[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007116909A1 - 試料液分析用パネル - Google Patents

試料液分析用パネル Download PDF

Info

Publication number
WO2007116909A1
WO2007116909A1 PCT/JP2007/057566 JP2007057566W WO2007116909A1 WO 2007116909 A1 WO2007116909 A1 WO 2007116909A1 JP 2007057566 W JP2007057566 W JP 2007057566W WO 2007116909 A1 WO2007116909 A1 WO 2007116909A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
sample liquid
panel
sample
flow path
Prior art date
Application number
PCT/JP2007/057566
Other languages
English (en)
French (fr)
Inventor
Tomohiro Yamamoto
Toshihiko Yoshioka
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to JP2008509865A priority Critical patent/JPWO2007116909A1/ja
Priority to US12/295,405 priority patent/US20090169430A1/en
Publication of WO2007116909A1 publication Critical patent/WO2007116909A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N35/00069Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/04Exchange or ejection of cartridges, containers or reservoirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5025Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples

Definitions

  • the present invention relates to a sample analysis panel, and more particularly to a sample analysis panel for analyzing a sample by causing a reagent to act on a liquid sample and detecting a chemical reaction thereof.
  • POCT point-of-care testing
  • a panel member provided with a function of providing a plurality of chambers and flow paths connecting the plurality of chambers to freely move and stop the sample liquid to each chamber has been proposed.
  • the plasma component in the blood which is the sample solution
  • the reagent blood cells in the blood are removed by centrifugation. If the sample reagent is left or a solid reagent is held in a plurality of chambers, the sample solution and the plurality of solid reagents can be sequentially dissolved and reacted.
  • the reagent solution dropped in the chamber may be dried.
  • the concentration and amount of the reagent solution dripped into the chamber are adjusted so that the sample solution can be analyzed when the solid reagent is dissolved in the sample solution supplied into the chamber. If you can.
  • Patent Document 3 As the analysis apparatus, a panel member to which a function for introducing a certain amount of sample liquid is added has also been proposed (see, for example, Patent Document 3).
  • the panel member described in Patent Document 3 has a suction cavity that sucks a certain amount of sample by capillary action, an analysis cavity including a reagent, and a flow path that connects the suction cavity and the analysis cavity.
  • This flow path has a narrowed portion with a gap that narrows the flow path area.
  • the constriction has a function of holding the sample in the suction cavity when the sample is sucked into the suction cavity, and suction is applied when centrifugal force is applied from the outside while the sample is held in the suction cavity. It has the function of moving the sample held in the cavity to the analysis cavity through the gap.
  • Patent Document 1 International Publication No. 00Z26677 Pamphlet
  • Patent Document 2 Special Table 2002-534096
  • Patent Document 3 Japanese Patent Laid-Open No. 2006-308561
  • the narrowed portion having the flow path connecting the suction cavity and the analysis cavity holds the sample liquid in the suction cavity in a stationary state, so that the suction cavity A certain amount of sample solution corresponding to the above can be spotted. Furthermore, when a centrifugal force is applied after spotting, the sample liquid in the suction cavity obtains a fluid force that overcomes the holding force of the constriction and is sent into the analysis cavity. However, when a sample (for example, blood) containing a solid component having a specific gravity greater than that of the liquid component is spotted on the panel member described in Patent Document 3 and centrifugal force is applied, the solid component is connected between the suction cavity and the analysis cavity. Accumulated in the area, sometimes blocking the flow path (especially the constriction). As a result, liquid transfer may be difficult.
  • a sample for example, blood
  • the present invention relates to the following sample liquid analysis panel.
  • a sample liquid analysis panel rotated about a rotation center
  • the first flow path is disposed between the supply opening and the discharge opening, and the supply opening is set in the panel or outside the panel.
  • the first opening in which the distance between the supply opening and the rotation center and the distance between the farthest part from the rotation center of the discharge opening and the rotation center are equal.
  • a connecting portion between the chamber and the first flow path is disposed farther from the rotation center than the supply opening and the discharge opening, and a sample is disposed on at least a part of the inner wall surface of the first chamber. A treatment for improving the wettability with respect to the liquid is performed.
  • the sample liquid analysis panel of the present invention includes a liquid component and a solid having a specific gravity greater than that of the liquid component. It is particularly suitable for analysis of a sample solution containing components.
  • a panel for sample analysis that can be provided can be provided. Therefore, it can be applied to a device for analyzing blood, particularly as a sample solution, preferably a POCT compatible measuring instrument.
  • FIG.1 Plan view of a conventional sample analysis disk
  • FIG. 5 Plan view of the first example of the sample analysis panel in Fig. 4
  • FIG. 6 Plan view of the second example of the sample analysis panel in Fig. 4
  • FIG. 7 Plan view of the third example of the sample analysis panel in Fig. 4.
  • the sample liquid analysis panel of the present invention includes: 1) a flow path-shaped first chamber for allowing a sample liquid to flow in by capillary action; 2) a flow path connected to the first chamber, which is discontinuous. 1) a first flow path having a cavity with a large width or height, and 3) a structural portion including a second chamber connected to the first flow path. Further, the first chamber has a supply opening for supplying the sample liquid and a discharge opening for discharging the gas in the first chamber as the sample liquid flows into the first chamber. Is formed. The connecting portion between the first chamber and the first flow path is disposed between the supply opening and the discharge opening.
  • the amount of force sample liquid supplied to the first chamber through the supply opening is defined by the capacity of the first chamber.
  • the sample liquid spotted on the supply opening flows into the first chamber by capillary action.
  • the gas (air, etc.) present in the first chamber is smoothly discharged from the discharge opening to the outside of the panel. Thereby, the first chamber is finally filled with the sample solution.
  • the sample liquid analysis panel of the present invention is rotated about the rotation center.
  • the center of rotation may be provided either inside the panel or outside the panel. It is preferable that the supply opening for supplying the sample provided in the first chamber opens toward the rotation center. This is because the sample liquid force supply opening force filled in the first chamber is prevented from leaking outside the panel when the sample liquid analysis panel is rotated.
  • the connecting portion between the first chamber and the first flow path (having the hollow portion) is arranged such that the rotational center force is further away than the supply opening and the discharge opening.
  • the cavity that acts as a exhaust valve is discontinuously increased in width or height, there is little risk of clogging even if the sample liquid contains a solid component having a specific gravity greater than that of the liquid component. .
  • the solid component having a large specific gravity in the sample liquid and the first flow path having a rotational center force arranged far away May accumulate at the connection.
  • the cavity valve is a cavity that is discontinuously enlarged, so that the cavity is unlikely to block.
  • the first flow path of the sample liquid analysis panel of the present invention is arranged such that a cavity having a discontinuously increased width or height is disposed as a capillary valve.
  • a part of the edge portion of the supply opening of the first chamber protrudes into a convex shape.
  • the sample solution is placed on the edge of the sample solution supply port.
  • the sample liquid can surely flow into the first chamber while suppressing the remaining or the sample liquid from diffusing to the panel surface from the edge of the sample liquid supply port.
  • At least a part of the inner wall surface of the first chamber is preferably subjected to a treatment for improving the wettability with respect to the sample liquid. This is to make it easier for the sample liquid to flow into the first chamber by capillary action.
  • the water contact angle of the surface subjected to the hydrophilization treatment which should be subjected to the hydrophilization treatment, may be less than 90 °.
  • the side wall on the distal side from the rotation center of the first chamber has a shape that monotonously moves away from the rotation center from the supply opening to the connection portion between the first chamber and the first flow path.
  • the side wall on the distal side from the rotation center of the first chamber has a shape that monotonously moves away from the rotation center from the discharge opening to the connection portion between the first chamber and the first flow path.
  • the second chamber is a chamber for storing the sample liquid fed from the first chamber.
  • the sample liquid contains a liquid component and a solid component having a specific gravity greater than that of the liquid component, it is preferable to separate the solid component in the second chamber and take out the liquid component.
  • the sample solution is blood
  • the blood cell component is removed in the second chamber, and only the plasma component can be taken out for analysis.
  • the centrifugal force due to the rotation of the sample liquid analysis panel and the liquid of the sample liquid to the second flow path connected to the second chamber It is preferably performed in combination with the capillary force into which the component enters. Therefore, it is preferable that the second flow path connected to the second chamber is connected to a portion on the rotation center side to some extent rather than being connected to the farthest portion from the rotation center of the second chamber. A solid component is deposited in a portion of the second chamber that is farther from the center of rotation than the connection with the second flow path, thereby preventing the solid component from entering the second flow path.
  • the sample liquid is blood
  • the structure of the second chamber may be designed with reference to JP-A-2006-214955.
  • FIG. 2 shows an example of the configuration of the sample analysis panel of the present invention and an analysis apparatus using the same.
  • the sample liquid analysis panel 10 is attached to the analyzer 800.
  • an analyzer 800 includes a spindle motor 810 for rotating the sample analysis panel 10; an optical pickup 820 for irradiating the plasma developed in the cholesterol concentration measurement panel 10 with a light beam; and a cholesterol concentration measurement panel.
  • a feed motor 830 for moving the optical pick-up 820 in a direction parallel to the 10 rotation planes and perpendicular to the rotation direction (hereinafter referred to as “panel radial direction”) is provided.
  • the sample solution analysis panel 10 may be a sample analysis panel for measuring the total cholesterol concentration in the plasma using blood as the sample solution.
  • a flow channel structure including a chamber and a flow channel as shown in FIG. 3 is formed.
  • FIG. 3 a total of six channel structures are formed.
  • Each flow path structure includes a quantification chamber 200, a capillary valve 210, a blood cell separation chamber 20, and a waste liquid channel 80, respectively, and after centrifugation, a quantification chamber 30, and reagent holding chambers 40, 50, and 60.
  • the sample liquid analysis panel 10 may be a circular member in which a plurality of flow channel structures are formed.
  • the sample solution analysis panel 10 may be a member that can be attached to and detached from the stage 101.
  • the analyzer 800 in FIG. 4 has a stage 101 for fixing and rotating the sample analysis panel 10; a spinneret motor 810; and for irradiating the plasma developed in the cholesterol concentration measurement panel 10 with a light beam. And a feed motor 830 for moving the optical pickup 820 in the panel radial direction of the cholesterol concentration measurement panel 10.
  • a stage 101 is provided with a recess for fitting and fixing the sample liquid analysis panel 10.
  • the portion corresponding to the measurement chamber 70 of the inserted sample analysis panel 10 preferably passes through the stage 101.
  • a step 105 is provided at a part of the periphery of the penetrating part corresponding to the sample liquid analysis panel 10 formed on the stage 101 to support the sample liquid analysis panel 10 from the lower side. It's okay.
  • E-Choi cholesterol ester. Most of the cholesterol in plasma is esterified.
  • ChE An enzyme that catalyzes the reaction of changing E-Choi to Choi. Specifically, cholesterol esterase (EC3. 1. 1. 13) is shown.
  • NAD Nicotine adene dinucleotide which is a coenzyme of ChDH.
  • NADH The reduced state of NAD.
  • ChDH cholesterol dehydrogenase.
  • it can be purchased from Amano Enzyme.
  • WST-9 Water-soluble tetrazolium-9. It is a kind of tetrazolium salt available from Dojin University.
  • DI An enzyme that catalyzes the oxidation reaction of NADH to NAD and the reduction reaction coupled thereto. Specifically, diaphorase (EC 1. 6. 99. 2).
  • FIG. 5 shows an example of the cholesterol concentration measurement panel 10.
  • the cholesterol concentration measurement panel 10 is connected to the quantitative chamber 200 and the sidewall valve 210 connected to the outer peripheral side wall of the quantitative chamber 200 and having a gap larger than the thickness of the gap of the quantitative chamber 200, and the capillary valve 210.
  • Blood cell separation chamber 20 The cantilever valve 210 is connected to the side wall of the intermediate portion between the sample supply port 200a and the air port 200b of the quantitative chamber 200.
  • a sample supply port 2OOa for allowing blood to flow into the quantification chamber 200 and an air port 200b opened at the end opposite to the sample solution supply port 200a are formed.
  • the blood flowing in from the sample supply port 200a enters by the capillary action and fills the quantitative chamber 200, and the air present in the quantitative chamber 200 is discharged from the air port 200b.
  • the cholesterol concentration measurement panel 10 includes a post-centrifugation quantitative chamber 30 for extracting a certain amount of plasma extracted by the blood cell separation chamber 20, and a solid reagent containing ChE, ChE.
  • the reagent layers of the reagent holding chambers 40, 50 and 60 may be deposited on a surface orthogonal to the thickness direction of the cholesterol concentration measurement panel 10 (hereinafter referred to as "panel thickness direction"). .
  • Three post-centrifugation quantification chambers 30 are arranged for one blood cell separation chamber 20; one reagent holding chamber 40, 50 and 60 is provided for one post-centrifugation quantification chamber 30.
  • Two measurement chambers 70 are arranged for one reagent holding chamber 60; one waste chamber 80 is arranged for one blood cell separation chamber 20.
  • the quantitative chamber 200 has an air port 200b
  • the blood cell separation chamber 20 has an air port 20b
  • the air port can pass air.
  • the blood supply port 200a and each air port (200b, 20b, black, 50b, 60b) are used when the cholesterol concentration measurement panel 10 is driven by the analyzer 800 (see FIG. 4).
  • the liquid does not leak from the inside of the cholesterol concentration measurement panel 10 to the outside. Placed in the place.
  • the rotation center force of the cholesterol concentration measurement panel 10 at the air port 200b and the opening of the sample supply port 200a opened at a plane perpendicular to the rotation surface of the panel are at the rotation center. It is located on an equal circle with the center.
  • the volume of the fixed amount chamber 200 is smaller than the volume of the blood cell separation chamber 20. This is because all of the blood supplied to the measuring chamber 200 is sent to the blood cell separation chamber 20.
  • the volume of the quantitation chamber 200 is set so that the plasma separated in the blood cell separation chamber 20 is transferred to each of the subsequent chambers and is sufficient for measurement.
  • the reagent holding chambers 40, 50, and 60 have an approximately rectangular shape of "2. Omm X 5. Omm" on the surface orthogonal to the panel thickness direction, and 5. Omm sides are approximately the same as the panel radial direction. They are orthogonal. The depth of the reagent holding channels 0, 50 and 60 in the panel thickness direction is 300 / zm.
  • the measurement chamber 70 has a circular shape with a diameter of 2 mm on the surface orthogonal to the panel thickness direction, and a volume of about 1 ⁇ 1.
  • the depth of the measurement chamber 70 in the panel thickness direction is appropriately 200 m in this embodiment, but generally corresponds to the optical path length when measuring transmitted light. Therefore, the depth of the measurement chamber 70 needs to be set appropriately so that the concentration of the substance to be measured (cholesterol) can be measured by changing the amount of transmitted light or absorbance.
  • the measurement chamber 70 is optically sensitive to light having a wavelength of 650 nm with a plane perpendicular to the panel thickness direction as a plane. To be almost transparent.
  • the number of chambers in which solid reagents are installed is small.
  • the ChE layer necessary for the reaction of “I ⁇ 1” is also added to the reagent holding chamber 40 as described above. It is preferable to hold the ChDH layer required for the reaction in the reagent holding chamber 50 and the WST-9 layer required for the reaction “ii ⁇ 3” in the reagent holding chamber 60.
  • the optimum pH of ChDH is pH 8 or higher in the alkaline region, so a pH buffer is necessary. Yes, but ChDH is not very stable in the alkaline region. Therefore, the ChE layer necessary for the reaction “ii ⁇ 1” is held in the reagent holding chamber 40, the ChDH layer necessary for the reaction “ii ⁇ 2” is held in the reagent holding chamber 50, and the pH buffer is added to the ChDH. It is preferable to mix with the ChE layer, not the layer. ChE is not poor in stability and reactivity in the alkaline region.
  • WST-9 tends to inhibit the catalytic activity of ChDH. Therefore, the ChDH layer required for the reaction of “Chemical 2” is divided into the reagent holding chamber 50, and the WST-9 layer required for the reaction of “I ⁇ 3” is divided into the reagent holding chamber 60 and separated into separate chambers. It is preferable to hold.
  • the cholesterol concentration measurement panel 10 has flow paths 110 to 160 that connect the chambers.
  • the depth of the channels 110 to 160 in the panel thickness direction is 100 m.
  • Flow path 110 connected to the blood cell separation chamber 20 and connected to a part of the post-centrifugation quantitative chamber 30 near the center of the cholesterol concentration measurement panel 10 (hereinafter referred to as "panel rotation center").
  • panel rotation center a part of the post-centrifugation quantitative chamber 30 near the center of the cholesterol concentration measurement panel 10
  • Channel 120 A channel connected to a portion of the reagent holding chamber 40 near the center of rotation of the panel while being connected to a portion of the quantitative chamber 30 after centrifugation which is also far from the center of rotation of the panel.
  • the flow path 130 is a flow path that is connected to a portion of the reagent holding chamber 40 that is closer to the center of rotation of the panel, and is connected to a portion of the reagent holding chamber 50 that is closer to the center of rotation of the panel.
  • the flow path 140 is a flow path connected to a portion of the reagent holding chamber 50 that is close to the center of rotation of the panel while being connected to a portion of the reagent holding chamber 50 that is far from the rotational center force.
  • Flow path 150 It is a flow path connected to a part of the reagent holding chamber 60 that is close to the center of rotation of the panel, and is connected to a part of the measurement chamber 70 and waste liquid chamber 80 that are close to the center of rotation of the panel. .
  • Flow path 160 Flow after centrifuging, connected to the portion near the center of rotation of the panel in the quantification chamber 30 and connected to the portion near the center of rotation of the panel of the waste liquid chamber 80 Road.
  • the flow path 110 has a curved portion 111 closer to the center of rotation of the panel than the blood cell separation chamber 20.
  • each of the channels 120, 130, 140, and 150 has a curved portion 121, 131, 141, and 151 that is closer to the center of rotation of the panel than the post-centrifugation quantification chamber 30, the reagent holding chambers 40, 50, and 60.
  • the flow path 150 has a curved portion 151 and a large diameter portion 152 disposed between the measurement chamber 70 and the waste liquid chamber 80.
  • the large-diameter portion 152 has a channel diameter that is discontinuously larger than the other portions.
  • the channel 160 is formed with an air port 160a through which air is passed to facilitate the flow of the liquid in the cholesterol concentration measurement panel 10.
  • the air port 160a is arranged at a position where the sample liquid does not leak outside the internal force of the measurement panel 10 when the cholesterol concentration measurement panel 10 is driven by the analyzer 800.
  • Quantitation chamber 200, blood cell separation chamber 20, post-centrifugation quantification chamber 30, reagent holding chambers 40, 50 and 60, measurement chamber 70, and waste liquid channel 80, and air ports 20b, 40b, 50b, Prepare a polycarbonate plate 12 with through holes corresponding to 60b and 160a. Separately, quantification chamber 200, sample solution supply port 200a and air port 200b that open quantitation chamber 200, blood cell separation chamber 20, quantification chamber 30 after centrifugation, reagent holding chambers 40, 50 and 60, measurement chamber 70, waste liquid chamber
  • a plate 13 made of polyethylene terephthalate in which through holes corresponding to 80 and flow paths 110 to 160 are formed is prepared. An adhesive may be added to both surfaces of the plate material 13. The plate material 13 is bonded to the plate material 11.
  • a ChE layer of the reagent holding chamber 40 is formed by dropping a reagent solution onto a portion of the bonded plate of the plate material 11 and the plate material 13 corresponding to the reagent holding chamber 40 and drying it.
  • the reagent solution include ChE, a surfactant for activating the catalytic activity of ChE (for example, n-octyl- ⁇ D-thiodarcoside and sodium cholate), and a ⁇ buffer for adjusting ⁇ during the reaction. It is a 51 aqueous solution containing Tris hydrochloride and DI.
  • the ChDH layer of the reagent holding chamber 50 is formed by dropping and drying the reagent solution on the portion of the bonded plate of the plate material 11 and the plate material 13 corresponding to the reagent holding chamber 50.
  • the reagent solution is, for example, a 51 aqueous solution containing ChDH and DI.
  • the WST-9 layer of the reagent holding chamber 60 is formed by dropping a reagent solution onto the portion of the bonded plate of the plate material 11 and the plate material 13 corresponding to the reagent holding chamber 60 and drying it.
  • the reagent solution is, for example, a 51 aqueous solution containing WST-9.
  • the plate material 12 having a surface subjected to hydrophilic treatment is bonded to the plate material 13 to manufacture the cholesterol concentration measurement panel 10.
  • the hydrophilic treatment can be performed by, for example, physical surface modification such as force plasma treatment performed by applying and drying a surfactant dispersed in a solvent.
  • the opening of the sample liquid supply port 200a of the measurement panel 10 shown in FIG. 3 is formed on the surface corresponding to the concave portion of the stage 101 (see FIG. 4).
  • the opening of the sample solution supply port 200a may be formed on the surface of the recess 230 of the panel as shown in FIG.
  • the concave portion 230 has a curvature that is the same as or slightly larger than that of the fingertip.
  • the fingertip force can be easily spotted directly on the bleeding blood.
  • blood can be accurately spotted on the sample solution supply port 200a immediately after the spotting position is identified. Therefore, it is possible to suppress blood from adhering to the marginal portion near the sample liquid supply port 200a and adhering blood from adhering to the analyzer 800.
  • the opening of the sample liquid supply port 200a is formed on the surface of the recess 230, the farthest part of the air port 200b from the rotation center of the panel and the sample supply port 200a The opening and the force of each other are arranged on the same circumference around the center of rotation of the panel.
  • the air port 200b can be provided by forming a hole at a corresponding position of the plate 12 and opening it.
  • the air port 200b may be provided in a recess similar to the recess 230.
  • it may protrude in a convex shape (the convex portion 220 in FIG. 4).
  • the convex portion 220 in FIG. 4 When blood is directly spotted from a fingertip or the like, the blood that has touched the convex portion 220 flows into the quantification chamber 200, so that it is not necessary to bring the fingertip into contact with the edge of the concave portion 230 of the panel 10. Therefore, fingertip and recess 230 sides It is possible to suppress blood from being propagated between the edges and contaminating the peripheral edge of the recess 230 with blood.
  • the measurement panel 10 filled with blood in the quantitative chamber 200 is mounted on an analyzer 800 (see Fig. 4) and rotated by a spindle motor 810 (see Fig. 4).
  • the blood in the quantitative chamber 200 receives a force in the direction of turning away from the rotation center force by centrifugal force.
  • the capillary valve 210 is connected to a position where the rotation center force of the metering chamber 200 is also farthest, the blood that has been dammed up by the capillary valve effect flows into the capillary valve 210 by centrifugal force. Further, the blood passes through the capillary valve 210 and flows into the blood cell separation chamber 20.
  • the blood that has flowed into the blood cell separation chamber 20 is subjected to the action of centrifugal force and is separated into blood cells that are solid components and plasma that is a liquid component.
  • the force of a part of the plasma separated in the blood cell separation chamber 20 flows into the flow channel 110. While the centrifugal force is acting, the liquid level of the plasma in the flow channel 110 is the plasma in the blood cell separation chamber 20 It is not possible to get closer to the rotation center of the panel than the liquid level. Therefore, the plasma does not reach the curved portion 11 1 closer to the panel center than the blood cell separation chamber 20.
  • the plasma in the blood cell separation chamber 20 and the flow path 110 flows through the flow path 110 by the capillary force of the flow path 110. After centrifuging, go to quantification chamber 30.
  • the capillary force of the flow path 110 stops working and stops.
  • the panel 10 for measuring cholesterol concentration is rotated by the spindle motor 810.
  • it flows into the quantitative chamber 30 after being centrifuged by the plasma force centrifugal force in the flow path 110.
  • the plasma in the blood cell separation chamber 20 flows into the quantitative chamber 30 after centrifugation through the flow path 110 by the siphon effect while the centrifugal force is applied.
  • the plasma in the quantification chamber 30 after centrifugation flows into the reagent holding chamber 40 in the same manner that the zero plasma flows into the quantification chamber 30 after centrifugation.
  • the plasma flowing into the reagent holding chamber 40 comes into contact with the ChE layer held in the reagent holding chamber 40, dissolves the ChE layer, and the reaction of “Chemical 1” occurs.
  • the spindle motor 810 is stopped to stop the rotation of the measurement panel 10, and then
  • the plasma in the reagent holding chamber 40 flows into the reagent holding chamber 50 in the same manner as the plasma in the quantitative chamber 30 flows into the reagent holding chamber 40 after centrifugation. To do.
  • the plasma that flows into the reagent holding chamber 50 is the ChD held in the reagent holding chamber 50.
  • the ChDH layer In contact with the H layer, the ChDH layer is dissolved to cause the reaction “ii 2”.
  • the spindle motor 810 is stopped to stop the measurement panel 10 from rotating.
  • the reagent holding chamber 5 is in the same manner as the plasma of the reagent holding chamber 40 flows into the reagent holding chamber 50.
  • the plasma flowing into the reagent holding chamber 60 is stored in the WST held in the reagent holding chamber 60.
  • the WST-9 layer is dissolved to cause the reaction of “ii ⁇ 3”.
  • the plasma in the reagent holding chamber 60 and the flow path 150 is measured by the capillary force of the flow path 150. It flows in the flow path 150 toward the chamber 70.
  • the capillary force of the flow path 150 does not work and the plasma in the flow path 150 stops.
  • the plasma in the flow path 150 flows into the large-diameter portion 152 by centrifugal force, and further It flows into the measurement chamber 70 and the waste liquid channel 80.
  • the plasma in the reagent holding chamber 60 flows into the measurement chamber 70 and the waste liquid chamber 80 through the flow path 150 by the siphon effect while the centrifugal force is applied.
  • the analyzer 800 moves the optical pickup 820 (see Fig. 4) parallel to the rotation surface and vertically with the feed motor 830 (see Fig. 4). Move in any direction. While moving, the optical pickup 820 irradiates the plasma in the measurement chamber 70 with a light beam, and the analyzer detects the transmitted light. From the detected transmitted light, the reaction state of the reagent is detected and analyzed.
  • each reagent holding chamber is dissolved in plasma by agitation by the flow of plasma flowing into the reagent holding chamber and diffusion into the plasma flowing into the reagent holding chamber.
  • Each of the flow paths 120, 130, 140, and 150 shown in FIG. 6 has the curved portions 121, 131, 141, and 151 as described above. As shown in FIG. 7, each flow path may connect the chambers linearly without forming a curved portion. When each chamber is connected with a straight flow path, the plasma is transferred using the resistance force when plasma in the chamber flows into the flow path and the centrifugal force due to the rotation of the panel.
  • the total cholesterol concentration in plasma is measured by detecting the change in absorbance of WST-9, which is a dye, but other methods may be employed as the measurement method.
  • WST-9 which is a dye
  • a redox compound that can exchange electrons with NADH such as potassium ferricyanide
  • Ferricyanium potassium is ferricyanide in aqueous solution Generate ions. Ferricyanide ions are reduced by oxidation of cholesterol in plasma to produce ferrocyanide ions. If the generated ferrocyanide ion is oxidized again, and the acid current value generated at that time is measured, the total cholesterol concentration can be determined.
  • an electrode that serves at least as a counter electrode and a working electrode is provided in the measurement chamber 70, and the terminal in the analyzer 800 can contact the external force of the cholesterol concentration measurement panel 10 with the electrode in the measurement chamber 70. Is provided. A voltage is applied between the electrodes to oxidize ferrocyanide ions, and an acid current value generated at that time is measured.
  • the sample liquid analysis panel of the present invention detects changes caused by a chemical reaction optically or electrochemically, in addition to the measurement of cholesterol concentration in plasma shown in the above embodiment.
  • Possible reaction systems can be established and applied to the measurement of any desired component.
  • the sample liquid analysis panel according to the present invention can easily spot an accurate and constant amount of sample liquid, and can easily perform a measurement operation even for a sample liquid containing a solid component.
  • the accuracy of the measured value can be ensured. Therefore, it is particularly useful when applied to a device for analyzing blood as a sample solution, preferably a POCT compatible measuring instrument.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 本発明は、正確な一定量の試料液を簡便に点着することができ、かつ固体成分を含む試料液などであっても、測定操作の簡便性と測定値の正確性を確保することができる試料液分析用パネルに関する。具体的に本発明の試料液分析用パネルは、回転中心を軸に回転させられ、試料液が毛細管現象で流入させられるための流路状の第1チャンバと、前記第1チャンバに接続する第1流路であって、不連続に幅または高さを大きくされた空洞を有する第1流路と、前記第1流路に接続する第2チャンバと、前記第1チャンバに前記試料液を供給するための供給開口部と、前記第1チャンバから、前記試料液の流入に伴って気体を排出するための排出開口部を有する。

Description

明 細 書
試料液分析用パネル
技術分野
[0001] 本発明は試料分析用パネルに関し、特に、液体状の試料に試薬を作用させ、その 化学反応を検出することによって試料の分析を行うための試料分析用パネルに関す る。
背景技術
[0002] 近年、分析'解析 '検査技術の進歩によって、様々な物質を測定することが可能と なってきている。特に、臨床検査分野においては、生化学反応、酵素反応、免疫反 応等の特異反応に基づく測定原理の開発により、病態に反映する体液中の物質を 測定できるようになった。
[0003] その中で、ポイント'ォブ ·ケアテスティング (POCT)と呼ばれる臨床検査分野が注 目されている。 POCTは、簡易迅速測定を第一とし、検体を採取してから検査結果が 出るまでの時間の短縮を目的とした取り組みが行われている。したがって、 POCTに 要求される測定原理は簡易な原理であり、 POCTに要求される測定装置は小型で携 帯性があり、操作性がよい装置である。
[0004] 今日、 POCT対応測定機器は、簡易測定原理の構築、それに伴う生体成分の固 相化技術、センサデバイス化技術、センサシステム化技術、微細加工技術およびマ イク口流体制御技術の進歩によって、実用性の高 、機器が提供されてきて 、る。
POCT対応測定機器として用いることが可能な分析装置として、パネル部材であつ て、そこに展開した液体状の試料の定性、定量分析を行う装置が提案されている (例 えば特許文献 1参照)。特許文献 1に記載の技術を用いた測定装置によって血液な どの液体状の試料を分析することで、病気の診断等を行うことができる。
[0005] さらに前記分析装置として、複数のチャンバと、複数のチャンバ間を結ぶ流路とを 設けて、試料液を各チャンバに自由に移動、停止させる機能を付加したパネル部材 も提案されている(例えば、特許文献 2参照)。これにより、例えば、試料液である血液 中の血漿成分のみを試薬と反応させるために、血液中の血球を遠心分離によって除 去したり、複数のチャンバに固体状の試薬を保持すれば、試料液と複数の固体状の 試薬を順次溶解、反応させたりすることができる。
[0006] 固体状の試薬をチャンバ内にあら力じめ保持するには、チャンバに滴下された試薬 の溶液を乾燥させればよい。チャンバに滴下する試薬の溶液の濃度および量は、チ ヤンバ内に供給された試料液に固体状の試薬が溶解したときに、試料液の分析がで きるような試薬濃度となるように調整されればょ ヽ。
[0007] 前記分析装置として、一定量の試料液を導入するための機能を付加したパネル部 材も提案されている(例えば、特許文献 3参照)。特許文献 3に記載のパネル部材は 、毛細管現象によって一定量の試料を吸い上げる吸引空洞と、試薬を備える分析空 洞と、吸引空洞と分析空洞とを繋ぐ流路を有する。この流路は、流路面積を狭めた隙 間を備えた狭窄部を有する。狭窄部は、吸引空洞に試料を吸い上げるときに、試料 を吸引空洞に保持する機能を有し、かつ吸引空洞に試料が保持された状態で外部 カゝら遠心力が加えられたときに、吸引空洞に保持された試料を、隙間を通して分析 空洞に移動させる機能を有する。
[0008] 狭窄部が有する 2つの機能によって、一定量の試料液を簡易に採取し、かつ採取 した試料液を遠心力によって分析領域へ移動させることができる。このように特別な 定量用の器材を用いることなぐ一定量の試料を分析パネルに導入することができる 特許文献 1:国際公開第 00Z26677号パンフレット
特許文献 2:特表 2002— 534096号公報
特許文献 3:特開 2006 - 308561号公報
発明の開示
発明が解決しょうとする課題
[0009] 図 1に示すような従来の試料分析用パネルに血液などの試料液を点着するには、 別途に準備したピペットなどを用いて、試料液供給口 20aに点着する必要があった。 指先などから出血した血液を、指先から直接点着することも可能ではあるが、ディスク 内に一定量の血液を正確に点着することは困難である。また、指先から直接点着しよ うとすると、試料液供給口 20aの辺縁周辺に血液が付着して、測定時に分析装置を 汚染する可能性もあった。
[0010] 特許文献 3に記載のパネル部材によれば、吸引空洞と分析空洞とを繋ぐ流路が有 する狭窄部が、静止状態においては吸引空洞内の試料液を保持するので、吸引空 洞に対応する一定量の試料液を点着することができる。さらに、点着後に遠心力を作 用させると、吸引空洞内の試料液が狭窄部の保持力に打ち勝つ流動力を得て、分 析空洞に送り込まれる。ところが、特許文献 3に記載のパネル部材に、液体成分より 比重が大きい固形成分を含む試料 (例えば血液)を点着して遠心力を作用させると、 固形成分が吸引空洞と分析空洞との接続部に集積され、流路 (特に狭窄部)を閉塞 することがあった。それにより、液移送が困難になる場合があった。
[0011] 本発明は、正確な一定量の試料液を簡便に点着することができ、かつ固体成分を 含む試料液などであっても、測定操作の簡便性と測定値の正確性を確保することが できる試料分析用パネルを提供することを目的とする。
課題を解決するための手段
[0012] 本発明は、以下に示す試料液分析用パネルに関する。
回転中心を軸に回転させられる試料液分析用パネルであって、
試料液が毛細管現象で流入させられるための流路状の第 1チャンバと、前記第 1チ ヤンバに接続する流路であって、不連続に幅または高さが大きな空洞を有する第 1流 路と、前記第 1流路に接続する第 2チャンバと、前記第 1チャンバに前記試料液を供 給するための供給開口部と、前記第 1チャンバから、前記試料液の流入に伴って気 体を排出するための排出開口部とを有する。
さらに本発明の試料液分析用パネルにおいて、前記第 1流路は、前記供給開口部 と前記排出開口部の間に配置され、前記供給開口部は、パネル内またはパネル外 に設定される前記回転中心に向力つて開口しており、前記供給開口部と前記回転中 心との距離と、前記排出開口部の回転中心からの最遠部と前記回転中心との距離が 等しぐ前記第 1チャンバと前記第 1流路との接続部は、前記供給開口部と前記排出 開口部よりも、前記回転中心から遠くに配置されており、前記第 1チャンバの内壁面 の少なくとも一部に、試料液に対する濡れ性を向上させる処理が施されている。
[0013] 本発明の試料液分析用パネルは、液体成分と、液体成分よりも比重の大きな固形 成分とを含む試料液の分析に特に好適である。
発明の効果
[0014] 本発明は、正確な一定量の試料液を簡便に点着することができ、かつ固体成分を 含む試料液などであっても、測定操作の簡便性と測定値の正確性を確保することが できる試料分析用パネルを提供することができる。よって、特に試料液として血液を 分析するための装置、好ましくは POCT対応測定機器に適用することができる。 図面の簡単な説明
[0015] [図 1]従来の試料分析用ディスクの平面図
[図 2]試料分析用パネルを装着された分析装置の斜視図
[図 3]図 2の試料分析用パネルの平面図
[図 4]別の例の試料分析用パネルを装着された分析装置の斜視図
[図 5]図 4の試料分析用パネルの第 1の例の平面図
[図 6]図 4の試料分析用パネルの第 2の例の平面図
[図 7]図 4の試料分析用パネルの第 3の例の平面図
発明を実施するための最良の形態
[0016] 本発明の試料液分析用パネルは、 1)試料液が毛細管現象で流入させられるため の流路状の第 1チャンバ、 2)第 1チャンバに接続する流路であって、不連続に幅また は高さが大きな空洞を有する第 1流路、および 3)第 1流路に接続する第 2チャンバか らなる構造部分を備える。さらに第 1チャンバには、試料液を供給するための供給開 口部と、前記第 1チャンバへの試料液の流入に伴って、第 1チャンバ内の気体を排出 するための排出開口部とが形成されている。また第 1チャンバと第 1流路との接続部 は、供給開口部と排出開口部との間に配置される。
[0017] 分析においては、供給開口部を通って第 1チャンバに試料液が供給される力 試 料液の供給量は、第 1チャンバの容量によって規定される。供給開口部に点着され た試料液は、毛細管現象により第 1チャンバに流入する。第 1チャンバに試料液が流 入すると、第 1チャンバに存在していた気体 (空気など)は排出開口部から円滑にパ ネル外部に排出される。それにより、最終的に第 1チャンバは試料液で満たされる。
[0018] 第 1チャンバに流入した試料液は、第 1流路の空洞部でせき止められて、第二チヤ ンバへの浸入ができない。つまり空洞部は、不連続的に幅または高さが大きくされて いるので、キヤビラリバルブ効果によって毛細管現象による試料液の浸入を妨げる。
[0019] 本発明の試料液分析用パネルは、回転中心を軸に回転させられる。回転中心はパ ネル内またはパネル外のいずれに設けられてもよい。第 1チャンバに設けられた前記 試料を供給するための供給開口部は、前記回転中心に向かって開口していることが 好ましい。試料液分析用パネルを回転させたときに、第 1チャンバに満たされた試料 液力 供給開口部力 パネル外に漏れることを防止するためである。
[0020] また、回転面での位置関係における「前記回転中心と前記供給開口部との距離」と 、「前記回転中心と、前記排出開口部の回転中心からの最遠部との距離」とが等しい ことが好ましい。試料液分析用パネルを回転させたときに、第 1チャンバに満たされた 試料液が、供給開口部および排出開口部のいずれからもパネル外に漏れることを防 止するためである。
[0021] さらに、第 1チャンバと第 1流路 (空洞部を有する)との接続部は、供給開口部と排 出開口部よりも、回転中心力も遠くに配置されている。試料液分析用パネルを回転さ せたときに、その遠心力によって第 1流路の空洞部のキヤビラリバルブ効果を消失さ せて、試料液を空洞部やそれに続く流路ゃ第 2チャンバに送液するためである。
[0022] キヤビラリバルブとして作用する空洞部は、不連続的に幅または高さを大きくされて いるので、試料液に液体成分より比重が大きい固体成分が含まれていても、閉塞さ れるおそれが少ない。つまり、第 1チャンバに流入した試料液が試料液分析用パネル の回転による遠心力を受けたときに、試料液中の比重が大きい固体成分は回転中心 力も遠くに配置された第 1流路との接続部に堆積することがある。前記の通りキヤビラ リバルブは、不連続的に大きくされている空洞部であるので、当該空洞部で閉塞が 起こりにくい。一方、キヤビラリバルブを、流路を狭めた狭窄部とすると、試料液中の 固形成分によって閉塞されるおそれが高い。よって、本発明の試料液分析用パネル の第 1流路には、不連続的に幅または高さを大きくされた空洞部を、キヤビラリバルブ として配置することが好ま 、。
[0023] 第 1チャンバの供給開口部の辺縁部の一部は、凸形状にせり出していることが好ま しい。試料液供給口に試料液を点着するとき、試料液供給口の辺縁部に試料液が 残留したり、または試料液が試料液供給口の辺縁部カゝらパネル表面に拡散したりす ることを抑制しつつ、前記第 1チャンバ内に確実に試料液を流入させることができる。
[0024] 第 1チャンバの内壁面の少なくとも一部は、試料液に対する濡れ性を向上させる処 理が施されていることが好ましい。試料液を、毛細管現象により第 1チャンバに流入さ せやすくするためである。例えば、試料液が水を主成分とする場合には親水化処理 を施せばよぐ親水化処理を施された面の水接触角は 90° 未満であればよい。
[0025] 第 1チャンバの回転中心から遠位側の側壁は、供給開口部から、第 1チャンバと第 1流路との接続部まで単調に回転中心から遠ざ力る形状を有する。同様に、第 1チヤ ンバの回転中心から遠位側の側壁は、排出開口部から、第 1チャンバと第 1流路との 接続部まで単調に回転中心から遠ざカゝる形状を有する。それにより試料液分析用パ ネルを回転させたときに、第 1チャンバに満たされた試料液の全てを、第 1流路を通し て第 2チャンバに送液して、第 1チャンバに試料液が残留することを防ぐことができる
[0026] 第 2チャンバは、第 1チャンバから送液される試料液を収容するチャンバである。試 料液に、液体成分と、液体成分より比重の大きい固体成分とが含まれている場合は、 第 2チャンバにおいて固体成分を分離して、液体成分を取り出すことが好ましい。例 えば、試料液が血液である場合には、第 2チャンバで血球成分を除去して、血漿成 分のみを取り出して、分析に供することができる。
[0027] 試料液中の比重の大きい固体成分を分離して液体成分を取り出すには、試料液分 析パネルの回転による遠心力と、第 2チャンバに接続する第 2流路へ試料液の液体 成分が浸入する毛細管力とを組み合わせて行なうことが好ましい。そこで第 2チャン バに接続する第 2流路は、第 2チャンバの回転中心からの最遠部に接続するのでは なぐある程度回転中心側の部位に接続していることが好ましい。第 2チャンバの、第 2流路との接続部よりも回転中心から遠い部位に、固体成分を堆積させて、第 2流路 に固体成分が入り込むことを防止する。
例えば試料液が血液の場合は、第 1チャンバの容量の 6割程度を、第 2流路の毛細 管力によって吸い上げることができる位置に、第 2流路を接続することが好ましい。ま た第 2チャンバの構造は、特開 2006— 214955を参照して設計すればよい。 [0028] 以下、図面を参照しながら本発明の実施形態について説明する。
図 2には、本発明の試料分析用パネル、およびそれを用いる分析装置の構成の例 が示される。図 2に示すように、試料液分析用パネル 10が、分析装置 800に装着さ れる。図 2において分析装置 800は、試料分析用パネル 10を回転させるスピンドル モーター 810 ;コレステロール濃度測定用パネル 10内に展開された血漿に光ビーム を照射するための光ピックアップ 820;およびコレステロール濃度測定用パネル 10の 回転面と平行で回転方向と垂直な方向(以下「パネル径方向」という。 )に光ピックアツ プ 820を移動させるための送りモータ 830を備える。
[0029] 試料液分析用パネル 10は、試料液を血液として、その血漿中の総コレステロール 濃度を測定するための試料分析用パネルとすることができる。試料分析用パネルに は、例えば図 3に示すようなチャンバや流路を含む流路構造が形成される。図 3には 、合計 6つの流路構造が形成されている。各流路構造は、定量チャンバ 200と、キヤ ビラリバルブ 210と、血球分離チャンバ 20と、廃液チャンノ 80とをそれぞれ 1つずつ 含み、さらに遠心分離後定量チャンバ 30と、試薬保持チャンバ 40、 50および 60をそ れぞれ 3つずつ含み、 6つの測定チャンバ 70を含む。
[0030] 図 3に示されるように、試料液分析用パネル 10は複数の流路構造が形成された円 形の部材であってもよい。一方、図 4に示されるように、試料液分析用パネル 10は、 ステージ 101に着脱可能な部材とされて 、てもよ 、。図 4における分析装置 800は、 試料分析用パネル 10を固定して、それを回転させるためのステージ 101;スピンドノレ モーター 810 ;コレステロール濃度測定用パネル 10内に展開された血漿に光ビーム を照射するための光ピックアップ 820;およびコレステロール濃度測定用パネル 10の パネル径方向に光ピックアップ 820を移動させるための送りモータ 830を備える。
[0031] 図 4におけるステージ 101には、試料液分析用パネル 10をはめ込み、固定するた めの凹部が形成されている。凹部のうち、はめ込まれた試料分析用パネル 10の測定 チャンバ 70に対応する部分は、ステージ 101を貫通していることが好ましい。図 4に 示されるように、ステージ 101に形成された試料液分析用パネル 10に対応する貫通 部の周囲の一部に段差 105を設けて、試料液分析用パネル 10を下カゝら支持してもよ い。 [0032] 試料液分析用パネルをコレステロール濃度測定用パネル 10として、血漿中のコレ ステロール濃度を測定する場合には、以下の化 1、化 2および化 3からなる反応機構 を用いることができる。
[0033] ィ匕 1 :E— Chol→ Choi (酵素: ChE)
化 2 : Choi + NAD → コレステノン +NADH (酵素: ChDH)
ィ匕 3 :NADH+WST— 9 → NAD +ホノレマザン (酵素: DI)
[0034] ィ匕 1〜化 3における略称は、以下の通りである。
E- Choi:コレステロールエステルである。血漿中のコレステロールの大半はエステ ル化している。
Choi:コレステロールである。
ChE: E - Choiを Choiに変化させる反応を触媒する酵素である。具体的にコレス テロールエステラーゼ(EC3. 1. 1. 13)を示す。
NAD: ChDHの補酵素であるニコチンアデ-ンジヌクレオチドを示す。
NADH: NADの還元状態である。
ChDH :コレステロールデヒドロゲナーゼである。例えば、アマノエンザィム (株)から 購入できる。
WST-9 :水溶性テトラゾリゥム -9である。(株)同仁ィ匕学研究所より入手できるテトラ ゾリゥム塩の 1種である。
DI: NADHの NADへの酸化反応とそれに共役する還元反応を触媒する酵素であ る。具体的にジァホラーゼ (EC 1. 6. 99. 2)である。
[0035] ィ匕 3によって生成されるホルマザンの、波長 650nmの吸光度を測定して、測定され た吸光度の変化量に基づいて総コレステロール濃度を算出する。
[0036] 図 5には、コレステロール濃度測定用パネル 10の例が示される。コレステロール濃 度測定用パネル 10は、定量チャンバ 200と、定量チャンバ 200の外周側の側壁に接 続し、定量チャンバ 200の空隙の厚みより厚い空隙を有するキヤビラリバルブ 210と、 キヤビラリバルブ 210に連通して 、る血球分離チャンバ 20とを有する。キヤビラリバル ブ 210は、定量チャンバ 200の試料供給口 200aと空気口 200bとの中間部の側壁で 接続している。 [0037] 血漿分離チャンバ 20において、血液力 血球を遠心分離により除去して血漿のみ をとりだす。
[0038] 定量チャンバ 200には、定量チャンバ 200に血液を流入させるための試料供給口 2 OOaと、試料液供給口 200aと反対側の端部に開口する空気口 200bが形成される。 試料供給口 200aから流入した血液は、毛細管現象によって浸入して定量チャンバ 2 00を満たし、定量チャンバ 200に存在して!/、た空気は空気口 200bから排出される。
[0039] さらにコレステロール濃度測定用パネル 10には、血球分離チャンバ 20によって取り 出された血漿のうちの一定量をとりだすための遠心分離後定量チャンバ 30と、 ChE を含む固体状の試薬である ChE層を堆積させて 、る試薬保持チャンバ 40と、 ChD Hを含む固体状の試薬である ChDH層を堆積させて 、る試薬保持チャンバ 50と、 W ST-9を含む固体状の試薬である WST-9層を堆積させている試薬保持チャンバ 60 と、ホルマザンの波長 650nmの吸光度を測定するための測定チャンバ 70と、不要と なった液体が廃棄されるための廃液チャンバ 80とが形成されている。
[0040] 試薬保持チャンバ 40、 50および 60の試薬層は、コレステロール濃度測定用パネ ル 10の厚み方向(以下「パネル厚方向」と 、う)と直交した面に堆積されて 、ればよ い。
[0041] 遠心分離後定量チャンバ 30は、 1つの血球分離チャンバ 20に対して 3つ配置され ており;試薬保持チャンバ 40、 50および 60は、 1つの遠心分離後定量チャンバ 30に 対して 1つずつ配置されており;測定チャンバ 70は、 1つの試薬保持チャンバ 60に対 して 2つ配置されており;廃液チャンバ 80は、 1つの血球分離チャンバ 20に対して 1 つ配置されている。
[0042] コレステロール濃度測定用パネル 10内の液体の流通を円滑にするために、定量チ ヤンバ 200には空気口 200bが、血球分離チャンバ 20には空気口 20bが、試薬保持 チャンバ 40、 50および 60〖こは、それぞれ空気口 40b、 50bおよび 60bが形成されて V、る。空気口は空気を通すことができる。
[0043] 血液供給口 200aおよび各空気口 (200b, 20b、墨、 50b、 60b)は、コレステロ ール濃度測定用パネル 10が分析装置 800 (図 4参照)によって駆動されているときに 、試料液がコレステロール濃度測定用パネル 10の内部から外部に漏れないような位 置に配置される。特に、空気口 200bの、コレステロール濃度測定用パネル 10の回 転中心力 最も遠い端部と、パネルの回転面に対して垂直な面に開口した試料供給 口 200aの開口部とは、回転中心を中心とする等円周上に位置する。
[0044] 定量チャンバ 200の容積は、血球分離チャンバ 20の容積より小さくされている。定 量チャンバ 200に供給された血液の全てを、血球分離チャンバ 20に送液するためで ある。また定量チャンバ 200の容積は、血球分離チャンバ 20で分離された血漿が、 以降の各チャンバに移送され、測定に供されるに十分な量となるように設定されてい る。
[0045] 試薬保持チャンバ 40、 50および 60は、パネル厚方向と直交する面上の形状が" 2 . Omm X 5. Omm"の略長方形とされ、 5. Ommの辺がパネル径方向と略直交して いる。また、試薬保持チャンノ 0、 50および 60のパネル厚方向における深さは 300 /z mとされている。
[0046] 測定チャンバ 70は、パネル厚方向と直交する面上の形状が直径 2mmの円形であ つて、約 1 μ 1の容積を有する。パネル厚方向における測定チャンバ 70の深さは、本 実施形態の場合は 200 mが適切であるが、一般的には、透過光測定時の光路長 に相当する。よって測定チャンバ 70の深さは、透過光量または吸光度の変化により 測定対象物質 (コレステロール)の濃度が測定できるように適切に設定する必要があ る。
また、波長 650nmの透過光に対する吸光度の変化によって血漿中の総コレステロ ール濃度を測定できるので、測定チャンバ 70は、パネル厚方向と直交する面を平面 として、波長 650nmの光に対して光学的に略透明とする。
[0047] 反応性や測定時間の短縮の観点力 は、固体状の試薬が設置されたチャンバの 数は少な 、方が好適である。し力しながらコレステロール濃度を測定するための測定 用パネル 10には、以下に説明する理由力も前記「ィ匕 1」の反応に必要な ChE層を試 薬保持チャンバ 40に、前記「化 2」の反応に必要な ChDH層を試薬保持チャンバ 50 に、前記「ィ匕 3」の反応に必要な WST-9層を試薬保持チャンバ 60に保持することが 好ましい。
[0048] ChDHの至適 pHはアルカリ性領域の pH8以上であることから pH緩衝剤が必要で あるが、アルカリ性領域での ChDHの安定性はよくない。そこで前記「ィ匕 1」の反応に 必要な ChE層を試薬保持チャンバ 40に、前記「ィ匕 2」の反応に必要な ChDH層を試 薬保持チャンバ 50に保持するとともに、 pH緩衝剤を ChDH層ではなぐ ChE層に混 合することが好ましい。アルカリ性領域での安定性や反応性が悪くない ChEは、巿販 品カゝら人手することができる。
[0049] また WST-9は、 ChDHの触媒活性を阻害する傾向がある。そこで、前記「化 2」の 反応に必要な ChDH層を試薬保持チャンバ 50に、前記「ィ匕 3」の反応に必要な WS T-9層を試薬保持チャンバ 60に、別々のチャンバに分けて保持することが好ましい。
[0050] 図 5に示すように、コレステロール濃度測定用パネル 10は、各チャンバ間を接続す る流路 110〜160を有する。流路 110〜160のパネル厚方向における深さは 100 mである。
[0051] 流路 110 ;血球分離チャンバ 20に接続されるとともに、遠心分離後定量チャンバ 30 のうちコレステロール濃度測定用パネル 10の中心(以下「パネルの回転中心」という) に近 、部分に接続された流路である。
流路 120 ;遠心分離後定量チャンバ 30のうちパネルの回転中心力も遠い部分に接 続されるとともに、試薬保持チャンバ 40のうちパネルの回転中心に近い部分に接続 された流路である。
流路 130;試薬保持チャンバ 40のうちパネルの回転中心力も遠い部分に接続され るとともに、試薬保持チャンバ 50のうちパネルの回転中心に近い部分に接続された 流路である。
流路 140 ;試薬保持チャンバ 50のうちパネルの回転中心力も遠い部分に接続され るとともに、試薬保持チャンバ 60のうちパネルの回転中心に近い部分に接続された 流路である。
流路 150 ;試薬保持チャンバ 60のうちパネルの回転中心力も遠い部分に接続され るとともに、測定チャンバ 70および廃液チャンバ 80のうち、それぞれパネルの回転中 心に近い部分に接続された流路である。
流路 160 ;遠心分離後定量チャンバ 30のうちパネルの回転中心に近い部分に接 続されるとともに、廃液チャンバ 80のパネルの回転中心に近い部分に接続された流 路である。
[0052] 流路 110は、血球分離チャンバ 20よりも、パネルの回転中心に近い湾曲部 111を 有する。同様に、流路 120、 130、 140および 150のそれぞれは、遠心分離後定量 チャンバ 30、試薬保持チャンバ 40、 50および 60よりも、パネルの回転中心に近い湾 曲部 121、 131、 141および 151を有する。
[0053] 流路 150は、湾曲部 151と、測定チャンバ 70および廃液チャンバ 80との間に配置 された大径部 152を有する。大径部 152は、他の部分よりも不連続的に流路径が大 きくされている。
流路 160には、コレステロール濃度測定用パネル 10内の液体の流通を円滑にする ために空気を通す空気口 160aが形成されている。空気口 160aは、コレステロール 濃度測定用パネル 10が分析装置 800によって駆動されているときに、試料液が測定 用パネル 10の内部力も外部に漏れないような位置に配置されている。
[0054] 測定用パネル 10の製造方法について説明する。定量チャンバ 200、血球分離チヤ ンバ 20、遠心分離後定量チャンバ 30、試薬保持チャンバ 40、 50および 60、測定チ ヤンノ 70、ならびに廃液チャンノ 80に対応する四咅と、空気口 20b、 40b、 50b、 60 bおよび 160aに対応する貫通穴とが成型されたポリカーボネート製の板材 12を準備 する。別途に、定量チャンバ 200、定量チャンバ 200を開口する試料液供給口 200a および空気口 200b、血球分離チャンバ 20、遠心分離後定量チャンバ 30、試薬保持 チャンバ 40、 50および 60、測定チャンバ 70、廃液チャンバ 80、ならびに流路 110〜 160に対応する貫通穴が成型されたポリエチレンテレフタラート製の板材 13を準備 する。板材 13の両面には接着剤を付加してもよい。板材 11に、板材 13を貼り合わせ る。
[0055] 次いで、板材 11と板材 13の貼り合わせ板の、試薬保持チャンバ 40に対応する部 分に、試薬溶液を滴下して乾燥することによって試薬保持チャンバ 40の ChE層を形 成する。試薬溶液とは例えば、 ChE、 ChEの触媒活性を活性ィ匕するための界面活性 剤(例えば n—ォクチルー β D—チォダルコシドや、コール酸ナトリウム)、反応時 の ρΗを調整するための ρΗ緩衝剤であるトリス塩酸塩、および DIを含む 5 1の水溶 液である。 [0056] 板材 11と板材 13の貼り合わせ板の、試薬保持チャンバ 50に対応する部分に、試 薬溶液を滴下して乾燥することによって試薬保持チャンバ 50の ChDH層を形成する 。試薬溶液とは例えば、 ChDHと DIを含む 5 1の水溶液である。
[0057] また板材 11および板材 13の貼り合わせ板の、試薬保持チャンバ 60に対応する部 分に、試薬溶液を滴下して乾燥することによって試薬保持チャンバ 60の WST-9層 を形成する。試薬溶液とは、例えば WST-9を含む 5 1の水溶液である。
[0058] その後、表面に親水処理を施した板材 12を板材 13に貼り合わせて、コレステロ一 ル濃度測定用パネル 10を製造する。親水処理は、例えば溶媒に分散した界面活性 剤を塗布および乾燥させてなされる力 プラズマ処理などの物理的な表面改質など でも可能である。
[0059] 図 3に示した測定用パネル 10の試料液供給口 200aの開口部は、ステージ 101 (図 4参照)の凹部に対応する面に形成されて!ヽる。
一方、試料液供給口 200aの開口部は、図 6に示されるように、パネルの凹部 230 の面に形成されてもよい。凹部 230は、指先と同程度または若干大きな曲率を有する 。それにより、指先力も出血した血液を直接点着させやすくなる。また、点着位置が判 別しやすぐ試料液供給口 200a部に血液を正確に点着できる。そのため、試料液供 給口 200a付近の辺縁部に血液が付着したり、付着血液が分析装置 800に付着した りすることを抑制できる。
[0060] 図 6に示すように、試料液供給口 200aの開口部を凹部 230の面に形成する場合に は、空気口 200bの、パネルの回転中心からの最遠部と、試料供給口 200aの開口部 と力 パネルの回転中心を中心とする等円周上に配置される。空気口 200bは、板材 12の対応する位置に穴を成型して開口することで設けることができる。空気口 200b を、凹部 230と同様の凹部に設けてもよい。
[0061] 試料液供給口 200aの開口部を凹部 230の面に設ける場合は、試料液供給口 200 aを構成する部材のうち天井部分と床部分を形成する板材 12および板材 11の何れ か一方が、凸状にせり出していてもよい(図 4の凸部 220)。指先などから血液を直接 点着する場合に、凸部 220に接触した血液は定量チャンバ 200に流入するので、指 先をパネル 10の凹部 230辺縁に接触させる必要がない。従って、指先と凹部 230辺 縁の間に血液が伝播し、凹部 230辺縁部が血液で汚染されることを抑制することが できる。
[0062] 次に、コレステロール濃度測定用パネル 10の動作について説明する。
コレステロール濃度測定用パネル 10の血液供給口 200aに血液を接触させると、毛 細管現象によって血液が自発的に定量チャンバ 200に流入し、空気口 200bの端部 まで到達する。定量チャンバ 200の壁面には、キヤビラリバルブ 210に連通する開口 部があるが、定量チャンバ 200とキヤビラリバルブ 210との接続部で、キヤビラリバル ブ 210の天井高が定量チャンバ 200の天井高よりも不連続に高められて 、る。よって 、定量チャンバ 200に流入した血液は、キヤビラリバルブ 210には流入しない。
[0063] 定量チャンバ 200に血液が満たされた測定用パネル 10は、分析装置 800 (図 4参 照)に装着されて、スピンドルモーター 810 (図 4参照)によって回転させられる。それ により定量チャンバ 200内の血液は、遠心力によって回転中心力 遠ざ力る方向に 力を受ける。キヤビラリバルブ 210は、定量チャンバ 200の回転中心力も最も遠い位 置に接続しているので、キヤビラリバルブ効果によってせき止められていた血液が、 遠心力によってキヤビラリバルブ 210に流入する。さらに血液は、キヤビラリバルブ 21 0を通過して、血球分離チャンバ 20に流入する。
[0064] 血球分離チャンバ 20に流入した血液は、遠心力の作用を受けて、固体成分である 血球と、液体成分である血漿とに分離される。血球分離チャンバ 20内で分離された 血漿の一部は流路 110内に流入する力 遠心力が作用している間は、流路 110内の 血漿の液面は、血球分離チャンバ 20内の血漿の液面よりもパネルの回転中心に近 づくことができない。よって、血球分離チャンバ 20よりもパネル中心に近い湾曲部 11 1にまで、血漿が達することはない。
[0065] 次いで、スピンドルモーター 810を停止して測定用パネル 10の回転を止めると、血 球分離チャンバ 20および流路 110内の血漿は、流路 110の毛細管力によって流路 110内を流れて遠心分離後定量チャンバ 30に向かう。そして流路 110内の血漿が、 流路 110と遠心分離後定量チャンバ 30との接続部分に達すると、流路 110の毛細 管力が働力なくなって停止する。
[0066] 次いで、スピンドルモーター 810によってコレステロール濃度測定用パネル 10を回 転させると、流路 110内の血漿力 遠心力によって遠心分離後定量チャンバ 30内に 流入する。血球分離チャンバ 20内の血漿は、遠心力が加わっている間、サイフォン 効果によって流路 110を介して遠心分離後定量チャンバ 30に流入する。
[0067] 遠心分離後定量チャンバ 30に流入した血漿の一部は流路 120内に流入するが、 遠心力が作用している間は、流路 120内の血漿の液面は、遠心分離後定量チャン ノ 30内の血漿の液面よりもパネルの回転中心に近づくことができない。よって、遠心 分離後定量チャンバ 30よりもパネル中心に近い湾曲部 121にまで、血漿が到達する ことはない。
[0068] また、遠心分離後定量チャンバ 30に流入した血漿が、遠心分離後定量チャンバ 3
0と流路 160との接続部分にまで達すると、さらに流入する余分な血漿は流路 160を 介して廃液チャンバ 80に排出される。
[0069] スピンドルモーター 810を停止して測定用パネル 10の回転を止め、その後、再びス ピンドルモーター 810によって測定用パネル 10を回転させると、血球分離チャンバ 2
0の血漿が遠心分離後定量チャンバ 30に流入したのと同様に、遠心分離後定量チ ヤンバ 30の血漿が試薬保持チャンバ 40に流入する。
試薬保持チャンバ 40に流入した血漿は、試薬保持チャンバ 40に保持された ChE 層と接触して、 ChE層を溶解して前記「化 1」の反応が起こる。
[0070] さらに、スピンドルモーター 810を停止して測定用パネル 10の回転を止め、その後
、再びスピンドルモーター 810によって測定用パネル 10を回転させると、遠心分離後 定量チャンバ 30の血漿が試薬保持チャンバ 40に流入したのと同様に、試薬保持チ ヤンバ 40の血漿が試薬保持チャンバ 50に流入する。
試薬保持チャンバ 50に流入した血漿は、試薬保持チャンバ 50に保持された ChD
H層と接触して、 ChDH層を溶解して前記「ィ匕 2」の反応が起こる。
[0071] その後、スピンドルモーター 810を停止して測定用パネル 10の回転を止め、その後
、再びスピンドルモーター 810によって測定用パネル 10を回転させると、試薬保持チ ヤンバ 40の血漿が試薬保持チャンバ 50に流入したのと同様に、試薬保持チャンバ 5
0の血漿が試薬保持チャンバ 60に流入する。
試薬保持チャンバ 60に流入した血漿は、試薬保持チャンバ 60に保持された WST -9層と接触して、 WST-9層を溶解して前記「ィ匕 3」の反応が起こる。
[0072] そして、コレステロール濃度測定用パネル 10を載せたステージ 101の回転がスピン ドルモーター 810によって停止させられると、試薬保持チャンバ 60および流路 150内 の血漿は、流路 150の毛細管力によって測定チャンバ 70に向けて流路 150内を流 れる。流路 150内の血漿は、液面が大径部 152まで達すると、流路 150の毛細管力 が働かなくなって停止する。
[0073] 次いで、コレステロール濃度測定用パネル 10を載せたステージ 101がスピンドルモ 一ター 810によって回転させられると、流路 150内の血漿が遠心力によって大径部 1 52内に流入して、さらに測定チャンバ 70および廃液チャンノ 80に流入する。試薬保 持チャンバ 60内の血漿は、遠心力が加わっている間、サイフォン効果によって流路 1 50を介して測定チャンバ 70および廃液チャンバ 80に流入する。
[0074] 分析装置 800は、測定チャンバ 70に血漿が流入して 、るときに、送りモータ 830 ( 図 4参照)によって光ピックアップ 820 (図 4参照)を回転面と平行かつ回転方向と垂 直な方向に移動させる。光ピックアップ 820は、移動しながら測定チャンバ 70内の血 漿に光ビームを照射し、その透過光を分析装置が検出する。検出された透過光から 、試薬の反応状態を検出して分析を行う。
[0075] 各試薬保持チャンバの試薬層の血漿への溶解は、試薬保持チャンバに流入する 血漿の流動による攪拌と、試薬保持チャンバに流入した血漿への拡散によってなさ れる。
[0076] 図 6に示された流路 120、 130、 140および 150のそれぞれは、前述の通り、湾曲 部 121、 131、 141および 151を有する。各流路は、図 7に示されたように、湾曲部を 形成することなく直線的に各チャンバを接続してもよい。直線的な流路で各チャンバ を接続した場合は、チャンバ内の血漿が流路に流入するときの抵抗力と、パネルの 回転による遠心力を利用して血漿を移送する。
[0077] 上記の実施形態のように、血漿中の総コレステロール濃度は、色素である WST-9 の吸光度変化を検出することで測定されるが、測定手法は他の方法を採用してもよ い。例えば、 NADHとの間で電子授受が可能なレドックス化合物、例えばフェリシア ン化カリウムを用いてもよい。フェリシアンィ匕カリウムは、水溶液中でフェリシアン化物 イオンを生成する。フェリシアン化物イオンは、血漿中のコレステロールの酸化によつ て還元されて、フエロシアン化物イオンを生じる。生じたフエロシアン化物イオンを再 度酸化させて、その際に生じる酸ィ匕電流値を計測すれば、総コレステロール濃度を 柳』定することができる。
そこで、測定チャンバ 70内に少なくとも対極と作用極の役割を果たす電極を設けて 、かつ分析装置 800に測定チャンバ 70内の電極に、コレステロール濃度測定用パネ ル 10の外部力も接触することができる端子を設ける。前記電極間に電圧を印加して 、フエロシアンィ匕物イオンを酸化させて、その際に生じる酸ィ匕電流値を計測する。
[0078] 本発明の試料液分析用パネルは、上記の実施形態で示した血漿中のコレステロ一 ル濃度の測定の他にも、化学反応により生じた変化を光学的または電気化学的に検 出可能な反応系を確立された、任意の目的成分の測定に適用することができる。 産業上の利用可能性
[0079] 本発明に係る試料液分析用パネルは、正確な一定量の試料液を簡便に点着する ことができ、かつ固体成分を含む試料液などであっても、測定操作の簡便性と測定 値の正確性を確保することができる。よって、特に試料液として血液を分析するため の装置、好ましくは POCT対応測定機器に適用すると有用である。
[0080] 本出願は、 2006年 4月 4日出願の出願番号 JP2006— 102707に基づく優先権を 主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に 援用される。

Claims

請求の範囲
[1] 回転中心を軸に回転させられる試料液分析用パネルであって、
試料液が毛細管現象で流入させられるための流路状の第 1チャンバと、前記第 1チ ヤンバに接続する流路であって、不連続に幅または高さを大きくされた空洞を有する 第 1流路と、前記第 1流路に接続する第 2チャンバと、前記第 1チャンバに前記試料 液を供給するための供給開口部と、前記第 1チャンバから、前記試料液の流入に伴 つて気体を排出するための排出開口部とを有し、
前記第 1流路は、前記供給開口部と前記排出開口部の間に配置され、 前記供給開口部は、パネル内またはパネル外に設定される前記回転中心に向か つて開口しており、
前記回転中心と前記供給開口部との距離と、前記回転中心と前記排出開口部の 回転中心からの最遠部との距離が等しぐ
前記第 1チャンバと前記第 1流路との接続部は、前記供給開口部および前記排出 開口部よりも、前記回転中心から遠くに配置されており、
前記第 1チャンバの内壁面の少なくとも一部に、試料液に対する濡れ性を向上させ る処理が施されている、試料液分析用パネル。
[2] 前記試料液が、液体成分と、前記液体成分よりも比重の大きな固形成分とを含む、 請求項 1に記載の試料液分析用パネル。
[3] 前記第 2チャンバが、前記試料液から前記固形成分を分離して、前記液体成分の みをとりだす構造を有する、請求項 2に記載の試料液分析用パネル。
[4] 前記第 2チャンバが、前記試料液分析用パネルを回転させることにより得られる遠 心力と、前記第 2チャンバに接続する第 2流路への試料の移動を惹起する毛細管力 との組み合わせによって、前記試料液から前記固形成分を分離して、前記液体成分 のみを取り出す構造を有する、請求項 2に記載の試料液分析用パネル。
[5] 前記第 1チャンバにおける前記回転中心から遠位側の側壁が、
前記供給開口部から、前記第 1流路との接続部分まで、単調に回転中心から遠 ざかる形状であり、かつ
前記排出開口部から、前記第 1流路との接続部分まで、単調に回転中心から遠 ざ力る形状である、請求項 1に記載の試料液分析用パネル。
前記供給開口部の辺縁部の一部が凸形状にせり出している、請求項 1に記載の試 料液分析用パネル。
PCT/JP2007/057566 2006-04-04 2007-04-04 試料液分析用パネル WO2007116909A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008509865A JPWO2007116909A1 (ja) 2006-04-04 2007-04-04 試料液分析用パネル
US12/295,405 US20090169430A1 (en) 2006-04-04 2007-04-04 Panel for analyzing sample liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006102707 2006-04-04
JP2006-102707 2006-04-04

Publications (1)

Publication Number Publication Date
WO2007116909A1 true WO2007116909A1 (ja) 2007-10-18

Family

ID=38581199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057566 WO2007116909A1 (ja) 2006-04-04 2007-04-04 試料液分析用パネル

Country Status (3)

Country Link
US (1) US20090169430A1 (ja)
JP (1) JPWO2007116909A1 (ja)
WO (1) WO2007116909A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2219034A1 (en) * 2007-11-08 2010-08-18 Panasonic Corporation Analyzing device and analyzing method using same
US20110058985A1 (en) * 2008-03-28 2011-03-10 Hiroshi Saiki Analysis device and an analysis apparatus using the analysis device
JP2013541013A (ja) * 2010-10-28 2013-11-07 エフ.ホフマン−ラ ロシュ アーゲー ある液体量を部分量に配分するためのマイクロ流体試験担体
JP2014070904A (ja) * 2012-09-27 2014-04-21 Toppan Printing Co Ltd 生化学物質を処理または分析するための生化学反応チップ及びその分析方法
JP2014070991A (ja) * 2012-09-28 2014-04-21 Toppan Printing Co Ltd 複数試料を分析するための試料分析チップとその分析装置
US9221051B2 (en) 2010-10-29 2015-12-29 Roche Diagnostics Operations, Inc. Microfluidic element for analysis of a sample liquid
JP2016523365A (ja) * 2013-06-25 2016-08-08 ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャリゼーション サンプル体積の自己デジタル処理
WO2017047297A1 (ja) * 2015-09-15 2017-03-23 パナソニックヘルスケアホールディングス株式会社 解析容器
JPWO2015170753A1 (ja) * 2014-05-08 2017-04-20 国立大学法人大阪大学 熱対流生成用チップ及び液体秤量具
JP2018163169A (ja) * 2018-06-26 2018-10-18 シスメックス株式会社 測定用カートリッジおよび送液方法
JP6435387B1 (ja) * 2017-09-29 2018-12-05 シスメックス株式会社 カートリッジ、検出方法、および検出装置
US10309976B2 (en) 2014-06-30 2019-06-04 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
US10421070B2 (en) 2008-08-15 2019-09-24 University Of Washington Method and apparatus for the discretization and manipulation of sample volumes
US10520521B2 (en) 2014-06-30 2019-12-31 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
US10539583B2 (en) 2014-12-12 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
US10539582B2 (en) 2014-06-30 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and method for removing liquid from liquid that contains magnetic particles
US10539560B2 (en) 2014-06-30 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, and sample analysis apparatus
US10794925B2 (en) 2015-07-07 2020-10-06 University Of Washington Systems, methods, and devices for self-digitization of samples

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126403A1 (ja) * 2007-04-05 2008-10-23 Panasonic Corporation 試料液分析チップ
EP2688674B1 (en) * 2011-03-24 2015-11-04 Biosurfit, S.A. Control of liquid flow sequence on microfluidic device
EP2952258A1 (en) * 2014-06-06 2015-12-09 Roche Diagnostics GmbH Rotatable cartridge for analyzing a biological sample
EP2952257A1 (en) 2014-06-06 2015-12-09 Roche Diagnostics GmbH Rotatable cartridge for processing and analyzing a biological sample
JP6527531B2 (ja) * 2014-06-06 2019-06-05 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 生体試料を分析するための計量チャンバを備える回転可能なカートリッジ
EP2957890A1 (en) * 2014-06-16 2015-12-23 Roche Diagnostics GmbH Cartridge with a rotatable lid
US10493448B2 (en) * 2015-03-13 2019-12-03 Bio-Rad Laboratories, Inc. Assay cartridge
EP3239709B1 (en) * 2016-04-25 2019-06-05 ARKRAY, Inc. Method of analyzing glycated protein; use of analysis reagent, analysis kit, and test piece for analysis
TWI655417B (zh) * 2017-05-05 2019-04-01 Feng Chia University 微流體檢驗裝置及其微流體控制方法
JP7121244B2 (ja) * 2017-10-23 2022-08-18 国立大学法人山梨大学 分注デバイス、それを用いた分注装置及び方法、並びに検査装置及び方法
CN110508335A (zh) * 2019-03-27 2019-11-29 广州万孚生物技术股份有限公司 微流控芯片及含有该微流控芯片的体外检测装置
CN111207242B (zh) 2020-04-18 2020-09-01 博奥生物集团有限公司 流体驱动控制阀及使用方法
CN113009136B (zh) * 2020-08-21 2024-04-05 东莞东阳光医疗智能器件研发有限公司 小型多指标检测样本分析装置
CN113237799B (zh) * 2021-06-03 2024-09-10 浙江盛域医疗技术有限公司 一种血液检测微流控芯片

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501340A (ja) * 1994-06-06 1998-02-03 アバクシス,インコーポレイテッド 測定精度を改善するための改良サイホン
JP2004212050A (ja) * 2002-05-08 2004-07-29 Hitachi High-Technologies Corp 化学分析装置及び遺伝子診断装置
WO2004074846A1 (ja) * 2003-02-19 2004-09-02 Japan Science And Technology Agency 血液分析装置及び血液分析方法
JP2005518531A (ja) * 2002-02-26 2005-06-23 バイエル・ヘルスケア・エルエルシー 遠心力及び/又は毛管力によって流体を正確に移動し、操作する方法及び装置
JP2005274388A (ja) * 2004-03-25 2005-10-06 Matsushita Electric Ind Co Ltd 分析用ディスク及びその使用済み表示方法
JP2006058093A (ja) * 2004-08-18 2006-03-02 National Institute For Materials Science 血液分析装置
JP2006509196A (ja) * 2002-12-02 2006-03-16 ノラダ・ホールディング・アクチボラグ 微小流体素子の並列処理

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235531B1 (en) * 1993-09-01 2001-05-22 Abaxis, Inc. Modified siphons for improved metering precision
WO2000079285A2 (en) * 1999-06-18 2000-12-28 Gamera Bioscience Corporation Devices and methods for the performance of miniaturized homogeneous assays
US7384602B2 (en) * 2002-05-08 2008-06-10 Hitachi High-Technologies Corporation Chemical analysis apparatus and genetic diagnostic apparatus
WO2006080140A1 (ja) * 2005-01-28 2006-08-03 Matsushita Electric Industrial Co., Ltd. 血液処理装置及び血液導入方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501340A (ja) * 1994-06-06 1998-02-03 アバクシス,インコーポレイテッド 測定精度を改善するための改良サイホン
JP2005518531A (ja) * 2002-02-26 2005-06-23 バイエル・ヘルスケア・エルエルシー 遠心力及び/又は毛管力によって流体を正確に移動し、操作する方法及び装置
JP2004212050A (ja) * 2002-05-08 2004-07-29 Hitachi High-Technologies Corp 化学分析装置及び遺伝子診断装置
JP2006509196A (ja) * 2002-12-02 2006-03-16 ノラダ・ホールディング・アクチボラグ 微小流体素子の並列処理
WO2004074846A1 (ja) * 2003-02-19 2004-09-02 Japan Science And Technology Agency 血液分析装置及び血液分析方法
JP2005274388A (ja) * 2004-03-25 2005-10-06 Matsushita Electric Ind Co Ltd 分析用ディスク及びその使用済み表示方法
JP2006058093A (ja) * 2004-08-18 2006-03-02 National Institute For Materials Science 血液分析装置

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2219034A1 (en) * 2007-11-08 2010-08-18 Panasonic Corporation Analyzing device and analyzing method using same
EP2219034A4 (en) * 2007-11-08 2014-01-22 Panasonic Corp ANALYSIS DEVICE AND ANALYSIS PROCEDURE THEREWITH
US10101317B2 (en) 2007-11-08 2018-10-16 Phc Holdings Corporation Rotatable analyzing device with a separating cavity and a capillary cavity
US9182384B2 (en) 2007-11-08 2015-11-10 Panasonic Healthcare Holdings Co., Ltd. Analyzing device and analyzing method using same
US8709346B2 (en) * 2008-03-28 2014-04-29 Panasonic Corporation Analysis device and an analysis apparatus using the analysis device
US20110058985A1 (en) * 2008-03-28 2011-03-10 Hiroshi Saiki Analysis device and an analysis apparatus using the analysis device
US10421070B2 (en) 2008-08-15 2019-09-24 University Of Washington Method and apparatus for the discretization and manipulation of sample volumes
US9186671B2 (en) 2010-10-28 2015-11-17 Roche Diagnostics Operations, Inc. Microfluidic test carrier for apportioning a liquid quantity into subquantities
JP2013541013A (ja) * 2010-10-28 2013-11-07 エフ.ホフマン−ラ ロシュ アーゲー ある液体量を部分量に配分するためのマイクロ流体試験担体
US9221051B2 (en) 2010-10-29 2015-12-29 Roche Diagnostics Operations, Inc. Microfluidic element for analysis of a sample liquid
JP2014070904A (ja) * 2012-09-27 2014-04-21 Toppan Printing Co Ltd 生化学物質を処理または分析するための生化学反応チップ及びその分析方法
JP2014070991A (ja) * 2012-09-28 2014-04-21 Toppan Printing Co Ltd 複数試料を分析するための試料分析チップとその分析装置
JP2016523365A (ja) * 2013-06-25 2016-08-08 ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャリゼーション サンプル体積の自己デジタル処理
US11219896B2 (en) 2013-06-25 2022-01-11 University Of Washington Through Its Center For Commercialization Self-digitization of sample volumes
JPWO2015170753A1 (ja) * 2014-05-08 2017-04-20 国立大学法人大阪大学 熱対流生成用チップ及び液体秤量具
US10309976B2 (en) 2014-06-30 2019-06-04 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
US10520521B2 (en) 2014-06-30 2019-12-31 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
US10539582B2 (en) 2014-06-30 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and method for removing liquid from liquid that contains magnetic particles
US10539560B2 (en) 2014-06-30 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, and sample analysis apparatus
US10539583B2 (en) 2014-12-12 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
US10794925B2 (en) 2015-07-07 2020-10-06 University Of Washington Systems, methods, and devices for self-digitization of samples
US11408903B2 (en) 2015-07-07 2022-08-09 University Of Washington Systems, methods, and devices for self-digitization of samples
US10933415B2 (en) 2015-09-15 2021-03-02 Phc Holdings Corporation Analysis container
WO2017047297A1 (ja) * 2015-09-15 2017-03-23 パナソニックヘルスケアホールディングス株式会社 解析容器
JP2019066321A (ja) * 2017-09-29 2019-04-25 シスメックス株式会社 カートリッジ、検出方法、および検出装置
JP6435387B1 (ja) * 2017-09-29 2018-12-05 シスメックス株式会社 カートリッジ、検出方法、および検出装置
JP2018163169A (ja) * 2018-06-26 2018-10-18 シスメックス株式会社 測定用カートリッジおよび送液方法

Also Published As

Publication number Publication date
US20090169430A1 (en) 2009-07-02
JPWO2007116909A1 (ja) 2009-08-20

Similar Documents

Publication Publication Date Title
WO2007116909A1 (ja) 試料液分析用パネル
US20090238724A1 (en) Disc for analyzing sample
KR101763119B1 (ko) 미세유체 임상 분석기
KR100884501B1 (ko) 면역센서
EP2219034A1 (en) Analyzing device and analyzing method using same
US20100062414A1 (en) Sample liquid analytical chip
JPWO2007105764A1 (ja) 試料液分析用ディスク
US20060188395A1 (en) Biosensor, and biosensor measuring device and method
EP3521833A2 (en) Analyzing device
JPH10132712A (ja) 検体分析用具およびそれを用いた検体分析方法並びに検体分析装置
US10514354B2 (en) Biosensor structures for improved point of care testing and methods of manufacture thereof
JP2006058093A (ja) 血液分析装置
WO2016161430A1 (en) Three-dimensional microfluidic devices with pop-up feature
RU2278612C2 (ru) Иммуносенсор
US8999124B2 (en) Detection device
WO2007035350A2 (en) Bioluminescence-based sensor with centrifugal separation and enhanced light collection
US8999662B2 (en) Method for producing dry reagent, dry reagent, and analysis tool using same
JP5224961B2 (ja) 分析用デバイスと分析方法
US20140377851A1 (en) Analysis device
JP4657084B2 (ja) 試料分析用ディスク
JP2005315818A (ja) 液体試料分析用具
JP2009174891A (ja) マイクロチップ
WO2006035874A1 (ja) 多層分析要素
Yamanishi et al. Biosensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008509865

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12295405

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741002

Country of ref document: EP

Kind code of ref document: A1