[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007135968A1 - 高圧交流直接電力変換装置 - Google Patents

高圧交流直接電力変換装置 Download PDF

Info

Publication number
WO2007135968A1
WO2007135968A1 PCT/JP2007/060186 JP2007060186W WO2007135968A1 WO 2007135968 A1 WO2007135968 A1 WO 2007135968A1 JP 2007060186 W JP2007060186 W JP 2007060186W WO 2007135968 A1 WO2007135968 A1 WO 2007135968A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
direct
supply side
direct conversion
voltage
Prior art date
Application number
PCT/JP2007/060186
Other languages
English (en)
French (fr)
Inventor
Yugo Tadano
Original Assignee
Meidensha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corporation filed Critical Meidensha Corporation
Priority to EP07743621.0A priority Critical patent/EP2051361A4/en
Publication of WO2007135968A1 publication Critical patent/WO2007135968A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC
    • H02M5/04Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters
    • H02M5/22Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC
    • H02M5/04Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters
    • H02M5/22Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/297Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency

Definitions

  • the present invention relates to a high voltage AC direct power conversion device (matrix converter, AC-AC direct power conversion circuit), and more particularly to a high voltage AC direct power conversion device for obtaining a high voltage output by series multistage connection of AC direct conversion circuits. .
  • FIG. 3 shows an example of the main circuit configuration of a conventional high voltage inverter, which directly drives a 3300 V, 6600 V high voltage motor with a multilevel PWM waveform (see, for example, Non-Patent Document 1).
  • Multiple winding transformer TF provides nine winding on the secondary side to obtain the output stepped down to each secondary winding.
  • the single-phase inverter units U1 to U3, V1 to V3 and W1 to W3 rectify the three-phase output of the secondary winding of the transformer TF with a rectifier, as representatively shown for the single-phase inverter unit W1 Using this as a DC power supply, a single-phase AC output is obtained in a single-phase inverter circuit.
  • the outputs of single-phase inverter units U1 to U3, V1 to V3 and W1 to W3 are connected in multiple stages in series for U, V, and W phases to obtain single-phase high-voltage outputs for each phase. It connects to each other as the neutral point N, and drives the load such as the high-pressure motor M with the three-phase high-voltage output obtained at the other end.
  • Each unit is a basic unit that constitutes a conversion circuit.
  • each single-phase inverter unit performs AC-DC conversion by a rectifier, so that regenerative power from the load can not be regenerated to the power supply side (transformer TF side).
  • a separate power regeneration converter is required to enable this power regeneration.
  • a high-pressure matrix converter in which single-phase matrix converters are connected in multiple stages to obtain a high-pressure output (see, for example, Patent Document 1 and Non-patent Document 2).
  • single-phase matrix converter unit MxC is arranged in place of single-phase inverter units U1 to U3, V1 to V3, and W1 to W3 in FIG.
  • Single-phase matrix converter unit MxC obtains single-phase alternating current directly from three-phase alternating current, with bidirectional switches S1 to S6 between three-phase input and single-phase output and an input filter ACFilter (input LC filter).
  • Configured and bi-directional switch PWM By controlling, a single-phase output with an arbitrary frequency and voltage can be supplied to the load, and power can be regenerated to the power supply side when the load is regenerated.
  • the multiple winding transformer TF has a phase difference in each secondary winding in order to reduce the power supply side harmonic current.
  • Non-Patent Document 1 A document published in Japan, "Multiple PWM control method for direct drive of high voltage motor considering the influence of dead time, Journal of the Institute of Electrical Engineers of Japan, Journal of Electrical Society of Japan, D, 126 ⁇ 1, p. 1-9 (20
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-45999, which is a published patent document of Japan.
  • Non-Patent Document 2 “Motor Drive with High-Pressure Matrix Converter, Material of the Institute of Electrical Engineers of Japan Institute of Metals Industry, MID _ 05 _ 24 (2005)”, which is a document published in Japan.
  • a conventional high voltage inverter or high voltage matrix converter is a single-phase inverter unit (see FIG.
  • a single-phase matrix converter unit (Fig. 4) is connected in series in multiple stages, and the power supply side of each unit is configured to extract AC power from the individual secondary winding of the transformer.
  • the power supply side of each unit is configured to extract AC power from the individual secondary winding of the transformer.
  • at least nine units are required, and nine secondary side transformers (27 secondary windings) are required, resulting in an increase in size and complexity of the device configuration.
  • An object of the present invention is to provide a high voltage AC direct power converter which can simplify the main circuit configuration including a transformer and an LC filter.
  • the present invention for solving the above-mentioned problems is characterized by the following constitution.
  • Multiple-winding transformer power provided with a plurality of secondary windings: AC direct conversion circuit which directly converts input voltage and frequency into desired voltage and frequency, and outputs it
  • An LC filter is provided between the secondary winding and the ac direct conversion circuit, and the ac direct conversion circuits are connected in multiple stages, and the load is directly controlled at a high voltage by controlling the bidirectional switch of each ac direct conversion circuit.
  • One of the AC direct conversion circuits of the lowest voltage stage interconnects each phase end of the non-power supply side, and one of the AC direct conversion circuits of the highest voltage stage connects the opposite power supply side to a load, the lowest voltage stage and the highest
  • the respective stages located between the voltage stages mutually connect the non-power supply side of one of the AC direct conversion circuits to the other power supply side of one of the previous AC direct conversion circuits, and the other of the AC direct conversion circuits.
  • a feature is characterized in that the non-power supply side is interconnected to the non-power supply side of one of the AC direct conversion circuits in the next stage.
  • the AC direct conversion circuit is characterized in that it is a polyphase input polyphase output.
  • the secondary windings of the multiple winding transformer are characterized in that they have a phase difference with each other to suppress input harmonics.
  • Each of the AC direct conversion circuits is characterized as a single input sinusoidal wave, and each secondary winding of the multiple winding transformer has the same phase to suppress input harmonics.
  • the AC direct conversion circuit of the two parallel connections is a basic unit configuration, and the control device is shared in the basic unit.
  • the main circuit configuration can be simplified in the high voltage AC direct power converter, including the transformer and the LC filter.
  • a versatile multiphase input / multiphase output matrix-connected semiconductor switching device module can be used.
  • the number of switching devices can be the same as in the conventional method.
  • the number of secondary windings of the multiple winding transformer can be reduced as compared with the conventional method.
  • the wiring between the parallel units and the control device can be made common, and the reduction of the wiring inductance and the sharing of the control device can be realized.
  • FIG. 1 is a main circuit configuration diagram of a high voltage AC direct power conversion device showing an embodiment of the present invention, and an example using a three-phase AC direct power conversion circuit is shown in FIG. I will explain based on it.
  • the multi-wire transformer TF is configured to have three secondary windings with phase difference, and each secondary winding passes through an LC filter, respectively, and AC direct conversion circuits MC1A and MCIB, MC2A connected in parallel. And MC2B, connected to the power supply side of MC3A and MC3B.
  • the LC filter suppresses harmonics to input / output current between the AC direct conversion circuit and the AC power supply.
  • the AC direct conversion circuits in two parallel connection MC1A and MCIB, MC2A and MC2B, MC3A and MC 3B have a three-phase one-three-phase AC direct conversion circuit configuration as typified by MC1A.
  • 2 converter circuits connected in parallel MC1A and MCIB are the lowest voltage stages, and the three phase terminals on the power supply side are connected in parallel in the same phase, and the three phase ends on the non-power supply side of one MC1A are interconnected.
  • a two-circuit series connection configuration in which the three-phase terminal on the non-power supply side of the other MC1B is interconnected in series with the three-phase terminal on the non-power supply side of the next MC2A is used.
  • two parallel connected conversion circuits MC2A and MC2B located between the lowest voltage stage and the highest voltage stage, and MC3A and MC3B to become the highest voltage stage are respectively configured in a two-circuit series connection configuration, one conversion In circuits MC2A and MC3A, the three-phase terminal on the non-power supply side is connected in series with the three-phase terminal on the non-power supply side of the previous stage MC1B and MC2B, and the three-phase terminal on the non-power supply side of conversion circuit MC3B is connected to Load.
  • a force to give a phase difference to the secondary side of the multi-wire transformer to suppress input harmonics Features of the above (6) ⁇ If an advantage is used, a phase difference is given to the secondary side Input sine wave can be made for each 3-phase / 3-phase direct current conversion circuit without it.
  • input harmonics can be suppressed by providing a secondary winding having the same phase that provides a phase difference on the secondary side of the multiple winding transformer.
  • the secondary side design of the multiple winding transformer is simplified, and the structure 'cost' size of the multiple winding transformer is a further advantage.
  • three-phase / three-phase AC direct power conversion circuits MC1A, MCIB, MC2A, MC2B, MC3A, and MC3B are not individually configured as a single unit in a basic unit (cellification) configuration, but The control circuits are shared in common, with the control CPUs as the basic unit configuration (the dotted block configuration in Figure 1), with the parallel connected conversion circuits MC1A and MCIB, MC2A and MC2B, and MC3A and MC3B.
  • the wiring between the conversion circuit units and the control device can be made common, and the reduction of the wiring inductance and the sharing of the control device can be realized.
  • FIG. 1 is a configuration diagram of a main circuit of a high voltage AC direct power conversion device according to a first embodiment of the present invention.
  • FIG. 2 A main circuit configuration diagram of a high voltage AC direct power conversion device showing Embodiment 2 of the present invention.
  • FIG. 3 shows an example of the main circuit configuration of a conventional high voltage inverter.
  • FIG. 4 is a main circuit configuration diagram of a conventional high voltage matrix converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)

Description

明 細 書
高圧交流直接電力変換装置
技術分野
[0001] 本発明は、高圧交流直接電力変換装置 (マトリックスコンバータ、 AC— AC直接電 力変換回路)に係り、特に交流直接変換回路の直列多段接続によって高圧出力を 得る高圧交流直接電力変換装置に関する。
背景技術
[0002] 図 3は従来の高圧インバータの主回路構成例を示し、 3300V、 6600V級の高圧モ ータをマルチレベル PWM波形で直接駆動する(例えば、非特許文献 1参照)。多重 卷線変圧器 TFは二次側に 9個の卷線を設けて各二次卷線に降圧した出力を得る。 単相インバータュニット U1〜U3、 V1〜V3、 W1〜W3は、単相インバータュニット W1に代表して示すように、変圧器 TFの二次卷線の三相出力を整流器で整流し、こ れを直流電源として単相構成の逆変換回路に単相交流出力を得る。単相インバータ ユニット U1〜U3、 V1〜V3、 W1〜W3の各出力は、 U, V, W相別に多段直列接続 されて相別の単相高圧出力を得、各単相高圧出力の一端を中性点 Nとして互いに 接続し、他端に得る三相高圧出力で高圧モータ M等の負荷を駆動する。なお、各ュ ニットは変換回路を構成する基本単位を言う。
[0003] この高圧インバータは、各単相インバータユニットが整流器によって交流—直流変 換しているため、負荷からの回生電力を電源側(変圧器 TF側)に回生できなレ、。この 電源回生を可能にするには電源回生コンバータを別途必要とする。この電源回生機 能をもつものとして、単相マトリックスコンバータを多段接続して高圧出力を得る高圧 マトリックスコンバータが提案されている(例えば、特許文献 1、非特許文献 2参照)。
[0004] この高圧マトリックスコンバータの主回路構成を図 4に示す。同図では図 3の単相ィ ンバータユニット U1〜U3、 V1〜V3、 W1〜W3に代えて、単相マトリックスコンバー タユニット MxCを配置する。単相マトリックスコンバータユニット MxCは、三相交流か ら直接に単相交流を得るもので、三相入力と単相出力との間に双方向スィッチ Sl〜 S6と入力フィルタ ACFilter (入力 LCフィルタ)で構成され、双方向スィッチを PWM 制御することで任意の周波数および電圧の単相出力を負荷に供給し、負荷の回生 時には電源側に電力を回生させることができる。
[0005] なお、図 3および図 4共に、多重卷線変圧器 TFは、電源側高調波電流を低減する ために、各二次卷線には位相差を持たせる。
[0006] 非特許文献 1 :日本国で公開された文献である「デッドタイムの影響を考慮した高圧 電動機直接駆動用多重 PWM制御法、電気学会論文誌 D, 126卷 1号,頁 1〜9 (20
06)」
[0007] 特許文献 1 :日本国の公開特許文献である「特開 2005— 45999号公報」
[0008] 非特許文献 2 :日本国で公開された文献である「高圧マトリックスコンバータによるモ ータドライブ、電気学会金属産業研究会資料 MID _ 05 _ 24 (2005)」
発明の開示
発明が解決しょうとする課題
[0009] 従来の高圧インバータゃ高圧マトリックスコンバータは、単相インバータユニット(図
3)または単相マトリックスコンバータユニット(図 4)を直列多段接続する主回路構成と し、各ユニットの電源側は変圧器の個別の二次卷線から交流電力を取り出す構成と している。このような構成では、少なくとも 9台のユニットを必要とし、さらに 9個の二次 側変圧器 (27個の二次卷線)を必要とし、装置構成が大型化、複雑化する。
[0010] さらに、図 3の構成ではユニット毎に整流器と平滑コンデンサを必要とし、図 4の構 成ではユニット毎に LCフィルタを必要とし、装置の大型化、コストアップを招く。
[0011] 本発明の目的は、変圧器および LCフィルタも含めて主回路構成を簡単化できる高 圧交流直接電力変換装置を提供することにある。
[0012] 前記の課題を解決するための本発明は、以下の構成を特徴とする。
[0013] (1)複数の二次卷線を設けた多重卷線変圧器力 入力した電圧および周波数を任 意の電圧および周波数に直接変換し出力する交流直接変換回路と、
前記二次卷線と交流直接変換回路との間に LCフィルタを設け、前記交流直接変 換回路を多段接続するとともに各交流直接変換回路の双方向スィッチの制御によつ て負荷を高圧で直接駆動する高圧の交流電力を直接変換する装置であって、 前記各交流直接変換回路の多段接続は、 電源側を各段毎に 2並列接続し、
最低電圧段の一方の前記交流直接変換回路は反電源側の各相端を相互接続し、 最高電圧段の一方の前記交流直接変換回路は反電源側を負荷に接続し、 最低電圧段と最高電圧段の間に位置する各段は、一方の前記交流直接変換回路 の反電源側を前段の一方の前記交流直接変換回路の反電源側に相互接続し、他 方の前記交流直接変換回路の反電源側を次段の一方の前記交流直接変換回路の 反電源側に相互接続した構成を特徴とする。
[0014] (2)前記交流直接変換回路は、多相入力多相出力とすることを特徴とする。
[0015] (3)前記多重卷線変圧器の各二次卷線は互いに位相差を持たせて入力高調波を 抑制する構成を特徴とする。
[0016] (4)前記各交流直接変換回路は単体で入力正弦波化し、前記多重卷線変圧器の 各二次卷線は同じ位相にして入力高調波を抑制する構成を特徴とする。
[0017] (5)前記 2並列接続の交流直接変換回路を基本単位構成とし、その制御装置を前 記基本単位内で共通化した構成を特徴とする。
発明の効果
[0018] 以上のとおり、本発明によれば、高圧交流直接電力変換装置において、変圧器お よび LCフィルタも含めて主回路構成を簡単化できる。
[0019] 具体的には、
[0020] (1)汎用的な多相入力/多相出力マトリックス結線された半導体スイッチングデバ イスモジュールが利用できる。
[0021] (2)従来方式に比べて、スイッチングデバイス数は同数で実現できる。
[0022] (3)変換回路の並列接続で LCフィルタを共用化するため、 LCフィルタ数が従来方 式に比べて削減できる。
[0023] (4) LCフィルタの共用化に加え、並列接続する変換回路のキャリア位相をずらして 電流リプルを相殺する制御をすることで LCフィルタの容量 ·大きさの低減が期待でき る。
[0024] (5)従来方式に比べて、多重卷線変圧器の二次卷線数を削減できる。
[0025] (6)従来方式と異なり、出力側も 3相結線であるため、入力電流 PWM制御の際に、 切り刻む元となる出力電流に相の選択自由度が生まれ、変換回路単体で入力正弦 波化が実現できる。
[0026] (7)入力多重卷線変圧器の二次側設計が簡単になり、変圧器の構造 'コスト'大き さ的に更なるメリットとなる。
[0027] (8)並列ユニット間の配線や制御装置を共通化することができ、配線インダクタンス の減少や制御装置の共通化が実現できる。
発明を実施するための最良の形態
[0028] (実施形態 1)
[0029] 図 1は、本発明の実施形態を示す高圧交流直接電力変換装置の主回路構成図で あり、 3相の交流直接電力変換回路を使用した例で、以下図 1の主回路構成を基に 説明をする。
[0030] 多重卷線変圧器 TFは位相差を与えた 3個の二次卷線をもつ構成とし、各二次卷 線はそれぞれ LCフィルタを通して 2並列接続の交流直接変換回路 MC1Aと MCIB 、 MC2Aと MC2B、 MC3Aと MC3Bの電源側に接続される。 LCフィルタは交流直 接変換回路と交流電源との間の入出力電流に対する高調波抑制を行うものである。
[0031] 2並列接続の交流直接変換回路 MC1Aと MCIB、 MC2Aと MC2B、 MC3Aと MC 3Bは、 MC1Aに代表して示すように、 3相一 3相交流直接変換回路構成とする。 2並 列接続の変換回路 MC1Aと MCIBは、最低電圧段になり、電源側の三相端子を同 じ相別に並列接続し、一方の MC1Aの反電源側の三相端を相互接続して中性点 N とし、他方の MC1Bの反電源側の三相端子を次段の MC2Aの反電源側の三相端 子に直列に相互接続した 2回路直列接続構成とする。
[0032] 同様に、最低電圧段と最高電圧段の間に位置する 2並列接続の変換回路 MC2A と MC2B、および最高電圧段になる MC3Aと MC3Bは、それぞれ 2回路直列接続 構成とし、一方の変換回路 MC2A、 MC3Aは反電源側の三相端子をそれぞれ前段 の MC1B、 MC2Bの反電源側の三相端子と直列接続し、変換回路 MC3Bの反電源 側の三相端子は負荷 Loadに接続する。
[0033] 本実施形態の主回路構成によれば、以下の利点'特徴が得られる。
[0034] (1)汎用的な 3相 /3相マトリックス結線された半導体スイッチングデバイスモジユー ルが利用できる。
[0035] (2)スイッチングデバイス数は図 4と同数で実現できる。
[0036] (3) 2並列接続となる変換回路に対して LCフィルタを共用化するため、入力 LCフィ ルタ数が、図 4に比べて削減できる。
[0037] (4) LCフィルタの共用化に加え、 2並列接続の変換回路のキャリア位相をずらして 電流リプルを相殺することで LCフィルタの容量 '大きさの低減が期待できる。
[0038] (5)図 4に比べて、多重卷線変圧器 TFの二次卷線数を削減できる。
[0039] (6)図 4と異なり、変換回路の反電源側も 3相結線であるため、入力電流 PWM制御 の際に、切り刻む元となる出力電流に相の選択自由度が生まれ、変換回路単体で入 力正弦波化が実現できる。
[0040] (実施形態 2)
[0041] 実施形態 1では、多重卷線変圧器の二次側に位相差を与えて入力高調波抑制を 図る力 上記(6)の特徴 ·利点を用いれば、二次側に位相差を与えなくても 3相 /3 相交流直接変換回路毎に入力正弦波化ができる。
[0042] そこで、本実施形態では、図 2に示すように、多重卷線変圧器の二次側に位相差を 与えることなぐ同じ位相にした二次卷線をもつ構成にして入力高調波抑制を図るこ とができる。
[0043] 本実施形態によれば、多重卷線変圧器の二次側設計が簡単になり、多重卷線変 圧器の構造 'コスト'大きさ的に更なるメリットとなる。
[0044] (実施形態 3)
[0045] 実施形態 1、 2において、 3相 /3相交流直接電力変換回路 MC1A、 MCIB、 MC 2A、 MC2B、 MC3A、 MC3Bがそれぞれ単体で基本単位(セル化)構成とするので はなく、 2並列接続の変換回路 MC1Aと MCIB、 MC2Aと MC2B、 MC3Aと MC3B を基本単位構成(図 1の点線ブロックの構成)として制御 CPUの共通化、構造の共通 化を図る。
[0046] 本実施形態によれば、変換回路ユニット間の配線や制御装置を共通化することが でき、配線インダクタンスの減少や制御装置の共通化が実現できる。
図面の簡単な説明 [0047] [図 1]本発明の実施形態 1を示す高圧交流直接電力変換装置の主回路構成図。
[0048] [図 2]本発明の実施形態 2を示す高圧交流直接電力変換装置の主回路構成図。
[0049] [図 3]従来の高圧インバータの主回路構成例。
[0050] [図 4]従来の高圧マトリックスコンバータの主回路構成図。

Claims

請求の範囲
[1] 複数の二次卷線を設けた多重卷線変圧器から入力した電圧および周波数を任意 の電圧および周波数に直接変換し出力する交流直接変換回路と、
前記二次卷線と交流直接変換回路との間に LCフィルタを設け、前記交流直接変 換回路を多段接続するとともに各交流直接変換回路の双方向スィッチの制御によつ て負荷を高圧で直接駆動する高圧の交流電力を直接変換する装置であって、 前記各交流直接変換回路の多段接続は、
電源側を各段毎に 2並列接続し、
最低電圧段の一方の前記交流直接変換回路は反電源側の各相端を相互接続し、 最高電圧段の一方の前記交流直接変換回路は反電源側を負荷に接続し、 最低電圧段と最高電圧段の間に位置する各段は、一方の前記交流直接変換回路 の反電源側を前段の一方の前記交流直接変換回路の反電源側に相互接続し、他 方の前記交流直接変換回路の反電源側を次段の一方の前記交流直接変換回路の 反電源側に相互接続した構成を特徴とする高圧交流直接電力変換装置。
[2] 前記交流直接変換回路は、多相入力多相出力とすることを特徴とする請求項 1に 記載の高圧交流直接電力変換装置。
[3] 前記多重卷線変圧器の各二次卷線は互いに位相差を持たせて入力高調波を抑 制する構成を特徴とする請求項 1または 2に記載の高圧交流直接電力変換装置。
[4] 前記各交流直接変換回路は単体で入力正弦波化し、前記多重卷線変圧器の各 二次卷線は同じ位相にして入力高調波を抑制する構成を特徴とする請求項 1または
2に記載の高圧交流直接電力変換装置。
[5] 前記 2並列接続の交流直接変換回路を基本単位構成とし、その制御装置を前記基 本単位内で共通化した構成を特徴とする請求項 1または 2に記載の高圧交流直接電 力変換装置。
PCT/JP2007/060186 2006-05-24 2007-05-18 高圧交流直接電力変換装置 WO2007135968A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07743621.0A EP2051361A4 (en) 2006-05-24 2007-05-18 DIRECT ALTERNATIVE POWER CONVERTER WITH HIGH VOLTAGE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006143563A JP4793096B2 (ja) 2006-05-24 2006-05-24 高圧交流直接電力変換装置
JP2006-143563 2006-05-24

Publications (1)

Publication Number Publication Date
WO2007135968A1 true WO2007135968A1 (ja) 2007-11-29

Family

ID=38723279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060186 WO2007135968A1 (ja) 2006-05-24 2007-05-18 高圧交流直接電力変換装置

Country Status (5)

Country Link
EP (1) EP2051361A4 (ja)
JP (1) JP4793096B2 (ja)
CN (1) CN101461123A (ja)
RU (1) RU2379817C1 (ja)
WO (1) WO2007135968A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640358B2 (ja) * 2009-11-27 2014-12-17 新日鐵住金株式会社 天井クレーン
BR112012013373A2 (pt) * 2009-12-01 2016-03-01 Abb Schweiz Ag processo para a operação de um circuito do inversor, bem como, dispositivo para a realização do processo
JP2011207604A (ja) * 2010-03-30 2011-10-20 Sumitomo Heavy Industries Engineering-Service Co Ltd 天井クレーンの巻上駆動装置
JP5665342B2 (ja) * 2010-03-30 2015-02-04 住友重機械搬送システム株式会社 天井クレーン
JP5664966B2 (ja) * 2011-01-14 2015-02-04 株式会社安川電機 直列多重電力変換装置
DE102011007696A1 (de) * 2011-04-19 2012-10-25 Siemens Aktiengesellschaft Matrix-Umrichter und Verfahren zum Erzeugen einer Wechselspannung in einem zweiten Wechselspannungsnetz aus einer Wechselspannung in einem ersten Wechselspannungsnetz mittels eines Matrix-Umrichters
JP5377574B2 (ja) * 2011-05-31 2013-12-25 日産自動車株式会社 電力変換装置
EP2787621A4 (en) * 2011-11-30 2015-09-09 Yaskawa Denki Seisakusho Kk MATRICIAL CONVERTER
JP5924353B2 (ja) * 2014-02-03 2016-05-25 株式会社安川電機 直列多重マトリクスコンバータおよび電動機駆動装置
CN103956912B (zh) * 2014-05-15 2016-08-17 西安利雅得电气股份有限公司 一种直接串联三相矩阵式中高压变频器
EP3197033A4 (en) * 2014-09-17 2018-06-20 Universidade Federal De Minas Gerais - UFMG Method and apparatus for eliminating harmonic components and obtaining a uniform power factor in alternating current-direct current and direct current-alternating current converters
RU2579009C1 (ru) * 2015-03-06 2016-03-27 Закрытое акционерное общество "НТЦ Приводная Техника" Высоковольтный преобразователь частоты с накопителем энергии
KR101849001B1 (ko) 2016-08-18 2018-04-16 한국철도기술연구원 고전압 대전류 전력 변환 장치
CN114567184B (zh) * 2022-01-24 2024-09-27 东北电力大学 基于三相变压器级联的三相变n相直接式交交变换器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045999A (ja) 1995-09-08 2005-02-17 Yaskawa Electric Corp 直列多重3相pwmサイクロコンバータ装置および直列多重3相pwmサイクロコンバータ装置の運転方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7626840B2 (en) * 2004-09-29 2009-12-01 Kabushiki Kaisha Yaskawa Denki Parallel multiplex matrix converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045999A (ja) 1995-09-08 2005-02-17 Yaskawa Electric Corp 直列多重3相pwmサイクロコンバータ装置および直列多重3相pwmサイクロコンバータ装置の運転方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
See also references of EP2051361A4 *
TADANO Y. ET AL.: "Dead-time no Eikyo o Koryo shita Koatsu Dendoki Chokusetsu Kadoyo Tajuu PWM Seigyo Ho", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN D, vol. 126, no. 1, 1 January 2006 (2006-01-01), pages 1 - 9, XP003019434 *
UEDA Y. ET AL.: "Koatsu Matrix Converter niyoru Motor Drive", DENKI GAKKAI KINZOKU SANGYO KENKYUKAI SHIRYO, vol. MID-05, no. 22 TO 28, 22 December 2005 (2005-12-22), pages 9 - 13, XP003019435 *
YUGO TADANO ET AL., A MULTILEVEL PWM STRATEGY SUITABLE FOR HIGH-VOLTAGE MOTOR DIRECT DRIVE SYSTEMS IN CONSIDERATION OF THE ADVERSE EFFECT OF A DEADTIME AUTHORED, vol. 126, no. 1, pages 1 - 9
YUZO UEDA ET AL.: "Motor Drives Using Medium-Voltage matrix Converter", MID-05-22 THROUGH 28 IN THE PAPERS OF TECHNICAL MEETING ON METAL INDUSTRIES DIVISION OF IEE JAPAN, 22 December 2005 (2005-12-22)

Also Published As

Publication number Publication date
CN101461123A (zh) 2009-06-17
EP2051361A4 (en) 2016-09-07
JP4793096B2 (ja) 2011-10-12
RU2379817C1 (ru) 2010-01-20
JP2007318847A (ja) 2007-12-06
EP2051361A1 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
JP4793096B2 (ja) 高圧交流直接電力変換装置
JP3723983B2 (ja) 直列多重3相pwmサイクロコンバータ
JP4773508B2 (ja) マトリックスコンバータ
JP4258739B2 (ja) 直流電圧源、特に光電池直流電圧源の電気的な交流電圧を交流電圧に変換する方法
JP3544838B2 (ja) 多重インバータ装置及びその制御方法
JP2006025591A (ja) 車両用電源装置
KR100970566B1 (ko) 전력회생이 가능한 h-브리지 방식의 멀티레벨 컨버터
WO2011022442A9 (en) Power conversion with added pseudo-phase
WO2015124165A1 (en) Converter for an ac system
CA2565707A1 (en) Low harmonics, polyphase converter circuit
WO2011012689A2 (en) A high-voltage frequency conversion device
CN112421975A (zh) 具有afe电力单元相位控制的多电平电力转换器
CN101459409A (zh) 双端供电多相交流电机变频调速装置
JP7446932B2 (ja) 電力変換装置およびスイッチ装置
WO2013151542A1 (en) Multilevel converter
US6125045A (en) Power converter having first and second power conversion units with thyristors
JP4178331B2 (ja) 直列多重パルス幅変調サイクロコンバータ装置およびその制御方法
JP3937236B2 (ja) 直列多重3相pwmサイクロコンバータ装置および直列多重3相pwmサイクロコンバータ装置の運転方法および直列多重3相pwm電力変換装置
JP4069460B2 (ja) 直列多重3相pwmサイクロコンバータ
JP6670438B2 (ja) 電力変換装置
US20120106223A1 (en) Circuit for converting power between a three-phase grid and a single-phase grid
JP2019073276A (ja) 舶用推進システム
JP5938739B2 (ja) 電力変換装置
Qin et al. Considerations of harmonic and torque ripple in a large power doubly salient electro-magnet motor drive
JP6341075B2 (ja) 三相9レベル電力変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018970.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743621

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2007743621

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007743621

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4799/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008143459

Country of ref document: RU