WO2007119415A1 - Frequency allocation method, detection method, transmission device, and reception device - Google Patents
Frequency allocation method, detection method, transmission device, and reception device Download PDFInfo
- Publication number
- WO2007119415A1 WO2007119415A1 PCT/JP2007/055486 JP2007055486W WO2007119415A1 WO 2007119415 A1 WO2007119415 A1 WO 2007119415A1 JP 2007055486 W JP2007055486 W JP 2007055486W WO 2007119415 A1 WO2007119415 A1 WO 2007119415A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- signal
- fourier transform
- antenna
- transmission
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/713—Spread spectrum techniques using frequency hopping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/068—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0697—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
Definitions
- the present invention relates to a frequency allocation method, a detection method, a transmission device, and a reception device.
- the present invention relates to a frequency allocation method, a detection method, a transmission device, and a reception device that allocate frequency bands in a mixed manner in an uplink MIMO (Multiple Input Multiple Output) system.
- the present invention relates to high-speed wireless in various cellular systems.
- BACKGROUND OF THE INVENTION 1 Field of the Invention The present invention relates to a frequency allocation method, a detection method, a transmission device, and a reception device applied to an uplink wireless communication system in a communication system and a high-throughput wireless local area network system.
- OFDMA orthogonal frequency division multiple access
- DFDMA DistributedFDMA
- LFDM A Localized FDMA
- FIG. 1 is a block diagram showing a main configuration of a transmission apparatus that realizes the DFDMA scheme.
- the bit'repetition unit 11 performs repetition processing on the bits so that diversity transmission can be realized, and the S / P (Serial to Parallel) conversion unit 12 is the bit sequence output from the bit'repetition unit 11
- serial Z parallel conversion is performed.
- the modulation unit 13 modulates the bit sequence after serial Z parallel conversion, the M-point FFT (Fast Fourier Transform) unit 14 performs Fourier transform on the modulated signal, and the mapping unit 15 converts each frequency point.
- the upper signal is placed on the carrier frequency point at regular intervals.
- Figure 2 shows how frequency mapping is performed.
- An N-point IFFT (Inverse Fast Fourier Transform) unit 16 performs an inverse Fourier transform process on the modulated signal after mapping, and a CP (Cyclic Prefix) -added Calo unit 17
- CP Cyclic Prefix
- a cyclic prefix (CP) is added to the converted data block, and the PZS converter 18 performs normal Z serial conversion on the data after the CP addition, and then passes through an antenna (not shown).
- Send Send.
- FIG. 3 is a block diagram showing a main configuration of a transmission apparatus that realizes the LFDMA scheme.
- the bit'repetition unit 21 applies repetition processing to the bits so that diversity transmission can be realized, and the SZP conversion unit 22 Perform conversion.
- the modulation unit 23 modulates the bit sequence after serial Z-parallel conversion, the M point FFT unit 24 performs Fourier transform on the modulated signal, and the mapping unit 25 continues the signal on each frequency point. Place on the carrier frequency point.
- Figure 4 shows the frequency mapping.
- N-point IFFT unit 26 performs an inverse Fourier transform process on the modulated signal after mapping
- CP adding unit 27 adds a cyclic 'prefix (CP) to the data block after the inverse Fourier transform
- the P / S converter 28 performs normal / serial conversion on the data after CP addition, and then transmits the data via an antenna (not shown).
- the DFDMA method and the LFDMA method described above have different characteristics and different suitable environments (see Non-Patent Document 2).
- the DFD MA method can obtain a higher frequency diversity gain than the LFDMA method.
- the gain of the DFDMA method is not significant.
- users who move at high speed can obtain higher time diversity by adopting the LFDMA method.
- the frequency of each channel that needs to be estimated is continuous in a certain frequency band, and each channel has a relatively high correlation. .
- the channel estimation accuracy of the LFDMA scheme is high.
- the DFDMA system and the LFDMA system have different characteristics and are used in different situations.
- the channel characteristics change as the scatterer in the outside world changes and the user's moving speed changes.
- all existing brands currently use only one type of DFDMA or LFDMA in a single system.
- FIG. 5 is a block diagram showing a main configuration of a transmission apparatus that realizes hybrid FDMA (HFDMA: Hybrid Frequency Division Multiple Access) in which frequencies are mixedly (Hybrid).
- Bit'repetition unit 31 applies repetition processing to the bits to enable diversity transmission.
- S / P conversion unit 32 performs serial Z parallel processing on the bit sequence output from bit'repetition unit 31. Perform conversion.
- the modulation unit 33 modulates the bit sequence after serial Z-parallel conversion, and the M point FFT unit 34 applies to the modulated signal.
- the Fourier transform is performed, and the mapping unit 35 maps the signal on each frequency point onto the carrier frequency point.
- FIG. 6 shows the frequency mapping.
- the carriers after mapping are arranged in a bundle, and one bundle is formed by a small number of adjacent carriers at a narrow frequency interval, and the frequency between the bundles is determined. The interval is far away.
- the carriers mapped by the HFDMA method are not arranged continuously like the LFDMA method, and even if they are arranged at regular intervals like the DFDMA method! /! /.
- the N-point IFFT unit 36 performs inverse Fourier transform processing on the mapped carrier, and the CP adding unit 37 adds a cyclic prefix (CP) to the data block after the inverse Fourier transform, and P
- the / S conversion unit 38 performs normal / serial conversion on the data after CP addition, and then transmits the data via an antenna (not shown).
- Non-Patent Document 1 3GPP R1-051290, "3GPP TSG WG1 Meeting # 42bis reports”
- Non-Patent Document 2 3GPP Rl-050883 Samsung, "Performance comparison between LFDM
- each transmission antenna adopts the same frequency division multiple access scheme. That is, each transmitting antenna is either one that employs the DFDMA scheme as shown in FIG. 7, or all of the LFDMA scheme as shown in FIG.
- the mapping of the DFDMAZLFDMA scheme to each transmit antenna is the same. Therefore, the same frequency after Fourier transform Region signals are mapped to the same carrier frequency. Therefore, when channel characteristics change, it is difficult for conventional MIMO systems to adapt to both low-time fluctuation systems and high-time fluctuation systems at the same time, and to obtain frequency diversity gain and time diversity gain at the same time. Is difficult.
- An object of the present invention is to provide a frequency allocation method, a detection method, a transmission device, and a reception device capable of simultaneously obtaining a frequency diversity gain and a time diversity gain in a MIMO system! That is.
- One aspect of the frequency allocation method of the present invention includes a spatio-temporal processing step of distributing a signal to a plurality of transmission antennas included in a transmission device, and a signal transmitted from the plurality of transmission antennas.
- Distributed—FDMA, Localized—FD that allocates a distributed frequency band for each transmit antenna so that most of the transmitted signals for each transmit antenna do not overlap each other in the frequency domain.
- a frequency allocation step for allocating frequencies using either one of the MA scheme or the Hybrid—FDMA scheme for allocating a mixed frequency band is included.
- the frequency band is distributed in a distributed manner using a multi-antenna characteristic, the Distributed—FDMA method, the Localized—FD MA method in which a frequency band is assigned locally, or the frequency band in a mixed manner.
- Assigned Hybrid—FDMA method can coexist, so that when channel characteristics change, it can be adapted to both low time fluctuation and high time fluctuation at the same time, and frequency diversity gain and time diversity gain can be adjusted. Since it can be obtained at the same time, the adaptability of the system can be enhanced
- One aspect of the detection method of the present invention is a Distributed-FDMA scheme in which a distributed frequency band is allocated to each of a plurality of transmission antennas included in a transmission apparatus, a Localized-FDMA scheme in which a local frequency band is allocated, or Hybrid band for allocating a mixed frequency band—receiving signals transmitted from the plurality of transmitting antennas, each of which is assigned a frequency using one of the FDMA schemes, and the received signal
- a transform step for transforming the received signal from the frequency domain to the time domain by performing a space-time inverse Fourier transform, and a transmission signal from the plurality of transmit antennas by performing MIMO detection in the time domain.
- a detecting step for detecting.
- a Distributed—FDMA system that allocates frequency bands in a distributed manner, a Localized—FDMA system that allocates frequency bands locally, or a Hybrid—FDMA system that allocates frequency bands in a mixed manner coexists.
- the received signal is converted from the frequency domain to the time domain, and MIMO detection is performed in the time domain. Since it is possible to detect transmission signals with multiple transmit antenna forces, it is possible to adapt to both low and high time fluctuations when the channel characteristics change, and frequency diversity gain and time diversity gain Can be obtained at the same time, so the adaptability of the system can be enhanced.
- FIG. 1 A block diagram showing a main configuration of a conventional DFDMA transmission device
- FIG. 3 Block diagram showing the main configuration of a conventional LFDMA transmitter
- FIG. 5 is a block diagram showing the main configuration of a conventional HFDMA transmitter.
- FIG.7 Block diagram showing the main configuration of a conventional DFDMA-MIMO transmitter
- FIG.8 Block diagram showing the main configuration of a conventional LFDMA-MIMO transmitter
- FIG. 9 is a block diagram showing the main configuration of the transmitting apparatus according to Embodiment 1 of the present invention.
- FIG. 10 is a diagram showing the frequency characteristics of a mixed FDMA scheme with distributed local antennas according to Embodiment 1.
- FIG. 11 is a block diagram showing the main configuration of another transmitting apparatus according to Embodiment 1.
- FIG. 12 is a diagram showing frequency characteristics of the distributed single-mix FDMA scheme according to the first embodiment.
- FIG. 13 is a block diagram showing a main configuration of another transmitting apparatus according to Embodiment 1.
- FIG. 14 is a diagram showing frequency characteristics of the local single mixed FDMA scheme according to the first embodiment.
- FIG. 15 is a block diagram showing a main configuration of another transmitting apparatus according to Embodiment 1.
- FIG. 16 is a diagram showing frequency characteristics of the mixed one-mix FDMA system according to the first embodiment.
- FIG. 18 is a block diagram showing a main configuration of a transmitting apparatus according to Embodiment 2 of the present invention.
- FIG. 19 is a block diagram showing a main configuration of a transmitting apparatus according to Embodiment 2.
- FIG. 20 is a diagram showing frequency characteristics of the inter-antenna mixed FDMA scheme according to Embodiment 2.
- FIG. 21 is a block diagram showing a main configuration of another transmitting apparatus according to Embodiment 2.
- FIG. 22 is a diagram showing frequency characteristics and power characteristics of the inter-antenna mixed FDMA scheme according to the second embodiment.
- FIG. 23 is a block diagram showing the main configuration of a receiving apparatus according to Embodiment 3 of the present invention.
- a system includes a transmission device including a plurality of transmission antennas and a reception device including a plurality of reception antennas.
- inter-antenna mixed frequency division scheme or inter-antenna confusion FDMA scheme
- the transmission apparatus allocates the DFDMA scheme to some transmission antennas and allocates the LFDMA scheme to other partial antennas.
- the characteristics of the distributed FDMA (DFDMA) system that allocates the frequency band in a distributed manner and the localized dFDMA (LFDMA) system that allocates the frequency band locally can coexist in the transmitting apparatus using the multi-antenna characteristics of the transmitting apparatus. Can do.
- DFDMA distributed FDMA
- LFDMA localized dFDMA
- a transmitter in which the DFDMA and LFDMA systems coexist can be applied simultaneously to a low time fluctuation system and a high time fluctuation system, and frequency diversity gain and time diversity gain Can be provided at the same time, so the adaptability of the system can be enhanced.
- the signal sequence is transmitted from each of the plurality of transmission antennas of the transmission apparatus after frequency allocation is performed by the mixed frequency allocation method of the present invention.
- a signal including noise transmitted from each transmitting antenna is received.
- the noise is assumed to be white Gaussian noise.
- the channel fading on each antenna is independent of the channel fading between the antennas as well as the Rayleigh fading. If the receiving antenna or the transmitting antenna is different, the noise received by each antenna on the receiving antenna is also independent. Distribution.
- Various modulation schemes may be employed as the signal modulation scheme.
- FIG. 9 is a block diagram showing a main configuration of the transmitting apparatus according to the first embodiment.
- the transmission apparatus 100 in FIG. 9 includes two transmission antennas, and performs frequency allocation using a distributed one-local frequency division multiple access scheme as an “inter-antenna mixed frequency division scheme”.
- a transmitter 100 includes a space-time processing unit 110, an SZP conversion / modulation unit 120-1, 120-2, an M point FFT unit 130-1, 130-2, a DFDMA mapping unit 140, an LFDMA matrix. It is configured to include a webbing unit 150, an N-point IFFT unit 160-1, 160-2, a CP-attached calorie PZS conversion unit 170-1, 170-2, and a transmission antenna 180-1, 180-2.
- the space-time processing unit 110 distributes the transmission data to the SZP conversion / modulation units 120-1 and 120-2.
- the SZP conversion 'modulation units 120-1 and 120-2 perform serial Z-parallel conversion and modulation on the transmission data distributed by the space-time processing unit 110, and each of the obtained modulated signals is M. Point Output to FFT ⁇ 130-1 and 130-2.
- the M-point FFT unit 130-1, 130-2 performs fast Fourier transform on the modulated signal to convert it to a frequency domain signal, and the M-point FFT unit 130-1 converts the frequency domain signal after the fast Fourier transform.
- the M point FFT unit 130-2 outputs the frequency domain signal after the fast Fourier transform to the LFDMA mapping unit 150.
- the DFDMA mapping unit 140 is based on the DistributedFDMA method, and the frequency domain Map the signal onto each carrier frequency point. Specifically, as shown in FIG. 10A, the DFDMA mapping unit 140 arranges frequency domain signals at regular intervals on each frequency point.
- LFDMA mapping section 150 maps a frequency domain signal onto each carrier frequency point based on the Localized FDMA scheme. Specifically, as shown in FIG. 10B, LFDMA mapping section 150 continuously arranges frequency domain signals on continuous frequency points with N-point IFFT section 160-2.
- the N-point IFFT units 160-1 and 160-2 perform inverse fast Fourier transform on the frequency domain signals mapped on the respective carrier frequency points by the DFDMA mapping unit 140 and the LFDMA mapping unit 150, and perform inverse processing.
- the time domain signal after the fast Fourier transform is output to the CP-added PZS converter 170-1 and 170-2, respectively.
- CP addition 'PZS converter 170—1, 170—2 adds CP to the time domain signal, performs parallel Z-serial conversion on the time domain signal after CP addition, and transmits antenna 180—1, 18 0—Send via 2 respectively.
- the transmitting antenna 180-1 adopts a distributed frequency allocation method, and the signal subjected to serial Z parallel conversion and modulation by the SZP conversion 'modulation unit 120-1 is an M point FFT unit 1 30-1 By the fast Fourier transform.
- the signals after the fast Fourier transform are arranged at regular intervals on each frequency point as shown in FIG. 10A by the DFDMA mapping unit 140 before the inverse Fourier transform.
- N-point IFFT section 160-1 performs inverse Fourier transform on the frequency domain signal mapped on each carrier frequency point, and adds CP.
- PZS transform section 170-1 converts the signal to the inverse Fourier transform signal.
- a CP is added, and the signal after the CP is subjected to normal / serial conversion and then transmitted via the transmitting antenna 180-1.
- Transmitting antenna 180-2 employs a local frequency allocation method, and the frequency domain signal after the fast Fourier transform is a continuous signal having an N-point IFFT section 1602, as shown in FIG. 10B, before the inverse Fourier transform. It is arranged continuously on the frequency point to be.
- the transmission antenna 180-1 modulates with the DistributedFDMA method.
- a signal is output, and a modulated signal by the Localized FDMA system is output from the transmitting antenna 180-2.
- Fig. 10C shows the frequency characteristics of the received signal received at the receiving device of the communication partner.
- the multi-antenna characteristics of the transmission apparatus 100 are used so that the DFDMA scheme and the LFDMA scheme exist at the same time in the transmission apparatus 100. Therefore, by preventing most of the DFDM A mapping unit 140, LFDMA mapping unit 150, and force mapping destination frequency points from overlapping each other, as shown in FIG. It is possible to prevent most of the areas from overlapping each other. As a result, even when the channel characteristics change, the transmitter 100 can simultaneously adapt to both a system with low time fluctuation and a system with high time fluctuation, and simultaneously provides frequency diversity gain and time diversity gain. As a result, the adaptability of the system can be enhanced.
- a mixed user signal on each frequency point is separated for each frequency point using a MIMO detection method for a portion where the frequency points overlap.
- FIG. 11 is a block diagram showing another main configuration of the transmitting apparatus according to the present embodiment.
- the same components as those in FIG. Transmitting apparatus 200 in FIG. 11 includes two transmitting antennas, and performs frequency allocation by using a distributed single-mixing frequency division multiple access method as a mixed frequency division method between antennas.
- the transmission apparatus 200 in FIG. 11 adopts a configuration in which the LFDMA mapping unit 150 is deleted and the HFDMA mapping unit 210 is added to the transmission apparatus 100 in FIG.
- the DFDMA mapping unit 140 arranges frequency domain signals at regular intervals on each frequency point, as shown in FIG. 12A, as in FIG. 10A.
- the HFDMA mapping unit 210 converts the frequency domain signal after Fourier transform between a bundle having a narrow interval between bundles, as shown in FIG. 12B. Place the frequency points on the frequency points so that they are separated.
- Transmitting antenna 180-1 employs a distributed frequency allocation method.
- the signal subjected to serial Z parallel conversion and modulation by the SZP conversion 'modulation unit 120-1 is fast Fourier transformed by the M-point FFT unit 130-1.
- the signal after the fast Fourier transform is arranged on each frequency point at regular intervals as shown in FIG. 12A by the DFDMA mapping unit 140 before the inverse Fourier transform.
- N-point IFFT section 160-1 performs inverse Fourier transform on the frequency domain signal mapped on each carrier frequency point, and adds CP.
- PZS transform section 170-1 converts the signal to the inverse Fourier transform signal.
- a CP is added, and the signal after the CP is subjected to normal / serial conversion and then transmitted via the transmitting antenna 180-1.
- the transmitting antenna 180-2 employs a mixed frequency allocation method.
- the frequency domain signals after the fast Fourier transform are arranged on the frequency points before the inverse Fourier transform, as shown in Fig. 12B, so that the distance between the bundles that are narrow in the bundle is separated. It is done.
- a modulated signal based on the DistributedFDMA scheme is output from the transmitting antenna 180-1, and a modulated signal based on the HybridFDMA scheme is output from the transmitting antenna 180-2.
- Fig. 12C shows the frequency characteristics of the received signal received at the receiving device of the communication partner.
- the multi-antenna characteristics of the transmission apparatus 200 are used so that the DFDMA scheme and the HFDMA scheme exist simultaneously in the transmission apparatus 200. Therefore, by preventing most of the frequency points of the DFDM A mapping unit 140, the HFDMA mapping unit 210, and the force mapping destination from overlapping each other, as shown in FIG. It is possible to prevent most of the areas from overlapping each other. As a result, even when the channel characteristics change, the transmitter 200 can simultaneously adapt to both a system with low time fluctuation and a system with high time fluctuation, and simultaneously provides frequency diversity gain and time diversity gain. As a result, the adaptability of the system can be enhanced.
- FIG. 13 is a block diagram showing another main configuration of the transmitting apparatus according to the present embodiment.
- the same components as in FIG. Transmitting apparatus 300 in FIG. 13 includes two transmitting antennas, and performs frequency allocation using a local mixed frequency division multiple access scheme as a mixed frequency division scheme between antennas.
- the transmission apparatus 300 in FIG. 13 adopts a configuration in which the DFDMA mapping unit 140 is deleted and the HFDMA mapping unit 310 is added to the transmission apparatus 100 in FIG.
- the LFDMA mapping unit 150 continues the frequency domain signal on the continuous frequency points with the N-point IFFT unit 160-2 as shown in FIG. 14A, as in FIG. 10B. Arrange.
- the HFDMA mapping unit 310 converts the frequencies of the N outputs of the Fourier transform between the bundles and the bundles that are narrow in the bundle, as shown in FIG. 14B. Place on the frequency point so that
- Transmitting antenna 180-1 employs a mixed frequency allocation method. As shown in Fig. 14A, the frequency domain signal after the fast Fourier transform is placed on the frequency point so that the distance between the bundles that are narrow in the bundle is separated as shown in Fig. 14A. Are lined up.
- the transmitting antenna 180-2 adopts a local frequency allocation method.
- the signal subjected to serial Z parallel conversion and modulation by the SZP conversion 'modulation unit 120-2 is subjected to fast Fourier transform by the M-point FFT unit 130-2.
- the signal after the fast Fourier transform is continuously arranged by the LFDMA mapping unit 150 on the continuous frequency points with the N-point IFFT unit 160-2 as shown in FIG. 14B before the inverse Fourier transform.
- N-point IFFT unit 160-2 performs inverse Fourier transform on the frequency domain signal mapped on each carrier frequency point, and CP addition 'PZS transform unit 170-2 converts the signal to the signal after inverse Fourier transform.
- CP is added, and the signal after CP is parallel-Z-serial converted, and then transmitted via transmit antenna 180-2.
- a modulated signal based on the HybridFDMA scheme is output from the transmitting antenna 180-1 and a modulated signal based on the Localized FDMA scheme is output from the transmitting antenna 180-2.
- Fig. 14C shows the frequency characteristics of the received signal received at the receiving device of the communication partner.
- the multi-antenna characteristics of the transmission apparatus 300 are used so that the LFDMA scheme and the HFDMA mapping scheme exist at the same time in the transmission apparatus 300. Therefore, by preventing most of the frequency points of the HFDMA mapping unit 310, the LFDMA mapping unit 150, and the force mapping destination from overlapping each other, as shown in FIG. Most of the above can be non-overlapping so that the transmitter 300 can adapt simultaneously to both low and high time variation systems, even when channel characteristics change. In addition, since frequency diversity gain and time diversity gain can be provided simultaneously, the adaptability of the system can be enhanced.
- FIG. 15 is a block diagram showing another main configuration of the transmitting apparatus according to the present embodiment.
- the transmission apparatus 400 in FIG. 15 includes two transmission antennas, and uses a mixed single-mixing mixed frequency multiple access method between antennas as a mixed frequency division method.
- the transmitter 400 in FIG. 15 adopts a configuration in which the DFDMA mapping unit 140 and the LFDMA mapping unit 150 are deleted and the HFDMA mapping units 410 and 420 are added to the transmitter 100 in FIG.
- the HFDMA mapping units 410 and 420 convert the subsequent frequency domain signals between the bundles having a narrow interval between the bundles as shown in FIGS. 16A and 16B. Place the frequency points on the frequency points so that they are separated.
- Transmitting antenna 180-1 employs a mixed frequency allocation method.
- the signal subjected to serial Z parallel conversion and modulation by the SZP conversion 'modulation unit 120-1 is fast Fourier transformed by the M-point FFT unit 130-1.
- the signal after the fast Fourier transform is separated by the HFDMA mapping unit 410 before the inverse Fourier transform so that the interval between the bundles in which the interval is narrow is separated as shown in FIG. 16A.
- N-point IFFT unit 160-1 performs inverse Fourier transform on the frequency domain signal mapped on each carrier frequency point
- CP addition 'PZS transform unit 170-1 converts the signal to the signal after inverse Fourier transform.
- CP is added, and the signal after CP is converted to normal Z serial, and then transmitted via transmit antenna 180-1.
- the transmission antenna 180-2 adopts a mixed frequency allocation method in the same manner as the transmission antenna 180-1. As shown in Fig. 16B, the frequency domain signal after the fast Fourier transform is placed on the frequency point so that the distance between the bundles that are narrow in the bundle is separated, as shown in Fig. 16B. Are lined up.
- modulation signals by the HybridFDMA method are output from the transmitting antennas 180-1, 180-2, and the like.
- Fig. 16C shows the frequency characteristics of the received signal received at the receiving device of the communication partner.
- the multi-antenna characteristics of the transmission apparatus 400 are used, and the transmission apparatus 400 uses the HFDMA scheme to assign frequencies. Therefore, the HFDMA mapping unit 410 and the HFDMA mapping unit 420 prevent most of the mapping destination frequency points from overlapping each other, so that the transmission signal for each transmission antenna is as shown in FIG. In the frequency domain, most of them do not overlap each other, so that even when the channel characteristics change, the transmitter 400 has a low time fluctuation system and a high time fluctuation.
- the system can be adapted to both the system and the frequency diversity gain and the time diversity gain can be provided at the same time, thereby enhancing the adaptability of the system.
- the transmission apparatus has a plurality of transmission antennas, and transmission signals for each transmission antenna are transmitted so as not to overlap each other in the frequency domain.
- Distributed—FDMA method that allocates a distributed frequency band for each antenna
- Localized—FDMA method that allocates a local frequency band
- Hybrid—FDMA method that allocates a mixed frequency band.
- the number of transmission antennas adopting the local formula, distributed formula, and mixed formula depends on the mobility of the user. And the antenna correlation.
- the frequency band can be selected according to the change in channel characteristics, and the frequency diversity gain and the time diversity gain can be reliably obtained.
- SINR signal-to-interference noise ratio
- MCS Modulation and Coding Scheme
- FIG. 18 is a block diagram showing a main configuration of transmitting apparatus 500 according to Embodiment 2.
- 18 includes a spatio-temporal processing unit 510, SZP conversion / modulation unit 520-1, 520-2, Ml point FFT unit 530-1, M2 point FFT unit 530-2, HFDMAI mapping unit 540, HF DMAII.
- the spatio-temporal processing unit 510 performs spatio-temporal processing on the signal, and allocates data of a different transmission rate for each transmission antenna based on the fading characteristics of the antenna. In the following description, it is assumed that the transmission rate of transmission antenna 580-1 is higher than the transmission rate of transmission antenna 580-2.
- the SZP conversion / modulation units 520-1 and 520-2 perform serial Z-parallel conversion and modulation on the transmission data distributed by the space-time processing unit 510, and each of the obtained modulated signals.
- Ml point FFT unit 530-1 and M2 point FFT unit 530-2 perform fast Fourier transform on the modulated signal and convert it to frequency domain signal
- Ml point FFT unit 530-1 performs fast Fourier transform
- the frequency domain signal is output to the HFDMAI mapping unit 540
- the M2 point FFT unit 530-2 outputs the frequency domain signal after the fast Fourier transform to the HFDMAII mapping unit 550.
- HFDMAI mapping unit 540, HFDMAII mapping unit 550 are Ml point FFT unit 530
- M2 point FFT section 530-2 assigns each frequency domain signal output to the corresponding carrier by any one of DFDMA, LFDM A, and HFDMA. Since the transmission rate of transmission antenna 580-1 is larger than the transmission rate of transmission antenna 580-2, the number of carriers assigned to transmission antenna 580-1 is larger than the number of carriers assigned to transmission antenna 580-2. .
- N1-point IFFT section 560-1, N2 ⁇ JFFT3 ⁇ 4560-2 «, HFDMAI mapping section 540 and HFDMAII mapping section 550 perform inverse fast Fourier transform on the frequency domain signal mapped on each carrier frequency point The time domain signal after inverse fast Fourier transform is output to the CP-added 'PZS converters 570-1 and 570-2.
- CP addition 'PZS converters 570-1, 1, 570-2 add CP to the time domain signal, perform parallel Z-serial conversion on the time domain signal after CP addition, and transmit antennas 580-1, 58 0—Send via 2 respectively.
- the space-time processing unit 510 performs space-time processing on the signal, and data having a different transmission rate is assigned to each transmission antenna based on the fading characteristics of the antenna.
- the data allocated by the spatio-temporal processing unit 510 is subjected to serial Z-parallel conversion and modulation by the SZP conversion / modulation unit 520-1, and then the Ml point FFT unit 530-1.
- Fast Fourier transform Each frequency domain signal output from the Ml-point FFT unit 530-1 is assigned to the corresponding carrier by one of DFDMA, LFD MA, and HFDMA by the HFDMAI mapping unit 540 before the inverse Fourier transform.
- the data allocated by the spatio-temporal processing unit 510 is subjected to serial Z-parallel conversion and modulation by the SZP conversion / modulation unit 520-2, and then the M2 point FFT unit 530-2.
- Fast Fourier transform Each frequency domain signal output from the M2 point FFT unit 530-2 is assigned to the corresponding carrier by one of DFDMA, LFD MA, and HFDMA by the HFDMAII mapping unit 550 before the inverse Fourier transform.
- the N1-point IFFT section 560-1 and the N2-point IFFT section 560-2 are subjected to inverse fast Fourier transform on the frequency domain signal mapped on each carrier frequency point, and the inverse fast Fourier transform is performed.
- the converted time domain signal is output to the CP-added 'PZS converter 570-1, 570-2.
- CP addition 'PZS converter 570—1, 570—2 adds a CP to the time domain signal, and after normalization / serial conversion of the signal after CP addition, the transmission antenna 580—1, 580 — Sent via 2.
- FIG. 19 is a block diagram showing another main configuration of the transmitting apparatus according to the present embodiment.
- the transmitting apparatus 600 in FIG. 19 deletes the spatio-temporal processing unit 510 and the S / P conversion / modulation units 520-1 and 520-2 from the transmitting apparatus 500 in FIG. , SZP converter 62 0-1, 620-2, MCSI 630-1, and MCSII 630-2 are added.
- the space-time processing unit 610 assigns different encoding and modulation schemes to the MCSI unit 620-1 and the MCSII unit 620-2 based on the fading characteristics of the antenna, and the MCSI unit 620-1 and the MCSII unit 620— Signals are assigned to SZP converters 620-1, 620-2 based on the code and modulation method assigned to 2.
- the SZP conversion units 620-1 and 620-2 perform serial / parallel conversion on the signals assigned by the space-time processing unit 610, and the serial / parallel converted signals are respectively converted to MCSI units 630-1 And output to MCSII section 630-2.
- the MCSI unit 630-1 and the MCSII unit 630-2 perform coding and modulation on the signal after serial Z parallel conversion, and the obtained modulated signals are respectively Ml-point FFT units 530-1 and 530-1, Output to M2 point FFT section 530-2.
- the space-time processing unit 610 performs space-time processing on the signal and assigns a different code and modulation scheme to each antenna based on the fading characteristics of the antenna.
- S ZP conversion unit 620-1 converts the signal that has been converted from serial to parallel into the ZSI based on the encoding and modulation method of MCSI unit 6301, and Ml point FFT unit 53 0-1 uses fast Fourier transform. Converted. The signal after the fast Fourier transform is assigned to a corresponding carrier by one of DFDMA, LFDMA, and HFDMA by the HFDMAI mapping unit 540 before the inverse Fourier transform.
- the transmitting antenna 580-1 since the modulation order of the transmitting antenna 580-1 is smaller than the modulation order of the transmitting antenna 580-2, when transmitting signals of the same rate from the two transmitting antennas 58 0-1 and 580-2, the transmitting antenna The number of carriers occupied by 580-1 is larger than the number of carriers occupied by transmitting antenna 580-2.
- N1 point I FFT section 560-1 performs inverse Fourier transform on the frequency domain signal mapped on each carrier frequency point, and CP addition 'PZS transform section 570-1 converts the signal to the inverse Fourier transform.
- CP is added, and the signal after CP is converted to normal Z serial, and then transmitted via transmit antenna 580-1.
- the signal subjected to serial Z parallel conversion by SZP conversion section 620-2 is encoded and modulated based on the encoding and modulation scheme of MC SII section 630-2, and M2 point FFT section 530 — Fast Fourier transform by 2.
- the signal after the fast Fourier transform is Before conversion, each frequency domain signal output from the 1 ⁇ 2 point section 530-2 is assigned to the corresponding carrier by one of DFDMA, LFDMA, and HFDMA by the HFDMA II mapping section 550 .
- N2 point IFFT section 560-2 performs inverse Fourier transform on the frequency domain signal mapped on each carrier frequency point, then CP addition 'PZS transform section 570-2 gives the signal after inverse Fourier transform CP is added to the signal, and the signal after the CP addition is subjected to normal Z-serial conversion and then transmitted via the transmitting antenna 580-2.
- FIG. 20 shows the usage status of the frequency points corresponding to each transmission antenna.
- 20A and 20B show the frequency characteristics of the modulated signals transmitted from the transmitting antennas 580-1 and 580-2, respectively.
- the reception signal is mixed at some frequency points.
- Such a system is also a kind of mixed frequency division system. It should be noted that the frequency diversity gain can be improved by selecting the DistributedFDMA scheme in which the transmission antenna having a higher modulation order assigns more frequencies in a distributed manner.
- antenna selection and power allocation can be performed in the frequency domain. That is, at each frequency point, a certain antenna is selected (antenna selection) based on the SINR characteristic of each frequency point, or transmission power allocated to each antenna is controlled (power allocation).
- power allocation By adopting this method, it is possible to effectively improve the reception SNR (Signal to Noise Ratio). In the following, the case of performing power allocation will be described.
- FIG. 21 is a block diagram showing another main configuration of the transmitting apparatus according to the present embodiment.
- the transmitter 700 in FIG. 21 adopts a configuration in which a power allocation unit 710 is added to the transmitter 500 in FIG.
- the power allocation unit 710 allocates the signal power of the signal after the fast Fourier transform output from the Ml point FFT unit 530-1, 1 ⁇ 2 point capping unit 530-2.
- the power allocation unit 710 is connected to the HFDMAI mapping unit 540 and the HFDMAII mapping unit 550 in the subsequent stage. Allocation is made such that the SINR characteristic of each frequency point to be applied is worse and the power is assigned larger, and the power is assigned as the SINR characteristic is better and smaller.
- Spatio-temporal processing is performed on the signal by spatio-temporal processing unit 510, and different code symbols and modulation schemes are assigned to the respective antennas based on the fading characteristics of the antennas.
- the signal subjected to serial Z parallel conversion and modulation by the SZP conversion 'modulation unit 520-1 is fast Fourier transformed by the Ml point FFT unit 530-1.
- the power allocation unit 710 for example, the signal power of the signal after the high-speed Fourier transform is allocated based on the SINR characteristic of each frequency point of the mapping destination.
- the HFDMAI mapping unit 540 each frequency domain signal to which signal power is allocated is allocated to a corresponding carrier by any one of DFDMA, LFDMA, and HFDM A.
- N1 point IFFT section 560-1 performs inverse Fourier transform on the frequency domain signal mapped on each carrier frequency point, and CP addition 'PZS conversion section 570-1 provides the signal after inverse Fourier transform.
- CP is added to the signal, and the signal after CP is converted to normal Z serial, and then transmitted via the transmitting antenna 580-1.
- the signal subjected to serial Z parallel conversion and modulation by the SZP conversion / modulation unit 520-2 is fast Fourier transformed by the M2 point FFT unit 530-2.
- the power allocation unit 710 for example, the signal power of the signal after the high-speed Fourier transform is allocated based on the SINR characteristic of each frequency point of the mapping destination.
- the HFDMAII mapping unit 550 each of the frequency domain signal powers DFDMA, LFDMA, and HFD MA to which the signal power is allocated is allocated is allocated to the corresponding carrier.
- N2 point IFFT section 560-2 performs inverse Fourier transform on the frequency domain signal mapped on each carrier frequency point
- CP addition 'PZS transform section 570-2 provides the signal after inverse Fourier transform.
- CP is added to the signal, and the signal after CP is converted to normal Z serial, and then transmitted via the transmitting antenna 580-2.
- Fig. 22 shows the usage of the frequency points corresponding to each antenna and the state of the power characteristics.
- 22A and 22B show the frequency characteristics and power characteristics of the modulated signals transmitted from the transmitting antennas 580-1 and 580-2, respectively.
- the receiving side In the received signal there is a phenomenon that the received signal is mixed at some frequency points.
- Such a system is also a kind of mixed frequency division system. Frequency diversity gain can be improved by assigning higher power to frequency points with poor frequency characteristics.
- FIG. 23 is a block diagram showing a main configuration of the receiving apparatus according to the present embodiment. 23 receives MIMO signals transmitted from transmitting apparatuses 100, 200, 300, 400, 500, 600, and 700 according to the above-described embodiments, and performs MIMO detection.
- MIMO signals transmitted from transmitting apparatuses 100, 200, 300, 400, 500, 600, and 700 according to the above-described embodiments, and performs MIMO detection.
- the transmission apparatus 100, 200, 300, 400, 500, 600, and 700 transmission antennas are provided, and the reception apparatus 800 is provided with R reception antennas.
- receiving apparatus 800 includes receiving antennas 810-1 and 810-2, CP elimination 'SZ P conversion unit 820, N1 point FFT unit 830, space-time Fourier transform matrix generation unit 840, space-time IFF T 850, a maximum likelihood detection unit 860, and a demodulation unit 870.
- CP removal removes the CP added to the received signal received via the receiving antennas 810-1 and 810-2, and serial-parallel converts the received signal after CP removal. , The received signal of serial to parallel conversion is output to N1 point FFT unit 830.
- N1 point FFT section 830 performs fast Fourier transform on the received signal of the serial “parallel conversion” output from CP removal “SZP conversion section 820”. As a result, the frequency domain signal of the mixed signal assigned to the same frequency is obtained on the transmission side.
- the space-time Fourier transform matrix generation unit 840 generates a space-time Fourier transform matrix V, and the space-time IFFT unit 850 performs space-time inverse Fourier transform.
- the space-time inverse Fourier transform will be described later.
- Maximum likelihood detector 860 estimates a signal using a maximum likelihood estimation algorithm, and demodulator 870
- CP removal ′ The CP is removed by the SZP converter 820, and the serial Z parallel
- the Nl-point FFT unit 830 performs Fourier transform on the input signal, and then obtains the frequency domain signal of the mixed signal.
- the transmission antenna signal R is expressed as shown in Equation (1).
- H is the i-th column of the channel matrix H, and the j-th element corresponds to channel fading between the transmitting antenna i and the receiving antenna j.
- s is a sequence of M symbols transmitted from the i-th transmitting antenna, and is mapped to the d + 1st to (d + M) -th inverse Fourier transform input frequency points after Fourier transform.
- F is a Fourier transform matrix.
- a space-time Fourier transform matrix V is constructed by the space-time Fourier transform matrix generation unit 840.
- the space-time Fourier transform matrix V is expressed by equation (2).
- Equation (3) the signal R after the signal is Fourier transformed on the receiving side is expressed as shown in Equation (3) using the space-time Fourier transform matrix V.
- V is M blocks
- the matrix is arranged in a line.
- the q-th non-zero column vector of the p-th blocked matrix exists at the position of the p-th blocked vector, and the frequency after the LD FMAZDFDMA scheme of the transmit antenna p is performed.
- the qth non-zero vector is a Vandermonde Vector that increases linearly based on the phase 2 ⁇ ZMq &) o.
- the spatiotemporal IFFT unit 850 performs a spatiotemporal inverse Fourier transform.
- the received signal after Fourier transform is multiplied from the right by the false inverse of V.
- a time domain signal is obtained as shown in Equation (4).
- V includes the Fourier correspondence of each antenna, and V is the Fourier transform that combines the space domain and the time domain.
- V is called a space-time Fourier transform matrix.
- the maximum likelihood detection unit 860 uses the maximum likelihood estimation algorithm for the signal r to perform high-performance detection.
- the demodulation unit 870 demodulates the maximum likelihood estimation result, and then performs detection. Output power is obtained.
- the transmission apparatus has a plurality of transmission antennas, and the transmission signal for each transmission antenna is mostly in the frequency domain with respect to the plurality of transmission antennas. Allocate distributed frequency bands for each transmit antenna so that they do not overlap with each other. Distributed—FDMA method, Localized frequency band allocation—Localized—FDM A method, or Hybrid—FDMA method. Each one of them is used to assign a frequency, and the receiving apparatus receives signals transmitted from a plurality of transmitting antennas of the transmitting apparatus, and performs a space-time inverse Fourier transform on the received signals, thereby receiving the received signals. Is converted from the frequency domain to the time domain, and MIMO detection is performed on the time domain to detect transmission signals with multiple transmitting antenna powers.
- MIMO detection can be performed after the mixed signal transmitted from the multiple transmission antennas of the transmission device is converted to a time domain signal, so that a maximum likelihood algorithm with excellent performance can be used. As a result, demodulation accuracy can be improved.
- the frequency allocation method, detection method, transmission apparatus, and reception apparatus of the present invention can simultaneously obtain frequency diversity gain and time diversity gain in a MIMO system.
- various cellular systems In the high-speed wireless communication system and the high-throughput wireless local area network system according to the above, it is useful for a frequency allocation method, a detection method, a transmitting apparatus, a receiving apparatus, etc. applied to the uplink wireless communication system.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Provided are a frequency allocation method and a detection method capable of simultaneously obtaining a frequency diversity gain and a time diversity gain. In this method, most of signals transmitted from a plurality of transmission antennas of a transmission device are not overlapped by one another on a frequency region by allocating a frequency for each of the transmission antennas by using one of the following methods: the Distributed-FDMA method for allocating a distributed frequency band, the Localized-FDMA method for allocating a local frequency band, and the Hybrid-FDMA method for allocating a mixed frequency band. Signals transmitted from the transmission antennas are received and the received signals are subjected to a time-space inverse Fourier transform so as to convert the received signal from the frequency region to the time region and perform MIMO detection on the time region, thereby detecting the transmission signals from the transmission antennas.
Description
周波数割り当て方法、検出方法、送信装置、及び、受信装置 技術分野 TECHNICAL FIELD The present invention relates to a frequency allocation method, a detection method, a transmission device, and a reception device.
[0001] 本発明は、上り MIMO (Multiple Input Multiple Output)システムにおいて、混合的 に周波数帯域を割り当てる周波数割り当て方法、検出方法、送信装置、及び、受信 装置に関し、例えば、各種のセルラー方式における高速無線通信システム及び高ス ループット無線ローカルエリアネットワークシステムにおいて、上り無線通信システム に適用される周波数割り当て方法、検出方法、送信装置、及び、受信装置に関する 背景技術 The present invention relates to a frequency allocation method, a detection method, a transmission device, and a reception device that allocate frequency bands in a mixed manner in an uplink MIMO (Multiple Input Multiple Output) system. For example, the present invention relates to high-speed wireless in various cellular systems. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency allocation method, a detection method, a transmission device, and a reception device applied to an uplink wireless communication system in a communication system and a high-throughput wireless local area network system.
[0002] 第三世代移動体通信の伝送レートの高速化に伴い、各シンボルの持続周期は短く なっており、高速通信の環境において効果的に周波数選択性フェージングに対抗で きるよう、 3GPP (3rd Generation Partner Project)の各項目の提案は、周波数分割多 元接続(FDMA : Frequency Division Multiple Access)を用いた方式に集中している 。周波数分割多元接続システムにおいて、各ユーザの周波数は直交しており、各ュ 一ザの信号のシンボル持続周期は、ユーザ数が増加しても短くなることはなぐマル チパス遅延により生じる符号間干渉の影響が激ィ匕することはない。 [0002] As the transmission rate of third-generation mobile communication is increased, the duration of each symbol is shortened, so that 3GPP (3rd The proposals for each item of the Generation Partner Project are concentrated on methods using frequency division multiple access (FDMA). In a frequency division multiple access system, the frequency of each user is orthogonal, and the symbol duration of each user's signal does not become shorter as the number of users increases. The impact will never be severe.
[0003] 3GPP組織の中で、一部の事業者は、直交周波数分割多重多元接続 (OFDMA: [0003] Within the 3GPP organization, some operators have implemented orthogonal frequency division multiple access (OFDMA).
Orthogonal Frequency Division Multiplex Access方式の採用 表明して ヽる。その 利点は、直交周波数分割方式を採用したユーザのスペクトラムが部分的に重なって いるので、周波数利用効率を大幅に向上させることができ、また、下りと同じ多元接 続方式を用いることができる点である。しかし、 OFDMAは、ユーザ間で厳格に同期 を取る必要があり、また、 PAPR (Peak to Average Power Ratio :ピーク電力対平均電 力比)が高いので、ユーザ側の端末(UE : User Equipment)に用いられるアンプのダ イナミックレンジに対する要求が高くなつてしまう。 Adopting the Orthogonal Frequency Division Multiplex Access method The advantage is that the spectrum of users using the orthogonal frequency division method partially overlaps, so that the frequency utilization efficiency can be greatly improved, and the same multiple access method as that used for downlink can be used. It is. However, OFDMA needs to be strictly synchronized between users and has a high PAPR (Peak to Average Power Ratio), so it can be used as a user equipment terminal (UE: User Equipment). The demand for the dynamic range of the amplifier used will increase.
[0004] 3GPPの上り回線の多元接続方式に対する議論が深まるにつれ、現在、多元接続 方式として、分散的に(Distributed)周波数を割り当てる DistributedFDMA (DFD
MA)方式と、局所的に(Localized)周波数を割り当てる LocalizedFDMA(LFDM A)方式に最も注目が集まって!/ヽる (非特許文献 1参照)。 [0004] As the discussion on 3GPP uplink multiple access schemes deepens, DistributedFDMA (DFD), which allocates distributed frequencies as a multiple access scheme, is currently being implemented. Most attention has been focused on the MA) method and the Localized FDMA (LFDM A) method in which localized (Localized) frequencies are allocated (see Non-Patent Document 1).
[0005] 図 1は、 DFDMA方式を実現する送信装置の要部構成を示すブロック図である。ビ ット'リピテイシヨン部 11は、ビットに対しリピテイシヨン処理を施し、ダイバーシチ送信 を実現できるようにし、 S/P (Serial to Parallel)変換部 12は、ビット'リピテイシヨン部 1 1から出力されるビット系列に対し、シリアル Zパラレル変換を行う。変調部 13は、シリ アル Zパラレル変換後のビット系列を変調し、 M点 FFT(Fast Fourier Transform)部 14は、変調後の信号に対しフーリエ変換を行い、マッピング部 15は、各周波数ボイ ント上の信号をキャリア周波数ポイント上に一定間隔で配置する。図 2に、周波数マツ ビングの様子を示す。 FIG. 1 is a block diagram showing a main configuration of a transmission apparatus that realizes the DFDMA scheme. The bit'repetition unit 11 performs repetition processing on the bits so that diversity transmission can be realized, and the S / P (Serial to Parallel) conversion unit 12 is the bit sequence output from the bit'repetition unit 11 On the other hand, serial Z parallel conversion is performed. The modulation unit 13 modulates the bit sequence after serial Z parallel conversion, the M-point FFT (Fast Fourier Transform) unit 14 performs Fourier transform on the modulated signal, and the mapping unit 15 converts each frequency point. The upper signal is placed on the carrier frequency point at regular intervals. Figure 2 shows how frequency mapping is performed.
[0006] N点 IFFT (Inverse Fast Fourier Transform)部 16は、マッピング後の変調信号に対 し、逆フーリエ変換処理を施し、 CP (Cyclic Prefix:サイクリック'プレフィックス)付カロ 部 17は、逆フーリエ変換後のデータブロックにサイクリック'プレフィックス(CP)を付 加し、 PZS変換部 18は、 CP付加後のデータに対し、ノ ラレル Zシリアル変換を行つ た後、図示せぬアンテナを介して送信する。 [0006] An N-point IFFT (Inverse Fast Fourier Transform) unit 16 performs an inverse Fourier transform process on the modulated signal after mapping, and a CP (Cyclic Prefix) -added Calo unit 17 A cyclic prefix (CP) is added to the converted data block, and the PZS converter 18 performs normal Z serial conversion on the data after the CP addition, and then passes through an antenna (not shown). Send.
[0007] 図 3は、 LFDMA方式を実現する送信装置の要部構成を示すブロック図である。ビ ット'リピテイシヨン部 21は、ビットに対しリピテイシヨン処理を施し、ダイバーシチ送信 を実現できるようにし、 SZP変換部 22は、ビット'リピテイシヨン部 21から出力されるビ ット系列に対し、シリアル Zパラレル変換を行う。変調部 23は、シリアル Zパラレル変 換後のビット系列を変調し、 M点 FFT部 24は、変調後の信号に対しフーリエ変換を 行い、マッピング部 25は、各周波数ポイント上の信号を連続したキャリア周波数ボイ ント上に配置する。図 4に、周波数マッピングの様子を示す。 FIG. 3 is a block diagram showing a main configuration of a transmission apparatus that realizes the LFDMA scheme. The bit'repetition unit 21 applies repetition processing to the bits so that diversity transmission can be realized, and the SZP conversion unit 22 Perform conversion. The modulation unit 23 modulates the bit sequence after serial Z-parallel conversion, the M point FFT unit 24 performs Fourier transform on the modulated signal, and the mapping unit 25 continues the signal on each frequency point. Place on the carrier frequency point. Figure 4 shows the frequency mapping.
[0008] N点 IFFT部 26は、マッピング後の変調信号に対し、逆フーリエ変換処理を施し、 C P付加部 27は、逆フーリエ変換後のデータブロックにサイクリック'プレフィックス(CP) を付加し、 P/S変換部 28は、 CP付加後のデータに対し、ノ ラレル/シリアル変換を 行った後、図示せぬアンテナを介して送信する。 [0008] N-point IFFT unit 26 performs an inverse Fourier transform process on the modulated signal after mapping, and CP adding unit 27 adds a cyclic 'prefix (CP) to the data block after the inverse Fourier transform, The P / S converter 28 performs normal / serial conversion on the data after CP addition, and then transmits the data via an antenna (not shown).
[0009] 上述した DFDMA方式と LFDMA方式とでは、異なる特性を有し、適した環境が それぞれ異なる (非特許文献 2参照)。
[0010] 例えば、チャネル情報を正確に推定できる場合には、 LFDMA方式に比べ、 DFD MA方式は、より高い周波数ダイバーシチゲインを得ることができる。一方、チャネル 推定に誤差が存在する場合には、 DFDMA方式のゲインは顕著ではない。また、高 速で移動するユーザは、 LFDMA方式を採用すると、より高い時間ダイバーシチが 得られる。 [0009] The DFDMA method and the LFDMA method described above have different characteristics and different suitable environments (see Non-Patent Document 2). [0010] For example, when channel information can be accurately estimated, the DFD MA method can obtain a higher frequency diversity gain than the LFDMA method. On the other hand, if there is an error in channel estimation, the gain of the DFDMA method is not significant. In addition, users who move at high speed can obtain higher time diversity by adopting the LFDMA method.
[0011] チャネル推定の角度から見ると、 LFDMAシステムでは、推定が必要な各チャネル の周波数がある幅の周波数帯域に連続しており、各チャネル同士は、比較的高い相 関性を持っている。推定すべきパラメータは比較的少なぐ同じ数のパイロット信号を 用いる場合、 LFDMA方式のチャネル推定の精度は高くなる。 [0011] When viewed from the angle of channel estimation, in the LFDMA system, the frequency of each channel that needs to be estimated is continuous in a certain frequency band, and each channel has a relatively high correlation. . When using the same number of pilot signals with relatively few parameters to be estimated, the channel estimation accuracy of the LFDMA scheme is high.
[0012] 実際のシステムにおいては、全ての周波数ポイント上のチャネルがみな直接パイ口 ット信号を利用して推定されるわけではなぐ一部の周波数ポイント上の信号のみが ノ ィロット信号を用いて直接推定され、それ以外の周波数ポイント上のチャネル推定 は、すでに推定されたチャネル推定結果の補間によって得られる。 DFDMA方式を 採用した場合、すでに推定したチャネルと補間によって得る必要があるチャネルとの 間の周波数間隔が、比較的離れている。異なる周波数ポイント間では、チャネルの独 立性が高い。そのため、 DFDMA方式の場合、補間により得られるチャネル推定精 度が低い。 [0012] In an actual system, not all channels on all frequency points are estimated using direct pilot signals, but only signals on some frequency points are used in the pilot signal. Channel estimates that are directly estimated and other frequency points are obtained by interpolation of the already estimated channel estimation results. When the DFDMA method is adopted, the frequency interval between the already estimated channel and the channel that needs to be obtained by interpolation is relatively long. Channel independence is high between different frequency points. Therefore, in the case of the DFDMA system, the channel estimation accuracy obtained by interpolation is low.
[0013] このように、 DFDMA方式と LFDMA方式は異なる特性を有し、それぞれ異なる状 況において使用される。実際のシステムにおいては、チャネル特性は外界の散乱物 の違いや、ユーザの移動速度の変化につれて変化する。しかし、現在、既存のブラ ンはみな、ひとつのシステムにおいて、 DFDMA方式又は LFDMA方式のうち、 1種 類の方式のみを採用したものとなっている。 [0013] Thus, the DFDMA system and the LFDMA system have different characteristics and are used in different situations. In an actual system, the channel characteristics change as the scatterer in the outside world changes and the user's moving speed changes. However, all existing brands currently use only one type of DFDMA or LFDMA in a single system.
[0014] 図 5は、混合的に(Hybrid)周波数を割り当てるハイブリッド FDMA (HFDMA: Hyb rid Frequency Division Multiple Access)を実現する送信装置の要部構成を示すブロ ック図である。ビット'リピテイシヨン部 31は、ビットに対しリピテイシヨン処理を施し、ダイ バーシチ送信を実現できるようにし、 S/P変換部 32は、ビット'リピテイシヨン部 31か ら出力されるビット系列に対し、シリアル Zパラレル変換を行う。変調部 33は、シリア ル Zパラレル変換後のビット系列を変調し、 M点 FFT部 34は、変調後の信号に対し
フーリエ変換を行い、マッピング部 35は、各周波数ポイント上の信号をキャリア周波 数ポイント上にマッピングする。 FIG. 5 is a block diagram showing a main configuration of a transmission apparatus that realizes hybrid FDMA (HFDMA: Hybrid Frequency Division Multiple Access) in which frequencies are mixedly (Hybrid). Bit'repetition unit 31 applies repetition processing to the bits to enable diversity transmission.S / P conversion unit 32 performs serial Z parallel processing on the bit sequence output from bit'repetition unit 31. Perform conversion. The modulation unit 33 modulates the bit sequence after serial Z-parallel conversion, and the M point FFT unit 34 applies to the modulated signal. The Fourier transform is performed, and the mapping unit 35 maps the signal on each frequency point onto the carrier frequency point.
[0015] 図 6に、周波数マッピングの様子を示す。図 6に示すように、 HFDMA方式では、マ ッビング後のキャリアは束状に並んでおり、ひと束は、狭い周波数間隔で隣り合う少 数のキャリアにより形成され、束と束との間の周波数間隔が離れている。このように、 HFDMA方式によりマッピングされたキャリアは、 LFDMA方式のように連続して並 んでおらず、また DFDMA方式のように一定間隔で等間隔に並んでも!/、な!/、。 FIG. 6 shows the frequency mapping. As shown in Fig. 6, in the HFDMA method, the carriers after mapping are arranged in a bundle, and one bundle is formed by a small number of adjacent carriers at a narrow frequency interval, and the frequency between the bundles is determined. The interval is far away. In this way, the carriers mapped by the HFDMA method are not arranged continuously like the LFDMA method, and even if they are arranged at regular intervals like the DFDMA method! /! /.
[0016] N点 IFFT部 36は、マッピング後のキャリアに対し、逆フーリエ変換処理を施し、 CP 付加部 37は、逆フーリエ変換後のデータブロックにサイクリック'プレフィックス(CP) を付加し、 P/S変換部 38は、 CP付加後のデータに対し、ノ ラレル/シリアル変換を 施した後、図示せぬアンテナを介して送信する。 [0016] The N-point IFFT unit 36 performs inverse Fourier transform processing on the mapped carrier, and the CP adding unit 37 adds a cyclic prefix (CP) to the data block after the inverse Fourier transform, and P The / S conversion unit 38 performs normal / serial conversion on the data after CP addition, and then transmits the data via an antenna (not shown).
[0017] ところで、近年、 MIMO (Multiple Input Multiple Output)通信方式に代表されるマ ルチアンテナ通信方式では、変調信号を複数のアンテナから送信することで、周波 数ダイバーシチゲインと時間ダイバーシチゲインを得ることができるようになつている。 非特許文献 1 : 3GPP R1-051290,"3GPP TSG WG1 Meeting #42bis reports" 非特許文献 2 : 3GPP Rl-050883 Samsung, "Performance comparison between LFDM By the way, in recent years, in a multi-antenna communication system represented by a MIMO (Multiple Input Multiple Output) communication system, a frequency diversity gain and a time diversity gain are obtained by transmitting modulated signals from a plurality of antennas. Has become possible. Non-Patent Document 1: 3GPP R1-051290, "3GPP TSG WG1 Meeting # 42bis reports" Non-Patent Document 2: 3GPP Rl-050883 Samsung, "Performance comparison between LFDM
A and DFDMA for EUTRA" A and DFDMA for EUTRA "
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0018] し力しながら、 MIMOシステムにおいて、周波数分割多元接続方式を採用する場 合、必ずしも、周波数ダイバーシチゲインと時間ダイバーシチゲインとを得ることがで きるとは限らない。 However, when the frequency division multiple access method is adopted in the MIMO system, it is not always possible to obtain the frequency diversity gain and the time diversity gain.
[0019] すなわち、従来の MIMOシステムにおいては、図 7及び図 8に示すように、各送信 アンテナは、同一の周波数分割多元接続方式を採用する。即ち、各送信アンテナは 、図 7に示すように全て DFDMA方式を採用するカゝ、図 8に示すように全て LFDMA 方式を採用するかのいずれかである。このような DFDMA— MIMOシステム及び LF DMA— MIMOシステムにおいて、各送信アンテナに対する DFDMAZLFDMA 方式のマッピングはそれぞれ同じである。したがって、フーリエ変換後の同じ周波数
領域信号は、同じキャリア周波数にマッピングされる。そのため、チャネル特性が変 化する場合に、従来の MIMOシステムでは、低時間変動システムと高時間変動シス テムとに同時に適応することが難しぐまた、周波数ダイバーシチゲインと時間ダイバ ーシチゲインとを同時に得ることが難しい。 That is, in the conventional MIMO system, as shown in FIGS. 7 and 8, each transmission antenna adopts the same frequency division multiple access scheme. That is, each transmitting antenna is either one that employs the DFDMA scheme as shown in FIG. 7, or all of the LFDMA scheme as shown in FIG. In such a DFDMA-MIMO system and LF DMA-MIMO system, the mapping of the DFDMAZLFDMA scheme to each transmit antenna is the same. Therefore, the same frequency after Fourier transform Region signals are mapped to the same carrier frequency. Therefore, when channel characteristics change, it is difficult for conventional MIMO systems to adapt to both low-time fluctuation systems and high-time fluctuation systems at the same time, and to obtain frequency diversity gain and time diversity gain at the same time. Is difficult.
[0020] 本発明の目的は、 MIMOシステムにお!/、て、周波数ダイバーシチゲインと時間ダイ バーシチゲインとを同時に得ることができる周波数割り当て方法、検出方法、送信装 置、及び、受信装置を提供することである。 [0020] An object of the present invention is to provide a frequency allocation method, a detection method, a transmission device, and a reception device capable of simultaneously obtaining a frequency diversity gain and a time diversity gain in a MIMO system! That is.
課題を解決するための手段 Means for solving the problem
[0021] 本発明の周波数割り当て方法の一つの態様は、送信装置が有する複数の送信ァ ンテナに、信号を分配する時空間処理ステップと、前記複数の送信アンテナから送 信する信号に対し、前記送信アンテナごとの送信信号が、周波数領域上で大部分が 互いに重なり合わないように、前記送信アンテナごとに、分散的周波数帯域を割り当 てる Distributed— FDMA方式、局所的周波数帯域を割り当てる Localized— FD MA方式、又は、混合的周波数帯域を割り当てる Hybrid— FDMA方式のうちいず れか一つをそれぞれ用いて、周波数を割り当てる周波数割り当てステップと、を含む よつにした。 [0021] One aspect of the frequency allocation method of the present invention includes a spatio-temporal processing step of distributing a signal to a plurality of transmission antennas included in a transmission device, and a signal transmitted from the plurality of transmission antennas. Distributed—FDMA, Localized—FD that allocates a distributed frequency band for each transmit antenna so that most of the transmitted signals for each transmit antenna do not overlap each other in the frequency domain. A frequency allocation step for allocating frequencies using either one of the MA scheme or the Hybrid—FDMA scheme for allocating a mixed frequency band is included.
[0022] この方法によれば、マルチアンテナ特性を利用し、分散的に周波数帯域を割り当て る Distributed— FDMA方式、局所的に周波数帯域を割り当てる Localized— FD MA方式、又は、混合的に周波数帯域を割り当てる Hybrid— FDMA方式が共存す るようにできるので、チャネル特性が変化する場合において、低時間変動と高時間変 動とに同時に適応することができ、また、周波数ダイバーシチゲインと時間ダイバー チゲインとを同時に得ることができるので、システムの適応性を増強することができる [0022] According to this method, the frequency band is distributed in a distributed manner using a multi-antenna characteristic, the Distributed—FDMA method, the Localized—FD MA method in which a frequency band is assigned locally, or the frequency band in a mixed manner. Assigned Hybrid—FDMA method can coexist, so that when channel characteristics change, it can be adapted to both low time fluctuation and high time fluctuation at the same time, and frequency diversity gain and time diversity gain can be adjusted. Since it can be obtained at the same time, the adaptability of the system can be enhanced
[0023] 本発明の検出方法の一つの態様は、送信装置が有する複数の送信アンテナごと に、分散的周波数帯域を割り当てる Distributed— FDMA方式、局所的周波数帯 域を割り当てる Localized— FDMA方式、又は、混合的周波数帯域を割り当てる Hy brid— FDMA方式のうち!、ずれか一つをそれぞれ用いて周波数が割り当てられた、 前記複数の送信アンテナから送信される信号を受信するステップと、前記受信信号
に対し、時空間逆フーリエ変換を行うことにより、前記受信信号を周波数領域から時 間領域に変換する変換ステップと、時間領域上で MIMO検出を行うことにより、前記 複数の送信アンテナからの送信信号を検出する検出ステップと、を含むようにした。 [0023] One aspect of the detection method of the present invention is a Distributed-FDMA scheme in which a distributed frequency band is allocated to each of a plurality of transmission antennas included in a transmission apparatus, a Localized-FDMA scheme in which a local frequency band is allocated, or Hybrid band for allocating a mixed frequency band—receiving signals transmitted from the plurality of transmitting antennas, each of which is assigned a frequency using one of the FDMA schemes, and the received signal On the other hand, a transform step for transforming the received signal from the frequency domain to the time domain by performing a space-time inverse Fourier transform, and a transmission signal from the plurality of transmit antennas by performing MIMO detection in the time domain. And a detecting step for detecting.
[0024] この方法によれば、分散的に周波数帯域を割り当てる Distributed— FDMA方式 、局所的に周波数帯域を割り当てる Localized— FDMA方式、又は、混合的に周波 数帯域を割り当てる Hybrid— FDMA方式が共存して、周波数領域上において重な り合った受信信号に対し、時空間逆フーリエ変換を行うことにより、受信信号を周波 数領域から時間領域に変換して、時間領域上で MIMO検出を行って、複数の送信 アンテナ力 の送信信号を検出することができるので、チャネル特性が変化する場合 において、低時間変動と高時間変動とに同時に適応することができ、また、周波数ダ ィバーシチゲインと時間ダイパーチゲインとを同時に得ることができるので、システム の適応性を増強することができる。 [0024] According to this method, a Distributed—FDMA system that allocates frequency bands in a distributed manner, a Localized—FDMA system that allocates frequency bands locally, or a Hybrid—FDMA system that allocates frequency bands in a mixed manner coexists. Thus, by performing a spatio-temporal inverse Fourier transform on the received signals that overlap in the frequency domain, the received signal is converted from the frequency domain to the time domain, and MIMO detection is performed in the time domain. Since it is possible to detect transmission signals with multiple transmit antenna forces, it is possible to adapt to both low and high time fluctuations when the channel characteristics change, and frequency diversity gain and time diversity gain Can be obtained at the same time, so the adaptability of the system can be enhanced.
発明の効果 The invention's effect
[0025] 本発明によれば、 MIMOシステムにお!/、て、周波数ダイバーシチゲインと時間ダイ バーシチゲインとを同時に得ることができる。 [0025] According to the present invention, it is possible to obtain frequency diversity gain and time diversity gain at the same time in a MIMO system.
図面の簡単な説明 Brief Description of Drawings
[0026] [図 1]従来の DFDMA方式の送信装置の要部構成を示すブロック図 [0026] [FIG. 1] A block diagram showing a main configuration of a conventional DFDMA transmission device
[図 2]従来の DFDMA方式の周波数特性を示す図 [Figure 2] Diagram showing frequency characteristics of conventional DFDMA system
[図 3]従来の LFDMA方式の送信装置の要部構成を示すブロック図 [Fig. 3] Block diagram showing the main configuration of a conventional LFDMA transmitter
[図 4]従来の LFDMA方式の周波数特性を示す図 [Figure 4] Diagram showing frequency characteristics of conventional LFDMA system
[図 5]従来の HFDMAの送信装置の要部構成を示すブロック図 FIG. 5 is a block diagram showing the main configuration of a conventional HFDMA transmitter.
[図 6]従来の HFDMAの周波数特性を示す図 [Figure 6] Diagram showing frequency characteristics of conventional HFDMA
[図 7]従来の DFDMA— MIMO送信装置の要部構成を示すブロック図 [Fig.7] Block diagram showing the main configuration of a conventional DFDMA-MIMO transmitter
[図 8]従来の LFDMA— MIMO送信装置の要部構成を示すブロック図 [Fig.8] Block diagram showing the main configuration of a conventional LFDMA-MIMO transmitter
[図 9]本発明の実施の形態 1に係る送信装置の要部構成を示すブロック図 FIG. 9 is a block diagram showing the main configuration of the transmitting apparatus according to Embodiment 1 of the present invention.
[図 10]実施の形態 1に係る分散一局所式アンテナ間混合 FDMA方式の周波数特性 を示す図 FIG. 10 is a diagram showing the frequency characteristics of a mixed FDMA scheme with distributed local antennas according to Embodiment 1.
[図 11]実施の形態 1に係る別の送信装置の要部構成を示すブロック図
[図 12]実施の形態 1に係る分散式一混合式 FDMA方式の周波数特性を示す図FIG. 11 is a block diagram showing the main configuration of another transmitting apparatus according to Embodiment 1. FIG. 12 is a diagram showing frequency characteristics of the distributed single-mix FDMA scheme according to the first embodiment.
[図 13]実施の形態 1に係る別の送信装置の要部構成を示すブロック図 FIG. 13 is a block diagram showing a main configuration of another transmitting apparatus according to Embodiment 1.
[図 14]実施の形態 1に係る局所式一混合式 FDMA方式の周波数特性を示す図 FIG. 14 is a diagram showing frequency characteristics of the local single mixed FDMA scheme according to the first embodiment.
[図 15]実施の形態 1に係る別の送信装置の要部構成を示すブロック図 FIG. 15 is a block diagram showing a main configuration of another transmitting apparatus according to Embodiment 1.
[図 16]実施の形態 1に係る混合式一混合式 FDMA方式の周波数特性を示す図 FIG. 16 is a diagram showing frequency characteristics of the mixed one-mix FDMA system according to the first embodiment.
[図 17]SINRの周波数特性と、各 SINRにおいて最適な MCSとの関係を示す図[Figure 17] Diagram showing the relationship between SINR frequency characteristics and optimum MCS for each SINR
[図 18]本発明の実施の形態 2に係る送信装置の要部構成を示すブロック図 FIG. 18 is a block diagram showing a main configuration of a transmitting apparatus according to Embodiment 2 of the present invention.
[図 19]実施の形態 2に係る送信装置の要部構成を示すブロック図 FIG. 19 is a block diagram showing a main configuration of a transmitting apparatus according to Embodiment 2.
[図 20]実施の形態 2に係るアンテナ間混合 FDMA方式の周波数特性を示す図 FIG. 20 is a diagram showing frequency characteristics of the inter-antenna mixed FDMA scheme according to Embodiment 2.
[図 21]実施の形態 2に係る別の送信装置の要部構成を示すブロック図 FIG. 21 is a block diagram showing a main configuration of another transmitting apparatus according to Embodiment 2.
[図 22]実施の形態 2に係るアンテナ間混合 FDMA方式の周波数特性及び電力特性 を示す図 FIG. 22 is a diagram showing frequency characteristics and power characteristics of the inter-antenna mixed FDMA scheme according to the second embodiment.
[図 23]本発明の実施の形態 3に係る受信装置の要部構成を示すブロック図 発明を実施するための最良の形態 FIG. 23 is a block diagram showing the main configuration of a receiving apparatus according to Embodiment 3 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 本発明の実施の形態に係るシステムは、複数の送信アンテナを備える送信装置及 び複数の受信アンテナを備える受信装置により構成される。 [0027] A system according to an embodiment of the present invention includes a transmission device including a plurality of transmission antennas and a reception device including a plurality of reception antennas.
[0028] 本発明では、各送信アンテナに異なる周波数分割方式を使用することができ、以下 では、これを「アンテナ間混合周波数分割方式 (又はアンテナ間混同 FDMA方式)」 という。送信装置は、例えば、一部の送信アンテナには、 DFDMA方式を割り当て、 他の一部のアンテナには、 LFDMA方式を割り当てる。これにより、送信装置のマル チアンテナ特性を利用し、送信装置において、分散的に周波数帯域を割り当てる Di stributedFDMA (DFDMA)方式及び局所的に周波数帯域を割り当てる Localize dFDMA (LFDMA)方式の特性を共存させることができる。チャネル特性が変化す ることを考慮すると、 DFDMA方式と LFDMA方式とが共存する送信装置は、低時 間変動システムと高時間変動システムとに同時に適応でき、また、周波数ダイバーシ チゲインと時間ダイバーシチゲインとを同時に提供できるので、システムの適応性を 増強することができる。 [0028] In the present invention, different frequency division schemes can be used for each transmission antenna. Hereinafter, this is referred to as "inter-antenna mixed frequency division scheme (or inter-antenna confusion FDMA scheme)". For example, the transmission apparatus allocates the DFDMA scheme to some transmission antennas and allocates the LFDMA scheme to other partial antennas. As a result, the characteristics of the distributed FDMA (DFDMA) system that allocates the frequency band in a distributed manner and the localized dFDMA (LFDMA) system that allocates the frequency band locally can coexist in the transmitting apparatus using the multi-antenna characteristics of the transmitting apparatus. Can do. Considering that the channel characteristics change, a transmitter in which the DFDMA and LFDMA systems coexist can be applied simultaneously to a low time fluctuation system and a high time fluctuation system, and frequency diversity gain and time diversity gain Can be provided at the same time, so the adaptability of the system can be enhanced.
[0029] 本発明では、アンテナ間混合周波数分割方式を提示する。以下、具体的に説明す
るように、信号系列は、本発明の混合周波数割り当て方法により、周波数割り当てが 行われた後、送信装置の複数の送信アンテナからそれぞれ送信される。受信側では 、各送信アンテナから送信されたノイズを含む信号を受信する。ノイズは白色ガウス 雑音と仮定する。各アンテナ上のチャネルフェージングは、レイリーフェージングに準 じ、アンテナ間のチャネルフェージングもそれぞれ独立しており、受信アンテナあるい は送信アンテナが異なれば、受信アンテナ上で、各アンテナが受信したノイズも独立 した分布となる。なお、信号の変調方式としては、各種の変調方式を採用してよい。 In the present invention, an inter-antenna mixed frequency division method is presented. Specific explanation is given below. As described above, the signal sequence is transmitted from each of the plurality of transmission antennas of the transmission apparatus after frequency allocation is performed by the mixed frequency allocation method of the present invention. On the receiving side, a signal including noise transmitted from each transmitting antenna is received. The noise is assumed to be white Gaussian noise. The channel fading on each antenna is independent of the channel fading between the antennas as well as the Rayleigh fading. If the receiving antenna or the transmitting antenna is different, the noise received by each antenna on the receiving antenna is also independent. Distribution. Various modulation schemes may be employed as the signal modulation scheme.
[0030] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0031] (実施の形態 1) [Embodiment 1]
( 1 ) DFDMA - LFDM A方式混在型 (1) DFDMA-LFDM A type mixed type
図 9は、本実施の形態 1に係る送信装置の要部構成を示すブロック図である。図 9 の送信装置 100は、 2つの送信アンテナを具備し、「アンテナ間混合周波数分割方 式」として、分散式一局所式周波数分割多元接続方式を用いて、周波数割り当てを 行う。 FIG. 9 is a block diagram showing a main configuration of the transmitting apparatus according to the first embodiment. The transmission apparatus 100 in FIG. 9 includes two transmission antennas, and performs frequency allocation using a distributed one-local frequency division multiple access scheme as an “inter-antenna mixed frequency division scheme”.
[0032] 図 9において、送信装置 100は、時空間処理部 110、 SZP変換 ·変調部 120— 1, 120— 2、 M点 FFT部 130— 1, 130— 2、 DFDMAマッピング部 140、 LFDMAマ ッビング部 150、 N点 IFFT部 160— 1, 160— 2、 CP付カロ. PZS変換部 170— 1、 1 70— 2、及び送信アンテナ 180— 1, 180— 2を備えて構成される。 In FIG. 9, a transmitter 100 includes a space-time processing unit 110, an SZP conversion / modulation unit 120-1, 120-2, an M point FFT unit 130-1, 130-2, a DFDMA mapping unit 140, an LFDMA matrix. It is configured to include a webbing unit 150, an N-point IFFT unit 160-1, 160-2, a CP-attached calorie PZS conversion unit 170-1, 170-2, and a transmission antenna 180-1, 180-2.
[0033] 時空間処理部 110は、送信データを SZP変換 ·変調部 120— 1, 120— 2に分配 する。 The space-time processing unit 110 distributes the transmission data to the SZP conversion / modulation units 120-1 and 120-2.
[0034] SZP変換'変調部 120— 1, 120— 2は、時空間処理部 110により分配された送信 データに対し、シリアル Zパラレル変換及び変調を施し、得られた変調信号をそれぞ れ M点 FFT咅 130— 1, 130— 2に出力する。 [0034] The SZP conversion 'modulation units 120-1 and 120-2 perform serial Z-parallel conversion and modulation on the transmission data distributed by the space-time processing unit 110, and each of the obtained modulated signals is M. Point Output to FFT 咅 130-1 and 130-2.
[0035] M点 FFT部 130— 1, 130— 2は、変調信号に対し高速フーリエ変換を施し周波数 領域信号に変換し、 M点 FFT部 130— 1は、高速フーリエ変換後の周波数領域信号 を DFDMAマッピング部 140に出力し、 M点 FFT部 130— 2は、高速フーリエ変換 後の周波数領域信号を LFDMAマッピング部 150に出力する。 [0035] The M-point FFT unit 130-1, 130-2 performs fast Fourier transform on the modulated signal to convert it to a frequency domain signal, and the M-point FFT unit 130-1 converts the frequency domain signal after the fast Fourier transform. The M point FFT unit 130-2 outputs the frequency domain signal after the fast Fourier transform to the LFDMA mapping unit 150.
[0036] DFDMAマッピング部 140は、 DistributedFDMA方式に基づいて、周波数領域
信号を各キャリア周波数ポイント上にマッピングする。具体的には、 DFDMAマツピン グ部 140は、図 10Aに示すように、周波数領域信号を各周波数ポイント上に一定間 隔に配置する。 [0036] The DFDMA mapping unit 140 is based on the DistributedFDMA method, and the frequency domain Map the signal onto each carrier frequency point. Specifically, as shown in FIG. 10A, the DFDMA mapping unit 140 arranges frequency domain signals at regular intervals on each frequency point.
[0037] LFDMAマッピング部 150は、 LocalizedFDMA方式に基づいて、周波数領域信 号を各キャリア周波数ポイント上にマッピングする。具体的には、 LFDMAマッピング 部 150は、図 10Bに示すように、周波数領域信号を、 N点 IFFT部 160— 2のある連 続する周波数ポイント上に連続して配置する。 [0037] LFDMA mapping section 150 maps a frequency domain signal onto each carrier frequency point based on the Localized FDMA scheme. Specifically, as shown in FIG. 10B, LFDMA mapping section 150 continuously arranges frequency domain signals on continuous frequency points with N-point IFFT section 160-2.
[0038] N点 IFFT部 160— 1, 160— 2は、 DFDMAマッピング部 140及び LFDMAマツピ ング部 150により各キャリア周波数ポイント上にマッピングされた周波数領域信号に 対し、逆高速フーリエ変換を施し、逆高速フーリエ変換後の時間領域信号を、 CP付 加 · PZS変換部 170- 1, 170- 2にそれぞれ出力する。 [0038] The N-point IFFT units 160-1 and 160-2 perform inverse fast Fourier transform on the frequency domain signals mapped on the respective carrier frequency points by the DFDMA mapping unit 140 and the LFDMA mapping unit 150, and perform inverse processing. The time domain signal after the fast Fourier transform is output to the CP-added PZS converter 170-1 and 170-2, respectively.
[0039] CP付加 'PZS変換部 170— 1, 170— 2は、時間領域信号に対し CPを付加し、 C P付加後の時間領域信号をパラレル Zシリアル変換して、送信アンテナ 180— 1, 18 0— 2を介してそれぞれ送信する。 [0039] CP addition 'PZS converter 170—1, 170—2 adds CP to the time domain signal, performs parallel Z-serial conversion on the time domain signal after CP addition, and transmits antenna 180—1, 18 0—Send via 2 respectively.
[0040] 以下、上述のように構成された送信装置 100の動作について説明する。 [0040] Hereinafter, the operation of transmitting apparatus 100 configured as described above will be described.
[0041] 送信アンテナ 180— 1は、分散式周波数割り当て方式を採り、 SZP変換'変調部 1 20— 1によって、シリアル Zパラレル変換及び変調が施された信号は、 M点 FFT部 1 30— 1によって、高速フーリエ変換される。高速フーリエ変換後の信号は、逆フーリ ェ変換前に、 DFDMAマッピング部 140によって、図 10Aに示すように、各周波数ポ イント上に一定間隔に配置される。 N点 IFFT部 160— 1では、各キャリア周波数ボイ ント上にマッピングされた周波数領域信号に対し、逆フーリエ変換が施され、 CP付加 •PZS変換部 170— 1によって、逆フーリエ変換後の信号に CPが付加され、 CP付 加後の信号は、ノラレル/シリアル変換された後、送信アンテナ 180— 1を介して送 信される。 [0041] The transmitting antenna 180-1 adopts a distributed frequency allocation method, and the signal subjected to serial Z parallel conversion and modulation by the SZP conversion 'modulation unit 120-1 is an M point FFT unit 1 30-1 By the fast Fourier transform. The signals after the fast Fourier transform are arranged at regular intervals on each frequency point as shown in FIG. 10A by the DFDMA mapping unit 140 before the inverse Fourier transform. N-point IFFT section 160-1 performs inverse Fourier transform on the frequency domain signal mapped on each carrier frequency point, and adds CP. • PZS transform section 170-1 converts the signal to the inverse Fourier transform signal. A CP is added, and the signal after the CP is subjected to normal / serial conversion and then transmitted via the transmitting antenna 180-1.
[0042] 送信アンテナ 180— 2は、局所式周波数割り当て方式を採り、高速フーリエ変換後 の周波数領域信号は、逆フーリエ変換前に、図 10Bに示すように、 N点 IFFT部 160 2のある連続する周波数ポイント上に連続して配置される。 [0042] Transmitting antenna 180-2 employs a local frequency allocation method, and the frequency domain signal after the fast Fourier transform is a continuous signal having an N-point IFFT section 1602, as shown in FIG. 10B, before the inverse Fourier transform. It is arranged continuously on the frequency point to be.
[0043] このようにして、送信アンテナ 180— 1からは、 DistributedFDMA方式による変調
信号が出力され、送信アンテナ 180— 2からは、 LocalizedFDMA方式による変調 信号が出力される。図 10Cは、通信相手の受信装置において受信される受信信号 の周波数特性を示す。 [0043] In this way, the transmission antenna 180-1 modulates with the DistributedFDMA method. A signal is output, and a modulated signal by the Localized FDMA system is output from the transmitting antenna 180-2. Fig. 10C shows the frequency characteristics of the received signal received at the receiving device of the communication partner.
[0044] このように、送信装置 100のマルチアンテナ特性を利用し、送信装置 100において DFDMA方式と LFDMA方式とが同時に存在するようにした。したがって、 DFDM Aマッピング部 140と LFDMAマッピング部 150と力 マッピング先の周波数ポイント の大部分が互いに重ならないようにすることにより、図 10に示すように、各送信アンテ ナごとの送信信号が、周波数領域上で大部分が互いに重なり合わないようにすること ができる。この結果、チャネル特性が変化する場合においても、送信装置 100は、時 間変動が低いシステムと時間変動が高いシステムとの双方に同時に適応でき、また、 周波数ダイバーシチゲインと時間ダイバーシチゲインとを同時に提供できるので、シ ステムの適応性を増強することができる。 As described above, the multi-antenna characteristics of the transmission apparatus 100 are used so that the DFDMA scheme and the LFDMA scheme exist at the same time in the transmission apparatus 100. Therefore, by preventing most of the DFDM A mapping unit 140, LFDMA mapping unit 150, and force mapping destination frequency points from overlapping each other, as shown in FIG. It is possible to prevent most of the areas from overlapping each other. As a result, even when the channel characteristics change, the transmitter 100 can simultaneously adapt to both a system with low time fluctuation and a system with high time fluctuation, and simultaneously provides frequency diversity gain and time diversity gain. As a result, the adaptability of the system can be enhanced.
[0045] なお、検出時には、周波数ポイントが重なり合った部分に対しては、それぞれの周 波数ごとに、 MIMO検出方法を用いて、各周波数ポイント上の混ざり合ったユーザ 信号を分離する。 [0045] At the time of detection, a mixed user signal on each frequency point is separated for each frequency point using a MIMO detection method for a portion where the frequency points overlap.
[0046] ( 2) DFDMA HFDM A方式混在型 [0046] (2) DFDMA HFDM A type mixed type
図 11は、本実施の形態に係る送信装置の別の要部構成を示すブロック図である。 なお、図 11において、図 9と同一構成部分には同一符号を付して説明を省略する。 図 11の送信装置 200は、 2つの送信アンテナを具備し、アンテナ間混合周波数分割 方式に、分散式一混合式周波数分割多元接続方式を用いて、周波数割り当てを行 FIG. 11 is a block diagram showing another main configuration of the transmitting apparatus according to the present embodiment. In FIG. 11, the same components as those in FIG. Transmitting apparatus 200 in FIG. 11 includes two transmitting antennas, and performs frequency allocation by using a distributed single-mixing frequency division multiple access method as a mixed frequency division method between antennas.
[0047] 図 11の送信装置 200は、図 9の送信装置 100に対し、 LFDMAマッピング部 150 を削除し、 HFDMAマッピング部 210を追加した構成を採る。 The transmission apparatus 200 in FIG. 11 adopts a configuration in which the LFDMA mapping unit 150 is deleted and the HFDMA mapping unit 210 is added to the transmission apparatus 100 in FIG.
[0048] DFDMAマッピング部 140は、 DistributedFDMA方式に基づいて、図 10Aと同 様に、図 12Aに示すように、周波数領域信号を各周波数ポイント上に一定間隔に配 置する。 [0048] Based on the DistributedFDMA scheme, the DFDMA mapping unit 140 arranges frequency domain signals at regular intervals on each frequency point, as shown in FIG. 12A, as in FIG. 10A.
[0049] HFDMAマッピング部 210は、 HybridFDMA方式に基づいて、フーリエ変換後の 周波数領域信号を、図 12Bに示すように、束のなかでは間隔が狭ぐ束と束との間の
間隔は離れるように、周波数ポイント上に配置する。 [0049] Based on the HybridFDMA scheme, the HFDMA mapping unit 210 converts the frequency domain signal after Fourier transform between a bundle having a narrow interval between bundles, as shown in FIG. 12B. Place the frequency points on the frequency points so that they are separated.
[0050] 以下、上述のように構成された送信装置 200の動作について説明する。 [0050] Hereinafter, the operation of transmitting apparatus 200 configured as described above will be described.
[0051] 送信アンテナ 180— 1は、分散式周波数割り当て方式を採る。 SZP変換'変調部 1 20— 1によって、シリアル Zパラレル変換及び変調が施された信号は、 M点 FFT部 1 30— 1によって、高速フーリエ変換される。高速フーリエ変換後の信号は、逆フーリ ェ変換前に、 DFDMAマッピング部 140によって、図 12Aに示すように、一定間隔で 各周波数ポイント上に配置される。 N点 IFFT部 160—1では、各キャリア周波数ボイ ント上にマッピングされた周波数領域信号に対し、逆フーリエ変換が施され、 CP付加 •PZS変換部 170— 1によって、逆フーリエ変換後の信号に CPが付加され、 CP付 加後の信号は、ノラレル/シリアル変換された後、送信アンテナ 180— 1を介して送 信される。 [0051] Transmitting antenna 180-1 employs a distributed frequency allocation method. The signal subjected to serial Z parallel conversion and modulation by the SZP conversion 'modulation unit 120-1 is fast Fourier transformed by the M-point FFT unit 130-1. The signal after the fast Fourier transform is arranged on each frequency point at regular intervals as shown in FIG. 12A by the DFDMA mapping unit 140 before the inverse Fourier transform. N-point IFFT section 160-1 performs inverse Fourier transform on the frequency domain signal mapped on each carrier frequency point, and adds CP. • PZS transform section 170-1 converts the signal to the inverse Fourier transform signal. A CP is added, and the signal after the CP is subjected to normal / serial conversion and then transmitted via the transmitting antenna 180-1.
[0052] 送信アンテナ 180— 2は、混合式周波数割り当て方式を採る。高速フーリエ変換後 の周波数領域信号は、逆フーリエ変換前に、図 12Bに示すように、束のなかでは間 隔が狭ぐ束と束との間の間隔は離れるように、周波数ポイント上に並べられる。 [0052] The transmitting antenna 180-2 employs a mixed frequency allocation method. The frequency domain signals after the fast Fourier transform are arranged on the frequency points before the inverse Fourier transform, as shown in Fig. 12B, so that the distance between the bundles that are narrow in the bundle is separated. It is done.
[0053] このようにして、送信アンテナ 180— 1からは、 DistributedFDMA方式による変調 信号が出力され、送信アンテナ 180— 2からは、 HybridFDMA方式による変調信号 が出力される。図 12Cは、通信相手の受信装置において受信される受信信号の周 波数特性を示す。 [0053] In this way, a modulated signal based on the DistributedFDMA scheme is output from the transmitting antenna 180-1, and a modulated signal based on the HybridFDMA scheme is output from the transmitting antenna 180-2. Fig. 12C shows the frequency characteristics of the received signal received at the receiving device of the communication partner.
[0054] このように、送信装置 200のマルチアンテナ特性を利用し、送信装置 200において DFDMA方式と HFDMA方式とが同時に存在するようにした。したがって、 DFDM Aマッピング部 140と HFDMAマッピング部 210と力 マッピング先の周波数ポイント の大部分が互いに重ならないようにすることにより、図 12に示すように、各送信アンテ ナごとの送信信号が、周波数領域上で大部分が互いに重なり合わないようにすること ができる。この結果、チャネル特性が変化する場合においても、送信装置 200は、時 間変動が低いシステムと時間変動が高いシステムとの双方に同時に適応でき、また、 周波数ダイバーシチゲインと時間ダイバーシチゲインとを同時に提供できるので、シ ステムの適応性を増強することができる。 As described above, the multi-antenna characteristics of the transmission apparatus 200 are used so that the DFDMA scheme and the HFDMA scheme exist simultaneously in the transmission apparatus 200. Therefore, by preventing most of the frequency points of the DFDM A mapping unit 140, the HFDMA mapping unit 210, and the force mapping destination from overlapping each other, as shown in FIG. It is possible to prevent most of the areas from overlapping each other. As a result, even when the channel characteristics change, the transmitter 200 can simultaneously adapt to both a system with low time fluctuation and a system with high time fluctuation, and simultaneously provides frequency diversity gain and time diversity gain. As a result, the adaptability of the system can be enhanced.
[0055] (3) LFDMA— HFDMA方式混在型
図 13は、本実施の形態に係る送信装置の別の要部構成を示すブロック図である。 なお、図 13において、図 9と同一構成部分には同一符号を付して説明を省略する。 図 13の送信装置 300は、 2つの送信アンテナを具備し、アンテナ間混合周波数分割 方式に、局所式一混合式周波数分割多元接続方式を用いて、周波数割り当てを行 [0055] (3) LFDMA—HFDMA mixed type FIG. 13 is a block diagram showing another main configuration of the transmitting apparatus according to the present embodiment. In FIG. 13, the same components as in FIG. Transmitting apparatus 300 in FIG. 13 includes two transmitting antennas, and performs frequency allocation using a local mixed frequency division multiple access scheme as a mixed frequency division scheme between antennas.
[0056] 図 13の送信装置 300は、図 9の送信装置 100に対し、 DFDMAマッピング部 140 を削除し、 HFDMAマッピング部 310を追加した構成を採る。 The transmission apparatus 300 in FIG. 13 adopts a configuration in which the DFDMA mapping unit 140 is deleted and the HFDMA mapping unit 310 is added to the transmission apparatus 100 in FIG.
[0057] LFDMAマッピング部 150は、 LocalizedFDMA方式に基づいて、図 10Bと同様 に、図 14Aに示すように、周波数領域信号を、 N点 IFFT部 160— 2のある連続する 周波数ポイント上に連続して配置する。 [0057] Based on the Localized FDMA scheme, the LFDMA mapping unit 150 continues the frequency domain signal on the continuous frequency points with the N-point IFFT unit 160-2 as shown in FIG. 14A, as in FIG. 10B. Arrange.
[0058] HFDMAマッピング部310は、 HybridFDMA方式に基づいて、フーリエ変換の N 個の出力の各周波数を、図 14Bに示すように、束のなかでは間隔が狭ぐ束と束との 間の間隔が離れるように、周波数ポイント上に配置する。 [0058] Based on the HybridFDMA scheme, the HFDMA mapping unit 310 converts the frequencies of the N outputs of the Fourier transform between the bundles and the bundles that are narrow in the bundle, as shown in FIG. 14B. Place on the frequency point so that
[0059] 以下、上述のように構成された送信装置 300の動作について説明する。 [0059] Hereinafter, the operation of transmitting apparatus 300 configured as described above will be described.
[0060] 送信アンテナ 180— 1は、混合式周波数割り当て方式を採る。高速フーリエ変換後 の周波数領域信号は、逆フーリエ変換を行う前に、図 14Aに示すように、束のなかで は間隔が狭ぐ束と束との間の間隔は離れるように、周波数ポイント上に並べられる。 [0060] Transmitting antenna 180-1 employs a mixed frequency allocation method. As shown in Fig. 14A, the frequency domain signal after the fast Fourier transform is placed on the frequency point so that the distance between the bundles that are narrow in the bundle is separated as shown in Fig. 14A. Are lined up.
[0061] 送信アンテナ 180— 2は、局所式周波数割り当て方式を採る。 SZP変換'変調部 1 20— 2によって、シリアル Zパラレル変換及び変調が施された信号は、 M点 FFT部 1 30— 2によって、高速フーリエ変換される。高速フーリエ変換後の信号は、逆フーリ ェ変換前に、 LFDMAマッピング部 150によって、図 14Bに示すように、 N点 IFFT 部 160— 2のある連続する周波数ポイント上に連続して配置される。 N点 IFFT部 16 0— 2では、各キャリア周波数ポイント上にマッピングされた周波数領域信号に対し、 逆フーリエ変換が施され、 CP付加 'PZS変換部 170— 2によって、逆フーリエ変換 後の信号に CPが付加され、 CP付加後の信号が、パラレル Zシリアル変換された後、 送信アンテナ 180 - 2を介して送信される。 [0061] The transmitting antenna 180-2 adopts a local frequency allocation method. The signal subjected to serial Z parallel conversion and modulation by the SZP conversion 'modulation unit 120-2 is subjected to fast Fourier transform by the M-point FFT unit 130-2. The signal after the fast Fourier transform is continuously arranged by the LFDMA mapping unit 150 on the continuous frequency points with the N-point IFFT unit 160-2 as shown in FIG. 14B before the inverse Fourier transform. N-point IFFT unit 160-2 performs inverse Fourier transform on the frequency domain signal mapped on each carrier frequency point, and CP addition 'PZS transform unit 170-2 converts the signal to the signal after inverse Fourier transform. CP is added, and the signal after CP is parallel-Z-serial converted, and then transmitted via transmit antenna 180-2.
[0062] このようにして、送信アンテナ 180— 1からは、 HybridFDMA方式による変調信号 が出力され、送信アンテナ 180— 2からは、 LocalizedFDMA方式による変調信号
が出力される。図 14Cは、通信相手の受信装置において受信される受信信号の周 波数特性を示す。 [0062] In this manner, a modulated signal based on the HybridFDMA scheme is output from the transmitting antenna 180-1 and a modulated signal based on the Localized FDMA scheme is output from the transmitting antenna 180-2. Is output. Fig. 14C shows the frequency characteristics of the received signal received at the receiving device of the communication partner.
[0063] このように、送信装置 300のマルチアンテナ特性を利用し、送信装置 300において LFDMA方式と HFDMAマッピング方式とが同時に存在するようにした。したがって 、 HFDMAマッピング部 310と LFDMAマッピング部 150と力 マッピング先の周波 数ポイントの大部分が互いに重ならないようにすることにより、図 14に示すように、各 送信アンテナごとの送信信号が、周波数領域上で大部分が互いに重なり合わないよ うにすることができ、これにより、チャネル特性が変化する場合においても、送信装置 300は、時間変動が低いシステムと時間変動が高いシステムとの双方に同時に適応 でき、周波数ダイバーシチゲインと時間ダイバーシチゲインとを同時に提供できるの で、システムの適応性を増強することができる。 In this way, the multi-antenna characteristics of the transmission apparatus 300 are used so that the LFDMA scheme and the HFDMA mapping scheme exist at the same time in the transmission apparatus 300. Therefore, by preventing most of the frequency points of the HFDMA mapping unit 310, the LFDMA mapping unit 150, and the force mapping destination from overlapping each other, as shown in FIG. Most of the above can be non-overlapping so that the transmitter 300 can adapt simultaneously to both low and high time variation systems, even when channel characteristics change. In addition, since frequency diversity gain and time diversity gain can be provided simultaneously, the adaptability of the system can be enhanced.
[0064] (4) HFDMA HFDMA方式混在型 [0064] (4) HFDMA HFDMA mixed type
図 15は、本実施の形態に係る送信装置の別の要部構成を示すブロック図である。 なお、図 15において、図 9と同一構成部分には同一符号を付して説明を省略する。 図 15の送信装置 400は、 2つの送信アンテナを具備し、アンテナ間混合周波数分割 方式に、混合式一混合式アンテナ間混合周波数多元接続方式を用いて ヽる。 FIG. 15 is a block diagram showing another main configuration of the transmitting apparatus according to the present embodiment. In FIG. 15, the same components as those in FIG. The transmission apparatus 400 in FIG. 15 includes two transmission antennas, and uses a mixed single-mixing mixed frequency multiple access method between antennas as a mixed frequency division method.
[0065] 図 15の送信装置 400は、図 9の送信装置 100に対し、 DFDMAマッピング部 140 及び LFDMAマッピング部 150を削除し、 HFDMAマッピング部 410, 420を追カロし た構成を採る。 The transmitter 400 in FIG. 15 adopts a configuration in which the DFDMA mapping unit 140 and the LFDMA mapping unit 150 are deleted and the HFDMA mapping units 410 and 420 are added to the transmitter 100 in FIG.
[0066] HFDMAマッピング部 410, 420は、 HybridFDMA方式に基づいて、後の周波 数領域信号を、図 16A,図 16Bに示すように、束のなかでは間隔が狭ぐ束と束との 間の間隔は離れるように、周波数ポイント上に配置する。 [0066] Based on the HybridFDMA scheme, the HFDMA mapping units 410 and 420 convert the subsequent frequency domain signals between the bundles having a narrow interval between the bundles as shown in FIGS. 16A and 16B. Place the frequency points on the frequency points so that they are separated.
[0067] 以下、上述のように構成された送信装置 400の動作について説明する。 Hereinafter, the operation of the transmission apparatus 400 configured as described above will be described.
[0068] 送信アンテナ 180— 1は、混合式周波数割り当て方式を採る。 SZP変換'変調部 1 20— 1によって、シリアル Zパラレル変換及び変調が施された信号は、 M点 FFT部 1 30— 1によって、高速フーリエ変換される。高速フーリエ変換後の信号は、逆フーリ ェ変換前に、 HFDMAマッピング部 410によって、図 16Aに示すように、束のなかで は間隔が狭ぐ束と束との間の間隔は離れるように、周波数ポイント上に並べられる。
N点 IFFT部 160— 1では、各キャリア周波数ポイント上にマッピングされた周波数領 域信号に対し、逆フーリエ変換が施され、 CP付加 'PZS変換部 170— 1によって、 逆フーリエ変換後の信号に CPが付加され、 CP付加後の信号は、ノ ラレル Zシリア ル変換された後、送信アンテナ 180— 1を介して送信される。 [0068] Transmitting antenna 180-1 employs a mixed frequency allocation method. The signal subjected to serial Z parallel conversion and modulation by the SZP conversion 'modulation unit 120-1 is fast Fourier transformed by the M-point FFT unit 130-1. As shown in FIG. 16A, the signal after the fast Fourier transform is separated by the HFDMA mapping unit 410 before the inverse Fourier transform so that the interval between the bundles in which the interval is narrow is separated as shown in FIG. 16A. Arranged on the frequency points. N-point IFFT unit 160-1 performs inverse Fourier transform on the frequency domain signal mapped on each carrier frequency point, and CP addition 'PZS transform unit 170-1 converts the signal to the signal after inverse Fourier transform. CP is added, and the signal after CP is converted to normal Z serial, and then transmitted via transmit antenna 180-1.
[0069] 送信アンテナ 180— 2は、送信アンテナ 180— 1と同様に、混合式周波数割り当て 方式を採る。高速フーリエ変換後の周波数領域信号は、逆フーリエ変換前に、図 16 Bに示すように、束のなかでは間隔が狭ぐ束と束との間の間隔は離れるように、周波 数ポイント上に並べられる。 [0069] The transmission antenna 180-2 adopts a mixed frequency allocation method in the same manner as the transmission antenna 180-1. As shown in Fig. 16B, the frequency domain signal after the fast Fourier transform is placed on the frequency point so that the distance between the bundles that are narrow in the bundle is separated, as shown in Fig. 16B. Are lined up.
[0070] このようにして、送信アンテナ 180— 1, 180— 2力ら、 HybridFDMA方式による変 調信号が出力される。図 16Cは、通信相手の受信装置において受信される受信信 号の周波数特性を示す。 [0070] In this way, modulation signals by the HybridFDMA method are output from the transmitting antennas 180-1, 180-2, and the like. Fig. 16C shows the frequency characteristics of the received signal received at the receiving device of the communication partner.
[0071] このように、送信装置 400のマルチアンテナ特性を利用し、送信装置 400において HFDMA方式を用いて周波数を割り当てるようにした。したがって、 HFDMAマツピ ング部 410と HFDMAマッピング部 420とが、マッピング先の周波数ポイントの大部 分が互いに重ならないようにすることにより、図 16に示すように、各送信アンテナごと の送信信号が、周波数領域上で大部分が互 ヽに重なり合わな 、ようにすることがで き、これにより、チャネル特性が変化する場合においても、送信装置 400は、時間変 動が低いシステムと時間変動が高いシステムとの双方に同時に適応でき、また、周波 数ダイバーシチゲインと時間ダイバーシチゲインを同時に提供できるので、システム の適応性を増強することができる。 As described above, the multi-antenna characteristics of the transmission apparatus 400 are used, and the transmission apparatus 400 uses the HFDMA scheme to assign frequencies. Therefore, the HFDMA mapping unit 410 and the HFDMA mapping unit 420 prevent most of the mapping destination frequency points from overlapping each other, so that the transmission signal for each transmission antenna is as shown in FIG. In the frequency domain, most of them do not overlap each other, so that even when the channel characteristics change, the transmitter 400 has a low time fluctuation system and a high time fluctuation. The system can be adapted to both the system and the frequency diversity gain and the time diversity gain can be provided at the same time, thereby enhancing the adaptability of the system.
[0072] 以上のように、本実施の形態によれば、送信装置は、複数の送信アンテナを有し、 送信アンテナごとの送信信号が、周波数領域上で大部分互いに重なり合わないよう に、送信アンテナごとに、分散的周波数帯域を割り当てる Distributed— FDMA方 式、局所的周波数帯域を割り当てる Localized— FDMA方式、又は、混合的周波 数帯域を割り当てる Hybrid— FDMA方式のうち!、ずれか一つをそれぞれ用いて、 周波数を割り当てるようにしたので、この結果、周波数ダイバーシチゲインと時空間ダ ィバーシチゲインとを同時に得ることができる。 [0072] As described above, according to the present embodiment, the transmission apparatus has a plurality of transmission antennas, and transmission signals for each transmission antenna are transmitted so as not to overlap each other in the frequency domain. Distributed—FDMA method that allocates a distributed frequency band for each antenna, Localized—FDMA method that allocates a local frequency band, or Hybrid—FDMA method that allocates a mixed frequency band. As a result, frequency diversity gain and spatio-temporal diversity gain can be obtained simultaneously.
[0073] なお、局所式、分散式、混合式を採用する送信アンテナ数は、ユーザの移動性及
びアンテナの相関性に基づいて、決定される。これにより、チャネル特性の変化に応 じて、周波数帯域を選択することができ、周波数ダイバーシチゲインと時間ダイバー シチゲインとを確実に得ることができる。 [0073] Note that the number of transmission antennas adopting the local formula, distributed formula, and mixed formula depends on the mobility of the user. And the antenna correlation. As a result, the frequency band can be selected according to the change in channel characteristics, and the frequency diversity gain and the time diversity gain can be reliably obtained.
[0074] (実施の形態 2) [Embodiment 2]
無線環境においては、周波数が異なると、信号対干渉雑音比(SINR: Signal to Int erference Noise Ratio)も異なる。図 17に、 SINRの周波数特'性と、各 SINRにおいて 最適な変調方式や符号化率(MCS : Modulation and Coding Scheme)との関係を示 す。同図から分力るように、周波数帯域によって、 SINRは大きく変動する。したがつ て、 SINRが周波数帯域によって異なるため、最適な MCSは、周波数帯域ごとに異 なることになる。 MIMOシステムでは、各アンテナのチャネルフェージングの独立性 が高いので、各アンテナの伝送レートや MCS力 各アンテナごとに異なるようにして もよい。そこで、本実施の形態に係る送信装置は、周波数ごとの SINRの違いに基づ いて、周波数ごとに異なる伝送レートや MCSを選択する。 In a wireless environment, signal-to-interference noise ratio (SINR) varies with frequency. Figure 17 shows the relationship between the frequency characteristics of SINR and the optimal modulation scheme and coding rate (MCS: Modulation and Coding Scheme) for each SINR. As shown in the figure, SINR varies greatly depending on the frequency band. Therefore, since the SINR differs depending on the frequency band, the optimal MCS will differ for each frequency band. In MIMO systems, channel fading of each antenna is highly independent, so the transmission rate and MCS power of each antenna may be different for each antenna. Therefore, the transmission apparatus according to the present embodiment selects a different transmission rate or MCS for each frequency based on the difference in SINR for each frequency.
[0075] (1)伝送レート [0075] (1) Transmission rate
以下では、 2つの送信アンテナ 580—1, 580— 2力 同一の変調方式で、異なる伝 送レートのビットストリームを送信する場合について説明する。 In the following, a case will be described in which two transmission antennas 580-1 and 580-2 have the same modulation scheme and transmit bit streams of different transmission rates.
[0076] 図 18は、本実施の形態 2に係る送信装置 500の要部構成を示すブロック図である 。図 18の送信装置 500は、時空間処理部 510、 SZP変換 ·変調部 520— 1, 520— 2、 Ml点 FFT部 530— 1、 M2点 FFT部 530— 2、 HFDMAIマッピング部 540、 HF DMAIIマッピング部 550、 N1点 IFFT部 560— 1、 N2点 IFFT部 560— 2、 CP付カロ •PZS変換部 570— 1、 570— 2、及び送信アンテナ 580— 1, 580— 2を備えて構 成される。 FIG. 18 is a block diagram showing a main configuration of transmitting apparatus 500 according to Embodiment 2. 18 includes a spatio-temporal processing unit 510, SZP conversion / modulation unit 520-1, 520-2, Ml point FFT unit 530-1, M2 point FFT unit 530-2, HFDMAI mapping unit 540, HF DMAII. Mapping unit 550, N1 point IFFT unit 560-1, N2 point IFFT unit 560-2, Cal with CP • PZS conversion unit 570-1, 570-2, and transmission antennas 580-1, 580-2 Is done.
[0077] 時空間処理部 510は、信号に対し時空間処理を行 、、アンテナのフ ージング特 性に基づいて、各送信アンテナごとに異なる伝送レートのデータを割り当てる。なお、 以下では、送信アンテナ 580— 1の伝送レートが、送信アンテナ 580— 2の伝送レー トに比べ高いとして説明する。 [0077] The spatio-temporal processing unit 510 performs spatio-temporal processing on the signal, and allocates data of a different transmission rate for each transmission antenna based on the fading characteristics of the antenna. In the following description, it is assumed that the transmission rate of transmission antenna 580-1 is higher than the transmission rate of transmission antenna 580-2.
[0078] SZP変換 ·変調部 520— 1, 520— 2は、時空間処理部 510により分配された送信 データに対し、シリアル Zパラレル変換及び変調を施し、得られた変調信号をそれぞ
れ Ml点 FFT部 530—1, 1^2点 丁部530— 2に出カする。 [0078] The SZP conversion / modulation units 520-1 and 520-2 perform serial Z-parallel conversion and modulation on the transmission data distributed by the space-time processing unit 510, and each of the obtained modulated signals. Output Ml point FFT section 530-1, 1 ^ 2 point Pick section 530-2.
[0079] Ml点 FFT部 530— 1, M2点 FFT部 530— 2は、変調信号に対し高速フーリエ変 換を施し周波数領域信号に変換し、 Ml点 FFT部 530— 1は、高速フーリエ変換後 の周波数領域信号を HFDMAIマッピング部 540に出力し、 M2点 FFT部 530— 2 は、高速フーリエ変換後の周波数領域信号を HFDMAIIマッピング部 550に出力す る。 [0079] Ml point FFT unit 530-1 and M2 point FFT unit 530-2 perform fast Fourier transform on the modulated signal and convert it to frequency domain signal, and Ml point FFT unit 530-1 performs fast Fourier transform The frequency domain signal is output to the HFDMAI mapping unit 540, and the M2 point FFT unit 530-2 outputs the frequency domain signal after the fast Fourier transform to the HFDMAII mapping unit 550.
[0080] HFDMAIマッピング部 540, HFDMAIIマッピング部 550は、 Ml点 FFT部 530 [0080] HFDMAI mapping unit 540, HFDMAII mapping unit 550 are Ml point FFT unit 530
1、 M2点 FFT部 530— 2から出力される各周波数領域信号を DFDMA、 LFDM A、 HFDMAのいずれか一つの方法により、対応するキャリアに割り当てる。なお、送 信アンテナ 580— 1の伝送レートは、送信アンテナ 580— 2の伝送レートより大きいの で、送信アンテナ 580— 1に割り当てるキャリア数は、送信アンテナ 580— 2に割り当 てるキャリア数より多い。 1, M2 point FFT section 530-2 assigns each frequency domain signal output to the corresponding carrier by any one of DFDMA, LFDM A, and HFDMA. Since the transmission rate of transmission antenna 580-1 is larger than the transmission rate of transmission antenna 580-2, the number of carriers assigned to transmission antenna 580-1 is larger than the number of carriers assigned to transmission antenna 580-2. .
[0081] N1点 IFFT部 560— 1、 N2^JFFT¾560- 2«, HFDMAIマッピング部 540及 び HFDMAIIマッピング部 550により、各キャリア周波数ポイント上にマッピングされ た周波数領域信号に対し、逆高速フーリエ変換を施し、逆高速フーリエ変換後の時 間領域信号を、 CP付加 'PZS変換部 570— 1, 570— 2に出力する。 [0081] N1-point IFFT section 560-1, N2 ^ JFFT¾560-2 «, HFDMAI mapping section 540 and HFDMAII mapping section 550 perform inverse fast Fourier transform on the frequency domain signal mapped on each carrier frequency point The time domain signal after inverse fast Fourier transform is output to the CP-added 'PZS converters 570-1 and 570-2.
[0082] CP付加 'PZS変換部 570— 1, 570— 2は、時間領域信号に対し CPを付加し、 C P付加後の時間領域信号をパラレル Zシリアル変換して、送信アンテナ 580— 1, 58 0— 2を介してそれぞれ送信する。 [0082] CP addition 'PZS converters 570-1, 1, 570-2 add CP to the time domain signal, perform parallel Z-serial conversion on the time domain signal after CP addition, and transmit antennas 580-1, 58 0—Send via 2 respectively.
[0083] 以下、上述のように構成された送信装置 500の動作について説明する。 Hereinafter, the operation of transmitting apparatus 500 configured as described above will be described.
[0084] 時空間処理部 510によって、信号に対し時空間処理が施され、アンテナのフェージ ング特性に基づいて、各送信アンテナごとに異なる伝送レートのデータが割り当てら れる。 The space-time processing unit 510 performs space-time processing on the signal, and data having a different transmission rate is assigned to each transmission antenna based on the fading characteristics of the antenna.
[0085] 時空間処理部 510により割り当てられたデータは、 SZP変換 ·変調部 520— 1によ つて、シリアル Zパラレル変換及び変調が施された後、 Ml点 FFT部 530— 1によつ て、高速フーリエ変換される。 Ml点 FFT部 530— 1から出力される各周波数領域信 号は、逆フーリエ変換前に、 HFDMAIマッピング部 540によって、 DFDMA、 LFD MA、 HFDMAのいずれか一つにより対応するキャリアに割り当てられる。なお、送
信アンテナ 580— 1の伝送レートは、送信アンテナ 580— 2より大きいので、送信アン テナ 580— 1に割り当てられるキャリアは、送信アンテナ 580 - 2に割り当てられるキ ャリアより多い。 [0085] The data allocated by the spatio-temporal processing unit 510 is subjected to serial Z-parallel conversion and modulation by the SZP conversion / modulation unit 520-1, and then the Ml point FFT unit 530-1. Fast Fourier transform. Each frequency domain signal output from the Ml-point FFT unit 530-1 is assigned to the corresponding carrier by one of DFDMA, LFD MA, and HFDMA by the HFDMAI mapping unit 540 before the inverse Fourier transform. In addition, send Since the transmission rate of the transmission antenna 580-1 is larger than that of the transmission antenna 580-2, the carrier allocated to the transmission antenna 580-1 is larger than the carrier allocated to the transmission antenna 580-2.
[0086] 時空間処理部 510により割り当てられたデータは、 SZP変換 ·変調部 520— 2によ つて、シリアル Zパラレル変換及び変調が施された後、 M2点 FFT部 530— 2によつ て、高速フーリエ変換される。 M2点 FFT部 530— 2から出力される各周波数領域信 号は、逆フーリエ変換前に、 HFDMAIIマッピング部 550によって、 DFDMA、 LFD MA、 HFDMAのいずれか一つにより対応するキャリアに割り当てられる。 [0086] The data allocated by the spatio-temporal processing unit 510 is subjected to serial Z-parallel conversion and modulation by the SZP conversion / modulation unit 520-2, and then the M2 point FFT unit 530-2. Fast Fourier transform. Each frequency domain signal output from the M2 point FFT unit 530-2 is assigned to the corresponding carrier by one of DFDMA, LFD MA, and HFDMA by the HFDMAII mapping unit 550 before the inverse Fourier transform.
[0087] そして、 N1点 IFFT部 560— 1、 N2点 IFFT部 560— 2〖こよって、各キャリア周波数 ポイント上にマッピングされた周波数領域信号に対し、逆高速フーリエ変換が施され 、逆高速フーリエ変換後の時間領域信号は、 CP付加 'PZS変換部 570— 1, 570- 2に出力される。 CP付加 'PZS変換部 570— 1, 570— 2では、時間領域信号に対 し CPが付加され、 CP付加後の信号は、ノ ラレル/シリアル変換された後、送信アン テナ 580— 1, 580— 2を介して送信される。 [0087] Then, the N1-point IFFT section 560-1 and the N2-point IFFT section 560-2 are subjected to inverse fast Fourier transform on the frequency domain signal mapped on each carrier frequency point, and the inverse fast Fourier transform is performed. The converted time domain signal is output to the CP-added 'PZS converter 570-1, 570-2. CP addition 'PZS converter 570—1, 570—2 adds a CP to the time domain signal, and after normalization / serial conversion of the signal after CP addition, the transmission antenna 580—1, 580 — Sent via 2.
[0088] (2) MCS [0088] (2) MCS
次に、 2つの送信アンテナ 580— 1, 580— 2力 同じ伝送レートのビットストリームを 、異なる変調方式で送信する場合について説明する。例えば、送信アンテナ 580— 1力 QPSKを選択し、送信アンテナ 580— 2が、 8PSKを選択すると、伝送レートが 同一の場合、送信アンテナ 580— 1の占有周波数帯域は、送信アンテナ 580— 2の 占有周波数帯域の 2倍となる。これにより、受信側における受信信号は、一部の周波 数ポイントで混じり合う現象を示す。このようなシステムも、混合周波数分割システム の一種といえる。 Next, the case where two transmission antennas 580-1, 580-2 have the same transmission rate and are transmitted with different modulation schemes will be described. For example, if transmit antenna 580-1 power QPSK is selected, and transmit antenna 580-2 is selected 8PSK, and the transmission rate is the same, the occupied frequency band of transmit antenna 580-1 is occupied by transmit antenna 580-2. Double the frequency band. As a result, the reception signal on the receiving side shows a phenomenon of mixing at some frequency points. Such a system is also a kind of mixed frequency division system.
[0089] 図 19は、本実施の形態に係る送信装置の別の要部構成を示すブロック図である。 FIG. 19 is a block diagram showing another main configuration of the transmitting apparatus according to the present embodiment.
なお、図 19において、図 18と同一構成部分には同一符号を付して説明を省略する In FIG. 19, the same components as those in FIG.
[0090] 図 19の送信装置 600は、図 18の送信装置 500に対し、時空間処理部 510、 S/P 変換'変調部 520—1、及び 520— 2を削除し、時空間処理部 610、 SZP変換部 62 0—1, 620— 2、 MCSI部 630— 1、及び MCSII部 630— 2を追カロした構成を採る。
[0091] 時空間処理部 610は、アンテナのフェージング特性に基づいて、 MCSI部 620— 1 、 MCSII部 620— 2に、異なる符号化及び変調方式を割り当て、 MCSI部 620— 1、 MCSII部 620— 2に割り当てた符号ィ匕及び変調方式に基づいて、信号を、 SZP変 換部 620— 1, 620— 2に割り当てる。 The transmitting apparatus 600 in FIG. 19 deletes the spatio-temporal processing unit 510 and the S / P conversion / modulation units 520-1 and 520-2 from the transmitting apparatus 500 in FIG. , SZP converter 62 0-1, 620-2, MCSI 630-1, and MCSII 630-2 are added. The space-time processing unit 610 assigns different encoding and modulation schemes to the MCSI unit 620-1 and the MCSII unit 620-2 based on the fading characteristics of the antenna, and the MCSI unit 620-1 and the MCSII unit 620— Signals are assigned to SZP converters 620-1, 620-2 based on the code and modulation method assigned to 2.
[0092] SZP変換部 620— 1, 620— 2は、時空間処理部 610により割り当てられた信号に 対し、シリアル/パラレル変換を施し、シリアル/パラレル変換後の信号を、それぞれ MCSI部 630—1、及び MCSII部 630— 2に出力する。 [0092] The SZP conversion units 620-1 and 620-2 perform serial / parallel conversion on the signals assigned by the space-time processing unit 610, and the serial / parallel converted signals are respectively converted to MCSI units 630-1 And output to MCSII section 630-2.
[0093] MCSI部 630—1、及び MCSII部 630— 2は、シリアル Zパラレル変換後の信号に 対し、符号化及び変調を施し、得られた変調信号を、それぞれ Ml点 FFT部 530— 1 、 M2点 FFT部 530— 2に出力する。 [0093] The MCSI unit 630-1 and the MCSII unit 630-2 perform coding and modulation on the signal after serial Z parallel conversion, and the obtained modulated signals are respectively Ml-point FFT units 530-1 and 530-1, Output to M2 point FFT section 530-2.
[0094] 以下、上述のように構成された送信装置 600の動作について説明する。 Hereinafter, an operation of transmitting apparatus 600 configured as described above will be described.
[0095] 時空間処理部 610によって、信号に対し時空間処理が施され、アンテナのフェージ ング特性に基づいて、各アンテナに異なる符号ィ匕及び変調方式が割り当てられる。 S ZP変換部 620—1によって、シリアル Zパラレル変換された信号は、 MCSI部 630 1の符号化及び変調方式に基づいて符号化及び変調が施され、 Ml点 FFT部 53 0— 1で高速フーリエ変換される。高速フーリエ変換後の信号は、逆フーリエ変換前 に、 HFDMAIマッピング部 540によって、 DFDMA、 LFDMA、 HFDMAのいずれ か一つにより対応するキャリアに割り当てられる。このとき、送信アンテナ 580— 1の変 調次数は、送信アンテナ 580— 2の変調次数より小さいので、 2つの送信アンテナ 58 0- 1, 580— 2から同じレートの信号を伝送する場合、送信アンテナ 580— 1が占有 するキャリアの数は、送信アンテナ 580— 2が占有するキャリア数より多くなる。 N1点 I FFT部 560— 1によって、各キャリア周波数ポイント上にマッピングされた周波数領域 信号に対し、逆フーリエ変換が施され、 CP付加 'PZS変換部 570—1で、逆フーリエ 変換後の信号に CPが付加され、 CP付加後の信号は、ノ ラレル Zシリアル変換され た後、送信アンテナ 580—1を介して送信される。 The space-time processing unit 610 performs space-time processing on the signal and assigns a different code and modulation scheme to each antenna based on the fading characteristics of the antenna. S ZP conversion unit 620-1 converts the signal that has been converted from serial to parallel into the ZSI based on the encoding and modulation method of MCSI unit 6301, and Ml point FFT unit 53 0-1 uses fast Fourier transform. Converted. The signal after the fast Fourier transform is assigned to a corresponding carrier by one of DFDMA, LFDMA, and HFDMA by the HFDMAI mapping unit 540 before the inverse Fourier transform. At this time, since the modulation order of the transmitting antenna 580-1 is smaller than the modulation order of the transmitting antenna 580-2, when transmitting signals of the same rate from the two transmitting antennas 58 0-1 and 580-2, the transmitting antenna The number of carriers occupied by 580-1 is larger than the number of carriers occupied by transmitting antenna 580-2. N1 point I FFT section 560-1 performs inverse Fourier transform on the frequency domain signal mapped on each carrier frequency point, and CP addition 'PZS transform section 570-1 converts the signal to the inverse Fourier transform. CP is added, and the signal after CP is converted to normal Z serial, and then transmitted via transmit antenna 580-1.
[0096] 一方、 SZP変換部 620— 2によって、シリアル Zパラレル変換された信号は、 MC SII部 630— 2の符号化及び変調方式に基づいて符号化及び変調が施され、 M2点 FFT部 530— 2で高速フーリエ変換される。高速フーリエ変換後の信号は、逆フーリ
ェ変換前に、 HFDMAIIマッピング部 550によって、 1^2点 丁部530— 2から出カ された各周波数領域信号が、 DFDMA、 LFDMA、 HFDMAのいずれか一つによ り対応するキャリアに割り当てられる。 N2点 IFFT部 560— 2によって、各キャリア周 波数ポイント上にマッピングされた周波数領域信号に対し、逆フーリエ変換が施され 後、 CP付加 'PZS変換部 570— 2で、逆フーリエ変換後の信号に CPが付加され、 C P付加後の信号は、ノラレル Zシリアル変換された後、送信アンテナ 580— 2を介し て送信される。 On the other hand, the signal subjected to serial Z parallel conversion by SZP conversion section 620-2 is encoded and modulated based on the encoding and modulation scheme of MC SII section 630-2, and M2 point FFT section 530 — Fast Fourier transform by 2. The signal after the fast Fourier transform is Before conversion, each frequency domain signal output from the 1 ^ 2 point section 530-2 is assigned to the corresponding carrier by one of DFDMA, LFDMA, and HFDMA by the HFDMA II mapping section 550 . N2 point IFFT section 560-2 performs inverse Fourier transform on the frequency domain signal mapped on each carrier frequency point, then CP addition 'PZS transform section 570-2 gives the signal after inverse Fourier transform CP is added to the signal, and the signal after the CP addition is subjected to normal Z-serial conversion and then transmitted via the transmitting antenna 580-2.
[0097] なお、各送信アンテナに対応する周波数ポイントの使用状況を図 20に示す。図 20 A、図 20Bは、それぞれ、送信アンテナ 580— 1、 580— 2から送信される変調信号 の周波数特性を示している。図 20Cに示すように、受信側では、受信信号は、一部 の周波数ポイントで混じり合う現象が見られる。このようなシステムも、混合周波数分 割システムの一種といえる。なお、変調次数が高い送信アンテナほど、より周波数を 分散的に割り当てる DistributedFDMA方式を選択することにより、周波数ダイバー シチゲインを向上することができる。 Note that FIG. 20 shows the usage status of the frequency points corresponding to each transmission antenna. 20A and 20B show the frequency characteristics of the modulated signals transmitted from the transmitting antennas 580-1 and 580-2, respectively. As shown in Fig. 20C, on the receiving side, the reception signal is mixed at some frequency points. Such a system is also a kind of mixed frequency division system. It should be noted that the frequency diversity gain can be improved by selecting the DistributedFDMA scheme in which the transmission antenna having a higher modulation order assigns more frequencies in a distributed manner.
[0098] (3)アンテナ選択と電力割り当て [0098] (3) Antenna selection and power allocation
周波数選択性チャネルにおいては、周波数領域でアンテナ選択と電力割り当てを 行うことができる。即ち、それぞれの周波数ポイントにおいて、各周波数ポイントの SI NR特性に基づいて、あるアンテナを選んだり(アンテナ選択)、又は、各アンテナごと に割り当てる送信電力を制御する(電力割り当て)。この方法を採用することで、受信 SNR (Signal to Noise Ratio)を効果的に向上させることができる。以下では、電力割 り当てを行う場合について説明する。 In a frequency selective channel, antenna selection and power allocation can be performed in the frequency domain. That is, at each frequency point, a certain antenna is selected (antenna selection) based on the SINR characteristic of each frequency point, or transmission power allocated to each antenna is controlled (power allocation). By adopting this method, it is possible to effectively improve the reception SNR (Signal to Noise Ratio). In the following, the case of performing power allocation will be described.
[0099] 図 21は、本実施の形態に係る送信装置の別の要部構成を示すブロック図である。 FIG. 21 is a block diagram showing another main configuration of the transmitting apparatus according to the present embodiment.
なお、図 21において、図 18と同一構成部分には同一符号を付して説明を省略する 。図 21の送信装置 700は、図 18の送信装置 500に対し、電力割り当て部 710を追 カロした構成を採る。 In FIG. 21, the same components as those in FIG. 18 are denoted by the same reference numerals and description thereof is omitted. The transmitter 700 in FIG. 21 adopts a configuration in which a power allocation unit 710 is added to the transmitter 500 in FIG.
[0100] 電力割り当て部 710は、 Ml点 FFT部 530—1, 1^2点 丁部530— 2から出カさ れる高速フーリエ変換後の信号の信号電力を割り当てる。電力割り当て部 710は、例 えば、後段の HFDMAIマッピング部 540, HFDMAIIマッピング部 550によりマツピ
ングされる各周波数ポイントの SINR特性が悪 、ほど大き 、電力を割り当て、 SINR 特性が良 、ほど小さ 、電力を割り当てるようにする。 [0100] The power allocation unit 710 allocates the signal power of the signal after the fast Fourier transform output from the Ml point FFT unit 530-1, 1 ^ 2 point capping unit 530-2. For example, the power allocation unit 710 is connected to the HFDMAI mapping unit 540 and the HFDMAII mapping unit 550 in the subsequent stage. Allocation is made such that the SINR characteristic of each frequency point to be applied is worse and the power is assigned larger, and the power is assigned as the SINR characteristic is better and smaller.
[0101] 以下、上述のように構成された送信装置 700の動作について説明する。 [0101] The operation of transmitting apparatus 700 configured as described above will be described below.
[0102] 時空間処理部 510によって、信号に対し時空間処理が施され、アンテナのフェージ ング特性に基づいて、それぞれのアンテナに異なる符号ィ匕及び変調方式が割り当て られる。 SZP変換'変調部 520— 1によって、シリアル Zパラレル変換及び変調が施 された信号は、 Ml点 FFT部 530— 1で高速フーリエ変換される。電力割り当て部 71 0では、例えば、マッピング先の各周波数ポイントの SINR特性に基づいて、高速フ 一リエ変換後の信号の信号電力が割り当てられる。 HFDMAIマッピング部 540では 、信号電力が割り当てられた各周波数領域信号が、 DFDMA、 LFDMA、 HFDM Aのいずれか一つにより対応するキャリアに割り当てられる。 N1点 IFFT部 560— 1 では、各キャリア周波数ポイント上にマッピングされた周波数領域信号に対し、逆フ 一リエ変換が施され、 CP付加 'PZS変換部 570— 1で、逆フーリエ変換後の信号に CPが付加され、 CP付加後の信号は、ノ ラレル Zシリアル変換された後、送信アンテ ナ 580— 1を介して送信される。 [0102] Spatio-temporal processing is performed on the signal by spatio-temporal processing unit 510, and different code symbols and modulation schemes are assigned to the respective antennas based on the fading characteristics of the antennas. The signal subjected to serial Z parallel conversion and modulation by the SZP conversion 'modulation unit 520-1 is fast Fourier transformed by the Ml point FFT unit 530-1. In the power allocation unit 710, for example, the signal power of the signal after the high-speed Fourier transform is allocated based on the SINR characteristic of each frequency point of the mapping destination. In the HFDMAI mapping unit 540, each frequency domain signal to which signal power is allocated is allocated to a corresponding carrier by any one of DFDMA, LFDMA, and HFDM A. N1 point IFFT section 560-1 performs inverse Fourier transform on the frequency domain signal mapped on each carrier frequency point, and CP addition 'PZS conversion section 570-1 provides the signal after inverse Fourier transform. CP is added to the signal, and the signal after CP is converted to normal Z serial, and then transmitted via the transmitting antenna 580-1.
[0103] 一方、 SZP変換 ·変調部 520— 2によって、シリアル Zパラレル変換及び変調が施 された信号は、 M2点 FFT部 530— 2で高速フーリエ変換される。電力割り当て部 71 0では、例えば、マッピング先の各周波数ポイントの SINR特性に基づいて、高速フ 一リエ変換後の信号の信号電力が割り当てられる。 HFDMAIIマッピング部 550で は、信号電力が割り当てられた各周波数領域信号力 DFDMA、 LFDMA、 HFD MAのいずれか一つにより対応するキャリアに割り当てられる。 N2点 IFFT部 560— 2では、各キャリア周波数ポイント上にマッピングされた周波数領域信号に対し、逆フ 一リエ変換が施され、 CP付加 'PZS変換部 570— 2で、逆フーリエ変換後の信号に CPが付加され、 CP付加後の信号は、ノ ラレル Zシリアル変換された後、送信アンテ ナ 580— 2を介して送信される。 On the other hand, the signal subjected to serial Z parallel conversion and modulation by the SZP conversion / modulation unit 520-2 is fast Fourier transformed by the M2 point FFT unit 530-2. In the power allocation unit 710, for example, the signal power of the signal after the high-speed Fourier transform is allocated based on the SINR characteristic of each frequency point of the mapping destination. In the HFDMAII mapping unit 550, each of the frequency domain signal powers DFDMA, LFDMA, and HFD MA to which the signal power is allocated is allocated to the corresponding carrier. N2 point IFFT section 560-2 performs inverse Fourier transform on the frequency domain signal mapped on each carrier frequency point, and CP addition 'PZS transform section 570-2 provides the signal after inverse Fourier transform. CP is added to the signal, and the signal after CP is converted to normal Z serial, and then transmitted via the transmitting antenna 580-2.
[0104] 図 22に、各アンテナに対応する周波数ポイントの使用状況及び電力特性の様子を 示す。図 22A、図 22Bは、それぞれ、送信アンテナ 580— 1、 580— 2力ら送信され る変調信号の周波数特性及び電力特性を示している。図 22Cに示すように、受信側
では、受信信号は、一部の周波数ポイントで混じり合う現象が見られる。このようなシ ステムも、混合周波数分割システムの一種といえる。周波数特性が劣悪な周波数ポ イントほど、より高い電力を割り当てることにより、周波数ダイバーシチゲインを向上さ せることができる。 [0104] Fig. 22 shows the usage of the frequency points corresponding to each antenna and the state of the power characteristics. 22A and 22B show the frequency characteristics and power characteristics of the modulated signals transmitted from the transmitting antennas 580-1 and 580-2, respectively. As shown in Figure 22C, the receiving side In the received signal, there is a phenomenon that the received signal is mixed at some frequency points. Such a system is also a kind of mixed frequency division system. Frequency diversity gain can be improved by assigning higher power to frequency points with poor frequency characteristics.
[0105] (実施の形態 3) [Embodiment 3]
図 23は、本実施の形態に係る受信装置の要部構成を示すブロック図である。図 23 の受信装置 800は、上述した実施の形態に係る送信装置 100, 200, 300, 400, 5 00, 600,及び 700から送信される MIMO信号を受信し、 MIMO検出を行う。なお、 以下では、送信装置 100, 200, 300, 400, 500, 600,及び 700力 個の送信ァ ンテナを備え、受信装置 800が R個の受信アンテナを備える場合にっ ヽて説明する FIG. 23 is a block diagram showing a main configuration of the receiving apparatus according to the present embodiment. 23 receives MIMO signals transmitted from transmitting apparatuses 100, 200, 300, 400, 500, 600, and 700 according to the above-described embodiments, and performs MIMO detection. In the following, a description will be given of the case where the transmission apparatus 100, 200, 300, 400, 500, 600, and 700 transmission antennas are provided, and the reception apparatus 800 is provided with R reception antennas.
[0106] 図 23において、受信装置 800は、受信アンテナ 810—1, 810— 2、 CP除去 'SZ P変換部 820、 N1点 FFT部 830、時空間フーリエ変換行列生成部 840、時空間 IFF T部 850、最尤検出部 860、及び復調部 870を備えて構成される。 In FIG. 23, receiving apparatus 800 includes receiving antennas 810-1 and 810-2, CP elimination 'SZ P conversion unit 820, N1 point FFT unit 830, space-time Fourier transform matrix generation unit 840, space-time IFF T 850, a maximum likelihood detection unit 860, and a demodulation unit 870.
[0107] CP除去 ' SZP変換部 820は、受信アンテナ 810—1, 810— 2を介して受信した受 信信号に付加される CPを除去し、 CP除去後の受信信号をシリアル 'パラレル変換し 、シリアル 'パラレル変換の受信信号を、 N1点 FFT部 830に出力する。 [0107] CP removal 'The SZP converter 820 removes the CP added to the received signal received via the receiving antennas 810-1 and 810-2, and serial-parallel converts the received signal after CP removal. , The received signal of serial to parallel conversion is output to N1 point FFT unit 830.
[0108] N1点 FFT部 830は、 CP除去 ' SZP変換部 820から出力されるシリアル 'パラレル 変換の受信信号に対し、高速フーリエ変換を施す。これにより、送信側において、同 一の周波数に割り当てられた混合信号の周波数領域信号が得られる。 N1 point FFT section 830 performs fast Fourier transform on the received signal of the serial “parallel conversion” output from CP removal “SZP conversion section 820”. As a result, the frequency domain signal of the mixed signal assigned to the same frequency is obtained on the transmission side.
[0109] 時空間フーリエ変換行列生成部 840は、時空間フーリエ変換行列 Vを生成し、時 空間 IFFT部 850は、時空間逆フーリエ変換を行う。時空間逆フーリエ変換について は、後述する。 [0109] The space-time Fourier transform matrix generation unit 840 generates a space-time Fourier transform matrix V, and the space-time IFFT unit 850 performs space-time inverse Fourier transform. The space-time inverse Fourier transform will be described later.
[0110] 最尤検出部 860は、最尤推定アルゴリズムを用いて、信号を推定し、復調部 870は [0110] Maximum likelihood detector 860 estimates a signal using a maximum likelihood estimation algorithm, and demodulator 870
、推定された信号に対し、復調処理を施す。 Then, a demodulation process is performed on the estimated signal.
[0111] 以下、上述のように構成された送信装置 600の動作について数式を用いながら説 明する。 [0111] Hereinafter, the operation of transmitting apparatus 600 configured as described above will be described using mathematical expressions.
[0112] 受信装置 800では、 CP除去 ' SZP変換部 820で CPが除去され、シリアル Zパラレ
ル変換が施され、 Nl点 FFT部 830で入力信号に対しフーリエ変換が施された後、 混合信号の周波数領域信号が得られる。この周波数領域信号において、送信アンテ ナ の信号 R;は式(1)のように表される。 [0112] In the receiving device 800, CP removal ′ The CP is removed by the SZP converter 820, and the serial Z parallel The Nl-point FFT unit 830 performs Fourier transform on the input signal, and then obtains the frequency domain signal of the mixed signal. In this frequency domain signal, the transmission antenna signal R ; is expressed as shown in Equation (1).
[数 1] [Number 1]
なお、 Hは、チャネル行列 Hの第 i列であり、その第 j番目の要素は、送信アンテナ iと 受信アンテナ j間のチャネルフェージングに対応している。 sは、第 i番目の送信アン テナが送信する M個のシンボル系列であり、フーリエ変換後に、第 d + 1から第 d + M番目の逆フーリエ変換入力周波数ポイントにマッピングされる。 Fは、フーリエ変換 行列である。 H is the i-th column of the channel matrix H, and the j-th element corresponds to channel fading between the transmitting antenna i and the receiving antenna j. s is a sequence of M symbols transmitted from the i-th transmitting antenna, and is mapped to the d + 1st to (d + M) -th inverse Fourier transform input frequency points after Fourier transform. F is a Fourier transform matrix.
時空間フーリエ変換行列生成部 840によって、時空間フーリエ変換行列 Vが構成さ れる。時空間フーリエ変換行列 Vは、式(2)により表される。 A space-time Fourier transform matrix V is constructed by the space-time Fourier transform matrix generation unit 840. The space-time Fourier transform matrix V is expressed by equation (2).
[数 2] [Equation 2]
全ての送信アンテナが送信する信号を考慮すると、受信側で信号がフーリエ変換さ れた後の信号 Rは、時空間フーリエ変換行列 Vを用いて、式(3)のように表される。 Considering the signals transmitted by all transmitting antennas, the signal R after the signal is Fourier transformed on the receiving side is expressed as shown in Equation (3) using the space-time Fourier transform matrix V.
[数 3] [Equation 3]
一般的に、任意にマッピングする FDMA方式については、 Vは、 M個のブロック化
行列を一列に並べて構成される。なお、第 p番目のブロック化行列の第 q番目の非零 列ベクトルは、第 p番目のブロック化ベクトルの位置に存在し、送信アンテナ pの、 LD FMAZDFDMA方式の周波数マッピングを行った後の第 q番目の周波数ポイント の、送信側の逆フーリエ変換入力周波数ポイントの位置に対応している。第 q番目の 非零列ベクトルは、位相 2 π ZMqに基づき線形に遁増するファンデルモンドベクトル (Vandermonde Vector)で &) o。 In general, for arbitrarily mapped FDMA schemes, V is M blocks The matrix is arranged in a line. Note that the q-th non-zero column vector of the p-th blocked matrix exists at the position of the p-th blocked vector, and the frequency after the LD FMAZDFDMA scheme of the transmit antenna p is performed. Corresponds to the position of the inverse Fourier transform input frequency point on the transmitting side of the qth frequency point. The qth non-zero vector is a Vandermonde Vector that increases linearly based on the phase 2 π ZMq &) o.
[0116] そして、時空間 IFFT部 850で時空間逆フーリエ変換が行われる。即ち、フーリエ変 換後の受信信号に対し、 Vの偽逆を右から乗じる。これにより、時間領域信号が、式( 4)のように得られる。 Then, the spatiotemporal IFFT unit 850 performs a spatiotemporal inverse Fourier transform. In other words, the received signal after Fourier transform is multiplied from the right by the false inverse of V. Thereby, a time domain signal is obtained as shown in Equation (4).
[数 4] [Equation 4]
もしある信号系列に対し右力 Fの逆行列を乗じれば、逆フーリエ変換を行ったこと に相当する。 Vの偽逆を右力も乗じる演算には、逆フーリエ変換のプロセスが含まれ る力 Vには各アンテナのフーリエ対応が含まれ、 Vは空間領域と時間領域を結合し たフーリエ変換であるとみなすことができ、 Vの偽逆を右力も乗じることにより、時空間 領域逆フーリエ変換を実現できる。このため、 Vは時空間フーリエ変換行列と呼ばれ る。 If a signal sequence is multiplied by the inverse matrix of the right force F, it is equivalent to performing an inverse Fourier transform. The calculation that multiplies the false inverse of V by the right force includes the inverse Fourier transform process. V includes the Fourier correspondence of each antenna, and V is the Fourier transform that combines the space domain and the time domain. By multiplying the false inverse of V by the right force, the space-time domain inverse Fourier transform can be realized. For this reason, V is called a space-time Fourier transform matrix.
[0117] 以降、最尤検出部 860において、信号 rに対し最尤推定アルゴリズムが用いられて 、高性能の検出が行われ、最後に復調部 870で最尤推定結果が復調された後、検 出出力が得られる。 [0117] Thereafter, the maximum likelihood detection unit 860 uses the maximum likelihood estimation algorithm for the signal r to perform high-performance detection. Finally, the demodulation unit 870 demodulates the maximum likelihood estimation result, and then performs detection. Output power is obtained.
[0118] 従来の方法を用いて、このような部分的に混ざり合った状況に対し検出を行う場合 、まず受信信号に対し高速フーリエ変換を行い、その後混ざり合った周波数ポイント で MIMO検出を行う必要があった。混ざり合った周波数ポイント上の信号は、周波数 領域信号であることから、時間領域信号の有限標本集合特性を備えておらず、この ため検出の際に高性能の最尤検出アルゴリズムを応用することが難し力つた。
[0119] これに対し、本発明では、全ての周波数ポイント上の周波数領域信号に対し、時空 間逆フーリエ変換を行い、信号を周波数領域から時間領域に変換し、その後、時間 領域で MIMO検出を行う。この時、 MIMOの混合信号は時間領域信号なので、最 尤アルゴリズムを応用して高性能な検出を実現することができる。 [0118] When detecting such a partially mixed situation using the conventional method, it is necessary to first perform fast Fourier transform on the received signal and then perform MIMO detection at the mixed frequency point was there. Since the signals on the mixed frequency points are frequency domain signals, they do not have the finite sample set characteristics of time domain signals, and therefore, a high-performance maximum likelihood detection algorithm can be applied for detection. It was difficult. [0119] In contrast, in the present invention, the time-domain inverse Fourier transform is performed on the frequency domain signals on all the frequency points to convert the signals from the frequency domain to the time domain, and then MIMO detection is performed in the time domain. Do. At this time, since the mixed signal of MIMO is a time-domain signal, high-performance detection can be realized by applying the maximum likelihood algorithm.
[0120] 以上のように、本実施の形態によれば、送信装置は、複数の送信アンテナを有し、 複数の送信アンテナに対し、送信アンテナごとの送信信号が、周波数領域上で大部 分互いに重なり合わないように、送信アンテナごとに、分散的周波数帯域を割り当て る Distributed— FDMA方式、局所的周波数帯域を割り当てる Localized— FDM A方式、又は、混合的周波数帯域を割り当てる Hybrid— FDMA方式のうちいずれ か一つをそれぞれ用いて周波数を割り当て、受信装置は、送信装置の複数の送信 アンテナから送信される信号を受信し、受信信号に対し、時空間逆フーリエ変換を行 うことにより、受信信号を周波数領域から時間領域に変換し、時間領域上で MIMO 検出を行うことにより、複数の送信アンテナ力もの送信信号を検出するようにした。 [0120] As described above, according to the present embodiment, the transmission apparatus has a plurality of transmission antennas, and the transmission signal for each transmission antenna is mostly in the frequency domain with respect to the plurality of transmission antennas. Allocate distributed frequency bands for each transmit antenna so that they do not overlap with each other. Distributed—FDMA method, Localized frequency band allocation—Localized—FDM A method, or Hybrid—FDMA method. Each one of them is used to assign a frequency, and the receiving apparatus receives signals transmitted from a plurality of transmitting antennas of the transmitting apparatus, and performs a space-time inverse Fourier transform on the received signals, thereby receiving the received signals. Is converted from the frequency domain to the time domain, and MIMO detection is performed on the time domain to detect transmission signals with multiple transmitting antenna powers.
[0121] これにより、送信装置の複数の送信アンテナから送信される混合信号を時間領域 信号に変換した後に、 MIMO検出を行うことができるので、優れた性能を有する最尤 アルゴリズムを用いることが可能となり、この結果、復調精度を向上することができる。 [0121] With this, MIMO detection can be performed after the mixed signal transmitted from the multiple transmission antennas of the transmission device is converted to a time domain signal, so that a maximum likelihood algorithm with excellent performance can be used. As a result, demodulation accuracy can be improved.
[0122] なお、本発明は、上述した実施の形態に限定されず、その主旨を逸脱しない範囲 で変更して実施可能である。 [0122] It should be noted that the present invention is not limited to the above-described embodiment, and can be implemented with modifications without departing from the gist thereof.
[0123] 2006年 3月 20日出願の第 200610071412. Xの中国特許出願に含まれる明細 書、図面及び要約書の開示内容は、すべて本願に援用される。 [0123] The disclosure of the specification, drawings and abstract contained in the Chinese patent application No. 200610071412. filed on Mar. 20, 2006 is hereby incorporated by reference.
産業上の利用可能性 Industrial applicability
[0124] 本発明の周波数割り当て方法、検出方法、送信装置、及び、受信装置は、 MIMO システムにお 、て、周波数ダイバーシチゲインと時間ダイバーシチゲインとを同時に 得ることができ、例えば、各種のセルラー方式による高速無線通信システム及び高ス ループット無線ローカルエリアネットワークシステムにおいて、上り無線通信システム に適用される周波数割り当て方法、検出方法、送信装置、及び、受信装置などに有 用である。
[0124] The frequency allocation method, detection method, transmission apparatus, and reception apparatus of the present invention can simultaneously obtain frequency diversity gain and time diversity gain in a MIMO system. For example, various cellular systems In the high-speed wireless communication system and the high-throughput wireless local area network system according to the above, it is useful for a frequency allocation method, a detection method, a transmitting apparatus, a receiving apparatus, etc. applied to the uplink wireless communication system.
Claims
[1] 送信装置が有する複数の送信アンテナに、信号を分配する時空間処理ステップと 前記複数の送信アンテナから送信する信号に対し、前記送信アンテナごとの送信 信号が、周波数領域上で大部分が互いに重なり合わないように、前記送信アンテナ ごとに、分散的周波数帯域を割り当てる Distributed— FDMA方式、局所的周波数 帯域を割り当てる Localized— FDMA方式、又は、混合的周波数帯域を割り当てる Hybrid— FDMA方式のうち!、ずれか一つをそれぞれ用いて、周波数を割り当てる 周波数割り当てステップと、 [1] A spatio-temporal processing step for distributing a signal to a plurality of transmission antennas included in a transmission apparatus and a signal transmitted from each of the plurality of transmission antennas, In order to avoid overlapping each other, a distributed frequency band is allocated for each transmit antenna, a Distributed—FDMA scheme that allocates a local frequency band, a Localized—FDMA scheme that allocates a local frequency band, or a Hybrid—FDMA scheme that allocates a mixed frequency band! Assigning the frequency using one of the shifts, and assigning the frequency,
を含む周波数割り当て方法。 Frequency allocation method including:
[2] 前記周波数割り当てステップは、 [2] The frequency allocation step includes:
レートマッチング、又は、 MCS (変調符号化選択)に基づいて、周波数を割り当てる 請求項 1に記載の周波数割り当て方法。 The frequency allocation method according to claim 1, wherein a frequency is allocated based on rate matching or MCS (modulation coding selection).
[3] 前記周波数割り当てステップは、 [3] The frequency allocation step includes:
周波数領域でのアンテナ選択に基づ 、て、周波数を割り当てる Assign frequencies based on antenna selection in the frequency domain
請求項 1に記載の周波数割り当て方法。 The frequency allocation method according to claim 1.
[4] 前記周波数割り当てステップは、 [4] The frequency allocation step includes:
周波数領域での電力に基づ 、て、周波数を割り当てる Assign frequencies based on power in the frequency domain
請求項 1に記載の周波数割り当て方法。 The frequency allocation method according to claim 1.
[5] 前記周波数割り当てステップは、 [5] The frequency allocation step includes:
分散的周波数帯域、又は、局所的周波数帯域を割り当てる前記送信アンテナ数を 、ユーザの移動性、又は、アンテナの相関性に基づいて、決定するステップ、をさら に含む A step of determining the number of transmitting antennas to which a distributed frequency band or a local frequency band is allocated based on user mobility or antenna correlation;
請求項 1に記載の周波数割り当て方法。 The frequency allocation method according to claim 1.
[6] 前記周波数割り当てステップは、 [6] The frequency allocation step includes:
変調次数が高い前記送信アンテナほど、分散的に周波数帯域を割り当てるステツ プ、をさらに含む The transmission antenna having a higher modulation order further includes a step of allocating frequency bands in a distributed manner
請求項 1に記載の周波数割り当て方法。
The frequency allocation method according to claim 1.
[7] 送信装置が有する複数の送信アンテナごとに、分散的周波数帯域を割り当てる Dis tributed— FDMA方式、局所的周波数帯域を割り当てる Localized— FDMA方式 、又は、混合的周波数帯域を割り当てる Hybrid— FDMA方式のうちいずれか一つ をそれぞれ用いて周波数が割り当てられた、前記複数の送信アンテナから送信され る信号を受信するステップと、 [7] Distributed—FDMA scheme that allocates distributed frequency bands for each of multiple transmit antennas in a transmitter—Localized—FDMA scheme that allocates local frequency bands, or Hybrid—FDMA scheme that allocates mixed frequency bands Receiving signals transmitted from the plurality of transmitting antennas, each of which is assigned a frequency using one of them,
前記受信信号に対し、時空間逆フーリエ変換を行うことにより、前記受信信号を周 波数領域から時間領域に変換する変換ステップと、 A transforming step for transforming the received signal from the frequency domain to the time domain by performing a space-time inverse Fourier transform on the received signal;
時間領域上で MIMO検出を行うことにより、前記複数の送信アンテナ力 の送信 信号を検出する検出ステップと、 A detection step of detecting transmission signals of the plurality of transmit antenna forces by performing MIMO detection in the time domain;
を含む検出方法。 A detection method comprising:
[8] 前記検出ステップは、 [8] The detection step includes
最尤アルゴリズムにより検出を行う Detect with maximum likelihood algorithm
請求項 7記載の検出方法。 The detection method according to claim 7.
[9] 前記変換ステップは、 [9] The conversion step includes
前記受信信号をシリアル Zパラレル変換し、 The received signal is converted to serial Z parallel,
シリアル Zパラレル変換後の受信信号に対しフーリエ変換を行い、 Performs Fourier transform on the received signal after serial Z parallel conversion,
前記送信アンテナに対応する前記送信信号の混合領域表示信号を得るステップと 時空間フーリエ変換行列 Vを得るステップと、 Obtaining a mixed domain representation signal of the transmit signal corresponding to the transmit antenna; obtaining a space-time Fourier transform matrix V;
前記時空間逆フーリエ変換行列 Vの逆行列を用いて、前記混合領域表示信号に 対し、時空間逆フーリエ変換を実行するステップと、 Performing a spatio-temporal inverse Fourier transform on the mixed domain display signal using an inverse matrix of the spatio-temporal inverse Fourier transform matrix V;
を含む including
請求項 7記載の検出方法。 The detection method according to claim 7.
[10] 前記時空間フーリエ変換行列 Vは、 M個のブロック化行列を一列に並べて構成さ れ、 [10] The space-time Fourier transform matrix V is configured by arranging M blocking matrices in a line,
前記 M個のブロック化行列のうち、第 p番目のブロック化行列の第 q番目の非零列 ベクトルは、第 p番目のブロック化行列の位置に存在し、送信アンテナ pの、 LDFMA ZDFDMAによる周波数マッピングをおこなった後の第 q番目の周波数ポイントの、
送信側の逆 FFT入力周波数ポイントの位置に対応しており、前記第 q番目の非零列 ベクトルは、位相 2 π ZMqに基づき線形に遁増するファンデルモンドベクトル (Vand ermonde Vector)で teo Among the M blocking matrices, the q-th non-zero column vector of the p-th blocking matrix exists at the position of the p-th blocking matrix, and the frequency of the transmitting antenna p by LDFMA ZDFDMA Of the qth frequency point after mapping, Corresponding to the position of the inverse FFT input frequency point on the transmitting side, the q-th non-zero column vector is a van dermonde vector that increases linearly based on the phase 2 π ZMq.
請求項 7記載の検出方法。 The detection method according to claim 7.
[11] 複数の送信アンテナと、 [11] Multiple transmit antennas,
前記複数の送信アンテナに、信号を分配する時空間処理手段と、 Spatio-temporal processing means for distributing a signal to the plurality of transmitting antennas;
前記複数の送信アンテナから送信する信号に対し、前記送信アンテナごとの送信 信号が、周波数領域上で大部分が互いに重なり合わないように、前記送信アンテナ ごとに、分散的周波数帯域を割り当てる Distributed— FDMA方式、局所的周波数 帯域を割り当てる Localized— FDMA方式、又は、混合的周波数帯域を割り当てる Hybrid— FDMA方式のうち!、ずれか一つをそれぞれ用いて、周波数を割り当てる 周波数割り当てる周波数割り当て手段と、 Distributed-FDMA that allocates a distributed frequency band for each transmission antenna so that most of the transmission signals for each transmission antenna do not overlap each other in the frequency domain with respect to signals transmitted from the plurality of transmission antennas Assign a frequency using the Localized—FDMA method, or a Hybrid—FDMA method that allocates a mixed frequency band.
を具備する送信装置。 A transmission apparatus comprising:
[12] 送信装置が有する複数の送信アンテナごとに、分散的周波数帯域を割り当てる Dis tributed— FDMA方式、局所的周波数帯域を割り当てる Localized— FDMA方式 、又は、混合的周波数帯域を割り当てる Hybrid— FDMA方式のうちいずれか一つ をそれぞれ用いて周波数が割り当てられた、前記複数の送信アンテナから送信され る信号を受信する受信手段と、 [12] Distributed—FDMA system that allocates distributed frequency bands for each of multiple transmit antennas in the transmitter, Localized—FDMA system that allocates local frequency bands, or Hybrid—FDMA system that allocates mixed frequency bands Receiving means for receiving signals transmitted from the plurality of transmitting antennas, each of which is assigned a frequency,
前記受信信号に対し、時空間逆フーリエ変換を行うことにより、前記受信信号を周 波数領域力 時間領域に変換する時空間逆フーリエ変換手段と、 A spatio-temporal inverse Fourier transform means for transforming the received signal into a frequency domain force time domain by performing a spatio-temporal inverse Fourier transform on the received signal;
時間領域上で MIMO検出を行うことにより、前記複数の送信アンテナ力 の送信 信号を検出する検出手段と、 Detecting means for detecting transmission signals of the plurality of transmitting antenna forces by performing MIMO detection in the time domain;
を具備する受信装置。
A receiving apparatus comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610071412XA CN101043311B (en) | 2006-03-20 | 2006-03-20 | Method for realizing frequency distribution and detection of mixed FDMA |
CN200610071412.X | 2006-03-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007119415A1 true WO2007119415A1 (en) | 2007-10-25 |
Family
ID=38609207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/055486 WO2007119415A1 (en) | 2006-03-20 | 2007-03-19 | Frequency allocation method, detection method, transmission device, and reception device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101043311B (en) |
WO (1) | WO2007119415A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008546303A (en) * | 2005-06-22 | 2008-12-18 | サムスン エレクトロニクス カンパニー リミテッド | Resource allocation method and transmission apparatus for uplink packet data transmission in orthogonal frequency division multiplexing system |
EP2075927A1 (en) * | 2007-12-21 | 2009-07-01 | Thomson Licensing | Method of transmission of at least a data packet by several antennas and corresponding reception method |
JP2011530941A (en) * | 2008-08-11 | 2011-12-22 | エルジー エレクトロニクス インコーポレイティド | Information transmission method and apparatus in wireless communication system |
US8477868B2 (en) | 2008-08-11 | 2013-07-02 | Lg Electronics Inc. | Method and apparatus of transmitting information in wireless communication system |
US8611464B2 (en) | 2008-08-11 | 2013-12-17 | Lg Electronics Inc. | Method and apparatus for information transmission in a radio communication system |
US8681697B2 (en) | 2008-08-11 | 2014-03-25 | Lg Electronics Inc. | Method for uplink transmitting control information |
US8743783B2 (en) | 2008-11-14 | 2014-06-03 | Lg Electronics Inc. | Method and apparatus for information transmission in wireless communication system |
US8767646B2 (en) | 2009-02-11 | 2014-07-01 | Lg Electronics Inc. | Operation of terminal for multi-antenna transmission |
US8848629B2 (en) | 2008-08-11 | 2014-09-30 | Lg Electronics Inc. | Method and apparatus for the transmission of a control signal in a radio communication system |
US8908793B2 (en) | 2008-11-14 | 2014-12-09 | Lg Electronics Inc. | Method and apparatus for signal transmission in wireless communication system |
CN104854799A (en) * | 2012-12-14 | 2015-08-19 | 瑞典爱立信有限公司 | Transmission power distribution for MIMO communications when multiplicative noise limited |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102546516B (en) * | 2012-02-22 | 2014-09-10 | 江苏东南大学资产经营有限公司 | Low peak-to-average ratio multi-antenna pilot optimization and low-complexity transmission method |
CN113395117B (en) * | 2021-06-15 | 2022-09-09 | 江苏科技大学 | Index modulation-based multi-carrier underwater sound anti-interference communication method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3515690B2 (en) * | 1998-06-02 | 2004-04-05 | 松下電器産業株式会社 | OFDMA signal transmission apparatus and method |
CN1719641A (en) * | 2005-06-17 | 2006-01-11 | 桂林工学院 | Process for preparing electrochemical active nano-powder material of doped non-crystalline nickel hydroxide |
-
2006
- 2006-03-20 CN CN200610071412XA patent/CN101043311B/en not_active Expired - Fee Related
-
2007
- 2007-03-19 WO PCT/JP2007/055486 patent/WO2007119415A1/en active Application Filing
Non-Patent Citations (4)
Title |
---|
HUAWEI: "EUTRA downlink multiplexing of localized and distributed channels", 3GPP TSG RAN WG1, R1-051192, 14 October 2005 (2005-10-14), XP003018591 * |
NTT DOCOMO, FUJITSU, MITSUBISHI ELECTRIC CORP., NEC, SHARP, TOSHIBA CORP.: "Adaptive Modulation and Channel Coding Rate Control for MIMO Transmission with Frequency Domain Scheduling in E-UTRA Downlink", 3GPP TSG-RAN WG1 LTE AD HOC MEETING, R1-060040, 25 January 2006 (2006-01-25), XP003018589 * |
NTT DOCOMO, NEC, SHARP: "AMC and HARQ Using Frequency Domain Channel-dependent Scheduling in MIMO Channel Transmission", 3GPP TSG RAN WG1 #42 ON LTE, R1-050942, 2 September 2005 (2005-09-02), XP003018588 * |
PANASONIC: "Introduction of subgroup in MIMO channel for localized mode", TSG-RAN WG1 #42BIS, R1-051067, 14 October 2005 (2005-10-14), XP003018590 * |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008546303A (en) * | 2005-06-22 | 2008-12-18 | サムスン エレクトロニクス カンパニー リミテッド | Resource allocation method and transmission apparatus for uplink packet data transmission in orthogonal frequency division multiplexing system |
US7912135B2 (en) | 2005-06-22 | 2011-03-22 | Samsung Electronics Co., Ltd. | Method and transmission apparatus for allocating resources to transmit uplink packet data in an orthogonal frequency division multiplexing system |
JP4819120B2 (en) * | 2005-06-22 | 2011-11-24 | サムスン エレクトロニクス カンパニー リミテッド | Resource allocation method and transmission apparatus for uplink packet data transmission in orthogonal frequency division multiplexing system |
EP2075927A1 (en) * | 2007-12-21 | 2009-07-01 | Thomson Licensing | Method of transmission of at least a data packet by several antennas and corresponding reception method |
US8908596B2 (en) | 2008-08-11 | 2014-12-09 | Lg Electronics Inc. | Method and apparatus of transmitting information in wireless communication system |
US8848629B2 (en) | 2008-08-11 | 2014-09-30 | Lg Electronics Inc. | Method and apparatus for the transmission of a control signal in a radio communication system |
JP2013240069A (en) * | 2008-08-11 | 2013-11-28 | Lg Electronics Inc | Method and apparatus for information transmission in radio communication system |
US8611464B2 (en) | 2008-08-11 | 2013-12-17 | Lg Electronics Inc. | Method and apparatus for information transmission in a radio communication system |
US8681697B2 (en) | 2008-08-11 | 2014-03-25 | Lg Electronics Inc. | Method for uplink transmitting control information |
US9629152B2 (en) | 2008-08-11 | 2017-04-18 | Lg Electronics Inc. | Method and apparatus of transmitting information in wireless communication system |
US9537621B2 (en) | 2008-08-11 | 2017-01-03 | Lg Electronics Inc. | Method and apparatus for information transmission in a radio communication system |
US9094156B2 (en) | 2008-08-11 | 2015-07-28 | Lg Electronics Inc. | Method and apparatus for information transmission in a radio communication system |
US8873673B2 (en) | 2008-08-11 | 2014-10-28 | Lg Electronics Inc. | Method and apparatus for information transmission in a radio communication system |
US9197383B2 (en) | 2008-08-11 | 2015-11-24 | Lg Electronics Inc. | Method and apparatus for information transmission in a radio communication system |
JP2011530941A (en) * | 2008-08-11 | 2011-12-22 | エルジー エレクトロニクス インコーポレイティド | Information transmission method and apparatus in wireless communication system |
US9191931B2 (en) | 2008-08-11 | 2015-11-17 | Lg Electronics Inc. | Method and apparatus for the transmission of a control signal in a radio communication system |
US8989304B2 (en) | 2008-08-11 | 2015-03-24 | Lg Electronics Inc. | Method and apparatus for information transmission in a radio communication system |
US8477868B2 (en) | 2008-08-11 | 2013-07-02 | Lg Electronics Inc. | Method and apparatus of transmitting information in wireless communication system |
US9031004B2 (en) | 2008-11-14 | 2015-05-12 | Lg Electronics Inc. | Method and apparatus for information transmission in wireless communication system |
US8908793B2 (en) | 2008-11-14 | 2014-12-09 | Lg Electronics Inc. | Method and apparatus for signal transmission in wireless communication system |
US9288806B2 (en) | 2008-11-14 | 2016-03-15 | Lg Electronics Inc. | Method and apparatus for information transmission in wireless communication system |
US8743783B2 (en) | 2008-11-14 | 2014-06-03 | Lg Electronics Inc. | Method and apparatus for information transmission in wireless communication system |
US9674824B2 (en) | 2008-11-14 | 2017-06-06 | Lg Electronics Inc. | Method and apparatus for information transmission in wireless communication system |
US9698953B2 (en) | 2008-11-14 | 2017-07-04 | Lg Electronics Inc. | Method and apparatus for signal transmission in wireless communication system |
US9949242B2 (en) | 2008-11-14 | 2018-04-17 | Lg Electronics Inc. | Method and apparatus for information transmission in wireless communication system |
US8964686B2 (en) | 2009-02-11 | 2015-02-24 | Lg Electronics Inc. | Operation of terminal for multi-antenna transmission |
US9214997B2 (en) | 2009-02-11 | 2015-12-15 | Lg Electronics Inc. | Operation of terminal for multi-antenna transmission |
US8767646B2 (en) | 2009-02-11 | 2014-07-01 | Lg Electronics Inc. | Operation of terminal for multi-antenna transmission |
CN104854799A (en) * | 2012-12-14 | 2015-08-19 | 瑞典爱立信有限公司 | Transmission power distribution for MIMO communications when multiplicative noise limited |
CN104854799B (en) * | 2012-12-14 | 2017-11-10 | 瑞典爱立信有限公司 | Transimission power distribution when multiplicative noise limits for MIMO communications |
Also Published As
Publication number | Publication date |
---|---|
CN101043311B (en) | 2011-01-26 |
CN101043311A (en) | 2007-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007119415A1 (en) | Frequency allocation method, detection method, transmission device, and reception device | |
US11496187B2 (en) | Method and apparatus for transmitting and receiving data in a MIMO system | |
EP2343836B1 (en) | Pre-coding method for spatial multiplexing in multiple input and output system | |
US7616704B2 (en) | Broadband multicarrier transmitter with subchannel frequency diversity for transmitting a plurality of spatial streams | |
CN102959893B (en) | The modulation of the signal field in WLAN frame header | |
JP4387414B2 (en) | Wireless transmission device | |
US8824400B2 (en) | Method for setting modulation and coding scheme in wireless ran system and apparatus supporting the same | |
CN105900387A (en) | Resource allocation method and device | |
JP2007531386A (en) | Method and apparatus for transmitting uplink response information in orthogonal frequency division multiple access communication system | |
US20180123844A1 (en) | Support of frequency diversity mode for block code based transmission in ofdma | |
WO2007128199A1 (en) | Pilot multiplexing method, apparatus and radio communication system of multiple antennas | |
WO2006060941A1 (en) | A pilot allocation method and device of orthogonal frequency division multiplexing system | |
CN101001099B (en) | Distribution intermediate method and intermediate system | |
JP4971173B2 (en) | Communications system | |
CN1838558A (en) | Transmitting antenna selecting method and apparatus in multi-antenna multi-user communication system | |
CN1812386A (en) | Quadrature frequency division multiplexing communication system with low-complexity and multi-user switching-in method | |
CN102111364A (en) | Single-antenna orthogonal frequency division multiplexing-based spectral domain signal transmission device and method | |
CN101534144B (en) | Transmitter and transmitting method thereof | |
CN101167269A (en) | Adaptive data multiplexing method in ofdma system and transmission/reception apparatus thereof | |
KR20070102164A (en) | Apparatus and method for transmitting/receiving a signal in a beam forming/multiple input multiple output-orthogonal frequency division multiple access communication system | |
KR20080031554A (en) | Apparatus and method for subchannel allocation in multi hop relay broadband wireless communication systems | |
KR20060066768A (en) | Apparatus and method for supporting multiple users in broadband wireless communication system using mimo | |
KR20090103786A (en) | Apparatus for wireless multi-carrier code-division multiplexing communication apparatus for using transmit diversity | |
CN101997798A (en) | Transmitting and receiving devices of spectrum division multi-address access system and uplink and downlink access system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07738931 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07738931 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |