[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007102379A1 - Apparatus for treating organic waste water containing microbiologically degradable matters and treatment method - Google Patents

Apparatus for treating organic waste water containing microbiologically degradable matters and treatment method Download PDF

Info

Publication number
WO2007102379A1
WO2007102379A1 PCT/JP2007/053799 JP2007053799W WO2007102379A1 WO 2007102379 A1 WO2007102379 A1 WO 2007102379A1 JP 2007053799 W JP2007053799 W JP 2007053799W WO 2007102379 A1 WO2007102379 A1 WO 2007102379A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
biological treatment
treatment
electrolytic
treated water
Prior art date
Application number
PCT/JP2007/053799
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Senda
Norio Yamada
Robert Masahiro Serikawa
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Publication of WO2007102379A1 publication Critical patent/WO2007102379A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a treatment apparatus and treatment method for organic wastewater containing a hardly biodegradable substance.
  • Wastewater or waste liquid is discharged from private industrial facilities, public facilities, third sector facilities, etc. in various forms such as aqueous solutions, slurries, emulsions, micelles, suspensions, concentrated liquids, sludge mixed liquids, etc. Yes.
  • These effluents or effluents must be rendered harmless by water treatment before being discharged into public waters.
  • the most commonly used water treatment method for waste water or waste liquid is biological treatment.
  • Biological treatment is widely used for a long time because the treatment cost is relatively low.
  • Biological treatment is broadly divided into aerobic treatment and anaerobic treatment.
  • the former is mainly used when the chemical oxygen demand (CODCr) of wastewater is several tens to several thousand mg / L or less, and the latter is mainly used when CODCrl000 mg / L or more of wastewater.
  • CODCr chemical oxygen demand
  • denitrification treatment cannot be completed by aerobic treatment or anaerobic treatment alone in human waste treatment or sewage treatment. For this reason, there is a case where a combination of an aerobic biological treatment and an anaerobic biological treatment is used by virtue of the characteristics of both.
  • a pigment component is contained in the wastewater, such as dyed wastewater
  • biological treatment may be extremely difficult. Since pigment components are generally difficult to biodegrade to microorganisms, when wastewater containing pigment components is subjected to biological treatment, even if CODCr and BOD can be removed sufficiently, chromaticity cannot be obtained. There is.
  • the "refractory biodegradable substance” refers to a substance that is difficult to biodegrade.
  • an electrochemical treatment method As a method for treating such a hardly biodegradable substance, an electrochemical treatment method has been proposed.
  • the electrochemical treatment method is relatively easy to control and can be treated with equipment on a small scale compared to biological treatment.
  • a treatment method using a conductive diamond electrode has attracted attention as an example of a method for electrochemically treating an organic substance dissolved in water.
  • Conductive diamond electrodes have the same characteristics as conventional noble metal electrodes.
  • OH radicals hydroxy radicals
  • the theoretical amount of electricity required to decompose organic matter contained in 1 L of organic wastewater equivalent to CODCrlg / L by electrolytic treatment (hereinafter, the theoretical amount of electricity, Is about 3.4Ah / g-CODCr.
  • the cell voltage of the conductive diamond electrode should be at least 4-5V. Although it depends on the operating current density, the electrolyte temperature, and the electrical conductivity of the drainage, an example of a typical operating value of the cell voltage (voltage between electrodes of a single electrolytic cell) is about 7V.
  • This value has a problem that the treatment cost is higher than that of biological treatment equivalent to approximately 24 Wh / g_CODCr or 24 kWh / kg-CODCr.
  • organic wastewater contains a hardly biodegradable substance and an easily biodegradable substance.
  • direct electrolysis is performed on such wastewater, for example, OH radicals generated by electrolysis using a conductive diamond electrode are non-selectively distinguished between readily biodegradable substances and hardly biodegradable substances. Oxidation treatment of organic matter is performed. Because of this, biodegradation Even in the treatment of the active substance, electrolytic treatment with a high treatment cost is applied. As a result, processing costs may increase.
  • An object of the present invention is to provide a low-cost treatment method and apparatus in accordance with the properties of organic substances contained in wastewater, taking advantage of the characteristics of the electrochemical treatment method.
  • VFAs volatile fatty acids
  • the organic matter is subjected to electrolytic treatment with an electric power that does not lead to complete decomposition of carbon dioxide and water to obtain electrolytic treated water containing an easily biodegradable substance.
  • electrolytic treatment with an electric power that does not lead to complete decomposition of carbon dioxide and water to obtain electrolytic treated water containing an easily biodegradable substance.
  • a first aspect of the present invention includes a biological treatment apparatus, an electrolytic treatment tank that is located downstream of the biological treatment apparatus and includes a conductive diamond electrode, and at least water discharged from the electrolytic treatment tank.
  • a second aspect of the present invention is a biological treatment apparatus, an electrolytic treatment tank located downstream of the biological treatment apparatus and provided with a conductive diamond electrode, and a concentrating device located downstream of the electrolytic treatment tank. And an organic wastewater treatment apparatus containing a hardly biodegradable substance, and a return line for returning at least a part of the concentrated water from the concentration apparatus to the biological treatment apparatus.
  • a third aspect of the present invention includes a biological treatment device, a concentration device located downstream of the biological treatment device, and a conductive diamond electrode located downstream of the concentrated water side of the concentration device. An organic wastewater treatment apparatus containing a hardly biodegradable substance, and a return line for returning effluent water from the electrolytic treatment tank to the biological treatment apparatus.
  • the fourth aspect of the present invention is a biological treatment step of biologically treating an organic wastewater containing a hardly biodegradable substance to obtain biologically treated water, and the biological treatment using a conductive diamond electrode.
  • An organic material containing a hardly biodegradable substance comprising: an electrolytic treatment step of electrolytically treating at least a part of water to obtain electrolytically treated water; and a return step of returning at least a portion of the electrolytically treated water to the biological treatment step. This is an effluent treatment method.
  • a biological treatment step of biologically treating an organic wastewater containing a hardly biodegradable substance to obtain biologically treated water, and the biological treatment using a conductive diamond electrode An electrolytic treatment step of electrolytically treating water to obtain electrolytically treated water; a concentration step of concentrating the electrolytically treated water to obtain concentrated water; and a returning step of returning at least a part of the concentrated water to the biological treatment step;
  • the organic waste water treatment method containing a hardly biodegradable substance is an organic wastewater containing a hardly biodegradable substance.
  • a sixth aspect of the present invention is a biological treatment step of biologically treating an organic wastewater containing a hardly biodegradable substance to obtain biologically treated water, concentrating the biologically treated water, A concentration step for obtaining the electrolyzed water, an electrolysis step for electrolyzing at least a portion of the concentrated water using a conductive diamond electrode to obtain electrolyzed water, and a return step for returning the electrolyzed water to the biological treatment step.
  • the organic waste water treatment method containing a hardly biodegradable substance.
  • a biological treatment step of biologically treating organic wastewater containing a hardly biodegradable substance to obtain biologically treated water, and electrolytic treatment by electrolyzing at least a part of the biologically treated water comprising: an electrolytic treatment step for obtaining water; and a return step for returning at least a part of the electrolytic treatment water to the biological treatment step.
  • Wastewater that can be treated by the organic wastewater treatment method of the present invention includes a sewage treatment plant and a water treatment plant.
  • the present invention is not limited to these, and other than these, it can be applied to wastewater that is difficult to treat effectively with biological
  • the biological treatment process of the present invention may be a biological treatment usually performed in the wastewater treatment field.
  • an aerobic biological treatment process or an anaerobic biological treatment process can be mentioned.
  • An appropriate biological treatment process can be used according to the properties of the organic waste water to be treated.
  • the aerobic biological treatment method that can be used in the present invention is not particularly limited.
  • it may be a floating type activated sludge treatment method (a sludge floats in an aeration tank) that is a standard aerobic biological treatment, or a biofilm filtration method in which microorganisms are immobilized on a membrane.
  • the aerobic biological treatment may be performed by aerobic microorganisms immobilized on a carrier such as activated carbon, anthracite (coal-based carbon) or sand.
  • a method may be used in which microorganisms are immobilized using a granular or sponge-like hydrophilic polymer or activated carbon as a carrier.
  • it may be a catalytic oxidation type aerobic biological treatment in which microorganisms are immobilized on a string-like, net-like or honeycomb-like carrier.
  • it may be a rotating disk type aerobic biological treatment that takes in oxygen directly from the air without performing air aeration.
  • Rotating disc type aerobic biological treatment is a disk on which a sponge or the like is attached, the upper half of which is exposed in the air from the drainage, and this disk rotates directly from the air. This is an aerobic biological treatment method characterized by oxygen uptake into wastewater.
  • the anaerobic biological treatment system that can be used in the present invention may be a standard 20-day methane fermentation, or a high-temperature methane fermentation operated at a temperature of about 55 ° C. Moyore.
  • the speed of biological treatment There is an advantage that the interval can be shortened to 10-15 days.
  • the UASB method Upflow Anaerobic Sludge Blanket
  • EGSB method EGSB method capable of higher speed and high load operation
  • Expand ed Granular Sludge Bed Expand ed Granular Sludge Bed
  • the readily biodegradable substance in the organic wastewater is biologically treated and removed. Therefore, the biodegradable substances present in the organic wastewater remain mainly in the biologically treated water obtained in the biological treatment process.
  • This biologically treated water is then sent to the electrolytic treatment step for electrolytic treatment.
  • the electrolytic treatment process of the present invention is characterized by using a conductive diamond electrode.
  • the conductive diamond electrode that can be used in the present invention may be a conductive diamond electrode having any configuration known in the art.
  • a conductive diamond thin film is deposited on the surface of a conductive metal material such as nickel (Ni), tantalum (Ta), titanium ( ⁇ ), molybdenum (Mo), tungsten (W), or zirconium (Zr) as an electrode substrate.
  • a conductive diamond electrode formed by depositing a conductive diamond thin film on the surface of a semiconductor material such as a silicon wafer as an electrode substrate, and a deposited conductive polycrystalline diamond in the form of a plate Examples thereof include conductive diamond electrodes.
  • the conductive diamond thin film is provided with conductivity by doping a predetermined amount of a dopant such as boron or nitrogen when forming a diamond thin film on a substrate. As a dopant, boron is generally used.
  • a conductive diamond electrode may be used for both the anode and the cathode, or a conductive diamond electrode may be used only for the anode.
  • the density of OH radicals generated in the conductive diamond electrode can be controlled by the current density applied to the conductive diamond electrode.
  • several different current densities may be applied depending on the CODCr concentration of the wastewater to be treated. In this case, high current density is given to wastewater with high CODCr concentration, while low current density is given to wastewater with low CODCr concentration. Therefore, excessive generation of OH radicals can be prevented. In this way, the consumption of the conductive diamond electrode by OH radicals can be reduced, the life of the electrode can be extended, and the electric power can be saved.
  • the temperature of the waste water contacting the conductive diamond electrode is 40 ° C to 95 ° C, preferably 60 ° C to 85 ° C.
  • the electrical conductivity is temperature dependent, and the higher the temperature, the higher the electrical conductivity. When the electrical conductivity is increased, the required voltage can be kept low, so the above range is preferable.
  • the electrolytic treatment process organic substances in the wastewater to be treated are neutralized to carbon dioxide and water, and a large amount of easily biodegradable low-molecular intermediate products such as VFA are used as intermediate products. This increases the biodegradability of the wastewater.
  • the quantity of electricity is 10 to 90% of the theoretical quantity of electricity (3.4Ah / g-CODCr), preferably A 30 to 80% electric charge may be applied.
  • BOD / COD Cr or pH in the electrolyzed water can be measured.
  • BOD / CODCr force S The higher the S, the higher the biodegradability of all organic matter. Therefore, although it depends on the properties of the raw wastewater, it is desirable to perform the electrolytic treatment in the electrolytic treatment process so that the BOD / CODCr value S0.3 or higher, more preferably 0.4 or higher, in the electrolytically treated water.
  • the pH decreases when the proportion of VFA is high. Although it depends on the composition of the raw wastewater, it can be considered that the pH value is low and the VFA concentration is high, that is, the electrolyzed water contains a lot of readily biodegradable substances.
  • Electrolytic treatment Return the entire amount of water to the biological treatment process.
  • the amount of electrolyzed water that is returned to the biological treatment process varies depending on various factors such as the initial concentration of organic matter in the raw wastewater, the allowable concentration of the electrolyzed water, and the treatment capacity of the biological treatment process. For example, if the initial organic matter concentration of raw wastewater is high In this case, it is possible to relatively reduce the concentration of the hardly biodegradable substance by diluting the raw water discharged from the biological treatment process by increasing the amount of electrolytically treated water returned to the biological treatment process.
  • a biological treatment step of biologically treating an organic wastewater containing a hardly biodegradable substance to obtain biologically treated water, and electrolytic treatment of the biologically treated water An electrolysis process for obtaining electrolyzed water; a concentration process for concentrating the electrolyzed water to obtain concentrated water; and a returning process for returning at least a part of the concentrated water to the biological treatment process.
  • a method for treating organic waste water containing a substance capable of decomposing is provided.
  • This mode is suitable when it is desirable to perform advanced cleaning treatment that is required to achieve drainage standards that are discharged directly into the natural environment such as rivers and sea areas that are not covered by sewerage discharge standards.
  • This embodiment is characterized in that the electrolytically treated water is concentrated to obtain concentrated water, and this concentrated water is returned to the biological treatment step.
  • an appropriate method known in the field of solute concentration can be used.
  • membrane separation and concentration such as reverse osmosis (RO) membrane and loose RO membrane (NF membrane), evaporation concentration by evaporating water by heating or decompression, concentration by electrodialysis and the like can be preferably used.
  • Loose RO membrane (NF membrane) separation with high inorganic ion permeability is most preferred because it suppresses the generation of scale by inorganic compounds such as calcium carbonate.
  • the separation process separation water has a different name depending on the concentration mode.
  • the concentration process separation water means permeated water, in the case of evaporation concentration, it means distilled water, and in the case of electrodialysis, it means demineralized water.
  • Concentrated water contains easily biodegradable substances generated in the electrolytic treatment process, and they are easily decomposed in the biological treatment process.
  • Concentrated water contains various inorganic ions, such as calcium, magnesium, and phosphorus, contained in ordinary organic wastewater. These inorganic ions are taken into the sludge during the biological treatment process. Since inorganic ions taken into sludge can be discharged to the outside as surplus sludge, scale generation can be prevented.
  • the concentrated water contains a large amount of solutes such as calcium, magnesium, and phosphorus that cause scale formation
  • a part of the concentrated water is discharged to the outside regularly or intermittently, or
  • electrolytically treated water or concentrated water H AP (hydroxyapatite, Ca (OH) (PO)) or MAP (magnesium phosphate ammonium)
  • the causative component may be crystallized and removed.
  • an acid such as hydrochloric acid or sulfuric acid may be added to prevent scale formation.
  • a biological treatment step of biologically treating an organic wastewater containing a hardly biodegradable substance to obtain biologically treated water, and concentrating the biologically treated water A concentration step for obtaining concentrated water, an electrolytic treatment step for electrolytically treating at least a part of the concentrated water to obtain electrolytic treated water, and a returning step for returning the electrolytic treated water to the biological treatment step.
  • An organic wastewater treatment method containing a biodegradable substance is provided.
  • This embodiment is characterized in that after biologically treated water is concentrated, electrolytic treatment is performed, and this electrolytically treated water is returned to the biological treatment step.
  • electrolytic treatment is performed, and this electrolytically treated water is returned to the biological treatment step.
  • the easily biodegradable low molecular weight intermediate product produced by the electrolytic treatment is treated in the biological treatment process and not introduced into the concentration process.
  • the water separated from the concentration process does not contain easily biodegradable low-molecular intermediate products, the water quality can be greatly improved and can be released into the environment as it is.
  • the concentration ratio in the concentration step of the present embodiment affects the processing efficiency and processing cost of the electrolytic processing step.
  • the higher the concentration of salt in the concentrated water the lower the power consumption in the electrolytic treatment process.
  • the lower the concentration of organic matter in the concentrated water the lower the electrolytic treatment efficiency.
  • organic wastewater containing a hardly biodegradable substance is biologically treated to obtain biologically treated water, the biologically treated water is electrolytically treated to obtain electrolytically treated water, and the electrolytically treated water.
  • the load in the biological treatment process can be increased while the load in the electrolytic treatment process can be reduced, resulting in the ability to reduce the amount of power required for the electrolytic treatment. .
  • significant cost savings can be achieved with the present invention.
  • the biological treatment process is an anaerobic biological treatment process
  • the amount of biogas generated increases as the biological treatment load increases, and the amount of energy recovered increases.
  • the recovered energy can be used as part of the electrical energy required for the electrolytic treatment process.
  • the electrolyzed water whose water temperature has risen due to Joule heat in the electrolysis process can be returned to the biological treatment process and used as part of the thermal energy required in the biological treatment process. it can.
  • the organic wastewater treatment method of the present invention can use the energy generated with the material flow in each process as the required energy of the system, and achieves significant energy savings for the entire system. be able to.
  • Fig. 1 shows an example of the relationship between the amount of electricity input (Ah / g -CODCr) and CODCr (mg / L) and BOD (mg / L) in electrolysis using a conductive diamond electrode. It is a graph which shows.
  • FIG. 2 is a graph showing an example of the relationship between the amount of electricity input (Ah / g-CODCr) and BOD / CODCr in electrolytic treatment using a conductive diamond electrode.
  • FIG. 3 is a graph showing an example of the relationship between the amount of electricity input (Ah / g-CODCr) and VFA (mg / L) in electrolytic treatment using a conductive diamond electrode.
  • FIG. 4 is a graph showing an example of the relationship between the input electricity amount (Ah / g-CODCr) and pH in the electrolytic treatment using a conductive diamond electrode.
  • FIG. 5 is a schematic explanatory diagram of a processing flow according to the first embodiment of the present invention.
  • FIG. 6 is a schematic explanatory view showing an example of a circulating batch type electrolytic treatment tank used in the present invention.
  • FIG. 7 is a schematic explanatory diagram of a processing flow according to the second embodiment of the present invention.
  • FIG. 8 is a schematic explanatory diagram of a processing flow according to the third embodiment of the present invention.
  • FIG. 9 is a schematic explanatory diagram of a processing flow according to a conventional example used as a control in Example 1.
  • FIG. 10 is a schematic explanatory diagram of a treatment flow in which the electrolytically treated water used as a control in Example 3 is not sent to the biological treatment process.
  • FIG. 11 is a schematic explanatory diagram of a partial deformation process flow according to the second embodiment of the present invention.
  • reference numeral 1 represents raw waste water
  • 2 represents a biological treatment process (biological treatment apparatus)
  • 3 represents biological treatment water
  • 4 represents an electrolytic treatment process (electrolytic treatment tank)
  • 5 Indicates electrolytic treatment water
  • 6 indicates electrolytic treatment return water
  • 8 indicates a concentration step (concentration device)
  • 9 indicates concentration water
  • 10 indicates concentration step separation water (permeate)
  • 11 indicates The crystallization tank is shown.
  • FIG. 5 is a schematic explanatory diagram illustrating one embodiment of the present invention.
  • the organic wastewater raw water (hereinafter simply referred to as “drainage raw water”) 1 containing a hardly biodegradable substance is first introduced into the biological treatment process (biological treatment device) 2.
  • biological treatment process 2 easily biodegradable substances in the raw wastewater are separated and removed, and biological treated water 3 containing a large amount of difficult biodegradable substances is obtained.
  • the biologically treated water 3 is introduced into the electrolytic treatment step (electrolytic treatment tank) 4.
  • the electrolytic treatment process electrolytic treatment tank 4
  • the hardly biodegradable substances are decomposed into easily biodegradable substances such as VFA, carbon dioxide and water, etc., and discharged as the electrolyzed water 5.
  • Part of the electrolyzed water 5 is returned to the biological treatment process (biological treatment device) 2 as electrolytic treatment return water 6.
  • the readily biodegradable substances contained in the electrolytic treatment return water 6 are biologically treated.
  • the biological treatment step 2 is an aerobic biological treatment step and / or an anaerobic biological treatment step usually used in the art.
  • the biological treatment apparatus that can be used in the biological treatment step 2 includes an aerobic biological treatment tank such as an aeration tank, an anaerobic biological treatment tank, and a precipitation tank that are usually used in this field.
  • the form of the electrolytic treatment tank 4 is not particularly limited as long as it includes at least a conductive diamond electrode (not shown) as an anode.
  • a method for installing the conductive diamond electrode in the electrolytic treatment tank 4 it is preferable to have a structure that can vent the gas as well as possible. If the gas can not be vented well, bubbles will accumulate between the electrodes, causing the voltage between the electrodes to increase. Therefore, it is preferable to install the electrodes vertically rather than horizontally in the electrolytic treatment tank 4.
  • at least the conductive diamond electrode and / or the cathode that will be the anode is meshed, punched plate, etaspun metal, etc.
  • a structure that can be used.
  • a monopolar (single electrode) electrode method may be used, or a bipolar electrode method (bipolar electrode) may be used.
  • a large electrode area is required, there are the advantages of bipolar force S and compact equipment.
  • the operation of the electrolytic treatment tank 4 may be a batch type, a circulating batch type, or a continuous type.
  • the electrolytic treatment tank 4 is in the form of a tank having an anode and a cathode formed of conductive diamond electrodes.
  • the biologically treated water 3 from the biological treatment process 2 is sent to the electrolytic treatment tank 4.
  • the biologically treated water 3 is subjected to electrolytic treatment in the electrolytic treatment tank 4 for a certain period of time, and when the BOD / CODCr force S becomes 0.3 or more, the electrolytically treated water 5 containing an easily biodegradable substance can be obtained.
  • an electrolytic cell 4a having a cathode and a cathode composed of conductive diamond electrodes is provided outside the tank 4b, and drainage is tanned with a pump or the like.
  • the liquid can be sent from the tank 4b to the electrolytic cell 4a, while the treated water of the electrolytic cell 4a can be returned to the drain tank 4b.
  • a forced flow of drainage by pumping can be performed between the anode and the cathode in the electrolysis cell 4a, so that the electrolysis efficiency can be maintained better than when the electrode is simply immersed in the drainage tank.
  • a plurality of tanks having batch-type electrodes and / or a plurality of electrolytic treatment tanks 4 composed of a combination of a circulation batch-type electrolytic cell and a tank are arranged in series. A predetermined residence time is ensured.
  • wastewater treated in the first-stage electrolytic treatment tank is sent to the next electrolytic treatment tank, and the conductive diamond electrode is also used in this electrolytic treatment tank. It is configured to perform electrolytic treatment using In the electrolytic treatment tank having such a configuration, the treated water obtained from the final-stage electrolytic treatment tank is the electrolytic treated water 5.
  • the operating conditions of the electrolytic cell in each stage can be set by the CODCr concentration of the waste water.
  • the waste water in the high concentration C ⁇ DCr region from the biological treatment process flows into the first stage electrolytic treatment tank, it is a high current density electrolytic treatment tank. Since the waste water in the low concentration CODCr region flows into the second and subsequent electrolytic treatment tanks, the low current density electrolytic treatment tank will be used. Thus, an electrolytic treatment operation using a more efficient conductive diamond electrode can be performed.
  • FIG. 7 is a schematic explanatory view showing another embodiment of the present invention.
  • the water quality of the electrolyzed water 5 in Embodiment 1 may not be sufficiently clear, and although the exclusion criteria for discharging sewers are satisfied, the drainage standard for discharging directly into the environment such as rivers or sea areas May not be satisfied.
  • the quality of the treated water can be improved by providing a concentrating step (concentrator) 8 after the electrolytically treated water 5 of the first embodiment.
  • raw waste water 1 is introduced into a biological treatment process (biological treatment device) 2 to separate and remove easily biodegradable substances, and biological substances rich in hardly biodegradable substances.
  • Treated water 3 is obtained.
  • the biologically treated water 3 flows into the electrolytic treatment process (electrolytic treatment tank) 4.
  • the electrolytic treatment process electrolytic treatment tank 4
  • the hardly biodegradable substance in the biologically treated water 3 is decomposed and discharged as the electrolytically treated water 5.
  • Electrolyzed water 5 is introduced into a concentration process (concentration device) 8 to obtain concentrated water 9 and concentrated process separation water 10. Part or all of the concentrated water 9 is returned to the biological treatment process (biological treatment equipment) 2.
  • the concentrator 8 is a solute concentrator, for example, a membrane separator / concentrator such as an RO membrane or a loose RO membrane (NF membrane), an evaporator / concentrator that evaporates water by heating or decompression, and a concentrator such as electrodialysis. It's okay.
  • the concentration process separation water 10 means permeated water when the concentration process is a membrane separation method, distilled water when it is an evaporation concentration method, and demineralized water when it is electrodialysis.
  • the readily biodegradable substance contained in the concentrated water 9 can be easily treated in the biological treatment process (biological treatment apparatus) 2.
  • components that cause scale formation such as calcium, magnesium, and phosphorus contained in the concentrated water 9 can be taken into sludge in the biological treatment process (biological treatment equipment) 2 and discharged to the outside as excess sludge. If the biological treatment process (biological treatment equipment) 2 includes an anaerobic 'aerobic treatment tank, more phosphorus can be fixed to the excess sludge.
  • the crystallization tank 11 targets at least one of the biologically treated water 3, the electrolytically treated water 5 and the concentrated water 9, HAP (Hydroxysiapatite, Ca (OH) (PO)) or MAP (Magnesium phosphate ammonium, Mg (NH)
  • FIG. 8 is a schematic explanatory view showing another embodiment of the present invention.
  • the concentration device 8 since the concentration device 8 is downstream of the electrolytic treatment tank 4, an easily biodegradable substance contained in the electrolytic treatment water 5 is introduced into the concentration device 8.
  • the intermediate products generated in the electrolytic treatment tank 4 formic acid (molecular weight 46, boiling point 101 ° C), acetic acid (molecular weight 60, boiling point 118 ° C), etc. have low molecular weight and relatively low boiling point.
  • formic acid and acetic acid partially move to the permeate side in the case of membrane separation treatment, in particular, concentration treatment with a loose R ⁇ membrane, and partly move to the distilled water side in the case of evaporation concentration treatment. Therefore, there is a possibility that the water quality of the target concentration water 10 is not satisfied.
  • Embodiment 3 is suitable for improving the water quality of the separation water 10 in the concentration process.
  • the raw waste water 1 is introduced into the biological treatment process (biological treatment device) 2.
  • biological treatment process biological treatment device 2
  • readily biodegradable substances in the wastewater raw water 1 are separated and removed, and biologically treated water 3 containing a large amount of hardly biodegradable substances is obtained.
  • the biologically treated water 3 is introduced into a concentration process (concentration device) 8 to obtain concentrated water 9 and concentrated process separation water 10.
  • a part or all of the concentrated water 9 is introduced into the electrolytic treatment step (electrolytic treatment tank) 4.
  • the electrolytic treatment process electrolytic treatment tank 4
  • the hardly biodegradable substance is decomposed to obtain the electrolyzed water 5 containing the easily biodegradable substance.
  • the electrolytically treated water 5 is then returned to the biological treatment process (biological treatment device) 2.
  • the biological treatment process biological treatment equipment 2
  • the readily biodegradable substances contained in the electrolyzed water 5 are separated and removed.
  • the concentration step concentration device 8
  • the water quality of the concentration step separation water 10 can be greatly improved.
  • an electrolytic treatment tank using a conductive diamond electrode as an anode and a titanium electrode as a cathode was used.
  • the diamond electrode is formed by depositing conductive diamond on a silicon wafer substrate by the hot filament CVD method.
  • the electrode area was about 140 cm 2 and the current value was 14 A.
  • the experiment was carried out in a circulating batch system, with an initial water volume of 3L and a pumping flow rate from the tank to the electrolysis cell of lL / min.
  • Figure 1 shows the relationship between the input electricity (Ah / g_CODCr), CODCr (mg / l), and BOD (mg / L).
  • Figure 2 shows the input electricity (Ah / gC0DCr) and BOD. Indicates the relationship of / C ⁇ DCr.
  • Fig. 3 shows the relationship between the input electricity (Ah / g-CODCr) and VFA (mg / L).
  • Figure 4 shows the relationship between the input electricity (Ah / g-CODCr) and pH.
  • the most produced VFA was formic acid, followed by almost the same amounts of acetic acid and lactic acid. The sum of these concentrations is shown in Figure 3 as the VFA concentration.
  • the amount of VFA generated increased as the amount of electricity increased, and the pH decreased.
  • the amount of electricity input exceeded about 2Ah / g-CODCr the amount of VFA produced decreased with the increase of electricity, and the pH increased.
  • VFA decreased rapidly.
  • the improved biodegradability of the treated water is due to the generation of VFA.
  • the electrolytic treatment step electrolytic treatment bath 4 4 an electrolytic treatment bath using a conductive diamond electrode as an anode and a titanium electrode as a cathode was used.
  • the diamond electrode is formed by depositing conductive diamond on a silicon wafer substrate by hot filament CVD.
  • the electrode area was about 280 cm 2 .
  • FIG. 9 As a control, figure The test was conducted with the treatment flow in which the electrolytic treatment step (electrolysis treatment tank) 4 shown in Fig. 9 was not returned to the biological treatment step (biological treatment equipment) 2.
  • the required electrolysis power in the electrolytic treatment process (electrolytic treatment tank) 4 was about 30% lower than in Experiment 3, and the amount of methane gas generated by methane fermentation was about 1.3 times higher. Also, by increasing the return flow rate, the generated methane gas further increased and the electrolysis power decreased.
  • the biological treatment process biological treatment equipment 2
  • medium temperature methane fermentation was performed.
  • Electrolytic treatment process electrolysis treatment tank 4 as an electrolytic treatment tank using a conductive diamond electrode as an anode and titanium electrode as a cathode;
  • Concentration process concentration device 8 as a loose RO membrane (Product name: Nitto Denko)
  • the diamond electrode is formed by depositing conductive diamond on a silicon wafer substrate by the hot filament CVD method.
  • biological treatment process 2 standard activated sludge treatment was performed.
  • the concentrator 8 a membrane separation and concentrator equipped with a loose RO membrane (product name: NTR-7250 manufactured by Nitto Denko) was used.
  • the electrolytic treatment tank 4 a conductive diamond electrode was used as an anode and a titanium electrode was used as a cathode.
  • An electrolytic treatment tank was used.
  • the diamond electrode is formed by depositing conductive diamond on a silicon wafer substrate by hot filament CVD. The electrode area was about 280 cm 2 .
  • FIG. 7 and the treatment flow FIG. 7
  • Table 3 shows the test results. “Experiment 6” represents the result of the process flow shown in FIG. 8, “Experiment 7” represents the test result of the process flow shown in FIG. 7, and “Experiment 8” represents the test result of the process flow shown in FIG.
  • influent water represents raw wastewater 1
  • outflow water represents concentrated process separation water (permeated water) 10.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

It is intended to provide a low cost method, whereby waste water is treated in a manner fitting for organic matters contained therein by taking the advantage of an electrochemical treatment method, and an apparatus therefor. First, untreated waste water (1) is introduced into a biological treatment step (a biological treatment device) (2) wherein highly biologically degradable matters are separated and removed to give biologically treated water (3) containing a large amount of hardly biologically degradable matters. Next, this biologically treated water (3) is introduced into an electrolysis step (an electrolysis tank) (4) wherein the hardly biologically degradable matters are degraded into highly biologically degradable matters such as VFA, carbon dioxide, water, etc. and the water is discharged as electrolyzed water (5). A portion of this electrolyzed water (5) is returned into the biological treatment step (the biological treatment device) (2) as returned electrolyzed water (6) and the highly biologically degradable matters contained in the returned electrolyzed water (6) are biologically treated.

Description

明 細 書  Specification
難生物分解性物質含有有機性排水の処理装置および処理方法 技術分野  Processing equipment and processing method for organic wastewater containing hardly biodegradable substances
[0001] 本発明は、難生物分解性物質を含む有機性排水の処理装置および処理方法に関 する。  [0001] The present invention relates to a treatment apparatus and treatment method for organic wastewater containing a hardly biodegradable substance.
背景技術  Background art
[0002] 排水又は廃液は、水溶液、スラリー、ェマルジヨン、ミセル、懸濁液、濃厚液、汚泥 混合液等の各種形態で、民間工業施設、公共施設、第三セクタ一施設等から排出さ れている。これらの排水又は廃液は、公共水域に放流する前に水処理を行って無害 化する必要がある。排水又は廃液に対して最も一般的に行われている水処理方法は 、生物処理である。生物処理は、処理コストが比較的低いため、広く且つ昔から普及 してレ、る。生物処理には大きく分けて好気性処理と嫌気性処理がある。前者は、主に 排水の化学的酸素要求量 (CODCr)が数 10〜数千 mg/L以下の場合に用いられ、 後者は主に排水の CODCrl000mg/L以上の場合に用いられている。また、し尿処 理ゃ下水処理などでは、脱窒素処理が好気性処理又は嫌気性処理単独では完結 できない。このため、両者の特徴を生力、して、好気性生物処理と嫌気性生物処理とを 組み合わせて用いる場合もある。  [0002] Wastewater or waste liquid is discharged from private industrial facilities, public facilities, third sector facilities, etc. in various forms such as aqueous solutions, slurries, emulsions, micelles, suspensions, concentrated liquids, sludge mixed liquids, etc. Yes. These effluents or effluents must be rendered harmless by water treatment before being discharged into public waters. The most commonly used water treatment method for waste water or waste liquid is biological treatment. Biological treatment is widely used for a long time because the treatment cost is relatively low. Biological treatment is broadly divided into aerobic treatment and anaerobic treatment. The former is mainly used when the chemical oxygen demand (CODCr) of wastewater is several tens to several thousand mg / L or less, and the latter is mainly used when CODCrl000 mg / L or more of wastewater. In addition, denitrification treatment cannot be completed by aerobic treatment or anaerobic treatment alone in human waste treatment or sewage treatment. For this reason, there is a case where a combination of an aerobic biological treatment and an anaerobic biological treatment is used by virtue of the characteristics of both.
[0003] し力、しながら、化学物質またはペトロケミカル由来の化学的に合成された物質を含 む排水や、下水処理場の有機性汚泥又はメタン発酵汚泥のような硬レ、細胞壁を持 っ菌体が含まれている場合などのように生物分解性が低い物質を多く含む排水に対 しては、生物処理を適用することが困難なことがある。また、リグニン、フミンなどのよう に、 自然起源の物質であっても分子内にベンゼン環官能基を有する高分子である場 合などは、生物分解性が非常に低いことがある。  [0003] However, it has drainage containing chemical substances or chemically synthesized substances derived from petrochemicals, and has hard walls and cell walls such as organic sludge or methane fermentation sludge from sewage treatment plants. It may be difficult to apply biological treatment to wastewater that contains many substances with low biodegradability, such as when cells are contained. In addition, even a naturally occurring substance such as lignin and humin may be very low in biodegradability when it is a polymer having a benzene ring functional group in the molecule.
[0004] さらに、染色排水のように排水中に色素成分が含まれていると、生物処理が極めて 困難になることがある。色素成分は全般的に微生物に対して難生物分解性であるた め、色素成分を含む排水を生物処理にかけた場合、 CODCr、 BODが十分に除去で きても、色度がほとんど取れないことがある。 [0005] 一般的に且つ本明細書において、「難生物分解性物質」とは生物的に分解困難な 物質を指す。 [0004] Furthermore, if a pigment component is contained in the wastewater, such as dyed wastewater, biological treatment may be extremely difficult. Since pigment components are generally difficult to biodegrade to microorganisms, when wastewater containing pigment components is subjected to biological treatment, even if CODCr and BOD can be removed sufficiently, chromaticity cannot be obtained. There is. [0005] Generally and in the present specification, the "refractory biodegradable substance" refers to a substance that is difficult to biodegrade.
[0006] このような難生物分解性物質の処理方法として、電気化学的処理法が提案されて いる。電気化学的処理法は制御が比較的容易であり、生物処理と比べて小スケール の設備で処理が可能である。近年、水に溶解する有機物を電気化学的に処理する 方法の一例として、導電性ダイヤモンド電極を用いた処理法が注目されている。導電 性ダイヤモンド電極は従来の貴金属電極にはなレ、特性をもつ。水中で導電性ダイヤ モンド電極に直流電圧を印加すると、水が陽極で酸化されてヒドロキシラジカル(〇H ラジカル)が生成する。この OHラジカルは非常に高い酸化能力を有するため、ほとん ど全ての有機物を炭酸ガスと水にまで分解することが可能である。従来の貴金属電 極では OHラジカルの生成効率は非常に低レ、。しかし、導電性ダイヤモンド電極を用 レ、ると、非常に効率よく OHラジカルを生成可能なことが文献に示されている。 (Ghrar dim et A1.: electrochemical Oxidation of 4-chlorophenol for wastewater treatment, J. Electrochemical Society, 148, D78—D82, 2001)。  [0006] As a method for treating such a hardly biodegradable substance, an electrochemical treatment method has been proposed. The electrochemical treatment method is relatively easy to control and can be treated with equipment on a small scale compared to biological treatment. In recent years, a treatment method using a conductive diamond electrode has attracted attention as an example of a method for electrochemically treating an organic substance dissolved in water. Conductive diamond electrodes have the same characteristics as conventional noble metal electrodes. When a DC voltage is applied to the conductive diamond electrode in water, the water is oxidized at the anode to generate hydroxy radicals (OH radicals). Since this OH radical has a very high oxidation ability, almost all organic substances can be decomposed into carbon dioxide and water. Conventional noble metal electrodes have very low generation efficiency of OH radicals. However, it has been shown in the literature that OH radicals can be generated very efficiently when a conductive diamond electrode is used. (Ghrar dim et A1 .: Electrochemical Oxidation of 4-chlorophenol for wastewater treatment, J. Electrochemical Society, 148, D78—D82, 2001).
[0007] 導電性ダイヤモンド電極による水処理では、 CODCrlg/Lに相当する有機性排水 1 L中に含まれる有機物を電解処理によって分解するために必要な理論上の電気量( 以下、理論電気量、という)は、約 3.4Ah/g-CODCrである。実際に電解反応を行う場 合の導電性ダイヤモンド電極のセル電圧は、少なくとも 4〜5V以上が必要である。運 転する電流密度、電解液温度、排水の電気伝導度などにもよるが、セル電圧(単一 電解槽の電極間電圧)の一般的な運転値の例を挙げると 7V程度である。従って、 CO DCrlg/Lに相当する有機性排水 1L中に含まれる有機物を電解処理によって分解す るのに必要な電力は 3.4Ahx7V=23.8VAhとなる。この値は、およそ 24Wh/g_CODCr又 は 24kWh/kg-CODCrに等しぐ生物処理に比べると処理コストが高いという問題があ る。  [0007] In water treatment with a conductive diamond electrode, the theoretical amount of electricity required to decompose organic matter contained in 1 L of organic wastewater equivalent to CODCrlg / L by electrolytic treatment (hereinafter, the theoretical amount of electricity, Is about 3.4Ah / g-CODCr. When conducting an electrolytic reaction, the cell voltage of the conductive diamond electrode should be at least 4-5V. Although it depends on the operating current density, the electrolyte temperature, and the electrical conductivity of the drainage, an example of a typical operating value of the cell voltage (voltage between electrodes of a single electrolytic cell) is about 7V. Therefore, the power required to decompose the organic matter contained in 1 L of organic wastewater equivalent to CO DCrlg / L by electrolytic treatment is 3.4Ahx7V = 23.8VAh. This value has a problem that the treatment cost is higher than that of biological treatment equivalent to approximately 24 Wh / g_CODCr or 24 kWh / kg-CODCr.
[0008] また、一般的に、有機性排水には難生物分解性物質と易生物分解性物質が含ま れている。そのような排水に対して直接電解処理を施すと、例えば導電性ダイヤモン ド電極を用いた電解処理により生じる OHラジカルは、易生物分解性物質、難生物分 解性物質の区別なぐ非選択的に有機物の酸化処理を行う。このため、易生物分解 性物質の処理にさえも、処理コストの高い電解処理を適用することになる。結果として 、処理コストの増大を招く可能性がある。 [0008] In general, organic wastewater contains a hardly biodegradable substance and an easily biodegradable substance. When direct electrolysis is performed on such wastewater, for example, OH radicals generated by electrolysis using a conductive diamond electrode are non-selectively distinguished between readily biodegradable substances and hardly biodegradable substances. Oxidation treatment of organic matter is performed. Because of this, biodegradation Even in the treatment of the active substance, electrolytic treatment with a high treatment cost is applied. As a result, processing costs may increase.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明の目的は、電気化学的処理法の特性を生かして、排水に含まれる有機物の 性質に合わせた低コストの処理方法および装置を提供することにある。  [0009] An object of the present invention is to provide a low-cost treatment method and apparatus in accordance with the properties of organic substances contained in wastewater, taking advantage of the characteristics of the electrochemical treatment method.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者らは、鋭意研究を行った結果、最初に易生物分解性物質を生物処理し、 続いて難生物分解性物質を導電性ダイヤモンド電極を用いて電解処理することによ り、易生物分解性物質と難生物分解性物質とを含有する排水を、電解処理単独の場 合よりも低電力で処理を行うことができること;さらに、難生物分解性物質の電解処理 により、低分子の中間生成物として有機酸 (揮発性脂肪酸 (VFA)類、以下 VFA)等の 易生物分解性物質が多く生成し、処理水の生物分解性が向上することを知見した。 すなわち、電解処理工程で有機物が完全に二酸化炭素と水との分解に至らない程 度の電力で電解処理を行って易生物分解性物質を含む電解処理水を得て、この電 解処理水の一部を生物処理工程に返送して生物処理を行うことで、電解処理におけ るコストをさらに低下させ、処理プロセス全体のコストを引き下げることが可能になる。 また、生物処理工程が嫌気処理である場合には、生物処理工程へ導入される易生 物分解性物質負荷が増加することで、得られるバイオガス発生量が増加するメリットも ある。 [0010] As a result of intensive studies, the present inventors first biologically treated a readily biodegradable substance, and then electrolytically treated the hardly biodegradable substance using a conductive diamond electrode. In addition, wastewater containing easily biodegradable substances and hardly biodegradable substances can be treated with lower power than in the case of electrolytic treatment alone; It was found that biodegradable substances such as organic acids (volatile fatty acids (VFAs), hereinafter referred to as VFA) are produced as intermediate products of molecules, and the biodegradability of treated water is improved. That is, in the electrolytic treatment process, the organic matter is subjected to electrolytic treatment with an electric power that does not lead to complete decomposition of carbon dioxide and water to obtain electrolytic treated water containing an easily biodegradable substance. By returning a part to the biological treatment process and performing biological treatment, it is possible to further reduce the cost of the electrolytic treatment and reduce the cost of the entire treatment process. In addition, when the biological treatment process is anaerobic treatment, there is an advantage that the amount of biogas generated is increased by increasing the load of easily biodegradable substances introduced into the biological treatment process.
[0011] 本発明の第 1の態様は、生物処理装置と、該生物処理装置の下流に位置し、導電 性ダイヤモンド電極を具備する電解処理槽と、該電解処理槽からの流出水の少なく とも一部を該生物処理装置に戻す返送ラインと、を具備する難生物分解性物質含有 有機性排水処理装置である。  [0011] A first aspect of the present invention includes a biological treatment apparatus, an electrolytic treatment tank that is located downstream of the biological treatment apparatus and includes a conductive diamond electrode, and at least water discharged from the electrolytic treatment tank. An organic wastewater treatment apparatus containing a hardly biodegradable substance, comprising a return line for returning a part to the biological treatment apparatus.
[0012] 本発明の第 2の態様は、生物処理装置と、該生物処理装置の下流に位置し、導電 性ダイヤモンド電極を具備する電解処理槽と、該電解処理槽の下流に位置する濃縮 装置と、該濃縮装置からの濃縮水の少なくとも一部を該生物処理装置に戻す返送ラ インと、を具備する難生物分解性物質含有有機性排水処理装置である。 [0013] 本発明の第 3の態様は、生物処理装置と、該生物処理装置の下流に位置する濃縮 装置と、該濃縮装置の濃縮水側の下流に位置し、導電性ダイヤモンド電極を具備す る電解処理槽と、該電解処理槽からの流出水を該生物処理装置に戻す返送ラインと 、を具備する難生物分解性物質含有有機性排水処理装置である。 [0012] A second aspect of the present invention is a biological treatment apparatus, an electrolytic treatment tank located downstream of the biological treatment apparatus and provided with a conductive diamond electrode, and a concentrating device located downstream of the electrolytic treatment tank. And an organic wastewater treatment apparatus containing a hardly biodegradable substance, and a return line for returning at least a part of the concentrated water from the concentration apparatus to the biological treatment apparatus. [0013] A third aspect of the present invention includes a biological treatment device, a concentration device located downstream of the biological treatment device, and a conductive diamond electrode located downstream of the concentrated water side of the concentration device. An organic wastewater treatment apparatus containing a hardly biodegradable substance, and a return line for returning effluent water from the electrolytic treatment tank to the biological treatment apparatus.
[0014] 本発明の第 4の態様は、難生物分解性物質を含有する有機性排水を生物処理し て、生物処理水を得る生物処理工程と、導電性ダイヤモンド電極を用いて該生物処 理水の少なくとも一部を電解処理して電解処理水を得る電解処理工程と、該電解処 理水の少なくとも一部を該生物処理工程に戻す返送工程と、を具備する難生物分解 性物質含有有機性排水処理方法である。  [0014] The fourth aspect of the present invention is a biological treatment step of biologically treating an organic wastewater containing a hardly biodegradable substance to obtain biologically treated water, and the biological treatment using a conductive diamond electrode. An organic material containing a hardly biodegradable substance, comprising: an electrolytic treatment step of electrolytically treating at least a part of water to obtain electrolytically treated water; and a return step of returning at least a portion of the electrolytically treated water to the biological treatment step. This is an effluent treatment method.
[0015] 本発明の第 5の態様は、難生物分解性物質を含有する有機性排水を生物処理し て、生物処理水を得る生物処理工程と、導電性ダイヤモンド電極を用いて該生物処 理水を電解処理して電解処理水を得る電解処理工程と、該電解処理水を濃縮して、 濃縮水を得る濃縮工程と、該濃縮水の少なくとも一部を該生物処理工程に戻す返送 工程と、を具備する難生物分解性物質含有有機性排水処理方法である。  [0015] In a fifth aspect of the present invention, a biological treatment step of biologically treating an organic wastewater containing a hardly biodegradable substance to obtain biologically treated water, and the biological treatment using a conductive diamond electrode. An electrolytic treatment step of electrolytically treating water to obtain electrolytically treated water; a concentration step of concentrating the electrolytically treated water to obtain concentrated water; and a returning step of returning at least a part of the concentrated water to the biological treatment step; The organic waste water treatment method containing a hardly biodegradable substance.
[0016] 本発明の第 6の態様は、難生物分解性物質を含有する有機性排水を生物処理し て、生物処理水を得る生物処理工程と、該生物処理水を濃縮して、濃縮水を得る濃 縮工程と、導電性ダイヤモンド電極を用いて該濃縮水の少なくとも一部を電解処理し て電解処理水を得る電解処理工程と、該電解処理水を該生物処理工程に戻す返送 工程と、を具備する難生物分解性物質含有有機性排水処理方法である。  [0016] A sixth aspect of the present invention is a biological treatment step of biologically treating an organic wastewater containing a hardly biodegradable substance to obtain biologically treated water, concentrating the biologically treated water, A concentration step for obtaining the electrolyzed water, an electrolysis step for electrolyzing at least a portion of the concentrated water using a conductive diamond electrode to obtain electrolyzed water, and a return step for returning the electrolyzed water to the biological treatment step. The organic waste water treatment method containing a hardly biodegradable substance.
[0017] いずれの態様においても、電解処理工程において、理論電気量の 10〜90%の電 気量を付与することが好ましレヽ。  [0017] In any of the embodiments, it is preferable to provide an electric amount of 10 to 90% of the theoretical electric amount in the electrolytic treatment step.
[0018] 以下、本発明を詳細に説明する。  [0018] Hereinafter, the present invention will be described in detail.
[0019] 本発明によれば、難生物分解性物質を含有する有機性排水を生物処理して生物 処理水を得る生物処理工程と、該生物処理水の少なくとも一部を電気分解して電解 処理水を得る電解処理工程と、該電解処理水の少なくとも一部を該生物処理工程に 戻す返送工程と、を具備する難生物分解性物質含有有機性排水処理方法が提供さ れる。  [0019] According to the present invention, a biological treatment step of biologically treating organic wastewater containing a hardly biodegradable substance to obtain biologically treated water, and electrolytic treatment by electrolyzing at least a part of the biologically treated water There is provided an organic wastewater treatment method containing a hardly biodegradable substance, comprising: an electrolytic treatment step for obtaining water; and a return step for returning at least a part of the electrolytic treatment water to the biological treatment step.
[0020] 本発明の有機性排水処理方法により処理可能な排水としては、下水処理場ゃ水処 理場の汚泥混合液;メタン発酵プロセス等の各種汚泥類;石油精製工場や石油製品 工場の排水'廃液;化学薬品工場の排水'廃液;医薬品製造工場や病院の排水'廃 液;半導体プロセス(フォトレジスト工程、洗浄工程、鍍金工程)の各種工程排水 ·廃 液;写真現像廃液;機械加工工場の各種使用済み切削油(油性、水溶性)廃液;塗 料製造工程の洗浄水'排水;製缶工場、車体工場、板金工場の塗装工程洗浄水 '排 水;農薬製造工程の排水 ·廃液;染色排水;染料工場排水;発電所のイオン交換再 生排水(コンデミ排水);有機物やアンモニアが含まれる鍍金工場の鍍金廃液や鍍金 洗浄水;などを例として挙げることができる。しかし、これらに限定されず、これら以外 にも生物処理単独では効果的な排水処理が困難な排水に適用することができる。 [0020] Wastewater that can be treated by the organic wastewater treatment method of the present invention includes a sewage treatment plant and a water treatment plant. Mixed sludge from the barber shop; various sludges such as methane fermentation processes; wastewater from waste oil refineries and petroleum products; wastewater from wastewater from chemical factories; wastewater from wastewater from chemical manufacturing plants; wastewater from wastewater from pharmaceutical manufacturing plants and hospitals; semiconductor processes ( Photoresist process, cleaning process, plating process) Wastewater; Waste liquid; Photodevelopment waste liquid; Various used cutting oil (oil-based and water-soluble) waste liquid of machining factory; Washing water for painting processes at can factories, car body factories, sheet metal factories'drainage; wastewater from agricultural chemical manufacturing processes · wastewater; dyeing wastewater; dyestuff wastewater; ion exchange regeneration wastewater from power plants (condemi wastewater); contains organic matter and ammonia Examples include the plating waste liquid and plating washing water of the plating factory. However, the present invention is not limited to these, and other than these, it can be applied to wastewater that is difficult to treat effectively with biological treatment alone.
[0021] 本発明の生物処理工程は、排水処理分野で通常行われている生物処理でよい。 [0021] The biological treatment process of the present invention may be a biological treatment usually performed in the wastewater treatment field.
具体的には好気性生物処理工程又は嫌気性生物処理工程を挙げることができる。 処理すべき有機性排水の性状に応じて適宜の生物処理工程を用いることができる。  Specifically, an aerobic biological treatment process or an anaerobic biological treatment process can be mentioned. An appropriate biological treatment process can be used according to the properties of the organic waste water to be treated.
[0022] 本発明において用いることのできる好気性生物処理の方式は特に限定されるもの ではない。たとえば、標準的な好気性生物処理である浮遊式 (曝気槽に汚泥が浮遊 する)活性汚泥処理法であっても良いし、微生物が膜に固定化された生物膜濾過法 であってもよい。さらに、活性炭、アンスラサイト(石炭系炭素)、砂などの担体に好気 性微生物を固定した方式の好気性生物処理であってもよい。また、浮遊法のバリエ ーシヨンとして粒状あるいはスポンジ状の親水性ポリマー又は活性炭を担体として微 生物を固定化した方式であってもよい。さらには、ひも状、網状又はハニカム状の担 体に微生物が固定化された接触酸化方式の好気性生物処理であってもよい。あるい は、空気曝気を行わないで直接空気中から酸素を取り入れる回転円盤式の好気性 生物処理であってもよい。回転円盤式好気性生物処理とは、スポンジ等が取りつけら れたディスクが、その上半分が排水から空気中に露出した状態で配置されており、こ のディスクが回転することによって空気中から直接排水中に酸素を取り込むことを特 徴とする好気性生物処理法である。  [0022] The aerobic biological treatment method that can be used in the present invention is not particularly limited. For example, it may be a floating type activated sludge treatment method (a sludge floats in an aeration tank) that is a standard aerobic biological treatment, or a biofilm filtration method in which microorganisms are immobilized on a membrane. . Further, the aerobic biological treatment may be performed by aerobic microorganisms immobilized on a carrier such as activated carbon, anthracite (coal-based carbon) or sand. Further, as a floatation variation, a method may be used in which microorganisms are immobilized using a granular or sponge-like hydrophilic polymer or activated carbon as a carrier. Further, it may be a catalytic oxidation type aerobic biological treatment in which microorganisms are immobilized on a string-like, net-like or honeycomb-like carrier. Alternatively, it may be a rotating disk type aerobic biological treatment that takes in oxygen directly from the air without performing air aeration. Rotating disc type aerobic biological treatment is a disk on which a sponge or the like is attached, the upper half of which is exposed in the air from the drainage, and this disk rotates directly from the air. This is an aerobic biological treatment method characterized by oxygen uptake into wastewater.
[0023] 本発明において用いることのできる嫌気性生物処理の方式としては、標準的な 20 日間メタン発酵であっても良いし、あるいは 55°C程度の温度で運転される高温メタン 発酵であってもよレ、。高温メタン発酵の場合は、生物処理の速度が速いので処理時 間を 10〜15日間に短縮できるメリットがある。本発明においては、生物処理として、更 に、グラニュール(メタン発酵菌を粒状化した塊)を投入した UASB法(Upflow Anaerob ic Sludge Blanket)、あるいはさらに高速且つ高負荷の運転ができる EGSB法(Expand ed Granular Sludge Bed)を採用することもできる。本発明において生物処理としてこ れらの嫌気性処理を行うと、メタンガスの形でエネルギー回収を行うことができるという 利点もある。 [0023] The anaerobic biological treatment system that can be used in the present invention may be a standard 20-day methane fermentation, or a high-temperature methane fermentation operated at a temperature of about 55 ° C. Moyore. In the case of high-temperature methane fermentation, the speed of biological treatment There is an advantage that the interval can be shortened to 10-15 days. In the present invention, as biological treatment, the UASB method (Upflow Anaerobic Sludge Blanket) in which granules (granulated methane-fermenting bacteria are granulated) or the EGSB method (EGSB method capable of higher speed and high load operation) Expand ed Granular Sludge Bed) can also be adopted. When these anaerobic treatments are performed as biological treatments in the present invention, there is an advantage that energy recovery can be performed in the form of methane gas.
[0024] 本発明において、生物処理工程では、有機性排水中の易生物分解性物質が生物 処理されて除去される。よって、生物処理工程で得られる生物処理水中には、有機 性排水中に存在していた難生物分解性物質が主として残ることになる。この生物処 理水は、次いで、電解処理工程に送られて電解処理される。本発明の電解処理工程 は、導電性ダイヤモンド電極を用いることを特徴とする。本発明で用いることができる 導電性ダイヤモンド電極としては、当該技術分野において公知の任意構成の導電性 ダイヤモンド電極でよい。たとえば、電極基板としてのニッケル(Ni)、タンタル(Ta)、 チタン (Ή)、モリブデン (Mo)、タングステン (W)、ジルコニウム(Zr)等の導電性金属 材料の表面に導電性ダイヤモンド薄膜を析出させてなる導電性ダイヤモンド電極、 電極基板としてのシリコンウェハー等半導体材料表面に導電性ダイヤモンド薄膜を 成膜させてなる導電性ダイヤモンド電極、析出させた導電性多結晶ダイヤモンドを板 状に形成してなる導電性ダイヤモンド電極などを挙げることができる。なお、導電性ダ ィャモンド薄膜は、基板上へダイヤモンド薄膜を成膜する際にホウ素や窒素などのド 一パントを所定量ドープして導電性を付与したものである。ドーパントとしてはホウ素 を使用するのが一般的である。なお、本発明において、陽極及び陰極の両方に導電 性ダイヤモンド電極を用いてもよぐあるいは陽極のみに導電性ダイヤモンド電極を 用いてもよい。  In the present invention, in the biological treatment process, the readily biodegradable substance in the organic wastewater is biologically treated and removed. Therefore, the biodegradable substances present in the organic wastewater remain mainly in the biologically treated water obtained in the biological treatment process. This biologically treated water is then sent to the electrolytic treatment step for electrolytic treatment. The electrolytic treatment process of the present invention is characterized by using a conductive diamond electrode. The conductive diamond electrode that can be used in the present invention may be a conductive diamond electrode having any configuration known in the art. For example, a conductive diamond thin film is deposited on the surface of a conductive metal material such as nickel (Ni), tantalum (Ta), titanium (Ή), molybdenum (Mo), tungsten (W), or zirconium (Zr) as an electrode substrate. A conductive diamond electrode formed by depositing a conductive diamond thin film on the surface of a semiconductor material such as a silicon wafer as an electrode substrate, and a deposited conductive polycrystalline diamond in the form of a plate Examples thereof include conductive diamond electrodes. The conductive diamond thin film is provided with conductivity by doping a predetermined amount of a dopant such as boron or nitrogen when forming a diamond thin film on a substrate. As a dopant, boron is generally used. In the present invention, a conductive diamond electrode may be used for both the anode and the cathode, or a conductive diamond electrode may be used only for the anode.
[0025] 本発明の電解処理工程において、導電性ダイヤモンド電極で発生する OHラジカル の密度は、導電性ダイヤモンド電極に付与する電流密度によって制御することができ る。電解処理工程において、処理すべき排水の CODCr濃度に応じて複数の異なる 電流密度を付与してよい。この場合、 CODCr濃度が高い排水に対しては高電流密 度を付与し、一方 CODCr濃度が低い排水に対しては低電流密度を付与することによ り、 OHラジカルの過剰発生を防止することができる。こうして、 OHラジカルによる導電 性ダイヤモンド電極の消耗を減少させ、電極の寿命を延ばすことができると共に、電 解電力の節約にもつながる。 In the electrolytic treatment process of the present invention, the density of OH radicals generated in the conductive diamond electrode can be controlled by the current density applied to the conductive diamond electrode. In the electrolytic treatment process, several different current densities may be applied depending on the CODCr concentration of the wastewater to be treated. In this case, high current density is given to wastewater with high CODCr concentration, while low current density is given to wastewater with low CODCr concentration. Therefore, excessive generation of OH radicals can be prevented. In this way, the consumption of the conductive diamond electrode by OH radicals can be reduced, the life of the electrode can be extended, and the electric power can be saved.
[0026] 電解処理工程において、導電性ダイヤモンド電極と接触する排水の温度は 40°C〜 95°C、好ましくは 60°C〜85°Cである。電気伝導度は温度依存性であり、温度が高い ほど電気伝導度は高くなり、電気伝導度を高くすると所要電圧を低く維持することが できるので、上記範囲とすることが好ましい。電解処理温度を上記範囲に維持するた めに、外部熱源から熱をカ卩えることもできる力 導電性ダイヤモンド電極を用いた電 解反応による排水の温度上昇に伴い発生する熱を効率的に利用することがより好ま しい。特に電解槽の入口と出口とに熱交換器を設置して熱交換が行えるようにして、 電解槽で発生する熱を効率的に再利用することが望ましい。  [0026] In the electrolytic treatment step, the temperature of the waste water contacting the conductive diamond electrode is 40 ° C to 95 ° C, preferably 60 ° C to 85 ° C. The electrical conductivity is temperature dependent, and the higher the temperature, the higher the electrical conductivity. When the electrical conductivity is increased, the required voltage can be kept low, so the above range is preferable. Ability to capture heat from an external heat source to maintain the electrolytic treatment temperature within the above range. Efficient use of heat generated as the temperature of wastewater rises due to electrolysis using a conductive diamond electrode It is more preferable to do. In particular, it is desirable to install heat exchangers at the inlet and outlet of the electrolytic cell so that heat can be exchanged so that the heat generated in the electrolytic cell can be reused efficiently.
[0027] 電解処理工程において、処理すべき排水中の有機物が二酸化炭素と水にまで無 機化される途中で、中間生成物として VFA等の易生物分解性の低分子中間生成物 が多量に生成されて、排水の生物分解性が上昇する。導電性ダイヤモンド電極を用 いた電解処理において、易生物分解性物質を多く含む電解処理水を得るためには、 理論電気量(3.4Ah/g- CODCr)の 10〜90%の電気量、好ましくは 30〜80%の電気 量を付与すればよい。  [0027] In the electrolytic treatment process, organic substances in the wastewater to be treated are neutralized to carbon dioxide and water, and a large amount of easily biodegradable low-molecular intermediate products such as VFA are used as intermediate products. This increases the biodegradability of the wastewater. In electrolysis using a conductive diamond electrode, in order to obtain electrolyzed water containing a large amount of readily biodegradable substances, the quantity of electricity is 10 to 90% of the theoretical quantity of electricity (3.4Ah / g-CODCr), preferably A 30 to 80% electric charge may be applied.
[0028] 電解処理水の生物分解性を簡便に推測するために、電解処理水中の BOD/COD Crまたは pHを測定することができる。 BOD/CODCr力 S高いほど、全有機物のうち易 生物分解性の割合が高いことを意味する。よって、排水原水の性状にもよるが、電解 処理水中の BOD/CODCrの値力 S0.3以上、さらに好ましくは 0.4以上になるように、電 解処理工程で電解処理を行うことが望ましい。また、 VFAの割合が多いと pHは低下 する。排水原水の組成にもよるが、 pHの値が低レ、と VFA濃度が高レ、、つまり、電解処 理水に易生物分解性物質が多く含まれている状態と考えることができる。  [0028] In order to easily estimate the biodegradability of electrolyzed water, BOD / COD Cr or pH in the electrolyzed water can be measured. BOD / CODCr force S The higher the S, the higher the biodegradability of all organic matter. Therefore, although it depends on the properties of the raw wastewater, it is desirable to perform the electrolytic treatment in the electrolytic treatment process so that the BOD / CODCr value S0.3 or higher, more preferably 0.4 or higher, in the electrolytically treated water. In addition, the pH decreases when the proportion of VFA is high. Although it depends on the composition of the raw wastewater, it can be considered that the pH value is low and the VFA concentration is high, that is, the electrolyzed water contains a lot of readily biodegradable substances.
[0029] 本発明において、電解処理水の少なくとも一部を生物処理工程に戻す。電解処理 水の全量を生物処理工程に戻してもょレ、。生物処理工程に戻す電解処理水の量は 、排水原水の初期有機物濃度、電解処理水の濃度許容値、生物処理工程の処理能 力など種々要因によって変動する。たとえば、排水原水の初期有機物濃度が高い場 合には、生物処理工程に戻す電解処理水量を多量にすることで生物処理工程での 排水原水を希釈して、難生物分解性物質濃度を相対的に低下させることができる。 In the present invention, at least a part of the electrolytically treated water is returned to the biological treatment process. Electrolytic treatment Return the entire amount of water to the biological treatment process. The amount of electrolyzed water that is returned to the biological treatment process varies depending on various factors such as the initial concentration of organic matter in the raw wastewater, the allowable concentration of the electrolyzed water, and the treatment capacity of the biological treatment process. For example, if the initial organic matter concentration of raw wastewater is high In this case, it is possible to relatively reduce the concentration of the hardly biodegradable substance by diluting the raw water discharged from the biological treatment process by increasing the amount of electrolytically treated water returned to the biological treatment process.
[0030] また、本発明の別の態様として、難生物分解性物質を含有する有機性排水を生物 処理して、生物処理水を得る生物処理工程と、該生物処理水を電解処理して、電解 処理水を得る電解処理工程と、該電解処理水を濃縮して、濃縮水を得る濃縮工程と 、該濃縮水の少なくとも一部を該生物処理工程に戻す返送工程と、を具備する難生 物分解性物質含有有機性排水処理方法が提供される。  [0030] Further, as another aspect of the present invention, a biological treatment step of biologically treating an organic wastewater containing a hardly biodegradable substance to obtain biologically treated water, and electrolytic treatment of the biologically treated water, An electrolysis process for obtaining electrolyzed water; a concentration process for concentrating the electrolyzed water to obtain concentrated water; and a returning process for returning at least a part of the concentrated water to the biological treatment process. A method for treating organic waste water containing a substance capable of decomposing is provided.
[0031] 本態様は、下水道放流基準ではなぐ河川や海域などの自然環境中に直接放流 する排水基準を達成することが求められる高度清浄化処理が望ましい場合に好適で ある。  [0031] This mode is suitable when it is desirable to perform advanced cleaning treatment that is required to achieve drainage standards that are discharged directly into the natural environment such as rivers and sea areas that are not covered by sewerage discharge standards.
[0032] 本態様においては、電解処理水を濃縮して濃縮水を得て、この濃縮水を生物処理 工程に戻すことに特徴がある。濃縮の態様としては、溶解質の濃縮分野で公知の適 宜方法を用いることができる。たとえば、逆浸透(RO)膜、ルーズ RO膜 (NF膜)などの 膜分離濃縮、加温あるいは減圧により水分を蒸発させる蒸発濃縮、電気透析による 濃縮などを好ましく用いることができる。炭酸カルシウムなどの無機化合物によるスケ ール発生を抑制するので、無機イオンの透過率の高いルーズ RO膜 (NF膜)分離が 最も好ましい。  [0032] This embodiment is characterized in that the electrolytically treated water is concentrated to obtain concentrated water, and this concentrated water is returned to the biological treatment step. As a mode of concentration, an appropriate method known in the field of solute concentration can be used. For example, membrane separation and concentration such as reverse osmosis (RO) membrane and loose RO membrane (NF membrane), evaporation concentration by evaporating water by heating or decompression, concentration by electrodialysis and the like can be preferably used. Loose RO membrane (NF membrane) separation with high inorganic ion permeability is most preferred because it suppresses the generation of scale by inorganic compounds such as calcium carbonate.
[0033] なお、濃縮工程分離水は濃縮の態様に応じて名称が異なる。たとえば、膜分離濃 縮の場合には濃縮工程分離水は透過水を意味し、蒸発濃縮の場合には蒸留水、電 気透析の場合には脱塩水をそれぞれ意味する。  [0033] It should be noted that the separation process separation water has a different name depending on the concentration mode. For example, in the case of membrane separation concentration, the concentration process separation water means permeated water, in the case of evaporation concentration, it means distilled water, and in the case of electrodialysis, it means demineralized water.
[0034] 濃縮水は、電解処理工程で生じる易生物分解性物質を含有し、それらは生物処理 工程で容易に分解される。また、濃縮水は、通常の有機性排水に含まれる無機の各 種イオン、たとえばカルシウム、マグネシウム、リンなどを含む。これら無機イオンは、 生物処理工程で汚泥中に取り込まれる。汚泥中に取り込まれた無機イオンは余剰汚 泥として外部に排出することが可能なので、スケールの発生を防止することができる。  [0034] Concentrated water contains easily biodegradable substances generated in the electrolytic treatment process, and they are easily decomposed in the biological treatment process. Concentrated water contains various inorganic ions, such as calcium, magnesium, and phosphorus, contained in ordinary organic wastewater. These inorganic ions are taken into the sludge during the biological treatment process. Since inorganic ions taken into sludge can be discharged to the outside as surplus sludge, scale generation can be prevented.
[0035] 濃縮水が、スケール生成の原因となるカルシウム、マグネシウム、リンなどの溶解質 を多量に含む場合には、定常的あるいは間欠的に濃縮水の一部を外部に排出した り、又は生物処理水、電解処理水あるいは濃縮水のいずれか一つ以上を対象に、 H AP (ヒドロキシアパタイト、 Ca (OH)(PO ) )又は MAP (リン酸マグネシウムアンモニゥム [0035] When the concentrated water contains a large amount of solutes such as calcium, magnesium, and phosphorus that cause scale formation, a part of the concentrated water is discharged to the outside regularly or intermittently, or For one or more of treated water, electrolytically treated water or concentrated water, H AP (hydroxyapatite, Ca (OH) (PO)) or MAP (magnesium phosphate ammonium)
5 4 3  5 4 3
、 Mg(NH )PO )処理を行って、カルシウム、マグネシウム、リンなどのスケール生成の , Mg (NH) PO) treatment to produce scales such as calcium, magnesium and phosphorus
4 4 4 4
原因となる成分を結晶化させて取り除いたりしてもよい。あるいは、濃縮工程の手前 で、塩酸'硫酸などの酸を添カ卩して、スケールの生成を防止してもよい。  The causative component may be crystallized and removed. Alternatively, before the concentration step, an acid such as hydrochloric acid or sulfuric acid may be added to prevent scale formation.
[0036] さらに、本発明の別の態様として、難生物分解性物質を含有する有機性排水を生 物処理して、生物処理水を得る生物処理工程と、該生物処理水を濃縮して、濃縮水 を得る濃縮工程と、該濃縮水の少なくとも一部を電解処理して、電解処理水を得る電 解処理工程と、該電解処理水を該生物処理工程に戻す返送工程と、を具備する難 生物分解性物質含有有機性排水処理方法が提供される。  [0036] Further, as another aspect of the present invention, a biological treatment step of biologically treating an organic wastewater containing a hardly biodegradable substance to obtain biologically treated water, and concentrating the biologically treated water, A concentration step for obtaining concentrated water, an electrolytic treatment step for electrolytically treating at least a part of the concentrated water to obtain electrolytic treated water, and a returning step for returning the electrolytic treated water to the biological treatment step. An organic wastewater treatment method containing a biodegradable substance is provided.
[0037] 本態様にぉレ、ては、生物処理水を濃縮した後、電解処理を行い、この電解処理水 を生物処理工程に戻すことに特徴がある。電解処理水を生物処理工程に戻すことに よって、電解処理によって生成する易生物分解性の低分子中間生成物は生物処理 工程で処理され、濃縮工程には導入されない。換言すれば、濃縮工程分離水には 易生物分解性の低分子中間生成物が含まれないので、水質を大幅に向上させること ができ、そのまま環境中に放出することが可能となる。  [0037] This embodiment is characterized in that after biologically treated water is concentrated, electrolytic treatment is performed, and this electrolytically treated water is returned to the biological treatment step. By returning the electrolytically treated water to the biological treatment process, the easily biodegradable low molecular weight intermediate product produced by the electrolytic treatment is treated in the biological treatment process and not introduced into the concentration process. In other words, since the water separated from the concentration process does not contain easily biodegradable low-molecular intermediate products, the water quality can be greatly improved and can be released into the environment as it is.
[0038] 本態様の濃縮工程における濃縮倍率は、電解処理工程の処理効率および処理コ ストに影響する。濃縮水の塩類濃度が高いほど電解処理工程での消費電力は減少 し、濃縮水の有機物濃度が低レ、ほど電解処理効率が低下する。  [0038] The concentration ratio in the concentration step of the present embodiment affects the processing efficiency and processing cost of the electrolytic processing step. The higher the concentration of salt in the concentrated water, the lower the power consumption in the electrolytic treatment process. The lower the concentration of organic matter in the concentrated water, the lower the electrolytic treatment efficiency.
[0039] 本発明によれば、難生物分解性物質を含有する有機性排水を生物処理して生物 処理水を得、該生物処理水を電解処理して電解処理水を得、該電解処理水を再び 生物処理工程に戻すことによって生物処理工程での負荷を増加させる一方で電解 処理工程での負荷を低減させることができ、結果的に電解処理に要する電力量を削 減すること力 Sできる。こうして、本発明により大幅なコスト削減を達成することができる。 また、生物処理工程が嫌気性生物処理工程である場合には、生物処理の負荷の増 カロと共にバイオガス発生量が増加し、エネルギー回収量が増加する。回収したエネ ルギーを電解処理工程で要する電気エネルギーの一部として利用することもできる。 さらに、電解処理工程でのジュール熱によって水温が上昇した電解処理水を生物処 理工程に戻して、生物処理工程で要する熱エネルギーの一部として利用することも できる。このように、本発明の有機性排水の処理方法は、各工程での物質の流れに 伴って発生するエネルギーを系の所要エネルギーとして利用することができ、系全体 として大幅なエネルギー節約を達成することができる。 [0039] According to the present invention, organic wastewater containing a hardly biodegradable substance is biologically treated to obtain biologically treated water, the biologically treated water is electrolytically treated to obtain electrolytically treated water, and the electrolytically treated water. By returning to the biological treatment process again, the load in the biological treatment process can be increased while the load in the electrolytic treatment process can be reduced, resulting in the ability to reduce the amount of power required for the electrolytic treatment. . Thus, significant cost savings can be achieved with the present invention. In addition, when the biological treatment process is an anaerobic biological treatment process, the amount of biogas generated increases as the biological treatment load increases, and the amount of energy recovered increases. The recovered energy can be used as part of the electrical energy required for the electrolytic treatment process. Furthermore, the electrolyzed water whose water temperature has risen due to Joule heat in the electrolysis process can be returned to the biological treatment process and used as part of the thermal energy required in the biological treatment process. it can. As described above, the organic wastewater treatment method of the present invention can use the energy generated with the material flow in each process as the required energy of the system, and achieves significant energy savings for the entire system. be able to.
図面の簡単な説明  Brief Description of Drawings
[0040] [図 1]図 1は、導電性ダイヤモンド電極を用いた電解処理における投入電気量 (Ah/g -CODCr)と CODCr (mg/L)および BOD(mg/L)との関係の一例を示すグラフである。  [0040] [Fig. 1] Fig. 1 shows an example of the relationship between the amount of electricity input (Ah / g -CODCr) and CODCr (mg / L) and BOD (mg / L) in electrolysis using a conductive diamond electrode. It is a graph which shows.
[図 2]図 2は、導電性ダイヤモンド電極を用いた電解処理における投入電気量 (Ah/g -CODCr)と BOD/ CODCrとの関係の一例を示すグラフである。  [FIG. 2] FIG. 2 is a graph showing an example of the relationship between the amount of electricity input (Ah / g-CODCr) and BOD / CODCr in electrolytic treatment using a conductive diamond electrode.
[図 3]図 3は、導電性ダイヤモンド電極を用いた電解処理における投入電気量 (Ah/g -CODCr)と VFA(mg/L)との関係の一例を示すグラフである。  [FIG. 3] FIG. 3 is a graph showing an example of the relationship between the amount of electricity input (Ah / g-CODCr) and VFA (mg / L) in electrolytic treatment using a conductive diamond electrode.
[図 4]図 4は、導電性ダイヤモンド電極を用いた電解処理における投入電気量 (Ah/g -CODCr)と pHとの関係の一例を示すグラフである。  [FIG. 4] FIG. 4 is a graph showing an example of the relationship between the input electricity amount (Ah / g-CODCr) and pH in the electrolytic treatment using a conductive diamond electrode.
[図 5]図 5は、本発明の第 1の実施形態による処理フローの概略説明図である。  FIG. 5 is a schematic explanatory diagram of a processing flow according to the first embodiment of the present invention.
[図 6]図 6は、本発明で用いる循環バッチ式電解処理槽の一例を示す概略説明図で ある。  FIG. 6 is a schematic explanatory view showing an example of a circulating batch type electrolytic treatment tank used in the present invention.
[図 7]図 7は、本発明の第 2の実施形態による処理フローの概略説明図である。  FIG. 7 is a schematic explanatory diagram of a processing flow according to the second embodiment of the present invention.
[図 8]図 8は、本発明の第 3の実施形態による処理フローの概略説明図である。  FIG. 8 is a schematic explanatory diagram of a processing flow according to the third embodiment of the present invention.
[図 9]図 9は、実施例 1で対照として用レ、た従来例による処理フローの概略説明図で ある。  [FIG. 9] FIG. 9 is a schematic explanatory diagram of a processing flow according to a conventional example used as a control in Example 1.
[図 10]図 10は、実施例 3で対照として用いた電解処理水を生物処理工程に送らない 処理フローの概略説明図である。  FIG. 10 is a schematic explanatory diagram of a treatment flow in which the electrolytically treated water used as a control in Example 3 is not sent to the biological treatment process.
[図 11]図 11は、本発明の第 2の実施形態による一部変形処理フローの概略説明図 である。  FIG. 11 is a schematic explanatory diagram of a partial deformation process flow according to the second embodiment of the present invention.
[0041] 図面中、参照符号 1は排水原水を示し、 2は生物処理工程(生物処理装置)を示し 、 3は生物処理水を示し、 4は電解処理工程(電解処理槽)を示し、 5は電解処理水を 示し、 6は電解処理返送水を示し、 8は濃縮工程 (濃縮装置)を示し、 9は濃縮水を示 し、 10は濃縮工程分離水 (透過水)を示し、 11は晶析槽を示す。  [0041] In the drawings, reference numeral 1 represents raw waste water, 2 represents a biological treatment process (biological treatment apparatus), 3 represents biological treatment water, 4 represents an electrolytic treatment process (electrolytic treatment tank), 5 Indicates electrolytic treatment water, 6 indicates electrolytic treatment return water, 8 indicates a concentration step (concentration device), 9 indicates concentration water, 10 indicates concentration step separation water (permeate), 11 indicates The crystallization tank is shown.
好ましい実施形態の説明 [0042] 以下、添付図面を参照しながら本発明をさらに詳細に説明するが、本発明はこれら に限定されない。 DESCRIPTION OF PREFERRED EMBODIMENTS [0042] Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings, but the present invention is not limited thereto.
[実施形態 1]  [Embodiment 1]
図 5は、本発明の一態様を示す概略説明図である。図 5によれば、難生物分解性 物質を含有する有機性排水原水(以下、単に「排水原水」という) 1は、まず、生物処 理工程(生物処理装置) 2に導入される。生物処理工程 2において、排水原水中の易 生物分解性物質が分離 *除去され、難生物分解性物質を多く含む生物処理水 3が得 られる。続いて、生物処理水 3は、電解処理工程(電解処理槽) 4に導入される。電解 処理工程 (電解処理槽) 4におレ、て、難生物分解性物質が VFAなどの易生物分解性 物質、二酸化炭素および水等に分解され、電解処理水 5として排出される。電解処 理水 5は、その一部が電解処理返送水 6として、生物処理工程(生物処理装置) 2に 返送される。生物処理工程(生物処理装置) 2において、電解処理返送水 6に含まれ る易生物分解性物質は生物処理される。  FIG. 5 is a schematic explanatory diagram illustrating one embodiment of the present invention. According to FIG. 5, the organic wastewater raw water (hereinafter simply referred to as “drainage raw water”) 1 containing a hardly biodegradable substance is first introduced into the biological treatment process (biological treatment device) 2. In biological treatment process 2, easily biodegradable substances in the raw wastewater are separated and removed, and biological treated water 3 containing a large amount of difficult biodegradable substances is obtained. Subsequently, the biologically treated water 3 is introduced into the electrolytic treatment step (electrolytic treatment tank) 4. In the electrolytic treatment process (electrolytic treatment tank) 4, the hardly biodegradable substances are decomposed into easily biodegradable substances such as VFA, carbon dioxide and water, etc., and discharged as the electrolyzed water 5. Part of the electrolyzed water 5 is returned to the biological treatment process (biological treatment device) 2 as electrolytic treatment return water 6. In the biological treatment process (biological treatment equipment) 2, the readily biodegradable substances contained in the electrolytic treatment return water 6 are biologically treated.
[0043] 生物処理工程 2は、当該分野で通常用いられる好気性生物処理工程および/また は嫌気性生物処理工程でょレ、。生物処理工程 2で用いることができる生物処理装置 は、当該分野で通常用いられる曝気槽などの好気性生物処理槽、嫌気性生物処理 槽、沈殿槽などを含む。  [0043] The biological treatment step 2 is an aerobic biological treatment step and / or an anaerobic biological treatment step usually used in the art. The biological treatment apparatus that can be used in the biological treatment step 2 includes an aerobic biological treatment tank such as an aeration tank, an anaerobic biological treatment tank, and a precipitation tank that are usually used in this field.
[0044] 電解処理槽 4は、少なくとも陽極として導電性ダイヤモンド電極(図示せず)を具備 していればよぐその形態は特に限定されない。電解処理槽 4での導電性ダイヤモン ド電極の設置方法としては、できるだけガス抜きを良好に行える構造にすることが好 ましい。ガス抜きが良好に行えないと電極間に気泡が溜まって電極間電圧を上昇さ せる原因となる。従って、電極は、電解処理槽 4内に水平に設置するよりは、垂直に 設置する方が好ましい。また、電極を電解処理槽 4内で水平に設置する場合には、 少なくとも陽極となる導電性ダイヤモンド電極及び/又は陰極をメッシュ状、パンチン グプレート状、エタスパンドメタル状など、ガス抜きが良好に行える構造にすることが 望ましい。電解処理槽 4への通電の方法は、モノポーラ(単極)電極方式も可能であ るし、バイポーラ電極方式 (複極)であってもよい。大きな電極面積が必要な場合はバ ィポーラの方力 S、装置がコンパクトになるメリットがある。 [0045] 電解処理槽 4の運転は、バッチ式でも、循環バッチ式でも、連続式でもよい。 The form of the electrolytic treatment tank 4 is not particularly limited as long as it includes at least a conductive diamond electrode (not shown) as an anode. As a method for installing the conductive diamond electrode in the electrolytic treatment tank 4, it is preferable to have a structure that can vent the gas as well as possible. If the gas can not be vented well, bubbles will accumulate between the electrodes, causing the voltage between the electrodes to increase. Therefore, it is preferable to install the electrodes vertically rather than horizontally in the electrolytic treatment tank 4. In addition, when the electrode is installed horizontally in the electrolytic treatment tank 4, at least the conductive diamond electrode and / or the cathode that will be the anode is meshed, punched plate, etaspun metal, etc. It is desirable to have a structure that can be used. As a method for energizing the electrolytic treatment tank 4, a monopolar (single electrode) electrode method may be used, or a bipolar electrode method (bipolar electrode) may be used. When a large electrode area is required, there are the advantages of bipolar force S and compact equipment. The operation of the electrolytic treatment tank 4 may be a batch type, a circulating batch type, or a continuous type.
[0046] バッチ式の場合、電解処理槽 4は導電性ダイヤモンド電極で形成された陽極と陰極 とを具備するタンクの形態でょレ、。生物処理工程 2からの生物処理水 3を電解処理槽 4に送る。電解処理槽 4内で生物処理水 3を一定時間電解処理し、 BOD/CODCr力 S 0.3以上になった時点で易生物分解性物質を含有する電解処理水 5を得ることができ る。 [0046] In the case of a batch type, the electrolytic treatment tank 4 is in the form of a tank having an anode and a cathode formed of conductive diamond electrodes. The biologically treated water 3 from the biological treatment process 2 is sent to the electrolytic treatment tank 4. The biologically treated water 3 is subjected to electrolytic treatment in the electrolytic treatment tank 4 for a certain period of time, and when the BOD / CODCr force S becomes 0.3 or more, the electrolytically treated water 5 containing an easily biodegradable substance can be obtained.
[0047] 循環バッチ式の場合、図 6に示すように、導電性ダイヤモンド電極で構成された陽 極と陰極とを具備する電解セル 4aをタンク 4bの外部に設けて、ポンプ等で排水をタン ク 4bから電解セル 4aに送液し、一方、電解セル 4aの処理水を排水タンク 4bに戻すよう に構成することができる。この場合、電解セル 4a内の陽極と陰極の間に、ポンプ送液 による排水の強制的な流れができるため、排水タンクに電極を単純に浸漬配置した 場合よりも電解効率が良好に保てる。この循環バッチ式においても、タンク内の排水 の BOD/CODCrが 0.3以上になった時点で易生物分解性物質を含有する電解処理 水 5を得ること力 Sできる。  [0047] In the case of the circulating batch type, as shown in Fig. 6, an electrolytic cell 4a having a cathode and a cathode composed of conductive diamond electrodes is provided outside the tank 4b, and drainage is tanned with a pump or the like. The liquid can be sent from the tank 4b to the electrolytic cell 4a, while the treated water of the electrolytic cell 4a can be returned to the drain tank 4b. In this case, a forced flow of drainage by pumping can be performed between the anode and the cathode in the electrolysis cell 4a, so that the electrolysis efficiency can be maintained better than when the electrode is simply immersed in the drainage tank. Even in this circulating batch system, it is possible to obtain electrolytically treated water 5 containing readily biodegradable substances when the BOD / CODCr of the wastewater in the tank becomes 0.3 or more.
[0048] 連続式の場合、バッチ式の電極を具備するタンクおよび/または循環バッチ式の 電解セルとタンクの組み合わせからなる電解処理槽 4を複数個直列に配置して、各 電解処理槽 4で所定の滞留時間が確保されるようにする。電解処理槽を複数個直列 に配置して処理を行う場合、一段目の電解処理槽で処理された排水を次の電解処 理槽に送液して、この電解処理槽でも同じく導電性ダイヤモンド電極を用いた電解処 理を行うという構成になる。このような構成の電解処理槽においては、最終段の電解 処理槽から得られる処理水が電解処理水 5となる。このような構成の電解処理槽 4に おいては、排水の CODCr濃度によって、各段の電解セルの運転条件を設定できると レ、うメリットがある。たとえば、 1段目の電解処理槽には生物処理工程からの高濃度 C 〇DCr領域の排水が流入するので高電流密度電解処理槽とする。 2段目以降の電解 処理槽には低濃度 CODCr領域の排水が流入するので低電流密度電解処理槽とす る。こうして、より効率的な導電性ダイヤモンド電極を用いた電解処理運転を行うこと ができる。  [0048] In the case of a continuous type, a plurality of tanks having batch-type electrodes and / or a plurality of electrolytic treatment tanks 4 composed of a combination of a circulation batch-type electrolytic cell and a tank are arranged in series. A predetermined residence time is ensured. When performing treatment with multiple electrolytic treatment tanks arranged in series, wastewater treated in the first-stage electrolytic treatment tank is sent to the next electrolytic treatment tank, and the conductive diamond electrode is also used in this electrolytic treatment tank. It is configured to perform electrolytic treatment using In the electrolytic treatment tank having such a configuration, the treated water obtained from the final-stage electrolytic treatment tank is the electrolytic treated water 5. In the electrolytic treatment tank 4 having such a configuration, there is an advantage that the operating conditions of the electrolytic cell in each stage can be set by the CODCr concentration of the waste water. For example, since the waste water in the high concentration C ○ DCr region from the biological treatment process flows into the first stage electrolytic treatment tank, it is a high current density electrolytic treatment tank. Since the waste water in the low concentration CODCr region flows into the second and subsequent electrolytic treatment tanks, the low current density electrolytic treatment tank will be used. Thus, an electrolytic treatment operation using a more efficient conductive diamond electrode can be performed.
[実施形態 2] 図 7は、本発明の別の実施形態を示す概略説明図である。実施形態 1における電 解処理水 5の水質は、充分に清澄でない場合があり、下水道放流する場合の排除基 準は満足するものの、河川、あるいは海域など環境中に直接放流にするための排水 基準を満足できない可能性がある。処理済水を環境中に直接放流する場合には、実 施形態 1の電解処理水 5の後段に、濃縮工程 (濃縮装置) 8を設けることで、処理済 水質の向上を図ることができる。 [Embodiment 2] FIG. 7 is a schematic explanatory view showing another embodiment of the present invention. The water quality of the electrolyzed water 5 in Embodiment 1 may not be sufficiently clear, and although the exclusion criteria for discharging sewers are satisfied, the drainage standard for discharging directly into the environment such as rivers or sea areas May not be satisfied. When the treated water is directly discharged into the environment, the quality of the treated water can be improved by providing a concentrating step (concentrator) 8 after the electrolytically treated water 5 of the first embodiment.
[0049] 図 7に示す実施形態では、排水原水 1は生物処理工程(生物処理装置) 2に導入さ れて、易生物分解性物質が分離 '除去され、難生物分解性物質を多く含む生物処理 水 3が得られる。生物処理水 3は電解処理工程 (電解処理槽) 4に流入する。電解処 理工程 (電解処理槽) 4におレ、て、生物処理水 3中の難生物分解性物質が分解され 、電解処理水 5として排出される。電解処理水 5は濃縮工程 (濃縮装置) 8に導入され 、濃縮水 9と濃縮工程分離水 10が得られる。濃縮水 9はその一部あるいは全部が生 物処理工程 (生物処理装置) 2に返送される。濃縮装置 8は、溶解質の濃縮装置、例 えば RO膜、ルーズ RO膜 (NF膜)などの膜分離濃縮装置、加温あるいは減圧により水 分を蒸発させる蒸発濃縮装置、電気透析などの濃縮装置でよい。濃縮工程分離水 1 0とは、濃縮工程が膜分離方法である場合には透過水、蒸発濃縮方法では蒸留水、 電気透析である場合には脱塩水を意味する。  In the embodiment shown in FIG. 7, raw waste water 1 is introduced into a biological treatment process (biological treatment device) 2 to separate and remove easily biodegradable substances, and biological substances rich in hardly biodegradable substances. Treated water 3 is obtained. The biologically treated water 3 flows into the electrolytic treatment process (electrolytic treatment tank) 4. In the electrolytic treatment process (electrolytic treatment tank) 4, the hardly biodegradable substance in the biologically treated water 3 is decomposed and discharged as the electrolytically treated water 5. Electrolyzed water 5 is introduced into a concentration process (concentration device) 8 to obtain concentrated water 9 and concentrated process separation water 10. Part or all of the concentrated water 9 is returned to the biological treatment process (biological treatment equipment) 2. The concentrator 8 is a solute concentrator, for example, a membrane separator / concentrator such as an RO membrane or a loose RO membrane (NF membrane), an evaporator / concentrator that evaporates water by heating or decompression, and a concentrator such as electrodialysis. It's okay. The concentration process separation water 10 means permeated water when the concentration process is a membrane separation method, distilled water when it is an evaporation concentration method, and demineralized water when it is electrodialysis.
[0050] 濃縮水 9に含まれる易生物分解性物質は、生物処理工程(生物処理装置) 2で容 易に処理することができる。また、濃縮水 9に含まれるカルシウム、マグネシウム、リン などのスケール生成の原因となる成分は、生物処理工程(生物処理装置) 2で汚泥に 取り込まれて余剰汚泥として外部に排出され得る。生物処理工程(生物処理装置) 2 が嫌気'好気処理槽を含む場合は、より多くのリンを余剰汚泥に固定することができる  [0050] The readily biodegradable substance contained in the concentrated water 9 can be easily treated in the biological treatment process (biological treatment apparatus) 2. In addition, components that cause scale formation such as calcium, magnesium, and phosphorus contained in the concentrated water 9 can be taken into sludge in the biological treatment process (biological treatment equipment) 2 and discharged to the outside as excess sludge. If the biological treatment process (biological treatment equipment) 2 includes an anaerobic 'aerobic treatment tank, more phosphorus can be fixed to the excess sludge.
[0051] また、図 11に点線で示すように、スケール生成防止のために、生物処理水 3、電解 処理水 5あるいは濃縮水 9のいずれか一つ以上を対象に、晶析槽 11で、 HAP (ヒドロ キシアパタイト、 Ca (OH)(PO ) )又は MAP (リン酸マグネシウムアンモニゥム、 Mg(NH ) [0051] Further, as shown by a dotted line in FIG. 11, in order to prevent scale formation, the crystallization tank 11 targets at least one of the biologically treated water 3, the electrolytically treated water 5 and the concentrated water 9, HAP (Hydroxysiapatite, Ca (OH) (PO)) or MAP (Magnesium phosphate ammonium, Mg (NH)
5 4 3 4 5 4 3 4
P〇)処理を行い、カルシウム、マグネシウム、リンなどのスケール生成の原因となる成P〇) Processes that cause scale formation of calcium, magnesium, phosphorus, etc.
4 Four
分を結晶の形で水中力 除去する構成とすることもできる。 [0052] あるいは、濃縮装置 8の手前で、塩酸'硫酸などの酸を添加し、スケールの生成を 防止する構成とすることもできる。 It can also be configured to remove the hydrodynamic force in the form of crystals. [0052] Alternatively, it is also possible to add an acid such as hydrochloric acid'sulfuric acid before the concentrating device 8 to prevent scale formation.
[実施形態 3]  [Embodiment 3]
図 8は、また別の本発明の実施形態を示す概略説明図である。実施形態 2におい ては、電解処理槽 4の下流に濃縮装置 8があるため、電解処理水 5に含まれる易生 物分解性物質を濃縮装置 8に導入することになる。電解処理槽 4で生じる中間生成 物のなかでも、ギ酸(分子量 46、沸点 101°C)、酢酸(分子量 60、沸点 118°C)などは、 分子量が小さぐ沸点も比較的低い。このため、ギ酸ゃ酢酸などは、膜分離処理、とく にルーズ R〇膜による濃縮処理の場合には透過水側へ一部移動し、蒸発濃縮処理 の場合には蒸留水側に一部移動することが考えられるので、 目標とする濃縮工程分 離水 10の水質が満足されない可能性がある。  FIG. 8 is a schematic explanatory view showing another embodiment of the present invention. In Embodiment 2, since the concentration device 8 is downstream of the electrolytic treatment tank 4, an easily biodegradable substance contained in the electrolytic treatment water 5 is introduced into the concentration device 8. Among the intermediate products generated in the electrolytic treatment tank 4, formic acid (molecular weight 46, boiling point 101 ° C), acetic acid (molecular weight 60, boiling point 118 ° C), etc. have low molecular weight and relatively low boiling point. For this reason, formic acid and acetic acid partially move to the permeate side in the case of membrane separation treatment, in particular, concentration treatment with a loose R ○ membrane, and partly move to the distilled water side in the case of evaporation concentration treatment. Therefore, there is a possibility that the water quality of the target concentration water 10 is not satisfied.
[0053] しかし、本実施形態 3は、濃縮工程分離水 10の水質を向上させるために好適であ る。図 8に示す実施形態では、排水原水 1は生物処理工程(生物処理装置) 2に導入 される。生物処理工程(生物処理装置) 2において、排水原水 1中の易生物分解性物 質が分離 '除去され、難生物分解性物質を多く含む生物処理水 3が得られる。生物 処理水 3は、濃縮工程 (濃縮装置) 8に導入され、濃縮水 9と濃縮工程分離水 10が得 られる。濃縮水 9はその一部あるいは全部が電解処理工程 (電解処理槽) 4に導入さ れる。電解処理工程 (電解処理槽) 4において、難生物分解性物質が分解され、易生 物分解性物質を含む電解処理水 5が得られる。電解処理水 5は続いて、生物処理ェ 程(生物処理装置) 2に戻される。生物処理工程(生物処理装置) 2において、電解処 理水 5に含まれる易生物分解性物質は分離 ·除去される。本実施形態では、電解処 理水 5に含まれる低分子の中間生成物は濃縮工程 (濃縮装置) 8に導入されないた め、濃縮工程分離水 10の水質を大幅に向上させることができる。 However, Embodiment 3 is suitable for improving the water quality of the separation water 10 in the concentration process. In the embodiment shown in FIG. 8, the raw waste water 1 is introduced into the biological treatment process (biological treatment device) 2. In the biological treatment process (biological treatment device) 2, readily biodegradable substances in the wastewater raw water 1 are separated and removed, and biologically treated water 3 containing a large amount of hardly biodegradable substances is obtained. The biologically treated water 3 is introduced into a concentration process (concentration device) 8 to obtain concentrated water 9 and concentrated process separation water 10. A part or all of the concentrated water 9 is introduced into the electrolytic treatment step (electrolytic treatment tank) 4. In the electrolytic treatment process (electrolytic treatment tank) 4, the hardly biodegradable substance is decomposed to obtain the electrolyzed water 5 containing the easily biodegradable substance. The electrolytically treated water 5 is then returned to the biological treatment process (biological treatment device) 2. In the biological treatment process (biological treatment equipment) 2, the readily biodegradable substances contained in the electrolyzed water 5 are separated and removed. In the present embodiment, since the low-molecular intermediate product contained in the electrolytically treated water 5 is not introduced into the concentration step (concentration device) 8, the water quality of the concentration step separation water 10 can be greatly improved.
実施例  Example
以下、実施例により本発明をさらに詳細に説明する。  Hereinafter, the present invention will be described in more detail with reference to examples.
実施例 1  Example 1
[0054] 工場排水 Aを対象に、ダイヤモンド電極を用いた電解処理を行い、電解処理に伴う 処理水の生物分解性の変化を調べた。工場排水 Aは CODCrが 7500(mg/L)、 BOD力 S 1450(mg/L)、 BOD/CODCrは約 0.2と、難生物分解性物質を多く含む排水であった。 [0054] Electrolytic treatment using a diamond electrode was performed on factory wastewater A, and changes in the biodegradability of the treated water accompanying the electrolytic treatment were examined. Factory wastewater A has a CODCr of 7500 (mg / L), BOD power S 1450 (mg / L), BOD / CODCr was about 0.2, which was a wastewater containing a lot of non-biodegradable substances.
[0055] 電解処理槽として導電性ダイヤモンド電極を陽極、チタン電極を陰極とした電解処 理槽を用いた。ダイヤモンド電極はシリコンウェハー基材にホットフィラメント CVD法に より導電性ダイヤモンドを成膜したものである。電極面積は約 140cm2、電流値は 14A とした。実験は循環バッチ式で行い、初期水量は 3L、タンクから電解セルへのポンプ 送液流量は lL/minとした。 [0055] As the electrolytic treatment tank, an electrolytic treatment tank using a conductive diamond electrode as an anode and a titanium electrode as a cathode was used. The diamond electrode is formed by depositing conductive diamond on a silicon wafer substrate by the hot filament CVD method. The electrode area was about 140 cm 2 and the current value was 14 A. The experiment was carried out in a circulating batch system, with an initial water volume of 3L and a pumping flow rate from the tank to the electrolysis cell of lL / min.
[0056] 図 1に、投入電気量 (Ah/g_CODCr)と CODCr (mg /し)、 BOD (mg/L)の関係を、図 2 には、投入電気量 (Ah/g-C〇DCr)と BOD/C〇DCrの関係を示す。  [0056] Figure 1 shows the relationship between the input electricity (Ah / g_CODCr), CODCr (mg / l), and BOD (mg / L). Figure 2 shows the input electricity (Ah / gC0DCr) and BOD. Indicates the relationship of / C ○ DCr.
[0057] 電解処理を開始すると、 CODCrはほぼ直線的に減少した。 BODは約 1.5Ah/g_CO DCrの投入電気量までは増加し、その後投入電気量の増加と共に減少した。約 5Ah/ g_CODCrで CODCr、 BODともにほぼ 0になった。 BOD/CODCrは実験初期は約 0.2 であった。 2Ah/g-C〇DCrの電気量を投入すると、 BOD/CODCrは 0.5程度にまで増 カロした。これは、処理水の生物分解性が向上したことを示す。投入電気量が 2Ah/g_ CODCrを超えると BOD/CODCrは減少ヽした。  [0057] When the electrolytic treatment was started, CODCr decreased almost linearly. The BOD increased up to about 1.5Ah / g_CO DCr input, and then decreased with increasing input. At about 5Ah / g_CODCr, both CODCr and BOD were almost zero. BOD / CODCr was about 0.2 at the beginning of the experiment. When the amount of electricity of 2Ah / g-C ○ DCr was input, BOD / CODCr increased to about 0.5. This indicates that the biodegradability of the treated water has been improved. BOD / CODCr decreased when the input electricity exceeded 2Ah / g_CODCr.
[0058] 図 3に、投入電気量 (Ah/g-CODCr)と VFA (mg/L)との関係を示す。図 4には、投入 電気量 (Ah/g-CODCr)と pHの関係を示す。最も多く生成した VFAはギ酸であり、つい で、酢酸、乳酸がほぼ同量であった。これらの濃度を合計したものを VFA濃度として 図 3に示す。投入電気量が約 2Ah/g-CODCrまでは、電気量の増加と共に VFA生成 量が増加し、 pHは低下した。投入電気量が約 2Ah/g-CODCrを越えると、電気量の 増加と共に VFA生成量が減少し、 pHは上昇した。投入電気量が約 3Ah/g-CODCrを 越えると VFAは急激に減少した。処理水の生物分解性が向上したのは、 VFAが生成 したためである。  [0058] Fig. 3 shows the relationship between the input electricity (Ah / g-CODCr) and VFA (mg / L). Figure 4 shows the relationship between the input electricity (Ah / g-CODCr) and pH. The most produced VFA was formic acid, followed by almost the same amounts of acetic acid and lactic acid. The sum of these concentrations is shown in Figure 3 as the VFA concentration. Up to about 2Ah / g-CODCr of input electricity, the amount of VFA generated increased as the amount of electricity increased, and the pH decreased. When the amount of electricity input exceeded about 2Ah / g-CODCr, the amount of VFA produced decreased with the increase of electricity, and the pH increased. When the amount of electricity input exceeded about 3Ah / g-CODCr, VFA decreased rapidly. The improved biodegradability of the treated water is due to the generation of VFA.
実施例 2  Example 2
[0059] 工場排水 Bを対象に試験を行った。試験は図 5に示す処理フローで行った。生物処 理工程(生物処理装置) 2では、中温メタン発酵を行った。電解処理工程(電解処理 槽) 4として導電性ダイヤモンド電極を陽極、チタン電極を陰極とした電解処理槽を用 いた。ダイヤモンド電極はシリコンウェハー基材にホットフィラメント CVD法により導電 性ダイヤモンドを成膜したものである。電極面積は約 280cm2であった。対照として、図 9に示す電解処理工程(電解処理槽) 4から生物処理工程(生物処理装置) 2への返 送を行わなレ、処理フローで試験を行った。 [0059] A test was conducted on industrial wastewater B. The test was performed according to the processing flow shown in FIG. In the biological treatment process (biological treatment equipment) 2, medium temperature methane fermentation was performed. As the electrolytic treatment step (electrolytic treatment bath) 4, an electrolytic treatment bath using a conductive diamond electrode as an anode and a titanium electrode as a cathode was used. The diamond electrode is formed by depositing conductive diamond on a silicon wafer substrate by hot filament CVD. The electrode area was about 280 cm 2 . As a control, figure The test was conducted with the treatment flow in which the electrolytic treatment step (electrolysis treatment tank) 4 shown in Fig. 9 was not returned to the biological treatment step (biological treatment equipment) 2.
[0060] 試験結果の比較を表 1に示す。表 1の「実験 1」、「実験 2」は図 5に示す処理フロー で試験を行った結果、「実験 3」は図 9に示す処理フローで試験を行った結果である。 実験 1においては、電解処理返送水 6の流量を原水流量の 3倍に、実験 2においては 原水流量の 6倍にした。なお、表中の「流入水」は排水原水 1を、「流出水」は電解処 理水 5を表す。  [0060] Comparison of test results is shown in Table 1. “Experiment 1” and “Experiment 2” in Table 1 are the results of the test with the process flow shown in FIG. 5, and “Experiment 3” is the result of the test with the process flow shown in FIG. In Experiment 1, the flow rate of electrolyzed return water 6 was 3 times the raw water flow rate, and in Experiment 2, the flow rate of raw water was 6 times. In the table, “Influent” represents raw wastewater 1 and “Outflow” represents electrolytic water 5.
[0061] [表 1]  [0061] [Table 1]
表 1 試験結果の比較  Table 1 Comparison of test results
Figure imgf000018_0001
Figure imgf000018_0001
[0062] 実験 1は実験 3に比べて電解処理工程 (電解処理槽) 4における所要電解電力は約 30%低ぐメタン発酵による発生メタンガスは、約 1.3倍多かった。また、返送流量を増 カロさせることで、発生するメタンガスはさらに増加し、電解電力は低下した。  [0062] In Experiment 1, the required electrolysis power in the electrolytic treatment process (electrolytic treatment tank) 4 was about 30% lower than in Experiment 3, and the amount of methane gas generated by methane fermentation was about 1.3 times higher. Also, by increasing the return flow rate, the generated methane gas further increased and the electrolysis power decreased.
実施例 3  Example 3
[0063] 工場排水 Cを対象に試験を行った。試験は図 7に示す処理フローで行った。生物 処理工程(生物処理装置) 2では、中温メタン発酵を行った。電解処理工程(電解処 理槽) 4として導電性ダイヤモンド電極を陽極、チタン電極を陰極とした電解処理槽を 用レ、、濃縮工程 (濃縮装置) 8としてルーズ RO膜 (製品名:日東電工製 NTR-7250)を 具備する膜分離濃縮装置を用いた。ダイヤモンド電極はシリコンウェハー基材にホッ トフィラメント CVD法により導電性ダイヤモンドを成膜したものである。  [0063] A test was conducted on industrial wastewater C. The test was conducted according to the processing flow shown in FIG. In the biological treatment process (biological treatment equipment) 2, medium temperature methane fermentation was performed. Electrolytic treatment process (electrolysis treatment tank) 4 as an electrolytic treatment tank using a conductive diamond electrode as an anode and titanium electrode as a cathode; Concentration process (concentration device) 8 as a loose RO membrane (Product name: Nitto Denko) A membrane separation and concentration device equipped with NTR-7250) was used. The diamond electrode is formed by depositing conductive diamond on a silicon wafer substrate by the hot filament CVD method.
[0064] 電極面積は約 280cm2で、電流値は 6Aとした。対象として、図 5に示す処理フローで 試験を行った。 [0064] In the electrode area of about 280 cm 2, the current value was set to 6A. The test was conducted using the process flow shown in Fig. 5.
[0065] 試験結果の比較を表 2に示す。表 2中「実験 4」は図 7に示す処理フローで試験を行 つた結果、「実験 5」は図 5に示す処理フローで試験を行った結果である。実験 4にお いては、濃縮工程 (濃縮装置) 8における濃縮倍率を 3倍にし、濃縮水 9を原水流量の 3倍で生物処理工程(生物処理装置) 2へ返送した。実験 5においては、電解処理返 送水 6の流量を原水流量の 3倍にして生物処理工程(生物処理装置) 2へ返送した。 表中「流入水」は排水原水 1を示す。表中「流出水」は図 7に示すフローにおいては 濃縮工程分離水 10を表し、図 5に示すフローにおいては電解処理水 5をそれぞれ表 す。 [0065] Comparison of test results is shown in Table 2. In Table 2, “Experiment 4” is the result of the test with the process flow shown in FIG. 7, and “Experiment 5” is the result of the test with the process flow shown in FIG. In Experiment 4, the concentration factor in the concentration step (concentrator) 8 was tripled, and the concentrated water 9 was adjusted to the raw water flow rate. Returned to biological treatment process (biological treatment equipment) 2 at 3 times. In Experiment 5, the electrolytic treatment return water 6 was returned to the biological treatment process (biological treatment equipment) 2 at a flow rate three times the raw water flow rate. “Influent” in the table refers to raw wastewater1. “Outflow water” in the table represents concentrated process separation water 10 in the flow shown in FIG. 7, and electrolytic treatment water 5 in the flow shown in FIG.
[表 2]  [Table 2]
表 2 試験結果の比較  Table 2 Comparison of test results
Figure imgf000019_0001
Figure imgf000019_0001
[0067] 実験 4は実験 5に比べて、流出水がさらに清浄化されており、さらに発生メタンガス 量も 1.5倍多力つた。また、実験 4では濃縮工程 (濃縮装置) 8で無機イオンが濃縮さ れて電気伝導度が上昇するので、電解処理工程 (電解処理槽) 4で所定の電流を流 すのに必要な電圧は実験 5と比べて低かった。  [0067] Compared to Experiment 5, in Experiment 4, the effluent was further purified, and the amount of generated methane gas was 1.5 times higher. In Experiment 4, since the inorganic ions are concentrated in the concentration step (concentration device) 8 and the electrical conductivity is increased, the voltage required to pass a predetermined current in the electrolytic treatment step (electrolysis treatment tank) 4 is Low compared to Experiment 5.
実施例 4  Example 4
[0068] 比較的低い CODCr濃度の工場排水 Dを対象に試験を行った。試験は図 8に示す 処理フローで行った。生物処理工程 2では、標準活性汚泥処理を行った。濃縮装置 8としてはルーズ RO膜 (製品名:日東電工製 NTR-7250)を具備する膜分離濃縮装置 を用レ、、電解処理槽 4としては導電性ダイヤモンド電極を陽極、チタン電極を陰極と した電解処理槽を用いた。ダイヤモンド電極はシリコンウェハー基材にホットフィラメ ント CVD法により導電性ダイヤモンドを成膜したものである。電極面積は約 280cm2で あった。対照として、図 7に示す処理フロー、および電解処理水 5を生物処理工程( 生物処理装置) 2ではなく再び濃縮工程 (濃縮装置) 8に導入する処理フロー(図 10) でも試験を行った。図 10に示す処理フローでは、炭酸カルシウムによるスケール生 成を防止するために、濃縮装置 8の手前で硫酸を加えて pHを 5程度に下げることが 必要であった。図 8および図 7に示す処理フローでは、カルシウムは生物処理工程 2 力 余剰汚泥とともに除去されたため、硫酸の添カ卩は不要であった。各処理フローに おいて、濃縮装置 8における濃縮倍率は 3倍にした。 [0068] A test was conducted on industrial wastewater D having a relatively low CODCr concentration. The test was performed according to the process flow shown in Fig. 8. In biological treatment process 2, standard activated sludge treatment was performed. As the concentrator 8, a membrane separation and concentrator equipped with a loose RO membrane (product name: NTR-7250 manufactured by Nitto Denko) was used. As the electrolytic treatment tank 4, a conductive diamond electrode was used as an anode and a titanium electrode was used as a cathode. An electrolytic treatment tank was used. The diamond electrode is formed by depositing conductive diamond on a silicon wafer substrate by hot filament CVD. The electrode area was about 280 cm 2 . As a control, the treatment flow shown in FIG. 7 and the treatment flow (FIG. 10) in which the electrolytically treated water 5 was introduced again into the concentration step (concentration device) 8 instead of the biological treatment step (biological treatment device) 2 were also tested. In the treatment flow shown in Fig. 10, in order to prevent scale formation due to calcium carbonate, it was necessary to add sulfuric acid before the concentrator 8 to lower the pH to about 5. In the treatment flow shown in Fig. 8 and Fig. 7, calcium was removed together with surplus sludge from the biological treatment process. For each processing flow In this case, the concentration factor in the concentrator 8 was tripled.
[0069] 表 3に試験結果を示す。「実験 6」は図 8に示す処理フローによる処理結果、「実験 7 」は図 7に示す処理フローによる試験結果、「実験 8」は図 10に示す処理フローによる 試験結果をそれぞれ表す。なお、表中「流入水」は排水原水 1を表し、 「流出水」は濃 縮工程分離水(透過水) 10をそれぞれ表す。  [0069] Table 3 shows the test results. “Experiment 6” represents the result of the process flow shown in FIG. 8, “Experiment 7” represents the test result of the process flow shown in FIG. 7, and “Experiment 8” represents the test result of the process flow shown in FIG. In the table, “influent water” represents raw wastewater 1 and “outflow water” represents concentrated process separation water (permeated water) 10.
[0070] 表 3より、実験 6は、実験 7および実験 8と比べて流出水が高度に清浄化されていた ことがわかる。これは、実験 6では、電解処理水 5に含まれる VFAなどの易生物分解 性の低分子中間生成物が生物処理工程 (生物処理装置) 2に導入されて、濃縮工程 (濃縮装置) 8には導入されなかったからである。実験 7および実験 8では、電解処理 水 5が濃縮工程 (濃縮装置) 8に導入され、電解処理水 5に含まれる VFAの一部がル ーズ RO膜を透過した。  [0070] From Table 3, it can be seen that in Experiment 6, the effluent water was highly purified compared to Experiment 7 and Experiment 8. This is because, in Experiment 6, an easily biodegradable low-molecular intermediate product such as VFA contained in the electrolytically treated water 5 is introduced into the biological treatment process (biological treatment equipment) 2 and then into the concentration process (concentration equipment) 8. This is because was not introduced. In Experiment 7 and Experiment 8, the electrolyzed water 5 was introduced into the concentration step (concentrator) 8 and a part of the VFA contained in the electrolyzed water 5 permeated through the loose RO membrane.
[0071] [表 3]  [0071] [Table 3]
表 3 試験結果の比較 処理 原水 返达 濃縮 流入水 流出水 ΐΒ流 亀圧 電解 ¾力 験 フロー 流直 流量 倍率 CODcr CODCr  Table 3 Comparison of test results Treatment Raw water Return Concentration Inflow water Outflow water Torrent Tortoise pressure Electrolysis Derivative flow Flow Direct flow Rate Magnification CODcr CODCr
L/h L/h mg L mg/L A V Wh/L  L / h L / h mg L mg / L A V Wh / L
6 図 8 1 3 3 1450 7 0.4 5.5 2.26 Fig. 8 1 3 3 1450 7 0.4 5.5 2.2
7 図 7 1 3 3 1450 35 0.5 5.2 2.67 Fig. 7 1 3 3 1450 35 0.5 5.2 2.6
8 M 1 0 1 3 3 1450 45 0.5 5.2 2.6 8 M 1 0 1 3 3 1450 45 0.5 5.2 2.6

Claims

請求の範囲 The scope of the claims
[1] 生物処理装置と、  [1] a biological treatment device;
該生物処理装置の下流に位置し、導電性ダイヤモンド電極を具備する電解処理槽 と、  An electrolytic treatment tank located downstream of the biological treatment apparatus and comprising a conductive diamond electrode;
該電解処理槽からの流出水の少なくとも一部を該生物処理装置に戻す返送ライン と、  A return line for returning at least a portion of the effluent from the electrolytic treatment tank to the biological treatment device;
を具備する難生物分解性物質含有有機性排水処理装置。  An organic wastewater treatment apparatus containing a non-biodegradable substance.
[2] 生物処理装置と、  [2] biological treatment equipment;
該生物処理装置の下流に位置し、導電性ダイヤモンド電極を具備する電解処理槽 と、  An electrolytic treatment tank located downstream of the biological treatment apparatus and comprising a conductive diamond electrode;
該電解処理槽の下流に位置する濃縮装置と、  A concentrator located downstream of the electrolytic treatment tank;
該濃縮装置からの濃縮水の少なくとも一部を該生物処理装置に戻す返送ラインと、 を具備する難生物分解性物質含有有機性排水処理装置。  A return line for returning at least a part of the concentrated water from the concentrator to the biological treatment device, and a non-biodegradable substance-containing organic waste water treatment device.
[3] 生物処理装置と、  [3] biological treatment equipment;
該生物処理装置の下流に位置する濃縮装置と、  A concentrator located downstream of the biological treatment device;
該濃縮装置の濃縮水側の下流に位置し、導電性ダイヤモンド電極を具備する電解 処理槽と、  An electrolytic treatment tank located on the downstream side of the concentrated water side of the concentrator and having a conductive diamond electrode;
該電解処理fからの流出水を該生物処理装置に戻す返送ラインと  A return line for returning the effluent from the electrolytic treatment f to the biological treatment device;
を具備する難生物分解性物質含有有機性排水処理装置。  An organic wastewater treatment apparatus containing a non-biodegradable substance.
[4] 難生物分解性物質を含有する有機性排水を生物処理して、生物処理水を得る生物 処理工程と、  [4] A biological treatment process for biologically treating organic wastewater containing a hardly biodegradable substance to obtain biologically treated water;
導電性ダイヤモンド電極を用いて該生物処理水の少なくとも一部を電解処理して、 電解処理水を得る電解処理工程と、  An electrolytic treatment step of electrolyzing at least part of the biologically treated water using a conductive diamond electrode to obtain electrolytically treated water;
該電解処理水の少なくとも一部を該生物処理工程に戻す返送工程と、 を具備する難生物分解性物質含有有機性排水処理方法。  A return step for returning at least a part of the electrolytically treated water to the biological treatment step, and a method for treating organic wastewater containing a hardly biodegradable substance.
[5] 前記電解処理工程において、理論電気量の 10〜90%の電気量を付与する、請求の 範囲第 4項に記載の難生物分解性物質含有有機性排水処理方法。  [5] The organic wastewater treatment method containing a hardly biodegradable substance according to claim 4, wherein an amount of electricity of 10 to 90% of a theoretical amount of electricity is imparted in the electrolytic treatment step.
[6] 難生物分解性物質を含有する有機性排水を生物処理して、生物処理水を得る生物 処理工程と、 [6] Living organisms that obtain biologically treated water by biologically treating organic wastewater containing non-biodegradable substances Processing steps;
導電性ダイヤモンド電極を用いて該生物処理水を電解処理して、電解処理水を得 る電解処理工程と、  An electrolysis process of electrolyzing the biologically treated water using a conductive diamond electrode to obtain electrolyzed water;
該電解処理水を濃縮して、濃縮水を得る濃縮工程と、  A concentration step of concentrating the electrolytically treated water to obtain concentrated water;
該濃縮水の少なくとも一部を該生物処理工程に戻す返送工程と、  Returning at least a portion of the concentrated water to the biological treatment process;
を具備する難生物分解性物質含有有機性排水処理方法。  An organic wastewater treatment method containing a hardly biodegradable substance.
[7] 前記電解処理工程において、理論電気量の 10〜90%の電気量を付与する、請求の 範囲第 6項に記載の難生物分解性物質含有有機性排水処理方法。  [7] The organic wastewater treatment method containing a hardly biodegradable substance according to claim 6, wherein an amount of electricity of 10 to 90% of a theoretical amount of electricity is imparted in the electrolytic treatment step.
[8] 難生物分解性物質を含有する有機性排水を生物処理して、生物処理水を得る生物 処理工程と、  [8] A biological treatment process for biologically treating organic wastewater containing a hardly biodegradable substance to obtain biologically treated water;
該生物処理水を濃縮して、濃縮水を得る濃縮工程と、  A concentration step of concentrating the biologically treated water to obtain concentrated water;
該濃縮水の少なくとも一部を導電性ダイヤモンド電極を用いて電解処理して、電解 処理水を得る電解処理工程と、  An electrolytic treatment process for obtaining electrolytically treated water by electrolytically treating at least a part of the concentrated water using a conductive diamond electrode;
該電解処理水を該生物処理工程に戻す返送工程と、  Returning the electrolytically treated water to the biological treatment step;
を具備する難生物分解性物質含有有機性排水処理方法。  An organic wastewater treatment method containing a hardly biodegradable substance.
[9] 前記電解処理工程において、理論電気量の 10〜90%の電気量を付与する、請求の 範囲第 8項に記載の難生物分解性物質含有有機性排水処理方法。  [9] The organic wastewater treatment method containing a hardly biodegradable substance according to claim 8, wherein an electric quantity of 10 to 90% of a theoretical electric quantity is given in the electrolytic treatment step.
PCT/JP2007/053799 2006-02-28 2007-02-28 Apparatus for treating organic waste water containing microbiologically degradable matters and treatment method WO2007102379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006051919A JP4956016B2 (en) 2006-02-28 2006-02-28 Apparatus and method for treating organic wastewater containing hardly biodegradable substances
JP2006-051919 2006-02-28

Publications (1)

Publication Number Publication Date
WO2007102379A1 true WO2007102379A1 (en) 2007-09-13

Family

ID=38474811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053799 WO2007102379A1 (en) 2006-02-28 2007-02-28 Apparatus for treating organic waste water containing microbiologically degradable matters and treatment method

Country Status (2)

Country Link
JP (1) JP4956016B2 (en)
WO (1) WO2007102379A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119406A (en) * 2007-11-16 2009-06-04 Hitachi Plant Technologies Ltd Wastewater treatment method and apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045840A1 (en) * 2012-09-18 2014-03-27 国立大学法人東京大学 Water treatment system, filtration membrane module, and water treatment method
CN104140142A (en) * 2014-07-18 2014-11-12 中国海洋石油总公司 Coupling treatment method for fracturing flow-back fluid
CN105217740B (en) * 2015-10-26 2017-12-05 浙江工业大学 A kind of Electrochemical hydriding processing method of the waste water of fluorinated aromatic hydrocarbon containing low concentration
CN105198047B (en) * 2015-10-26 2017-12-05 浙江工业大学 A kind of Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents
JP6750930B6 (en) * 2016-10-03 2020-09-30 誠一 金 Sewage purification system
JP6902818B2 (en) * 2018-08-17 2021-07-14 株式会社オメガ Wastewater treatment method
CN110255827B (en) * 2019-07-08 2021-11-30 华北理工大学 Antibiotic wastewater treatment process and system
JP7533077B2 (en) 2020-09-29 2024-08-14 ニプロ株式会社 Electrolyzed water production equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005087860A (en) * 2003-09-17 2005-04-07 Fuji Photo Film Co Ltd Treatment method for leachate from industrial waste disposal plant
JP2005169174A (en) * 2003-12-08 2005-06-30 Kurita Water Ind Ltd Water treatment method and apparatus
JP2006068617A (en) * 2004-09-01 2006-03-16 Ebara Corp Method and apparatus for treating water medium
JP2007000838A (en) * 2005-06-27 2007-01-11 Fujifilm Holdings Corp Method for treating waste water containing ammonia

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004089916A (en) * 2002-09-02 2004-03-25 Matsushita Electric Ind Co Ltd Treatment method for wastewater containing organic matter
JP2004344806A (en) * 2003-05-23 2004-12-09 Fuji Photo Film Co Ltd Photographic waste solution treatment method
JP2005087789A (en) * 2003-09-12 2005-04-07 Fuji Photo Film Co Ltd Waste water treatment method
JP2005118695A (en) * 2003-10-17 2005-05-12 Ebara Corp Method and apparatus for reducing biosludge
JP2005125251A (en) * 2003-10-24 2005-05-19 Kurita Water Ind Ltd Water treatment method and water treatment apparatus
JP2005177585A (en) * 2003-12-18 2005-07-07 Fuji Photo Film Co Ltd Method for treating waste photographic processing liquid
JP2005262035A (en) * 2004-03-17 2005-09-29 Fuji Photo Film Co Ltd Method for treating photographic waste water
JP2005262133A (en) * 2004-03-19 2005-09-29 Ebara Corp Electrochemical processing apparatus and method of substance contained in water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005087860A (en) * 2003-09-17 2005-04-07 Fuji Photo Film Co Ltd Treatment method for leachate from industrial waste disposal plant
JP2005169174A (en) * 2003-12-08 2005-06-30 Kurita Water Ind Ltd Water treatment method and apparatus
JP2006068617A (en) * 2004-09-01 2006-03-16 Ebara Corp Method and apparatus for treating water medium
JP2007000838A (en) * 2005-06-27 2007-01-11 Fujifilm Holdings Corp Method for treating waste water containing ammonia

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119406A (en) * 2007-11-16 2009-06-04 Hitachi Plant Technologies Ltd Wastewater treatment method and apparatus

Also Published As

Publication number Publication date
JP2007229565A (en) 2007-09-13
JP4956016B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
Giwa et al. Membrane bioreactors and electrochemical processes for treatment of wastewaters containing heavy metal ions, organics, micropollutants and dyes: recent developments
CN102786183B (en) Method for processing garbage leachate
JP4956016B2 (en) Apparatus and method for treating organic wastewater containing hardly biodegradable substances
CN104016547B (en) A kind of coking waste water deep treatment zero-emission process
CN102786182B (en) Device for processing landfill leachate
Hasan et al. Start-up period investigation of pilot-scale submerged membrane electro-bioreactor (SMEBR) treating raw municipal wastewater
CN102603119B (en) Garbage leachate treatment device and treatment method thereof
CN102344227B (en) Hairwork waste water cyclic utilization device and treatment method thereof
CN104710080A (en) Apparatus and Method for Treating Organic-Containing Wastewater
JP2009148714A (en) Biological treatment method and apparatus of organic matter-containing water
CN106830536A (en) A kind of advanced treatment process of ferment antibiotics waste water
CN112520915A (en) Anode electrodialysis method for synchronously recovering nitrogen and phosphorus in biogas slurry and removing antibiotics
JP2021100744A (en) Polluted water purification method and device for removing phosphate and nitrate ions
JP2006068617A (en) Method and apparatus for treating water medium
Wu et al. Anaerobic offsite Fe2+ releasing for electrocoagulation in ABMBR: Membrane fouling mitigation, nutrients removal and anodes protection
CN202610073U (en) Processing apparatus of garbage percolating liquid
Simate Water treatment and reuse in breweries
KR20200081001A (en) Sewage disposal system having hydrogen generation ability
KR100420314B1 (en) The Wastewater Treatment Method and its System
CN203256088U (en) Integrated organic wastewater treatment system
CN207210198U (en) Multidimensional is electrolysed MBR sewage disposal devices
Nakhate et al. Process validation of integrated bioelectrochemical and membrane reactor for synchronous bioenergy extraction and sustainable wastewater treatment at a semi-pilot scale
KR100562943B1 (en) Advaned wastewater treatment system with electrolysis of sludge and sidestream
JPH06320184A (en) Treating method for waste developer
JP2006346540A (en) Method and apparatus for treating waste water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07715074

Country of ref document: EP

Kind code of ref document: A1