewing angle control liquid crystal panel 2 according to the present embodiment has pretilt angles P of 70 °, 75 °, 80 ° and 85 ° a
ぞれに設定した場合と、プレチルト角 Pを 10° , 20° , 30° , 40° のそれぞれに設 b  Set the pretilt angle P to 10 °, 20 °, 30 °, and 40 ° respectively.
定した場合との全ての組み合わせについて、パウンデイングの程度が従来のスィッチ 液晶ディスプレイに比較して小さい。従って、本実施形態に力かる視野角制御用液 晶パネル 2は、液晶層 24のリタデーシヨンを 600nmとし、プレチルト角 Pを 70° 〜9 0° に設定し、プレチルト角 Pを 0° 〜40° のそれぞれに設定した場合、仰角が比 b  For all combinations with the fixed case, the degree of pounding is small compared to the conventional switch LCD. Therefore, in the liquid crystal panel 2 for controlling the viewing angle, which is effective in this embodiment, the retardation of the liquid crystal layer 24 is set to 600 nm, the pretilt angle P is set to 70 ° to 90 °, and the pretilt angle P is set to 0 ° to 40 °. The elevation angle is the ratio b
較的大きい視点に対して、従来のスィッチ液晶ディスプレイよりも、表示用液晶パネ ノレ 1の表示内容をより確実に遮蔽できるという効果を有することがわかる。  It can be seen that the display contents of the display liquid crystal panel 1 can be shielded more reliably than the conventional switch liquid crystal display for a relatively large viewpoint.
[0050] 以上のとおり、本実施形態によれば、視野角制御用液晶パネル 2の液晶層 24をハ イブリツド配向とすることにより、ホモジニァス配向の液晶層を用いた従来のスィッチ 液晶ディスプレイに比較して、仰角が比較的大きレ、範囲におけるパウンデイングを抑 制することにより、表示用液晶パネル 1の表示内容をより広い仰角範囲にわたって遮 蔽できる。 As described above, according to the present embodiment, the liquid crystal layer 24 of the viewing angle control liquid crystal panel 2 is hybrid-aligned, thereby comparing with a conventional switch liquid crystal display using a homogeneously aligned liquid crystal layer. Thus, by suppressing the casting in a range where the elevation angle is relatively large, the display content of the display liquid crystal panel 1 can be shielded over a wider elevation angle range.
[0051] ここで、本実施形態にかかる、ノ、イブリツド配向の液晶層 24を備えた視野角制御用 液晶パネル 2において、仰角が比較的大きい範囲におけるパウンデイングが抑制さ れる原理について、以下に説明する。  [0051] Here, in the viewing angle controlling liquid crystal panel 2 including the liquid crystal layer 24 having the no-or-brid orientation according to the present embodiment, the principle that the pounding in a range where the elevation angle is relatively large is suppressed will be described below. To do.
[0052] 例えば、図 2に示した本実施形態の視野角制御用液晶パネル 2においては、前述 したように、図 2および図 5に示す xz平面内の視角に対して、仰角 Θの大きさに応じ た視野角制御が可能である。ここで、図 16 (a)は、本実施形態の視野角制御用液晶 パネル 2におけるハイブリッド配向の液晶層 24の模式図であり、図 16 (b)は、ホモジ 二ァス配向の従来のスィッチ液晶ディスプレイの液晶層の模式図である。図 17 (a)は 、図 16 (a)に示した液晶層を、 xz平面に平行かつ仰角 Θで光が透過する場合に、そ の光路上において光が順次透過する液晶分子 M〜Mを光路方向から見た場合の  [0052] For example, in the viewing angle control liquid crystal panel 2 of the present embodiment shown in FIG. 2, as described above, the elevation angle Θ is larger than the viewing angle in the xz plane shown in FIGS. The viewing angle can be controlled according to the conditions. Here, FIG. 16 (a) is a schematic diagram of the liquid crystal layer 24 of hybrid alignment in the viewing angle control liquid crystal panel 2 of the present embodiment, and FIG. 16 (b) is a conventional switch of homogeneous alignment. It is a schematic diagram of the liquid crystal layer of a liquid crystal display. FIG. 17 (a) shows the liquid crystal molecules M to M that sequentially transmit light along the optical path when light passes through the liquid crystal layer shown in FIG. 16 (a) parallel to the xz plane and at an elevation angle Θ. When viewed from the optical path direction
1 5  1 5
投影図である。また、図 17 (b)は、図 16 (b)に示した液晶層を、 xz平面に平行かつ 仰角 Θで光が透過する場合に、その光路上において光が順次透過する液晶分子 m FIG. FIG. 17 (b) shows a liquid crystal layer shown in FIG. Liquid crystal molecules that sequentially transmit light along the optical path when light is transmitted at an elevation angle Θ m
1 1
〜mを光路方向から見た場合の投影図である。 It is a projection figure at the time of looking at ~ m from the optical path direction.
5  Five
[0053] 図 17 (a)および図 17 (b)を比較することにより、以下のことが分かる。すなわち、図 17 (b)に示すホモジニァス配向の場合は、液晶層を透過する光は、液晶分子の複屈 折性の影響を受けるが、液晶分子 m〜mの長軸方向がほぼ一定であるので、液晶  [0053] By comparing Fig. 17 (a) and Fig. 17 (b), the following can be understood. That is, in the case of the homogeneous alignment shown in FIG. 17 (b), the light transmitted through the liquid crystal layer is affected by the birefringence of the liquid crystal molecules, but the major axis direction of the liquid crystal molecules m to m is almost constant. So LCD
1 5  1 5
分子の旋光性の影響をほとんど受けない。なお、ホモジニァス配向の場合は、仰角 Θの大きさによって複屈折性の影響度が異なる(すなわち、液晶層の見かけのリタデ ーシヨン値が異なる)。一方、図 17 (a)に示すハイブリッド配向の場合は、液晶層 24 を透過する光は、液晶分子の複屈折性の影響と共に、液晶分子 M〜Mがツイスト  Little affected by the optical rotation of the molecule. In the case of homogeneous alignment, the degree of influence of birefringence varies depending on the elevation angle Θ (that is, the apparent retardation value of the liquid crystal layer varies). On the other hand, in the case of the hybrid alignment shown in FIG. 17 (a), the light transmitted through the liquid crystal layer 24 is twisted by the liquid crystal molecules M to M together with the birefringence of the liquid crystal molecules.
1 5  1 5
ネマティック配列であることにより、液晶分子の長軸方向の回転に伴う旋光性の影響 を受ける。従って、ホモジニァス配向では、狭視野角モードにした場合、透過光を遮 蔽するための仰角 θの最適値が存在し、その角度よりも仰角を大きくすると、漏れ光 が発生する。これに対して、ノ、イブリツド配向では、旋光性の影響により、仰角が大き い場合であっても遮光状態を維持できる。  Due to the nematic alignment, it is affected by the optical rotation due to the rotation of the liquid crystal molecules in the long axis direction. Therefore, in the homogeneous orientation, when the narrow viewing angle mode is selected, there is an optimum value of the elevation angle θ for shielding the transmitted light, and when the elevation angle is made larger than that angle, leakage light is generated. On the other hand, in the no-branch alignment, the light shielding state can be maintained even when the elevation angle is large due to the effect of optical rotation.
[0054] なお、本実施形態においては、図 2に示したように、偏光板 25, 26の偏光透過軸と 、配向膜 23a, 23bのラビング方向とが略直交している構成を例示した力 S、視野角制 御用液晶パネル 2においては、偏光板 25, 26の偏光透過軸と、配向膜 23a, 23bの ラビング方向とが略平行であっても良い。ただし、偏光板 25, 26の偏光透過軸と、配 向膜 23a, 23bのラビング方向とが略直交している構成の方力 S、遮光レベルが向上 する点において好ましい。  In the present embodiment, as illustrated in FIG. 2, the force exemplifying a configuration in which the polarization transmission axes of the polarizing plates 25 and 26 and the rubbing directions of the alignment films 23a and 23b are substantially orthogonal to each other. In the S and viewing angle control liquid crystal panel 2, the polarization transmission axes of the polarizing plates 25 and 26 and the rubbing direction of the alignment films 23a and 23b may be substantially parallel. However, the configuration in which the polarization transmission axes of the polarizing plates 25 and 26 and the rubbing directions of the alignment films 23a and 23b are substantially orthogonal is preferable in terms of improving the direction force S and the light shielding level.
[0055] [第 2の実施形態]  [0055] [Second Embodiment]
本発明の第 2の実施形態にかかる表示装置について、図面を参照しながら以下に 説明する。なお、第 1の実施形態で説明した構成と同様の構成については、第 1の実 施形態と同じ参照符号を付記し、その説明を省略する。図 18は、第 2の実施形態に 力、かる表示装置 200の概略構成を示す断面模式図である。図 18に示すように、第 2 の実施形態に力、かる表示装置 200は、偏光板 25と液晶セル 20の透光性基板 21aと の間に、ネガティブ Cプレート 31を備えている。なお、本実施形態では、液晶セル 20 の配向膜 23a, 23bに対するラビング方向に対して偏光透過軸が平行になるように、 偏光板 25, 26が配置されている。しかし、第 1の実施形態と同様に、液晶セル 20の 配向膜 23a 23bに対するラビング方向に対して偏光透過軸が直交するように、偏光 板 25, 26が配置された構成としても良ぐ遮光レベルが向上する点において好まし レ、。 A display device according to a second embodiment of the present invention will be described below with reference to the drawings. Note that components similar to those described in the first embodiment are denoted by the same reference numerals as in the first embodiment, and description thereof is omitted. FIG. 18 is a schematic cross-sectional view showing a schematic configuration of the display device 200 which is particularly useful for the second embodiment. As shown in FIG. 18, the display device 200 that has the power of the second embodiment includes a negative C plate 31 between a polarizing plate 25 and a light-transmitting substrate 21 a of the liquid crystal cell 20. In the present embodiment, the polarization transmission axis is parallel to the rubbing direction for the alignment films 23a and 23b of the liquid crystal cell 20. Polarizers 25 and 26 are arranged. However, as in the first embodiment, the light shielding level is good even if the polarizing plates 25 and 26 are arranged so that the polarization transmission axis is orthogonal to the rubbing direction with respect to the alignment film 23a 23b of the liquid crystal cell 20. In terms of improvement.
[0056] また、本実施形態の表示装置 200では、駆動回路 27は、 Vbと Vaの 2レベルの電 圧を液晶層 24へ切り替えて印加する。なお、 Vbは、約 5. 0V〜: 10. 0V程度の電圧 であり、 Vaは、約 1. 0V 4. 0V程度の電圧である。電圧 Vbが印加された場合、液 晶層 24の液晶分子は、図 19 (a)に示すように、ホメオト口ピック配向にほぼ等しい状 態となる。すなわち、比較的高い電圧 Vbを印加することにより、液晶分子の動きに対 して、配向膜から受けるアンカリング力の作用よりも、電界の作用の方が支配的となる ため、液晶分子が、その長軸方向が基板法線にほぼ完全に平行になるよう整列した 状態となる。  Further, in the display device 200 of the present embodiment, the drive circuit 27 switches and applies two-level voltages of Vb and Va to the liquid crystal layer 24. Vb is a voltage of about 5.0V to about 10.0V, and Va is a voltage of about 1.0V 4.0V. When the voltage Vb is applied, the liquid crystal molecules in the liquid crystal layer 24 are in a state substantially equal to the home-mouth-pick orientation as shown in FIG. 19 (a). That is, by applying a relatively high voltage Vb, the action of the electric field is more dominant than the action of the anchoring force received from the alignment film with respect to the movement of the liquid crystal molecules. The major axis is aligned so that it is almost completely parallel to the substrate normal.
[0057] ネガティブ Cプレートは、面方向の屈折率を Nx, Nyとし、厚さ方向の屈折率を Nzと したときに、 Nx = Ny>Nzの関係が成り立つ位相差フィルムである。図 19 (a)に示す ようなホメオト口ピック配向のときの液晶層 24の位相差を R (正の値)、ネガティブ C プレート 31の位相差を R (負の値)とすると、これらの位相差が下記の(式 1)の条件  [0057] The negative C plate is a retardation film in which the relationship of Nx = Ny> Nz is established when the refractive index in the plane direction is Nx, Ny and the refractive index in the thickness direction is Nz. When the phase difference of the liquid crystal layer 24 in the home-to-mouth pick orientation as shown in Fig. 19 (a) is R (positive value) and the phase difference of the negative C plate 31 is R (negative value), these positions are The condition of the following (Equation 1) where the phase difference is
C  C
を満たすことが好ましい。  It is preferable to satisfy.
[0058] R +R =0 …(式 1)  [0058] R + R = 0 (Formula 1)
c c  c c
ただし、電圧 Vbの印加時でも水平配向膜 23b側でプレチルト角が小さいところがあ る場合は、ネガティブ Cプレート 31の位相差 Rの絶対値は、 R の値よりもやや小さ c c  However, the absolute value of the phase difference R of the negative C plate 31 is slightly smaller than the R value if there is a small pretilt angle on the horizontal alignment film 23b side even when the voltage Vb is applied.
い値であることが好ましい。例えば、液晶セル 20の液晶層 24のリタデーシヨンが約 1 500nmであるとき、ネガティブ Cプレート 31として、位相差が約 1300nmのフィルム を用いることが好ましい。ここで、図 20に、液晶セル 20の液晶層 24のリタデーシヨン R の値に対する、ネガティブ Cプレート 31のリタデーシヨン Rの好適値の範囲を示 C C  A high value is preferable. For example, when the retardation of the liquid crystal layer 24 of the liquid crystal cell 20 is about 1500 nm, it is preferable to use a film having a retardation of about 1300 nm as the negative C plate 31. Here, FIG. 20 shows a range of preferable values of the retardation R of the negative C plate 31 with respect to the value of the retardation R of the liquid crystal layer 24 of the liquid crystal cell 20 C C
す。図 20において、好適範囲とは、広視野角モードにおいて、全方位にわたって視 認性が良好である範囲である。最適範囲とは、好適範囲の数値内でさらに、広視野 角モードにおいて、ネガティブ Cプレート 31を用いない場合と比較して良好な視認性 が得られる範囲である。 [0059] 図 21 (a)は、ネガティブ Cプレート 31が積層された状態における視野角制御用液 晶パネル 2において、液晶層 24へ電圧 Vbが印加された場合の透過率を示すチヤ一 トであり、図 21 (b)は、液晶層 24に電圧 Vaが印加された場合の透過率を示すチヤ一 トである。図 21 (a)に示すように、駆動回路 27によって液晶層 24に電圧 Vbが印加さ れた場合、第 1の実施形態の広視野角モード時(図 4 (a) )と比較して、明るく見える 範囲が広がっていることが分かる。また、図 21 (b)に示すように、駆動回路 27によつ て液晶層 24に電圧 Vaが印加された場合、第 1の実施形態に力、かる表示装置 100の 挟視野角モード時(図 4 (b) )と同等の挟視野角が得られることが分かる。 The In FIG. 20, the preferred range is a range in which the visibility is good in all directions in the wide viewing angle mode. The optimum range is a range in which better visibility can be obtained in the wide range of viewing angle mode than in the case where the negative C plate 31 is not used. FIG. 21 (a) is a chart showing the transmittance when the voltage Vb is applied to the liquid crystal layer 24 in the viewing angle control liquid crystal panel 2 in a state where the negative C plate 31 is laminated. FIG. 21 (b) is a chart showing the transmittance when the voltage Va is applied to the liquid crystal layer 24. As shown in FIG. 21 (a), when the voltage Vb is applied to the liquid crystal layer 24 by the drive circuit 27, compared to the wide viewing angle mode of the first embodiment (FIG. 4 (a)), It can be seen that the range that appears bright is expanding. In addition, as shown in FIG. 21 (b), when the voltage Va is applied to the liquid crystal layer 24 by the drive circuit 27, the display device 100 is in the narrow viewing angle mode when the voltage Va is applied to the first embodiment ( It can be seen that a narrow viewing angle equivalent to that in Fig. 4 (b)) is obtained.
[0060] また、第 1の実施形態の表示装置 100は、広視野角モードのときに、仰角が大きい 視角から観察した場合、やや色づきが見られることがある。これに対して、本実施形 態の表示装置 200では、そのような色づきは見られな力 た。また、本実施形態の表 示装置 200においても、第 1の実施形態の表示装置 100と同様に、挟視野角モード にした場合に、仰角が大きい範囲におけるパウンデイングを従来よりも抑制することが できた。  [0060] In addition, when the display device 100 of the first embodiment is observed from a viewing angle with a large elevation angle in the wide viewing angle mode, the display device 100 may be slightly colored. On the other hand, in the display device 200 of the present embodiment, such coloring was not seen. Further, in the display device 200 of the present embodiment, as in the display device 100 of the first embodiment, when the narrow viewing angle mode is set, the pounding in the range where the elevation angle is large can be suppressed more than in the past. It was.
[0061] 以上のとおり、本実施形態の表示装置 200は、液晶セル 20と偏光板 25との間にネ ガティブ Cプレート 31を備えたことにより、広視野角モードにおける色づきを防止する と共に、挟視野角モード時の視野角を狭い範囲に保ちつつ、広視野角モード時の視 野角をさらに広げること力できる。図 19 (a)に示すように、基板面に対して分子長軸 がほぼ垂直 (ホメオト口ピック配向)に配歹 IJしたポジ型ネマティック液晶を斜めから見た 場合、実効的な位相差が発生し、それが視角を狭める原因となる。ネガティブ Cプレ ート 31がその位相差をキャンセルすることにより、視角改善を図れる。  [0061] As described above, the display device 200 of the present embodiment includes the negative C plate 31 between the liquid crystal cell 20 and the polarizing plate 25, thereby preventing coloring in the wide viewing angle mode and sandwiching it. While maintaining the viewing angle in the viewing angle mode in a narrow range, it is possible to further widen the viewing angle in the wide viewing angle mode. As shown in Fig. 19 (a), an effective phase difference occurs when a positive nematic liquid crystal with IJ aligned with the major surface of the substrate is almost perpendicular to the substrate surface (homeotope pick orientation) is seen from an angle. This causes a narrowing of the viewing angle. The negative C-plate 31 can cancel the phase difference and improve the viewing angle.
[0062] なお、図 18では、液晶セル 20と偏光板 25, 26との間であって、垂直配向膜 23a側 の透光性基板 21aの外側にネガティブ Cプレート 31を配置した構成を示した。しかし 、水平配向膜 23b側の透光性基板 21bの外側(すなわち、透光性基板 21bと偏光板 26との間)にネガティブ Cプレート 31を配置した構成としても良レ、。ただし、図 18のよ うに、垂直配向膜 23a側にネガティブ Cプレートを配置した構成の方が、視角改善効 果が高い。垂直配向膜 23aの近くにネガティブ Cプレートを配置した方力 他の光学 補償の影響 (例えば、水平配向部分の影響)を受けずに位相差をキャンセルできるか らである。また、透光性基板 21aと偏光板 25との間と、透光性基板 21bと偏光板 26と の間との両方にネガティブ Cプレートを配置した構成としても良い。この場合、 2枚の ネガティブ Cプレートの位相差の合計力 図 18に示した構成における 1枚のネガティ ブ Cプレートの位相差と等しくなるようにする。 FIG. 18 shows a configuration in which a negative C plate 31 is arranged between the liquid crystal cell 20 and the polarizing plates 25 and 26 and outside the light-transmitting substrate 21a on the vertical alignment film 23a side. . However, a configuration in which the negative C plate 31 is disposed outside the translucent substrate 21b on the side of the horizontal alignment film 23b (that is, between the translucent substrate 21b and the polarizing plate 26) is also acceptable. However, as shown in FIG. 18, the configuration in which the negative C plate is arranged on the vertical alignment film 23a side has a higher viewing angle improvement effect. Force to place negative C plate near the vertical alignment film 23a Can the phase difference be canceled without being affected by other optical compensation (for example, by the horizontal alignment part)? That's it. Further, a negative C plate may be arranged between both the translucent substrate 21a and the polarizing plate 25 and between the translucent substrate 21b and the polarizing plate 26. In this case, the total force of the phase difference of the two negative C plates should be equal to the phase difference of one negative C plate in the configuration shown in FIG.
[0063] 以上、本発明の実施形態を説明したが、上記の各実施形態は、本発明を限定する ものではなく、発明の範囲内で種々の変更が可能である。  [0063] Although the embodiments of the present invention have been described above, the above embodiments are not intended to limit the present invention, and various modifications can be made within the scope of the invention.
[0064] 例えば、図 1および図 18では、表示素子 (表示用液晶パネル 1)よりも観察者側に 視野角制御用液晶パネル 2が配置された構成を例示した。しかし、図 1および図 18 の変形例として、表示素子(表示用液晶パネル 1)とバックライト 3との間に視野角制 御用液晶パネル 2が配置された構成としても、同様の効果が得られる。  For example, FIGS. 1 and 18 exemplify a configuration in which the viewing angle control liquid crystal panel 2 is arranged closer to the viewer than the display element (display liquid crystal panel 1). However, as a modification of FIG. 1 and FIG. 18, the same effect can be obtained even if the viewing angle control liquid crystal panel 2 is arranged between the display element (display liquid crystal panel 1) and the backlight 3. .
[0065] また、第 1および第 2の実施形態では、視野角制御用液晶パネル 2が 2枚の偏光板 を有する構成を例示したが、第 1および第 2の実施形態のように表示素子が液晶パネ ルである場合は、表示用液晶パネル 1が備える偏光板(図示せず)を、視野角制御用 液晶パネル 2の偏光板として共用することができる。  [0065] In the first and second embodiments, the configuration in which the viewing angle control liquid crystal panel 2 has two polarizing plates is exemplified. However, the display element is different from the first and second embodiments. In the case of the liquid crystal panel, the polarizing plate (not shown) provided in the display liquid crystal panel 1 can be shared as the polarizing plate of the viewing angle control liquid crystal panel 2.
[0066] また、第 1および第 2の実施形態では、表示素子として透過型液晶パネルを備えた 例を挙げたが、本発明の表示装置に適用可能な表示素子はこれに限定されない。 例えば、反射型または半透過型の液晶表示パネルを表示素子として用いることもで きる。また、液晶表示パネル以外に、例えば、 CRT (Cathode Ray Tube)、プラズマデ イスプレイ、有機 EL (Electronic Luminescence)素子、無機 EL素子、 LED (Light Emi tting Diode)ディスプレイ、 光表示管 (Vacuum Fluorescent Display) ,電界放出ディ スフ。レイ (Field Emission Display)、表面電界アイスプレイ (Surface— conduction Electr on-emitter Display)等の自発光型表示装置を用いることもできる。表示素子として、 例えば EL素子等の自発光型表示装置を用いる場合は、ノ^クライトは不要である。 また、表示素子を視野角制御用液晶パネル 2よりも観察者側に配置しても良いし、視 野角制御用液晶パネル 2を表示素子よりも観察者側に配置しても良い。  [0066] In the first and second embodiments, an example in which a transmissive liquid crystal panel is provided as a display element has been described. However, the display element applicable to the display device of the present invention is not limited to this. For example, a reflective or transflective liquid crystal display panel can be used as the display element. In addition to liquid crystal display panels, for example, CRT (Cathode Ray Tube), plasma display, organic EL (Electronic Luminescence) element, inorganic EL element, LED (Light Emitting Diode) display, vacuum fluorescent display (Vacuum Fluorescent Display), Field emission device. A self-luminous display device such as a ray (Field Emission Display) or a surface-electric emission on-emitter display can also be used. For example, when a self-luminous display device such as an EL element is used as the display element, no light is required. In addition, the display element may be disposed on the viewer side with respect to the viewing angle control liquid crystal panel 2, or the viewing angle control liquid crystal panel 2 may be disposed on the viewer side with respect to the display element.
[0067] なお、上記の実施形態のいずれにおいても、表示状態が狭視野角であるときに、ュ 一ザにその旨を知らせるためのメッセージ、画像、またはアイコン等を、表示装置の 画面に表示するようにしても良い。 [0068] また、上記の実施形態のいずれにおいても、表示素子で表示される画像の内容に 応じて視野角制御用液晶パネル 2の駆動回路 27が動作し、狭視野角と広視野角と を自動的に切り替えるようにしても良レ、。例えば、インターネットのウェブページを見る ために用いられる場合、ウェブページの内容に応じて各ページに関連付けられたフ ラグを参照し、他人から見られないことが好ましい内容である場合等に、狭視野角の 表示状態に自動的に切り替えるように、駆動回路 27を制御しても良い。また、例えば 、ブラウザが暗号化モードで起動された場合に、狭視野角の表示状態へ切り替える ようにしても良い。 [0067] In any of the above embodiments, when the display state is a narrow viewing angle, a message, an image, an icon, or the like for informing the user of the fact is displayed on the screen of the display device. You may make it do. [0068] In any of the above embodiments, the driving circuit 27 of the viewing angle control liquid crystal panel 2 operates in accordance with the content of the image displayed on the display element, and the narrow viewing angle and the wide viewing angle are set. Even if you switch automatically, it is good. For example, when used to view web pages on the Internet, refer to the flag associated with each page according to the content of the web page, and it is preferable that the content is not seen by others. The drive circuit 27 may be controlled to automatically switch to the corner display state. Further, for example, when the browser is activated in the encryption mode, the display state may be switched to a narrow viewing angle.
[0069] また、表示装置がデータ入力装置の一部である場合、またはデータ入力装置と関 連して動作する場合、入力されているデータタイプまたは入力されようとするデータタ イブが機密性を有するものである場合等に、表示状態を狭視野角に切り替えるよう調 整することも可能である。例えば、ユーザが何らかの個人識別番号を入力したとき等 に、 自動的に狭視野角に切替わるように、駆動回路 27を制御すれば良い。  [0069] In addition, when the display device is a part of the data input device or operates in association with the data input device, the input data type or the data type to be input is confidential. It can also be adjusted to switch the display state to a narrow viewing angle, for example. For example, when the user inputs some personal identification number, the drive circuit 27 may be controlled to automatically switch to the narrow viewing angle.
[0070] なお、上記の実施形態のレヽずれにぉレ、ても、視野角制御用液晶パネルは、表示装 置から取り外しが可能なモジュールまたはカバーとして形成されても良レ、。そのような 取り外し可能なモジュールは、表示装置に取り付けられたときに、表示装置に電気的 に接続されることによって、適切な電力と制御信号を得ることができる。  [0070] It should be noted that the viewing angle control liquid crystal panel may be formed as a module or a cover that can be removed from the display device, even if the deviation of the above-described embodiment is not sufficient. When such a removable module is attached to the display device, it can be electrically connected to the display device to obtain appropriate power and control signals.
[0071] また、上記の実施形態のいずれにおいても、表示装置の周囲光を測定する光学セ ンサ(アンビエントセンサ)をさらに備え、光学センサの測定値が所定の閾値を下回る ときに、表示装置の表示状態を狭視野角とすることも好ましい。  [0071] In any of the above-described embodiments, an optical sensor (ambient sensor) that measures the ambient light of the display device is further provided, and when the measured value of the optical sensor falls below a predetermined threshold value, It is also preferable to set the display state to a narrow viewing angle.
[0072] なお、本発明に力かる表示装置および視野角制御素子の用途は多岐に亘る。例え ば、ノート型パーソナルコンピュータ、携帯型情報端末 (PDA)、携帯型ゲーム機、ま たは携帯電話等のディスプレイに適用されるだけでなぐ ATM (現金自動受け払レ、 機)、公共の場に設置される情報端末、券売機、および車載用ディスプレイ等、様々 な機器のディスプレイに適用される。  It should be noted that the display device and the viewing angle control element that are useful in the present invention have a wide variety of uses. For example, it can be applied to displays such as notebook personal computers, personal digital assistants (PDAs), portable game consoles, or mobile phones, ATMs (automatic cashiers, machines), and public places. It is applied to the display of various devices such as information terminals, ticket vending machines, and in-vehicle displays.
[0073] また、本発明にかかる視野角制御素子は、表示装置に組み込まれた状態で実施さ れることもあるが、表示装置の部品として、視野角制御素子単体で製造され、流通す る可能性もある。 産業上の利用可能性 [0073] Although the viewing angle control element according to the present invention may be implemented in a state of being incorporated in a display device, the viewing angle control element can be manufactured and distributed as a component of the display device. There is also sex. Industrial applicability
本発明は、広視野角と狭視野角とを切り替えることにより様々な使用環境や用途に 適応可能なディスプレイと、これに用いられる視野角制御素子として、産業上利用可 能である。  INDUSTRIAL APPLICABILITY The present invention can be industrially used as a display adaptable to various usage environments and applications by switching between a wide viewing angle and a narrow viewing angle, and a viewing angle control element used therefor.

Claims

請求の範囲 The scope of the claims
[1] 表示すべき画像に応じて駆動される表示素子と、  [1] a display element driven according to an image to be displayed;
前記表示素子の背面および前面の少なくとも一方に配置され、前記表示素子の視 野角を制御する視野角制御素子とを備えた表示装置であって、  A display device including a viewing angle control element that is disposed on at least one of a back surface and a front surface of the display element and controls a viewing angle of the display element;
前記視野角制御素子は、  The viewing angle control element is:
一対の透光性基板と、前記透光性基板のそれぞれに設けられた垂直配向膜およ び水平配向膜と、前記垂直配向膜および水平配向膜に挟持されたハイブリッド配向 の液晶層とを有する液晶セルと、  A pair of translucent substrates, a vertical alignment film and a horizontal alignment film provided on each of the translucent substrates, and a hybrid alignment liquid crystal layer sandwiched between the vertical alignment film and the horizontal alignment film A liquid crystal cell;
前記液晶層へ電圧を印加する駆動回路とを備え、  A drive circuit for applying a voltage to the liquid crystal layer,
前記液晶セルは、当該表示装置内で、偏光透過軸が略平行に配置された 2枚の偏 光板の間に配置され、  In the display device, the liquid crystal cell is disposed between two polarizing plates whose polarization transmission axes are disposed substantially in parallel.
前記駆動回路からの電圧印加によって前記視野角制御素子の液晶層の液晶分子 の配列状態を変化させることにより、表示状態を、第 1の視野角範囲を提供する第 1 の状態と、第 1の視野角範囲内にあり第 1の視野角範囲よりも狭い第 2の視野角範囲 を提供する第 2の状態との間で切り替え可能とすることを特徴とする表示装置。  By changing the alignment state of the liquid crystal molecules in the liquid crystal layer of the viewing angle control element by applying a voltage from the driving circuit, the display state is changed to a first state that provides a first viewing angle range, and a first state. A display device that is switchable between a second state that provides a second viewing angle range that is within the viewing angle range and is narrower than the first viewing angle range.
[2] 前記駆動回路が前記視野角制御素子の液晶層へ電圧を印加しないことにより前記 第 1の状態となり、前記駆動回路が前記視野角制御素子の液晶層へ所定電圧を印 加することにより前記第 2の状態となる、請求項 1に記載の表示装置。  [2] When the driving circuit does not apply a voltage to the liquid crystal layer of the viewing angle control element, the first state is established, and when the driving circuit applies a predetermined voltage to the liquid crystal layer of the viewing angle control element, The display device according to claim 1, wherein the display device is in the second state.
[3] 前記液晶セルと前記 2枚の偏光板との間の少なくとも一箇所に、ネガティブ Cプレ ートを備えた、請求項 1に記載の表示装置。  [3] The display device according to [1], wherein a negative C plate is provided at least at one position between the liquid crystal cell and the two polarizing plates.
[4] 前記駆動回路が前記視野角制御素子の液晶層へ所定電圧 Vを印加することによ  [4] The drive circuit applies a predetermined voltage V to the liquid crystal layer of the viewing angle control element.
2  2
り前記第 2の状態となり、前記駆動回路が前記視野角制御素子の液晶層へ前記所 定電圧 Vよりも大きい所定電圧 Vを印加することにより前記第 1の状態となる、請求  The second state is established, and the driving circuit enters the first state by applying a predetermined voltage V higher than the predetermined voltage V to the liquid crystal layer of the viewing angle control element.
2 1  twenty one
項 3に記載の表示装置。  Item 4. The display device according to Item 3.
[5] 前記所定電圧 Vは、前記視野角制御素子の液晶層の液晶分子をホメオト口ピック [5] The predetermined voltage V is a liquid crystal molecule in the liquid crystal layer of the viewing angle control element.
1  1
配向させる電圧値である、請求項 4に記載の表示装置。  5. The display device according to claim 4, which is a voltage value to be oriented.
[6] 前記表示素子が、直線偏光を出射する表示素子であって、 [6] The display element is a display element that emits linearly polarized light,
前記 2枚の偏光板のうち 1枚が、前記表示素子に設けられた偏光板である、請求項 :!〜 5のいずれか一項に記載の表示装置。 One of the two polarizing plates is a polarizing plate provided in the display element. : The display apparatus according to any one of! To 5.
[7] 前記表示素子が透過型液晶表示素子であり、バックライトをさらに備えた、請求項 17. The display element is a transmissive liquid crystal display element, further comprising a backlight.
〜6のレ、ずれか一項に記載の表示装置。 The display device according to one of?
[8] 前記視野角制御素子が、前記バックライトと前記透過型液晶表示素子との間に配 置された、請求項 7に記載の表示装置。 8. The display device according to claim 7, wherein the viewing angle control element is arranged between the backlight and the transmissive liquid crystal display element.
[9] 前記視野角制御素子が、前記透過型液晶表示素子の前面に配置された、請求項[9] The viewing angle control element is disposed in front of the transmissive liquid crystal display element.
7に記載の表示装置。 The display device according to 7.
[10] 前記表示素子が、反射型液晶表示素子または半透過型液晶表示素子である、請 求項:!〜 6のいずれか一項に記載の表示装置。  [10] The display device according to any one of claims 6 to 6, wherein the display element is a reflective liquid crystal display element or a transflective liquid crystal display element.
[11] 前記表示素子が、 自発光型表示素子である、請求項 1〜5のいずれか一項に記載 の表示装置。 [11] The display device according to any one of claims 1 to 5, wherein the display element is a self-luminous display element.
[12] 前記視野角制御素子の液晶層のリタデーシヨンが 600nm〜2500nmの範囲であ り、  [12] The retardation of the liquid crystal layer of the viewing angle control element is in the range of 600 nm to 2500 nm,
前記水平配向膜側のプレチルト角が 1° 〜20° の範囲であり、  The pretilt angle on the horizontal alignment film side is in the range of 1 ° to 20 °,
前記垂直配向膜側のプレチルト角が 70° 〜90° の範囲である、請求項 1〜: 11の レ、ずれか一項に記載の表示装置。  12. The display device according to claim 1, wherein a pretilt angle on the vertical alignment film side is in a range of 70 ° to 90 °.
[13] 前記視野角制御素子の液晶層のリタデーシヨンが 600nm〜2500nmの範囲であ り、 [13] The retardation of the liquid crystal layer of the viewing angle control element is in the range of 600 nm to 2500 nm,
前記水平配向膜側のプレチルト角が 10° 〜30° の範囲であり、  The pretilt angle on the horizontal alignment film side is in the range of 10 ° to 30 °;
前記垂直配向膜側のプレチルト角が 75° 〜90° の範囲である、請求項 1〜: 11の レ、ずれか一項に記載の表示装置。  12. The display device according to claim 1, wherein a pretilt angle on the vertical alignment film side is in a range of 75 ° to 90 °.
[14] 前記視野角制御素子の液晶層のリタデーシヨンが 600nm〜2500nmの範囲であ り、 [14] The retardation of the liquid crystal layer of the viewing angle control element is in the range of 600 nm to 2500 nm,
前記水平配向膜側のプレチルト角が 20° 〜40° の範囲であり、  The pretilt angle on the horizontal alignment film side is in the range of 20 ° to 40 °,
前記垂直配向膜側のプレチルト角が 80° 〜90° の範囲である、請求項 1〜: 11の レ、ずれか一項に記載の表示装置。  12. The display device according to claim 1, wherein a pretilt angle on the vertical alignment film side is in a range of 80 ° to 90 °.
[15] 表示すべき画像に応じて駆動される表示素子の背面および前面の少なくとも一方 に配置され、前記表示素子の視野角を制御するために用いられる視野角制御素子 であって、 [15] A viewing angle control element that is disposed on at least one of the back surface and the front surface of the display element that is driven in accordance with an image to be displayed and is used to control the viewing angle of the display element Because
一対の透光性基板と、前記透光性基板のそれぞれに設けられた垂直配向膜およ び水平配向膜と、前記垂直配向膜および水平配向膜に挟持されたハイブリッド配向 の液晶層とを有する液晶セルと、  A pair of translucent substrates, a vertical alignment film and a horizontal alignment film provided on each of the translucent substrates, and a hybrid alignment liquid crystal layer sandwiched between the vertical alignment film and the horizontal alignment film A liquid crystal cell;
前記液晶層へ電圧を印加する駆動回路と、  A drive circuit for applying a voltage to the liquid crystal layer;
少なくとも 1枚の偏光板とを備え、  At least one polarizing plate,
前記駆動回路が、前記液晶層の液晶分子の配列状態を変化させることにより、光 の出射範囲を、第 1の視野角範囲と、第 1の視野角範囲内にあり第 1の視野角範囲よ りも狭い第 2の視野角範囲との間で切り替え可能とすることを特徴とする視野角制御 素子。  The drive circuit changes the alignment state of the liquid crystal molecules in the liquid crystal layer, so that the light emission range is within the first viewing angle range and the first viewing angle range, which is different from the first viewing angle range. A viewing angle control element capable of switching between a narrower second viewing angle range.
PCT/JP2007/061124 2006-05-31 2007-05-31 Display device and view angle control element used for same WO2007139196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-152253 2006-05-31
JP2006152253 2006-05-31

Publications (1)

Publication Number Publication Date
WO2007139196A1 true WO2007139196A1 (en) 2007-12-06

Family

ID=38778713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061124 WO2007139196A1 (en) 2006-05-31 2007-05-31 Display device and view angle control element used for same

Country Status (1)

Country Link
WO (1) WO2007139196A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275342A (en) * 2004-02-26 2005-10-06 Seiko Epson Corp Viewing angle control element, method of manufacturing the same, liquid crystal display device, and electronic apparatus
JP2005316470A (en) * 2004-04-20 2005-11-10 Sharp Corp Vision switching type display apparatus through additional light modulating lc part

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275342A (en) * 2004-02-26 2005-10-06 Seiko Epson Corp Viewing angle control element, method of manufacturing the same, liquid crystal display device, and electronic apparatus
JP2005316470A (en) * 2004-04-20 2005-11-10 Sharp Corp Vision switching type display apparatus through additional light modulating lc part

Similar Documents

Publication Publication Date Title
US10747057B2 (en) Display device
US8098350B2 (en) Display and view angle control element employed therein
WO2008001896A1 (en) Display and field-of-view angle control device used for the same
JP4794669B2 (en) Display and viewing angle control element used therefor
US7948580B2 (en) Liquid crystal display
JP2009020293A (en) Display and viewing angle control device used for the same
WO2008018212A1 (en) Liquid crystal display device and viewing angle control module
JP2008096458A (en) Display and viewing angle controller to be used for the same
JP2008310271A (en) Liquid crystal display device and viewing angle control panel
JP6887525B2 (en) Display device
JP5252335B2 (en) Liquid crystal display device and terminal device
JP2008064790A (en) Display, and viewing angle controller used therefor
JPWO2011030596A1 (en) Liquid crystal display
JP5301927B2 (en) Liquid crystal display element
US7884902B2 (en) Transmission liquid crystal display having discotic molecular film
WO2005078516A1 (en) Liquid crystal display element
WO2008047754A1 (en) Display and viewing angle control device used for same
WO2007094390A1 (en) Display and view angle controller used for same
WO2007094358A1 (en) Display, and viewing angle control device used therein
JP4686164B2 (en) Liquid crystal display
JP2008299280A (en) Display and viewing angle controller used for the same
US7616278B2 (en) Liquid crystal displays
US20060262259A1 (en) Transflective liquid crystal display operable in optically compensated bend mode
WO2007139196A1 (en) Display device and view angle control element used for same
WO2007139193A1 (en) Display and filed-of-view angle control device used in the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07744512

Country of ref document: EP

Kind code of ref document: A1