[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007148653A1 - 電界効果トランジスタ - Google Patents

電界効果トランジスタ Download PDF

Info

Publication number
WO2007148653A1
WO2007148653A1 PCT/JP2007/062238 JP2007062238W WO2007148653A1 WO 2007148653 A1 WO2007148653 A1 WO 2007148653A1 JP 2007062238 W JP2007062238 W JP 2007062238W WO 2007148653 A1 WO2007148653 A1 WO 2007148653A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
gate
electrode
doping concentration
effect transistor
Prior art date
Application number
PCT/JP2007/062238
Other languages
English (en)
French (fr)
Inventor
Tohru Saitoh
Takahiro Kawashima
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/305,824 priority Critical patent/US8106382B2/en
Priority to JP2008522449A priority patent/JP5312938B2/ja
Publication of WO2007148653A1 publication Critical patent/WO2007148653A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/068Nanowires or nanotubes comprising a junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors

Definitions

  • the present invention relates to a field effect transistor, and can be applied in a wide range such as a display, a logic integrated circuit, and a monofil device.
  • Amorphous silicon or polysilicon has been mainly used as a material for driving and controlling transistors of conventional display elements.
  • these materials are formed by a vacuum process such as a gas phase growth method or a vapor deposition method with the current technology and cannot be applied to a printing process.
  • the substrate material is also limited. For example, a low melting point material such as a plastic substrate cannot be used.
  • Non-Patent Document 1 shows the formation of transistors by a printing process using silicon nanowires produced by VLS growth
  • Non-Patent Document 2 shows the formation of transistors by a printing process using thin silicon slices with SOI substrate power. Is disclosed.
  • the silicon film can be formed near room temperature, it has the advantage of greatly expanding the degree of freedom in selecting the substrate material. Therefore, by using these technologies, it is possible to fabricate high-performance transistors with single-crystal silicon power on, for example, a plastic substrate, and realize new V and devices such as flexible displays. It becomes possible.
  • Non-patent literature 1 High-performance thin-film transistors using semiconductor nanowires and nanoribbons ", Nature, vol.425, 18 September 2003, pp. 274-278.
  • Non-Patent Document 2 "A printable form of silicon for high performance thin film transistors on plastic substrates", Applied Physics Letters, vol. 84, 28 June 2004, pp. 5398-54
  • a promising method is to fabricate a transistor made of silicon crystals by using a printing process by producing a "silicon ink” by dispersing small silicon single crystals in a solution and applying them to the substrate.
  • the following are problems in the prior art. As an example, the case where a transistor is manufactured by a conventional technique using silicon nanowire as a micro semiconductor will be described with reference to FIGS. 19 and 20.
  • FIG. 19 is a perspective view of an example of a silicon nanowire transistor structure fabricated using a conventional technique.
  • FIG. 20 is a top view of a silicon nanowire transistor fabricated using a conventional technique and a cross-sectional structure view taken along the line AA ′.
  • a gate electrode 302 is formed on the substrate 301, and silicon nanowires 303 are disposed through a gate insulating film 304. Both ends of the silicon nanowire 303 are connected to the source electrode 305 and the drain electrode 306.
  • the charge of the channel formed in the semiconductor nanowire 303 can be controlled to operate as a transistor.
  • the semiconductor nanowire 303 can be transferred and placed on the substrate 301 after it has been prepared in advance using another substrate by a growth method described in Non-Patent Document 1, for example.
  • the silicon nanowire transistor according to the prior art has the following problems.
  • the first problem is that since the channel length of the transistor is uniquely determined by the processing dimensions of the gate electrode and the source / drain electrodes, a channel length less than the processing dimension limit cannot be realized.
  • the length (channel length) of the channel region 307 in the semiconductor nanowire 303 which is a region where the carrier concentration is controlled by the gate electrode, is determined by the processing dimension of the gate electrode.
  • the drain current ID in the saturation region of a metal oxide semiconductor-semiconductor (MOS) transistor is generally expressed by the following equation.
  • W, L,, Ci, VG, and VT are channel width, channel length, channel mobility, gate insulating film capacitance, gate voltage, and threshold voltage, respectively.
  • ID increases and transistor characteristics improve.
  • the processing accuracy of photolithography is about 1 ⁇ m or less when a glass substrate is used, and about 5 to 10 / ⁇ ⁇ when a flexible substrate having stretchability and surface irregularities is used.
  • photolithography is not used to process the electrodes, and printing techniques such as ink jet and screen printing are used, it is particularly difficult to apply fine effects, and the processing accuracy in the current technology is about 30 to 50 m.
  • the channel length L varies due to transistor processing variations, the processing variations will become ID variations.
  • the variation of the transistor is directly connected to the luminance variation of the pixel. Accordingly, in the nanowire transistor according to the prior art shown in FIGS. 19 and 20, when the transistor is manufactured using a flexible substrate or printing technology, deterioration in transistor characteristics and variations due to deterioration in processing accuracy are unavoidable. Have problems.
  • a second problem is that it is difficult to reduce the contact resistance between the source electrode and the drain electrode.
  • the entire silicon nanowire 303 is uniformly doped. Since the semiconductor nanowire 303 forms a channel, the threshold voltage of the transistor is controlled by the doping concentration. Therefore, it is necessary to set the doping concentration to 10 15 to 10 18 cm 3 .
  • Ion implantation In addition, a technique is known in which contact resistance is reduced by performing high-concentration doping in a contact region using heat treatment.
  • the heat treatment temperature usually requires about 700 ° C or higher, so it cannot be applied to flexible substrates such as plastics. Therefore, when a nanowire transistor is manufactured on a flexible substrate using the conventional technique, there is a problem that deterioration of transistor characteristics due to high resistance of the contact is inevitable.
  • a third problem is an increase in channel resistance due to offset.
  • an offset region 308 that is not controlled by the gate electrode exists in a part of the silicon nanowire 303. Since the offset region 308 is not controlled by the gate electrode, carriers are not induced even when the transistor is turned on, so that the channel resistance is increased.
  • the formation of offset is avoided by using ion implantation and heat treatment.
  • the offset can be avoided by using the transistor structure shown in FIG.
  • the transistor structure shown in FIG. It is not preferable to use it.
  • the transistor structure shown in FIGS. 19 and 20 is more preferable, but the conventional technique has a problem that an increase in channel resistance is unavoidable due to the formation of an offset.
  • the field effect transistor of the present invention includes a substrate, a plurality of micro semiconductors supported by the substrate, and a source electrode connected to a part of at least one of the plurality of micro semiconductors.
  • a drain electrode connected to another part of the at least one micro semiconductor, an insulating film functioning as a gate insulating film adjacent to the at least one micro semiconductor, and the at least the insulating film via the insulating film. Control the electrical conduction of one small semiconductor
  • Each of the plurality of micro semiconductors includes a low concentration region having a relatively low doping concentration and the low concentration region having a doping concentration higher than that of the low concentration region.
  • the length of the gate electrode is shorter than the length of the gate electrode in the direction facing the drain electrode, and the length of the gate electrode is shorter than the distance between the source electrode and the drain electrode.
  • one of the pair of high concentration regions in the at least one micro semiconductor is connected to the source electrode, the other of the pair of high concentration regions is connected to the drain electrode, and the low concentration region At least a part of the concentration region has an overlap with the gate electrode.
  • one of the pair of high concentration regions in the at least one micro semiconductor is connected to the source electrode, the other of the pair of high concentration regions is connected to the drain electrode, and the low concentration region The entire concentration region overlaps with the gate electrode.
  • the length of the micro semiconductor is L, before the low concentration region.
  • L is the length
  • L is the length of the gate electrode
  • the source and drain electrodes are
  • the length of the micro semiconductor is L, and the length before the low concentration region is
  • L is the length
  • L is the length of the gate electrode
  • the source and drain electrodes are
  • the doping concentration of the high concentration region is 1 X 10 19 to 1 X
  • the doping concentration in the low concentration region is 10% or less of the doping concentration in the high concentration region.
  • the low concentration region has a doping concentration of 1 X 10 15 to 1 X.
  • the plurality of micro semiconductors include at least one micro semiconductor having an overlap with one of the source electrode and the drain electrode.
  • the low-concentration region of at least one micro semiconductor that does not overlap with one of the source electrode and the drain electrode overlaps with the gate electrode. Not done.
  • the micro semiconductor is a semiconductor nanowire.
  • the micro semiconductor is a semiconductor nanowire produced by vapor phase liquid layer solid phase growth (VLS growth).
  • VLS growth vapor phase liquid layer solid phase growth
  • the micro semiconductor is a silicon nanowire fabricated by vapor phase liquid layer solid phase growth (VLS growth).
  • VLS growth vapor phase liquid layer solid phase growth
  • the substrate is formed of an organic material.
  • FIG. 1 is a perspective view of a bottom-gate transistor structure according to the present invention.
  • FIG. 2A is a top view of a bottom-gate transistor structure according to the present invention
  • FIG. 2B is a cross-sectional view taken along line AA ′.
  • FIG. 3 is a perspective view of a top-gate transistor structure according to the present invention.
  • FIG. 4 (a) is a top view of a top-gate transistor structure according to the present invention, and (b) is a cross-sectional view taken along line AA ′.
  • FIG. 5 is a perspective view of a bottom-gate transistor structure according to the present invention.
  • FIG. 6 is a perspective view of a bottom-gate transistor structure according to the present invention.
  • FIG. 7] (a) to (c) are schematic diagrams showing a method of manufacturing a bottom-gate transistor according to the present invention.
  • FIG. 8 (a) to (c) show a method for manufacturing a bottom-gate transistor according to the present invention. It is a diagram.
  • FIG. 9 (a) and (b) are process cross-sectional views showing a method for producing a silicon nanowire as a micro semiconductor.
  • FIG. 10 (a) and (b) are diagrams showing a silicon nanowire manufacturing method for manufacturing a transistor according to the present invention.
  • FIG. 11 (a) and (b) are diagrams showing a silicon nanowire manufacturing method for manufacturing a transistor according to the present invention.
  • FIG. 12 is a cross-sectional view of a bottom-gate transistor structure according to the present invention.
  • FIG. 13 is an explanatory diagram of a simulation result of drain current-gate voltage characteristics.
  • FIG. 14 is an explanatory diagram of the dependence of on-wire current and off-current on the displacement of the nanowire position.
  • FIG. 15 An explanatory diagram of the positional relationship between the position of the nanowire and the gate electrode, where (a) shows the case where all regions with low doping concentration overlap the gate electrode, and (b) shows the doping. (C) shows a case where a part of the low concentration region overlaps with the gate electrode, and (c) shows a case where the doping concentration is low and the region completely overlaps with the gate electrode.
  • FIG. 16A is a diagram showing a condition for allowing all regions having a low doping concentration to overlap with the gate electrode.
  • FIG. 16B is a diagram showing a condition for the region where the doping concentration is low to overlap with the gate electrode.
  • FIG. 17 is a diagram showing a condition for a part of a low doping concentration region to overlap with a gate electrode.
  • FIG. 18 (a) and (b) are cross-sectional views showing examples of a micro semiconductor 103 having at least one end insulated.
  • FIG. 19 is a perspective view of a bottom-gate transistor structure according to the prior art.
  • FIG. 20 (a) is a top view of a bottom-gate transistor structure according to the prior art, and FIG. 20 (b) is a cross-sectional view thereof.
  • FIG. 21 is a cross-sectional view of a bottom-gate transistor structure according to the prior art.
  • Drain current when displacement is 0 m-208 Drain current when displacement is 0.5 / zm 209 Displacement current when displacement is 1. 210 Displacement when drain is 1.5 m
  • FIG. 1 shows an example of a perspective view of a bottom-gate transistor structure according to the present invention.
  • 2 (a) and 2 (b) are a top view of the transistor shown in FIG. 1 and a cross-sectional view taken along line AA, respectively.
  • FIG. 3 shows an example of a perspective view of a top gate type transistor structure according to the present invention.
  • 4A and 4B are a top view of the transistor shown in FIG. 3 and a cross-sectional view taken along the line AA ′, respectively.
  • a micro semiconductor 103 that forms a channel layer at least in part on a substrate 101, a source electrode 105 and a drain electrode 106 connected to the micro semiconductor 103, and adjacent to the micro semiconductor 103 as a gate insulating film
  • a functioning insulating film 104 and a gate electrode 102 capable of controlling electric conduction of the micro semiconductor 103 through the insulating film 104 are included.
  • the transistor is formed using a plurality of micro semiconductors 103.
  • the most fundamental feature of the present invention is that at least two or more regions having different doping concentrations are formed in the micro semiconductor 103, and that the doping region is suitable for exhibiting the characteristics of a transistor. It is to be placed in
  • a region 107 having a high doping concentration is formed at both ends of the micro semiconductor 103, and a region 108 having a lower doping concentration is formed at the center of the micro semiconductor 103 compared to the region 107 having a high doping concentration.
  • the region 107 having a high doping concentration has a doping concentration of 1 ⁇ 10 19 cm 3 or more.
  • the conductivity type of the region 107 having a high doping concentration and the region 108 having a low doping concentration may be the same (that is, both the regions 107 and 108 are p-type or both n-type).
  • the conductivity type of the region 108 may be opposite (that is, the region 107 is p-type, the region 108 is n-type, or the region 107 is n-type, and the region 108 is p-type). It is desirable that the region 108 with a low doping concentration is located in the center of the micro semiconductor 103, has a low doping concentration, and has a high doping concentration across the region 108, and the regions 107 are formed symmetrically.
  • regions 107 with high doping concentration formed at both ends are connected to the source electrode 105 and the drain electrode 106, respectively.
  • the region 108 with a low doping concentration has an overlap with the gate electrode 102 with the insulating film 104 interposed therebetween. That is, in the bottom gate type transistor shown in FIGS. 1 and 2, at least one of the small semiconductors 103 has the region 108 having a low doping concentration completely formed on the gate electrode 102.
  • at least one of the micro semiconductors 103 is formed on the gate electrode 102 with a part of the region 108 having a low doping concentration.
  • At least one of the micro semiconductors 103 has the region 108 with a low doping concentration completely formed under the gate electrode 102.
  • a part of the region 108 having a low doping concentration is formed under the gate electrode 102.
  • the minute semiconductor 103 is aligned from the source electrode to the drain electrode.
  • Such alignment is ideal, but is not a requirement in the present invention.
  • the minute semiconductors 103 may not be aligned but may vary in the arrangement direction, or the minute semiconductors 103 may overlap each other.
  • some of the micro semiconductors 103 do not have to be connected to the source electrode or the drain electrode.
  • 5 and 6 show the example of the bottom gate type transistor.
  • the micro semiconductors 103 may not be aligned and may have variations in the arrangement direction. 103 may overlap each other, or some of the micro semiconductors 103 may not be connected to the source electrode or the drain electrode!
  • the transistor according to the present invention can solve the problems of the prior art in the following points. First, it is possible to achieve a channel length that is less than the machining dimensional accuracy and to suppress variations.
  • the region 107 having a high doping concentration formed at both ends of the micro semiconductor 103 is substantially unaffected by the gate electrode 102 and is substantially a part of the source electrode 105 and the drain electrode 106. Function as. For example, when the doping concentration of the high concentration region 107 is 1 ⁇ 10 19 cm 3 or more, carrier depletion due to the electric field applied to the gate electrode 102 is negligibly small.
  • the region 107 having a high doping concentration can always maintain a low resistance state. Further, if the impurity in the region 107 having a high doping concentration is up to a concentration of about 1 ⁇ 10 22 cm 3 , the doping is easily performed without deteriorating the crystallinity of the micro semiconductor 103.
  • a so-called channel portion in which carriers are controlled by the gate electrode 102 corresponds only to the region 108 having a low doping concentration.
  • the dimension of the low doping concentration region 108 can be controlled with an accuracy of about 0.:Lm or less by controlling crystal growth.
  • the channel length is determined by the processing accuracy of the gate electrode.
  • the processing accuracy when using a glass substrate is about 1 ⁇ m, surface irregularities, and expansion / contraction.
  • the processing accuracy is about 5 to 10 m.
  • the transistor according to the present invention can make the dimension of the low doping concentration region 108 shorter than the length of the gate electrode. As a result, the characteristics of the transistor are greatly improved.
  • the channel length is Since it is uniquely determined by the size of the region 108 having a low bing concentration, it does not cause a variation.
  • the length of the micro semiconductor 103 governed by the gate electrode 102 is substantially changed due to the shift in the rotation direction of the micro semiconductor 103, and the shift in arrangement is directly connected to the characteristic variation. To do. This is also a factor that suppresses characteristic variation by using the transistor according to the present invention.
  • the second point that the transistor according to the present invention can help to solve the problems of the prior art is that the contact resistance with the source electrode and the drain electrode can be reduced.
  • the doping concentration of the transistor according to the prior art needs to set the threshold voltage control power from 10 17 to 10 18 cm 3
  • the threshold voltage control has a low doping concentration, Since this is performed in the region 108, the doping concentration of the region 107 having a high doping concentration can be freely set independently of the threshold voltage.
  • doping of about 1 ⁇ 10 19 to 1 ⁇ 10 22 cm 3 is possible.
  • the doping concentration of the contact region exceeds about 1 X 10 19 cm— 3 , a good ohmic contact can be obtained because the tunnel current causes a current exceeding the contact junction barrier to flow. It has been. Therefore, the contact resistance can be greatly reduced as compared with the prior art.
  • the doping to the micro semiconductor 103 is performed in advance using crystal growth, contact formation can be performed without using a high temperature process. Therefore, this method can be easily applied to flexible substrates.
  • the minute semiconductor 103 in the region not controlled by the gate electrode 102 is composed of the region 107 having a high doping concentration, so that the resistance is low and the channel resistance does not increase.
  • the present invention can realize transistor characteristics that are greatly improved over the prior art.
  • the doping concentration in the fine semiconductor 103 can be measured by analysis using a high-resolution secondary ion mass spectrometer or a microscopic Raman spectrometer.
  • FIGS. 1 to 2 and FIG. 5 are a schematic plan view and a schematic cross-sectional view taken along line AA ′ showing a method of manufacturing a bottom gate type transistor according to the present invention.
  • FIG. 7 (a) Force FIG. 8 (a) shows a method for manufacturing the gate electrode 102.
  • FIG. 7A a region for forming a gate electrode 102 on a substrate 101 is defined by a mask 109.
  • a patterning method based on an existing technique such as a printing method such as photolithography or inkjet may be used.
  • FIG. 7B the substrate 101 is etched to form the gate electrode formation region 110.
  • an etching method dry etching or wet etching is used.
  • the material of the substrate 101 is preferably formed of, but not limited to, a plastic (organic material), glass, or silicon.
  • the material of the substrate 101 can be formed of any material without being limited by the difference between organic and inorganic materials, the presence or absence of electrical conductivity, and the like.
  • the gate electrode formation region 110 can be formed using an existing technique by using an etching method suitable for the substrate 101.
  • a gate metal 111 is deposited.
  • a deposition method a sputtering method, a vapor deposition method, or a method of applying a metal fine particle ink can be used.
  • the gate electrode 102 can be formed on the substrate 101 by removing the mask 109 and the gate metal 111 deposited on the mask 109 by lift-off as shown in FIG.
  • the material of the gate electrode 102 is not particularly limited, and metal materials such as gold, aluminum, titanium, and tungsten, semiconductor materials such as silicon, and conductive organic substances can be used. Typical dimensions are a gate length of 2 ⁇ m force to 20 ⁇ m, a gate width of 20 ⁇ m force to 200 ⁇ m, and a gate electrode thickness of about 200 nm to 500 nm. As a method for making the heights of the gate electrode 102 and the substrate 101 approximately the same, the deposited film thickness of the gate metal 111 is preferably set to be approximately the same as the depth of the gate electrode formation region 110.
  • the gate electrode 102 may be formed on the surface of the substrate 101 without forming the gate electrode formation region 110.
  • an insulating film 104 and a micro semiconductor 103 are sequentially formed on the substrate 101 on which the gate electrode 102 is formed.
  • the insulating film 104 is made of any insulating material such as silicon oxide film, silicon nitride film, inorganic material such as acid aluminum, acid tantalum, and acid hafnium, and organic material such as polyimide. Can do.
  • an existing technique such as a sputtering method or a spin coating method can be used.
  • the typical film thickness of the insulating film 104 is about lOOnm to 500nm.
  • a vapor phase liquid layer monolayer (VLS) growth method can be used as a method for producing silicon nanowires.
  • the growth of silicon nanowires by the VLS growth method is disclosed in Non-Patent Document 1, for example, and is a well-known technique.
  • catalytic metal fine particles 202 are formed on a substrate 201 for nanowire growth.
  • the catalytic metal fine particles 202 may be made of, for example, cobalt, nickel, platinum or the like that can use gold fine particles having a diameter of lOnm to about 100 nm.
  • a colloidal solution of the catalytic metal fine particles 202 can be applied to the substrate 201 by spin coating. Is also applicable.
  • the silicon nanowire 204 can be grown by supplying the source gas 203 while the substrate 201 is kept at a predetermined substrate temperature.
  • the substrate temperature during growth is about 350 ° C to 500 ° C, and SiH is used as the source gas 203.
  • the source gas may be diluted with hydrogen, helium or the like.
  • the growth pressure is preferably in the range of about 0.0 OOlTorr to about 1 OTorr, which is the force capable of growing in the region from about OOlTorr to about atmospheric pressure.
  • a feature of the present invention is that a region 107 having a high doping concentration and a region 108 having a low doping concentration are formed inside the micro semiconductor 103 as shown in FIG.
  • a method for manufacturing silicon nanowires having regions with different driving concentrations will be described.
  • a method for growing a silicon nanowire having a high doping concentration, a region 107 of n-type, a low doping concentration, and a region 108 of p-type will be described with reference to FIGS.
  • Si H is used as the source gas 203 and PH is used as the n-type dopant gas 205 while maintaining the substrate temperature at about 450 ° C. Supply.
  • Si H decomposes and silicon nanowires grow, while PH decomposes and silicon
  • the n-type dopant P is incorporated into the 2 63 -n nanowire, and as a result, a region 107 with a high n-type doping concentration is formed (Fig. 10 (b)). At this time, the partial pressure ratio of Si H and PH is controlled.
  • a silicon nanowire having a P concentration of about 1 ⁇ 10 cm from 1 ⁇ 10 force can be formed.
  • Si H is supplied as source gas 203 and PH is supplied as n-type dopant gas 205 for a predetermined time.
  • B H is supplied as a p-type dopant gas 206. At this time, the amount of Si H and B H
  • the B concentration in silicon nanowires can be controlled. For example, if the partial pressure of Si H and BH is set to 50000: 1 to 500000: 1, 1 X 10 15
  • a silicon nanowire having a B concentration of about 1 ⁇ 10 19 cm 3 can also be formed.
  • a region 108 having a low p-type doping concentration is formed in succession to the region 107 having a high n-type doping concentration (FIG. 11 (a)).
  • the doping concentration of the region 108 is lower than the doping concentration of the region 107.
  • the doping concentration of the region 108 is preferably 10% or less of the driving concentration of the region 107.
  • the doping concentration of the region 108 is preferably in the range of 1 ⁇ 10 15 to 1 ⁇ 10 19 cm 3 .
  • the boundary between the region 107 and the region 108 does not have to be clear. That is, the doping concentration need not change sharply between the regions 107 and 108, but may change slowly. In other words, there may be a transition region in which the concentration changes gradually or stepwise between a region where the doping concentration is relatively high and a region where the doping concentration is relatively low. If such a transition region exists, doping concentration l X 10 19 cm 3 regions on more than a "high density region" in the present invention, the doping concentration is lower than 1 X 10 19 cm 3, area “Low concentration region”.
  • Si H is used as the source gas 203
  • B H is used as the p-type dopant gas 206.
  • the p-type dopant gas is supplied while Si H is continuously supplied as the source gas 203.
  • PH is again supplied as n-type dopant gas 205 instead of the gas 206.
  • n-type dopant gas 205 instead of the gas 206.
  • a region 107 having a high n-type doping concentration is formed in succession to the region 108 having a low doping concentration (FIG. 11 (b)).
  • a micro semiconductor having regions with different doping concentrations can be formed.
  • the size and doping concentration of the micro semiconductor 103 The size of the high-density region 107 and the low-doping concentration region 108 can be precisely controlled by controlling the growth time.
  • the typical growth rate of silicon nanowires is about 1 ⁇ / min force and about 5 ⁇ mZmin.
  • the size can be controlled to 0.1 ⁇ m by growing the p-type low doping concentration region 108 shown in FIG. 11A for 6 seconds.
  • the growth control in a few seconds is in a sufficiently controllable range, and that this method can control the doping profile with an accuracy of about 0.1 m or less. Not only the region 108 with a low doping concentration but also the size of the region 107 with a high doping concentration and the overall size of the micro semiconductor 103 can be controlled with the same accuracy. 10 and 11 show that the region 107 with high doping concentration is n-type and the region 108 with low doping concentration is p-type. By selecting the type of dopant, any combination of conductivity types can be achieved. It is possible. Another notable point of this method is that a large amount of micro semiconductors 103 having the same profile can be generated by growing such micro semiconductors 103 on the same substrate. is there.
  • the grown nanowires are dispersed in a solvent to prepare an ink.
  • a method for producing ink for example, by placing a substrate on which nanowires are grown in a solvent and performing ultrasonic cleaning, the nanowires are peeled into the solvent, and ink can be produced.
  • the solvent material water, alcohol, an organic solvent, or the like can be used.
  • a process such as forming an oxide film on the surface of the nanowire may be performed.
  • the surface of the nanowire may be chemically modified so that it can be easily dispersed.
  • an ink in which the micro semiconductor 103 in which the region 107 having a high doping concentration and the region 108 having a low doping concentration are formed can be formed.
  • a micro semiconductor 103 is formed on the insulating film 104 as shown in FIG.
  • ink may be applied to the entire surface of the substrate 101 using a spin coating method, or may be patterned using a printing technique such as an ink jet method.
  • the direction of the minute semiconductor 103 may be aligned by a method such as flowing ink in one direction on the substrate surface, or the directions may not be aligned at all.
  • the micro semiconductors 103 may be arranged so as to overlap each other.
  • the source electrode 105 and the drain electrode 106 are formed.
  • a method of forming the source electrode 105 and the drain electrode 106 for example, a method of defining a region where the source electrode 105 and the drain electrode 106 are to be formed using photolithography, or a printing method such as inkjet is used. be able to.
  • a material for the source electrode 105 and the drain electrode 106 a metal such as gold, titanium, or nickel, a conductive organic substance, or the like can be used.
  • a typical distance between the source electrode 105 and the drain electrode 106 is about 5 ⁇ m force and 20 ⁇ m.
  • the film thickness of the source electrode 105 and the drain electrode 106 is about lOOnm to 500nm.
  • a field effect transistor using such a micro semiconductor is provided by partially doping a micro semiconductor in advance.
  • the manufacturing feature of this transistor is that a micro-semiconductor partially doped is made in advance and then converted into ink, and the transistor is formed on another substrate using a printing method.
  • a transistor is manufactured by partially doping a minute semiconductor in advance and then placing the minute semiconductor between the source electrode and the drain electrode of the transistor, the structure of the transistor changes due to the displacement of the arrangement, There is concern that the characteristics will change. Therefore, we considered a suitable transistor structure with respect to the length of the micro semiconductor, the length of the doping region, and the dimensions of the transistor.
  • the silicon nanowire was assumed as the micro semiconductor material used for the study.
  • FIG. 12 shows a cross-sectional structure of the transistor shown in FIG.
  • the length of the micro semiconductor 103 is hereinafter referred to as L,
  • the length of the low doping concentration region 108 is L
  • the length of the gate electrode 102 is L
  • the effect of the misalignment of the small semiconductor 103 on the device characteristics was clarified using device simulation.
  • the length of the gate electrode 102 was 2 ⁇ m, and the distance between the source electrode 105 and the drain electrode 106 was 5 ⁇ m.
  • the region 107 with high doping concentration at both ends of the micro semiconductor 103 is an n-type region with a concentration of 1 ⁇ 10 21 cm 3
  • the region 108 with low doping concentration at the center of the nanowire 204 has a length of 1 ⁇ m. It was assumed that it was a p-type region having a concentration of 1 ⁇ 10 16 cm 3 .
  • FIG. 13 shows the position change when the dimensions and positions of the gate electrode 102, the source electrode 105, and the drain electrode 106 are fixed, and the relative position of the nanowire is changed in the direction of the central force drain. It shows the change in drain current and gate voltage characteristics with respect to the amount of formation.
  • the positional displacement is based on a low doping concentration at the center of the micro semiconductor 103 and the region 108 is in the middle of the source electrode and drain electrode (displacement amount 0), with a distance of 0.25 ⁇ m in the direction of the drain electrode.
  • the transistor characteristics were simulated by shifting to 2 m.
  • Figure 13 shows the drain current gate voltage characteristics 207 when the displacement is 0 ⁇ m, the drain current gate voltage characteristics 208 when the displacement is 0.5 m, and the drain current when the displacement is 1.0 m.
  • Current-gate voltage characteristics 209 and drain current-gate voltage characteristics 210 when the displacement is 1.5 m are shown.
  • the amount of displacement is 0 m
  • good n-channel transistor characteristics are shown.
  • the amount of displacement is 0.5 ⁇ m
  • the characteristics of a good n-channel transistor are almost the same as when the amount of displacement is 0 ⁇ m.
  • the transistor characteristics change.
  • the displacement exceeds 1.5 m, the difference between the on and off states of the transistor is hardly observed, and the transistor does not operate.
  • FIG. 14 shows changes in the off-state current 211 and on-state current 212 of the transistor with respect to the position displacement of the micro semiconductor 103.
  • the first region is in the range position displacement amount of up to 0 m forces 0. 5 mu m, the off current 211 below a low value 10- 17 A, the ON current 212 stable high value of more than 10- 4 A Has been obtained.
  • the position displacement is in the range of 0.5 to 1.5 m, and the off-current 211 gradually increases and the on-current 212 gradually decreases as the position displacement increases.
  • the third area is an area of the position displacement amount 1. least 5 m, the off current 211, the ON current 212 are both approximately 8 X 10- 6 A, i.e. Do and operation of the on Z off transistor, the region is there.
  • the reason why these three regions are observed can be explained as follows. Considering the force that the region 108 with low doping concentration is 1 ⁇ m and the gate electrode 102 is 2 ⁇ m, the region 108 with low doping concentration is in the range of positional displacement force SO / zm force 0.5 / zm. All are overlapped with the gate electrode 102 (Fig. 15 (a)). Therefore, all of the regions 108 with low doping concentration are controlled by the gate voltage, and transistor characteristics with a good on-Z off ratio can be obtained. When the positional displacement is in the range of 0.5 ⁇ m to 1.5 ⁇ m, the doping concentration Low! A part of the region 108 overlaps with the gate electrode 102, and a part thereof overlaps the state (FIG.
  • a transistor 107 is manufactured using the micro semiconductor 103 after forming the high doping concentration region 107 and the low doping concentration region 108 in the micro semiconductor 103 in advance. It is clear that it is desirable that the region 108 with low doping concentration completely overlaps with the gate electrode 102. At least part of the region 108 with low doping concentration needs to overlap with the gate electrode 102. became. In the case where a transistor is manufactured by a printing method using a micro semiconductor 103 manufactured using a separate substrate, high placement accuracy is required to satisfy the above requirements. Using conventional technology, a method for accurately placing a micro semiconductor with a simple process has not been realized.
  • the low doping concentration region 108 is located in the center of the micro semiconductor 103 and the high doping concentration region 107 is formed symmetrically across the low doping concentration region 108. It was.
  • the nanowire 204 (L) is connected to the source electrode 105 and the drain electrode 1
  • the length L of the gate electrode 102 extends from the source electrode 105 to the drain electrode 106.
  • the size of the gate electrode 102 measured along the direction is smaller than the distance L between the source electrode 105 and the drain electrode 106.
  • the nanowire 204 when the nanowire 204 is displaced and the low doping concentration region 108 does not overlap with the gate electrode 102, transistor characteristics such as an increase in off-current are deteriorated. If we take an arrangement where the low-doping region 108 does not overlap with the gate electrode 102, the nanowire will automatically lose its connection to the source or drain electrode and will not contribute to the increase in off-current. I found the condition. That is, as shown in FIG. 16A, the dimension from the end of the source electrode 105 to the end of the gate electrode 102 on the drain electrode side (L + (L L
  • the low doping concentration region 108 is completely overlapped with the gate electrode 102 and contributes to the transistor characteristics. As shown in FIG. 16B, when the displacement force of such a small semiconductor 103 is further increased, the low doping concentration region 108 protrudes from the overlap of the gate electrode 102. The connection is lost and the micro semiconductor 103 does not automatically contribute to the transistor characteristics. That is, the region 108 having a low doping concentration is formed in the gate electrode 102. If the arrangement is such that the nanowire does not automatically connect to the source electrode or drain electrode,
  • the region 108 with a low doping concentration does not overlap with the gate electrode 102, the region does not automatically contribute to the deterioration of the characteristics, so that the transistor characteristics have a certain statistical probability.
  • the dependent characteristics can be obtained stably.
  • it is necessary to form a channel with a plurality of minute semiconductors and it is desirable and more preferable that the channel is composed of 10 or more minute semiconductors. It is desirable to be composed of more than one micro semiconductor.
  • a condition is obtained in which a part of the region 108 with a low doping concentration is disposed so as to overlap the gate electrode 102.
  • the nanowire is automatically disconnected from the source electrode or the drain electrode. That is, as shown in FIG. 17, the dimension from the end of the source electrode 105 to the end of the gate electrode 102 on the drain electrode side (L + (L L) Z2) force The dimension on one side of the region 107 with high doping concentration
  • the low region 108 partially overlaps with the gate electrode 102 and contributes to transistor characteristics.
  • the amount of displacement of the micro semiconductor 103 is further increased, the low doping concentration region 108 protrudes from the overlap of the gate electrode 102, but at the same time, the source electrode The connection at the end is lost, and this micro semiconductor 103 does not automatically contribute to the transistor characteristics. That is, when the region 108 with a low doping concentration is arranged so as not to overlap with the gate electrode 102, the condition that the nanowire automatically loses connection with the source electrode or the drain electrode can be expressed by a mathematical expression:
  • transistor characteristics can be stably obtained depending on a certain statistical probability.
  • a small semiconductor in the case where a part of the region 108 with a low doping concentration overlaps with the gate electrode 102 also contributes to the transistor characteristics. Therefore, compared to the transistor specified in the formula (4), Properties are inferior.
  • the force described by using silicon nanowires as a representative example of a micro semiconductor material is not limited to silicon nanowires, and may be generated by any semiconductor material.
  • the same effect can be obtained not only in silicon but also in group IV semiconductors such as germanium and silicon carbide, compound semiconductors such as gallium arsenide and indium phosphide, and oxide semiconductors such as acid zinc.
  • the same effect can be obtained not only for nanowires by VLS growth but also for microsemiconductors by other growth methods and microsemiconductors fabricated by microfabrication.
  • the micro semiconductor is a single crystal, but even if it is polycrystalline or amorphous, the same effect can be obtained.
  • the micro semiconductor may include portions 103a whose surfaces are insulated at both ends or one end thereof. In that case, the insulated end 103a is not in electrical contact with the source electrode Z drain electrode. For this reason, the length of the above-described micro semiconductor 103 is as shown in FIG. 18, except for at least the end 103a where the surface is insulated.
  • the field effect transistor according to the present invention can be applied in a wide range such as a display, a logic integrated circuit, and a mono device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

 複数の微小半導体のうちの少なくとも1つの微小半導体103の一部に接続されたソース電極105と、微小半導体103の他の一部に接続されたドレイン電極106と、微小半導体103の電気伝導を制御することができるゲート電極102とを備える。微小半導体103は、ドーピング濃度が相対的に低い低濃度領域108と、ドーピング濃度が低濃度領域108よりも高く、低濃度領域108の両端に接続されている一対の高濃度領域107とを含む。高濃度領域107のドーピング濃度は1×1019cm-3以上であり、低濃度領域108の長さは、ソース電極105からドレイン電極106に向かう方向におけるゲート電極102の長さよりも短く、かつ、ゲート電極102の長さは、ソース電極105とドレイン電極106との間隔よりも短い。

Description

明 細 書
電界効果トランジスタ
技術分野
[0001] 本発明は電界効果トランジスタに関するものであり、ディスプレイ、論理集積回路、 モノくィル機器などの広 、範囲で応用可能である。
背景技術
[0002] 液晶ディスプレイや有機エレクト口ルミネッセンスディスプレイなどの表示装置を駆 動、制御するトランジスタの作製には、従来、リソグラフィーゃ真空蒸着、エッチングな どの半導体プロセス技術が用いられてきた。し力しながら、表示装置の大面積化の要 望に伴い、このような従来のプロセス技術を用いては、製造装置が大掛かりとなり製 造コストが増大するという問題を抱えている。このような課題を解決する手段として、 従来のリソグラフィーゃ真空蒸着、エッチングなどの半導体プロセス技術に代えて、 印刷技術を用いたトランジスタの製造方法が注目されている。また、従来技術で主と して用いられてきたガラス基板に変わり、ブラスティックなどのフレキシブル基板を用 いることにより、従来製品と比較して、薄型、軽量、曲げられるという特徴を実現するこ とができるため、フレキシブル基板へのトランジスタの製造方法が注目されている。
[0003] 従来の表示素子の駆動、制御用トランジスタの材料には主としてアモルファスシリコ ンゃポリシリコンが用いられてきた。しかしながら、これらの材料は現状の技術では気 相成長方法や蒸着方法などの真空プロセスで成膜されており印刷プロセスには適応 できない。また、比較的高温のプロセス温度を必要とするため基板材料にも制限を有 し、例えばブラスティック基板などの低融点材料を用いることはできな 、。
[0004] これらの課題を解決する手段として、極微サイズのシリコン単結晶を溶液中に分散 することにより〃シリコンインク〃を作製し、基板上に塗布することにより印刷プロセスを 用いてシリコン結晶からなるトランジスタを作製する方法が提案されている。非特許文 献 1には VLS成長法によって作製されたシリコンナノワイヤを材料とした印刷プロセス によるトランジスタの形成、非特許文献 2には SOI基板力も切り出したシリコン薄片を 材料とした印刷プロセスによるトランジスタの形成が開示されて ヽる。これらの手法を 用いることにより、 1)印刷プロセスによる低コストィ匕が実現できるのみならず、 2)シリコ ン単結晶を用いているため従来のアモルファスシリコンやポリシリコンよりも高移動度 、低バラツキが実現できる、 3)室温近傍でのシリコン膜形成が可能となるため、基板 材料選択の自由度が大幅に拡大するという長所を有する。従って、これらの技術を用 いることにより、例えばブラスティック基板上に、単結晶シリコン力もなる高性能のトラ ンジスタを作製することが可能となり、フレキシブルディスプレイなど従来にな 、新し V、デバイスが実現可能となる。
非特干文献 1: High-performance thin-film transistors using semiconductor nanowir es and nanoribbons", Nature, vol.425, 18 September 2003, pp. 274-278.
非特許文献 2: "A printable form of silicon for high performance thin film transistors on plastic substrates", Applied Physics Letters, vol. 84, 28 June 2004, pp. 5398-54
00.
発明の開示
発明が解決しょうとする課題
[0005] 微小のシリコン単結晶を溶液中に分散することにより"シリコンインク"を作製し、基 板上に塗布することにより印刷プロセスを用いてシリコン結晶からなるトランジスタを作 製する方法は大変有望である力 従来技術において以下の課題を有する。一例とし て、微小半導体として、シリコンナノワイヤを用いて従来技術でトランジスタを作製した 場合を例にとり、課題を図 19および図 20を用いて説明する。
[0006] 図 19は従来技術を用いて作製したシリコンナノワイヤトランジスタ構造の一例の斜 視図である。また、図 20は従来技術を用いて作製したシリコンナノワイヤトランジスタ の上面図及び A—A'線断面構造図である。基板 301上にゲート電極 302が形成さ れ、ゲート絶縁膜 304を介してシリコンナノワイヤ 303が配置される。シリコンナノワイ ャ 303の両端は、ソース電極 305およびドレイン電極 306に接続されている。ゲート 電極 302にゲート電圧を印加することにより半導体ナノワイヤ 303内に形成されるチ ャネルの電荷を制御し、トランジスタ動作することができる。半導体ナノワイヤ 303は、 例えば非特許文献 1に記載されて ヽるような成長方法で別基板を用いて予め作製し た後、基板 301に転写、配置することができる。 [0007] し力しながら、従来技術によるシリコンナノワイヤトランジスタは以下に述べる課題を 有する。第 1の課題は、トランジスタのチャネル長がゲート電極およびソース'ドレイン 電極などの加工寸法により一義的に決まるため、加工寸法限界以下のチャネル長が 実現できないことである。図 20 (b)において、半導体ナノワイヤ 303のうち、ゲート電 極によってキャリア濃度が支配される領域であるチャネル領域 307の長さ (チャネル長 )は、ゲート電極の加工寸法で決まる。金属 酸ィ匕膜一半導体 (MOS)トランジスタの 飽和領域におけるドレイン電流 IDは一般に次式で表される。
ID= (1/2) · (W/L) · μ Ci- (VG-VT)2
[0008] ここで、 W、 L、 、 Ci、 VG、 VTはそれぞれ、チャネル幅、チャネル長、チャネル移 動度、ゲート絶縁膜容量、ゲート電圧、閾値電圧である。チャネル長 Lが小さくなるに 伴い IDが増大しトランジスタ特性が向上する。フォトリソグラフィ一の加工精度は、ガ ラス基板を用いた場合 1 μ m弱程度であり、伸縮性及び表面凹凸を有するフレキシ ブル基板を用いた場合、 5〜10 /ζ πι程度である。電極の加工にフォトリソグラフィーを 用いず、インクジェットやスクリーン印刷などの印刷技術を用いた場合、特に微細加 ェは困難であり、現状の技術における加工精度は 30〜50 m程度である。また、ト ランジスタの加工ばらつきによりチャネル長 Lの寸法がばらつくと、加工ばらつきはそ のまま IDばらつきとなる。トランジスタを例えばディスプレイの画素駆動に用いた場合 、トランジスタのばらつきは画素の輝度ばらつき等に直結する。従って、図 19および 図 20に示す従来技術によるナノワイヤトランジスタにおいては、フレキシブル基板や 印刷技術を用いてトランジスタを作製した場合、加工精度の劣化によるトランジスタ特 性の劣化やバラツキが避けられな 、と 、う課題を有する。
[0009] 第 2の課題は、ソース電極、およびドレイン電極とのコンタクト抵抗の低抵抗ィ匕が困 難であることである。図 19および図 20に示す従来技術によるナノワイヤトランジスタで は、シリコンナノワイヤ 303の全体が均一にドーピングされている。半導体ナノワイヤ 3 03はチャネルを形成するため、ドーピング濃度によりトランジスタの閾値電圧を制御 する。そのため、ドーピング濃度を 1015から 1018cm 3に設定する必要がある。ところが このような低濃度のドーピングにおいてはソース電極およびドレイン電極との低抵抗 なォーミックコンタクトを形成することが困難であることが知られている。イオン注入お よび熱処理を用いてコンタクト領域に高濃度のドーピングを行い、コンタクト抵抗を低 抵抗ィ匕する技術が知られている。し力しながら、熱処理温度は通常 700°C程度以上 を必要とするため、ブラスティックなどのフレキシブル基板に適用することはできな 、。 従って、従来技術を用いてフレキシブル基板にナノワイヤトランジスタを作製する場 合、コンタクトの高抵抗ィ匕によるトランジスタ特性の劣化が避けられないという課題を 有する。
[0010] 第 3の課題は、オフセットによるチャネル抵抗の増大である。図 20に示す従来技術 によるナノワイヤトランジスタにおいては、シリコンナノワイヤ 303の一部に、ゲート電 極に支配されないオフセット領域 308が存在する。オフセット領域 308はゲート電極 に支配されな 、ため、トランジスタがオン動作して 、るときにお ヽてもキャリアが誘起さ れないため、チャネル抵抗を増大させてしまう。従来技術においては、イオン注入お よび熱処理を用いてオフセットの形成を回避して 、るが、前述のようにフレキシブル 基板を用いた場合、高温を必要とするプロセスを用いることができない。他の従来技 術によれば、図 21に示すトランジスタ構造を用いることによりオフセットを回避すること ができる。ゲート電極をソース電極からドレイン電極までオーバーラップさせることによ り、半導体ナノワイヤ 303全体にゲート電極によりチャネルを形成することが可能とな り、オフセットの形成を回避することができる。しかしながら、この構造においては、ソ ース電極、ドレイン電極、チャネルとゲート電極との間の寄生容量が増大し、トランジ スタの高周波動作を阻害するという問題が生じるため、図 21に示すトランジスタ構造 を用いることは好ましくない。図 19および図 20に示すトランジスタ構造の方が好まし いが、従来技術においてはオフセットの形成によりチャネル抵抗の増大が避けられな いという課題を有する。
課題を解決するための手段
[0011] 本発明の電界効果トランジスタは、基板と、前記基板に支持される複数の微小半導 体と、前記複数の微小半導体のうちの少なくとも 1つの微小半導体の一部に接続され たソース電極と、前記少なくとも 1つの微小半導体の他の一部に接続されたドレイン 電極と、前記少なくとも 1つの微小半導体に隣接してゲート絶縁膜として機能する絶 縁膜と、前記絶縁膜を介して前記少なくとも 1つの微小半導体の電気伝導を制御す ることができるゲート電極とを備える電界効果トランジスタであって、前記複数の微小 半導体の各々は、ドーピング濃度が相対的に低い低濃度領域と、ドーピング濃度が 前記低濃度領域よりも高ぐ前記低濃度領域の両端に接続されている一対の高濃度 領域とを含み、前記高濃度領域のドーピング濃度は 1 X 1019cm 3以上であり、前記 低濃度領域の長さは、前記ソース電極力 前記ドレイン電極に向力う方向における 前記ゲート電極の長さよりも短ぐかつ、前記ゲート電極の長さは、前記ソース電極と 前記ドレイン電極との間隔よりも短い。
[0012] 好ましい実施形態において、前記少なくとも 1つの微小半導体における前記一対の 高濃度領域の一方は、前記ソース電極と接続し、前記一対の高濃度領域の他方が 前記ドレイン電極と接続し、前記低濃度領域の少なくとも一部が前記ゲート電極と重 なりを有する。
[0013] 好ましい実施形態において、前記少なくとも 1つの微小半導体における前記一対の 高濃度領域の一方は、前記ソース電極と接続し、前記一対の高濃度領域の他方が 前記ドレイン電極と接続し、前記低濃度領域の全部が前記ゲート電極と重なりを有す る。
[0014] 好ましい実施形態において、前記微小半導体の長さを L 、前記低濃度領域の前
wire
記長さを L 、前記ゲート電極の前記長さを L 、ソース電極とドレイン電極の前記
channel gate
間隔を L としたときに、(L L ) > (L L )の関係式が成り立って
SD gate channel wire SD
いる。
[0015] 好ましい実施形態において、前記微小半導体の長さを L 、前記低濃度領域の前
wire
記長さを L 、前記ゲート電極の前記長さを L 、ソース電極とドレイン電極の前記
channel gate
間隔を L としたときに、(L + L ) > (L L )の関係式が成り立って
SD gate channel wire SD
いる。
[0016] 好ましい実施形態において、前記高濃度領域のドーピング濃度は 1 X 1019から 1 X
1022cm 3であり、前記低濃度領域のドーピング濃度は、前記高濃度領域のドーピン グ濃度の 10%以下である。
[0017] 好ましい実施形態において、前記低濃度領域のドーピング濃度は 1 X 1015から 1 X
1019cm— 3である。 [0018] 好ま 、実施形態にお!、て、前記複数の微小半導体は、前記ソース電極および前 記ドレイン電極の一方と重なりを有して 、な 、少なくとも 1つの微小半導体を含んで いる。
[0019] 好まし 、実施形態にぉ 、て、前記ソース電極および前記ドレイン電極の一方と重な りを有していない少なくとも 1つの微小半導体の前記低濃度領域は、前記ゲート電極 と重なりを有していない。
[0020] 好ま 、実施形態にぉ 、て、前記微小半導体は半導体ナノワイヤである。
[0021] 好ま 、実施形態にお!、て、前記微小半導体は気相 液層 固相成長 (VLS成 長)によって作製された半導体ナノワイヤである。
[0022] 好ま 、実施形態にお!、て、前記微小半導体は気相 液層 固相成長 (VLS成 長)によって作製されたシリコンナノワイヤである。
[0023] 好ま 、実施形態にぉ ヽて、前記基板は有機材料から形成されて!ヽる。
発明の効果
[0024] 本発明により、従来技術の課題であった、加工寸法精度以下のチャネル長の実現 、およびバラツキの抑制が実現できる。また、ソース電極およびドレイン電極とのコン タクト抵抗の低抵抗化を実現し、オフセットによるチャネル抵抗の増大を解消できる。 図面の簡単な説明
[0025] [図 1]本発明によるボトムゲート型のトランジスタ構造斜視図である。
[図 2] (a)は、本発明によるボトムゲート型のトランジスタ構造の上面図、(b)は、その A A'線断面図である。
[図 3]本発明によるトップゲート型のトランジスタ構造斜視図である。
[図 4] (a)は、本発明によるトップゲート型のトランジスタ構造の上面図、(b)は、その A A'線断面図である。
[図 5]本発明によるボトムゲート型のトランジスタ構造斜視図である。
[図 6]本発明によるボトムゲート型のトランジスタ構造斜視図である。
[図 7] (a)から(c)は、本発明によるボトムゲート型のトランジスタの製造方法を示すェ 程図である。
[図 8] (a)から(c)は、本発明によるボトムゲート型のトランジスタの製造方法を示すェ 程図である。
[図 9] (a)及び (b)は、微小半導体としてのシリコンナノワイヤの製造方法を示す工程 断面図である。
[図 10] (a)及び (b)は、本発明によるトランジスタ作製のためのシリコンナノワイヤ製造 方法を示す図である。
[図 11] (a)及び (b)は、本発明によるトランジスタ作製のためのシリコンナノワイヤ製造 方法を示す図である。
[図 12]本発明によるボトムゲート型のトランジスタ構造の断面図である。
[図 13]ドレイン電流—ゲート電圧特性のシミュレーション結果の説明図である。
[図 14]オン電流およびオフ電流のナノワイヤ位置変位量依存性の説明図である。
[図 15]ナノワイヤの位置変位とゲート電極との位置関係の説明図であり、(a)は、ドー ビング濃度の低い領域がすべてゲート電極と重なっている場合を、(b)は、ドーピン グ濃度の低い領域の一部がゲート電極と重なっている場合を、(c)は、ドーピング濃 度の低 、領域が完全にゲート電極と重なって 、な 、場合を示して 、る。
[図 16A]ドーピング濃度の低い領域がすべてゲート電極と重なるための条件を表す図 である。
[図 16B]ドーピング濃度の低い領域がすべてゲート電極と重なるための条件を表す図 である。
[図 17]ドーピング濃度の低い領域の一部がゲート電極と重なるための条件を表す図 である。
[図 18] (a)及び (b)は、少なくとも一端が絶縁化された微小半導体 103の例を示す断 面図である。
[図 19]従来技術によるボトムゲート型のトランジスタ構造斜視図である。
[図 20] (a)は、従来技術によるボトムゲート型のトランジスタ構造の上面図、 (b)は、そ の断面図である。
[図 21]従来技術によるボトムゲート型のトランジスタ構造の断面図である。
符号の説明
101 基板 102 ゲート電極
103 微小半導体
104 絶縁膜
105 ソース電極
106 ドレイン電極
107 ドーピング濃度の高い領域
108 ドーピング濃度の低い領域
109 マスク
110 ゲート電極形成領域
111 ゲート金属
201 基板
202 触媒金属微粒子
203 原料ガス
204 シリコンナノワイヤ
205 n型ドーパントガス
206 p型ドーパントガス
207 変位 0 mの場合の、ドレイン電流ー 208 変位 0. 5 /z mの場合の、ドレイン電流 209 変位 1. の場合の、ドレイン電流 210 変位 1. 5 mの場合の、ドレイン電流 l l 才ン ¾¾
212 オン電流
301 基板
302 ゲート電極
303 ナノワイヤ
304 絶縁膜
305 ソース電極
306 ドレイン電極 307 チャネル領域
308 オフセット領域
発明を実施するための最良の形態
[0027] 以下、図面を参照しながら、本発明によるトランジスタ構造の構成を説明する。図 1 は、本発明によるボトムゲート型のトランジスタ構造斜視図の一例を示している。図 2 ( a)および (b)はそれぞれ、図 1に示すトランジスタの上面図、および A— A,線で切断 した断面図である。図 3は、本発明によるトップゲート型のトランジスタ構造斜視図の 一例を示している。図 4 (a)および (b)はそれぞれ、図 3に示すトランジスタの上面図、 および A— A'線で切断した断面図である。
[0028] 基板 101の上に、少なくとも一部にチャネル層を形成する微小半導体 103と、微小 半導体 103に接続されたソース電極 105およびドレイン電極 106と、微小半導体 103 に隣接し、ゲート絶縁膜として機能する絶縁膜 104と、絶縁膜 104を介して微小半導 体 103の電気伝導を制御することが可能なゲート電極 102から構成されて ヽる。トラ ンジスタは複数の微小半導体 103を用いて構成される。本発明の、最も根幹となる特 徴は、微小半導体 103にはドーピング濃度の異なる少なくとも 2つ以上の領域が形成 されて 、ること、およびそのドーピング領域がトランジスタの特性を発揮するために好 適に配置されて ヽることである。
[0029] 微小半導体 103の両端部にはドーピング濃度の高い領域 107、微小半導体 103の 中央部にはドーピング濃度の高い領域 107に比べてドーピング濃度の低い領域 108 が形成される。ドーピング濃度の高い領域 107は 1 X 1019cm 3以上のドーピング濃度 を有する。
[0030] ドーピング濃度の高い領域 107とドーピング濃度の低い領域 108の伝導形は同一( すなわち領域 107、 108ともに p型、あるいはともに n型)でもよいし、ドーピング濃度 の高 、領域 107とドーピング濃度の低 、領域 108の伝導形が反対 (すなわち領域 10 7が p型、領域 108が n型、あるいは領域 107が n型、領域 108が p型)でもよい。ドー ビング濃度の低い領域 108は、微小半導体 103の中央に位置し、ドーピング濃度の 低!、領域 108を挟んでドーピング濃度の高 、領域 107が対称に形成されて 、ること が望ましい。 [0031] 微小半導体 103の少なくとも 1つは、両端に形成されたドーピング濃度の高い領域 107がそれぞれソース電極 105とドレイン電極 106に接続されている。また、微小半 導体 103の少なくとも 1つは、ドーピング濃度の低い領域 108が絶縁膜 104を介して ゲート電極 102とオーバーラップを有している。すなわち、図 1および図 2に示したボ トムゲート型のトランジスタにおいては、微小半導体 103の少なくとも 1つは、ドーピン グ濃度の低い領域 108が完全にゲート電極 102の上に形成される。あるいは、微小 半導体 103の少なくとも 1つは、ドーピング濃度の低い領域 108の一部がゲート電極 102の上に形成される。また、図 3および図 4に示したトップゲート型のトランジスタに おいては、微小半導体 103の少なくとも 1つは、ドーピング濃度の低い領域 108が完 全にゲート電極 102の下に形成される。あるいは、微小半導体 103の少なくとも 1つ は、ドーピング濃度の低い領域 108の一部がゲート電極 102の下に形成される。
[0032] 図 1から図 4に示した本発明のトランジスタの一例においては、微小半導体 103がソ ース電極からドレイン電極に整列して ヽる例を示した。このように整列することは理想 ではあるが、本発明においては必要条件ではない。例えば、図 5に示すように微小半 導体 103が整列せずに配置方向にバラツキを有して 、てもよ 、し、微小半導体 103 同士が重なりをもっていてもよい。また、図 6に示すように、一部の微小半導体 103が ソース電極あるいはドレイン電極と接続をもっていなくてもよい。尚、図 5および図 6は ボトムゲート型トランジスタの例を示した力 トップゲート型トランジスタにおいても同様 に、微小半導体 103が整列せずに配置方向にバラツキを有していてもよいし、微小 半導体 103同士が重なりをもっていてもよいし、一部の微小半導体 103がソース電極 あるいはドレイン電極と接続をもって ヽなくてもよ!、。
[0033] 本発明によるトランジスタは、以下に述べる点で従来技術の課題の解決をはかるこ とができる。第 1に、加工寸法精度以下のチャネル長の実現、およびバラツキの抑制 が実現できる。本発明によるトランジスタにおいては、微小半導体 103の両端に形成 されたドーピング濃度の高 、領域 107は、ゲート電極 102の影響を殆ど受けることな ぐ実質的に、ソース電極 105およびドレイン電極 106の一部として機能する。例えば 、ドーピング濃度の高い領域 107のドーピング濃度が 1 X 1019cm 3以上であれば、ゲ ート電極 102に印加された電界によるキャリア空乏化は無視できるほど小さいため、 ドーピング濃度の高い領域 107は常に低抵抗状態を保つことができる。また、ドーピ ング濃度の高い領域 107の不純物が 1 X 1022cm 3程度の濃度までであれば、微小 半導体 103の結晶性を悪ィ匕させることなく容易にドーピングされる。
[0034] この結果、ゲート電極 102によってキャリアが制御されるいわゆるチャネル部分は、 ドーピング濃度の低い領域 108のみに相当する。後述するように、ドーピング濃度の 低い領域 108の寸法は、結晶成長の制御により 0.: L m程度以下の精度で制御す ることができる。従来技術においては、前述したようにチャネル長はゲート電極の加工 精度で決定され、フォトリソグラフィーを用いた加工の場合、ガラス基板を用いた時の 加工精度は 1 μ m弱程度、表面凹凸、伸縮のあるフレキシブル基板を用いた時の加 ェ精度は 5〜 10 m程度である。電極の加工にフォトリソグラフィーを用いず、インク ジェットやスクリーン印刷などの印刷技術を用いた場合、特に微細加工は困難であり 、現状の技術における加工精度は 30〜50 /ζ πι程度である。これと比較して、本発明 によるトランジスタは、ドーピング濃度の低い領域 108の寸法をゲート電極の長さに比 ベて短くすることが可能であるため、遥かに微細な精度、かつ、ばらつきを抑制した チャネルを形成することが可能となり、トランジスタの特性が大幅に向上する。
[0035] また、図 5に示したように、微小半導体 103の配置がソース電極 105からドレイン電 極 106へ向力 方向に対して回転方向にずれを持っている場合も、チャネル長は、ド 一ビング濃度の低い領域 108の寸法で一義的に決まるため、バラツキ要因とはなら ない。一方、ドーピングを施さない従来のトランジスタにおいては、微小半導体 103の 回転方向のずれにより実質的にゲート電極 102に支配される微小半導体 103の長さ が変わってしまい、配置のずれが特性バラツキに直結する。この点も、本発明によるト ランジスタを用いることにより、特性バラツキが抑制される要因となる。
[0036] 本発明によるトランジスタが従来技術の課題の解決をは力ることができる第 2の点は 、ソース電極およびドレイン電極とのコンタクト抵抗の低抵抗ィ匕が実現できる点である 。従来技術によるトランジスタのドーピング濃度が、閾値電圧制御の観点力も 1017か ら 1018cm 3に設定する必要があつたのに対し、本発明によるトランジスタにおいては、 閾値電圧制御はドーピング濃度の低 、領域 108にお 、て行うため、ドーピング濃度 の高い領域 107のドーピング濃度は閾値電圧とは独立に自由に設定することができ る。具体的には、 1 X 1019から 1 X 1022cm 3程度のドーピングが可能である。一般的 に、コンタクト領域のドーピング濃度が 1 X 1019cm— 3程度を超えると、トンネル電流に よりコンタクト接合障壁を超える電流が流れるなどの理由で良好なォーミックコンタクト が得られることが知られている。従って、従来技術と比較して、コンタクト抵抗の大幅 低減が実現できる。尚、後述するように、本発明においては、微小半導体 103へのド 一ビングは結晶成長を用いて予め施しているので、高温プロセスを用いることなくコン タクト形成を行うことができる。従って、本手法はフレキシブル基板などへも容易に適 用可能である。
[0037] 本発明によるトランジスタが従来技術の課題の解決をは力ることができる第 3の点は 、オフセットによるチャネル抵抗の増大を解消できる点である。本発明によるトランジス タにおいては、ゲート電極 102に支配を受けない領域の微小半導体 103はドーピン グ濃度の高い領域 107で構成されるため、低抵抗でありチャネル抵抗の増大は生じ ない。
[0038] 以上により、本発明により従来技術を大幅に改良したトランジスタ特性を実現するこ とがでさる。
[0039] なお、微細半導体 103におけるドーピング濃度は、高分解能二次イオン質量分析 計や顕微ラマン分光測定装置を用いた分析により測定することができる。
[0040] 以下、本発明によるトランジスタの製造方法を述べる。ここでは、図 1から図 2、図 5 力も図 6に示したボトムゲート型のトランジスタを例にとって製造方法を述べる。微小 半導体の例として、シリコンナノワイヤを用いた場合について説明する。図 7及び図 8 に本発明によるボトムゲート型のトランジスタの製造方法を示す概略平面図と A—A' 線概略断面図を示す。
[0041] 図 7 (a)力 図 8 (a)はゲート電極 102の製造方法を示す。まず、図 7 (a)に示すよう に基板 101上にゲート電極 102を形成する領域をマスク 109により規定する。マスク 1 09を形成する方法としては、フォトリソグラフィーゃインクジェットなどの印刷法など既 存の技術によるパターユング方法を用いることができる。次に、図 7 (b)に示すように 基板 101をエッチングすることによって、ゲート電極形成領域 110を形成する。エッチ ングする方法としては、ドライエッチングやウエットエッチングを用いる。本発明におけ るトランジスタにおいて、基板 101の材料は、好ましくはブラスティック (有機材料)、ガ ラス、シリコンから形成されるが、これらに限定されない。基板 101の材料は、有機物' 無機物の違い、導電性の有無などに制限されることなぐ任意の材料から形成され得 る。この場合、基板 101に適応したエッチング方法を用いることにより、既存技術を用 いてゲート電極形成領域 110を形成することが可能である。次に、図 7 (c)に示すよう に、ゲート金属 111を堆積する。堆積する方法としては、スパッタ法、蒸着法、金属微 粒子インクを塗布するような方法を用いることができる。次に、マスク 109とマスク 109 上に堆積したゲート金属 111を、図 8 (a)に示すようにリフトオフにより除去することに より、基板 101上にゲート電極 102を形成することができる。ゲート電極 102の材料は 特に限定されるものではなぐ金、アルミニウム、チタン、タングステンなどの金属材料 、シリコンなどの半導体材料、導電性有機物などを用いることができる。典型的な寸 法としては、ゲート長は 2 μ m力ら 20 μ m、ゲート幅は 20 μ m力ら 200 μ m、ゲート電 極厚みは 200nmから 500nm程度である。ゲート電極 102と基板 101の高さを同程 度にする方法としては、ゲート金属 111の堆積膜厚をゲート電極形成領域 110の深 さと同程度に設定するとよい。ゲート金属 111の堆積膜厚をゲート電極形成領域 110 の深さと同程度にした場合、トランジスタの平坦性が向上し、トランジスタを作製しや すくなるという長所を有する。しカゝしながら、図 7においては、ゲート電極 102と基板 1 01の高さを同一に図示している力 ゲート電極 102と基板 101の高さを同一にするこ とは本発明の必要条件ではなぐ高さが同一でなくとも、本発明の効果を同様に得る ことができる。例えば、ゲート電極形成領域 110を形成することなぐ基板 101上の表 面上にゲート電極 102を形成してもよい。
[0042] 次に図 8 (b)に示すように、ゲート電極 102を形成した基板 101上に絶縁膜 104お よび微小半導体 103を順次形成する。絶縁膜 104の材料は、シリコン酸ィ匕膜、シリコ ン窒化膜、酸ィ匕アルミニウム、酸ィ匕タンタル、酸ィ匕ハフニウムなどの無機材料、ポリイ ミドなどの有機材料などあらゆる絶縁材料を用いることができる。形成方法は、スパッ タ法ゃスピンコートによる塗布方法などの既存の技術を用いることができる。絶縁膜 1 04の典型的な膜厚は lOOnmから 500nm程度である。
[0043] 微小半導体 103の製造および絶縁膜 104上への配置は、本発明の主要な部分で あるため、別図を用いて詳しく述べる。以下、図 9を参照して、シリコン力 形成した微 小半導体 103の製造方法を説明する。シリコンナノワイヤの製造方法には気相 液 層一固層(VLS)成長法を用いることができる。 VLS成長法によるシリコンナノワイヤ の成長は、例えば非特許文献 1にも開示されており、よく知られた技術である。図 9 (a )に示すように、ナノワイヤ成長用の基板 201の上に、触媒金属微粒子 202を形成す る。基板 201の材料としては、シリコン基板や熱酸化膜が表面に形成されたシリコン 基板などを用いることができる。触媒金属微粒子 202は、例えば直径 lOnmから 100 nm程度の金微粒子を用いることができる力 コバルト、ニッケル、白金などを用いるこ ともできる。触媒金属微粒子 202の形成方法としては、例えば触媒金属微粒子 202 のコロイド溶液を基板 201上にスピンコートにより塗布することなどが利用できるが、 同様の形状が形成できる手法であれば、 、かなる手法も適用できる。
[0044] 次に、図 9 (b)に示すように、基板 201を所定の基板温度に保持した状態で、原料 ガス 203を供給することにより、シリコンナノワイヤ 204を成長することができる。成長 中の基板温度は 350°Cから 500°C程度、原料ガス 203には SiH 用い
4、 Si Hなどを
2 6
る。原料ガスは水素、ヘリウムなどで希釈してもよい。成長圧力は 0. OOlTorr程度か ら大気圧程度までの領域で成長することができる力 0. OOlTorrから lOTorr程度 の範囲が好ましい。
[0045] 本発明の特徴は、図 1に示したように微小半導体 103の内部に、ドーピング濃度の 高い領域 107とドーピング濃度の低い領域 108を形成することである。このように、ド 一ビング濃度の異なる領域を有するシリコンナノワイヤの製造方法を説明する。ドー ビング濃度の高 、領域 107が n型、ドーピング濃度の低 、領域 108が p型であるシリ コンナノワイヤの成長方法を、図 10及び図 11を参照して説明する。基板 201上に触 媒金属微粒子 202を形成した後(図 10 (a) )、基板温度を約 450°Cに保持した状態 で、原料ガス 203として Si Hを、 n型ドーパントガス 205として PHを供給する。これ
2 6 3
により、 Si Hが分解してシリコンナノワイヤが成長するとともに、 PHが分解してシリコ
2 6 3 ンナノワイヤ中に n型ドーパントである Pが取り込まれ、結果として n型のドーピング濃 度の高い領域 107が形成される(図 10 (b) )。このとき、 Si Hと PHの分圧比を制御
2 6 3
することにより、シリコンナノワイヤ中の P濃度を制御することができる。例えば、 Si H と PHの分圧比を 50 : 1
3 〜5000 : 1に設定することにより、 1 X 10 力ら 1 X 10 cm 程度の P濃度を有するシリコンナノワイヤを形成することができる。
[0046] 所定の時間、原料ガス 203として Si Hを、 n型ドーパントガス 205として PHを供給
2 6 3 した後、原料ガス 203として Si Hを供給しつづけた状態で、 n型ドーパントガス 205
2 6
の代わりに p型ドーパントガス 206として B Hを供給する。このとき、 Si Hと B Hの分
2 6 2 6 2 6 圧比を制御することによりシリコンナノワイヤ中の B濃度を制御することができる。例え ば、、 Si Hと B Hの分圧匕を50000 : 1〜500000 : 1に設定することにょり、 1 X 1015
2 6 2 6
力も 1 X 1019cm 3程度の B濃度を有するシリコンナノワイヤを形成することができる。こ の結果、 n型のドーピング濃度の高い領域 107に連続して、 p型のドーピング濃度の 低い領域 108が形成される(図 11 (a) )。なお、領域 108のドーピング濃度は、領域 1 07のドーピング濃度よりも低ければよぐ領域 108のドーピング濃度は、領域 107のド 一ビング濃度の 10%以下であることが好ましい。特にトランジスタの閾値電圧をより適 切な値に設定するという観点から、領域 108のドーピング濃度は、 1 X 1015から 1 X 1 019cm 3までの範囲内にあることが好まし 、。
[0047] なお、領域 107および領域 108の境界は、明確である必要は無い。すなわち、ドー ビング濃度は、領域 107と 108との間で急峻に変化している必要は無ぐ緩やかに変 化していることも許容される。言い換えると、ドーピング濃度が相対的に高い領域と相 対的に低い領域との間に、濃度が徐々にまたは段階的に変化する遷移領域が存在 してもよい。そのような遷移領域が存在する場合、ドーピング濃度が l X 1019cm 3以 上の領域が本発明における「高濃度領域」であり、ドーピング濃度が 1 X 1019cm 3より も低 、領域が「低濃度領域」である。
[0048] 次に、所定の時間、原料ガス 203として Si Hを、 p型ドーパントガス 206として B H
2 6 2 6 を供給した後、原料ガス 203として Si Hを供給しつづけた状態で、 p型ドーパントガ
2 6
ス 206の代わりに再び n型ドーパントガス 205として PHを供給する。この結果、 p型の
3
ドーピング濃度の低い領域 108に連続して、 n型のドーピング濃度の高い領域 107が 形成される(図 l l (b) )。
[0049] 上述した手法により、ドーピング濃度の異なる領域を有する微小半導体が形成でき る。特筆すべき点は、本手法を用いれば、微小半導体 103の寸法、ドーピング濃度 の高い領域 107およびドーピング濃度の低い領域 108の寸法を成長時間の制御に より精密に制御できる点である。シリコンナノワイヤの典型的な成長速度は 1 μ /m in力ら 5 μ mZmin程度である。例えば 1 μ mZminで成長を行う場合、図 11 (a)に 示した p型のドーピング濃度の低い領域 108の成長を 6秒間行うことにより、寸法を 0. 1 μ mに制御することができる。数秒単位での成長制御は十分制御可能な範囲であ り、本手法により 0. 1 m程度以下の精度でのドーピングプロファイル制御が可能で あることが示される。ドーピング濃度の低い領域 108に限らず、ドーピング濃度の高い 領域 107や微小半導体 103全体の寸法に関しても同様の精度で制御できる。また、 図 10及び図 11はドーピング濃度の高い領域 107が n型、ドーピング濃度の低い領域 108が p型である場合を示した力 ドーパントの種類を選択することによりいかなる伝 導形の組み合わせにも対応可能である。また、本手法のもう一つの特筆すべき点は 、このような微小半導体 103を同一基板上で大量に成長することにより、同一プロファ ィルを有する微小半導体 103を大量に生成することができることである。
[0050] 次に、成長したナノワイヤを溶媒に分散してインクを作製する。インクの作製方法と しては、例えばナノワイヤが成長した基板を溶媒中に入れて超音波洗浄を施すこと により、ナノワイヤが溶媒中に剥離し、インクが作製できる。溶媒の材料は、水、アル コール、有機溶剤などを用いることが可能である。インクを作製する前に、ナノワイヤ の表面に酸ィ匕膜を形成するなどの加工を施しておいてもよい。また、分散しやすいよ うに、ナノワイヤの表面に化学的修飾を施してもよい。
[0051] 以上の工程により、ドーピング濃度の高い領域 107とドーピング濃度の低い領域 10 8が形成された微小半導体 103を分散したインクが形成できる。このインクを用いて、 図 8 (b)に示すように絶縁膜 104上に微小半導体 103を形成する。形成方法は、例 えばスピンコート法などを用いて基板 101全面にインクを塗布してもよいし、インクジ エツト法などの印刷技術を用いてパターユングしてもよい。塗布に際しては、基板表 面にインクを一方向に流すなどの手法により微小半導体 103の方向を揃えてもよいし 、全く方向を揃えなくてもよい。また、微小半導体 103同士が重なりを持って配置され てもよい。
[0052] 最後に、図 8 (c)に示すようにソース電極 105およびドレイン電極 106を形成する。 形成する方法としては、例えばフォトリソグラフィーを用いてソース電極 105およびドレ イン電極 106を形成する領域を規定する方法や、インクジェットなどの印刷工法を用 V、てソース電極 105およびドレイン電極 106を形成することができる。ソース電極 105 およびドレイン電極 106の材料には金、チタン、ニッケルなどの金属、導電性有機物 などを用いることができる。ソース電極 105およびドレイン電極 106の間の典型的な 距離は、 5 μ m力 20 μ m程度である。ソース電極 105およびドレイン電極 106の膜 厚は lOOnmから 500nm程度である。
[0053] 本発明では、微小半導体に予め部分的にドーピングを施し、斯かる微小半導体を 用いた電界効果トランジスタを提供する。本トランジスタの製法上の特徴は、部分的 にドーピングを施された微小半導体を予め作製した後にインク化し、印刷法を用いて 別基板上にトランジスタを形成することである。このように、微小半導体に予め部分的 にドーピングを施した後、この微小半導体をトランジスタのソース電極とドレイン電極 間に配置してトランジスタを作製する場合、配置のずれによってトランジスタの構造が 変化し、特性が変化することが懸念される。そこで、微小半導体の長さ、ドーピング領 域の長さ、トランジスタの寸法に関して、好適なトランジスタ構造の考察を行った。考 察に用いた微小半導体材料は、シリコンナノワイヤを仮定した。
[0054] 図 12は、図 2示したトランジスタの断面構造である。トランジスタにおける各部分の 相対的寸法を規定するため、以後、微小半導体 103の長さを L 、微小半導体 103
wire
の中でドーピング濃度の低い領域 108の長さを L 、ゲート電極 102の長さを L 、
channel gate ソース電極 105とドレイン電極 106間の距離を L と表記する。このトランジスタにおい
SD
て、微小半導体 103の配置ずれがデバイス特性に及ぼす影響を、デバイスシミュレ ーシヨンを用いて明らかにした。シミュレーションにおいて、ゲート電極 102の長さは 2 μ m、ソース電極 105とドレイン電極 106の距離は 5 μ mとした。微小半導体 103の 両端のドーピング濃度の高い領域 107は、濃度 1 X 1021cm 3の n型領域であり、ナノ ワイヤ 204の中央部のドーピング濃度の低い領域 108は、 1 μ mの長さを有する、濃 度 1 X 1016cm 3の p型領域であるとした。
[0055] 図 13はゲート電極 102、ソース電極 105、ドレイン電極 106の寸法および位置を固 定し、ナノワイヤの相対的位置を中心力 ドレイン方向に変化させたときの、位置変 化量に対するドレイン電流 ゲート電圧特性での変化を表したものである。位置変位 量は、微小半導体 103の中央部のドーピング濃度の低 、領域 108がソース電極とド レイン電極の中間にあるときを基準(変位量 0)とし、ドレイン電極方向に 0. 25 μ m 隔で 2 mまで変位させてトランジスタ特性のシミュレーションを行った。図 13には、 変位量が 0 μ mの場合のドレイン電流 ゲート電圧特性 207、変位量が 0. 5 mの 場合のドレイン電流 ゲート電圧特性 208、変位量が 1. 0 mの場合のドレイン電 流—ゲート電圧特性 209、変位量が 1. 5 mの場合のドレイン電流—ゲート電圧特 性 210を示している。変位量が 0 mの場合、良好な nチャネルトランジスタの特性を 示している。変位量が 0. 5 μ mの場合も、変位量が 0 μ mの場合とほぼ同一の良好 な nチャネルトランジスタの特性を示している。ナノワイヤの位置が変位するに伴い、ト ランジスタ特性に変化が生じ、変位量が 1. 5 mを超えるとトランジスタのオン、オフ 状態の差が殆ど観測されず、トランジスタとして動作しなくなることがわ力る。
[0056] 変位量に対するトランジスタ特性変化の詳細を解析するため、オン電流およびオフ 電流の位置変位量依存性をプロットした。図 14は微小半導体 103の位置変位量に 対するトランジスタのオフ電流 211およびオン電流 212の変化を表したものである。 大別して以下の 3つの領域が観測された。第 1の領域は、位置変位量が 0 m力 0 . 5 μ mまでの範囲で、オフ電流 211は 10— 17 A以下の低い値、オン電流 212は 10— 4A 以上の高い値が安定的に得られている。第 2の領域は、位置変位量が 0. 力 1. 5 mまでの範囲で、位置変位量の増加とともにオフ電流 211は次第に増加し、 オン電流 212は次第に減少する。第 3の領域は、位置変位量が 1. 5 m以上の領域 で、オフ電流 211、オン電流 212はともに 8 X 10— 6A程度であり、すなわちトランジスタ のオン Zオフ動作しな 、領域である。
[0057] このような 3つの領域が観測される原因は以下のように説明できる。ドーピング濃度 の低い領域 108が 1 μ m、ゲート電極 102が 2 μ mであること力も考えて、位置変位量 力 SO /z m力 0. 5 /z mまでの範囲では、ドーピング濃度の低い領域 108がすべてゲ ート電極 102と重なっている状態である(図 15 (a) )。従って、ドーピング濃度の低い 領域 108すべてがゲート電圧の支配を受け、オン Zオフ比が良好なトランジスタ特性 が得られる。位置変位量が 0. 5 μ mから 1. 5 μ mまでの範囲では、ドーピング濃度の 低!、領域 108の一部がゲート電極 102と重なり、一部が重なりをもって 、な 、状態で ある(図 15 (b) )。従って、ドーピング濃度の低い領域 108の一部がゲート電圧の支 配を受けなくなるため、トランジスタ動作はするものの、オフ電流 211の増力!]、オン電 流 212の減少をきたし、特性の劣化が見られる。位置変位量が 1. 5 m以上の領域 では、ドーピング濃度の低い領域 108とゲート電極 102との重なりが完全になくなり( 図 15 (c) )、ゲート電圧の支配を受けなくなるため、トランジスタ動作しなくなる、と説 明できる。
[0058] これまで、シミュレーションの結果に則した数値を用いて説明した力 ここで明らか になった現象は一般的に以下のように記述できる。両端にドーピング濃度の高い領 域 107、中央部にドーピング濃度の低い領域 108を形成した微小半導体 103をチヤ ネルに用いたトランジスタの構成において、ドーピング濃度の低い領域 108がゲート 電極 102に完全に重なる配置を取ることが最も望ましぐ良好なトランジスタ特性が得 られる。ドーピング濃度の低い領域 108の一部がゲート電極と重なり、一部がゲート 電極と重なりを持たな ヽ配置の場合、トランジスタとしての動作は得られるが特性は劣 る。ドーピング濃度の低い領域 108が完全にゲート電極 102と重なりを持たない配置 の場合、トランジスタとして機能しない。
[0059] 以上の結果から、微小半導体 103に予めドーピング濃度の高い領域 107とドーピン グ濃度の低い領域 108を作りこんだ後、その微小半導体 103を用いてトランジスタを 作製する際には、最も好ましくは、ドーピング濃度の低い領域 108が完全にゲート電 極 102に重なる配置を取ることが望ましぐ少なくともドーピング濃度の低い領域 108 の一部はゲート電極 102に重なる配置が必要であることが明らかになった。別基板で 作製した微小半導体 103を用い、印刷法によってトランジスタを作製する場合、上記 用件を満たすためには、高度な配置精度が必要となる。従来技術を用いては、簡便 なプロセスで精度よく微小半導体を配置する方法は実現されな力つた。
[0060] 我々は、以下に述べる考察により、微小半導体 103の長さ L 、微小半導体 103の
wire
中のドーピング濃度の低い領域 108の長さ L 、ゲート電極 102の長さ L 、ソース
channel gate 電極 105とドレイン電極 106間の距離 L の間に以下に述べる関係式を満足させるこ
SD
とにより、高度な配置精度を必要とすることなぐ特性向上を実現するトランジスタを実 現できることを見出した。尚、ここでは、ドーピング濃度の低い領域 108は微小半導体 103の中央に位置し、ドーピング濃度の低い領域 108を挟んでドーピング濃度の高 V、領域 107が対称に形成されて 、るとして検討を行った。
[0061] まず、最も好適な条件として、ドーピング濃度の低い領域 108が完全にゲート電極 1 02に重なる配置を取る条件を求める。ドーピング濃度の低い領域 108 (L )が完
cnannel 全にゲート電極 102 (L )に重なるためには、
gate
L > L (1)
gate channel
を満足する必要がある。また、ナノワイヤ 204 (L )がソース電極 105とドレイン電極 1
wire
06 (電極間隔 L )に接続する必要があるため、
SD
L > L (2)
wire SD
を満足する必要がある。
[0062] なお、ゲート電極 102の長さ L は、ソース電極 105からドレイン電極 106に延びる
gate
方向に沿って測定されたゲート電極 102のサイズであり、ソース電極 105とドレイン電 極 106間の距離 L よりも小さい。
SD
[0063] ナノワイヤ 204が位置変位を生じ、ドーピング濃度の低い領域 108がゲート電極 10 2と重なりを持たなくなると、オフ電流の増加などトランジスタ特性の劣化を生じさせる ことを前述した。我々は、ドーピング濃度の低い領域 108がゲート電極 102と重なりを 持たなくなる配置を取った場合、そのナノワイヤが自動的にソース電極あるいはドレイ ン電極との接続がなくなり、オフ電流の増加に寄与しなくなる条件を見出した。すな わち、図 16Aに示すように、ソース電極 105の端からゲート電極 102のドレイン電極 側の端までの寸法 (L + (L L
gate ¾0 gate )Z2)力 ドーピング濃度の低い領域 108 (L
c
)とドーピング濃度の高い領域 107の片側の寸法 (L + (L L )Z2)と hannel channel wire channel の和に全く等しい場合を考える。この時点では、ドーピング濃度の低い領域 108はゲ ート電極 102と完全に重なりをもっており、トランジスタ特性に寄与する。このような微 小半導体 103の変位量力 図 16Bに示すように、さらに少しでも大きくなると、ドーピ ング濃度の低い領域 108はゲート電極 102の重なりからはみ出てしまうが、それと同 時にソース電極端での接続がなくなり、この微小半導体 103はトランジスタ特性に自 動的に寄与しなくなる。すなわち、ドーピング濃度の低い領域 108がゲート電極 102 と重なりを持たなくなる配置を取った場合、そのナノワイヤが自動的にソース電極ある いはドレイン電極との接続がなくなる条件を数式で表すと、
L + (L L ) /2 > L + (L -L ) /2 (3)
gate SD gate channel wire channel
と表現できる。この式を整理すると、
(L - L ) > (L - L ) (4)
gate channel wire SD
と記述できる。この条件を満足して、トランジスタを作製することにより、トランジスタの 特性劣化を生じさせるほど位置変位量が大きな微小半導体は、トランジスタの特性に は全く寄与しなくなり、結果として特性劣化を生じさせることはない。
[0064] 複数の微小半導体を用いてトランジスタを作製する場合、微小半導体の配置制御 を全く行わず、ランダムに配置したと想定すると、統計学的な一定の確率をもって、ド 一ビング濃度の低い領域 108がゲート電極 102と重なりを持つものと持たないものが 生じる。 L 、L
channel、L
wire、L の間に上述の(1)、 (2)および (4)式で記述される条件 gate SD
を満足しておくことにより、ドーピング濃度の低い領域 108がゲート電極 102と重なり を持たな 、ものは自動的に特性劣化に寄与しなくなるため、トランジスタの特性は統 計学的な一定の確率に依存した特性が安定して得られる。安定したトランジスタの特 性を得るためには、複数の微小半導体でチャネルを構成することが必要であり、好ま しくは 10個以上の微小半導体で構成されることが望ましぐさらに好ましくは、 100個 以上の微小半導体で構成されることが望ま 、。
[0065] 次に、好適な条件として、ドーピング濃度の低い領域 108の一部がゲート電極 102 に重なる配置を取る条件を求める。この場合は、ドーピング濃度の低い領域 108の一 部がゲート電極 102と重なりを持たなくなる配置を取った場合、そのナノワイヤが自動 的にソース電極あるいはドレイン電極との接続がなくなる条件を見出した。すなわち、 図 17に示すように、ソース電極 105の端からゲート電極 102のドレイン電極側の端ま での寸法 (L + (L L ) Z2)力 ドーピング濃度の高い領域 107の片側の寸
gate SD gate
法((L -L ) /2)と全く等 U、場合を考える。この時点では、ドーピング濃度の wire channel
低い領域 108はゲート電極 102と一部に重なりをもっており、トランジスタ特性に寄与 する。微小半導体 103の変位量がさらに少しでも大きくなると、ドーピング濃度の低い 領域 108はゲート電極 102の重なりからはみ出てしまうが、それと同時にソース電極 端での接続がなくなり、この微小半導体 103はトランジスタ特性に自動的に寄与しな くなる。すなわち、ドーピング濃度の低い領域 108がゲート電極 102と重なりを持たな くなる配置を取った場合、そのナノワイヤが自動的にソース電極あるいはドレイン電極 との接続がなくなる条件を数式で表すと、
L + (L L ) /2 > (L L ) /2 (5)
gate SD gate wire channel
と表現できる。この式を整理すると、
(L + L ) > (L - L ) (6)
gate channel wire SD
と記述できる。 L 、L 、L 、L の間に上述の(1
gate channel wire SD )、(2)および(5)式で記述され る条件を満足しておくことにより、トランジスタの特性は統計学的な一定の確率に依存 した特性が安定して得られる。(5)式を用いることにより、ドーピング濃度の低い領域 108の一部がゲート電極 102に重なる配置の場合の微小半導体もトランジスタ特性 に寄与するため、(4)式で規定されたトランジスタに比べて特性は劣る。
[0066] これまで述べた実施の形態にお!、ては、微小半導体材料として、シリコンナノワイヤ を代表させて説明した力 本発明の効果は、シリコンナノワイヤに限らず、いかなる半 導体材料によっても生じる。例えば、材料としてシリコンに限らず、ゲルマニウム、シリ コンカーバイドなどの IV族半導体、ガリウム砒素、インジウムリンなどの化合物半導体 、酸ィ匕亜鉛などの酸ィ匕物半導体においても同様の効果が得られる。また、 VLS成長 によるナノワイヤに限らず、他の成長方法による微小半導体、微細加工により作製し た微小半導体においても同様の効果が得られる。また、微小半導体は単結晶である ことが望ま 、が、多結晶や非晶質にお!、ても同様の効果が得られる。
[0067] なお、微小半導体は、図 18に示すように、その両端または一方の端に表面が絶縁 化された部分 103aを備えていてもよい。その場合、絶縁ィ匕された端部 103aは、ソー ス電極 Zドレイン電極と電気的に接触しない。このため、上述した微小半導体 103の 長さし は、図 18に示すように、少なくとも表面が絶縁ィ匕された端部 103aを除外して wire
規定される。
産業上の利用可能性
[0068] 本発明による電界効果トランジスタは、ディスプレイ、論理集積回路、モノィル機器 などの広 、範囲で応用可能である。

Claims

請求の範囲
[1] 基板と、
前記基板に支持される複数の微小半導体と、
前記複数の微小半導体のうちの少なくとも 1つの微小半導体の一部に接続されたソ ース電極と、
前記少なくとも 1つの微小半導体の他の一部に接続されたドレイン電極と、 前記少なくとも 1つの微小半導体に隣接してゲート絶縁膜として機能する絶縁膜と、 前記絶縁膜を介して前記少なくとも 1つの微小半導体の電気伝導を制御することが できるゲート電極と、
を備える電界効果トランジスタであって、
前記複数の微小半導体の各々は、
ドーピング濃度が相対的に低い低濃度領域と、ドーピング濃度が前記低濃度領域 よりも高ぐ前記低濃度領域の両端に接続されている一対の高濃度領域と、 を含み、
前記高濃度領域のドーピング濃度は 1 X 1019cm 3以上であり、
前記低濃度領域の長さは、前記ソース電極から前記ドレイン電極に向かう方向にお ける前記ゲート電極の長さよりも短ぐかつ、前記ゲート電極の長さは、前記ソース電 極と前記ドレイン電極との間隔よりも短い、電界効果トランジスタ。
[2] 前記少なくとも 1つの微小半導体における前記一対の高濃度領域の一方は、前記 ソース電極と接続し、前記一対の高濃度領域の他方が前記ドレイン電極と接続し、前 記低濃度領域の少なくとも一部が前記ゲート電極と重なりを有する請求項 1に記載の 電界効果トランジスタ。
[3] 前記少なくとも 1つの微小半導体における前記一対の高濃度領域の一方は、前記 ソース電極と接続し、前記一対の高濃度領域の他方が前記ドレイン電極と接続し、前 記低濃度領域の全部が前記ゲート電極と重なりを有する請求項 1に記載の電界効果 トランジスタ。
[4] 前記微小半導体の長さを L 、
wire
前記低濃度領域の前記長さを L 、 前記ゲート電極の前記長さを L
gate
ソース電極とドレイン電極の前記間隔を L としたときに、
SD
(L - L ) > (L - L )
gate channel wire SD
の関係式が成り立つている請求項 1に記載の電界効果トランジスタ。
前記微小半導体の長さを L 、
wire
前記低濃度領域の前記長さを L 、
channel
前記ゲート電極の前記長さを L 、
gate
ソース電極とドレイン電極の前記間隔を L としたときに、
SD
(L + L ) > (L - L )
gate channel wire SD
の関係式が成り立つている請求項 1に記載の電界効果トランジスタ。
前記高濃度領域のドーピング濃度は 1 X 1019から 1 X 1022cm 3までの範囲内にあり 前記低濃度領域のドーピング濃度は、前記高濃度領域のドーピング濃度の 10% 以下である、請求項 1に記載の電界効果トランジスタ。
[7] 前記低濃度領域のドーピング濃度は 1 X 1015から 1 X 1019cm 3までの範囲内にある
、請求項 6に記載の電界効果トランジスタ。
[8] 前記複数の微小半導体は、前記ソース電極および前記ドレイン電極の一方と重な りを有して 、な 、少なくとも 1つの微小半導体を含んで 、る、請求項 1に記載の電界 効果トランジスタ。
[9] 前記ソース電極および前記ドレイン電極の一方と重なりを有していない少なくとも 1 つの微小半導体の前記低濃度領域は、前記ゲート電極と重なりを有していない、請 求項 8に記載の電界効果トランジスタ。
[10] 前記微小半導体は半導体ナノワイヤである、請求項 1に記載の電界効果トランジス タ。
[11] 前記微小半導体は気相 液層 固相成長 (VLS成長)によって作製された半導体 ナノワイヤである、請求項 1に記載の電界効果トランジスタ。
[12] 前記微小半導体は気相 液層 固相成長 (VLS成長)によって作製されたシリコ ンナノワイヤである、請求項 1に記載の電界効果トランジスタ。 [13] 前記基板は有機材料から形成されて ヽる請求項 1に記載の電界効果トランジスタ。
Figure imgf000028_0001
8171·
Figure imgf000029_0001
IJVIZ
Figure imgf000030_0001
иҐνε
Figure imgf000031_0001
QV/t
Figure imgf000032_0001
8I7S
Figure imgf000033_0001
Figure imgf000033_0002
CS98M/.00Z OAV
8179
Figure imgf000034_0001
[80]
8£ZZ90/L00Zdt/L3d £S98n/L00Z OAV
8I-/Z
Figure imgf000035_0001
81-/8
Figure imgf000036_0001
Figure imgf000036_0002
[0劇 £ΖΖ90/ί00Ζάΐ/13ά CS98M/.00Z OAV
8176
Figure imgf000037_0001
Figure imgf000037_0002
[π面 £ZZ90/L00Zdr/13d CS98M/.00Z OAV
81-/01 1 1/18
WO 2007/148653 PCT/JP2007/062238
[図 12]
¾δγ丄 ()ιΛ αV
Figure imgf000038_0001
Figure imgf000038_0002
- 4 - 2 0 2 4
ゲート電圧 Vg (V) 12/18
WO 2007/148653 PCT/JP2007/062238
[図 14]
第 1の 第 2の 第 3の
Figure imgf000039_0001
0.5 1 1.5
位置変位量
13/18
WO 2007/148653 PCT/JP2007/062238
Figure imgf000040_0004
Figure imgf000040_0001
Figure imgf000040_0002
Figure imgf000040_0003
圆 16A]
Figure imgf000041_0001
-SD '-gate
"gate
2
園 16B]
Figure imgf000041_0002
102
15/18
WO 2007/148653 PCT/JP2007/062238
[図 17]
Figure imgf000042_0001
[図 18]
Figure imgf000042_0002
103
Figure imgf000042_0003
103
3οε
Figure imgf000043_0001
81-/91 17/18
WO 2007/148653 PCT/JP2007/062238
[図 20]
303
Figure imgf000044_0001
303
Figure imgf000045_0001
[ΐ翻£ΖΖ90/ίΟΟΖάΐ/13ά CS98M/.00Z OAV
81-/81
PCT/JP2007/062238 2006-06-21 2007-06-18 電界効果トランジスタ WO2007148653A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/305,824 US8106382B2 (en) 2006-06-21 2007-06-18 Field effect transistor
JP2008522449A JP5312938B2 (ja) 2006-06-21 2007-06-18 電界効果トランジスタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-171017 2006-06-21
JP2006171017 2006-06-21

Publications (1)

Publication Number Publication Date
WO2007148653A1 true WO2007148653A1 (ja) 2007-12-27

Family

ID=38833395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062238 WO2007148653A1 (ja) 2006-06-21 2007-06-18 電界効果トランジスタ

Country Status (3)

Country Link
US (1) US8106382B2 (ja)
JP (1) JP5312938B2 (ja)
WO (1) WO2007148653A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052366A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Voltage regulator circuit
WO2011108374A1 (en) * 2010-03-05 2011-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
WO2012008079A1 (ja) * 2010-07-16 2012-01-19 シャープ株式会社 薄膜トランジスタおよびシフトレジスタ
JP2013016834A (ja) * 2010-05-14 2013-01-24 Semiconductor Energy Lab Co Ltd 半導体装置
US8963517B2 (en) 2009-10-21 2015-02-24 Semiconductor Energy Laboratory Co., Ltd. Voltage regulator circuit comprising transistor which includes an oixide semiconductor
JP2017021358A (ja) * 2009-12-28 2017-01-26 株式会社半導体エネルギー研究所 表示装置の表示方法
US9852703B2 (en) 2009-12-25 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Method for driving liquid crystal display device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110057163A1 (en) * 2008-06-09 2011-03-10 National Institute Of Advanced Industrial Science And Technology Nano-wire field effect transistor, method for manufacturing the transistor, and integrated circuit including the transistor
WO2011068025A1 (en) * 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Dc converter circuit and power supply circuit
CN102683588A (zh) * 2011-03-10 2012-09-19 中国科学院微电子研究所 一种有机场效应晶体管结构及其制备方法
KR101779031B1 (ko) * 2011-12-19 2017-09-18 인텔 코포레이션 수직 트랜지스터와 그 제조방법, 및 고전압 트랜지스터
WO2014084153A1 (en) 2012-11-28 2014-06-05 Semiconductor Energy Laboratory Co., Ltd. Display device
US9007092B2 (en) 2013-03-22 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9899490B2 (en) * 2016-02-03 2018-02-20 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure with changeable gate length and method for forming the same
IT201600088211A1 (it) * 2016-08-30 2018-03-02 St Microelectronics Srl Dispositivo elettronico a giunzione con ridotto tempo di recupero per applicazioni soggette al fenomeno del ricircolo della corrente e relativo metodo di fabbricazione
DE102016010764A1 (de) 2016-09-08 2018-03-08 Forschungszentrum Jülich GmbH Vorrichtung zur Messung kleiner Potentiale einer Probe, Verfahren zur Herstellung der Vorrichtung und Verwendung der Vorrichtung
US11004984B2 (en) * 2019-09-23 2021-05-11 International Business Machines Corporation Low resistivity epitaxially formed contact region for nanosheet external resistance reduction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006507692A (ja) * 2002-09-30 2006-03-02 ナノシス・インコーポレイテッド 大面積ナノ可能マクロエレクトロニクス基板およびその使用
JP2006093390A (ja) * 2004-09-24 2006-04-06 Matsushita Electric Ind Co Ltd 半導体素子および半導体回路
JP2006128233A (ja) * 2004-10-27 2006-05-18 Hitachi Ltd 半導体材料および電界効果トランジスタとそれらの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2904602A (en) 2000-12-11 2002-06-24 Harvard College Nanosensors
EP2273552A3 (en) 2001-03-30 2013-04-10 The Regents of the University of California Methods of fabricating nanstructures and nanowires and devices fabricated therefrom
EP1436841A1 (en) 2001-05-18 2004-07-14 President And Fellows Of Harvard College Nanoscale wires and related devices
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US7358121B2 (en) * 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication
WO2006070670A1 (ja) 2004-12-28 2006-07-06 Matsushita Electric Industrial Co., Ltd. 半導体ナノワイヤ、および当該ナノワイヤを備えた半導体装置
US20070155025A1 (en) * 2006-01-04 2007-07-05 Anping Zhang Nanowire structures and devices for use in large-area electronics and methods of making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006507692A (ja) * 2002-09-30 2006-03-02 ナノシス・インコーポレイテッド 大面積ナノ可能マクロエレクトロニクス基板およびその使用
JP2006093390A (ja) * 2004-09-24 2006-04-06 Matsushita Electric Ind Co Ltd 半導体素子および半導体回路
JP2006128233A (ja) * 2004-10-27 2006-05-18 Hitachi Ltd 半導体材料および電界効果トランジスタとそれらの製造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8963517B2 (en) 2009-10-21 2015-02-24 Semiconductor Energy Laboratory Co., Ltd. Voltage regulator circuit comprising transistor which includes an oixide semiconductor
US9929281B2 (en) 2009-10-21 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Transisitor comprising oxide semiconductor
US9431546B2 (en) 2009-10-21 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor material transistor having reduced off current
US9236402B2 (en) 2009-10-30 2016-01-12 Semiconductor Energy Laboratory Co., Ltd. Voltage regulator circuit
WO2011052366A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Voltage regulator circuit
US8766608B2 (en) 2009-10-30 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Voltage regulator circuit and semiconductor device, including transistor using oxide semiconductor
JP2016178862A (ja) * 2009-10-30 2016-10-06 株式会社半導体エネルギー研究所 電圧調整回路
US9852703B2 (en) 2009-12-25 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Method for driving liquid crystal display device
US10255868B2 (en) 2009-12-25 2019-04-09 Semiconductor Energy Laboratory Co., Ltd. Method for driving liquid crystal display device
JP2017021358A (ja) * 2009-12-28 2017-01-26 株式会社半導体エネルギー研究所 表示装置の表示方法
US10242629B2 (en) 2009-12-28 2019-03-26 Semiconductor Energy Laboratory Co., Ltd. Display device with a transistor having an oxide semiconductor
US10600372B2 (en) 2009-12-28 2020-03-24 Semiconductor Energy Laboratory Co., Ltd. Transreflective liquid crystal display device
US9673335B2 (en) 2010-03-05 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Rectifier circuit including transistor whose channel formation region includes oxide semiconductor
WO2011108374A1 (en) * 2010-03-05 2011-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP2013016834A (ja) * 2010-05-14 2013-01-24 Semiconductor Energy Lab Co Ltd 半導体装置
US8809851B2 (en) 2010-05-14 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9029861B2 (en) 2010-07-16 2015-05-12 Sharp Kabushiki Kaisha Thin film transistor and shift register
WO2012008079A1 (ja) * 2010-07-16 2012-01-19 シャープ株式会社 薄膜トランジスタおよびシフトレジスタ

Also Published As

Publication number Publication date
JP5312938B2 (ja) 2013-10-09
US8106382B2 (en) 2012-01-31
JPWO2007148653A1 (ja) 2009-11-19
US20100001259A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP5312938B2 (ja) 電界効果トランジスタ
US7586130B2 (en) Vertical field effect transistor using linear structure as a channel region and method for fabricating the same
US7230286B2 (en) Vertical FET with nanowire channels and a silicided bottom contact
US7297615B2 (en) Si nanowire substrate, method of manufacturing the same, and method of manufacturing thin film transistor using the same
US7629629B2 (en) Semiconductor nanowire and semiconductor device including the nanowire
CA2499965C (en) Large-area nanoenabled macroelectronic substrates and uses therefor
US9064777B2 (en) Graphene switching device having tunable barrier
US7233041B2 (en) Large-area nanoenabled macroelectronic substrates and uses therefor
US20100224915A1 (en) Method for producing semiconductor chip, and field effect transistor and method for manufacturing same
US20150170916A1 (en) Semiconductor process for manufacturing epitaxial structures
JP2007158119A (ja) ナノワイヤを有する電気素子およびその製造方法並びに電気素子集合体
US8053846B2 (en) Field effect transistor (FET) having nano tube and method of manufacturing the FET
JP2016525790A (ja) 半導電性グラフェン構造、このような構造の形成方法およびこのような構造を含む半導体デバイス
TWI630719B (zh) 磊晶再成長之異質結構奈米線側向穿隧場效電晶體
KR102059131B1 (ko) 그래핀 소자 및 이의 제조 방법
JP2009164161A (ja) 電界効果トランジスタ
CN113178490B (zh) 一种隧穿场效应晶体管及其制备方法
JP5228406B2 (ja) 半導体装置及びその製造方法
US8022408B2 (en) Crystalline nanowire substrate, method of manufacturing the same, and method of manufacturing thin film transistor using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745480

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008522449

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12305824

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745480

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)