[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007114277A1 - Liquid fuel synthesis system - Google Patents

Liquid fuel synthesis system Download PDF

Info

Publication number
WO2007114277A1
WO2007114277A1 PCT/JP2007/056924 JP2007056924W WO2007114277A1 WO 2007114277 A1 WO2007114277 A1 WO 2007114277A1 JP 2007056924 W JP2007056924 W JP 2007056924W WO 2007114277 A1 WO2007114277 A1 WO 2007114277A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
natural gas
synthesis
liquid fuel
Prior art date
Application number
PCT/JP2007/056924
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Onishi
Osamu Wakamura
Kenichiro Fujimoto
Original Assignee
Nippon Steel Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co., Ltd. filed Critical Nippon Steel Engineering Co., Ltd.
Priority to JP2008508622A priority Critical patent/JPWO2007114277A1/en
Priority to AU2007232926A priority patent/AU2007232926B2/en
Publication of WO2007114277A1 publication Critical patent/WO2007114277A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen

Definitions

  • the present invention relates to a liquid fuel synthesis system that synthesizes liquid fuel from a hydrocarbon raw material such as natural gas.
  • FT synthesis reaction Fischer-Tropsch synthesis reaction
  • synthesis gas as raw material gas
  • GTL Gas To Liquid
  • the possible hydrocarbon gas is, for example, at least 2% or more in terms of product.
  • all of these exhaust gases are combusted and discarded, so that the hydrocarbon fraction that can be used in the product is wasted, and the exhaust gas combustion is not only low in product yield.
  • the accompanying CO emissions will also increase.
  • the present invention has been made in view of the above problems, and can recover a hydrocarbon component having a desired number of carbon atoms contained in the exhaust gas, thereby improving the product yield, and reducing CO emissions. Sharpening It is an object of the present invention to provide a liquid fuel synthesis system that can be reduced. Means for solving the problem
  • a liquid fuel synthesizing system of the present invention includes a reformer that reforms a hydrocarbon raw material to generate a syngas mainly composed of carbon monoxide and hydrogen gas; and included in the syngas
  • a reactor for synthesizing liquid hydrocarbons from carbon monoxide gas and hydrogen gas; a rectifying column for rectifying the liquid hydrocarbons and separating liquid hydrocarbons having a predetermined number of carbons or more;
  • a cooling device that liquefies by cooling at least one of the exhaust gas discharged from the reactor force or the rectifying tower force discharged from the rectifying column, and contained in the liquefied exhaust gas The hydrocarbon gas having the predetermined carbon number or more is recovered.
  • the exhaust gas discharged from the reactor or the exhaust gas discharged from the rectification tower is cooled by the cold heat of the refrigerant, whereby the predetermined exhaust gas is contained in the predetermined exhaust gas. It is possible to recover the hydrocarbon gas having a carbon number equal to or greater than that of the liquid. For this reason, hydrocarbon gas having a predetermined number of carbon atoms or more can be commercialized to improve the product yield, and the exhaust gas emissions can be reduced to reduce the CO emissions associated with exhaust gas combustion.
  • the cooling device may cool the exhaust gas by using cold heat of a refrigerant supplied from an external device.
  • the hydrocarbon raw material is natural gas
  • the external device is a natural gas production facility that vaporizes liquefied natural gas and supplies the vaporized natural gas to the liquid fuel synthesis system.
  • surplus cooling heat generated in the natural gas production facility can be effectively used for cooling the exhaust gas by the cooling device in the liquid fuel synthesis system. Accordingly, the overall thermal efficiency of the combined natural gas production facility and liquid fuel synthesis system can be greatly improved.
  • the hydrocarbon raw material is natural gas
  • the external device is a liquefied natural gas production facility for liquefying natural gas collected from a gas field
  • the refrigerant is supplied to the liquefied natural gas production facility. It may be a refrigerant used for the natural gas liquid.
  • surplus cooling heat contained in the refrigerant used in the liquefied natural gas production facility can be effectively utilized for cooling the exhaust gas by the cooling device in the liquid fuel synthesis system. Therefore The overall thermal efficiency of the combined natural gas production facility and liquid fuel synthesis system can be greatly improved.
  • the exhaust gas discharged from the reactor or the exhaust gas discharged from the top of the rectification tower is cooled, so that a hydrocarbon component having a predetermined number of carbon atoms or more is obtained. Can be recovered to improve product yield and reduce CO emissions associated with exhaust gas combustion
  • FIG. 1 is a schematic diagram showing an overall configuration of a liquid fuel synthesis system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an outline of product recovery from exhaust gas in a liquid fuel synthesizing system using a refrigerant produced by a liquid natural gas production facility that can be used in an embodiment of the present invention. .
  • FIG. 3 is a block diagram showing an outline of product recovery from exhaust gas in a liquid fuel synthesizing system using a refrigerant produced by a natural gas production facility that makes use of an embodiment of the present invention. Explanation of symbols
  • Kerosene ⁇ Gas oil fraction hydrotreating reactor, 54 ⁇ Naphtha fraction hydrotreating reactor, 56, 58, 60 ⁇ Gas-liquid separator, 70... Second fractionator, 72 ... Naphtha's stabilizer, 73 ... Exhaust passage, 80 ... First cooling device, 82 ... Second cooling device, 83, 84 ... Piping, 85 ... Recovery route, 90 ... Liquefied natural Gas production equipment, 91 ... Gas field, 92 ... Heat exchange, 94 ... Refrigerant supply source, 96 LNG tank , 100.. Natural gas production facility, 102 LNG tank, 104 ... heat ⁇ , 106 ... heat medium supply source, 110 ... combustion equipment BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic diagram showing an overall configuration of a liquid fuel synthesizing system 1 that is useful in the present embodiment.
  • a liquid fuel synthesis system 1 is a plant facility that executes a GTL process for converting a hydrocarbon feedstock such as natural gas into liquid fuel.
  • the liquid fuel synthesizing system 1 includes a syngas generating unit 3, an FT synthesizing unit 5, and a product refining unit 7.
  • the synthesis gas generation unit 3 reforms the natural gas, which is a hydrocarbon raw material, to generate synthesis gas containing carbon monoxide gas and hydrogen gas.
  • the FT synthesis unit 5 also generates liquid hydrocarbons by the Fischer's Tropsch synthesis reaction (hereinafter referred to as “FT synthesis reaction”).
  • the product refining unit 7 produces liquid fuel products (naphtha, kerosene, light oil, wax, etc.) by hydrogenating and refining the liquid hydrocarbons produced by the FT synthesis reaction.
  • liquid fuel products nophtha, kerosene, light oil, wax, etc.
  • the synthesis gas generation unit 3 mainly includes, for example, a desulfurization reactor 10, a reformer 12, an exhaust heat boiler 14, gas-liquid separators 16 and 18, a decarboxylation device 20, and a hydrogen separation device 26.
  • the desulfurization reactor 10 is constituted by a hydrodesulfurization device or the like, and removes sulfur components from natural gas as a raw material.
  • the reformer 12 reforms the natural gas supplied from the desulfurization reactor 10 to generate a synthesis gas containing carbon monoxide gas (CO) and hydrogen gas (H 2) as main components.
  • the exhaust heat boiler 14 is produced in the reformer 12.
  • High pressure steam is generated by recovering the exhaust heat of the synthesized gas.
  • the gas-liquid separator 16 separates water heated by heat exchange with the synthesis gas in the exhaust heat boiler 14 into gas (high-pressure steam) and liquid.
  • the gas-liquid separator 18 removes the condensate from the synthesis gas cooled by the exhaust heat boiler 14 and supplies the gas to the decarbonator 20.
  • the decarbonation device 20 includes an absorption tower 22 that removes carbon dioxide gas using the absorption liquid as well as the syngas power supplied from the gas-liquid separator 18. And a regeneration tower 24 that regenerates the carbon dioxide gas by releasing the carbon dioxide gas from the absorbing solution.
  • the hydrogen separation device 26 separates a part of the hydrogen gas contained in the synthesis gas from the synthesis gas from which the carbon dioxide gas has been separated by the decarbonation device 20.
  • the decarboxylation device 20 may not be required in some cases.
  • the reformer 12 uses, for example, carbon dioxide and steam by the steam 'carbonate gas reforming method represented by the following chemical reaction formulas (1) and (2). Natural gas is reformed to produce high-temperature synthesis gas mainly composed of carbon monoxide gas and hydrogen gas.
  • the reforming method in the reformer 12 is not limited to the above-mentioned steam 'carbon dioxide reforming method, for example, a water vapor reforming method, a partial oxidation reforming method (POX) using oxygen, Autothermal reforming (ATR), which is a combination of partial oxidation reforming and steam reforming, or carbon dioxide reforming can also be used.
  • the hydrogen separator 26 is provided in a branch line branched from a main piping force that connects the decarbonator 20 or the gas-liquid separator 18 and the bubble column reactor 30.
  • the hydrogen separator 26 can be constituted by, for example, a hydrogen PSA (Pressure Swing Ads orption) device that performs adsorption and desorption of hydrogen using a pressure difference.
  • This hydrogen PSA apparatus has adsorbents (zeolite-based adsorbent, activated carbon, alumina, silica gel, etc.) in a plurality of adsorbing towers (not shown) arranged in parallel. By repeating the steps of pressurization, adsorption, desorption (decompression), and purge in order, high purity hydrogen gas (eg, about 99.999%) separated from synthesis gas is continuously supplied to the reactor. can do.
  • adsorbents zeolite-based adsorbent, activated carbon, alumina, silica gel, etc.
  • the hydrogen gas separation method in the hydrogen separator 26 is not limited to the example of the pressure fluctuation adsorption method such as the hydrogen PSA device described above.
  • the hydrogen storage alloy adsorption method, the membrane separation method, or these Combinations may be used.
  • the FT synthesis unit 5 mainly includes, for example, a bubble column reactor 30, a gas-liquid separator 34, a separator 36, a gas-liquid separator 38, and a first rectifying column 40.
  • the bubble column reactor 30 generates liquid hydrocarbons by FT synthesis reaction of the synthesis gas generated in the synthesis gas generation unit 3, that is, carbon monoxide gas and hydrogen gas. To do.
  • the gas-liquid separator 34 separates the water heated through the heat transfer tubes 32 disposed in the bubble column reactor 30 into water vapor (medium pressure steam) and liquid.
  • the separator 36 is connected to the center of the bubble column reactor 30 and separates the catalyst and the liquid hydrocarbon product.
  • the gas-liquid separator 38 is connected to the upper part of the bubble column reactor 30 and cools the unreacted synthesis gas and the gaseous hydrocarbon product.
  • the first rectification column 40 distills liquid hydrocarbons supplied from the bubble column reactor 30 via the separator 36 and the gas-liquid separator 38, and separates and purifies each product fraction according to the boiling point. To do.
  • the bubble column reactor 30 is an example of a reactor that synthesizes synthesis gas into liquid hydrocarbons, and is an FT synthesis reactor that synthesizes liquid hydrocarbons from synthesis gas by FT synthesis reaction. Function.
  • the bubble column reactor 30 is constituted by, for example, a bubble column type slurry bed type reactor in which a slurry made of a catalyst and a medium oil is stored inside a column type container.
  • the bubble column reactor 30 generates liquid hydrocarbons from synthesis gas by FT synthesis reaction.
  • the synthesis gas which is a raw material gas, is supplied as bubbles from the dispersion plate at the bottom of the bubble column reactor 30, and passes through the slurry composed of the catalyst and the medium oil.
  • hydrogen gas and carbon monoxide gas undergo a synthesis reaction as shown in chemical reaction formula (3) below.
  • the bubble column reactor 30 is a heat exchanger type in which a heat transfer tube 32 is disposed inside, and water (BFW: Boiler Feed Watt) is used as a refrigerant. er), and the heat of reaction of the FT synthesis reaction can be recovered as an intermediate pressure steam by heat exchange between the slurry and water.
  • BFW Boiler Feed Watt
  • Product refining unit 7 includes, for example, W AX fraction hydrocracking reactor 50, kerosene / light oil fraction hydrotreating reactor 52, naphtha fraction hydrotreating reactor 54, and gas-liquid separator 56, 58. , 60, a second rectification tower 70, and a naphtha 'stabilizer 72.
  • the WAX fraction hydrocracking reactor 50 is connected to the lower part of the first rectification column 40.
  • the kerosene / light oil fraction hydrotreating reactor 52 is connected to the center of the first rectifying column 40.
  • the naphtha fraction hydrotreating reactor 54 is connected to the upper part of the first rectifying column 40.
  • the gas-liquid separators 56, 58, 60 are the same as those of the hydrogenation reactors 50, 52, 54. It is provided corresponding to each.
  • the second rectifying column 70 separates and purifies the liquid hydrocarbons supplied from the gas-liquid separators 56 and 58 according to the boiling point.
  • the naphtha stabilizer 72 rectifies the liquid hydrocarbons of the naphtha fraction supplied from the gas-liquid separator 60 and the second rectifying column 70, and discharges lighter components than butane to the flare gas (exhaust gas) side, Ingredients whose number is C or more
  • This naphtha stabilizer 72 is a rectifying tower that rectifies liquid hydrocarbons according to the present embodiment and separates liquid fuel having a predetermined number of carbons or more (rectifying tower that discharges exhaust gas (carbon number is less than C)). It is configured as an example, but the details
  • the liquid fuel synthesizing system 1 includes natural gas (main component is CH 2) as a hydrocarbon feedstock from an external natural gas supply source (not shown) such as a natural gas field or a natural gas plant.
  • natural gas main component is CH 2
  • an external natural gas supply source not shown
  • the synthesis gas generation unit 3 reforms the natural gas to produce a synthesis gas (a mixed gas mainly composed of carbon monoxide and hydrogen gas).
  • the natural gas is supplied to the desulfurization reactor 10 together with the hydrogen gas separated by the hydrogen separator 26.
  • the desulfurization reactor 10 hydrodesulfurizes the sulfur content contained in the natural gas using, for example, a ZnO catalyst using the hydrogen gas.
  • the natural gas desulfurized in this manner is a diacid-carbon (CO 2) gas supplied from a carbon dioxide supply source (not shown).
  • CO 2 diacid-carbon
  • the reformer 12 After the raw steam is mixed, it is supplied to the reformer 12.
  • the reformer 12 reforms natural gas using carbon dioxide and water vapor by the steam 'carbon dioxide gas reforming method described above, and generates high-temperature components mainly composed of carbon monoxide gas and hydrogen gas. Generate synthesis gas.
  • fuel gas and air for a burner provided in the reformer 12 are supplied to the reformer 12, and the steam / CO reforming which is an endothermic reaction by the combustion heat of the fuel gas in the burner. The heat of reaction necessary for quality reaction is covered!
  • the high-temperature synthesis gas thus produced in the reformer 12 (eg, 900 ° C, 2. OMPa G) is supplied to the exhaust heat boiler 14, cooled (for example, 400 ° C.) by heat exchange with water circulating in the exhaust heat boiler 14, and recovered as exhaust heat.
  • water heated by the synthesis gas in the exhaust heat boiler 14 is supplied to the gas-liquid separator 16, and the gas component is reformed as high-pressure steam (for example, 3.4 to 10. OMPaG).
  • the water in the liquid is returned to the waste heat boiler 14 after being supplied to the vessel 12 or other external device.
  • the synthesis gas cooled in the exhaust heat boiler 14 is separated and removed in the gas-liquid separator 18 by the condensate, and then the absorption tower 22 of the decarboxylation device 20 or the bubble column reactor. Supplied to 30.
  • the absorption tower 22 separates carbon dioxide from the synthesis gas by absorbing the carbon dioxide contained in the synthesis gas in the stored absorption liquid.
  • the absorption liquid containing carbon dioxide gas in the absorption tower 22 is introduced into the regeneration tower 24, and the absorption liquid containing carbon dioxide gas is heated by, for example, steam and subjected to the stripping process. It is sent to the reformer 12 and reused for the reforming reaction.
  • the synthesis gas produced by the synthesis gas production unit 3 is supplied to the bubble column reactor 30 of the FT synthesis unit 5.
  • the synthesis gas supplied to the bubble column reactor 30 is FT by a compressor (not shown) provided in a pipe connecting the decarbonation device 20 and the bubble column reactor 30.
  • the pressure is increased to a pressure suitable for the synthesis reaction (eg, 3.6 MPaG).
  • a part of the synthesis gas from which the carbon dioxide gas has been separated by the decarbonation device 20 is also supplied to the hydrogen separation device 26.
  • the hydrogen separator 26 separates hydrogen gas contained in the synthesis gas by adsorption and desorption (hydrogen PSA) using a pressure difference as described above.
  • the separated hydrogen is supplied through various compressors (not shown) such as a gas holder (not shown) and various hydrogens that perform a predetermined reaction using hydrogen in the liquid fuel synthesis system 1.
  • reactors eg desulfurization reactor 10, WAX hydrocracking reactor 50, kerosene / light oil fraction hydrotreating reactor 52, naphtha fraction hydrotreating reactor 54, etc.
  • the FT synthesis unit 5 synthesizes liquid hydrocarbons from the synthesis gas produced by the synthesis gas production unit 3 by an FT synthesis reaction.
  • the synthesis gas produced by the synthesis gas production unit 3 is a bubble column reaction.
  • the bottom force of the vessel 30 is also introduced, and the catalyst slurry stored in the bubble column reactor 30 rises.
  • the carbon monoxide and hydrogen gas contained in the synthesis gas react with each other by the FT synthesis reaction described above to generate hydrocarbons.
  • water is circulated through the heat transfer tube 32 of the bubble column reactor 30 to remove the reaction heat of the FT synthesis reaction, and the water heated by this heat exchange evaporates to form water. It becomes steam.
  • the water that has been liquefied in the gas-liquid separator 34 is returned to the heat transfer tube 32, and the gas component is supplied to the external device as medium-pressure steam (for example, 1.0 to 2.5 MPaG).
  • the liquid hydrocarbon synthesized in the bubble column reactor 30 is taken out from the center of the bubble column reactor 30 and introduced into the separator 36.
  • the separator 36 separates the catalyst (solid content) in the removed slurry into a liquid content containing a liquid hydrocarbon product. A part of the separated catalyst is returned to the bubble column reactor 30, and the liquid is supplied to the first rectifying column 40.
  • unreacted synthesis gas and the synthesized hydrocarbon gas are introduced into the gas-liquid separator 38.
  • the gas-liquid separator 38 cools these gases, separates some condensed liquid hydrocarbons, and introduces them into the first fractionator 40.
  • the unreacted synthesis gas CO and H
  • the unreacted synthesis gas is reintroduced into the bottom of the bubble column reactor 30 and reused for the FT synthesis reaction.
  • the main component is a hydrocarbon gas with a low carbon number (C or less) that is not covered by the product.
  • Exhaust gas (flare gas) is introduced into an external combustion facility (not shown) via a first cooling device 80 (details will be described later), and is released into the atmosphere after being combusted.
  • the first rectification column 40 is a liquid hydrocarbon (having various carbon numbers) supplied from the bubble column reactor 30 through the separator 36 and the gas-liquid separator 38 as described above. ) And fractionate using the difference in boiling point, naphtha fraction (boiling point is less than about 315 ° C), kerosene 'light oil fraction (boiling point is about 315 to 800 ° C), WAX fraction Separation and purification (boiling point greater than about 800 ° C).
  • the liquid hydrocarbons (mainly C or more) of WAX taken out from the bottom of the first rectifying column 40 are
  • Kerosene and liquid hydrocarbons (mainly C to C) of kerosene / light oil fraction transferred to WAX fraction hydrocracking reactor 50 and taken out from the center of first fractionator 40
  • the liquid hydrocarbon (mainly C to C) of the naphtha fraction which is transferred to the reactor 52 and from which the upper force of the first rectifying column 40 is also taken out is transferred to the naphtha fraction hydrotreating reactor 54.
  • the WAX fraction hydrocracking reactor 50 removes the liquid hydrocarbon (approximately C or more) having a large number of carbon atoms supplied from the lower column of the first rectifying column 40 from the hydrogen separator 26. Supplied
  • the catalyst and heat are used to cleave C C bonds of hydrocarbons with a large number of carbons to produce low molecular weight hydrocarbons with a small number of carbons.
  • the product containing liquid hydrocarbons hydrocracked by this WAX hydrocracking reactor 50 is separated into gas and liquid by gas-liquid separator 56, of which liquid hydrocarbons are separated by the second rectification fraction.
  • the gas component (including hydrogen gas) is transferred to the tower 70 and transferred to the kerosene / light oil fraction hydrotreating reactor 52 and the naphtha fraction hydrotreating reactor 54.
  • Kerosene ⁇ Gas oil fraction hydrotreating reactor 52 is a liquid hydrocarbon of kerosene 'light oil fraction (generally C to C) with a medium carbon number, which is also supplied with the central force of the first fractionator 40. ), Hydrogen content
  • Hydrotreating is performed using hydrogen gas supplied from the separation device 26 through the WAX hydrocracking reactor 50.
  • This hydrorefining reaction is a reaction in which hydrogen is added to the unsaturated bond of the liquid hydrocarbon to saturate to produce a linear saturated hydrocarbon.
  • the hydrogenated and purified product containing liquid hydrocarbons is separated into a gas and a liquid by the gas-liquid separator 58, and the liquid hydrocarbons are transferred to the second rectification column 70 for gas separation. (Including hydrogen gas) is reused in the hydrogenation reaction.
  • the naphtha fraction hydrotreating reactor 54 has a small number of carbons supplied by the upper force of the first rectifying column 40! /, And liquid hydrocarbons (approximately C or less) of the naphtha fraction are separated by a hydrogen separator. 26 to WA
  • the second fractionator 70 distills the liquid hydrocarbons supplied from the WAX fraction hydrocracking reactor 50 and the kerosene / light oil fraction hydrotreating reactor 52 as described above. Hydrocarbons with a carbon number of C or less (boiling point less than about 315 ° C) and kerosene (boiling point about 315 to 450 ° C)
  • the naphtha's stabilizer 72 distills hydrocarbons having a carbon number of C or less supplied from the naphtha fraction hydrotreating reactor 54 and the second rectifying column 70 as a product.
  • the main component of the exhaust is hydrocarbons whose main component is a carbon number not exceeding the specified number (C or less).
  • Gas (flare gas) is discharged.
  • This exhaust gas is introduced into an external combustion facility (not shown) via a second cooling device 82 (details will be described later), and after being combusted, it is released into the atmosphere.
  • the reformer 12 adopts the steam / carbon dioxide reforming method described above, so that carbon dioxide contained in the natural gas as a raw material is effectively used,
  • hydrocarbons with more than c carbon atoms that can become naphtha products over time are at least produced.
  • the hydrocarbon gas that can be used in this product has also been burned and discarded in the combustion facility, which causes a reduction in product yield.
  • Tower reactor 30 Exhaust path from top of tower 39 and top of naphtha's stabilizer 72 A first cooling device 80 and a second cooling device 82 for cooling the exhaust gas are provided on the powerful exhaust path 73, respectively.
  • FIGS. 2 and 3 show the first cooling device 80 and the second cooling device 82 (hereinafter sometimes simply referred to as “cooling devices 80 and 82”).
  • cooling devices 80 and 82 The details of product recovery from the exhaust gas that was stored are described in detail.
  • Figures 2 and 3 show the liquid fuel natural gas production equipment 90 or the natural gas production equipment 100 used in the present embodiment. It is a block diagram which shows the outline
  • the liquid fuel synthesizing system 1 (GTL plant) is, for example, a liquefied natural gas production facility installed in a region where a gas field 91 exists (such as a natural gas exporting country such as the Middle East). It is located adjacent to the facility 90 (Liquid Natural Gas Production Plant). In the case of FIG. 2, the liquid fuel synthesizing system 1 is supplied with natural gas collected from the gas field 91 as a raw material gas.
  • the liquefied natural gas production facility 90 is a facility for producing liquefied natural gas (LNG) by cooling the natural gas collected from the gas field 91.
  • the liquefied natural gas production facility 90 includes a heat exchanger 92 that liquefies natural gas, a refrigerant supply source 94 that supplies a refrigerant to the heat exchanger 92, and an LNG tank 96 that stores LNG.
  • natural gas from a gas field and the refrigerant from the refrigerant supply source 94 are supplied to the heat exchanger 92, and the heat exchange is performed between the natural gas and the refrigerant.
  • the natural gas is cooled to a very low temperature (approximately 1 162 ° C or less) and liquidized to LNG.
  • This liquefied LNG is stored in the LNG tank 96 and transported to other areas (such as natural gas importing countries such as Japan) by tankers as necessary.
  • a refrigerant for liquidizing natural gas in the liquid natural gas production facility 90 as described above for example, natural gas is used with liquid nitrogen, liquid propane, liquefied methane, liquefied ethylene, or the like. Any material that can be cooled below the critical temperature can be used. In addition, a refrigerant obtained by mixing some of these can also be used as the refrigerant. These refrigerants are used at extremely low temperatures to liquefy natural gas, so even after the temperature has risen somewhat due to heat exchange in heat exchange. Have enough cold. A refrigerant for liquefying the natural gas is supplied to the liquid fuel synthesizing system 1 as a refrigerant for exhaust gas cooling.
  • the liquid fuel synthesizing system 1 is, for example, a natural gas production facility installed in an area where natural gas is consumed (such as a natural gas importing country such as Japan). It is located adjacent to 100 (natural gas production plant).
  • the natural gas production facility 100 includes an LNG tank 102 that stores liquefied natural gas (LNG), a heat exchanger 104 that vaporizes LNG, and a heat medium supply source 106 that supplies a heat medium to the heat exchanger 104.
  • LNG liquefied natural gas
  • the LNG produced in the liquefied natural gas production facility 90 is transported by a tanker or the like and stored in the LNG tank 102.
  • the extremely low temperature (about ⁇ 162 ° C. or lower) LNG stored in the LNG tank 102 and the heat medium from the heat medium supply source 106 are supplied to the heat exchanger 104.
  • the heat exchanger 104 heats LNG and vaporizes it into natural gas by performing heat exchange between the LNG and the heat medium.
  • the natural gas produced by vaporizing LNG in the natural gas production facility 100 in this way is supplied to the liquid fuel synthesis system 1 as a raw material gas.
  • a heat medium for evaporating the LNG for example, power that can use seawater, water, glycol, and the like. These heat mediums are absorbed by cryogenic LNG and cooled to a low temperature.
  • the heat medium cooled when evaporating LNG in this way is also supplied to the liquid fuel synthesizing system 1 as a refrigerant for exhaust gas cooling.
  • the cryogenic LNG itself stored in the LNG tank 102 can be supplied to the liquid fuel synthesizing system 1 as a refrigerant for exhaust gas cooling (see the broken line arrow 108 in FIG. 3).
  • the refrigerant supplied from the liquefied natural gas production facility 90 or the natural gas production facility 100 is used for exhaust gas. I will explain how to cool it.
  • the natural gas supplied from the gas field 91 or the natural gas production facility 100 is reformed by the reformer 12 and synthesized.
  • the synthesis gas is synthesized into liquid hydrocarbons by the bubble column reactor 30.
  • the first rectification column 40, the hydrogenation reactors 50, 52, 54, the second rectification column 70 and naphtha 'stabilizer 72 to convert liquid hydrocarbons into liquid fuel products (naphtha, kerosene, light oil) Purify 'separate.
  • the exhaust gas discharged from the top of the bubble column reactor 30 is supplied to the first cooling device 80 via the exhaust path 39, and the top of the naphtha 'stabilizer 72 is supplied.
  • the exhaust gas from which power is also discharged is supplied to the second cooling device 82 via the exhaust path 73.
  • these cooling devices 80, 82 are connected to the refrigerant used for liquefying the LNG from the liquefied natural gas production facility 90 or the natural gas production facility 100 via the pipes 83, 84, or the LNG
  • the low temperature heat medium having the cold generated during the vaporization is supplied as a refrigerant for exhaust gas cooling.
  • the cooling devices 80 and 82 include, for example, a heat exchanger (not shown), exchange heat between the exhaust gas supplied as described above and the refrigerant, Cool below temperature.
  • This predetermined temperature is, for example, a temperature at which a hydrocarbon gas having a predetermined number of carbons (for example, C or more) that can become a liquid fuel product in the GTL process becomes liquid (for example, a pentagon).
  • hydrocarbon gases hydrocarbons with a predetermined number of carbons (for example, c or more) that can be used as products
  • the gas is liquid and hydrocarbon gas with less carbon number (eg C or less) does not liquid.
  • the temperature condition during exhaust gas cooling by the cooling devices 80 and 82 can be, for example, ⁇ 10 to 10 ° C., and it is possible to select an appropriate type of refrigerant that meets this temperature condition.
  • hydrocarbons having a carbon number of C or more liquefied by the second cooling device 82 are supplied to the outside from the second cooling device 82 as naphtha products.
  • the hydrocarbon gas having a liquefied and powerful carbon number of a predetermined number or less contains a toxic gas and a combustible gas component.
  • exhaust gas to be burned fume gas
  • it is introduced into the combustion facility 110 from the cooling devices 80 and 82, burned, and released to the atmosphere.
  • the exhaust gas from the bubble column reactor 30 (FT-TAIL gas) and the exhaust gas from the naphtha stabilizer 72 are used as products.
  • hydrocarbons in an amount of at least 2% or more in terms of products that were conventionally discarded can be suitably recovered and commercialized, so that the product yield can be improved.
  • the amount of exhaust gas combusted by the combustion facility 110 can be reduced to reduce CO emissions from the liquid fuel synthesis system 1.
  • the liquid gas natural gas production facility 90 disposed adjacent to the liquid fuel synthesis system 1 is used when the natural gas is liquefied.
  • the surplus cooling heat contained in the refrigerant used or the surplus cooling heat contained in the heat medium used for vaporizing LNG in the natural gas production facility 100 is used.
  • surplus cold heat generated in the liquefied natural gas production facility 90 or the natural gas production facility 100 can be effectively used for exhaust gas cooling in the liquid fuel synthesis system 1, so the liquid natural gas production facility 90 or natural gas production
  • the thermal efficiency of the entire system including the equipment 100 and the liquid fuel synthesis system 1 can be greatly improved.
  • the exhaust gas is cooled by using a very low temperature refrigerant of, for example, about 160 ° C, a small amount of hydrocarbons contained in the exhaust gas (hydrocarbons with a carbon number of C or more that can be produced)
  • the initial investment in adopting the above recovery mechanism is only the equipment cost of the heat exchanger as the cooling devices 80, 82, and this equipment cost is the cost of the gas fuel for burning the exhaust gas (running cost). ) Can be recovered sufficiently.
  • the hydrocarbon raw material supplied to the liquid fuel synthesizing system 1 is not limited to a powerful example using natural gas, and other carbonization such as asphalt and residual oil, for example.
  • a hydrogen raw material may be used.
  • the synthesis reaction in the bubble column reactor 30 is FT synthesis.
  • liquid hydrocarbons were synthesized by reaction, the present invention is not limited to powerful examples.
  • the cooling source of the exhaust gas cooling in the liquid fuel synthesis system 1 the excess cooling heat in the liquefied natural gas manufacturing facility 90 or the natural gas manufacturing facility 100 is used.
  • the present invention is not limited to this example, and powerful cold energy such as other plant equipment capable of supplying the refrigerant used in the cooling process may be used as the cold heat source.
  • an example of the naphtha stabilizer 72 that separates naphtha is given as an example of a rectifying column that distills liquid hydrocarbons and separates liquid fuel having a predetermined number of carbons or more.
  • the present invention is not limited to a powerful example, and may be, for example, a distillation column for separating various liquid fuels such as kerosene, light oil, alcohol, and DME.
  • a bubble column type slurry bed type reactor is used as a reactor for synthesizing synthesis gas into liquid hydrocarbons.
  • the present invention is not limited to a powerful example.
  • FT synthesis reaction may be performed using a fixed bed reactor.
  • the present invention includes a reformer that reforms a hydrocarbon raw material to generate a synthesis gas mainly composed of carbon monoxide gas and hydrogen gas; and a carbon monoxide gas contained in the synthesis gas; A reactor for synthesizing liquid hydrocarbons from hydrogen gas; a rectifying column for rectifying the liquid hydrocarbons to separate liquid hydrocarbons having a predetermined carbon number or more; exhaust gas discharged from the reactor; Or a cooling device that liquefies by cooling at least one of the exhaust gas discharged from the rectifying column, and the hydrocarbon having the predetermined number of carbons or more contained in the liquid exhaust gas.
  • the present invention relates to a liquid fuel synthesis system for recovering gas.
  • a hydrocarbon component having a desired carbon number contained in the exhaust gas can be recovered to improve the product yield, and CO emissions can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Disclosed is a liquid fuel synthesis system (1) which comprises: a reformer (12) for reforming a hydrocarbon raw material to produce a synthetic gas composed mainly of a carbon monoxide gas and a hydrogen gas; a bubble column-type reactor (30) for synthesizing a liquid hydrocarbon from the carbon monoxide gas and the hydrogen gas contained in the synthetic gas; a rectification column (70) for rectifying the liquid hydrocarbon to separate a liquid hydrocarbon having a predetermined number or higher of carbon atoms; and a cooling unit (80, 82) for cooling at least one of an exhaust gas discharged from the bubble column-type reactor (30) and an exhaust gas discharged from the rectification column (70) to liquefy the hydrocarbon. The system (1) can collect a hydrocarbon gas having a predetermined number or higher of carbon atoms contained in a liquefied exhaust gas.

Description

明 細 書  Specification
液体燃料合成システム  Liquid fuel synthesis system
技術分野  Technical field
[0001] 本発明は、天然ガス等の炭化水素原料から液体燃料を合成する液体燃料合成シ ステムに関する。  The present invention relates to a liquid fuel synthesis system that synthesizes liquid fuel from a hydrocarbon raw material such as natural gas.
本願は、 2006年 3月 30日に出願された日本国特許出願第 2006— 95917号につ いて優先権を主張し、その内容をここに援用する。  This application claims priority on Japanese Patent Application No. 2006-95917 filed on Mar. 30, 2006, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] 近年、天然ガスカゝら液体燃料を合成するための方法の 1つとして、天然ガスを改質 して一酸化炭素ガス (CO)と水素ガス (H )とを主成分とする合成ガスを生成し、この  [0002] In recent years, as one method for synthesizing liquid fuel such as natural gas catalyst, natural gas has been reformed and synthesized gas mainly composed of carbon monoxide gas (CO) and hydrogen gas (H). Produces this
2  2
合成ガスを原料ガスとしてフィッシャー ·トロプシュ合成反応 (以下、「FT合成反応」と いう。)により液体炭化水素を合成し、さらにこの液体炭化水素を水素化 ·精製するこ とで、ナフサ (粗ガソリン)、灯油、軽油、ワックス等の液体燃料製品を製造する GTL ( Gas To Liquid:液体燃料合成)技術が開発されている。  By synthesizing liquid hydrocarbons using Fischer-Tropsch synthesis reaction (hereinafter referred to as “FT synthesis reaction”) using synthesis gas as raw material gas, and then hydrolyzing and purifying this liquid hydrocarbon, naphtha (crude gasoline) ), GTL (Gas To Liquid) technology for producing liquid fuel products such as kerosene, light oil and wax has been developed.
[0003] 従来の GTL技術を用いた液体燃料合成システムでは、 FT合成工程にぉ ヽて気泡 塔型反応器力も排出される排ガス、及び、水素化精製工程においてナフサ'スタビラ ィザ一等の精留塔から排出される排ガスは、燃焼設備で燃焼処理された後に、大気 中に放出されている。 [0003] In a conventional liquid fuel synthesis system using GTL technology, exhaust gas from which a bubble column reactor power is also exhausted in the FT synthesis process and a refiner such as a naphtha stabilizer in the hydrorefining process. The exhaust gas discharged from the distillation tower is released into the atmosphere after being burned in the combustion facility.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、上記排出ガス中には、炭素数が所定以上 (例えば C以上)の製品と [0004] However, in the exhaust gas, a product having a predetermined number of carbon atoms or more (for example, C or more) and
5  Five
なり得る炭化水素ガスが、例えば製品換算で少なくとも 2%以上含まれている。ところ 力 上記従来の液体燃料合成システムでは、これらの排出ガスを全て燃焼して廃棄 しているので、そのうちの製品となりうる炭化水素留分が無駄になり製品収率が低い だけでなぐ排ガス燃焼に伴う CO排出量も増加する。  The possible hydrocarbon gas is, for example, at least 2% or more in terms of product. However, in the above conventional liquid fuel synthesis system, all of these exhaust gases are combusted and discarded, so that the hydrocarbon fraction that can be used in the product is wasted, and the exhaust gas combustion is not only low in product yield. The accompanying CO emissions will also increase.
2  2
[0005] そこで、本発明は、上記問題に鑑みてなされたものであり、上記排ガス中に含まれ る所望の炭素数の炭化水素成分を回収して製品収率を向上でき、 CO排出量も削 減することが可能な液体燃料合成システムを提供することを目的とする。 課題を解決するための手段 [0005] Therefore, the present invention has been made in view of the above problems, and can recover a hydrocarbon component having a desired number of carbon atoms contained in the exhaust gas, thereby improving the product yield, and reducing CO emissions. Sharpening It is an object of the present invention to provide a liquid fuel synthesis system that can be reduced. Means for solving the problem
[0006] 本発明の液体燃料合成システムは、炭化水素原料を改質して一酸ィ匕炭素ガス及 び水素ガスを主成分とする合成ガスを生成する改質器と;前記合成ガスに含まれる 一酸ィ匕炭素ガス及び水素ガスカゝら液体炭化水素を合成する反応器と;前記液体炭 化水素を精留して所定の炭素数以上の液体炭化水素を分離する精留塔と;前記反 応器力 排出される排ガス、または前記精留塔力 排出される排ガスのうちの少なく とも!/ヽずれかひとつを冷却することにより液化する冷却装置と;を備え、液化した前記 排ガスに含まれる前記所定の炭素数以上の炭化水素ガスを回収する。  [0006] A liquid fuel synthesizing system of the present invention includes a reformer that reforms a hydrocarbon raw material to generate a syngas mainly composed of carbon monoxide and hydrogen gas; and included in the syngas A reactor for synthesizing liquid hydrocarbons from carbon monoxide gas and hydrogen gas; a rectifying column for rectifying the liquid hydrocarbons and separating liquid hydrocarbons having a predetermined number of carbons or more; A cooling device that liquefies by cooling at least one of the exhaust gas discharged from the reactor force or the rectifying tower force discharged from the rectifying column, and contained in the liquefied exhaust gas The hydrocarbon gas having the predetermined carbon number or more is recovered.
[0007] このように構成したことにより、冷却装置において、反応器力 排出される排ガスや 、精留塔から排出される排ガスを、冷媒の冷熱で冷却することにより、当該排ガス中 に含まれる所定の炭素数以上の炭化水素ガスを液ィ匕して好適に回収できる。このた め、所定の炭素数以上の炭化水素ガスを製品化して、製品収率を向上できるとともに 、排ガスの排出量を削減して排ガス燃焼に伴う CO排出量も削減することができる。  With such a configuration, in the cooling device, the exhaust gas discharged from the reactor or the exhaust gas discharged from the rectification tower is cooled by the cold heat of the refrigerant, whereby the predetermined exhaust gas is contained in the predetermined exhaust gas. It is possible to recover the hydrocarbon gas having a carbon number equal to or greater than that of the liquid. For this reason, hydrocarbon gas having a predetermined number of carbon atoms or more can be commercialized to improve the product yield, and the exhaust gas emissions can be reduced to reduce the CO emissions associated with exhaust gas combustion.
2  2
[0008] 本発明の液体燃料合成システムにおいては、前記冷却装置が、外部装置から供給 される冷媒の冷熱を利用して前記排ガスを冷却するようにしてもょ 、。  [0008] In the liquid fuel synthesizing system of the present invention, the cooling device may cool the exhaust gas by using cold heat of a refrigerant supplied from an external device.
例えば、上記炭化水素原料は天然ガスであり、上記外部装置は、液化天然ガスを 気化し、気化した天然ガスを前記液体燃料合成システムに供給する天然ガス製造設 備であり、上記冷媒は、天然ガス製造設備において液化天然ガスの気化時に生じた 冷熱を含むようにしてもよい。これにより、天然ガス製造設備で生じる余剰冷熱を、上 記液体燃料合成システムでの冷却装置による排ガスの冷却に有効利用できる。従つ て、天然ガス製造設備と液体燃料合成システムとを合わせた全体での熱効率を大幅 に向上できる。  For example, the hydrocarbon raw material is natural gas, and the external device is a natural gas production facility that vaporizes liquefied natural gas and supplies the vaporized natural gas to the liquid fuel synthesis system. You may make it include the cold heat produced at the time of vaporization of the liquefied natural gas in the gas production facility. As a result, surplus cooling heat generated in the natural gas production facility can be effectively used for cooling the exhaust gas by the cooling device in the liquid fuel synthesis system. Accordingly, the overall thermal efficiency of the combined natural gas production facility and liquid fuel synthesis system can be greatly improved.
[0009] また、上記炭化水素原料は天然ガスであり、上記外部装置は、ガス田力 採取され た天然ガスを液化する液化天然ガス製造設備であり、上記冷媒は、前記液化天然ガ ス製造設備にぉ 、て前記天然ガスの液ィ匕に用いられる冷媒であるようにしてもょ 、。 これにより、液化天然ガス製造設備で使用される冷媒に含まれる余剰冷熱を、上記 液体燃料合成システムでの冷却装置による排ガスの冷却に有効利用できる。従って 、天然ガス製造設備と液体燃料合成システムとを合わせた全体での熱効率を大幅に 向上できる。 [0009] The hydrocarbon raw material is natural gas, the external device is a liquefied natural gas production facility for liquefying natural gas collected from a gas field, and the refrigerant is supplied to the liquefied natural gas production facility. It may be a refrigerant used for the natural gas liquid. As a result, surplus cooling heat contained in the refrigerant used in the liquefied natural gas production facility can be effectively utilized for cooling the exhaust gas by the cooling device in the liquid fuel synthesis system. Therefore The overall thermal efficiency of the combined natural gas production facility and liquid fuel synthesis system can be greatly improved.
発明の効果  The invention's effect
[0010] 以上説明したように本発明によれば、反応器力 排出される排ガス、又は精留塔の 塔頂力 排出される排ガスを冷却することで、所定の炭素数以上の炭化水素成分を 回収して製品収率を向上でき、排ガス燃焼に伴う CO排出量も削減することができる  [0010] As described above, according to the present invention, the exhaust gas discharged from the reactor or the exhaust gas discharged from the top of the rectification tower is cooled, so that a hydrocarbon component having a predetermined number of carbon atoms or more is obtained. Can be recovered to improve product yield and reduce CO emissions associated with exhaust gas combustion
2 図面の簡単な説明  2 Brief description of the drawings
[0011] [図 1]図 1は、本発明の実施形態にかかる液体燃料合成システムの全体構成を示す 概略図である。  FIG. 1 is a schematic diagram showing an overall configuration of a liquid fuel synthesis system according to an embodiment of the present invention.
[図 2]図 2は、本発明の実施形態にカゝかる液ィ匕天然ガス製造設備力ゝらの冷媒を利用 した液体燃料合成システムにおける排ガスからの製品回収の概要を示すブロック図 である。  [Fig. 2] Fig. 2 is a block diagram showing an outline of product recovery from exhaust gas in a liquid fuel synthesizing system using a refrigerant produced by a liquid natural gas production facility that can be used in an embodiment of the present invention. .
[図 3]図 3は、本発明の実施形態にカゝかる天然ガス製造設備力ゝらの冷媒を利用した液 体燃料合成システムにおける排ガスからの製品回収の概要を示すブロック図である。 符号の説明  FIG. 3 is a block diagram showing an outline of product recovery from exhaust gas in a liquid fuel synthesizing system using a refrigerant produced by a natural gas production facility that makes use of an embodiment of the present invention. Explanation of symbols
[0012] 1…液体燃料合成システム、 3…合成ガス生成ユニット、 5〜FT合成ユニット、 7··· 製品精製ユニット、 10…脱硫反応器、 12…改質器、 14···排熱ボイラー、 16, 18··· 気液分離器、 20···脱炭酸装置、 22···吸収塔、 24···再生塔、 26···水素分離装置、 3 0…気泡塔型反応器、 32···伝熱管、 34, 38···気液分離器、 36···分離器、 39···排 気経路、 40…第 1精留塔、 50· -WAX分水素化分解反応器、 52…灯油 ·軽油留分 水素化精製反応器、 54···ナフサ留分水素化精製反応器、 56, 58, 60···気液分離 器、 70…第 2精留塔、 72···ナフサ'スタビライザー、 73···排気経路、 80…第 1冷却 装置、 82···第 2冷却装置、 83, 84···配管、 85···回収経路、 90…液化天然ガス製造 設備、 91···ガス田、 92···熱交翻、 94···冷媒供給源、 96 .LNGタンク、 100···天 然ガス製造設備、 102 LNGタンク、 104…熱交翻、 106…熱媒体供給源、 110 …燃焼設備 発明を実施するための最良の形態 [0012] 1 ... Liquid fuel synthesis system, 3 ... Synthesis gas generation unit, 5 to FT synthesis unit, 7 ... Product purification unit, 10 ... Desulfurization reactor, 12 ... Reformer, 14 ... Waste heat boiler 16, 18 ... Gas-liquid separator, 20 ... Decarboxylation device, 22 ... Absorption tower, 24 ... Regeneration tower, 26 ... Hydrogen separation device, 30 ... Bubble column reactor , 32 ... Heat transfer tubes, 34, 38 ... Gas-liquid separator, 36 ... Separator, 39 ... Exhaust path, 40 ... First rectification column, 50-WAX hydrocracking Reactor, 52 ... Kerosene · Gas oil fraction hydrotreating reactor, 54 ··· Naphtha fraction hydrotreating reactor, 56, 58, 60 ··· Gas-liquid separator, 70… Second fractionator, 72 ... Naphtha's stabilizer, 73 ... Exhaust passage, 80 ... First cooling device, 82 ... Second cooling device, 83, 84 ... Piping, 85 ... Recovery route, 90 ... Liquefied natural Gas production equipment, 91 ... Gas field, 92 ... Heat exchange, 94 ... Refrigerant supply source, 96 LNG tank , 100.. Natural gas production facility, 102 LNG tank, 104 ... heat 交翻, 106 ... heat medium supply source, 110 ... combustion equipment BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説 明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構 成要素については、同一の符号を付することにより重複説明を省略する。  [0013] Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
[0014] まず、図 1を参照して、本発明の実施形態に力かる GTL (Gas To Liquid)プロセスを 実行する液体燃料合成システム 1の全体構成及び動作について説明する。図 1は、 本実施形態に力かる液体燃料合成システム 1の全体構成を示す概略図である。  First, with reference to FIG. 1, an overall configuration and operation of a liquid fuel synthesizing system 1 that executes a GTL (Gas To Liquid) process that is relevant to an embodiment of the present invention will be described. FIG. 1 is a schematic diagram showing an overall configuration of a liquid fuel synthesizing system 1 that is useful in the present embodiment.
[0015] 図 1に示すように、本実施形態にカゝかる液体燃料合成システム 1は、天然ガス等の 炭化水素原料を液体燃料に転換する GTLプロセスを実行するプラント設備である。 この液体燃料合成システム 1は、合成ガス生成ユニット 3と、 FT合成ユニット 5と、製品 精製ユニット 7とから構成される。合成ガス生成ユニット 3は、炭化水素原料である天 然ガスを改質して一酸ィ匕炭素ガスと水素ガスを含む合成ガスを生成する。 FT合成ュ ニット 5は、生成された合成ガス力もフィッシャー 'トロプシュ合成反応(以下、「FT合 成反応」という。 )により液体炭化水素を生成する。製品精製ユニット 7は、 FT合成反 応により生成された液体炭化水素を水素化 ·精製して液体燃料製品 (ナフサ、灯油、 軽油、ワックス等)を製造する。以下、これら各ユニットの構成要素について説明する  As shown in FIG. 1, a liquid fuel synthesis system 1 according to the present embodiment is a plant facility that executes a GTL process for converting a hydrocarbon feedstock such as natural gas into liquid fuel. The liquid fuel synthesizing system 1 includes a syngas generating unit 3, an FT synthesizing unit 5, and a product refining unit 7. The synthesis gas generation unit 3 reforms the natural gas, which is a hydrocarbon raw material, to generate synthesis gas containing carbon monoxide gas and hydrogen gas. The FT synthesis unit 5 also generates liquid hydrocarbons by the Fischer's Tropsch synthesis reaction (hereinafter referred to as “FT synthesis reaction”). The product refining unit 7 produces liquid fuel products (naphtha, kerosene, light oil, wax, etc.) by hydrogenating and refining the liquid hydrocarbons produced by the FT synthesis reaction. The components of each unit will be described below.
[0016] まず、合成ガス生成ユニット 3について説明する。合成ガス生成ユニット 3は、例え ば、脱硫反応器 10と、改質器 12と、排熱ボイラー 14と、気液分離器 16および 18と、 脱炭酸装置 20と、水素分離装置 26とを主に備える。脱硫反応器 10は、水添脱硫装 置等で構成され、原料である天然ガスから硫黄成分を除去する。改質器 12は、脱硫 反応器 10から供給された天然ガスを改質して、一酸化炭素ガス (CO)と水素ガス (H )とを主成分として含む合成ガスを生成する。排熱ボイラー 14は、改質器 12にて生First, the synthesis gas generation unit 3 will be described. The synthesis gas generation unit 3 mainly includes, for example, a desulfurization reactor 10, a reformer 12, an exhaust heat boiler 14, gas-liquid separators 16 and 18, a decarboxylation device 20, and a hydrogen separation device 26. Prepare for. The desulfurization reactor 10 is constituted by a hydrodesulfurization device or the like, and removes sulfur components from natural gas as a raw material. The reformer 12 reforms the natural gas supplied from the desulfurization reactor 10 to generate a synthesis gas containing carbon monoxide gas (CO) and hydrogen gas (H 2) as main components. The exhaust heat boiler 14 is produced in the reformer 12.
2 2
成した合成ガスの排熱を回収して高圧スチームを発生する。気液分離器 16は、排熱 ボイラー 14において合成ガスとの熱交換により加熱された水を気体 (高圧スチーム) と液体とに分離する。気液分離器 18は、排熱ボイラー 14にて冷却された合成ガスか ら凝縮分を除去し気体分を脱炭酸装置 20に供給する。脱炭酸装置 20は、気液分離 器 18から供給された合成ガス力も吸収液を用いて炭酸ガスを除去する吸収塔 22と、 当該炭酸ガスを含む吸収液から炭酸ガスを放散させて再生する再生塔 24とを有する 。水素分離装置 26は、脱炭酸装置 20により炭酸ガスが分離された合成ガスから、当 該合成ガスに含まれる水素ガスの一部を分離する。ただし、上記脱炭酸装置 20は場 合によっては設ける必要がな 、こともある。 High pressure steam is generated by recovering the exhaust heat of the synthesized gas. The gas-liquid separator 16 separates water heated by heat exchange with the synthesis gas in the exhaust heat boiler 14 into gas (high-pressure steam) and liquid. The gas-liquid separator 18 removes the condensate from the synthesis gas cooled by the exhaust heat boiler 14 and supplies the gas to the decarbonator 20. The decarbonation device 20 includes an absorption tower 22 that removes carbon dioxide gas using the absorption liquid as well as the syngas power supplied from the gas-liquid separator 18. And a regeneration tower 24 that regenerates the carbon dioxide gas by releasing the carbon dioxide gas from the absorbing solution. The hydrogen separation device 26 separates a part of the hydrogen gas contained in the synthesis gas from the synthesis gas from which the carbon dioxide gas has been separated by the decarbonation device 20. However, the decarboxylation device 20 may not be required in some cases.
[0017] このうち、改質器 12は、例えば、下記の化学反応式(1)、(2)で表される水蒸気'炭 酸ガス改質法により、二酸ィ匕炭素と水蒸気とを用いて天然ガスを改質して、一酸化炭 素ガスと水素ガスとを主成分とする高温の合成ガスを生成する。なお、この改質器 12 における改質法は、上記水蒸気'炭酸ガス改質法の例に限定されず、例えば、水蒸 気改質法、酸素を用いた部分酸化改質法 (POX)、部分酸化改質法と水蒸気改質 法の組合せである自己熱改質法 (ATR)、炭酸ガス改質法などを利用することもでき る。 [0017] Among these, the reformer 12 uses, for example, carbon dioxide and steam by the steam 'carbonate gas reforming method represented by the following chemical reaction formulas (1) and (2). Natural gas is reformed to produce high-temperature synthesis gas mainly composed of carbon monoxide gas and hydrogen gas. Note that the reforming method in the reformer 12 is not limited to the above-mentioned steam 'carbon dioxide reforming method, for example, a water vapor reforming method, a partial oxidation reforming method (POX) using oxygen, Autothermal reforming (ATR), which is a combination of partial oxidation reforming and steam reforming, or carbon dioxide reforming can also be used.
[0018] CH +H O→CO + 3H · · · (1)  [0018] CH + H O → CO + 3H · · · (1)
4 2 2  4 2 2
CH +CO→2CO + 2H · · · (2)  CH + CO → 2CO + 2H (2)
4 2 2  4 2 2
[0019] また、水素分離装置 26は、脱炭酸装置 20又は気液分離器 18と気泡塔型反応器 3 0とを接続する主配管力 分岐した分岐ラインに設けられる。この水素分離装置 26は 、例えば、圧力差を利用して水素の吸着と脱着を行う水素 PSA (Pressure Swing Ads orption:圧力変動吸着)装置などで構成できる。この水素 PSA装置は、並列配置さ れた複数の吸着塔 (図示せず。 )内に吸着剤 (ゼオライト系吸着剤、活性炭、アルミナ 、シリカゲル等)を有しており、各吸着塔で水素の加圧、吸着、脱着 (減圧)、パージ の各工程を順番に繰り返すことで、合成ガスから分離した純度の高 ヽ水素ガス (例え ば 99. 999%程度)を、連続して反応器へ供給することができる。  In addition, the hydrogen separator 26 is provided in a branch line branched from a main piping force that connects the decarbonator 20 or the gas-liquid separator 18 and the bubble column reactor 30. The hydrogen separator 26 can be constituted by, for example, a hydrogen PSA (Pressure Swing Ads orption) device that performs adsorption and desorption of hydrogen using a pressure difference. This hydrogen PSA apparatus has adsorbents (zeolite-based adsorbent, activated carbon, alumina, silica gel, etc.) in a plurality of adsorbing towers (not shown) arranged in parallel. By repeating the steps of pressurization, adsorption, desorption (decompression), and purge in order, high purity hydrogen gas (eg, about 99.999%) separated from synthesis gas is continuously supplied to the reactor. can do.
[0020] なお、水素分離装置 26における水素ガス分離方法としては、上記水素 PSA装置 のような圧力変動吸着法の例に限定されず、例えば、水素吸蔵合金吸着法、膜分離 法、或いはこれらの組合せなどであってもよい。  [0020] The hydrogen gas separation method in the hydrogen separator 26 is not limited to the example of the pressure fluctuation adsorption method such as the hydrogen PSA device described above. For example, the hydrogen storage alloy adsorption method, the membrane separation method, or these Combinations may be used.
[0021] 次に、 FT合成ユニット 5について説明する。 FT合成ユニット 5は、例えば、気泡塔 型反応器 30と、気液分離器 34と、分離器 36と、気液分離器 38と、第 1精留塔 40とを 主に備える。気泡塔型反応器 30は、上記合成ガス生成ユニット 3で生成された合成 ガス、即ち、一酸ィ匕炭素ガスと水素ガスとを FT合成反応させて液体炭化水素を生成 する。気液分離器 34は、気泡塔型反応器 30内に配設された伝熱管 32内を流通して 加熱された水を、水蒸気(中圧スチーム)と液体とに分離する。分離器 36は、気泡塔 型反応器 30の中央部に接続され、触媒と液体炭化水素生成物を分離処理する。気 液分離器 38は、気泡塔型反応器 30の上部に接続され、未反応合成ガス及び気体 炭化水素生成物を冷却処理する。第 1精留塔 40は、気泡塔型反応器 30から分離器 36、気液分離器 38を介して供給された液体炭化水素を蒸留し、沸点に応じて各製 品留分に分離'精製する。 Next, the FT synthesis unit 5 will be described. The FT synthesis unit 5 mainly includes, for example, a bubble column reactor 30, a gas-liquid separator 34, a separator 36, a gas-liquid separator 38, and a first rectifying column 40. The bubble column reactor 30 generates liquid hydrocarbons by FT synthesis reaction of the synthesis gas generated in the synthesis gas generation unit 3, that is, carbon monoxide gas and hydrogen gas. To do. The gas-liquid separator 34 separates the water heated through the heat transfer tubes 32 disposed in the bubble column reactor 30 into water vapor (medium pressure steam) and liquid. The separator 36 is connected to the center of the bubble column reactor 30 and separates the catalyst and the liquid hydrocarbon product. The gas-liquid separator 38 is connected to the upper part of the bubble column reactor 30 and cools the unreacted synthesis gas and the gaseous hydrocarbon product. The first rectification column 40 distills liquid hydrocarbons supplied from the bubble column reactor 30 via the separator 36 and the gas-liquid separator 38, and separates and purifies each product fraction according to the boiling point. To do.
[0022] このうち、気泡塔型反応器 30は、合成ガスを液体炭化水素に合成する反応器の一 例であり、 FT合成反応により合成ガスから液体炭化水素を合成する FT合成用反応 器として機能する。この気泡塔型反応器 30は、例えば、塔型の容器内部に触媒と媒 体油とからなるスラリーが貯留された気泡塔型スラリー床式反応器で構成される。この 気泡塔型反応器 30は、 FT合成反応により合成ガスから液体炭化水素を生成する。 詳細には、この気泡塔型反応器 30では、原料ガスである合成ガスは、気泡塔型反応 器 30の底部の分散板から気泡となって供給され、触媒と媒体油からなるスラリー内を 通過し、懸濁状態の中で下記化学反応式 (3)に示すように水素ガスと一酸化炭素ガ スとが合成反応を起こす。  [0022] Among these, the bubble column reactor 30 is an example of a reactor that synthesizes synthesis gas into liquid hydrocarbons, and is an FT synthesis reactor that synthesizes liquid hydrocarbons from synthesis gas by FT synthesis reaction. Function. The bubble column reactor 30 is constituted by, for example, a bubble column type slurry bed type reactor in which a slurry made of a catalyst and a medium oil is stored inside a column type container. The bubble column reactor 30 generates liquid hydrocarbons from synthesis gas by FT synthesis reaction. Specifically, in this bubble column reactor 30, the synthesis gas, which is a raw material gas, is supplied as bubbles from the dispersion plate at the bottom of the bubble column reactor 30, and passes through the slurry composed of the catalyst and the medium oil. In the suspended state, hydrogen gas and carbon monoxide gas undergo a synthesis reaction as shown in chemical reaction formula (3) below.
[0023] 2nH +nCO→(-CH -) n+nH O · · · (3)  [0023] 2nH + nCO → (-CH-) n + nH O · · · (3)
2 2 2  2 2 2
[0024] この FT合成反応は発熱反応であるため、気泡塔型反応器 30は内部に伝熱管 32 が配設された熱交換器型になっており、冷媒として例えば水(BFW: Boiler Feed Wat er)を供給し、上記 FT合成反応の反応熱を、スラリーと水との熱交換により中圧スチ ームとして回収できるようになって!/、る。  [0024] Since this FT synthesis reaction is an exothermic reaction, the bubble column reactor 30 is a heat exchanger type in which a heat transfer tube 32 is disposed inside, and water (BFW: Boiler Feed Watt) is used as a refrigerant. er), and the heat of reaction of the FT synthesis reaction can be recovered as an intermediate pressure steam by heat exchange between the slurry and water.
[0025] 最後に、製品精製ユニット 7について説明する。製品精製ユニット 7は、例えば、 W AX分水素化分解反応器 50と、灯油,軽油留分水素化精製反応器 52と、ナフサ留 分水素化精製反応器 54と、気液分離器 56, 58, 60と、第 2精留塔 70と、ナフサ 'ス タビラィザー 72とを備える。 WAX分水素化分解反応器 50は、第 1精留塔 40の下部 に接続されている。灯油,軽油留分水素化精製反応器 52は、第 1精留塔 40の中央 部に接続されている。ナフサ留分水素化精製反応器 54は、第 1精留塔 40の上部に 接続されている。気液分離器 56, 58, 60は、これら水素化反応器 50, 52, 54のそ れぞれに対応して設けられている。第 2精留塔 70は、気液分離器 56, 58から供給さ れた液体炭化水素を沸点に応じて分離'精製する。ナフサ'スタビライザー 72は、気 液分離器 60及び第 2精留塔 70から供給されたナフサ留分の液体炭化水素を精留し て、ブタンより軽い成分はフレアガス (排ガス)側へ排出し、炭素数が C以上の成分 [0025] Finally, the product purification unit 7 will be described. Product refining unit 7 includes, for example, W AX fraction hydrocracking reactor 50, kerosene / light oil fraction hydrotreating reactor 52, naphtha fraction hydrotreating reactor 54, and gas-liquid separator 56, 58. , 60, a second rectification tower 70, and a naphtha 'stabilizer 72. The WAX fraction hydrocracking reactor 50 is connected to the lower part of the first rectification column 40. The kerosene / light oil fraction hydrotreating reactor 52 is connected to the center of the first rectifying column 40. The naphtha fraction hydrotreating reactor 54 is connected to the upper part of the first rectifying column 40. The gas-liquid separators 56, 58, 60 are the same as those of the hydrogenation reactors 50, 52, 54. It is provided corresponding to each. The second rectifying column 70 separates and purifies the liquid hydrocarbons supplied from the gas-liquid separators 56 and 58 according to the boiling point. The naphtha stabilizer 72 rectifies the liquid hydrocarbons of the naphtha fraction supplied from the gas-liquid separator 60 and the second rectifying column 70, and discharges lighter components than butane to the flare gas (exhaust gas) side, Ingredients whose number is C or more
5  Five
は製品のナフサとして分離'回収する。このナフサ'スタビライザー 72は、本実施形態 にかかる液体炭化水素を精留して所定の炭素数以上の液体燃料を分離する精留塔 (排ガス (炭素数が C未満)を排出する精留塔)の一例として構成されているが、詳細  Is separated and recovered as naphtha of the product. This naphtha stabilizer 72 is a rectifying tower that rectifies liquid hydrocarbons according to the present embodiment and separates liquid fuel having a predetermined number of carbons or more (rectifying tower that discharges exhaust gas (carbon number is less than C)). It is configured as an example, but the details
5  Five
は後述する。  Will be described later.
[0026] 次に、以上のような構成の液体燃料合成システム 1により、天然ガスカゝら液体燃料を 合成する工程 (GTLプロセス)について説明する。  [0026] Next, a process (GTL process) of synthesizing liquid fuel from a natural gas cassette by the liquid fuel synthesizing system 1 having the above-described configuration will be described.
[0027] 液体燃料合成システム 1には、天然ガス田又は天然ガスプラントなどの外部の天然 ガス供給源(図示せず。)から、炭化水素原料としての天然ガス (主成分が CH ) [0027] The liquid fuel synthesizing system 1 includes natural gas (main component is CH 2) as a hydrocarbon feedstock from an external natural gas supply source (not shown) such as a natural gas field or a natural gas plant.
4が供 給される。上記合成ガス生成ユニット 3は、この天然ガスを改質して合成ガス(一酸ィ匕 炭素ガスと水素ガスを主成分とする混合ガス)を製造する。  4 is supplied. The synthesis gas generation unit 3 reforms the natural gas to produce a synthesis gas (a mixed gas mainly composed of carbon monoxide and hydrogen gas).
[0028] 具体的には、まず、上記天然ガスは、水素分離装置 26によって分離された水素ガ スとともに脱硫反応器 10に供給される。脱硫反応器 10は、当該水素ガスを用いて天 然ガスに含まれる硫黄分を例えば ZnO触媒で水添脱硫する。このようにして天然ガ スを予め脱硫しておくことにより、改質器 12及び気泡塔型反応器 30等で用いられる 触媒の活性が硫黄により低下することを防止できる。 [0028] Specifically, first, the natural gas is supplied to the desulfurization reactor 10 together with the hydrogen gas separated by the hydrogen separator 26. The desulfurization reactor 10 hydrodesulfurizes the sulfur content contained in the natural gas using, for example, a ZnO catalyst using the hydrogen gas. By desulfurizing natural gas in advance in this way, it is possible to prevent the activity of the catalyst used in the reformer 12 and the bubble column reactor 30 from being reduced by sulfur.
[0029] このようにして脱硫された天然ガス(二酸ィ匕炭素を含んでもょ ヽ。 )は、二酸化炭素 供給源(図示せず。)から供給される二酸ィ匕炭素 (CO )ガスと、排熱ボイラー 14で発 [0029] The natural gas desulfurized in this manner (including diacid-carbon) is a diacid-carbon (CO 2) gas supplied from a carbon dioxide supply source (not shown). And exhaust heat boiler 14
2  2
生した水蒸気とが混合された後で、改質器 12に供給される。改質器 12は、例えば、 上述した水蒸気'炭酸ガス改質法により、二酸化炭素と水蒸気とを用いて天然ガスを 改質して、一酸化炭素ガスと水素ガスとを主成分とする高温の合成ガスを生成する。 このとき、改質器 12には、例えば、改質器 12が備えるバーナー用の燃料ガスと空気 が供給されており、当該バーナーにおける燃料ガスの燃焼熱により、吸熱反応である 上記水蒸気 · CO改質反応に必要な反応熱がまかなわれて!/、る。  After the raw steam is mixed, it is supplied to the reformer 12. For example, the reformer 12 reforms natural gas using carbon dioxide and water vapor by the steam 'carbon dioxide gas reforming method described above, and generates high-temperature components mainly composed of carbon monoxide gas and hydrogen gas. Generate synthesis gas. At this time, for example, fuel gas and air for a burner provided in the reformer 12 are supplied to the reformer 12, and the steam / CO reforming which is an endothermic reaction by the combustion heat of the fuel gas in the burner. The heat of reaction necessary for quality reaction is covered!
2  2
[0030] このようにして改質器 12で生成された高温の合成ガス(例えば、 900°C、 2. OMPa G)は、排熱ボイラー 14に供給され、排熱ボイラー 14内を流通する水との熱交換によ り冷却 (例えば 400°C)されて、排熱回収される。このとき、排熱ボイラー 14において 合成ガスにより加熱された水は気液分離器 16に供給され、この気液分離器 16から 気体分が高圧スチーム(例えば 3. 4〜10. OMPaG)として改質器 12または他の外 部装置に供給され、液体分の水が排熱ボイラー 14に戻される。 [0030] The high-temperature synthesis gas thus produced in the reformer 12 (eg, 900 ° C, 2. OMPa G) is supplied to the exhaust heat boiler 14, cooled (for example, 400 ° C.) by heat exchange with water circulating in the exhaust heat boiler 14, and recovered as exhaust heat. At this time, water heated by the synthesis gas in the exhaust heat boiler 14 is supplied to the gas-liquid separator 16, and the gas component is reformed as high-pressure steam (for example, 3.4 to 10. OMPaG). The water in the liquid is returned to the waste heat boiler 14 after being supplied to the vessel 12 or other external device.
[0031] 一方、排熱ボイラー 14において冷却された合成ガスは、凝縮液分が気液分離器 1 8において分離 ·除去された後、脱炭酸装置 20の吸収塔 22、又は気泡塔型反応器 3 0に供給される。吸収塔 22は、貯留している吸収液内に、合成ガスに含まれる炭酸ガ スを吸収することで、当該合成ガスから炭酸ガスを分離する。この吸収塔 22内の炭酸 ガスを含む吸収液は、再生塔 24に導入され、当該炭酸ガスを含む吸収液は例えば スチームで加熱されてストリツビング処理され、放散された炭酸ガスは、再生塔 24から 改質器 12に送られて、上記改質反応に再利用される。  [0031] On the other hand, the synthesis gas cooled in the exhaust heat boiler 14 is separated and removed in the gas-liquid separator 18 by the condensate, and then the absorption tower 22 of the decarboxylation device 20 or the bubble column reactor. Supplied to 30. The absorption tower 22 separates carbon dioxide from the synthesis gas by absorbing the carbon dioxide contained in the synthesis gas in the stored absorption liquid. The absorption liquid containing carbon dioxide gas in the absorption tower 22 is introduced into the regeneration tower 24, and the absorption liquid containing carbon dioxide gas is heated by, for example, steam and subjected to the stripping process. It is sent to the reformer 12 and reused for the reforming reaction.
[0032] このようにして、合成ガス生成ユニット 3で生成された合成ガスは、上記 FT合成ュ- ット 5の気泡塔型反応器 30に供給される。このとき、気泡塔型反応器 30に供給される 合成ガスの組成比は、 FT合成反応に適した組成比(例えば、 H: CO = 2: 1 (モル比  In this way, the synthesis gas produced by the synthesis gas production unit 3 is supplied to the bubble column reactor 30 of the FT synthesis unit 5. At this time, the composition ratio of the synthesis gas supplied to the bubble column reactor 30 is the composition ratio suitable for the FT synthesis reaction (for example, H: CO = 2: 1 (molar ratio)
2  2
) )に調整されている。なお、気泡塔型反応器 30に供給される合成ガスは、脱炭酸装 置 20と気泡塔型反応器 30とを接続する配管に設けられた圧縮機 (図示せず。 )によ り、 FT合成反応に適切な圧力(例えば 3. 6MPaG)まで昇圧される。  )) Is adjusted. The synthesis gas supplied to the bubble column reactor 30 is FT by a compressor (not shown) provided in a pipe connecting the decarbonation device 20 and the bubble column reactor 30. The pressure is increased to a pressure suitable for the synthesis reaction (eg, 3.6 MPaG).
[0033] また、上記脱炭酸装置 20により炭酸ガスが分離された合成ガスの一部は、水素分 離装置 26にも供給される。水素分離装置 26は、上記のように圧力差を利用した吸着 、脱着 (水素 PSA)により、合成ガスに含まれる水素ガスを分離する。当該分離された 水素は、ガスホルダー(図示せず。)等カゝら圧縮機(図示せず。)を介して、液体燃料 合成システム 1内において水素を利用して所定反応を行う各種の水素利用反応装置 (例えば、脱硫反応器 10、 WAX分水素化分解反応器 50、灯油 ·軽油留分水素化精 製反応器 52、ナフサ留分水素化精製反応器 54など)に、連続して供給される。  In addition, a part of the synthesis gas from which the carbon dioxide gas has been separated by the decarbonation device 20 is also supplied to the hydrogen separation device 26. The hydrogen separator 26 separates hydrogen gas contained in the synthesis gas by adsorption and desorption (hydrogen PSA) using a pressure difference as described above. The separated hydrogen is supplied through various compressors (not shown) such as a gas holder (not shown) and various hydrogens that perform a predetermined reaction using hydrogen in the liquid fuel synthesis system 1. Continuously supplied to reactors (eg desulfurization reactor 10, WAX hydrocracking reactor 50, kerosene / light oil fraction hydrotreating reactor 52, naphtha fraction hydrotreating reactor 54, etc.) Is done.
[0034] 次いで、上記 FT合成ユニット 5は、上記合成ガス生成ユニット 3によって生成された 合成ガスから、 FT合成反応により、液体炭化水素を合成する。  [0034] Next, the FT synthesis unit 5 synthesizes liquid hydrocarbons from the synthesis gas produced by the synthesis gas production unit 3 by an FT synthesis reaction.
[0035] 具体的には、上記合成ガス生成ユニット 3で生成された合成ガスは、気泡塔型反応 器 30の底部力も流入されて、気泡塔型反応器 30内に貯留された触媒スラリー内を 上昇する。この際、気泡塔型反応器 30内では、上述した FT合成反応により、当該合 成ガスに含まれる一酸ィ匕炭素と水素ガスとが反応して、炭化水素が生成される。さら に、この合成反応時には、気泡塔型反応器 30の伝熱管 32内に水を流通させること で、 FT合成反応の反応熱を除去し、この熱交換により加熱された水が気化して水蒸 気となる。この水蒸気は、気液分離器 34で液ィ匕した水が伝熱管 32に戻されて、気体 分が中圧スチーム (例えば 1. 0〜2. 5MPaG)として外部装置に供給される。 [0035] Specifically, the synthesis gas produced by the synthesis gas production unit 3 is a bubble column reaction. The bottom force of the vessel 30 is also introduced, and the catalyst slurry stored in the bubble column reactor 30 rises. At this time, in the bubble column reactor 30, the carbon monoxide and hydrogen gas contained in the synthesis gas react with each other by the FT synthesis reaction described above to generate hydrocarbons. Furthermore, at the time of this synthesis reaction, water is circulated through the heat transfer tube 32 of the bubble column reactor 30 to remove the reaction heat of the FT synthesis reaction, and the water heated by this heat exchange evaporates to form water. It becomes steam. As for this water vapor, the water that has been liquefied in the gas-liquid separator 34 is returned to the heat transfer tube 32, and the gas component is supplied to the external device as medium-pressure steam (for example, 1.0 to 2.5 MPaG).
[0036] このようにして、気泡塔型反応器 30で合成された液体炭化水素は、気泡塔型反応 器 30の中央部から取り出されて、分離器 36に導入される。分離器 36は、取り出され たスラリー中の触媒 (固形分)と、液体炭化水素生成物を含んだ液体分とに分離する 。分離された触媒は、その一部を気泡塔型反応器 30に戻され、液体分は第 1精留塔 40に供給される。また、気泡塔型反応器 30の塔頂からは、未反応の合成ガスと、合 成された炭化水素のガス分とが気液分離器 38に導入される。気液分離器 38は、こ れらのガスを冷却して、一部の凝縮分の液体炭化水素を分離して第 1精留塔 40に導 入する。一方、気液分離器 38で分離されたガス分については、未反応の合成ガス( COと H )は、気泡塔型反応器 30の底部に再投入されて FT合成反応に再利用されIn this way, the liquid hydrocarbon synthesized in the bubble column reactor 30 is taken out from the center of the bubble column reactor 30 and introduced into the separator 36. The separator 36 separates the catalyst (solid content) in the removed slurry into a liquid content containing a liquid hydrocarbon product. A part of the separated catalyst is returned to the bubble column reactor 30, and the liquid is supplied to the first rectifying column 40. From the top of the bubble column reactor 30, unreacted synthesis gas and the synthesized hydrocarbon gas are introduced into the gas-liquid separator 38. The gas-liquid separator 38 cools these gases, separates some condensed liquid hydrocarbons, and introduces them into the first fractionator 40. On the other hand, for the gas components separated by the gas-liquid separator 38, the unreacted synthesis gas (CO and H) is reintroduced into the bottom of the bubble column reactor 30 and reused for the FT synthesis reaction.
2 2
、また、製品対象外である炭素数が少ない (C以下)の炭化水素ガスを主成分とする  In addition, the main component is a hydrocarbon gas with a low carbon number (C or less) that is not covered by the product.
4  Four
排ガス (フレアガス)は、第 1冷却装置 80 (詳細は後述する。)を介して、外部の燃焼 設備 (図示せず。 )に導入されて、燃焼された後に大気放出される。  Exhaust gas (flare gas) is introduced into an external combustion facility (not shown) via a first cooling device 80 (details will be described later), and is released into the atmosphere after being combusted.
[0037] 次 、で、第 1精留塔 40は、上記のようにして気泡塔型反応器 30から分離器 36、気 液分離器 38を介して供給された液体炭化水素 (炭素数は多様)を加熱して、沸点の 違いを利用して分留し、ナフサ留分 (沸点が約 315°C未満)と、灯油'軽油留分 (沸点 が約 315〜800°C)と、 WAX分 (沸点が約 800°Cより大)とに分離 '精製する。この第 1精留塔 40の底部から取り出される WAX分の液体炭化水素(主として C 以上)は、 [0037] Next, the first rectification column 40 is a liquid hydrocarbon (having various carbon numbers) supplied from the bubble column reactor 30 through the separator 36 and the gas-liquid separator 38 as described above. ) And fractionate using the difference in boiling point, naphtha fraction (boiling point is less than about 315 ° C), kerosene 'light oil fraction (boiling point is about 315 to 800 ° C), WAX fraction Separation and purification (boiling point greater than about 800 ° C). The liquid hydrocarbons (mainly C or more) of WAX taken out from the bottom of the first rectifying column 40 are
21  twenty one
WAX分水素化分解反応器 50に移送され、第 1精留塔 40の中央部から取り出される 灯油 ·軽油留分の液体炭化水素 (主として C 〜C )は、灯油,軽油留分水素化精製  Kerosene and liquid hydrocarbons (mainly C to C) of kerosene / light oil fraction transferred to WAX fraction hydrocracking reactor 50 and taken out from the center of first fractionator 40
11 20  11 20
反応器 52に移送され、第 1精留塔 40の上部力も取り出されるナフサ留分の液体炭 化水素(主として C〜C )は、ナフサ留分水素化精製反応器 54に移送される。 [0038] WAX分水素化分解反応器 50は、第 1精留塔 40の下部カゝら供給された炭素数の 多い WAX分の液体炭化水素 (概ね C 以上)を、上記水素分離装置 26から供給さ The liquid hydrocarbon (mainly C to C) of the naphtha fraction which is transferred to the reactor 52 and from which the upper force of the first rectifying column 40 is also taken out is transferred to the naphtha fraction hydrotreating reactor 54. [0038] The WAX fraction hydrocracking reactor 50 removes the liquid hydrocarbon (approximately C or more) having a large number of carbon atoms supplied from the lower column of the first rectifying column 40 from the hydrogen separator 26. Supplied
21  twenty one
れた水素ガスを利用して水素化分解して、炭素数を C 以下に低減する。この水素化  Hydrocracking using the generated hydrogen gas to reduce the carbon number to C or less. This hydrogenation
20  20
分解反応では、触媒と熱を利用して、炭素数の多い炭化水素の C C結合を切断し て、炭素数の少ない低分子量の炭化水素を生成する。この WAX分水素化分解反応 器 50により、水素化分解された液体炭化水素を含む生成物は、気液分離器 56で気 体と液体とに分離され、そのうち液体炭化水素は、第 2精留塔 70に移送され、気体 分 (水素ガスを含む。)は、灯油 ·軽油留分水素化精製反応器 52及びナフサ留分水 素化精製反応器 54に移送される。  In the decomposition reaction, the catalyst and heat are used to cleave C C bonds of hydrocarbons with a large number of carbons to produce low molecular weight hydrocarbons with a small number of carbons. The product containing liquid hydrocarbons hydrocracked by this WAX hydrocracking reactor 50 is separated into gas and liquid by gas-liquid separator 56, of which liquid hydrocarbons are separated by the second rectification fraction. The gas component (including hydrogen gas) is transferred to the tower 70 and transferred to the kerosene / light oil fraction hydrotreating reactor 52 and the naphtha fraction hydrotreating reactor 54.
[0039] 灯油 ·軽油留分水素化精製反応器 52は、第 1精留塔 40の中央部力も供給された 炭素数が中程度である灯油'軽油留分の液体炭化水素 (概ね C 〜C )を、水素分 [0039] Kerosene · Gas oil fraction hydrotreating reactor 52 is a liquid hydrocarbon of kerosene 'light oil fraction (generally C to C) with a medium carbon number, which is also supplied with the central force of the first fractionator 40. ), Hydrogen content
11 20  11 20
離装置 26から WAX分水素化分解反応器 50を介して供給された水素ガスを用いて 、水素化精製する。この水素化精製反応は、上記液体炭化水素の不飽和結合に水 素を付加して飽和させ、直鎖状飽和炭化水素を生成する反応である。この結果、水 素化精製された液体炭化水素を含む生成物は、気液分離器 58で気体と液体に分 離され、そのうち液体炭化水素は、第 2精留塔 70に移送され、気体分 (水素ガスを含 む。)は、上記水素化反応に再利用される。  Hydrotreating is performed using hydrogen gas supplied from the separation device 26 through the WAX hydrocracking reactor 50. This hydrorefining reaction is a reaction in which hydrogen is added to the unsaturated bond of the liquid hydrocarbon to saturate to produce a linear saturated hydrocarbon. As a result, the hydrogenated and purified product containing liquid hydrocarbons is separated into a gas and a liquid by the gas-liquid separator 58, and the liquid hydrocarbons are transferred to the second rectification column 70 for gas separation. (Including hydrogen gas) is reused in the hydrogenation reaction.
[0040] ナフサ留分水素化精製反応器 54は、第 1精留塔 40の上部力も供給された炭素数 が少な!/、ナフサ留分の液体炭化水素 (概ね C 以下)を、水素分離装置 26から WA [0040] The naphtha fraction hydrotreating reactor 54 has a small number of carbons supplied by the upper force of the first rectifying column 40! /, And liquid hydrocarbons (approximately C or less) of the naphtha fraction are separated by a hydrogen separator. 26 to WA
10  Ten
X分水素化分解反応器 50を介して供給された水素ガスを用いて、水素化精製する。 この結果、水素化精製された液体炭化水素を含む生成物は、気液分離器 60で気体 と液体に分離され、そのうち液体炭化水素は、ナフサ'スタビライザー 72に移送され、 気体分 (水素ガスを含む。)は、上記水素化反応に再利用される。  Hydrorefining using the hydrogen gas supplied via the X-fraction hydrocracking reactor 50. As a result, the hydrorefined liquid hydrocarbon-containing product is separated into a gas and a liquid by the gas-liquid separator 60, and the liquid hydrocarbon is transferred to the naphtha 'stabilizer 72, where the gas component (hydrogen gas is removed). Is reused in the hydrogenation reaction.
[0041] 次 、で、第 2精留塔 70は、上記のようにして WAX分水素化分解反応器 50及び灯 油 ·軽油留分水素化精製反応器 52から供給された液体炭化水素を蒸留して、炭素 数が C 以下の炭化水素 (沸点が約 315°C未満)と、灯油(沸点が約 315〜450°C)と[0041] Next, the second fractionator 70 distills the liquid hydrocarbons supplied from the WAX fraction hydrocracking reactor 50 and the kerosene / light oil fraction hydrotreating reactor 52 as described above. Hydrocarbons with a carbon number of C or less (boiling point less than about 315 ° C) and kerosene (boiling point about 315 to 450 ° C)
10 Ten
、軽油(沸点が約 450〜800°C)とに分離 ·精製する。第 2精留塔 70の下部力もは軽 油が取り出され、中央部力 は灯油が取り出される。一方、第 2精留塔 70の塔頂から は、炭素数が C 以下の炭化水素ガスが取り出されて、ナフサ'スタビライザー 72に Separating and refining it into diesel oil (boiling point approx. 450-800 ° C). Gas oil is taken out from the lower force of the second fractionator 70, and kerosene is taken out from the central force. On the other hand, from the top of the second rectification tower 70 The hydrocarbon gas with a carbon number of C or less is taken out and put into the naphtha stabilizer 72.
10  Ten
供給される。  Supplied.
[0042] さらに、ナフサ'スタビライザー 72では、上記ナフサ留分水素化精製反応器 54及び 第 2精留塔 70から供給された炭素数が C 以下の炭化水素を蒸留して、製品として  [0042] Further, the naphtha's stabilizer 72 distills hydrocarbons having a carbon number of C or less supplied from the naphtha fraction hydrotreating reactor 54 and the second rectifying column 70 as a product.
10  Ten
のナフサ (C〜C )を分離'精製する。これにより、ナフサ'スタビライザー 72の下部  Of naphtha (C to C). This allows the bottom of the naphtha stabilizer 72
5 10  5 10
力もは、高純度のナフサが取り出される。一方、ナフサ'スタビライザー 72の塔頂から は、製品対象外である炭素数が所定数以下 (C以下)の炭化水素を主成分とする排  As for the power, high-purity naphtha is taken out. On the other hand, from the top of Naphtha's Stabilizer 72, the main component of the exhaust is hydrocarbons whose main component is a carbon number not exceeding the specified number (C or less).
4  Four
ガス (フレアガス)が排出される。この排ガスは、第 2冷却装置 82 (詳細は後述する。 ) を介して、外部の燃焼設備 (図示せず。 )に導入されて、燃焼された後に大気放出さ れる。  Gas (flare gas) is discharged. This exhaust gas is introduced into an external combustion facility (not shown) via a second cooling device 82 (details will be described later), and after being combusted, it is released into the atmosphere.
[0043] 以上、液体燃料合成システム 1の工程 (GTLプロセス)につ 、て説明した。かかる G TLプロセスにより、天然ガスを、高純度のナフサ(C〜C :粗ガソリン)、灯油(C 〜  [0043] The process (GTL process) of the liquid fuel synthesis system 1 has been described above. By this GTL process, natural gas is converted into high-purity naphtha (C ~ C: crude gasoline), kerosene (C ~
5 10 11 5 10 11
C :ケロシン)及び軽油(C 〜C :ガスオイル)等のクリーンな液体燃料に、容易且C: kerosene) and light liquids (C to C: gas oil), etc.
15 16 20 15 16 20
つ経済的に転換することができる。さらに、本実施形態では、改質器 12において上 記水蒸気 ·炭酸ガス改質法を採用して!ヽるので、原料となる天然ガスに含有されて!ヽ る二酸化炭素を有効に利用し、かつ、上記 FT合成反応に適した合成ガスの組成比( 例えば、 H : CO = 2 : l (モル比))を改質器 12の 1回の反応で効率的に生成すること  Can be converted economically. Furthermore, in the present embodiment, the reformer 12 adopts the steam / carbon dioxide reforming method described above, so that carbon dioxide contained in the natural gas as a raw material is effectively used, In addition, the composition ratio of the synthesis gas suitable for the above FT synthesis reaction (for example, H: CO = 2: l (molar ratio)) should be efficiently generated in one reaction of the reformer 12.
2  2
ができ、水素濃度調整装置などが不要であると 、う利点がある。  If there is no need for a hydrogen concentration adjusting device, there is an advantage.
[0044] ところで、上記液体燃料合成システム 1にお ヽて、気泡塔型反応器 30の塔頂部か ら気液分離器 38を介して排出される排ガスや、ナフサ'スタビライザー 72の塔頂部か ら排出される排ガスは、その大半が炭素数 C以下の製品となり得ない炭化水素ガス By the way, in the liquid fuel synthesizing system 1, exhaust gas discharged from the tower top of the bubble column reactor 30 through the gas-liquid separator 38, and from the tower top of the naphtha stabilizer 72. Most of the exhaust gas discharged is a hydrocarbon gas that cannot be a product with less than C carbon atoms.
4  Four
であるが、そのうちにナフサ製品となりうる炭素数 c以上の炭化水素が、少なくとも製  However, hydrocarbons with more than c carbon atoms that can become naphtha products over time are at least produced.
5  Five
品換算で例えば 2%以上含まれている。従来では、この製品となりうる炭化水素ガス をも、燃焼設備で燃焼して廃棄していたため、製品収率を低下させる要因となり、 CO  For example, 2% or more is included. Conventionally, the hydrocarbon gas that can be used in this product has also been burned and discarded in the combustion facility, which causes a reduction in product yield.
2排出量も増カロしていた。 2 Emissions also increased.
[0045] そこで、本実施形態では、これらの排ガスに含有されている炭化水素のうち、製品と なりうる炭素数以上 (C以上)の炭化水素を回収するために、図 1に示すように、気泡  [0045] Therefore, in the present embodiment, in order to recover hydrocarbons having a carbon number or more (C or more) that can be a product among the hydrocarbons contained in these exhaust gases, as shown in FIG. Bubbles
5  Five
塔型反応器 30の塔頂からの排気経路 39上、及びナフサ'スタビライザー 72の塔頂 力もの排気経路 73上に、当該排ガスを冷却する第 1冷却装置 80、第 2冷却装置 82 がそれぞれ設けられて ヽる。 Tower reactor 30 Exhaust path from top of tower 39 and top of naphtha's stabilizer 72 A first cooling device 80 and a second cooling device 82 for cooling the exhaust gas are provided on the powerful exhaust path 73, respectively.
[0046] ここで、図 2、図 3を参照して、この第 1冷却装置 80及び第 2冷却装置 82 (以下では 、単に「冷却装置 80, 82」と総称する場合もある。)を用いた排ガスからの製品回収に ついて詳述する。図 2、図 3は、それぞれ、本実施形態にカゝかる液ィ匕天然ガス製造設 備 90又は天然ガス製造設備 100からの冷媒を利用して、液体燃料合成システム 1〖こ おける排ガスからの製品回収の概要を示すブロック図である。なお、図 2、図 3では、 説明の便宜上、図 1の液体燃料合成システム 1の構成要素のうち主要なものを図示し 、一部の構成要素については図示を省略してある。  Here, with reference to FIGS. 2 and 3, the first cooling device 80 and the second cooling device 82 (hereinafter sometimes simply referred to as “cooling devices 80 and 82”) are used. The details of product recovery from the exhaust gas that was stored are described in detail. Figures 2 and 3 show the liquid fuel natural gas production equipment 90 or the natural gas production equipment 100 used in the present embodiment. It is a block diagram which shows the outline | summary of product collection | recovery. 2 and 3, for convenience of explanation, main components of the liquid fuel synthesizing system 1 of FIG. 1 are shown, and some of the components are not shown.
[0047] 図 2に示す例では、上記液体燃料合成システム 1 (GTLプラント)は、例えば、ガス 田 91が存在する地域(中東等の天然ガス輸出国など)に設置される液化天然ガス製 造設備 90 (液ィ匕天然ガス製造プラント)に隣接して設けられている。この図 2の場合、 液体燃料合成システム 1には、ガス田 91から採取された天然ガスが原料ガスとして供 給される。  In the example shown in FIG. 2, the liquid fuel synthesizing system 1 (GTL plant) is, for example, a liquefied natural gas production facility installed in a region where a gas field 91 exists (such as a natural gas exporting country such as the Middle East). It is located adjacent to the facility 90 (Liquid Natural Gas Production Plant). In the case of FIG. 2, the liquid fuel synthesizing system 1 is supplied with natural gas collected from the gas field 91 as a raw material gas.
[0048] 液化天然ガス製造設備 90は、ガス田 91から採取された天然ガスを冷却して液化天 然ガス(LNG : Liquefied Natural Gas)を製造する設備である。この液化天然ガス製造 設備 90は、天然ガスを液化させる熱交翻 92と、熱交翻 92に冷媒を供給する冷 媒供給源 94と、 LNGを貯蔵する LNGタンク 96とを備える。力かる液ィ匕天然ガス製造 設備 90では、ガス田力もの天然ガスと、冷媒供給源 94からの冷媒とが熱交翻 92 に供給され、熱交 は、この天然ガスと冷媒との間で熱交換を行うことにより、天 然ガスを極低温 (約一 162°C以下)に冷却して LNGに液ィ匕する。この液ィ匕された LN Gは、 LNGタンク 96に貯蔵され、必要に応じて、他の地域(日本等の天然ガス輸入 国など)にタンカー等で輸送される。  [0048] The liquefied natural gas production facility 90 is a facility for producing liquefied natural gas (LNG) by cooling the natural gas collected from the gas field 91. The liquefied natural gas production facility 90 includes a heat exchanger 92 that liquefies natural gas, a refrigerant supply source 94 that supplies a refrigerant to the heat exchanger 92, and an LNG tank 96 that stores LNG. In the powerful liquid and natural gas production facility 90, natural gas from a gas field and the refrigerant from the refrigerant supply source 94 are supplied to the heat exchanger 92, and the heat exchange is performed between the natural gas and the refrigerant. By exchanging, the natural gas is cooled to a very low temperature (approximately 1 162 ° C or less) and liquidized to LNG. This liquefied LNG is stored in the LNG tank 96 and transported to other areas (such as natural gas importing countries such as Japan) by tankers as necessary.
[0049] このように液ィ匕天然ガス製造設備 90にて天然ガスを液ィ匕する際の冷媒としては、例 えば、液体窒素、液ィ匕プロパン、液化メタン、液化エチレン等で天然ガスを臨界温度 以下に冷却できるものならば使用できる。また、当該冷媒として、これらのいくつかを 混合した冷媒も使用できる。これらの冷媒は、天然ガスを液ィ匕するために極低温のも のが使用されるので、熱交 での熱交換により多少温度上昇した後であっても 、十分な冷熱を有している。カゝかる天然ガスを液ィ匕するための冷媒は、排ガス冷却用 の冷媒として、上記液体燃料合成システム 1に供給される。 [0049] As a refrigerant for liquidizing natural gas in the liquid natural gas production facility 90 as described above, for example, natural gas is used with liquid nitrogen, liquid propane, liquefied methane, liquefied ethylene, or the like. Any material that can be cooled below the critical temperature can be used. In addition, a refrigerant obtained by mixing some of these can also be used as the refrigerant. These refrigerants are used at extremely low temperatures to liquefy natural gas, so even after the temperature has risen somewhat due to heat exchange in heat exchange. Have enough cold. A refrigerant for liquefying the natural gas is supplied to the liquid fuel synthesizing system 1 as a refrigerant for exhaust gas cooling.
[0050] 一方、図 3の例では、上記液体燃料合成システム 1 (GTLプラント)は、例えば、天 然ガスを消費する地域(日本等の天然ガス輸入国など)に設置される天然ガス製造 設備 100 (天然ガス製造プラント)に隣接して設けられている。  On the other hand, in the example of FIG. 3, the liquid fuel synthesizing system 1 (GTL plant) is, for example, a natural gas production facility installed in an area where natural gas is consumed (such as a natural gas importing country such as Japan). It is located adjacent to 100 (natural gas production plant).
[0051] この天然ガス製造設備 100は、液化天然ガス (LNG)を貯蔵する LNGタンク 102と 、 LNGを気化させる熱交換器 104と、熱交換器 104に熱媒体を供給する熱媒体供 給源 106とを備える。力かる天然ガス製造設備 100では、上記液化天然ガス製造設 備 90等で製造された LNGがタンカー等で輸送されて、 LNGタンク 102に貯蔵される 。この LNGタンク 102に貯蔵されている極低温 (約— 162°C以下)の LNGと、熱媒体 供給源 106からの熱媒体は、熱交翻 104に供給される。熱交翻 104は、この LN Gと熱媒体との間で熱交換を行うことにより、 LNGを加熱して天然ガスに気化させる。  [0051] The natural gas production facility 100 includes an LNG tank 102 that stores liquefied natural gas (LNG), a heat exchanger 104 that vaporizes LNG, and a heat medium supply source 106 that supplies a heat medium to the heat exchanger 104. With. In the natural gas production facility 100, the LNG produced in the liquefied natural gas production facility 90 is transported by a tanker or the like and stored in the LNG tank 102. The extremely low temperature (about −162 ° C. or lower) LNG stored in the LNG tank 102 and the heat medium from the heat medium supply source 106 are supplied to the heat exchanger 104. The heat exchanger 104 heats LNG and vaporizes it into natural gas by performing heat exchange between the LNG and the heat medium.
[0052] このようにして天然ガス製造設備 100にて LNGを気化して製造された天然ガスは、 原料ガスとして液体燃料合成システム 1に供給される。また、上記 LNGを気化する際 の熱媒体としては、例えば、海水、水、グリコールなどを使用できる力 これらの熱媒 体は、極低温の LNGにより吸熱されて低温に冷却される。このように LNGを気化す る際に冷却された熱媒体も、排ガス冷却用の冷媒として、上記液体燃料合成システ ム 1に供給される。なお、場合によっては、 LNGタンク 102に貯蔵されている極低温 の LNG自体を、排ガス冷却用の冷媒として液体燃料合成システム 1に供給することも 可能である(図 3の破線矢印 108参照)。  [0052] The natural gas produced by vaporizing LNG in the natural gas production facility 100 in this way is supplied to the liquid fuel synthesis system 1 as a raw material gas. In addition, as a heat medium for evaporating the LNG, for example, power that can use seawater, water, glycol, and the like. These heat mediums are absorbed by cryogenic LNG and cooled to a low temperature. The heat medium cooled when evaporating LNG in this way is also supplied to the liquid fuel synthesizing system 1 as a refrigerant for exhaust gas cooling. In some cases, the cryogenic LNG itself stored in the LNG tank 102 can be supplied to the liquid fuel synthesizing system 1 as a refrigerant for exhaust gas cooling (see the broken line arrow 108 in FIG. 3).
[0053] 次に、図 2及び図 3を参照して、液体燃料合成システム 1にお 、て、上記液化天然 ガス製造設備 90又は天然ガス製造設備 100から供給された冷媒を利用して、排ガス を冷却する方法につ!、て説明する。  Next, referring to FIG. 2 and FIG. 3, in the liquid fuel synthesizing system 1, the refrigerant supplied from the liquefied natural gas production facility 90 or the natural gas production facility 100 is used for exhaust gas. I will explain how to cool it.
[0054] 図 2及び図 3に示すように、液体燃料合成システム 1では、上記ガス田 91若しくは上 記天然ガス製造設備 100から供給された天然ガスを、改質器 12により改質して合成 ガスを生成し、次いで、気泡塔型反応器 30により当該合成ガスを液体炭化水素に合 成し、さらに、第 1精留塔 40、水素化反応器 50, 52, 54、第 2精留塔 70及びナフサ' スタビライザー 72により、液体炭化水素を各液体燃料製品(ナフサ、灯油、軽油)に 精製 '分離する。 As shown in FIG. 2 and FIG. 3, in the liquid fuel synthesizing system 1, the natural gas supplied from the gas field 91 or the natural gas production facility 100 is reformed by the reformer 12 and synthesized. Next, the synthesis gas is synthesized into liquid hydrocarbons by the bubble column reactor 30. Further, the first rectification column 40, the hydrogenation reactors 50, 52, 54, the second rectification column 70 and naphtha 'stabilizer 72 to convert liquid hydrocarbons into liquid fuel products (naphtha, kerosene, light oil) Purify 'separate.
[0055] このような GTLプロセスにおいて、気泡塔型反応器 30の塔頂から排出される排ガ スは、排気経路 39を介して第 1冷却装置 80に供給され、ナフサ'スタビライザー 72の 塔頂力も排出される排ガスは、排気経路 73を介して第 2冷却装置 82に供給される。 また、これらの冷却装置 80, 82〖こは、上記液化天然ガス製造設備 90又は天然ガス 製造設備 100から、配管 83, 84を介して、上記 LNGの液化に使用された冷媒、又 は上記 LNGの気化時に生じた冷熱を有する低温の熱媒体が、排ガス冷却用の冷媒 としてそれぞれ供給される。  [0055] In such a GTL process, the exhaust gas discharged from the top of the bubble column reactor 30 is supplied to the first cooling device 80 via the exhaust path 39, and the top of the naphtha 'stabilizer 72 is supplied. The exhaust gas from which power is also discharged is supplied to the second cooling device 82 via the exhaust path 73. In addition, these cooling devices 80, 82 are connected to the refrigerant used for liquefying the LNG from the liquefied natural gas production facility 90 or the natural gas production facility 100 via the pipes 83, 84, or the LNG The low temperature heat medium having the cold generated during the vaporization is supplied as a refrigerant for exhaust gas cooling.
[0056] 冷却装置 80, 82は、例えば、熱交換器(図示せず。)を具備しており、上記のように 供給された排ガスと冷媒との間で熱交換を行い、当該排ガスを所定温度以下に冷却 する。この所定温度とは、例えば、 GTLプロセスにおいて液体燃料製品となりうる所 定の炭素数 (例えば C以上)以上の炭化水素ガスが、液ィヒする温度 (例えばペンタ  [0056] The cooling devices 80 and 82 include, for example, a heat exchanger (not shown), exchange heat between the exhaust gas supplied as described above and the refrigerant, Cool below temperature. This predetermined temperature is, for example, a temperature at which a hydrocarbon gas having a predetermined number of carbons (for example, C or more) that can become a liquid fuel product in the GTL process becomes liquid (for example, a pentagon).
5  Five
ン(C H )の沸点である約 36°C以下)である。これにより、排ガス中に含まれている (C H), which is the boiling point of about 36 ° C or less. This is contained in the exhaust gas
5 12 5 12
炭化水素ガスのうち、製品となりうる所定の炭素数 (例えば c以上)以上の炭化水素  Among hydrocarbon gases, hydrocarbons with a predetermined number of carbons (for example, c or more) that can be used as products
5  Five
ガスが液ィ匕し、それ未満の炭素数 (例えば C以下)の炭化水素ガスは液ィ匕しない。こ  The gas is liquid and hydrocarbon gas with less carbon number (eg C or less) does not liquid. This
4  Four
の冷却装置 80, 82による排ガス冷却時の温度条件は、例えば—10〜10°Cとするこ とができ、この温度条件に合うような適切な種類の冷媒を選択することが可能である。  The temperature condition during exhaust gas cooling by the cooling devices 80 and 82 can be, for example, −10 to 10 ° C., and it is possible to select an appropriate type of refrigerant that meets this temperature condition.
[0057] このようにして第 1冷却装置 80で液ィ匕された炭素数 C以上の炭化水素(ナフサ留 [0057] A hydrocarbon having a carbon number of C or more (naphtha distillate) liquidized in the first cooling device 80 in this manner.
5  Five
分)は、第 1冷却装置 80から回収経路 85を介して第 1精留塔 40に供給され、上記の ようなプロセスを経てナフサ製品に精製される。また、第 2冷却装置 82で液化された 炭素数 C以上の炭化水素は、第 2冷却装置 82からナフサ製品として外部に供給さ  Is supplied from the first cooling device 80 to the first rectification column 40 via the recovery path 85, and is refined into a naphtha product through the process described above. In addition, hydrocarbons having a carbon number of C or more liquefied by the second cooling device 82 are supplied to the outside from the second cooling device 82 as naphtha products.
5  Five
れる。一方、上記冷却装置 80, 82において、液化されな力つた炭素数が所定数以 下 (例えば C以下)の炭化水素ガスは、毒性ガス及び可燃性ガス成分を含んでいる  It is. On the other hand, in the cooling devices 80 and 82, the hydrocarbon gas having a liquefied and powerful carbon number of a predetermined number or less (for example, C or less) contains a toxic gas and a combustible gas component.
4  Four
ので、燃焼すべき排ガス (フレアガス)として、冷却装置 80, 82から燃焼設備 110に 導入されて燃焼処理され、大気に放出される。  Therefore, as exhaust gas to be burned (flared gas), it is introduced into the combustion facility 110 from the cooling devices 80 and 82, burned, and released to the atmosphere.
[0058] 以上のように、本実施形態に力かる液体燃料合成システム 1では、気泡塔型反応器 30からの排ガス(FT— TAILガス)、及びナフサ'スタビライザー 72からの排ガスのう ち、製品となりうる炭素数 C以上の炭化水素ガスを、冷却装置 80, 82により液ィ匕して 回収することができる。このように、従来では廃棄されていた製品換算で少なくとも 2 %以上の量の炭化水素を、好適に回収して製品化できるので、製品収率を向上する ことができる。さらに、燃焼設備 110で燃焼される排ガス量を削減して、液体燃料合 成システム 1からの CO排出量を削減できるので、地球温暖化問題改善などの環境 [0058] As described above, in the liquid fuel synthesizing system 1 useful for the present embodiment, the exhaust gas from the bubble column reactor 30 (FT-TAIL gas) and the exhaust gas from the naphtha stabilizer 72 are used as products. A hydrocarbon gas with a carbon number of C or higher that can be It can be recovered. In this way, hydrocarbons in an amount of at least 2% or more in terms of products that were conventionally discarded can be suitably recovered and commercialized, so that the product yield can be improved. In addition, the amount of exhaust gas combusted by the combustion facility 110 can be reduced to reduce CO emissions from the liquid fuel synthesis system 1.
2  2
親和面で貢献できる。  Contribute in terms of affinity.
[0059] さらに、冷却装置 80, 82では上記排ガスを冷却する際の冷熱源として、液体燃料 合成システム 1に隣接配置された液ィ匕天然ガス製造設備 90にお 、て天然ガスの液 化時に使用される冷媒に含まれる余剰冷熱、又は天然ガス製造設備 100において L NGの気化に用いられる熱媒体に含まれる余剰冷熱を利用する。このため、液化天 然ガス製造設備 90又は天然ガス製造設備 100で生じる余剰冷熱を、液体燃料合成 システム 1での排ガス冷却に有効利用できるので、液ィ匕天然ガス製造設備 90又は天 然ガス製造設備 100と、液体燃料合成システム 1とを含むシステム全体での熱効率を 大幅に向上できる。  [0059] Further, in the cooling devices 80 and 82, as a cooling heat source when the exhaust gas is cooled, the liquid gas natural gas production facility 90 disposed adjacent to the liquid fuel synthesis system 1 is used when the natural gas is liquefied. The surplus cooling heat contained in the refrigerant used or the surplus cooling heat contained in the heat medium used for vaporizing LNG in the natural gas production facility 100 is used. For this reason, surplus cold heat generated in the liquefied natural gas production facility 90 or the natural gas production facility 100 can be effectively used for exhaust gas cooling in the liquid fuel synthesis system 1, so the liquid natural gas production facility 90 or natural gas production The thermal efficiency of the entire system including the equipment 100 and the liquid fuel synthesis system 1 can be greatly improved.
[0060] さらに、例えば約— 160°Cという非常に低温の冷媒を利用して排ガスを冷却するの で、排ガス中に含まれる少量の炭化水素 (製品となりうる炭素数 C以上の炭化水素)  [0060] Furthermore, because the exhaust gas is cooled by using a very low temperature refrigerant of, for example, about 160 ° C, a small amount of hydrocarbons contained in the exhaust gas (hydrocarbons with a carbon number of C or more that can be produced)
5  Five
を確実に回収できる。  Can be reliably recovered.
[0061] また、上記回収機構を採用する際の初期投資は、冷却装置 80, 82としての熱交換 器の設備コストだけで済み、この設備コストは、排ガスを燃焼させるガス燃料費 (ラン ユングコスト)が節減されることで十分に回収可能である。  [0061] In addition, the initial investment in adopting the above recovery mechanism is only the equipment cost of the heat exchanger as the cooling devices 80, 82, and this equipment cost is the cost of the gas fuel for burning the exhaust gas (running cost). ) Can be recovered sufficiently.
[0062] 以上、添付図面を参照しながら本発明の好適な実施形態について説明した力 本 発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範 囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明 らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される  [0062] As described above, the force described for the preferred embodiment of the present invention with reference to the accompanying drawings. Needless to say, the present invention is not limited to the example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood to belong
[0063] 例えば、上記実施形態では、液体燃料合成システム 1に供給される炭化水素原料 として、天然ガスを用いた力 力かる例に限定されず、例えば、アスファルト、残油な ど、その他の炭化水素原料を用いてもよい。 [0063] For example, in the above embodiment, the hydrocarbon raw material supplied to the liquid fuel synthesizing system 1 is not limited to a powerful example using natural gas, and other carbonization such as asphalt and residual oil, for example. A hydrogen raw material may be used.
[0064] また、上記実施形態では、気泡塔型反応器 30における合成反応として、 FT合成 反応により液体炭化水素を合成したが、本発明は力かる例に限定されない。気泡塔 型反応器における合成反応としては、例えば、ォキソ合成 (ヒドロホルミル化反応)「R •CH = CH +CO + H→R-CH CH CHO」、メタノール合成「CO + 2H→CH O [0064] In the above embodiment, the synthesis reaction in the bubble column reactor 30 is FT synthesis. Although liquid hydrocarbons were synthesized by reaction, the present invention is not limited to powerful examples. Examples of synthesis reactions in bubble column reactors include oxo synthesis (hydroformylation reaction) “R • CH = CH + CO + H → R—CH CH CHO”, methanol synthesis “CO + 2H → CH 2 O
2 2 2 2 2 3 2 2 2 2 2 3
H」、ジメチルエーテル(DME)合成「3CO + 3H→CH OCH +CO」などにも適 H ”, dimethyl ether (DME) synthesis“ 3CO + 3H → CH OCH + CO ”
2 3 3 2  2 3 3 2
用することができる。  Can be used.
[0065] また、上記実施形態では、液体燃料合成システム 1での排ガス冷却の冷熱源として 、液化天然ガス製造設備 90又は天然ガス製造設備 100での余剰冷熱を利用したが 、本発明はカゝかる例に限定されず、冷熱源として、冷却工程で使用される冷媒を供 給可能なその他のプラント設備など力もの冷熱を利用してもよい。  [0065] In the above embodiment, as the cooling source of the exhaust gas cooling in the liquid fuel synthesis system 1, the excess cooling heat in the liquefied natural gas manufacturing facility 90 or the natural gas manufacturing facility 100 is used. However, the present invention is not limited to this example, and powerful cold energy such as other plant equipment capable of supplying the refrigerant used in the cooling process may be used as the cold heat source.
[0066] また、上記実施形態では、液体炭化水素を蒸留して所定の炭素数以上の液体燃 料を分離する精留塔の例として、ナフサを分離するナフサ'スタビライザー 72の例を 挙げたが、本発明は、力かる例に限定されず、例えば、灯油、軽油、アルコール、 D ME等の各種の液体燃料を分離するための蒸留塔などであってもよい。  [0066] In the above embodiment, an example of the naphtha stabilizer 72 that separates naphtha is given as an example of a rectifying column that distills liquid hydrocarbons and separates liquid fuel having a predetermined number of carbons or more. The present invention is not limited to a powerful example, and may be, for example, a distillation column for separating various liquid fuels such as kerosene, light oil, alcohol, and DME.
[0067] また、上記実施形態では、合成ガスを液体炭化水素に合成する反応器として、気 泡塔型スラリー床式反応器を用いたが、本発明は力かる例に限定されず、例えば、 固定床式反応器などを用いて FT合成反応を行ってもょ ヽ。  [0067] In the above embodiment, a bubble column type slurry bed type reactor is used as a reactor for synthesizing synthesis gas into liquid hydrocarbons. However, the present invention is not limited to a powerful example. FT synthesis reaction may be performed using a fixed bed reactor.
産業上の利用可能性  Industrial applicability
[0068] 本発明は、炭化水素原料を改質して一酸化炭素ガス及び水素ガスを主成分とする 合成ガスを生成する改質器と;前記合成ガスに含まれる一酸ィヒ炭素ガス及び水素ガ スから液体炭化水素を合成する反応器と;前記液体炭化水素を精留して所定の炭素 数以上の液体炭化水素を分離する精留塔と;前記反応器から排出される排ガス、ま たは前記精留塔力 排出される排ガスのうちの少なくともいずれかひとつを冷却する ことにより液化する冷却装置と;を備え、液ィ匕した前記排ガスに含まれる前記所定の 炭素数以上の炭化水素ガスを回収する液体燃料合成システムに関する。 [0068] The present invention includes a reformer that reforms a hydrocarbon raw material to generate a synthesis gas mainly composed of carbon monoxide gas and hydrogen gas; and a carbon monoxide gas contained in the synthesis gas; A reactor for synthesizing liquid hydrocarbons from hydrogen gas; a rectifying column for rectifying the liquid hydrocarbons to separate liquid hydrocarbons having a predetermined carbon number or more; exhaust gas discharged from the reactor; Or a cooling device that liquefies by cooling at least one of the exhaust gas discharged from the rectifying column, and the hydrocarbon having the predetermined number of carbons or more contained in the liquid exhaust gas. The present invention relates to a liquid fuel synthesis system for recovering gas.
本発明の液体燃料合成システムによれば、排ガス中に含まれる所望の炭素数の炭 化水素成分を回収して製品収率を向上でき、 CO排出量も削減することができる。  According to the liquid fuel synthesizing system of the present invention, a hydrocarbon component having a desired carbon number contained in the exhaust gas can be recovered to improve the product yield, and CO emissions can be reduced.

Claims

請求の範囲 The scope of the claims
[1] 炭化水素原料を改質して一酸ィ匕炭素ガス及び水素ガスを主成分とする合成ガスを 生成する改質器と;  [1] a reformer that reforms a hydrocarbon raw material to generate synthesis gas mainly composed of carbon monoxide and hydrogen gas;
前記合成ガスに含まれる一酸ィ匕炭素ガス及び水素ガスカゝら液体炭化水素を合成 する反応器と;  A reactor for synthesizing liquid hydrocarbons such as carbon monoxide and hydrogen gas contained in the synthesis gas;
前記液体炭化水素を精留して所定の炭素数以上の液体炭化水素を分離する精留 塔と;  A rectifying column for rectifying the liquid hydrocarbons to separate liquid hydrocarbons having a predetermined number of carbons or more;
前記反応器力 排出される排ガス、または前記精留塔力 排出される排ガスのうち の少なくとも 、ずれかひとつを冷却することにより液ィ匕する冷却装置と;を備え、 液ィ匕した前記排ガスに含まれる前記所定の炭素数以上の炭化水素ガスを回収する 液体燃料合成システム。  A cooling device that cools at least one of the exhaust gas exhausted from the reactor and the exhaust gas exhausted from the rectifying tower and that cools the exhaust gas. A liquid fuel synthesis system for recovering a hydrocarbon gas having a predetermined number of carbon atoms or more.
[2] 前記冷却装置は、外部装置力 供給される冷媒の冷熱を利用して前記排ガスを冷 却する請求項 1に記載の液体燃料合成システム。  [2] The liquid fuel synthesizing system according to [1], wherein the cooling device cools the exhaust gas by using cold heat of a refrigerant supplied from an external device.
[3] 前記炭化水素原料は天然ガスであり、 [3] The hydrocarbon feedstock is natural gas,
前記外部装置は、液化天然ガスを気化し、気化した天然ガスを前記液体燃料合成 システムに供給する天然ガス製造設備であり、  The external device is a natural gas production facility that vaporizes liquefied natural gas and supplies the vaporized natural gas to the liquid fuel synthesis system,
前記冷媒は、前記天然ガス製造設備にぉ ヽて前記液ィ匕天然ガスの気化時に生じ た冷熱を含む請求項 2に記載の液体燃料合成システム。  3. The liquid fuel synthesizing system according to claim 2, wherein the refrigerant includes cold heat generated when the liquid natural gas is vaporized over the natural gas production facility.
[4] 前記炭化水素原料は天然ガスであり、 [4] The hydrocarbon feedstock is natural gas,
前記外部装置は、ガス田から採取された天然ガスを液化する液化天然ガス製造設 備であり、  The external device is a liquefied natural gas production facility for liquefying natural gas collected from a gas field,
前記冷媒は、前記液化天然ガス製造設備にぉ ヽて前記天然ガスの液ィ匕に用いら れる冷媒である請求項 2に記載の液体燃料合成システム。  3. The liquid fuel synthesizing system according to claim 2, wherein the refrigerant is a refrigerant used for the natural gas liquid in the liquefied natural gas production facility.
PCT/JP2007/056924 2006-03-30 2007-03-29 Liquid fuel synthesis system WO2007114277A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008508622A JPWO2007114277A1 (en) 2006-03-30 2007-03-29 Liquid fuel synthesis system
AU2007232926A AU2007232926B2 (en) 2006-03-30 2007-03-29 Liquid fuel synthesis system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006095917 2006-03-30
JP2006-095917 2006-03-30

Publications (1)

Publication Number Publication Date
WO2007114277A1 true WO2007114277A1 (en) 2007-10-11

Family

ID=38563545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056924 WO2007114277A1 (en) 2006-03-30 2007-03-29 Liquid fuel synthesis system

Country Status (7)

Country Link
JP (1) JPWO2007114277A1 (en)
CN (1) CN101432402A (en)
AU (1) AU2007232926B2 (en)
MY (1) MY148262A (en)
RU (1) RU2415904C2 (en)
WO (1) WO2007114277A1 (en)
ZA (1) ZA200808234B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038389A1 (en) * 2008-09-30 2010-04-08 新日本石油株式会社 Method of starting up reactifier
WO2011118442A1 (en) * 2010-03-25 2011-09-29 独立行政法人石油天然ガス・金属鉱物資源機構 Rectifying column start-up method
JP2011202011A (en) * 2010-03-25 2011-10-13 Japan Oil Gas & Metals National Corp Startup method of rectifying column
JP2011208004A (en) * 2010-03-30 2011-10-20 Japan Oil Gas & Metals National Corp Rectifying column start-up method
WO2012132336A1 (en) * 2011-03-31 2012-10-04 独立行政法人石油天然ガス・金属鉱物資源機構 Method for removing heavy hydrocarbon
WO2017154044A1 (en) * 2016-03-10 2017-09-14 日揮株式会社 Novel production equipment and production method of liquefied hydrogen and liquefied natural gas

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804747B2 (en) * 2011-03-31 2015-11-04 独立行政法人石油天然ガス・金属鉱物資源機構 Method for suppressing metal contamination in syngas production equipment
WO2013114148A1 (en) 2012-02-02 2013-08-08 Potemkin Alexander Installation for converting hydrocarbon reactants in gaseous and liquid fuel, including a 'plasma chemotron' for said installation
CN104711019B (en) * 2015-03-05 2016-09-14 武汉凯迪工程技术研究总院有限公司 Fischer-Tropsch synthesis oil is utilized to produce diesel oil and the system and method for jet fuel
JP7398370B2 (en) * 2017-11-15 2023-12-14 ジーティーアイ エナジー Processes and systems for reforming methane and light hydrocarbons into liquid hydrocarbon fuels
US10738247B2 (en) 2017-11-15 2020-08-11 Gas Technology Institute Processes and systems for reforming of methane and light hydrocarbons to liquid hydrocarbon fuels
US12122962B2 (en) 2018-09-18 2024-10-22 Gti Energy Processes and catalysts for reforming of impure methane-containing feeds

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256811A (en) * 2003-02-24 2004-09-16 Syntroleum Corp Integrated fischer-tropsch process improved in alcohol disposal ability

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3813835B2 (en) * 2001-05-18 2006-08-23 株式会社日立製作所 Water recovery system from combustion exhaust gas
JP4325907B2 (en) * 2001-10-23 2009-09-02 渉 室田 An oxygen-containing hydrocarbon-containing liquid composition, a method for producing the same, and a method for producing a low-pollution liquid fuel containing the composition.
US6958364B1 (en) * 2004-07-15 2005-10-25 Chevron U.S.A. Inc. Use of Fischer-Tropsch condensate as a lean oil for heavy ends recovery from Fischer-Tropsch tail gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256811A (en) * 2003-02-24 2004-09-16 Syntroleum Corp Integrated fischer-tropsch process improved in alcohol disposal ability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITOI Y.: "Tanka Suiso rui no Hai Gas Kisei to Shori Gijutsu (Ge)", PPM, vol. 15, no. 8, 1984, pages 68 - 75, XP003018355 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA018527B1 (en) * 2008-09-30 2013-08-30 ДжейЭкс НИППОН ОЙЛ ЭНД ЭНЕРДЖИ КОРПОРЕЙШН Method of starting up reactifier
JP2010083999A (en) * 2008-09-30 2010-04-15 Nippon Oil Corp Start-up method of fractionating column
WO2010038389A1 (en) * 2008-09-30 2010-04-08 新日本石油株式会社 Method of starting up reactifier
US8685212B2 (en) 2008-09-30 2014-04-01 Jx Nippon Oil & Energy Corporation Starting-up method of fractionator
CN102165043B (en) * 2008-09-30 2013-11-06 吉坤日矿日石能源株式会社 Method for starting rectifying tower
EA024240B1 (en) * 2010-03-25 2016-08-31 Джэпэн Ойл, Гэз Энд Металз Нэшнл Корпорейшн Start-up method for fractionator
JP2011202011A (en) * 2010-03-25 2011-10-13 Japan Oil Gas & Metals National Corp Startup method of rectifying column
US9404050B2 (en) 2010-03-25 2016-08-02 Japan Oil, Gas And Metals National Corporation Startup method for fractionator
WO2011118442A1 (en) * 2010-03-25 2011-09-29 独立行政法人石油天然ガス・金属鉱物資源機構 Rectifying column start-up method
JP2011208004A (en) * 2010-03-30 2011-10-20 Japan Oil Gas & Metals National Corp Rectifying column start-up method
JP2012214528A (en) * 2011-03-31 2012-11-08 Japan Oil Gas & Metals National Corp Method for removing heavy hydrocarbon
WO2012132336A1 (en) * 2011-03-31 2012-10-04 独立行政法人石油天然ガス・金属鉱物資源機構 Method for removing heavy hydrocarbon
AU2012235394B2 (en) * 2011-03-31 2015-09-10 Chiyoda Corporation Method of removing heavy hydrocarbons
EA025037B1 (en) * 2011-03-31 2016-11-30 Джэпэн Ойл, Гэз Энд Металз Нэшнл Корпорейшн Method of producing hydrocarbon oils
WO2017154044A1 (en) * 2016-03-10 2017-09-14 日揮株式会社 Novel production equipment and production method of liquefied hydrogen and liquefied natural gas
RU2713556C1 (en) * 2016-03-10 2020-02-05 ДжГК Корпорейшн New production equipment and method of producing liquefied hydrogen and liquefied natural gas
US10816262B2 (en) 2016-03-10 2020-10-27 Jgc Corporation Production equipment and production method of liquefied hydrogen and liquefied natural gas

Also Published As

Publication number Publication date
RU2008140160A (en) 2010-05-10
RU2415904C2 (en) 2011-04-10
AU2007232926B2 (en) 2010-12-16
CN101432402A (en) 2009-05-13
ZA200808234B (en) 2009-12-30
MY148262A (en) 2013-03-29
JPWO2007114277A1 (en) 2009-08-20
AU2007232926A1 (en) 2007-10-11

Similar Documents

Publication Publication Date Title
WO2007114277A1 (en) Liquid fuel synthesis system
JP5301330B2 (en) Liquid hydrocarbon synthesis method and liquid hydrocarbon synthesis system
JP5107234B2 (en) Liquid fuel synthesis system
WO2011024651A1 (en) Slurry preparation method, slurry preparation apparatus, hydrocarbon synthesis reaction apparatus, and hydrocarbon synthesis reaction system
JP5138586B2 (en) Liquid fuel synthesis system
JP5501366B2 (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesis reaction method
JP5417446B2 (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and liquid hydrocarbon recovery method
JP5364716B2 (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesis method
WO2007114279A1 (en) Liquid fuel synthesis system
WO2007114276A1 (en) Method for start-up of liquid fuel synthesis system, and liquid fuel synthesis system
WO2012132941A1 (en) Method for stopping operation of reaction container
JP5364786B2 (en) Catalyst separation system
JP5298133B2 (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740362

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008508622

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007232926

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007232926

Country of ref document: AU

Date of ref document: 20070329

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2008140160

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780015592.2

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 07740362

Country of ref document: EP

Kind code of ref document: A1