[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007114271A1 - Bubble tower type hydrocarbon synthesis reactor - Google Patents

Bubble tower type hydrocarbon synthesis reactor Download PDF

Info

Publication number
WO2007114271A1
WO2007114271A1 PCT/JP2007/056911 JP2007056911W WO2007114271A1 WO 2007114271 A1 WO2007114271 A1 WO 2007114271A1 JP 2007056911 W JP2007056911 W JP 2007056911W WO 2007114271 A1 WO2007114271 A1 WO 2007114271A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
main body
slurry
reactor main
bubble column
Prior art date
Application number
PCT/JP2007/056911
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuyuki Osawa
Yasuhiro Onishi
Eiichi Yamada
Yuzuru Kato
Osamu Wakamura
Original Assignee
Nippon Steel Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co., Ltd. filed Critical Nippon Steel Engineering Co., Ltd.
Priority to JP2008508617A priority Critical patent/JP4980344B2/en
Priority to AU2007232919A priority patent/AU2007232919B2/en
Priority to CN200780015670.9A priority patent/CN101432394B/en
Publication of WO2007114271A1 publication Critical patent/WO2007114271A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/342Apparatus, reactors with moving solid catalysts
    • C10G2/344Apparatus, reactors with moving solid catalysts according to the "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00777Baffles attached to the reactor wall horizontal

Definitions

  • the present invention relates to a bubble column type hydrocarbon synthesis reactor, and in particular, for performing a Fischer-Tropsch synthesis reaction by blowing a synthesis gas into a slurry in which solid catalyst particles are suspended in a liquid hydrocarbon. Reactor related.
  • a Fischer's Tropsch synthesis reaction (hereinafter referred to as "FT reaction") that produces hydrocarbon compounds and water from synthesis gas mainly composed of hydrogen and carbon monoxide 1
  • FT reaction A Fischer's Tropsch synthesis reaction
  • synthesis gas mainly composed of hydrogen and carbon monoxide 1
  • a bubble column type slurry bed FT reaction system in which synthesis gas is blown into a slurry in which solid catalyst particles are suspended in a liquid hydrocarbon to perform the FT reaction.
  • Hydrocarbon compounds synthesized by FT reaction are mainly used as raw materials for fuel oils and lubricating oils.
  • FT reactor used for this bubble column type slurry bed FT reaction system (hereinafter sometimes simply referred to as "reactor")
  • a slurry in which solid catalyst particles are suspended in liquid hydrocarbons is used.
  • FT reaction is performed by blowing the synthesis gas in the form of bubbles from the bottom of the reactor.
  • the liquid (slurry) is mixed by the air lift effect of the rising bubbles.
  • general circulation the gaseous hydrocarbons produced by the FT reaction (mainly C power C light hydrocarbon
  • the following method is used in a general bubble column reactor.
  • the conventional force is also performed (for example, refer nonpatent literature 1).
  • the internal space of the reactor is divided into the height direction (vertical direction) of the reactor by a perforated plate, etc., and the flow of bubbles in the reactor is forced out of the reactor with downward force upward (“plug” It is called “flow” and is close to the state where there is no backflow of fluid.
  • plug downward force upward
  • flow is called “flow” and is close to the state where there is no backflow of fluid.
  • Non-Patent Document 1 Hideaki Tsuge and Koji Unno, “Use, make, and eliminate“ bubble technology ”, first edition, Industrial Research Institute, Inc., April 2004, p. 75-81
  • the liquid flow rate may be extremely small relative to the volume of the reactor.
  • the net rising speed of the liquid (the superficial velocity in the tower) is close to zero.
  • the resistance of the perforated plate inhibits the rise of bubbles, and the rate of rise of the slurry accompanying the rise of bubbles is reduced, so that the rate of rise of the slurry cannot be sufficiently obtained. Therefore, the catalyst particles may be unevenly distributed in the lower part of the reactor or may be deposited on the perforated plate, resulting in a poor dispersion of the catalyst particles.
  • the present invention has been made in view of such problems, and in a bubble column type hydrocarbon synthesis reactor for performing a Fischer's Tropsch synthesis reaction, the back mixing of bubbles in the reactor is suppressed. At the same time, it aims to keep the dispersed state of the catalyst particles in good condition without disturbing the upward flow of the slurry.
  • the present inventors have provided a member (for example, a baffle plate) that shields the side wall of the reactor and opens the central side.
  • a member for example, a baffle plate
  • the bubble column type hydrocarbon synthesis reactor of the present invention includes a reactor main body containing a slurry in which solid catalyst particles are suspended in a liquid hydrocarbon; and a lower portion of the reactor main body.
  • a synthesis gas supply unit that is provided and supplies a synthesis gas mainly composed of hydrogen and carbon monoxide to the slurry; and a baffle member that is provided in the reactor main body and prevents a downward flow of the slurry; Prepare.
  • the baffle member may shield a part of a cross section of the reactor body.
  • the baffle member shields a region near the side wall of the reactor main body in the reactor main body, and the center of the reaction vessel main body. And it is provided to open the area near the center!
  • the baffle member may have a plurality of through holes.
  • the size of the through-hole is such that the catalyst particles can pass through and the synthesis gas or the gaseous hydrocarbon produced by the reaction of the synthesis gas. It may be of a size capable of suppressing the passage of bubbles containing.
  • the through hole may be 10 to 100 times the average particle diameter of the catalyst particles.
  • At least a part of the through hole may be formed in a substantially tapered shape in which a cross-sectional area decreases toward the bottom.
  • the baffle member may be inclined so that a center side of the reactor body is lower than a side wall side.
  • the present invention in the bubble column type hydrocarbon synthesis reactor for performing the Fischer-Tropsch synthesis reaction, back mixing of bubbles in the reactor can be suppressed and the upward flow of the slurry can be prevented.
  • the dispersed state of the catalyst particles can be kept good. Therefore, according to the present invention, the reaction conversion rate of the synthesis gas as the raw material can be improved, and the reaction can be efficiently performed in the entire internal space of the reactor.
  • FIG. 1 is a longitudinal sectional view showing the overall configuration of an FT reactor according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a baffle plate provided in the FT reactor shown in FIG. 1.
  • FIG. 3 is a perspective view showing a modified example of the baffle plate provided in the FT reactor shown in FIG. 1.
  • FIG. 4 is a cross-sectional view showing a through hole formed in the baffle plate shown in FIG. 2.
  • FIG. 4 is a cross-sectional view showing a through hole formed in the baffle plate shown in FIG. 2.
  • FIG. 5 is a cross-sectional view showing a modification of the through hole formed in the baffle plate shown in FIG.
  • FIG. 6 is a cross-sectional view showing a modified example of the through hole formed in the baffle plate shown in FIG.
  • FIG. 7 is a cross-sectional view showing a modification of the through hole formed in the baffle plate shown in FIG.
  • FIG. 8 is a cross-sectional view showing a modification of the through hole formed in the baffle plate shown in FIG.
  • FIG. 9 is a sectional view showing a modification of the through hole formed in the baffle plate shown in FIG.
  • FIG. 10 is an explanatory view showing the flow of slurry and bubbles inside the FT reactor shown in FIG. 1.
  • FIG. 11 is an explanatory view showing the flow of slurry and bubbles in the vicinity of the baffle plate shown in FIG. 2.
  • FIG. 12 is an explanatory diagram showing the flow of slurry and bubbles in the vicinity of the baffle plate shown in FIG. 3.
  • FIG. 13 is an explanatory view showing the flow of slurry and bubbles in the vicinity of the through hole formed in the baffle plate shown in FIG. 2.
  • FIG. 14 is a longitudinal sectional view showing an overall configuration of an FT reactor according to a second embodiment of the present invention.
  • FIG. 15 is a longitudinal sectional view showing an overall configuration of an FT reactor according to a third embodiment of the present invention.
  • FIG. 16 is a longitudinal sectional view showing the overall configuration of a conventional FT reactor.
  • FIG. 16 is a vertical sectional view showing the overall configuration of the conventional bubble column reactor 1.
  • a slurry bed type reactor in which solid catalyst particles are dispersed in a liquid will be described as an example, but a conventional bubble column reactor is used.
  • 1 is not limited to such a slurry bed type reactor, but may be a bubble column reactor that generates gas by reaction, or a bubble column reactor that contains a gas component that does not participate in the reaction in the raw material gas. Good.
  • a bubble column reactor in which a liquid not containing a solid catalyst is accommodated may be used.
  • the conventional bubble column reactor 1 mainly includes a reactor main body 10, a distributor 40 as an example of a raw material gas supply unit, and a perforated plate 50.
  • the reactor main body 10 is a substantially cylindrical metal container in which a slurry 20 in which solid catalyst particles 24 are suspended in a liquid (for example, liquid hydrocarbon) 22 is accommodated. Is done.
  • a slurry inlet 11 for introducing the slurry 20 into the reactor main body 10 is provided at the bottom of the reactor main body 10.
  • a slurry discharge port 12 for discharging the slurry 20 is provided on the side wall of the reactor body 10.
  • a gas discharge port 14 is provided at the top of the reactor body 10 to discharge gas generated by the reaction and unreacted raw material gas. ing.
  • the positions where the slurry inlet 11, the slurry outlet 12 and the gas outlet 14 are provided are not limited to the positions described above.
  • the liquid 22 is discharged from the slurry discharge port 12 together with the catalyst particles 24, and after separating the catalyst particles 24, a part of the liquid 22 is discharged. Outside (outside of reactor body 10), the remainder is separated into catalyst inlet 24 together with separated catalyst particles 24
  • the flow rate of the liquid 22 returned from the slurry inlet 11 into the reactor main body 10 varies depending on each reaction system.
  • the slurry is returned from the slurry inlet 11 into the reactor body 10. In some cases, the flow rate of the liquid 22 is zero.
  • the distributor 40 is disposed in the lower part of the reactor main body 10 and supplies the raw material gas into the slurry 20.
  • a plurality of raw material gas injection ports 42 are provided in the upper part of the distributor 40.
  • the number and position of the raw material gas injection ports 42 are not particularly limited.
  • the raw material gas supplied through the distributor 40 as an external force is injected with the force of the raw material gas injection port 42 directed upward, for example (in the direction indicated by the arrow in the figure).
  • the raw material gas blown from the distributor 40 in this way becomes bubbles 30, which are liquid when flowing in the slurry 20 from the bottom in the height direction (vertical direction) of the reactor body 10 upward.
  • a predetermined reaction occurs when the raw material gas component dissolved in 22 comes into contact with the catalyst particles 24.
  • the raw material gas is also blown into the bottom force of the reactor main body 10, and the blown raw material gas becomes bubbles 30 and rises in the reactor main body 10, whereby the inner portion of the reactor main body 10 is increased.
  • the upward flow K of the slurry 20 is mainly generated in the central portion (near the central axis of the reactor main body 10), and the downward flow is mainly generated in the vicinity of the side wall of the reactor main body 10 (near the circumferential portion).
  • a flow (general circulation) that circulates inside the reactor main body 10 occurs.
  • the arrows K and J in FIG. 16 indicate the direction of the flow of the slurry 20 mainly generated in the reactor main body 10, and this flow changes with time and is always constant. It does not flow at a constant speed in a certain direction in a certain place.
  • a multi-hole plate 50 is provided as a barrier member that partially blocks the flow in the reactor main body 10 in the reactor main body 10.
  • the perforated plate 50 is a substantially disk-shaped member provided so as to divide the internal space of the reactor main body 10 into a plurality of portions in the height direction (vertical direction), and bubbles 30 with a low concentration of the raw material gas react. Suppresses the flow to the bottom of the vessel body 10.
  • the perforated plate 50 is provided with a plurality of through holes 52, and the bubbles 30 and the slurry 20 can pass through the through holes 52.
  • the slurry 20 (or the liquid 22 not containing the catalyst particles 24) is reacted in such a manner that the slurry 20 (or the liquid 22 not containing the catalyst particles 24) always flows with the lower force of the reactor main body 10 directed upward. Take out outside of vessel body 10 and circulate. Thus, the bubbles 30 are prevented from flowing from the top to the bottom through the barrier member such as the multi-hole plate 50.
  • the flow rate of the slurry 20 may be extremely small relative to the volume of the reactor body 10, and in this case, the net rate of increase of the slurry 20 is Near zero. Therefore, when the perforated plate 50 is installed in the same manner as the conventional bubble column reactor 1, the rise of the bubble 30 is hindered by the resistance of the perforated plate 50 when the bubbles 30 and the slurry 20 pass through the perforated plate 50. As the bubble 30 rises, the speed of the upward flow K of the slurry 20 is reduced, and the speed of the upward flow K of the slurry 20 cannot be sufficiently obtained. Therefore, as shown in FIG.
  • the catalyst particles 24 may be unevenly distributed in the lower part of the reactor main body 10 or may be deposited on the porous plate 50, so that the dispersed state of the catalyst particles 24 may deteriorate. This As described above, when the dispersed state of the catalyst particles 24 is poor and the concentration of the catalyst particles 24 is small, the reaction rate is lowered, and the reaction efficiency is lowered in the entire region of the reactor body 10.
  • FIG. 1 is a vertical sectional view showing the overall configuration of the FT reactor 100 according to this embodiment.
  • an FT reactor 100 includes a reactor main body 110, a distributor 140 as an example of a synthesis gas supply unit according to the present invention, and a baffle according to the present invention.
  • a baffle plate 150 as an example of a member is mainly provided.
  • the reactor main body 110 is a substantially cylindrical metal container having a diameter of about 1 to 20 m, preferably about 2 to 10 m.
  • the height of the reactor body 10 is about 10 to 50 m, preferably about 15 to 45 m.
  • a slurry 120 in which particles 124 are suspended is contained.
  • a slurry inlet 111 for introducing the slurry 120 into the reactor main body 110 is provided at the bottom of the reactor main body 110.
  • a slurry discharge port 112 for discharging the slurry 120 is provided on the side wall of the reactor main body 110.
  • a gas discharge port 114 for discharging light hydrocarbon gas generated by FT reaction and unreacted synthesis gas is provided at the top of the reactor main body 110.
  • the positions where the slurry inlet 111, the slurry outlet 112 and the gas outlet 114 are provided are not limited to the positions described above.
  • Distributor 140 is an example of a reaction gas supply unit according to the present embodiment, and is disposed in the lower part of reactor main body 110, and a synthesis gas mainly composed of hydrogen and carbon monoxide is slurry 120. Supply inside.
  • a plurality of synthesis gas injection ports 142 are provided in the upper portion of the distributor 140. The number and position of the syngas injection ports 142 are as follows. There is no particular limitation.
  • the synthesis gas supplied from the external force through the distributor 140 is injected from the synthesis gas injection port 142, for example, in an upward direction (direction indicated by an arrow in the figure).
  • the synthesis gas blown from the distributor 140 in this way becomes bubbles 130, and the liquid flows when the downward force in the height direction (vertical direction) of the reactor main body 110 flows upward in the slurry 120.
  • FT synthesis reaction liquid hydrocarbon synthesis reaction
  • the baffle plate 150 is provided inside the reactor main body 110 so as to block a region near the side wall of the reactor main body 110 and open a center and a region near the center of the reactor main body 110.
  • the baffle plate 150 divides the internal space of the reactor main body 110 into a plurality of sections in the height direction.
  • two baffle plates 150 are provided inside the reactor main body 110. Accordingly, the internal space force S of the reactor main body 110 is divided into three sections.
  • the baffle plate 150 force is provided on the side wall of the reactor main body 110 so as to block the region near the light hydrocarbons generated by the FT reaction.
  • the bubble 130 containing a large amount of gas circulates in the compartment where it is present, making it difficult to flow into other compartments. Thereby, it is possible to suppress backflow (backmixing) between the sections.
  • the kaffle plate 150 is provided so as to open the center of the reactor main body 110 and the area near the center, thereby preventing the upward flow of the slurry 120 that is going to rise in the center of the reactor main body 110. There is nothing.
  • the number of baffle plates 150 or the length L in the vertical direction of each section can be appropriately determined according to the height of the reactor main body 110.
  • the length L in the height direction of each section of the reactor main body 110 divided by the kaffle plate 150 is preferably about 0.5 to 10 times the inner diameter D of the reactor main body 110. It is more preferably about 1 to 5 times.
  • FIG. 2 is a perspective view showing the configuration of the baffle plate 150 according to the present embodiment
  • FIG. 3 is a perspective view showing the configuration of the baffle plate 150 according to a modification of the present embodiment.
  • 4 to 9 are cross-sectional views showing examples of the configuration of the through hole 152 according to this embodiment.
  • the kaffle plate 150 is a substantially disk-shaped member having an opening 150a formed at the center, and the baffle plate 150 blocks the difference between the side walls of the reactor main body 110.
  • the baffle member of the present invention is not limited to the baffle plate 150 according to the present embodiment, and is not limited to the one in which the opening 150a is formed at the center of the substantially disk-shaped member. It is sufficient that an open space is provided in the vicinity. For example, as shown in FIG.
  • a pair of approximately half-moon shaped plates provided on the side wall of the reactor main body 10 is a pair of a noble plate 150, (in other words, a substantially disk-shaped baffle plate is divided into three parts. In other words, the opening 150'a may be formed by removing the central divided piece).
  • the area Ac of the open portion of the baffle plate 150 (or 150 '(hereinafter omitted)) (opening 150a in the example of FIG. 2, open 150'a in the example of FIG. 3) Ac Is preferably about 35 to 65%, preferably about 10 to 90% of the area At of the horizontal cross section in the reactor body 10.
  • the ratio of the area of the open part of the baffle plate 150 to the area At of the horizontal cross section 10 inside the reactor main body Ac that is, if AcZAt is too small outside the above range, the bubbles 130 and the slurry 120 rise. Since the flow is hindered, there is a possibility that a sufficient dispersion effect of the catalyst particles 124 cannot be obtained. On the other hand, if AcZAt is too large out of the above range, the effect of dividing by the kaffle plate 150, that is, the effect of suppressing backmixing will not be sufficiently exhibited.
  • the notch plate 150 is provided with a plurality of through holes 152 (or 152, hereinafter omitted).
  • the through-hole 152 is formed in an appropriate size so as to allow passage of the liquid hydrocarbon 122 and the catalyst particles 124 and suppress passage of the bubbles 130 containing light hydrocarbons generated by the FT reaction.
  • the through-hole 152 is formed in an appropriate size so as to allow passage of the liquid hydrocarbon 122 and the catalyst particles 124 and suppress passage of the bubbles 130 containing light hydrocarbons generated by the FT reaction.
  • the diameter of the through hole 152 is preferably 10 to 100 times the average particle diameter of the catalyst particles 124 and is preferably 30 to 50 times. Is more preferable.
  • the catalyst particles 124 according to this embodiment preferably have an average particle diameter of 10 to 1000 m, more preferably 20 to 500 m. More preferably, it is about 100 m.
  • the diameter of the through hole 152 is preferably about 1 to 10 mm, more preferably about 3 to 5 mm.
  • the diameter of the through-hole 152 is set to be 10 times or more the average particle diameter of the catalyst particles 124 because the catalyst particles 124 to be deposited on the baffle plate 150 do not block the through-hole 152 and the baffle plate This is because it is necessary to make the diameter sufficiently larger than the diameter of the catalyst particles so that 150 can pass from the top to the bottom.
  • the diameter of the through-hole 152 is set to 100 times or less of the average particle diameter of the catalyst particles 124. If the diameter of the through-hole 152 is too large, the flow rate of the slurry 120 passing through the through-hole 152 increases, and the bubbles 130 This is because the possibility of passing through the through hole 152 along with the slurry 120 increases. Power!
  • the diameter of the through hole 152 is a representative of the narrowest portion of the through hole 152 when the diameter of the through hole 152 is not constant, for example, when a tapered portion is provided in the through hole 152 as described later. This refers to the length (for example, the diameter if the cross section of the through hole 152 is circular, the length of one side if the cross section is square).
  • the reason for the above preferably 5% or more is that it is necessary to obtain a sufficient amount of downflow of the slurry 120 passing through the kaffle plate 150.
  • the diameter of the through hole 152 is too large in order to increase the opening ratio ⁇ , the possibility that the bubble 130 will pass through the through hole 152 increases as described above, which is not preferable.
  • the open area ratio ⁇ needs to be 50% or less (preferably 25% or less).
  • the opening area of the through hole 152 used for the calculation of the open area ratio ⁇ is, for example, when the diameter of the through hole 152 is not constant, for example, when a tapered portion or the like is provided in the through hole 152 as described later. This refers to the cross-sectional area of the narrowest portion of the through hole 152.
  • the through hole 152 may be formed, for example, such that the cross-sectional area (opening area) of the through hole 152 is constant as shown in FIG. Also, as shown in FIG. 5, at least a part of the through-hole 152, for example, the upper surface side of the baffle plate 150, is provided with a tapered portion 152a whose cross-sectional area becomes smaller as it is directed downward! / /.
  • the shape of the tapered portion is not limited to the case shown in FIG. 5, and any shape can be adopted as long as the cross-sectional area force decreases as it goes downward.
  • a shape in which a straight section 153 (vertical length R) having a constant cross-sectional area is provided above the tapered section 152b, the vertical section of the tapered section 152c.
  • a shape having a curved cross section (FIG. 7), a stepped shape (FIG. 8) in which the tapered portion 152d has a plurality of step forces, and the like can be employed.
  • the area of the flat portion of the upper surface of the noble plate 150 is minimized, and the catalyst Accumulation of particles 124 on the upper surface of the baffle plate 150 can be minimized.
  • the flow velocity of the slurry 120 passing through the through hole 152 on the upper surface of the baffle plate 150 can be decreased. Thereby, the effect of suppressing the bubbles 130 from passing through the through-holes 152 accompanying the slurry 120 can be further improved.
  • the shape of the (horizontal) cross section of the through hole 152 can be substantially circular as shown in FIGS. 2, 3 and the like, but is not limited to the substantially circular shape, and other shapes (for example, Or a substantially square shape).
  • the cross-sectional area A (hereinafter referred to as "lower surface cross section") of the through hole 152 on the lower surface side of the baffle plate 150.
  • top surface cross section Cross-sectional area A
  • the numerical range of a is determined from the following points. That is, the bottom cross-sectional area A
  • the upper limit of ⁇ is determined by the lower limit of the aperture ratio ⁇ .
  • 1% (lower limit)
  • the maximum value of a 100.
  • the angle (opening angle) ⁇ of this inclined surface is a through hole. It is preferably about 30 to 60 ° with respect to the central axis of 152.
  • the opening angle 0 needs to be small (slightly inclined) so that the catalyst particles 124 can smoothly flow through the through holes 152.
  • the opening angle ⁇ is too small, it is necessary to increase the thickness of the baffle plate 150 in order to secure the necessary top surface cross sectional area A.
  • the opening angle ⁇ is too large, it is substantially the same as when the tapered portion is not provided. From such a viewpoint, it is preferable to set the opening angle 0 to about 30 to 60 °.
  • the arrangement of the through holes 152 is not particularly limited, but it is preferable that the through holes 152 are arranged almost uniformly over the entire noble plate 150. In addition, the area of the flat part of the noble plate 150 is reduced. In order to reduce the length, the through holes 152 are preferably arranged in a triangular pattern. Thus, by arranging the through holes 152 in a triangular arrangement, it is possible to suppress the deposition of the catalyst particles 124 on the baffle plate 150.
  • FIG. 10 is an explanatory diagram showing the flow of the slurry 120 and the bubbles 130 inside the reactor main body 110 according to the present embodiment.
  • FIG. 11 and FIG. 12 are explanatory diagrams showing the flow of the slurry 120 and the bubbles 130 in the vicinity of the baffle plate 150 (or 150,) according to the present embodiment.
  • FIG. 10 is an explanatory diagram showing the flow of the slurry 120 and the bubbles 130 inside the reactor main body 110 according to the present embodiment.
  • FIG. 11 and FIG. 12 are explanatory diagrams showing the flow of the slurry 120 and the bubbles 130 in the vicinity of the baffle plate 150 (or 150,) according to the present embodiment.
  • FIGS. 10 to 13 are explanatory diagram showing the flow of the slurry 120 and the bubbles 130 in the vicinity of the through hole 152 according to the present embodiment.
  • the arrows in FIGS. 10 to 13 indicate the direction of the flow that mainly occurs in the reactor main body 110, and this flow changes with time and always shows a certain point. It does not flow at a constant speed in a certain direction.
  • the flow of the slurry 120 and the bubbles 130 near the entire reactor main body 110 and the baffle plate 150 (or 150 ′) will be described with reference to FIGS. 10 to 12.
  • the synthesis gas blown from the bottom of the reactor main body 110 through the synthesis gas injection port 142 of the distributor 140 rises into the reactor main body 110 as bubbles 130.
  • an upward flow A of the slurry 120 is generated mainly in the central portion (the center and the vicinity of the center of the reactor main body 110), and a downward flow is mainly generated in the vicinity of the side wall of the reactor main body 110.
  • Arise the flow of the slurry 120 and the bubbles 130 near the entire reactor main body 110 and the baffle plate 150 (or 150 ′)
  • the baffle plate 150 since the baffle plate 150 is provided, a flow in which the bubbles 130 circulate through the entire reactor main body 110 together with the slurry 120 (general circulation) as in the prior art. ) Will not occur. That is, the kaffle plate 150 is provided close to the side wall of the reactor main body 110 so as to block the region. Therefore, the bubbles 130 containing a large amount of light hydrocarbons generated by the FT reaction are formed as shown in FIGS. As shown by arrow B in FIG. 2, the flow is hindered on the upper surface side and the lower surface side of the baffle plate 150 and circulates only in the compartments divided by the baffle plate 150. Backflow (backmixing) between strokes can be suppressed. Accordingly, since the bubbles 130 containing a large amount of light hydrocarbons can be prevented from circulating throughout the reactor main body 110, the reaction conversion rate of the synthesis gas can be increased.
  • the baffle plate 150 is provided so that the center of the reactor main body 110 and the area near the center are opened, so that unlike the conventional case, the baffle plate 150 is different from the conventional one.
  • the upward flow A of the slurry 120 and the bubbles 130 in the central portion of the reactor main body 110 is not hindered. Therefore, the catalyst particles 124 can be prevented from being unevenly distributed in the lower portion of the reactor main body 110, and the dispersed state of the catalyst particles 124 can be kept good.
  • the baffle plate 150 is provided with a plurality of through holes 152, the slurry containing the liquid hydrocarbon 122 and the catalyst particles 124 is as shown by an arrow C in FIG. Then, it passes through the through-hole 152 and flows downward toward the reactor main body 110. Therefore, the catalyst particles 124 to be deposited on the baffle plate 150 are allowed to flow down from the top of the baffle plate 150 through the through holes 152, thereby preventing the catalyst particles 124 from being deposited on the baffle plate 150.
  • the upward flow A of the slurry 120 and the bubbles 130 at the opening ridge 150a of the notch plate 150 is further promoted.
  • the catalyst particles 124 are prevented from accumulating on the noble plate 150, and the upward flow A of the slurry 120 passing through the baffle plate 150 is promoted, thereby further maintaining the dispersed state of the catalyst particles 124.
  • baffle plate 150 ′ according to the modification of the present embodiment as shown in FIG. 12 is used.
  • the bubble 130 containing a large amount of light hydrocarbon gas generated by the FT reaction is blocked by the baffle plate 150 as shown by an arrow B, passes through the baffle plate 150, and adjoins. It is restrained to move between matching sections.
  • the catalyst particles 124 are accompanied by the downward flow of the slurry 120 as shown by the arrow C1. As shown by the arrow C2, it passes through the through hole 152 and flows downward in the reactor main body 110.
  • the velocity of the flow B of the bubble 130 is much higher than the velocity of the flow C1. Because of the high speed, bubbles 130 having a specific gravity smaller than that of the slurry 120 hardly pass through the through-hole 152 along with the flow C 1 of the slurry 120 or the like. Furthermore, if the through-hole 152 is provided with the tapered portion 152a, the speed of the flow C1 of the slurry 120 passing through the upper surface of the through-hole 152 can be further reduced, so that the bubbles 130 penetrate along with the slurry 120. The effect of suppressing passage through the hole 152 can be further improved.
  • the bubbles 130 can be circulated in the respective sections, and the slurry 120 can be circulated through the reactor main body 110 through the baffle plate 150.
  • FIG. 14 is a vertical sectional view showing the overall configuration of the FT reactor 200 according to this embodiment.
  • the FT reactor 200 includes a reactor main body 210, a distributor 240 as an example of the synthesis gas supply unit according to the present embodiment, and the present embodiment.
  • a baffle plate 250 as an example of a baffle member.
  • the reactor main body 210 contains the slurry 220.
  • a slurry inlet 211 for introducing the slurry 220 into the reactor main body 210 is provided at the bottom of the reactor main body 210.
  • a slurry discharge port 212 for discharging the slurry 220 is provided on the side wall of the reactor main body 210.
  • a gas outlet 214 is provided at the top of the reactor body 210 to discharge light hydrocarbon gas generated by FT reaction and unreacted synthesis gas.
  • Distributor 240 is an example of a reaction gas supply unit according to the present embodiment, and is disposed at the lower part of reactor main body 210, and a synthesis gas mainly composed of hydrogen and carbon monoxide is slurry 220. Supply inside. The top of this distributor 240 has multiple syngas injections A mouth 242 is provided.
  • the kaffle plate 250 is provided inside the reactor main body 210 so as to block a region near the side wall of the reactor main body 210 and open a center and a region near the center of the reactor main body 210.
  • the interior of the reactor main body 210 is divided into a plurality of sections in the height direction.
  • a plurality of through holes 252 are provided in the kaffle plate 250.
  • the upward flow D of the synthesis gas and the slurry 220 supplied from the distributor 240 in the reactor main body 10 is reduced due to having a profitable configuration. It can be lifted through an opening provided in the center of the baffle plate 250.
  • bubbles containing a large amount of light hydrocarbons generated by the FT reaction are difficult to flow into other compartments due to the baffle plate 250, and a circulating flow E is produced in the compartment where it exists.
  • the slurry 220 passes through the through-hole 252 and generates a downward flow F.
  • the arrows in FIG. 14 indicate the direction of the flow that mainly occurs in the reactor main body 210, and this flow changes with time. It does not flow at a constant speed.
  • the notch plate 250 has a central portion close to the side wall of the reactor main body 110. It is installed so as to be lower than the edge, that is, inclined downward in the center of the reactor body 110. In this manner, in addition to providing the through hole 252, the effect of preventing the catalyst particles from being deposited on the noble plate 250 can be further improved by inclining the noble plate 250 downward.
  • FIG. 15 is a vertical sectional view showing the overall configuration of the FT reactor 300 according to this embodiment.
  • the FT reactor 300 according to the present embodiment includes a reactor main body 310, a distributor 340 as an example of the synthesis gas supply unit according to the present embodiment, and the present embodiment.
  • a baffle plate 350 as an example of a baffle member.
  • the reactor main body 310 contains the slurry 320.
  • a slurry inlet 311 for introducing the slurry 320 into the reactor main body 310 is provided at the bottom of the reactor main body 310.
  • a slurry discharge port 312 for discharging the slurry 320 is provided on the side wall of the reactor main body 310.
  • a gas outlet 314 is provided at the top of the reactor main body 310 for discharging light hydrocarbon gas generated by the FT reaction and unreacted synthesis gas.
  • Distributor 340 is an example of a reaction gas supply unit according to the present embodiment, and is disposed in the lower part of reactor main body 310 to supply synthesis gas mainly composed of hydrogen and carbon monoxide in slurry 320. To supply.
  • a plurality of synthesis gas injection ports 342 are provided at the upper portion of the distributor 340.
  • the baffle plate 350 is provided inside the reactor main body 310 so as to shield a part of the cross section of the reactor main body 310.
  • the baffle plate 350 divides the interior of the reactor main body 310 into a plurality of sections in the height direction.
  • a plurality of through holes 352 are provided in the kaffle plate 350.
  • the kaffle plates 350 are staggered on both sides inside the reactor main body 310.
  • the baffle plate 350 opens one side of the cross section inside the reactor main body 310 and shields the other side at the boundary of each section.
  • the upward flow G of the synthesis gas and the slurry 320 supplied from the distributor 340 inside the reactor main body 310 is obtained by having a profitable configuration.
  • the opening that is not shielded by the baffle plate 350 can be raised.
  • bubbles containing a large amount of light hydrocarbons generated by the FT reaction are difficult to flow into the other compartments due to the knot plate 350, and a circulating flow H is generated in the compartment where it exists.
  • the slurry 320 passes through the through hole 252 and generates a downward flow I.
  • the arrows in Fig. 15 indicate the direction of the flow that mainly occurs in the reactor main body 310. This flow changes with time and does not always flow at a constant speed in a certain direction in a certain direction.
  • the force baffle member described in the case where the baffle member is a plate-like baffle plate 150, 250, 350 is not limited to a plate shape, and the side wall side of the reactor main body is shielded. However, any shape can be used as long as the central side is open.
  • the present invention relates to a reactor main body that contains a slurry in which solid catalyst particles are suspended in liquid hydrocarbon; and is disposed at a lower portion of the reactor main body, and contains hydrogen and carbon monoxide as main components.
  • the present invention relates to a bubble column type hydrocarbon synthesis reactor comprising: a synthesis gas supply unit that supplies the synthesis gas to the slurry; and a baffle member that is provided in the reactor main body and prevents a downward flow of the slurry.
  • the reaction conversion rate of the synthesis gas as a raw material can be improved and the reaction can be efficiently carried out in the entire internal space of the reactor. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Bubble tower type hydrocarbon synthesis reactor (100) comprising reactor main frame (110) accommodating slurry (120) having solid catalyst particles (124) suspended in liquid hydrocarbon (122), and distributor (140) disposed at an inferior portion of the reactor main frame (110) and used to feed a synthetic gas composed mainly of hydrogen and carbon monoxide into the slurry (120), wherein the reactor main frame (110) in its interior is provided with baffle plate (150) so as to block the side-wall side of the reactor main frame (110) and open the center part thereof.

Description

明 細 書  Specification
気泡塔型炭化水素合成反応器  Bubble column type hydrocarbon synthesis reactor
技術分野  Technical field
[0001] 本発明は、気泡塔型炭化水素合成反応器に関し、特に、液体炭化水素中に固体 の触媒粒子を懸濁させたスラリー中に合成ガスを吹き込んでフィッシャー ·トロプシュ 合成反応を行うための反応器に関する。  TECHNICAL FIELD [0001] The present invention relates to a bubble column type hydrocarbon synthesis reactor, and in particular, for performing a Fischer-Tropsch synthesis reaction by blowing a synthesis gas into a slurry in which solid catalyst particles are suspended in a liquid hydrocarbon. Reactor related.
本願は、 2006年 3月 30日に出願された日本国特許出願第 2006— 95020号につ いて優先権を主張し、その内容をここに援用する。  This application claims priority on Japanese Patent Application No. 2006-95020 filed on Mar. 30, 2006, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] 水素と一酸ィ匕炭素とを主成分とする合成ガスから、炭化水素化合物と水とを生成す るフィッシャー 'トロプシュ合成反応(以下、「FT反応」という。)の反応システムの 1つと して、液体炭化水素中に固体の触媒粒子を懸濁させたスラリー中に合成ガスを吹き 込んで FT反応を行わせる気泡塔型スラリー床 FT反応システムがある。なお、 FT反 応により合成された炭化水素化合物は、主に燃料油や潤滑油の原料などとして利用 される。  [0002] A Fischer's Tropsch synthesis reaction (hereinafter referred to as "FT reaction") that produces hydrocarbon compounds and water from synthesis gas mainly composed of hydrogen and carbon monoxide 1 One example is a bubble column type slurry bed FT reaction system in which synthesis gas is blown into a slurry in which solid catalyst particles are suspended in a liquid hydrocarbon to perform the FT reaction. Hydrocarbon compounds synthesized by FT reaction are mainly used as raw materials for fuel oils and lubricating oils.
[0003] この気泡塔型スラリー床 FT反応システムに供する FT反応器 (以下、単に「反応器」 という場合もある)においては、液体炭化水素中に固体の触媒粒子を懸濁させたスラ リーに、反応器の下部カゝら合成ガスを気泡状にして吹き込むことにより、 FT反応を行 わせる。このとき、反応器の内部では、上昇する気泡のエアリフト効果などによって液 体 (スラリー)が混合された状態となる。ところが、反応器の高さ方向の全域にわたる 循環 (以下、「大循環」という)によって反応器内部の液体が全体的に良好に撹拌さ れると、 FT反応によって生成された気体炭化水素(主に C力 Cの軽質炭化水素  [0003] In an FT reactor used for this bubble column type slurry bed FT reaction system (hereinafter sometimes simply referred to as "reactor"), a slurry in which solid catalyst particles are suspended in liquid hydrocarbons is used. Then, FT reaction is performed by blowing the synthesis gas in the form of bubbles from the bottom of the reactor. At this time, inside the reactor, the liquid (slurry) is mixed by the air lift effect of the rising bubbles. However, if the liquid inside the reactor is thoroughly stirred by circulation throughout the entire height of the reactor (hereinafter referred to as “general circulation”), the gaseous hydrocarbons produced by the FT reaction (mainly C power C light hydrocarbon
1 4  14
から成る)を多く含む気泡が、スラリーの下降流による流体の混合 (以下、「逆混合」と いう)によって反応器下部に移動する傾向が強まる。その結果、反応器内部の反応 速度を全域で低下させ、原料である合成ガスの反応転ィ匕率を低下させる可能性があ る。  The tendency of the bubbles containing a large amount of gas to move to the lower part of the reactor is increased by the fluid mixing (hereinafter referred to as “back mixing”) by the downward flow of the slurry. As a result, there is a possibility that the reaction rate inside the reactor is reduced in the entire region and the reaction conversion rate of the synthesis gas as the raw material is reduced.
[0004] このような問題を解決するために、一般の気泡塔型反応器において次のような方法 が従来力も行われている(例えば、非特許文献 1を参照)。すなわち、反応器の内部 空間を多孔板等によって反応器の高さ方向(鉛直方向)に分割し、反応器内の気泡 の流れを、反応器内を下力も上に向力 押し出し流れ(「プラグフロー」と呼ばれ、流 体の逆流がない状態)に近づける。これにより、反応器全体での混合 (大循環)を抑 ff¾することができる。 [0004] In order to solve such a problem, the following method is used in a general bubble column reactor. However, the conventional force is also performed (for example, refer nonpatent literature 1). In other words, the internal space of the reactor is divided into the height direction (vertical direction) of the reactor by a perforated plate, etc., and the flow of bubbles in the reactor is forced out of the reactor with downward force upward (“plug” It is called “flow” and is close to the state where there is no backflow of fluid. As a result, mixing (general circulation) in the entire reactor can be suppressed.
[0005] 非特許文献 1:柘植秀榭,海野肇共著、「『泡』技術 使う、作る、排除する」、初版、 株式会社工業調査会、 2004年 4月、 p. 75-81  [0005] Non-Patent Document 1: Hideaki Tsuge and Koji Unno, “Use, make, and eliminate“ bubble technology ”, first edition, Industrial Research Institute, Inc., April 2004, p. 75-81
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、気泡塔型スラリー床 FT反応システムにお 、ては、反応器の容積に対 し、液体の流量が極めて小さい場合がある。この場合、液体の正味の上昇速度 (塔内 空塔速度)はゼロに近い。そのため、多孔板を設置すると、多孔板の抵抗によって、 気泡の上昇が阻害されるとともに気泡の上昇に伴うスラリーの上昇速度が低減され、 スラリーの上昇速度が十分に得られない。そのため、触媒粒子が反応器の下部に偏 在したり、多孔板上に堆積したりして、触媒粒子の分散状態が悪くなる可能性がある However, in the bubble column type slurry bed FT reaction system, the liquid flow rate may be extremely small relative to the volume of the reactor. In this case, the net rising speed of the liquid (the superficial velocity in the tower) is close to zero. For this reason, if a perforated plate is installed, the resistance of the perforated plate inhibits the rise of bubbles, and the rate of rise of the slurry accompanying the rise of bubbles is reduced, so that the rate of rise of the slurry cannot be sufficiently obtained. Therefore, the catalyst particles may be unevenly distributed in the lower part of the reactor or may be deposited on the perforated plate, resulting in a poor dispersion of the catalyst particles.
[0007] 本発明は、このような問題に鑑みてなされたもので、フィッシャー 'トロプシュ合成反 応を行うための気泡塔型炭化水素合成反応器において、反応器内における気泡の 逆混合を抑制するとともに、スラリーの上昇流を妨げずに触媒粒子の分散状態を良 好に保つことを目的とする。 [0007] The present invention has been made in view of such problems, and in a bubble column type hydrocarbon synthesis reactor for performing a Fischer's Tropsch synthesis reaction, the back mixing of bubbles in the reactor is suppressed. At the same time, it aims to keep the dispersed state of the catalyst particles in good condition without disturbing the upward flow of the slurry.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、反応器の側壁 側を遮蔽するとともに中央側を開放する部材 (例えばバッフルプレートなど)を設け、 反応器の内部空間を高さ方向に複数の区画に分割することで、隣接する区画間に おける気泡の逆流を抑制するとともに、反応器の中央側では気泡およびスラリーの上 昇流を確保できることを見出し、この知見に基づいて本発明を完成するに至った。  [0008] As a result of intensive investigations to solve the above problems, the present inventors have provided a member (for example, a baffle plate) that shields the side wall of the reactor and opens the central side. By dividing the internal space into multiple compartments in the height direction, it was found that the backflow of bubbles between adjacent compartments was suppressed, and that upward flow of bubbles and slurry could be secured at the center of the reactor. The present invention has been completed based on the findings.
[0009] すなわち、本発明の気泡塔型炭化水素合成反応器は、液体炭化水素中に固体の 触媒粒子を懸濁させたスラリーを収容する反応器本体と;前記反応器本体の下部に 配設され、水素および一酸化炭素を主成分とする合成ガスを前記スラリーに供給す る合成ガス供給部と;前記反応器本体内に設けられ、前記スラリーの下降流を阻む バッフル部材と;を備える。 [0009] That is, the bubble column type hydrocarbon synthesis reactor of the present invention includes a reactor main body containing a slurry in which solid catalyst particles are suspended in a liquid hydrocarbon; and a lower portion of the reactor main body. A synthesis gas supply unit that is provided and supplies a synthesis gas mainly composed of hydrogen and carbon monoxide to the slurry; and a baffle member that is provided in the reactor main body and prevents a downward flow of the slurry; Prepare.
[0010] 本発明の気泡塔型炭化水素合成反応器において、前記バッフル部材は、前記反 応器本体の横断面の一部を遮蔽して 、てもよ 、。  [0010] In the bubble column type hydrocarbon synthesis reactor of the present invention, the baffle member may shield a part of a cross section of the reactor body.
[0011] 本発明の気泡塔型炭化水素合成反応器において、前記バッフル部材は、前記反 応器本体内に、前記反応器本体の側壁に近い領域を遮蔽し、かつ前記反応容器本 体の中央および中央付近の領域を開放するように設けられて 、てもよ!/、。  [0011] In the bubble column type hydrocarbon synthesis reactor of the present invention, the baffle member shields a region near the side wall of the reactor main body in the reactor main body, and the center of the reaction vessel main body. And it is provided to open the area near the center!
[0012] 本発明の気泡塔型炭化水素合成反応器において、前記バッフル部材には、複数 の貫通孔が形成されて 、てもよ 、。  In the bubble column type hydrocarbon synthesis reactor of the present invention, the baffle member may have a plurality of through holes.
[0013] 本発明の気泡塔型炭化水素合成反応器において、前記貫通孔の大きさは、前記 触媒粒子が通過可能であり、かつ、前記合成ガスまたは前記合成ガスの反応により 生成した気体炭化水素を含む気泡の通過を抑制可能な大きさであってもよい。  [0013] In the bubble column type hydrocarbon synthesis reactor of the present invention, the size of the through-hole is such that the catalyst particles can pass through and the synthesis gas or the gaseous hydrocarbon produced by the reaction of the synthesis gas. It may be of a size capable of suppressing the passage of bubbles containing.
[0014] 本発明の気泡塔型炭化水素合成反応器において、前記貫通孔は、前記触媒粒子 の平均粒子径の 10倍から 100倍であってもよい。  [0014] In the bubble column type hydrocarbon synthesis reactor of the present invention, the through hole may be 10 to 100 times the average particle diameter of the catalyst particles.
[0015] 本発明の気泡塔型炭化水素合成反応器において、前記貫通孔の少なくとも一部 は、下方に向かうにつれて断面積が小さくなる略テーパ状に形成されて 、てもよ 、。  [0015] In the bubble column type hydrocarbon synthesis reactor of the present invention, at least a part of the through hole may be formed in a substantially tapered shape in which a cross-sectional area decreases toward the bottom.
[0016] 本発明の気泡塔型炭化水素合成反応器において、前記バッフル部材は、前記反 応器本体の中央側が側壁側よりも低くなるように傾斜して 、てもよ 、。  [0016] In the bubble column type hydrocarbon synthesis reactor of the present invention, the baffle member may be inclined so that a center side of the reactor body is lower than a side wall side.
発明の効果  The invention's effect
[0017] 本発明によれば、フィッシャー ·トロプシュ合成反応を行うための気泡塔型炭化水素 合成反応器において、反応器内での気泡の逆混合を抑制できるとともに、スラリーの 上昇流を妨げずに触媒粒子の分散状態を良好に保つことができる。したがって、本 発明によれば、原料である合成ガスの反応転化率を向上させるとともに、反応器の内 部空間の全域で効率的に反応を行わせることができる。  [0017] According to the present invention, in the bubble column type hydrocarbon synthesis reactor for performing the Fischer-Tropsch synthesis reaction, back mixing of bubbles in the reactor can be suppressed and the upward flow of the slurry can be prevented. The dispersed state of the catalyst particles can be kept good. Therefore, according to the present invention, the reaction conversion rate of the synthesis gas as the raw material can be improved, and the reaction can be efficiently performed in the entire internal space of the reactor.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]図 1は、本発明の第 1の実施形態に係る FT反応器の全体構成を示す縦断面図 である。 [図 2]図 2は、図 1に示した FT反応器に具備されるバッフルプレートを示す斜視図で ある。 FIG. 1 is a longitudinal sectional view showing the overall configuration of an FT reactor according to a first embodiment of the present invention. FIG. 2 is a perspective view showing a baffle plate provided in the FT reactor shown in FIG. 1.
[図 3]図 3は、図 1に示した FT反応器に具備されるバッフルプレートの変形例を示す 斜視図である。  FIG. 3 is a perspective view showing a modified example of the baffle plate provided in the FT reactor shown in FIG. 1.
[図 4]図 4は、図 1は、図 2に示したバッフルプレートに形成される貫通孔を示す断面 図である。  4 is a cross-sectional view showing a through hole formed in the baffle plate shown in FIG. 2. FIG.
[図 5]図 5は、図 2に示したバッフルプレートに形成される貫通孔の変形例を示す断面 図である。  FIG. 5 is a cross-sectional view showing a modification of the through hole formed in the baffle plate shown in FIG.
[図 6]図 6は、図 2に示したバッフルプレートに形成される貫通孔の変形例を示す断面 図である。  FIG. 6 is a cross-sectional view showing a modified example of the through hole formed in the baffle plate shown in FIG.
[図 7]図 7は、図 2に示したバッフルプレートに形成される貫通孔の変形例を示す断面 図である。  FIG. 7 is a cross-sectional view showing a modification of the through hole formed in the baffle plate shown in FIG.
[図 8]図 8は、図 2に示したバッフルプレートに形成される貫通孔の変形例を示す断面 図である。  8 is a cross-sectional view showing a modification of the through hole formed in the baffle plate shown in FIG.
[図 9]図 9は、図 2に示したバッフルプレートに形成される貫通孔の変形例を示す断面 図である。  FIG. 9 is a sectional view showing a modification of the through hole formed in the baffle plate shown in FIG.
[図 10]図 10は、図 1に示した FT反応器の内部におけるスラリーおよび気泡の流れを 示す説明図である。  FIG. 10 is an explanatory view showing the flow of slurry and bubbles inside the FT reactor shown in FIG. 1.
[図 11]図 11は、図 2に示したバッフルプレート付近におけるスラリーおよび気泡の流 れを示す説明図である。  FIG. 11 is an explanatory view showing the flow of slurry and bubbles in the vicinity of the baffle plate shown in FIG. 2.
[図 12]図 12は、図 3に示したバッフルプレート付近におけるスラリーおよび気泡の流 れを示す説明図である。  FIG. 12 is an explanatory diagram showing the flow of slurry and bubbles in the vicinity of the baffle plate shown in FIG. 3.
[図 13]図 13は、図 2に示したバッフルプレートに形成された貫通孔付近におけるスラ リーおよび気泡の流れを示す説明図である。  FIG. 13 is an explanatory view showing the flow of slurry and bubbles in the vicinity of the through hole formed in the baffle plate shown in FIG. 2.
[図 14]図 14は、本発明の第 2の実施形態に係る FT反応器の全体構成を示す縦断 面図である。  FIG. 14 is a longitudinal sectional view showing an overall configuration of an FT reactor according to a second embodiment of the present invention.
[図 15]図 15は、本発明の第 3の実施形態に係る FT反応器の全体構成を示す縦断 面図である。 [図 16]図 16は、従来の FT反応器の全体構成を示す縦断面図である。 符号の説明 FIG. 15 is a longitudinal sectional view showing an overall configuration of an FT reactor according to a third embodiment of the present invention. FIG. 16 is a longitudinal sectional view showing the overall configuration of a conventional FT reactor. Explanation of symbols
[0019] 100, 200, 300· ··合成反応器、 110, 210, 310· ··反応器本体、 120, 220, 320 …スラリー、 122· ··液体炭ィ匕水素、 124· ··触媒粒子、 130· ··気泡、 140, 240, 340 …ディストリビュータ (合成ガス供給部)、 142, 242, 342· ··合成ガス噴射口、 150, 250, 350· ··ノ ッフノレプレート(ノ ッフノレ §材)、 152, 252, 352· ··貫通: ?L、 152a, 1 52b, 152c, 152d…テーノ部、 153· ··直線部  [0019] 100, 200, 300 ··· Synthetic reactor, 110, 210, 310 ··· Reactor body, 120, 220, 320… Slurry, 122 ··· Liquid coal-hydrogen, 124 ··· Catalyst Particles, 130 ··· Bubbles, 140, 240, 340… Distributor (syngas supply section), 142, 242, 342 ··· Syngas injection port, 150, 250, 350 ··· Noff plate (Noff nore §material ), 152, 252, 352 ... Penetrating:? L, 152a, 1 52b, 152c, 152d ... Theno part, 153 ... Linear part
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説 明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構 成要素については、同一の符号を付することにより重複説明を省略する。  [0020] Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
[0021] (従来の気泡塔型反応器の構成)  [0021] (Configuration of conventional bubble column reactor)
まず、図 16に基づいて、従来の気泡塔型反応器 1の構成について説明する。なお 、図 16は、従来の気泡塔型反応器 1の全体構成を示す垂直断面図である。なお、以 下の説明では、気泡塔型反応器の例として、液体中に固体触媒粒子が分散されたス ラリー床式の反応器を例に挙げて説明するが、従来の気泡塔型反応器 1としては、か かるスラリー床式の反応器に限られず、反応によってガスを生成する気泡塔型反応 器、または、原料ガス中に反応に関与しないガス成分を含む気泡塔型反応器であれ ばよい。例えば、固体触媒を含まない液体が収容された気泡塔型反応器であっても よい。  First, the configuration of the conventional bubble column reactor 1 will be described with reference to FIG. FIG. 16 is a vertical sectional view showing the overall configuration of the conventional bubble column reactor 1. In the following description, as an example of a bubble column reactor, a slurry bed type reactor in which solid catalyst particles are dispersed in a liquid will be described as an example, but a conventional bubble column reactor is used. 1 is not limited to such a slurry bed type reactor, but may be a bubble column reactor that generates gas by reaction, or a bubble column reactor that contains a gas component that does not participate in the reaction in the raw material gas. Good. For example, a bubble column reactor in which a liquid not containing a solid catalyst is accommodated may be used.
[0022] 図 16に示すように、従来の気泡塔型反応器 1は、反応器本体 10と、原料ガス供給 部の一例としてのディストリビュータ 40と、多孔板 50とを主に備える。  As shown in FIG. 16, the conventional bubble column reactor 1 mainly includes a reactor main body 10, a distributor 40 as an example of a raw material gas supply unit, and a perforated plate 50.
[0023] 反応器本体 10は、略円筒型の金属製の容器であり、その内部には、液体 (例えば 、液体炭化水素) 22中に固体の触媒粒子 24を懸濁させたスラリー 20が収容される。 また、反応器本体 10の底部には、スラリー 20を反応器本体 10内に導入するための スラリー入口 11が設けられている。反応器本体 10の側壁部には、スラリー 20を排出 するためのスラリー排出口 12が設けられている。反応器本体 10の塔頂部には、反応 により生成したガスや未反応の原料ガスを排出するためのガス排出口 14が設けられ ている。なお、スラリー入口 11、スラリー排出口 12およびガス排出口 14が設けられる 位置は、上述した位置には限られない。 [0023] The reactor main body 10 is a substantially cylindrical metal container in which a slurry 20 in which solid catalyst particles 24 are suspended in a liquid (for example, liquid hydrocarbon) 22 is accommodated. Is done. A slurry inlet 11 for introducing the slurry 20 into the reactor main body 10 is provided at the bottom of the reactor main body 10. A slurry discharge port 12 for discharging the slurry 20 is provided on the side wall of the reactor body 10. A gas discharge port 14 is provided at the top of the reactor body 10 to discharge gas generated by the reaction and unreacted raw material gas. ing. The positions where the slurry inlet 11, the slurry outlet 12 and the gas outlet 14 are provided are not limited to the positions described above.
[0024] 上記のように構成された反応器本体 10にお ヽては、液体 22は、触媒粒子 24ととも にスラリー排出口 12から排出され、触媒粒子 24を分離した後、一部は系外 (反応器 本体 10の外部)へ抜き出され、残りは分離された触媒粒子 24とともに、スラリー入口[0024] In the reactor main body 10 configured as described above, the liquid 22 is discharged from the slurry discharge port 12 together with the catalyst particles 24, and after separating the catalyst particles 24, a part of the liquid 22 is discharged. Outside (outside of reactor body 10), the remainder is separated into catalyst inlet 24 together with separated catalyst particles 24
11から反応器本体 10内に戻される。 11 is returned to the reactor body 10.
[0025] ここで、スラリー入口 11から反応器本体 10内に戻される液体 22の流量は、個々の 反応システムにより異なる。 [0025] Here, the flow rate of the liquid 22 returned from the slurry inlet 11 into the reactor main body 10 varies depending on each reaction system.
[0026] また、フィルタ一等を用いて、反応により生成した液体 22と触媒粒子 24とを反応器 本体 10の外部に抜き出すような反応システムにおいては、スラリー入口 11から反応 器本体 10内に戻される液体 22の流量をゼロとする場合もある。 [0026] Further, in a reaction system in which the liquid 22 and catalyst particles 24 generated by the reaction are drawn out of the reactor body 10 using a filter or the like, the slurry is returned from the slurry inlet 11 into the reactor body 10. In some cases, the flow rate of the liquid 22 is zero.
[0027] ディストリビュータ 40は、反応器本体 10の下部に配設され、原料ガスをスラリー 20 中に供給する。このディストリビュータ 40の上部には、複数の原料ガス噴射口 42が設 けられている。なお、原料ガス噴射口 42の設けられる数および位置は特に限定され ない。 The distributor 40 is disposed in the lower part of the reactor main body 10 and supplies the raw material gas into the slurry 20. In the upper part of the distributor 40, a plurality of raw material gas injection ports 42 are provided. The number and position of the raw material gas injection ports 42 are not particularly limited.
[0028] 外部力ゝらデイストリビュータ 40を通じて供給された原料ガスは、原料ガス噴射口 42 力も例えば上方(図の矢印で示した方向)に向力つて噴射される。このようにしてディ ストリビュータ 40から吹き込まれた原料ガスは、気泡 30となって、スラリー 20中を反応 器本体 10の高さ方向(鉛直方向)の下から上へ向力つて流れる際に液体 22中に溶 解し、溶解した原料ガスの成分が触媒粒子 24と接触することにより、所定の反応が行 われる。  [0028] The raw material gas supplied through the distributor 40 as an external force is injected with the force of the raw material gas injection port 42 directed upward, for example (in the direction indicated by the arrow in the figure). The raw material gas blown from the distributor 40 in this way becomes bubbles 30, which are liquid when flowing in the slurry 20 from the bottom in the height direction (vertical direction) of the reactor body 10 upward. A predetermined reaction occurs when the raw material gas component dissolved in 22 comes into contact with the catalyst particles 24.
[0029] また、上記のように原料ガスが反応器本体 10の底部力も吹き込まれ、吹き込まれた 原料ガスが気泡 30となって反応器本体 10内を上昇することにより、反応器本体 10内 部においては、主として中央部 (反応器本体 10の中心軸付近)にスラリー 20の上昇 流 Kが生じるとともに、反応器本体 10の側壁付近(円周部付近)には主として下降 が生じ、スラリー 20が反応器本体 10内部全体を循環するような流れ (大循環)が生じ る。ただし、図 16中の矢印 K, Jは、反応器本体 10内に主に生じるスラリー 20の流れ の向きを示したものであり、この流れは、時間とともに変化するものであって、常に一 定の箇所を一定の方向に一定の速度で流れるものではな 、。 [0029] Further, as described above, the raw material gas is also blown into the bottom force of the reactor main body 10, and the blown raw material gas becomes bubbles 30 and rises in the reactor main body 10, whereby the inner portion of the reactor main body 10 is increased. In FIG. 2, the upward flow K of the slurry 20 is mainly generated in the central portion (near the central axis of the reactor main body 10), and the downward flow is mainly generated in the vicinity of the side wall of the reactor main body 10 (near the circumferential portion). A flow (general circulation) that circulates inside the reactor main body 10 occurs. However, the arrows K and J in FIG. 16 indicate the direction of the flow of the slurry 20 mainly generated in the reactor main body 10, and this flow changes with time and is always constant. It does not flow at a constant speed in a certain direction in a certain place.
[0030] このような大循環によって反応器本体 10内部のスラリー 20が全体的に良好に撹拌 されると、原料ガスの濃度が低くなつた気泡 30が逆混合によって反応器本体 10下部 に移動する傾向が強まる。その結果、反応器本体 10内部の反応速度を全体的に低 下させ、原料ガスの反応転ィ匕率を低下させる可能性がある。  [0030] When the slurry 20 inside the reactor main body 10 is agitated as a whole by such general circulation, the bubbles 30 having a low concentration of the raw material gas move to the lower part of the reactor main body 10 by back mixing. The trend is strengthened. As a result, there is a possibility that the reaction rate inside the reactor main body 10 is reduced as a whole, and the reaction conversion rate of the raw material gas is lowered.
[0031] このような問題を解決するために、従来の気泡塔型反応器 1においては、反応器本 体 10内に、反応器本体 10内の流動を部分的に妨げる障壁部材として、例えば、多 孔板 50を設ける。多孔板 50は、反応器本体 10の内部空間を高さ方向(鉛直方向) に複数に分割するように設けられた略円盤状の部材であり、原料ガスの濃度が低くな つた気泡 30が反応器本体 10下部へ流れることを抑制する。この多孔板 50には、複 数の貫通孔 52が設けられており、気泡 30およびスラリー 20はこの貫通孔 52を通過 することができる。  [0031] In order to solve such a problem, in the conventional bubble column reactor 1, as a barrier member that partially blocks the flow in the reactor main body 10 in the reactor main body 10, for example, A multi-hole plate 50 is provided. The perforated plate 50 is a substantially disk-shaped member provided so as to divide the internal space of the reactor main body 10 into a plurality of portions in the height direction (vertical direction), and bubbles 30 with a low concentration of the raw material gas react. Suppresses the flow to the bottom of the vessel body 10. The perforated plate 50 is provided with a plurality of through holes 52, and the bubbles 30 and the slurry 20 can pass through the through holes 52.
さらに、スラリー 20 (または触媒粒子 24を含まない液体 22)が常に反応器本体 10 の下力も上に向力つて流れるように、スラリー 20 (または触媒粒子 24を含まない液体 22)をー且反応器本体 10の外部に取り出して循環させる。これにより、気泡 30が多 孔板 50などの障壁部材を介して上から下に向力つて流れることを防止する。  Further, the slurry 20 (or the liquid 22 not containing the catalyst particles 24) is reacted in such a manner that the slurry 20 (or the liquid 22 not containing the catalyst particles 24) always flows with the lower force of the reactor main body 10 directed upward. Take out outside of vessel body 10 and circulate. Thus, the bubbles 30 are prevented from flowing from the top to the bottom through the barrier member such as the multi-hole plate 50.
[0032] このように、多孔板 50などの障壁部材を設けることにより、反応器本体 10内のスラリ 一 20の流れを、反応器本体 10内を下から上へ向力 押し出し流れ(「プラグフロー」 と呼ばれ、流体の逆流がない状態)に近づける。これにより、反応器本体 10の内部に おける全体的な混合 (大循環)を抑制することができる。  [0032] Thus, by providing a barrier member such as the perforated plate 50, the flow of the slurry 20 in the reactor main body 10 is pushed out from the bottom upward in the reactor main body 10 ("plug flow" It is called a state where there is no backflow of fluid). Thereby, overall mixing (general circulation) in the reactor main body 10 can be suppressed.
[0033] ところが、気泡塔型スラリー床式 FT反応システムにおいては、反応器本体 10の容 積に対し、スラリー 20の流量が極めて小さい場合があり、この場合はスラリー 20の正 味の上昇速度はゼロに近い。そのため、従来の気泡塔型反応器 1と同様に多孔板 5 0を設置すると、気泡 30およびスラリー 20が多孔板 50を通過する際に、多孔板 50の 抵抗によって、気泡 30の上昇が阻害されるとともに気泡 30の上昇に伴うスラリー 20 の上昇流 Kの速度が低減され、スラリー 20の上昇流 Kの速度が十分に得られな 、。 そのため、図 16に示したように、触媒粒子 24が反応器本体 10の下部に偏在したり、 多孔板 50上に堆積したりして、触媒粒子 24の分散状態が悪くなる可能性がある。こ のように触媒粒子 24の分散状態が悪 ヽと、触媒粒子 24の濃度が小さ ヽ領域で反応 速度が低下し、反応器本体 10内部の全域で反応効率が低下してしまう。 [0033] However, in the bubble column type slurry bed type FT reaction system, the flow rate of the slurry 20 may be extremely small relative to the volume of the reactor body 10, and in this case, the net rate of increase of the slurry 20 is Near zero. Therefore, when the perforated plate 50 is installed in the same manner as the conventional bubble column reactor 1, the rise of the bubble 30 is hindered by the resistance of the perforated plate 50 when the bubbles 30 and the slurry 20 pass through the perforated plate 50. As the bubble 30 rises, the speed of the upward flow K of the slurry 20 is reduced, and the speed of the upward flow K of the slurry 20 cannot be sufficiently obtained. Therefore, as shown in FIG. 16, the catalyst particles 24 may be unevenly distributed in the lower part of the reactor main body 10 or may be deposited on the porous plate 50, so that the dispersed state of the catalyst particles 24 may deteriorate. This As described above, when the dispersed state of the catalyst particles 24 is poor and the concentration of the catalyst particles 24 is small, the reaction rate is lowered, and the reaction efficiency is lowered in the entire region of the reactor body 10.
[0034] そこで、本発明に係る FT反応器にぉ ヽては、多孔板 50の代わりに、反応器本体 1 0の側壁側を遮蔽するとともに中央側を開放するような部材を設けている。  [0034] Therefore, in the FT reactor according to the present invention, instead of the perforated plate 50, a member that shields the side wall side of the reactor main body 10 and opens the center side is provided.
以下、本発明に係る FT反応器について、具体的な実施の形態を示しながら詳細 に説明する。  Hereinafter, the FT reactor according to the present invention will be described in detail while showing specific embodiments.
[0035] (第 1の実施形態)  [0035] (First embodiment)
まず、図 1に基づいて、本発明の第 1の実施形態に係る気泡塔型炭化水素合成反 応器の一例としての気泡塔型スラリー床 FT合成反応器 100 (以下、単に「FT反応器 100」という)の構成について説明する。なお、図 1は、本実施形態に係る FT反応器 1 00の全体構成を示す垂直断面図である。  First, based on FIG. 1, a bubble column type slurry bed FT synthesis reactor 100 (hereinafter simply referred to as “FT reactor 100”) as an example of the bubble column type hydrocarbon synthesis reactor according to the first embodiment of the present invention. ") Will be described. FIG. 1 is a vertical sectional view showing the overall configuration of the FT reactor 100 according to this embodiment.
[0036] 図 1に示すように、本実施形態に係る FT反応器 100は、反応器本体 110と、本発 明に係る合成ガス供給部の一例としてのディストリビュータ 140と、本発明に係るバッ フル部材の一例としてのバッフルプレート 150と、を主に備える。  As shown in FIG. 1, an FT reactor 100 according to this embodiment includes a reactor main body 110, a distributor 140 as an example of a synthesis gas supply unit according to the present invention, and a baffle according to the present invention. A baffle plate 150 as an example of a member is mainly provided.
[0037] 反応器本体 110は略円筒型の金属製の容器であって、その直径は 1から 20m程度 、好ましくは 2から 10m程度である。反応器本体 10の高さは、 10から 50m程度、好ま しくは 15から 45m程度である、反応気本体 10の内部には、液体炭化水素 (FT反応 の生成物) 122中に、固体の触媒粒子 124を懸濁させたスラリー 120が収容される。 反応器本体 110の底部には、スラリー 120を反応器本体 110内に導入するためのス ラリー入口 111が設けられている。反応器本体 110の側壁部には、スラリー 120を排 出するためのスラリー排出口 112が設けられている。反応器本体 110の塔頂部には 、 FT反応により生成した軽質炭化水素のガスや未反応の合成ガスを排出するため のガス排出口 114が設けられて 、る。なお、スラリー入口 111、スラリー排出口 112お よびガス排出口 114が設けられる位置は上述した位置には限られない。  [0037] The reactor main body 110 is a substantially cylindrical metal container having a diameter of about 1 to 20 m, preferably about 2 to 10 m. The height of the reactor body 10 is about 10 to 50 m, preferably about 15 to 45 m. Inside the reaction body 10, there is a solid catalyst in a liquid hydrocarbon (product of FT reaction) 122. A slurry 120 in which particles 124 are suspended is contained. A slurry inlet 111 for introducing the slurry 120 into the reactor main body 110 is provided at the bottom of the reactor main body 110. A slurry discharge port 112 for discharging the slurry 120 is provided on the side wall of the reactor main body 110. A gas discharge port 114 for discharging light hydrocarbon gas generated by FT reaction and unreacted synthesis gas is provided at the top of the reactor main body 110. The positions where the slurry inlet 111, the slurry outlet 112 and the gas outlet 114 are provided are not limited to the positions described above.
[0038] ディストリビュータ 140は、本実施形態に係る反応ガス供給部の一例であり、反応器 本体 110の下部に配設され、水素および一酸ィ匕炭素を主成分とする合成ガスをスラ リー 120中に供給する。このディストリビュータ 140の上部には、複数の合成ガス噴射 口 142が設けられている。なお、合成ガス噴射口 142の設けられる数および位置は 特に限定されない。 [0038] Distributor 140 is an example of a reaction gas supply unit according to the present embodiment, and is disposed in the lower part of reactor main body 110, and a synthesis gas mainly composed of hydrogen and carbon monoxide is slurry 120. Supply inside. A plurality of synthesis gas injection ports 142 are provided in the upper portion of the distributor 140. The number and position of the syngas injection ports 142 are as follows. There is no particular limitation.
[0039] 外部力ゝらデイストリビュータ 140を通じて供給された合成ガスは、合成ガス噴射口 14 2から例えば上方(図の矢印で示した方向)に向力つて噴射される。このようにしてデ イストリビュータ 140から吹き込まれた合成ガスは、気泡 130となって、スラリー 120中 を反応器本体 110の高さ方向(鉛直方向)下力も上へ向力つて流れる際に液体炭化 水素 122中に溶解し、溶解した合成ガスの成分が触媒粒子 124と接触することにより 、液体炭化水素の合成反応 (FT合成反応)が行われる。  [0039] The synthesis gas supplied from the external force through the distributor 140 is injected from the synthesis gas injection port 142, for example, in an upward direction (direction indicated by an arrow in the figure). The synthesis gas blown from the distributor 140 in this way becomes bubbles 130, and the liquid flows when the downward force in the height direction (vertical direction) of the reactor main body 110 flows upward in the slurry 120. When the dissolved synthesis gas component is dissolved in the hydrocarbon 122 and the catalyst particles 124 come into contact with each other, a liquid hydrocarbon synthesis reaction (FT synthesis reaction) is performed.
[0040] バッフルプレート 150は、反応器本体 110内部に、反応器本体 110の側壁に近い 領域を遮断し、反応器本体 110の中央および中央付近の領域を開放するように設け られている。このバッフルプレート 150により、反応器本体 110の内部空間が高さ方 向に複数の区画に分割される。本実施形態においては、反応器本体 110内部に 2枚 のバッフルプレート 150が設けられている。これにより、反応器本体 110の内部空間 力 S3つの区画に分割されている。  [0040] The baffle plate 150 is provided inside the reactor main body 110 so as to block a region near the side wall of the reactor main body 110 and open a center and a region near the center of the reactor main body 110. The baffle plate 150 divides the internal space of the reactor main body 110 into a plurality of sections in the height direction. In the present embodiment, two baffle plates 150 are provided inside the reactor main body 110. Accordingly, the internal space force S of the reactor main body 110 is divided into three sections.
[0041] 詳細については後述する力 このように、バッフルプレート 150力 反応器本体 110 の側壁に近 ヽ領域を遮断するように設けられて ヽること〖こより、 FT反応により生成し た軽質炭化水素を多く含む気泡 130が、自らが存在する区画内で循環するようにな り、他の区画には流れ込み難くなる。これにより、各区画間で逆流 (逆混合)すること を抑制できる。また、ノ ッフルプレート 150が、反応器本体 110の中央および中央付 近の領域を開放するように設けられて 、ることにより、反応器本体 110の中央を上昇 しょうとするスラリー 120の上昇流を妨げることもない。  [0041] The force described later in detail. As described above, the baffle plate 150 force is provided on the side wall of the reactor main body 110 so as to block the region near the light hydrocarbons generated by the FT reaction. The bubble 130 containing a large amount of gas circulates in the compartment where it is present, making it difficult to flow into other compartments. Thereby, it is possible to suppress backflow (backmixing) between the sections. In addition, the kaffle plate 150 is provided so as to open the center of the reactor main body 110 and the area near the center, thereby preventing the upward flow of the slurry 120 that is going to rise in the center of the reactor main body 110. There is nothing.
[0042] ここで、バッフルプレート 150の枚数あるいは各区画の鉛直方向の長さ Lは、反応 器本体 110の高さに応じて適宜定めることができる。具体的には、ノ ッフルプレート 1 50により分割された反応器本体 110の各区画の高さ方向の長さ Lは、反応器本体 1 10の塔内直径 Dの 0. 5から 10倍程度が好ましぐ 1から 5倍程度がより好ましい。  Here, the number of baffle plates 150 or the length L in the vertical direction of each section can be appropriately determined according to the height of the reactor main body 110. Specifically, the length L in the height direction of each section of the reactor main body 110 divided by the kaffle plate 150 is preferably about 0.5 to 10 times the inner diameter D of the reactor main body 110. It is more preferably about 1 to 5 times.
[0043] 反応器本体 110の塔内直径 Dに対する反応器本体 110の各区画の高さ方向の長 さ Lの比、すなわち LZDが上記範囲を外れて小さすぎると、各区画内で十分な循環 流が発達せず、逆混合が過度に抑制されてしまう。そのため、触媒粒子 124の分散 状態が悪くなつたり、気泡 130の吹き抜けにより気泡 130の滞留時間が短くなり、原 料である合成ガスの反応転化率が低下したりするおそれがある。一方、 LZDが上記 範囲を外れて大きすぎると、ノ ッフルプレート 150によって分割することの効果、すな わち、逆混合を抑制する効果が十分に発揮されなくなる。 [0043] The ratio of the length L in the height direction of each section of the reactor main body 110 to the inner diameter D of the reactor main body 110, that is, if LZD is too small outside the above range, sufficient circulation in each section The flow does not develop and backmixing is overly suppressed. For this reason, the dispersion state of the catalyst particles 124 is deteriorated, or the residence time of the bubbles 130 is shortened by blowing the bubbles 130. There is a possibility that the reaction conversion rate of the synthesis gas, which is a material, may be reduced. On the other hand, if the LZD is too large out of the above range, the effect of dividing by the kaffle plate 150, that is, the effect of suppressing the back mixing cannot be sufficiently exhibited.
[0044] 以下、図 2から図 9に基づいて、本実施形態に係るバッフルプレート 150の構成に ついて詳細に説明する。なお、図 2は、本実施形態に係るバッフルプレート 150の構 成を示す斜視図であり、図 3は、本実施形態の変形例に係るバッフルプレート 150, の構成を示す斜視図である。また、図 4から図 9は、それぞれ本実施形態に係る貫通 孔 152の構成例を示す断面図である。  Hereinafter, the configuration of the baffle plate 150 according to the present embodiment will be described in detail based on FIG. 2 to FIG. 2 is a perspective view showing the configuration of the baffle plate 150 according to the present embodiment, and FIG. 3 is a perspective view showing the configuration of the baffle plate 150 according to a modification of the present embodiment. 4 to 9 are cross-sectional views showing examples of the configuration of the through hole 152 according to this embodiment.
[0045] 図 2に示すように、ノ ッフルプレート 150は、中央に開口部 150aが形成された略円 盤状の部材であり、このバッフルプレート 150により反応器本体 110の側壁に違い領 域が遮断され、反応器本体 110の中央および中央付近の領域が開放される。なお、 本発明のバッフル部材は、本実施形態に係るバッフルプレート 150のように、略円盤 状の部材の中央に開口部 150aが形成されるものに限られず、反応器本体 10の中 央および中央付近に開放された空間が設けられていればよい。例えば、図 3に示す ように、反応器本体 10の側壁側に設けられた 2枚の略半月状のプレートを 1組とする ノ ッフルプレート 150,(言い換えると、略円盤状のバッフルプレートが三分割され、 中央の分割片が除かれることによって開放部 150' aが形成されたもの)であってもよ い。  [0045] As shown in FIG. 2, the kaffle plate 150 is a substantially disk-shaped member having an opening 150a formed at the center, and the baffle plate 150 blocks the difference between the side walls of the reactor main body 110. Thus, the center of the reactor main body 110 and the area near the center are opened. The baffle member of the present invention is not limited to the baffle plate 150 according to the present embodiment, and is not limited to the one in which the opening 150a is formed at the center of the substantially disk-shaped member. It is sufficient that an open space is provided in the vicinity. For example, as shown in FIG. 3, a pair of approximately half-moon shaped plates provided on the side wall of the reactor main body 10 is a pair of a noble plate 150, (in other words, a substantially disk-shaped baffle plate is divided into three parts. In other words, the opening 150'a may be formed by removing the central divided piece).
[0046] ここで、上記バッフルプレート 150 (または 150' (以下省略する))の開放されている 部分(図 2の例では開口部 150a、図 3の例では開放部 150' a)の面積 Acは、反応器 本体 10内部の水平断面の面積 Atの 10から 90%程度が好ましぐ 35から 65%程度 力 り好ましい。  [0046] Here, the area Ac of the open portion of the baffle plate 150 (or 150 '(hereinafter omitted)) (opening 150a in the example of FIG. 2, open 150'a in the example of FIG. 3) Ac Is preferably about 35 to 65%, preferably about 10 to 90% of the area At of the horizontal cross section in the reactor body 10.
[0047] 反応器本体 10内部の水平断面の面積 Atに対するバッフルプレート 150の開放さ れている部分の面積 Acの比、すなわち AcZAtが上記範囲を外れて小さすぎると、 気泡 130とスラリー 120の上昇流が妨げられるので、十分な触媒粒子 124の分散効 果を得ることができないおそれがある。一方、 AcZAtが上記範囲を外れて大きすぎ ると、ノ ッフルプレート 150によって分割することの効果、すなわち、逆混合を抑制す る効果が十分に発揮されなくなる。 [0048] また、ノ ッフルプレート 150には、複数の貫通孔 152 (または 152,(以下省略する) )が設けられている。貫通孔 152は、液体炭化水素 122および触媒粒子 124の通過 を許容し、かつ FT反応により生成した軽質炭化水素を含む気泡 130の通過を抑制 できるように、適切な大きさに形成されている。貫通孔 152の大きさを上記のようにす ることにより、触媒粒子 124が貫通孔 152を閉塞するのを防止することができる。また 、スラリー 120の下降流に伴って気泡 130がバッフルプレート 150の貫通孔 152を上 力も下に通過したり、上昇する気泡 130がバッフルプレート 150の下から上に通過し たりすることを抑制したりすることができる。 [0047] The ratio of the area of the open part of the baffle plate 150 to the area At of the horizontal cross section 10 inside the reactor main body Ac, that is, if AcZAt is too small outside the above range, the bubbles 130 and the slurry 120 rise. Since the flow is hindered, there is a possibility that a sufficient dispersion effect of the catalyst particles 124 cannot be obtained. On the other hand, if AcZAt is too large out of the above range, the effect of dividing by the kaffle plate 150, that is, the effect of suppressing backmixing will not be sufficiently exhibited. [0048] Further, the notch plate 150 is provided with a plurality of through holes 152 (or 152, hereinafter omitted). The through-hole 152 is formed in an appropriate size so as to allow passage of the liquid hydrocarbon 122 and the catalyst particles 124 and suppress passage of the bubbles 130 containing light hydrocarbons generated by the FT reaction. By setting the size of the through hole 152 as described above, it is possible to prevent the catalyst particles 124 from closing the through hole 152. Further, it is possible to prevent the bubbles 130 from passing through the through holes 152 of the baffle plate 150 and the rising bubbles 130 from passing from the bottom to the top of the baffle plate 150 as the slurry 120 descends. Can be.
[0049] より具体的には、貫通孔 152の断面が略円形の場合には、貫通孔 152の径は、触 媒粒子 124の平均粒子径の 10から 100倍が好ましぐ 30から 50倍がより好ましい。 また、本実施形態に係る触媒粒子 124としては、平均粒子径が 10から 1000 mが 好ましぐ 20から 500 mがより好ましい。 100 m程度であればさらに好ましい。例 えば、触媒粒子 124として平均粒子径が 100 m程度のものを使用した場合には、 貫通孔 152の径は、 1から 10mm程度が好ましぐ 3から 5mm程度がより好ましい。貫 通孔 152の径を触媒粒子 124の平均粒子径の 10倍以上とするのは、バッフルプレ ート 150上に堆積しょうとする触媒粒子 124が、貫通孔 152を閉塞することなくバッフ ルプレート 150を上から下に通過できるように、触媒粒子の径よりも十分に大きくする 必要があるためである。また、貫通孔 152の径を触媒粒子 124の平均粒子径の 100 倍以下とするのは、貫通孔 152の径が大きすぎると、貫通孔 152を通過するスラリー 120の流速が大きくなり、気泡 130 (大きさ数 mm力も数 cm)がスラリ一 120に同伴し て貫通孔 152を通過する可能性が大きくなるためである。力!]えて、上昇する気泡 130 が貫通孔 152を通過する可能性が大きくなるためである。なお、貫通孔 152の径とは 、貫通孔 152の径が一定でない場合、例えば、後述するように貫通孔 152にテーパ 部などを設けた場合には、貫通孔 152のうち最も狭い部分の代表長さ(例えば、貫通 孔 152の断面が円形であれば径、断面が正方形であれば 1辺の長さ)のことを指す。  More specifically, when the through hole 152 has a substantially circular cross section, the diameter of the through hole 152 is preferably 10 to 100 times the average particle diameter of the catalyst particles 124 and is preferably 30 to 50 times. Is more preferable. Further, the catalyst particles 124 according to this embodiment preferably have an average particle diameter of 10 to 1000 m, more preferably 20 to 500 m. More preferably, it is about 100 m. For example, when a catalyst particle 124 having an average particle diameter of about 100 m is used, the diameter of the through hole 152 is preferably about 1 to 10 mm, more preferably about 3 to 5 mm. The diameter of the through-hole 152 is set to be 10 times or more the average particle diameter of the catalyst particles 124 because the catalyst particles 124 to be deposited on the baffle plate 150 do not block the through-hole 152 and the baffle plate This is because it is necessary to make the diameter sufficiently larger than the diameter of the catalyst particles so that 150 can pass from the top to the bottom. In addition, the diameter of the through-hole 152 is set to 100 times or less of the average particle diameter of the catalyst particles 124. If the diameter of the through-hole 152 is too large, the flow rate of the slurry 120 passing through the through-hole 152 increases, and the bubbles 130 This is because the possibility of passing through the through hole 152 along with the slurry 120 increases. Power! This is because the possibility that the rising bubbles 130 pass through the through holes 152 is increased. Note that the diameter of the through hole 152 is a representative of the narrowest portion of the through hole 152 when the diameter of the through hole 152 is not constant, for example, when a tapered portion is provided in the through hole 152 as described later. This refers to the length (for example, the diameter if the cross section of the through hole 152 is circular, the length of one side if the cross section is square).
[0050] また、貫通孔 152の開孔率 ε、すなわち、バッフルプレート 150の面積 Αρ (中央の 開口部 150aの面積は除く)に対する貫通孔 152の開口面積の合計 Ahの割合( ε = AhZAp)は、 1から 50%が好ましぐ 5から 25%がより好ましい。開孔率 εを 1 %以 上 (好ましくは 5%以上)とするのは、ノ ッフルプレート 150を通過する十分な量のスラ リー 120の下降流を得る必要があるためである。ただし、開孔率 εを大きくするため に、貫通孔 152の径を大きくしすぎると、上述したように、気泡 130が貫通孔 152を通 過する可能性が大きくなるので、好ましくない。また、開孔率 εを大きくするために、 貫通孔 152の数を増やすと、後述するテーパ部を設けたときに、十分な大きさのバッ フルプレート 150上面の面積を確保することができないため、好ましくない。このような 観点から、開孔率 εは、 50%以下 (好ましくは 25%以下)である必要がある。なお、こ の開孔率 εの計算に用いられる貫通孔 152の開口面積は、貫通孔 152の径が一定 でない場合、例えば、後述するように貫通孔 152にテーパ部などを設けた場合には、 貫通孔 152のうち最も狭い部分の断面積のことを指す。 [0050] Further, the opening ratio ε of the through hole 152, that is, the ratio of the total opening area Ah of the through hole 152 to the area Αρ of the baffle plate 150 (excluding the area of the central opening 150a) (ε = AhZAp) 1 to 50% is preferred, and 5 to 25% is more preferred. Opening ratio ε is 1% or less The reason for the above (preferably 5% or more) is that it is necessary to obtain a sufficient amount of downflow of the slurry 120 passing through the kaffle plate 150. However, if the diameter of the through hole 152 is too large in order to increase the opening ratio ε, the possibility that the bubble 130 will pass through the through hole 152 increases as described above, which is not preferable. In addition, if the number of through holes 152 is increased in order to increase the hole area ratio ε, a sufficiently large area of the upper surface of the baffle plate 150 cannot be secured when a tapered portion described later is provided. It is not preferable. From such a viewpoint, the open area ratio ε needs to be 50% or less (preferably 25% or less). Note that the opening area of the through hole 152 used for the calculation of the open area ratio ε is, for example, when the diameter of the through hole 152 is not constant, for example, when a tapered portion or the like is provided in the through hole 152 as described later. This refers to the cross-sectional area of the narrowest portion of the through hole 152.
[0051] 貫通孔 152は、例えば、図 4に示すように、貫通孔 152の断面積(開口面積)がー 定であるように形成されてもよい。また、図 5に示すように、貫通孔 152の少なくとも一 部、例えばバッフルプレート 150上面側に、下方に向力 につれて断面積が小さくな るテーパ部 152aが設けられて!/、てもよ!/、。  [0051] The through hole 152 may be formed, for example, such that the cross-sectional area (opening area) of the through hole 152 is constant as shown in FIG. Also, as shown in FIG. 5, at least a part of the through-hole 152, for example, the upper surface side of the baffle plate 150, is provided with a tapered portion 152a whose cross-sectional area becomes smaller as it is directed downward! / /.
[0052] かかるテーパ部の形状としては、図 5に示す場合に限られず、下方に向かうにつれ て断面積力 、さくなるような形状であれば任意の形状を採用することができる。例え ば、図 6から図 8に示すように、テーパ部 152bの上方に断面積が一定の直線部 153 (鉛直方向の長さ R)が設けられた形状(図 6)、テーパ部 152cの垂直断面が曲線と なる形状 (図 7)、テーパ部 152dが複数の段力もなる階段状の形状 (図 8)などを採用 することができる。  [0052] The shape of the tapered portion is not limited to the case shown in FIG. 5, and any shape can be adopted as long as the cross-sectional area force decreases as it goes downward. For example, as shown in FIG. 6 to FIG. 8, a shape (FIG. 6) in which a straight section 153 (vertical length R) having a constant cross-sectional area is provided above the tapered section 152b, the vertical section of the tapered section 152c. A shape having a curved cross section (FIG. 7), a stepped shape (FIG. 8) in which the tapered portion 152d has a plurality of step forces, and the like can be employed.
[0053] このように貫通孑し 152の少なくともー咅にテーノ 咅 ( 152a, 152b, 152cおよび 15 2d等)を設けることにより、ノ ッフルプレート 150の上面の平坦な部分の面積を最小 にして、触媒粒子 124がバッフルプレート 150の上面に堆積することを最小限に抑制 することができる。また、テーパ部を設け、貫通孔 152のバッフルプレート 150上面側 の断面積を大きくすることにより、貫通孔 152を通過するスラリー 120のバッフルプレ ート 150上面における流速を小さくすることができる。これにより、スラリー 120に同伴 して気泡 130が貫通孔 152を通過することを抑制する効果をさらに向上させることが できる。 [0054] なお、貫通孔 152の(水平)断面の形状は、図 2、図 3等に示すように略円形とする ことができるが、略円形の場合には限られず、その他の形状 (例えば、略正方形状等 )であってもよい。 [0053] Thus, by providing a teno rod (152a, 152b, 152c, 152d, etc.) on at least one of the through-holes 152, the area of the flat portion of the upper surface of the noble plate 150 is minimized, and the catalyst Accumulation of particles 124 on the upper surface of the baffle plate 150 can be minimized. In addition, by providing a tapered portion and increasing the cross-sectional area of the through hole 152 on the upper surface side of the baffle plate 150, the flow velocity of the slurry 120 passing through the through hole 152 on the upper surface of the baffle plate 150 can be decreased. Thereby, the effect of suppressing the bubbles 130 from passing through the through-holes 152 accompanying the slurry 120 can be further improved. [0054] The shape of the (horizontal) cross section of the through hole 152 can be substantially circular as shown in FIGS. 2, 3 and the like, but is not limited to the substantially circular shape, and other shapes (for example, Or a substantially square shape).
[0055] また、貫通孔 152のバッフルプレート 150の下面側の断面積 A (以下、「下面断面  [0055] In addition, the cross-sectional area A (hereinafter referred to as "lower surface cross section") of the through hole 152 on the lower surface side of the baffle plate 150.
0  0
積 A」という)に対するバッフルプレート 150の上面側の断面積 A (以下、「上面断面 Cross-sectional area A (hereinafter referred to as “top surface cross section”)
0 1 0 1
積 A」と 、う)の比率 α ( =Α ΖΑ )は、 1≤ «≤ 100とすることができる。 The ratio α (= Α ΖΑ) of product A ”and u) can be 1≤« ≤ 100.
1 1 0  1 1 0
[0056] この理由としては、テーパ部 152a等における気泡 130の分離効果 (スラリー 120に 同伴して気泡 130が貫通孔 152を通過することを抑制する効果)を高めるためには、 αが大きい方が好ましい。これは、 αを大きくすることにより、貫通孔 152を通過する スラリー 120の流速をより小さくすることができるためである。  [0056] The reason for this is that in order to enhance the separation effect of the bubbles 130 in the tapered portion 152a and the like (the effect of suppressing the bubbles 130 from passing through the through-holes 152 accompanying the slurry 120), the larger α Is preferred. This is because the flow velocity of the slurry 120 passing through the through hole 152 can be further reduced by increasing α.
[0057] 具体的には、以下の点から aの数値範囲が決定される。すなわち、下面断面積 A  [0057] Specifically, the numerical range of a is determined from the following points. That is, the bottom cross-sectional area A
0 と上面断面積 Aとが等しい場合(図 4のようにテーパ部を設けない場合)は、 ひ = 1と なるので、 αを 1以上とする必要がある。なお、 αく 1、すなわち、 A >Aとすることも  When 0 is equal to the cross-sectional area A (when no taper is provided as shown in Fig. 4), h = 1, so α must be 1 or more. Note that α is 1, that is, A> A
0 1 可能であるが、貫通孔 152を通過するスラリー 120の下面側での流速が小さくなるこ とにより、ノ ッフルプレート 150の下から上に気泡が通過してしまう可能性があるので 、 α≥1とすることが好ましい。一方、 αの上限は、開口率 εの下限によって定まり、 ε = 1 % (下限値)のとき、 aの最大値は a = 100となるので、 a≤ 100とすること力 S 好ましい。  0 1 Although it is possible, bubbles may pass from the bottom to the top of the noble plate 150 due to a decrease in the flow velocity on the lower surface side of the slurry 120 passing through the through-hole 152. 1 is preferable. On the other hand, the upper limit of α is determined by the lower limit of the aperture ratio ε. When ε = 1% (lower limit), the maximum value of a is a = 100.
[0058] また、テーパ部として、図 9に示すような垂直断面が直線状の傾斜面を有するテー パ部 152aを適用する場合には、この傾斜面の角度(開口角度) Θは、貫通孔 152の 中心軸に対して 30から 60° 程度であることが好ましい。開口角度 0は、触媒粒子 12 4が貫通孔 152内をスムーズに流下するように、開口角度 0を小さく(傾斜をきつく) する必要がある。しかしながら、開口角度 Θを小さくしすぎると、必要な上面断面積 A を確保するためには、バッフルプレート 150の厚みを厚くする必要が生じる。一方、 開口角度 Θが大きすぎると、テーパ部を設けない場合と実質的に変わらなくなる。こ のような観点から、開口角度 0を 30から 60° 程度とすることが好ましい。  [0058] When a taper portion 152a having an inclined surface with a straight vertical cross section as shown in FIG. 9 is applied as the tapered portion, the angle (opening angle) Θ of this inclined surface is a through hole. It is preferably about 30 to 60 ° with respect to the central axis of 152. The opening angle 0 needs to be small (slightly inclined) so that the catalyst particles 124 can smoothly flow through the through holes 152. However, if the opening angle Θ is too small, it is necessary to increase the thickness of the baffle plate 150 in order to secure the necessary top surface cross sectional area A. On the other hand, if the opening angle Θ is too large, it is substantially the same as when the tapered portion is not provided. From such a viewpoint, it is preferable to set the opening angle 0 to about 30 to 60 °.
[0059] また、貫通孔 152の配列は特に限定されないが、ノ ッフルプレート 150全体に概ね 均等に配列されることが好ましい。さらに、ノ ッフルプレート 150の平坦部の面積を小 さくするためには、貫通孔 152は三角配列されることが好ましい。このように貫通孔 15 2を三角配列することにより、触媒粒子 124のバッフルプレート 150上への堆積を抑 ff¾することができる。 [0059] The arrangement of the through holes 152 is not particularly limited, but it is preferable that the through holes 152 are arranged almost uniformly over the entire noble plate 150. In addition, the area of the flat part of the noble plate 150 is reduced. In order to reduce the length, the through holes 152 are preferably arranged in a triangular pattern. Thus, by arranging the through holes 152 in a triangular arrangement, it is possible to suppress the deposition of the catalyst particles 124 on the baffle plate 150.
[0060] 以上、図 1から図 9に基づいて、本実施形態に係る FT反応器 100の構成について 詳細に説明した。次に、図 10から図 13に基づいて、この FT反応器 100の機能や作 用を、反応器本体 110内部におけるスラリー 120および気泡 130の流れを示しながら 説明する。なお、図 10は、本実施形態に係る反応器本体 110内部全体のスラリー 12 0および気泡 130の流れを示す説明図である。図 11および図 12は、本実施形態に 係るバッフルプレート 150 (または 150,)付近におけるスラリー 120および気泡 130の 流れを示す説明図である。図 13は、本実施形態に係る貫通孔 152付近におけるスラ リー 120および気泡 130の流れを示す説明図である。ただし、図 10から図 13中の矢 印は、反応器本体 110内に主に生じる流れの向きを示したものであり、この流れは、 時間とともに変化するものであって、常に一定の箇所を一定の方向に一定の速度で 流れるものではない。  [0060] The configuration of the FT reactor 100 according to the present embodiment has been described in detail above based on Figs. Next, the function and operation of the FT reactor 100 will be described based on FIGS. 10 to 13 while showing the flow of the slurry 120 and the bubbles 130 in the reactor main body 110. FIG. 10 is an explanatory diagram showing the flow of the slurry 120 and the bubbles 130 inside the reactor main body 110 according to the present embodiment. FIG. 11 and FIG. 12 are explanatory diagrams showing the flow of the slurry 120 and the bubbles 130 in the vicinity of the baffle plate 150 (or 150,) according to the present embodiment. FIG. 13 is an explanatory diagram showing the flow of the slurry 120 and the bubbles 130 in the vicinity of the through hole 152 according to the present embodiment. However, the arrows in FIGS. 10 to 13 indicate the direction of the flow that mainly occurs in the reactor main body 110, and this flow changes with time and always shows a certain point. It does not flow at a constant speed in a certain direction.
[0061] まず、図 10から図 12に基づいて、反応器本体 110内部全体およびバッフルプレー ト 150 (または 150' )付近のスラリー 120および気泡 130の流れについて説明する。 図 10に示すように、ディストリビュータ 140の合成ガス噴射口 142を通して反応器本 体 110の底部から吹き込まれた合成ガスは、気泡 130となって反応器本体 110内を 上昇する。これにより、反応器本体 110内部においては、主として中央部 (反応器本 体 110の中央および中心付近)にスラリー 120の上昇流 Aが生じるとともに、反応器 本体 110の側壁付近には主として下降流が生じる。  First, the flow of the slurry 120 and the bubbles 130 near the entire reactor main body 110 and the baffle plate 150 (or 150 ′) will be described with reference to FIGS. 10 to 12. As shown in FIG. 10, the synthesis gas blown from the bottom of the reactor main body 110 through the synthesis gas injection port 142 of the distributor 140 rises into the reactor main body 110 as bubbles 130. As a result, in the reactor main body 110, an upward flow A of the slurry 120 is generated mainly in the central portion (the center and the vicinity of the center of the reactor main body 110), and a downward flow is mainly generated in the vicinity of the side wall of the reactor main body 110. Arise.
[0062] し力し、本実施形態においては、バッフルプレート 150が設けられていることから、 従来のように、気泡 130がスラリー 120とともに反応器本体 110内部全体を循環する ような流れ (大循環)が生じることはない。すなわち、ノ ッフルプレート 150は、反応器 本体 110の側壁に近 、領域を遮断するように設けられて 、ることから、 FT反応により 生成した軽質炭化水素を多く含む気泡 130は、図 10および図 11の矢印 Bに示すよう に、バッフルプレート 150の上面側および下面側でその流れが妨げられ、バッフルプ レート 150により分割された区画内でのみ循環するようになるため、気泡 130が各区 画間で逆流 (逆混合)することを抑制できる。したがって、軽質炭化水素を多く含む気 泡 130が反応器本体 110内部全体で循環することを抑制できるため、合成ガスの反 応転ィ匕率を高めることができる。 [0062] In the present embodiment, since the baffle plate 150 is provided, a flow in which the bubbles 130 circulate through the entire reactor main body 110 together with the slurry 120 (general circulation) as in the prior art. ) Will not occur. That is, the kaffle plate 150 is provided close to the side wall of the reactor main body 110 so as to block the region. Therefore, the bubbles 130 containing a large amount of light hydrocarbons generated by the FT reaction are formed as shown in FIGS. As shown by arrow B in FIG. 2, the flow is hindered on the upper surface side and the lower surface side of the baffle plate 150 and circulates only in the compartments divided by the baffle plate 150. Backflow (backmixing) between strokes can be suppressed. Accordingly, since the bubbles 130 containing a large amount of light hydrocarbons can be prevented from circulating throughout the reactor main body 110, the reaction conversion rate of the synthesis gas can be increased.
[0063] 一方、本実施形態においては、バッフルプレート 150は、反応器本体 110の中央 および中央付近の領域が開放されるように設けられていることから、従来とは異なり、 図 10および図 11に示すように、反応器本体 110の中央部におけるスラリー 120およ び気泡 130の上昇流 Aが妨げられることもない。したがって、触媒粒子 124が反応器 本体 110の下部に偏在することを抑制して、触媒粒子 124の分散状態を良好に保つ ことができる。 On the other hand, in the present embodiment, the baffle plate 150 is provided so that the center of the reactor main body 110 and the area near the center are opened, so that unlike the conventional case, the baffle plate 150 is different from the conventional one. As shown in FIG. 4, the upward flow A of the slurry 120 and the bubbles 130 in the central portion of the reactor main body 110 is not hindered. Therefore, the catalyst particles 124 can be prevented from being unevenly distributed in the lower portion of the reactor main body 110, and the dispersed state of the catalyst particles 124 can be kept good.
[0064] さらに、本実施形態においては、バッフルプレート 150に複数の貫通孔 152が設け られていることから、液体炭化水素 122および触媒粒子 124を含むスラリーは、図 10 の矢印 Cに示すように、貫通孔 152を通過して反応器本体 110の下方に向かって流 下する。したがって、ノ ッフルプレート 150に堆積しょうとする触媒粒子 124を、貫通 孔 152を通じてバッフルプレート 150の上から下に流下させることにより、バッフルプ レート 150上への触媒粒子 124の堆積を防止することができる。また、貫通孔 152を 設けてバッフルプレート 150を通過するスラリー 120の下降流 Cを確保することにより 、ノッフノレプレート 150の開口咅 150aにおけるスラリー 120および気泡 130の上昇 流 Aをさらに促進することができる。このように、ノ ッフルプレート 150上への触媒粒子 124の堆積を防止するとともに、バッフルプレート 150を通過するスラリー 120の上昇 流 Aを促進することにより、触媒粒子 124の分散状態をさらに良好に保つことができる  [0064] Further, in the present embodiment, since the baffle plate 150 is provided with a plurality of through holes 152, the slurry containing the liquid hydrocarbon 122 and the catalyst particles 124 is as shown by an arrow C in FIG. Then, it passes through the through-hole 152 and flows downward toward the reactor main body 110. Therefore, the catalyst particles 124 to be deposited on the baffle plate 150 are allowed to flow down from the top of the baffle plate 150 through the through holes 152, thereby preventing the catalyst particles 124 from being deposited on the baffle plate 150. Further, by providing a through-hole 152 and securing a downward flow C of the slurry 120 passing through the baffle plate 150, the upward flow A of the slurry 120 and the bubbles 130 at the opening ridge 150a of the notch plate 150 is further promoted. Can do. As described above, the catalyst particles 124 are prevented from accumulating on the noble plate 150, and the upward flow A of the slurry 120 passing through the baffle plate 150 is promoted, thereby further maintaining the dispersed state of the catalyst particles 124. Can
[0065] なお、以上説明したことは、図 12に示すような本実施形態の変形例に係るバッフル プレート 150 'を用 、た場合も同様である。 It should be noted that what has been described above is the same when the baffle plate 150 ′ according to the modification of the present embodiment as shown in FIG. 12 is used.
[0066] 次に、図 13に基づいて、貫通孔 152の機能や作用についてさらに詳細に説明する 。図 13に示すように、 FT反応により生成した軽質炭化水素ガスを多く含む気泡 130 は、矢印 Bに示すように、バッフルプレート 150によりその流れが妨げられて、バッフ ルプレート 150を通過して隣り合う区画間で移動することを抑制されている。また、触 媒粒子 124は、矢印 C1に示すように、スラリー 120の下降流に同伴して貫通孔 152 へ向かい、矢印 C2に示すように、貫通孔 152を通過して反応器本体 110の下方へ 流れる。 Next, the function and action of the through hole 152 will be described in more detail based on FIG. As shown in FIG. 13, the bubble 130 containing a large amount of light hydrocarbon gas generated by the FT reaction is blocked by the baffle plate 150 as shown by an arrow B, passes through the baffle plate 150, and adjoins. It is restrained to move between matching sections. In addition, the catalyst particles 124 are accompanied by the downward flow of the slurry 120 as shown by the arrow C1. As shown by the arrow C2, it passes through the through hole 152 and flows downward in the reactor main body 110.
[0067] ここで、気泡 130の流れ Bの速度と触媒粒子 124 (および液体炭化水素 122)の流 れ C1の速度とを比較すると、流れ Bの速度の方が流れ C1の速度よりもはるかに速い ため、スラリー 120と比べて比重の小さな気泡 130がスラリー 120等の流れ C 1に同伴 して貫通孔 152を通過することはほとんどない。さらに、貫通孔 152にテーパ部 152a を設けると、貫通孔 152の上面を通過するスラリー 120の流れ C1の速度をさらに小さ くすることができ、これにより、スラリー 120に同伴して気泡 130が貫通孔 152を通過 することを抑制する効果をさらに向上させることができる。  [0067] Here, comparing the velocity of the flow B of the bubble 130 and the velocity of the flow C1 of the catalyst particle 124 (and liquid hydrocarbon 122), the velocity of the flow B is much higher than the velocity of the flow C1. Because of the high speed, bubbles 130 having a specific gravity smaller than that of the slurry 120 hardly pass through the through-hole 152 along with the flow C 1 of the slurry 120 or the like. Furthermore, if the through-hole 152 is provided with the tapered portion 152a, the speed of the flow C1 of the slurry 120 passing through the upper surface of the through-hole 152 can be further reduced, so that the bubbles 130 penetrate along with the slurry 120. The effect of suppressing passage through the hole 152 can be further improved.
[0068] 以上のようにして、気泡 130は各区画内で循環し、スラリー 120はバッフルプレート 150を通過して反応器本体 110全体で循環するようにすることができる。  [0068] As described above, the bubbles 130 can be circulated in the respective sections, and the slurry 120 can be circulated through the reactor main body 110 through the baffle plate 150.
[0069] (第 2の実施形態)  [0069] (Second Embodiment)
次に、図 14に基づいて、本発明の第 2の実施形態に係る気泡塔型炭化水素合成 反応器の一例としての気泡塔型スラリー床 FT合成反応器 200 (以下、単に「FT反応 器 200」という)の構成について説明する。なお、図 14は、本実施形態に係る FT反応 器 200の全体構成を示す垂直断面図である。  Next, based on FIG. 14, a bubble column type slurry bed FT synthesis reactor 200 (hereinafter simply referred to as “FT reactor 200”) as an example of the bubble column type hydrocarbon synthesis reactor according to the second embodiment of the present invention. ") Will be described. FIG. 14 is a vertical sectional view showing the overall configuration of the FT reactor 200 according to this embodiment.
[0070] 図 14に示すように、本実施形態に係る FT反応器 200は、反応器本体 210と、本実 施形態に係る合成ガス供給部の一例としてのディストリビュータ 240と、本実施形態 に係るバッフル部材の一例としてのバッフルプレート 250と、を主に備える。  As shown in FIG. 14, the FT reactor 200 according to the present embodiment includes a reactor main body 210, a distributor 240 as an example of the synthesis gas supply unit according to the present embodiment, and the present embodiment. A baffle plate 250 as an example of a baffle member.
[0071] 反応器本体 210には、スラリー 220が収容される。反応器本体 210の底部には、ス ラリー 220を反応器本体 210内に導入するためのスラリー入口 211が設けられている 。反応器本体 210の側壁部には、スラリー 220を排出するためのスラリー排出口 212 が設けられている。反応器本体 210の塔頂部には、 FT反応により生成した軽質炭化 水素のガスや未反応の合成ガスを排出するためのガス排出口 214が設けられている  [0071] The reactor main body 210 contains the slurry 220. A slurry inlet 211 for introducing the slurry 220 into the reactor main body 210 is provided at the bottom of the reactor main body 210. A slurry discharge port 212 for discharging the slurry 220 is provided on the side wall of the reactor main body 210. A gas outlet 214 is provided at the top of the reactor body 210 to discharge light hydrocarbon gas generated by FT reaction and unreacted synthesis gas.
[0072] ディストリビュータ 240は、本実施形態に係る反応ガス供給部の一例であり、反応器 本体 210の下部に配設され、水素および一酸ィ匕炭素を主成分とする合成ガスをスラ リー 220中に供給する。このディストリビュータ 240の上部には、複数の合成ガス噴射 口 242が設けられている。 [0072] Distributor 240 is an example of a reaction gas supply unit according to the present embodiment, and is disposed at the lower part of reactor main body 210, and a synthesis gas mainly composed of hydrogen and carbon monoxide is slurry 220. Supply inside. The top of this distributor 240 has multiple syngas injections A mouth 242 is provided.
[0073] ノ ッフルプレート 250は、反応器本体 210内部に、反応器本体 210の側壁に近い 領域を遮断し、反応器本体 210の中央および中央付近の領域を開放するように設け られている。このノ ッフルプレート 250により、反応器本体 210の内部が高さ方向に 複数の区画に分割される。また、ノ ッフルプレート 250には、複数の貫通孔 252が設 けられている。 [0073] The kaffle plate 250 is provided inside the reactor main body 210 so as to block a region near the side wall of the reactor main body 210 and open a center and a region near the center of the reactor main body 210. By the kaffle plate 250, the interior of the reactor main body 210 is divided into a plurality of sections in the height direction. In addition, a plurality of through holes 252 are provided in the kaffle plate 250.
[0074] 本実施形態に係る FT反応器 200では、カゝかる構成を有することにより、反応器本 体 10の内部において、ディストリビュータ 240から供給された合成ガスおよびスラリー 220の上昇流 Dは、ノ ッフルプレート 250の中央に設けられた開放部を通じて上昇 することができる。また、 FT反応により生成した軽質炭化水素を多く含む気泡は、バ ッフルプレート 250により、他の区画には流れ込み難くなり、自らが存在する区画内 で循環流 Eを生じる。さらに、スラリー 220は、貫通孔 252を通過して、下降流 Fを生じ る。ただし、図 14中の矢印は、反応器本体 210内に主に生じる流れの向きを示したも のであり、この流れは、時間とともに変化するものであって、常に一定の箇所を一定の 方向に一定の速度で流れるものではな 、。  [0074] In the FT reactor 200 according to the present embodiment, the upward flow D of the synthesis gas and the slurry 220 supplied from the distributor 240 in the reactor main body 10 is reduced due to having a profitable configuration. It can be lifted through an opening provided in the center of the baffle plate 250. In addition, bubbles containing a large amount of light hydrocarbons generated by the FT reaction are difficult to flow into other compartments due to the baffle plate 250, and a circulating flow E is produced in the compartment where it exists. Further, the slurry 220 passes through the through-hole 252 and generates a downward flow F. However, the arrows in FIG. 14 indicate the direction of the flow that mainly occurs in the reactor main body 210, and this flow changes with time. It does not flow at a constant speed.
[0075] ここで、本実施形態に係る FT反応器 200にお ヽては、上述した第 1の実施形態の 場合と異なり、ノ ッフルプレート 250は、その中央が反応器本体 110の側壁に近い周 縁よりも低くなるように、すなわち、反応器本体 110の中央に向力つて下向きに傾斜し て設置されている。このように、貫通孔 252を設けることに加えて、ノ ッフルプレート 2 50を下向きに傾斜させることにより、ノ ッフルプレート 250上への触媒粒子の堆積を 防止する効果をさらに向上させることができる。  [0075] Here, in the FT reactor 200 according to the present embodiment, unlike the case of the first embodiment described above, the notch plate 250 has a central portion close to the side wall of the reactor main body 110. It is installed so as to be lower than the edge, that is, inclined downward in the center of the reactor body 110. In this manner, in addition to providing the through hole 252, the effect of preventing the catalyst particles from being deposited on the noble plate 250 can be further improved by inclining the noble plate 250 downward.
[0076] なお、上記以外の FT反応器 200の構成および作用効果は、上述した第 1の実施 形態に係る FT反応器 100の場合と同様であるので、詳細な説明は省略する。  [0076] The configuration and operational effects of the FT reactor 200 other than those described above are the same as those of the FT reactor 100 according to the first embodiment described above, and thus detailed description thereof is omitted.
[0077] (第 3の実施形態)  [0077] (Third embodiment)
次に、図 15に基づいて、本発明の第 3の実施形態に係る気泡塔型炭化水素合成 反応器の一例としての気泡塔型スラリー床 FT合成反応器 300 (以下、単に「FT反応 器 300」という)の構成について説明する。なお、図 15は、本実施形態に係る FT反応 器 300の全体構成を示す垂直断面図である。 [0078] 図 15に示すように、本実施形態に係る FT反応器 300は、反応器本体 310と、本実 施形態に係る合成ガス供給部の一例としてのディストリビュータ 340と、本実施形態 に係るバッフル部材の一例としてのバッフルプレート 350と、を主に備える。 Next, based on FIG. 15, a bubble column type slurry bed FT synthesis reactor 300 (hereinafter simply referred to as “FT reactor 300”) as an example of a bubble column type hydrocarbon synthesis reactor according to the third embodiment of the present invention. ") Will be described. FIG. 15 is a vertical sectional view showing the overall configuration of the FT reactor 300 according to this embodiment. As shown in FIG. 15, the FT reactor 300 according to the present embodiment includes a reactor main body 310, a distributor 340 as an example of the synthesis gas supply unit according to the present embodiment, and the present embodiment. And a baffle plate 350 as an example of a baffle member.
[0079] 反応器本体 310には、スラリー 320が収容される。反応器本体 310の底部には、ス ラリー 320を反応器本体 310内に導入するためのスラリー入口 311が設けられている 。反応器本体 310の側壁部には、スラリー 320を排出するためのスラリー排出口 312 が設けられている。反応器本体 310の塔頂部には、 FT反応により生成した軽質炭化 水素のガスや未反応の合成ガスを排出するためのガス排出口 314が設けられている  [0079] The reactor main body 310 contains the slurry 320. A slurry inlet 311 for introducing the slurry 320 into the reactor main body 310 is provided at the bottom of the reactor main body 310. A slurry discharge port 312 for discharging the slurry 320 is provided on the side wall of the reactor main body 310. A gas outlet 314 is provided at the top of the reactor main body 310 for discharging light hydrocarbon gas generated by the FT reaction and unreacted synthesis gas.
[0080] ディストリビュータ 340は、本実施形態に係る反応ガス供給部の一例であり、反応器 本体 310の下部に配設され水素および一酸ィ匕炭素を主成分とする合成ガスをスラリ 一 320中に供給する。このディストリビュータ 340の上部には、複数の合成ガス噴射 口 342が設けられている。 Distributor 340 is an example of a reaction gas supply unit according to the present embodiment, and is disposed in the lower part of reactor main body 310 to supply synthesis gas mainly composed of hydrogen and carbon monoxide in slurry 320. To supply. A plurality of synthesis gas injection ports 342 are provided at the upper portion of the distributor 340.
[0081] バッフルプレート 350は、反応器本体 310内部に、反応器本体 310の横断面の一 部を遮蔽するように設けられている。このバッフルプレート 350により、反応器本体 31 0の内部が高さ方向に複数の区画に分割される。また、ノ ッフルプレート 350には、 複数の貫通孔 352が設けられている。具体的には、本実施形態に係る FT反応器 30 0においては、上述した第 1および第 2の実施形態の場合と異なり、ノ ッフルプレート 350は、反応器本体 310内部の両側に、互い違いになるように設置されており、各区 画の境界において、バッフルプレート 350により、反応器本体 310内部の横断面の 一方側が開放され、他方側が遮蔽されている。  [0081] The baffle plate 350 is provided inside the reactor main body 310 so as to shield a part of the cross section of the reactor main body 310. The baffle plate 350 divides the interior of the reactor main body 310 into a plurality of sections in the height direction. In addition, a plurality of through holes 352 are provided in the kaffle plate 350. Specifically, in the FT reactor 300 according to the present embodiment, unlike the cases of the first and second embodiments described above, the kaffle plates 350 are staggered on both sides inside the reactor main body 310. The baffle plate 350 opens one side of the cross section inside the reactor main body 310 and shields the other side at the boundary of each section.
[0082] 本実施形態に係る FT反応器 300では、カゝかる構成を有することにより、反応器本 体 310の内部において、ディストリビュータ 340から供給された合成ガスおよびスラリ 一 320の上昇流 Gは、バッフルプレート 350により遮蔽されていない開放部を上昇す ることができる。また、 FT反応により生成した軽質炭化水素を多く含む気泡は、ノ ッフ ルプレート 350により、他の区画には流れ込み難くなり、自らが存在する区画内で循 環流 Hを生じる。さらに、スラリー 320は、貫通孔 252を通過して、下降流 Iを生じる。 ただし、図 15中の矢印は、反応器本体 310内に主に生じる流れの向きを示したもの であり、この流れは、時間とともに変化するものであって、常に一定の箇所を一定の 方向に一定の速度で流れるものではな 、。 [0082] In the FT reactor 300 according to the present embodiment, the upward flow G of the synthesis gas and the slurry 320 supplied from the distributor 340 inside the reactor main body 310 is obtained by having a profitable configuration. The opening that is not shielded by the baffle plate 350 can be raised. In addition, bubbles containing a large amount of light hydrocarbons generated by the FT reaction are difficult to flow into the other compartments due to the knot plate 350, and a circulating flow H is generated in the compartment where it exists. Furthermore, the slurry 320 passes through the through hole 252 and generates a downward flow I. However, the arrows in Fig. 15 indicate the direction of the flow that mainly occurs in the reactor main body 310. This flow changes with time and does not always flow at a constant speed in a certain direction in a certain direction.
[0083] このように、ノ ッフルプレート 350を互い違いになるように設置することにより、上昇 流 Gが反応器本体 310内の一方の側に偏ることを防止し、他方の側でスラリー 320が 滞留したり、スラリー 320の混合状態が悪ィ匕したりすることを防止することができる。  [0083] In this way, by installing the kaffle plates 350 in a staggered manner, the upward flow G is prevented from being biased to one side in the reactor main body 310, and the slurry 320 is retained on the other side. It is possible to prevent the mixed state of the slurry 320 from being deteriorated.
[0084] なお、上記以外の FT反応器 300の構成および作用効果は、上述した第 1の実施 形態に係る FT反応器 100の場合と同様であるので、詳細な説明は省略する。  [0084] The configuration and operational effects of the FT reactor 300 other than those described above are the same as those of the FT reactor 100 according to the first embodiment described above, and thus detailed description thereof is omitted.
[0085] 以上、添付図面を参照しながら本発明の好適な実施形態について説明した力 本 発明は力かる例に限定されないことは言うまでもない。当業者であれば、特許請求の 範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは 明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解され る。  As described above, the force described for the preferred embodiment of the present invention with reference to the accompanying drawings. Needless to say, the present invention is not limited to the powerful example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.
[0086] 例えば、上述した実施形態においては、バッフル部材がプレート状のバッフルプレ ート 150, 250, 350の場合について説明した力 バッフル部材はプレート状に限ら れず、反応器本体の側壁側を遮蔽し、中央側が開放されるものであれば、任意の形 状とすることができる。  [0086] For example, in the embodiment described above, the force baffle member described in the case where the baffle member is a plate-like baffle plate 150, 250, 350 is not limited to a plate shape, and the side wall side of the reactor main body is shielded. However, any shape can be used as long as the central side is open.
産業上の利用可能性  Industrial applicability
[0087] 本発明は、液体炭化水素中に固体の触媒粒子を懸濁させたスラリーを収容する反 応器本体と;前記反応器本体の下部に配設され、水素および一酸化炭素を主成分と する合成ガスを前記スラリーに供給する合成ガス供給部と;前記反応器本体内に設 けられ、前記スラリーの下降流を阻むバッフル部材と;を備える気泡塔型炭化水素合 成反応器に関する。 [0087] The present invention relates to a reactor main body that contains a slurry in which solid catalyst particles are suspended in liquid hydrocarbon; and is disposed at a lower portion of the reactor main body, and contains hydrogen and carbon monoxide as main components. The present invention relates to a bubble column type hydrocarbon synthesis reactor comprising: a synthesis gas supply unit that supplies the synthesis gas to the slurry; and a baffle member that is provided in the reactor main body and prevents a downward flow of the slurry.
本発明の気泡塔型炭化水素合成反応器によれば、原料である合成ガスの反応転 化率を向上させるとともに、反応器の内部空間の全域で効率的に反応を行わせるこ とがでさる。  According to the bubble column type hydrocarbon synthesis reactor of the present invention, the reaction conversion rate of the synthesis gas as a raw material can be improved and the reaction can be efficiently carried out in the entire internal space of the reactor. .

Claims

請求の範囲 The scope of the claims
[1] 液体炭化水素中に固体の触媒粒子を懸濁させたスラリーを収容する反応器本体と 前記反応器本体の下部に配設され、水素および一酸化炭素を主成分とする合成 ガスを前記スラリーに供給する合成ガス供給部と;  [1] A reactor main body containing a slurry in which solid catalyst particles are suspended in liquid hydrocarbon, and a lower part of the reactor main body, and a synthesis gas mainly containing hydrogen and carbon monoxide A synthesis gas supply for supplying the slurry;
前記反応器本体内に設けられ、前記スラリーの下降流を阻むバッフル部材と;を備 える気泡塔型炭化水素合成反応器。  A bubbling column type hydrocarbon synthesis reactor comprising: a baffle member provided in the reactor main body and blocking the downward flow of the slurry.
[2] 前記バッフル部材は、前記反応器本体の横断面の一部を遮蔽する請求項 1に記載 の気泡塔型炭化水素合成反応器。  2. The bubble column type hydrocarbon synthesis reactor according to claim 1, wherein the baffle member shields a part of a cross section of the reactor main body.
[3] 前記バッフル部材は、前記反応器本体内に、前記反応器本体の側壁に近い領域 を遮蔽し、かつ前記反応容器本体の中央および中央付近の領域を開放するように設 けられて!/、る請求項 1に記載の気泡塔型炭化水素合成反応器。 [3] The baffle member is provided in the reactor main body so as to shield a region near the side wall of the reactor main body and to open a center and a region near the center of the reaction vessel main body! 2. The bubble column type hydrocarbon synthesis reactor according to claim 1.
[4] 前記バッフル部材には、複数の貫通孔が形成されて!、る請求項 1に記載の気泡塔 型炭化水素合成反応器。 [4] The bubble column hydrocarbon synthesis reactor according to claim 1, wherein the baffle member has a plurality of through-holes!
[5] 前記貫通孔の大きさは、前記触媒粒子が通過可能であり、かつ、前記合成ガスまた は前記合成ガスの反応により生成した気体炭化水素を含む気泡の通過を抑制可能 な大きさである請求項 4に記載の気泡塔型炭化水素合成反応器。 [5] The size of the through hole is such that the catalyst particles can pass therethrough and the passage of bubbles containing gaseous hydrocarbons generated by the reaction of the synthesis gas or the synthesis gas can be suppressed. The bubble column type hydrocarbon synthesis reactor according to claim 4.
[6] 前記貫通孔は、前記触媒粒子の平均粒子径の 10倍から 100倍である請求項 4に 記載の気泡塔型炭化水素合成反応器。 6. The bubble column hydrocarbon synthesis reactor according to claim 4, wherein the through-hole is 10 to 100 times the average particle diameter of the catalyst particles.
[7] 前記貫通孔の少なくとも一部は、下方に向かうにつれて断面積が小さくなる略テー パ状に形成されている請求項 4に記載の気泡塔型炭化水素合成反応器。 7. The bubble column hydrocarbon synthesis reactor according to claim 4, wherein at least a part of the through-hole is formed in a substantially taper shape whose cross-sectional area decreases downward.
[8] 前記バッフル部材は、前記反応器本体の中央側が側壁側よりも低くなるように傾斜 して 、る請求項 1に記載の気泡塔型炭化水素合成反応器。 8. The bubble column hydrocarbon synthesis reactor according to claim 1, wherein the baffle member is inclined so that a center side of the reactor main body is lower than a side wall side.
PCT/JP2007/056911 2006-03-30 2007-03-29 Bubble tower type hydrocarbon synthesis reactor WO2007114271A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008508617A JP4980344B2 (en) 2006-03-30 2007-03-29 Bubble column type hydrocarbon synthesis reactor
AU2007232919A AU2007232919B2 (en) 2006-03-30 2007-03-29 Bubble column type hydrocarbon synthesis reactor
CN200780015670.9A CN101432394B (en) 2006-03-30 2007-03-29 Bubble tower type hydrocarbon synthesis reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-095020 2006-03-30
JP2006095020 2006-03-30

Publications (1)

Publication Number Publication Date
WO2007114271A1 true WO2007114271A1 (en) 2007-10-11

Family

ID=38563539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056911 WO2007114271A1 (en) 2006-03-30 2007-03-29 Bubble tower type hydrocarbon synthesis reactor

Country Status (5)

Country Link
JP (1) JP4980344B2 (en)
CN (1) CN101432394B (en)
AU (1) AU2007232919B2 (en)
MY (1) MY154308A (en)
WO (1) WO2007114271A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101211376B1 (en) * 2010-09-30 2012-12-13 한국에너지기술연구원 Fischer-tropsch bubble column reactor feasible multi reaction
KR101272083B1 (en) 2010-08-10 2013-06-07 한국에너지기술연구원 Trayed Bubble Column Reactor With Redistributor Means
US9452405B2 (en) 2008-09-30 2016-09-27 Japan Oil, Gas And Metals National Corporation Liquid-fuel synthesizing method and liquid-fuel synthesizing apparatus
US20220410108A1 (en) * 2019-10-29 2022-12-29 Zhejiang Wynca Chemical Industry Group Co., Ltd Multi-region plasma shell-and-tube reactor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109004B1 (en) * 2011-11-11 2012-12-26 マイクロ波化学株式会社 Chemical reactor
CN111790319B (en) * 2019-04-08 2022-08-30 国家能源投资集团有限责任公司 Slurry bed reactor, system and application thereof and Fischer-Tropsch synthesis method
CN110652943B (en) * 2019-10-29 2020-09-22 浙江新安化工集团股份有限公司 Bubble column reactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130872B1 (en) * 1971-01-05 1976-09-03
US3980439A (en) * 1975-05-14 1976-09-14 E. I. Du Pont De Nemours And Company Fluidizing apparatus with foraminous member
US4456504A (en) * 1980-04-30 1984-06-26 Chevron Research Company Reactor vessel and process for thermally treating a granular solid
JPH1066859A (en) * 1996-07-26 1998-03-10 Inst Fr Petrole Operation method of bubble three-phase column accompanied by adaptation to fischer-tropsch synthesis and apparatus therefor
US20040192987A1 (en) * 2003-03-28 2004-09-30 Conocophillips Company Gas agitated multiphase catalytic reactor with reduced backmixing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651894B2 (en) * 1974-09-09 1981-12-08
JPH0683783B2 (en) * 1990-06-15 1994-10-26 株式会社新潟鐵工所 Method of controlling bubbles in gas-solid fluidized bed and gas-solid fluidized bed apparatus
JPH06218270A (en) * 1993-01-26 1994-08-09 Mitsubishi Gas Chem Co Inc Vertical type fluidized bed catalyst reactor
JP4009778B2 (en) * 2001-07-06 2007-11-21 日立造船株式会社 Gas cooling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130872B1 (en) * 1971-01-05 1976-09-03
US3980439A (en) * 1975-05-14 1976-09-14 E. I. Du Pont De Nemours And Company Fluidizing apparatus with foraminous member
US4456504A (en) * 1980-04-30 1984-06-26 Chevron Research Company Reactor vessel and process for thermally treating a granular solid
JPH1066859A (en) * 1996-07-26 1998-03-10 Inst Fr Petrole Operation method of bubble three-phase column accompanied by adaptation to fischer-tropsch synthesis and apparatus therefor
US20040192987A1 (en) * 2003-03-28 2004-09-30 Conocophillips Company Gas agitated multiphase catalytic reactor with reduced backmixing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9452405B2 (en) 2008-09-30 2016-09-27 Japan Oil, Gas And Metals National Corporation Liquid-fuel synthesizing method and liquid-fuel synthesizing apparatus
KR101272083B1 (en) 2010-08-10 2013-06-07 한국에너지기술연구원 Trayed Bubble Column Reactor With Redistributor Means
KR101211376B1 (en) * 2010-09-30 2012-12-13 한국에너지기술연구원 Fischer-tropsch bubble column reactor feasible multi reaction
US20220410108A1 (en) * 2019-10-29 2022-12-29 Zhejiang Wynca Chemical Industry Group Co., Ltd Multi-region plasma shell-and-tube reactor
US11918992B2 (en) * 2019-10-29 2024-03-05 Zhejiang Wynca Chemical Industry Group Co., Ltd Multi-region slurry shell-and-tube reactor

Also Published As

Publication number Publication date
MY154308A (en) 2015-05-29
AU2007232919A1 (en) 2007-10-11
CN101432394A (en) 2009-05-13
AU2007232919B2 (en) 2011-01-20
JP4980344B2 (en) 2012-07-18
CN101432394B (en) 2013-03-27
JPWO2007114271A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
WO2007114271A1 (en) Bubble tower type hydrocarbon synthesis reactor
KR101792550B1 (en) Mixing device for a down-flow reactor
KR100830073B1 (en) Multiple bed downflow reactor
KR101937431B1 (en) Apparatus and method for hydroconversion
JP4874660B2 (en) Bubble column type hydrocarbon synthesis reactor
US8597586B2 (en) Shell-and-tube reactor having a distribution device for a gas-liquid phase mixture
JP2004237283A (en) Improved multiphase mixing device with staged gas introduction
JP2008532755A (en) Apparatus for mixing and distributing gas and liquid upstream from a particle packed bed
KR101608988B1 (en) Treatment or hydrotreatment reactor with a granular bed and an essentially liquid phase and an essentially gaseous phase flowing through the bed
JP4741237B2 (en) Mixing device used for two-phase parallel flow vessel
WO2007086610A1 (en) Bubble column type hydrocarbon synthesis reactor
JP7158412B2 (en) Novel apparatus for dispensing multiphase mixtures in chambers containing flowing media
JP2004307504A (en) Device for mixing and distributing gas phase and liquid phase supplied to granular bed
US8206657B2 (en) Enclosure containing a granular bed and a distribution of a gas phase and of a liquid phase circulating in an ascending flow in this enclosure
KR20070008680A (en) Slurry bubble column reactor
US4438075A (en) Process and apparatus for the production and maintenance of a fluidized layer in heterogeneous systems
US7439274B2 (en) Process for producing liquid, and, optionally, gaseous products from gaseous reactants
US20080152551A1 (en) Screenless moving bed reactor
US20190030496A1 (en) Apparatus For Mixing Fluids, Including Fluids Containing Solids
SG181157A1 (en) Quenching apparatus for a reactor
CN108114510B (en) Gas-liquid-solid three-phase separator and fluidized bed reactor comprising same
JPS6265735A (en) Reaction vessel
WO1999044950A1 (en) Method and apparatus for treating waste water
JP2000000403A (en) Liquid separator
JPS61287437A (en) Dispersing device for three phase fluidized bed reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008508617

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007232919

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007232919

Country of ref document: AU

Date of ref document: 20070329

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780015670.9

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 07740349

Country of ref document: EP

Kind code of ref document: A1