WO2007036565A1 - Device and method for localizing a collision of an object with a motor vehicle - Google Patents
Device and method for localizing a collision of an object with a motor vehicle Download PDFInfo
- Publication number
- WO2007036565A1 WO2007036565A1 PCT/EP2006/066885 EP2006066885W WO2007036565A1 WO 2007036565 A1 WO2007036565 A1 WO 2007036565A1 EP 2006066885 W EP2006066885 W EP 2006066885W WO 2007036565 A1 WO2007036565 A1 WO 2007036565A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- collision
- signal
- motor vehicle
- location
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/01—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
- B60R21/013—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
- B60R21/0136—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to actual contact with an obstacle, e.g. to vehicle deformation, bumper displacement or bumper velocity relative to the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/01—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
- B60R21/013—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
Definitions
- the present invention relates to a device and a method for locating the collision of an object on a motor vehicle.
- the present invention further relates to a protection system for protecting vehicle occupants and / or external road users.
- active and passive protection systems such as e.g. Airbags, belt tensioners, Uberrollbugel and the like.
- airbags e.g. Airbags, belt tensioners, Uberrollbugel and the like.
- non-motorized road users e.g. Pedestrians and cyclists
- Another protective measure for the protection of external road users are devices for folding up the hood, in which case the hood is slightly raised in the event of an accident, which should ensure a favorable for the unprotected road user impact angle to the vehicle and prevent direct impact on the windshield.
- the various load cases can generally be distinguished by the fact that sensor signals from the shock absorber are provided to the vehicle provided sensors to be examined for certain features (eg their amplitude) out.
- a larger amplitude of the sensor signal indicates, for example, a larger mass of the impacting object.
- a major problem with this approach is that the amplitude or the course of the sensor signal depend very much on the distance of the impacting object to the responsive to this collision sensor. If an object collides directly with such a collision sensor, then the deflection (amplitude) of the sensor signal will be much larger than when the object collides offset to the collision sensor. This is because the bumper in which the collision sensor is usually provided has a certain elasticity and therefore acts as an attenuator.
- One way to more accurately determine the location of the impact is to provide the vehicle's bumper with a plurality of flexure detectors, each covering a particular area and outputting a sensor signal in the event of a collision. If a collision, then the sensor signal with the largest amplitude corresponds to the location of the impact, so that it can be concluded from a comparison of the various sensor signals directly to the approximate impact location.
- a disadvantage of this approach is that a relatively large number of sensors is necessary, resulting in an increased cost. Furthermore, a refinement of the spatial resolution is possible only with a larger number of sensors, which further increases the cost.
- At least one sensor device coupled to an outer side of the motor vehicle, comprising a first sensor and a second sensor, which respond to a collision of an object with the outside and output a first sensor signal or a second sensor signal depending on the collision, and
- a corresponding method for localizing a collision of an object on a motor vehicle includes the steps:
- the idea on which the present invention is based is to compare the sensor signals output by at least two sensors provided on the vehicle exterior and to conclude from this comparison of the sensor signals with the position of the impact of an object on the vehicle.
- a significant advantage resulting from the arrangement according to the invention and the method according to the invention is that only a few (eg two) sensors are required to determine the position of the impact on the vehicle.
- the knowledge of the position of the impact allows a better distinction of the load cases (eg the distinction between light and heavy objects) in contrast to known solutions.
- the protection means to be triggered can be selected depending on the position of the impact.
- the first sensor and the second sensor are provided at a distance from each other on the outside of the motor vehicle. In this case, a transit time difference occurs between the sensor signals output by the sensors, from which the distance to the collision location can be deduced.
- the first sensor and the second sensor are arranged close to each other. Close to the location here means that the sensors are arranged so close to one another that virtually no transit time difference occurs if a collision takes place at the location of the sensors.
- An example of this is a biaxial or duaxial sensor device, which measures both the X component and the Y component of a measured variable and outputs corresponding sensor signals. It should be noted that even in such a case, a sensor device which outputs two sensor signals is referred to as two sensors in the present description. It will be under the first sensor the part of the structure of the sensor device, which generates the first sensor signal, and the second sensor, the part of the structure of the sensor device is understood, which generates the second sensor signal, which structural parts can also overlap. This may be the case, in particular, when the two sensors are arranged in one (ie the same) sensor module.
- the sensors should not measure the same measured variable, since they would then also generate the same sensor signals.
- the first sensor determines from a vibration propagating in the event of a collision along the outside of the motor vehicle a first measured variable having a first direction information
- the second sensor determines from this oscillation a second measured variable, the second one from the first direction information has different direction information. At different propagation speeds of the first and the second measured variable thus occurs a delay difference, from which the location signal can be determined.
- the first direction information and the second direction information define an angle in the horizontal plane, in particular an angle of 45 to 90 degrees.
- the measure of the first direction may be the X component and the measure of the second direction may be the Y component of a physical quantity (e.g., acceleration).
- the first sensor and the second sensor each determine different measured variables which propagate at different speeds on the outside of the motor vehicle from a vibration propagating along the outside of the motor vehicle in the event of a collision.
- the evaluation device can also use an amplitude of the first sensor signal and an amplitude of the second sensor signal for determining the location signal. This allows determination of the location of collisions that are outside the range between the first and second sensors. Furthermore, the incorporation of the amplitudes also allows a more accurate determination of the load cases.
- the first sensor and / or the second sensor can be configured as an acceleration sensor, pressure sensor, structure-borne noise sensor and / or bending sensors.
- the first sensor is designed as an acceleration sensor and the second sensor as a structure-borne noise sensor. This allows the utilization of the different propagation velocities of vibrations of different frequencies in the motor vehicle.
- a decision device which decides based on the location signal determined by the device whether a tripping condition that is dependent on the location of the collision of the object on the motor vehicle applies, and which outputs a trigger signal for triggering protection means when the triggering condition applies.
- a protection means for the protection of vehicle occupants and / or external road users may be provided, which is triggered by the trigger signal.
- a protection method for the protection of vehicle occupants and / or external road users is realized, which takes into account the location of the collision of an object on the vehicle in the decision as to whether and which protection means are triggered.
- Fig. 1 is a protection system of a motor vehicle with a
- 2A shows the course of sensor signals, in the event that the location of the collision is in the middle of the bumper between the two sensors.
- 2B shows the course of sensor signals, in the event that the location of the collision is closer to one of the two sensors.
- FIG. 2C shows the course of sensor signals in the event that the location of the collision is outside the bumper area located between the two sensors;
- FIG. 3 shows the amplitude of the sensor signal as a function of the distance to the collision location;
- Fig. 4A shows the arrangement of the collision sensors in an embodiment according to the invention
- FIG. 1 shows a protection system 1 of a motor vehicle with a collision location device according to an embodiment of the invention.
- the collision locating apparatus includes a collision sensor device having a first collision sensor 3a and a second collision sensor 3b, and a program-controlled evaluation device 4.
- the protection system 1 includes a collision locator, program-controlled decider, and protection means 6a and 6b.
- the collision sensors 3a and 3b are mounted on the outside 2 of a motor vehicle, for example in the front bumper of the motor vehicle.
- the collision sensors 3a and 3b can be designed, for example, as acceleration sensors, pressure sensors, structure-borne sound sensors or bending sensors.
- the collision sensors 3a and 3b are spaced apart from each other.
- the collision sensors 3a and 3b detect a measured variable having a direction as indicated by arrows in the collision sensors in FIG. 1.
- the collision sensors 3 a and 3 b detect a measured variable in the x-direction, that is to say along the vehicle direction. If the collision sensors 3a and 3b are designed as acceleration sensors, then they detect the x-component of the acceleration acting on the bumper at this point.
- the collision sensors 3a and 3b output sensor signals xsl or xs2 to the program-controlled evaluation device 4, which further processes the sensor signals xsl and xs2.
- the sensor signals xs1 and xs2 can already be preprocessed (eg filtered and digitized) by the collision sensors 3a and 3b, respectively, but such signal processing can also be performed by the evaluation device 4.
- the evaluation device 4 compares the sensor signals xsl and xs2 with one another and generates a location signal xo which correlates with the collision location by means of the method described below.
- “correlating with the collision location” means that the location signal xo contains information about the collision location.
- the bumper is subdivided into a plurality of sections and the location signal xo can assume an equal number of discrete values, each of these values corresponding to one of the sections.
- the location signal xo is continuously variable, with a low value corresponding to a collision location to the left and a higher value to a collision location to the right of the bumper.
- the location signal xo becomes the decision device 5, which decides whether and which protection means 6a and 6b should be triggered. Not only the information about the location of the collision (that is, the location signal xo) can be included in this decision, but also other information or parameters, such as the signal xo. the vehicle speed, the estimated mass of the colliding object 7 or the position of vehicle occupants, which are determined by other sensors and devices, not shown.
- the protection means 6a is a protection means for protecting vehicle occupants, such as an airbag (side airbag, knee airbag, etc.) or a belt tensioner.
- the protection means 6b is a protection means for the protection of external road users, such as For example, an outwardly directed airbag or a device for folding up the hood of the vehicle.
- the protection means 6a and 6b are triggered by trigger signals xzl and xz2, respectively, which are generated by the decision device 5 if the decision device 5 decides that there is a load case which requires triggering of the protection means 6a or 6b.
- FIG. 2A shows the course of the sensor signals xsl and xs2 in the event that the location of the collision with the object 7 is in the middle of the bumper between the two sensors 3a and 3b.
- the sensor signals Due to the damping of the vibrations in the bumper, the sensor signals represent a damped oscillation with a characteristic period and damping. The period of the oscillation depends on the properties (mass, rigidity, etc.) of the bumper and the colliding object 7b, and thus can have more Provide information about the load case.
- the time from the collision to the time of the response of the respective sensors 3a and 3b is about the same; in other words, the difference between the response times Tl and T2 (ie T2 - Tl) is very small.
- the "time of the response of the sensors” is understood to be the time at which the sensor signal exceeds a specific threshold value, which is indicated by a dashed line in FIG. 2.
- the amplitude of the two sensor signals xsl and xs2 about the same. 2B shows the course of sensor signals xsl and xs2 in the event that the location of the collision is closer to the collision sensor 3a than to the collision sensor 3b.
- the time Tl from the collision to the response of the collision sensor 3a is much shorter than the time T2 from the collision to the response of the collision sensor 3b.
- the amplitude of the sensor signal xsl is also substantially greater than the amplitude of the sensor signal xs2.
- the evaluation device 4 To locate the location of the collision with the object 7, the evaluation device 4 therefore first determines the transit time difference T2-T1 between the sensor signals xsl and xs2. Based on the transit time difference T2 - Tl the evaluation device 4 then determines the exact position of the collision.
- a very small transit time difference T2 - T1 indicates a collision with the center of the bumper;
- a large positive skew T2 - T1 indicates a collision near the first collision sensor 3a;
- a large negative skew T2 - T1 indicates a collision near the second collision sensor 3b.
- 2C shows the course of sensor signals xs1 and xs2 in the event that the location of the collision is outside the area of the bumper located between the two sensors 3a and 3b.
- the transit time difference T2-T1 is almost independent of the exact location of the collision location, that is, independent of the distance of the collision location to the sensor 3a.
- the amplitude of the sensor signals xsl and xs2 for locating the collision location is additionally taken into account.
- the amplitude of the sensor signals output by the collision sensors decreases with increasing distance of the collision sensors from the collision location in a known manner. This is illustrated in FIG. 3, which shows the amplitude of the sensor signal in FIG Depends on the distance to the collision location.
- SA marks the position of the sensor 3a and SB marks the position of the sensor 3b.
- the ratio of the amplitudes A (SA) and A (SB) gives information about the collision location IPLOC (impact location). It therefore applies:
- IPLOC f (A (SA) / A (SB))
- the evaluation device 4 can thus determine the collision location IPLOC.
- the decay curve of the sensor signals shown only schematically in FIG. 3 may, for example, run exponentially at least piecewise. In this case, the exact course of the decay curve can be location-dependent and in particular dependent on the local stiffness. It should be noted that the decay curve shown in Fig. 3 may also depend on the mass of the colliding object and thus the sensor signals xsl and xs2 can also provide information about the mass of the object 7 next to its collision location.
- the amplitudes of the sensor signals xsl and xs2 can also be used for the localization of the collision location if the collision takes place in the area between the collision sensors 3a and 3b.
- an approximately equal amplitude of the sensor signals xsl and xs2 indicates that the distances of the collision sensors 3a and 3b from the collision location are approximately equal, as shown in Fig. 3A, while a larger amplitude of the sensor signal xsl indicates that the collision location closer to the collision sensor 3a.
- the collision sensors 3a and 3b are spaced apart from each other in the above-described embodiment, and both measure the X component of a certain measured quantity (eg, acceleration).
- Fig. 4B shows the arrangement of the collision sensors in another embodiment of the invention. In this embodiment, the sensors are not spaced apart from each other but arranged close to each other.
- the collision sensor 3a measures the X component of a certain measurement
- the collision sensor 3b measures the Y component of a certain (same or different) measurement.
- X component means the component along the vehicle and "Y component" the component across the vehicle.
- the two collision sensors 3a and 3b may both be acceleration sensors.
- the bumper In a collision with an object 7, the bumper is vibrated, with a longitudinal component (in the Y direction) and a transverse component (in the X direction), the so-called bending vibration.
- the longitudinal component of this vibration propagates faster in the bumper than the transversal component.
- a transit time difference T2 - T1 thus again occurs (similar to the case shown in FIG. 2A, for example), which enables the collision location with the evaluation device 4 in the manner described above.
- the collision sensors 3a and 3b are shown at two different positions in the Y direction; in fact, however, they are located nearly at the same position in the Y direction (e.g., one above the other or integrated with each other). In particular, they can be arranged in the same sensor module.
- the collision sensors 3a and 3b are likewise arranged close to one another as shown in FIG. 4B, but respond to different measured variables.
- the collision sensor 3 a may be used as the acceleration sensor and the collision sensor 3 b as the body sensor.
- Acceleration sensors typically measure oscillations in the frequency range of 0 to 400 Hz
- structure-borne sound sensors typically respond to oscillations in the frequency range of 7 kHz to 30 kHz.
- the propagation speed of vibrations in the bumper is frequency-dependent: high-frequency vibrations (structure-borne sound vibrations) propagate much faster than low-frequency vibrations (bending vibrations).
- a transit time difference T2 - T1 occurs (similar to the case illustrated, for example, in FIG. 3A), which makes it possible to determine the collision location with the evaluation device 4 in the manner described above.
- the information about the collision location (ie the location signal xo) determined in the manner described above can furthermore be used to enable a better differentiation of the load cases.
- the amplitude of the sensor signal decreases with increasing distance to the collision location. Since the sensor signals xsl and xs2 indicate the deflection of the measured variable at the location of the collision sensors (punctiform and non-planar), the sensor signals xsl and xs2 make no direct statement about the deflection of the same measured variable at the location of the collision.
- the deflection of the same measurand at the collision location can be calculated from the measured deflection taking into account a) the distance of the collision sensors to the collision location and b) the attenuation of the measurand due to the bumper.
- a more accurate knowledge of the deflection of the measured variable at the collision location in turn allows a more accurate determination of the load case (for example by means of a mass estimate).
- the knowledge of the collision location allows different stiffnesses of the bumper or the front-end to take into account. For example, there is typically a higher stiffness in the area of a license plate provided on the bumper than outside this range, so that the signals picked up by the collision sensors 3a and 3b also differ in the event of a collision with this range of signals in the event of a collision outside this range. If the exact location of the collision is known, such different stiffnesses can be taken into account and, for example, the thresholds for the collision detection can be adapted accordingly.
- the collision sensors are disposed on the front bumper.
- the collision sensors may be located at any locations on the outside of the motor vehicle, such as on the side, to locate collisions with the side of the motor vehicle.
- the only requirement is that the sensor signals used for the collision localization correlate with each other in a known manner, i. so respond to the same impact in a way that allows conclusions about the location of the impact.
- program-controlled evaluation device and the program-controlled decision device were shown above as separate units. However, it is also possible to integrate them as one or more than one program controlled control device (eg microprocessor, microcontroller or the like).
- program controlled control device eg microprocessor, microcontroller or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Air Bags (AREA)
Abstract
The present invention relates to a device for localizing a collision of an object with a motor vehicle, comprising at least one sensor device coupled to the exterior body of the motor vehicle, said sensor device comprising a first sensor and a second sensor which, at the moment of a collision of an object with the exterior body, react and emit, depending on the nature of the collision, a first sensor signal or a second sensor signal. Furthermore, said sensor device comprises an evaluation device which, on the basis of the first and second sensor signals, determines the difference between the moment of reaction of the first sensor and the moment of reaction of the second sensor und produces, based on the difference, a location signal that contains information on the location of the collision of the object in relation to the vehicle exterior. The invention also provides a corresponding method.
Description
Beschreibungdescription
Vorrichtung und -verfahren zur Lokalisierung einer Kollision eines Objektes an einem KraftfahrzeugApparatus and method for locating a collision of an object on a motor vehicle
Die vorliegende Erfindung betrifft eine Vorrichtung sowie ein Verfahren zur Lokalisierung der Kollision eines Objektes an einem Kraftfahrzeug. Die vorliegende Erfindung betrifft ferner ein Schutzsystem zum Schutz von Fahrzeuginsassen und/oder externen Verkehrsteilnehmern.The present invention relates to a device and a method for locating the collision of an object on a motor vehicle. The present invention further relates to a protection system for protecting vehicle occupants and / or external road users.
Zum Schutz von Fahrzeuginsassen im Falle von Unfällen oder Kollisionen sind aktive und passive Schutzsysteme, wie z.B. Airbags, Gurtstraffer, Uberrollbugel und dergleichen bekannt. Um externe Verkehrsteilnehmer, insbesondere nicht motorisierte Verkehrsteilnehmer, wie z.B. Fußganger und Fahrradfahrer, besser zu schützen, können z.B. im Motorraum untergebrachte Airbags verwendet werden, die bei einer Kollision ausgelost werden. Eine weitere Schutzmaßnahme zum Schutz von externen Verkehrsteilnehmern sind Vorrichtungen zum Hochklappen der Motorhaube, bei denen im Falle eines Unfalls die Motorhaube geringfügig hochgeklappt wird, was einen für den ungeschützten Verkehrsteilnehmer gunstigeren Aufprallwinkel auf das Fahrzeug gewahrleisten und ein direktes Aufprallen auf die Windschutzscheibe verhindern soll.For the protection of vehicle occupants in the event of accidents or collisions, active and passive protection systems, such as e.g. Airbags, belt tensioners, Uberrollbugel and the like. To external road users, especially non-motorized road users, e.g. Pedestrians and cyclists, to better protect, can e.g. used in the engine compartment housed airbags that are triggered in a collision. Another protective measure for the protection of external road users are devices for folding up the hood, in which case the hood is slightly raised in the event of an accident, which should ensure a favorable for the unprotected road user impact angle to the vehicle and prevent direct impact on the windshield.
All diesen Schutzmaßnahmen ist gemein, dass sie nur in bestimmten Lastfallen und unter bestimmten Bedingungen ausgelost werden sollen. Beispielsweise ist es unerwünscht, dass die oben genannten Schutzmassnahmen im Falle einer Kollision mit einem relativ kleinen Objekt, wie zum Beispiel einem Vogel, ausgelost werden. Andererseits muss für bestimmte Lastfalle, z.B. Kollision mit einem Fußganger bei einer bestimmten Geschwindigkeit, das Auslosen der Schutzmaßnahmen gewahrleistet sein.All these protective measures have in common that they should be drawn only in certain load traps and under certain conditions. For example, it is undesirable that the above protective measures in the event of a collision with a relatively small object, such as a bird, are triggered. On the other hand, for certain load cases, e.g. Collision with a pedestrian at a certain speed, the triggering of the protective measures must be ensured.
Die verschiedenen Lastfalle können im Allgemeinen dadurch unterschieden werden, dass Sensorsignale, die von am Stoßfanger
des Fahrzeugs vorgesehenen Sensoren ausgegeben werden, auf bestimmte Merkmale (z.B. ihre Amplitude) hin untersucht werden. Eine größere Amplitude des Sensorsignals weist z.B. auf eine größere Masse des anprallenden Objektes hin.The various load cases can generally be distinguished by the fact that sensor signals from the shock absorber are provided to the vehicle provided sensors to be examined for certain features (eg their amplitude) out. A larger amplitude of the sensor signal indicates, for example, a larger mass of the impacting object.
Ein wesentliches Problem bei dieser Vorgehensweise besteht jedoch darin, dass die Amplitude oder der Verlauf des Sensorsignals sehr stark vom Abstand des anprallenden Objektes zum auf diese Kollision ansprechenden Sensor abhängen. Falls ein Objekt direkt an einen solchen Kollisionssensor anprallt, dann wird der Ausschlag (die Amplitude) des Sensorsignals viel größer sein, als wenn das Objekt versetzt zum Kollisionssensor anprallt. Dies liegt daran, dass der Stoßfänger, in dem der Kollisionssensor in der Regel vorgesehen ist, eine bestimmte Elastizität hat und daher als Dämpfungsglied wirkt.A major problem with this approach, however, is that the amplitude or the course of the sensor signal depend very much on the distance of the impacting object to the responsive to this collision sensor. If an object collides directly with such a collision sensor, then the deflection (amplitude) of the sensor signal will be much larger than when the object collides offset to the collision sensor. This is because the bumper in which the collision sensor is usually provided has a certain elasticity and therefore acts as an attenuator.
Eine Möglichkeit, den Ort des Anpralls genauer zu bestimmen, besteht darin, am Stoßfänger des Fahrzeugs eine Vielzahl von Biegedetektoren vorzusehen, die jeweils einen bestimmten Bereich abdecken und im Falle einer Kollision ein Sensorsignal ausgeben. Erfolgt eine Kollision, dann entspricht das Sensorsignal mit der größten Amplitude dem Ort des Aufpralls, so dass aus einem Vergleich der verschiedenen Sensorsignale direkt auf den ungefähren Aufprallort geschlossen werden kann.One way to more accurately determine the location of the impact is to provide the vehicle's bumper with a plurality of flexure detectors, each covering a particular area and outputting a sensor signal in the event of a collision. If a collision, then the sensor signal with the largest amplitude corresponds to the location of the impact, so that it can be concluded from a comparison of the various sensor signals directly to the approximate impact location.
Ein Nachteil dieser Vorgehensweise ist jedoch, dass eine relativ große Anzahl von Sensoren notwendig ist, was zu einem erhöhten Kostenaufwand führt. Ferner ist eine Verfeinerung der Ortsauflösung nur mit einer größeren Anzahl von Sensoren möglich, was die Kosten weiter steigert.A disadvantage of this approach, however, is that a relatively large number of sensors is necessary, resulting in an increased cost. Furthermore, a refinement of the spatial resolution is possible only with a larger number of sensors, which further increases the cost.
Es ist somit eine Aufgabe der vorliegenden Erfindung, eine einfachere und insbesondere verbesserte Ermittlung des Ortes der Kollision eines Objektes an einem Kraftfahrzeug bereitzustellen. Es ist eine weitere Aufgabe der vorliegenden Erfindung, eine Ermittlung des Ortes der Kollision eines Objektes an einem Kraftfahrzeug bereitzustellen, die mit wenigen Sensoren auskommt.
Erfindungsgemäß wird mindestens eine dieser Aufgaben durch eine Vorrichtung mit den Merkmalen des Anspruchs 1 und/oder ein Verfahren mit den Merkmalen des Anspruchs 12 gelöst.It is therefore an object of the present invention to provide a simpler and in particular improved determination of the location of the collision of an object on a motor vehicle. It is a further object of the present invention to provide a determination of the location of the collision of an object on a motor vehicle, which requires only a few sensors. According to the invention, at least one of these objects is achieved by a device having the features of claim 1 and / or a method having the features of claim 12.
Dementsprechend ist eine Vorrichtung zur Lokalisierung einer Kollision eines Objektes an einem Kraftfahrzeug vorgesehenAccordingly, an apparatus for locating a collision of an object on a motor vehicle is provided
- mit mindestens einer mit einer Außenseite des Kraftfahrzeugs gekoppelten Sensoreinrichtung, umfassend einen ersten Sensor und einen zweiten Sensor, die bei einer Kollision eines Objekts mit der Außenseite ansprechen und abhängig von der Kollision ein erstes Sensorsignal bzw. ein zweites Sensorsignal ausgeben, undwith at least one sensor device coupled to an outer side of the motor vehicle, comprising a first sensor and a second sensor, which respond to a collision of an object with the outside and output a first sensor signal or a second sensor signal depending on the collision, and
- mit einer Auswerteeinrichtung, welche aus dem ersten Sensorsignal und dem zweiten Sensorsignal eine Differenz zwischen dem Zeitpunkt des Ansprechens des ersten Sensors und dem Zeitpunkt des Ansprechens des zweiten Sensors ermittelt und welche aus dieser Differenz ein Ortssignal erzeugt, das eine Information über den Ort der Kollision des Objektes bezogen auf die Außenseite des Kraftfahrzeugs enthält.- With an evaluation device which determines from the first sensor signal and the second sensor signal, a difference between the time of the response of the first sensor and the time of the response of the second sensor and which generates a location signal from this difference, the information about the location of the collision of the object with respect to the outside of the motor vehicle.
Ein entsprechendes Verfahren zur Lokalisierung einer Kollision eines Objektes an einem Kraftfahrzeug enthält die Schritte:A corresponding method for localizing a collision of an object on a motor vehicle includes the steps:
- Bereitstellen eines ersten Sensors und eines zweiten Sensors, die bei einer Kollision eines Objekts mit einer Außenseite des Kraftfahrzeugs ansprechen und abhängig von der Kollision ein erstes Sensorsignal bzw. ein zweites Sensorsignal ausgeben,Providing a first sensor and a second sensor, which in the event of a collision of an object with an outside of the motor vehicle respond and output a first sensor signal or a second sensor signal depending on the collision,
- Ermitteln einer Differenz zwischen dem Zeitpunkt des Ansprechens des ersten Sensors und dem Zeitpunkt des Ansprechens des zweiten Sensors aus dem ersten Sensorsignal und dem zweiten Sensorsignal, undDetermining a difference between the time of the response of the first sensor and the time of the response of the second sensor from the first sensor signal and the second sensor signal, and
- Erzeugen eines Ortssignals, das eine Information über den Ort der Kollision des Objektes bezogen auf die Außenseite des Kraftfahrzeugs enthält, aus dieser Differenz.
Die der vorliegenden Erfindung zugrunde liegende Idee ist es, die von mindestens zwei an der Fahrzeugaußenseite vorgesehenen Sensoren ausgegebenen Sensorsignale miteinander zu vergleichen und aus diesem Vergleich der Sensorsignale auf die Position des Anpralls eines Objektes am Fahrzeug zu schließen. Ein wesentlicher Vorteil, der sich aus der erfindungsgemäßen Anordnung und dem erfindungsgemäßen Verfahren ergibt, besteht darin, dass für die Ermittlung der Position des Anpralls am Fahrzeug nur wenige (z.B. zwei) Sensoren benötigt werden. Ferner ermöglicht die Kenntnis der Position des Anpralls eine bessere Unterscheidung der Lastfälle (also z.B. die Unterscheidung zwischen leichten und schweren Objekten) im Unterschied zu bekannten Lösungen. Auch können die auszulösenden Schutzmittel in Abhängigkeit von der Position des Anpralls ausgewählt werden.- Generating a location signal containing information about the location of the collision of the object with respect to the outside of the motor vehicle, from this difference. The idea on which the present invention is based is to compare the sensor signals output by at least two sensors provided on the vehicle exterior and to conclude from this comparison of the sensor signals with the position of the impact of an object on the vehicle. A significant advantage resulting from the arrangement according to the invention and the method according to the invention is that only a few (eg two) sensors are required to determine the position of the impact on the vehicle. Furthermore, the knowledge of the position of the impact allows a better distinction of the load cases (eg the distinction between light and heavy objects) in contrast to known solutions. Also, the protection means to be triggered can be selected depending on the position of the impact.
In den Unteransprüchen finden sich vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung.In the dependent claims are advantageous developments and refinements of the invention.
In einer Ausführungsform sind der erste Sensor und der zweite Sensor voneinander beabstandet an der Außenseite des Kraftfahrzeugs vorgesehen. In diesem Falle tritt ein Laufzeitunterschied zwischen den von den Sensoren ausgegebenen Sensorsignalen auf, aus dem auf den Abstand zum Kollisionsort geschlossen werden kann.In one embodiment, the first sensor and the second sensor are provided at a distance from each other on the outside of the motor vehicle. In this case, a transit time difference occurs between the sensor signals output by the sensors, from which the distance to the collision location can be deduced.
In einer weiteren Ausführungsform sind der erste Sensor und der zweite Sensor ortsnah zueinander angeordnet. Ortsnah bedeutet hierbei, dass die Sensoren so nah aneinander angeordnet sind, dass nahezu kein Laufzeitunterschied auftritt, falls eine Kollision am Ort der Sensoren stattfindet. Ein Beispiel hierfür ist eine biaxiale oder duaxiale Sensoreinrichtung, die sowohl die X-Komponente als auch die Y- Komponente einer Messgröße misst und dementsprechende Sensorsignale ausgibt. Es sollte beachtet werden, dass auch in einem solchen Falle einer Sensoreinrichtung, die zwei Sensorsignale ausgibt, in der vorliegenden Beschreibung von zwei Sensoren gesprochen wird. Dabei wird unter dem ersten Sensor
der Teil der Struktur der Sensoreinrichtung verstanden, der das erste Sensorsignal erzeugt, und unter dem zweiten Sensor wird der Teil der Struktur der Sensoreinrichtung verstanden, der das zweite Sensorsignal erzeugt, wobei sich diese strukturellen Teile auch überlappen können. Dies kann insbesondere der Fall sein, wenn die beiden Sensoren in einem (also dem selben) Sensormodul angeordnet sind.In a further embodiment, the first sensor and the second sensor are arranged close to each other. Close to the location here means that the sensors are arranged so close to one another that virtually no transit time difference occurs if a collision takes place at the location of the sensors. An example of this is a biaxial or duaxial sensor device, which measures both the X component and the Y component of a measured variable and outputs corresponding sensor signals. It should be noted that even in such a case, a sensor device which outputs two sensor signals is referred to as two sensors in the present description. It will be under the first sensor the part of the structure of the sensor device, which generates the first sensor signal, and the second sensor, the part of the structure of the sensor device is understood, which generates the second sensor signal, which structural parts can also overlap. This may be the case, in particular, when the two sensors are arranged in one (ie the same) sensor module.
Im Falle von ortsnah zueinander angeordneten Sensoren sollten die Sensoren jedoch nicht die selbe Messgröße messen, da sie dann ja auch die selben Sensorsignale erzeugen würden. In einer bevorzugten Ausführungsform ermittelt der erste Sensor aus einer sich im Falle einer Kollision entlang der Außenseite des Kraftfahrzeugs ausbreitenden Schwingung eine erste Messgröße, die eine erste Richtungsinformation aufweist, und der zweite Sensor ermittelt aus dieser Schwingung eine zweite Messgröße, die eine zweite, von der ersten Richtungsinformation verschiedene Richtungsinformation aufweist. Bei unterschiedlichen Ausbreitungsgeschwindigkeiten der ersten und der zweiten Messgröße tritt somit ein Laufzeitunterschied auf, aus dem das Ortssignal ermittelt werden kann.In the case of sensors arranged close to each other, however, the sensors should not measure the same measured variable, since they would then also generate the same sensor signals. In a preferred embodiment, the first sensor determines from a vibration propagating in the event of a collision along the outside of the motor vehicle a first measured variable having a first direction information, and the second sensor determines from this oscillation a second measured variable, the second one from the first direction information has different direction information. At different propagation speeds of the first and the second measured variable thus occurs a delay difference, from which the location signal can be determined.
Es ist vorteilhaft, wenn die erste Richtungsinformation und die zweite Richtungsinformation einen Winkel in der horizontalen Ebene, insbesondere einen Winkel von 45 bis 90 Grad, definieren. Beispielsweise kann die Messgröße der ersten Richtung die X-Komponente und die Messgröße der zweiten Richtung die Y-Komponente einer physikalischen Größe (z.B. der Beschleunigung) sein.It is advantageous if the first direction information and the second direction information define an angle in the horizontal plane, in particular an angle of 45 to 90 degrees. For example, the measure of the first direction may be the X component and the measure of the second direction may be the Y component of a physical quantity (e.g., acceleration).
In einer weiteren bevorzugten Ausführungsform ermitteln der erste Sensor und der zweite Sensor aus einer sich im Falle einer Kollision entlang der Außenseite des Kraftfahrzeugs ausbreitenden Schwingung jeweils unterschiedliche Messgrößen, die sich mit unterschiedlichen Geschwindigkeiten an der Außenseite des Kraftfahrzeugs ausbreiten.
Die Auswerteeinrichtung kann zusätzlich zur Differenz zwischen dem Zeitpunkt des Ansprechens des ersten Sensors und dem Zeitpunkt des Ansprechens des zweiten Sensors auch eine Amplitude des ersten Sensorsignals und eine Amplitude des zweiten Sensorsignals zur Ermittlung des Ortssignals heranziehen. Dies ermöglicht eine Bestimmung des Ortes von Kollisionen, die außerhalb des Bereiches zwischen dem ersten und dem zweiten Sensor liegen. Weiterhin ermöglicht das Einbeziehen der Amplituden auch eine genauere Bestimmung der Lastfälle.In a further preferred embodiment, the first sensor and the second sensor each determine different measured variables which propagate at different speeds on the outside of the motor vehicle from a vibration propagating along the outside of the motor vehicle in the event of a collision. In addition to the difference between the time of the response of the first sensor and the time of the response of the second sensor, the evaluation device can also use an amplitude of the first sensor signal and an amplitude of the second sensor signal for determining the location signal. This allows determination of the location of collisions that are outside the range between the first and second sensors. Furthermore, the incorporation of the amplitudes also allows a more accurate determination of the load cases.
Der erste Sensor und/oder der zweite Sensor kann/können als Beschleunigungssensor, Drucksensor, Körperschallsensor und/oder Biegesensoren ausgebildet sein.The first sensor and / or the second sensor can be configured as an acceleration sensor, pressure sensor, structure-borne noise sensor and / or bending sensors.
In einer bevorzugten Ausbildungsform ist der erste Sensor als Beschleunigungssensor und der zweite Sensor als Körperschallsensor ausgebildet. Dies ermöglicht die Ausnutzung der unterschiedlichen Ausbreitungsgeschwindigkeiten von Schwingungen verschiedener Frequenzen im Kraftfahrzeug.In a preferred embodiment, the first sensor is designed as an acceleration sensor and the second sensor as a structure-borne noise sensor. This allows the utilization of the different propagation velocities of vibrations of different frequencies in the motor vehicle.
In einer vorteilhaften Weiterbildung der Erfindung ist eine Entscheidungsvorrichtung vorgesehen, welche anhand des von der Vorrichtung ermittelten Ortssignals entscheidet, ob eine vom Ort der Kollision des Objektes am Kraftfahrzeug abhängige Auslösebedingung zutrifft, und welche bei Zutreffen der Auslösebedingung ein Auslösesignal zum Auslösen von Schutzmitteln ausgibt. Ferner kann ein Schutzmittel zum Schutz von Fahrzeuginsassen und/oder externen Verkehrsteilnehmern vorgesehen sein, welches durch das Auslösesignal ausgelöst wird. Somit wird ein Schutzsystem zum Schutz von Fahrzeuginsassen und/oder externen Verkehrsteilnehmern realisiert, welches den Ort der Kollision eines Objektes am Fahrzeug in der Entscheidung ob und welche Schutzmittel ausgelöst werden berücksichtigt.In an advantageous development of the invention, a decision device is provided, which decides based on the location signal determined by the device whether a tripping condition that is dependent on the location of the collision of the object on the motor vehicle applies, and which outputs a trigger signal for triggering protection means when the triggering condition applies. Furthermore, a protection means for the protection of vehicle occupants and / or external road users may be provided, which is triggered by the trigger signal. Thus, a protection system for the protection of vehicle occupants and / or external road users is realized, which takes into account the location of the collision of an object on the vehicle in the decision whether and which protection means.
Im erfindungsgemäßen Verfahren ist es aus den oben genannten Gründen vorteilhaft, zur Ermittlung des Ortssignals zusätz-
lieh eine Amplitude des ersten Sensorsignals und eine Amplitude des zweiten Sensorsignals heranzuziehen.In the method according to the invention, it is advantageous for the reasons mentioned above to additionally determine the location signal. lent an amplitude of the first sensor signal and an amplitude of the second sensor signal to be used.
Ferner ist es vorteilhaft, im erfindungsgemäßen Verfahren die folgenden weiteren Schritte vorzusehen:Furthermore, it is advantageous to provide the following further steps in the method according to the invention:
- Entscheiden, anhand des ermittelten Ortssignals, ob eine vom Ort der Kollision des Objektes am Kraftfahrzeug abhängige Auslösebedingung zutrifft,Decide, based on the determined location signal, whether a triggering condition which depends on the location of the collision of the object on the motor vehicle,
- Ausgeben eines Auslösesignals zum Auslösen von Schutzmitteln bei Zutreffen der Auslösebedingung, sowie- Issuing a trigger signal to trigger protection means when the trigger condition applies, as well
- Auslösen eines Schutzmittels (6a, 6b) zum Schutz von Fahrzeuginsassen und/oder externen Verkehrsteilnehmern durch das Auslösesignal (xzl, xz2).- Triggering a protection means (6a, 6b) for the protection of vehicle occupants and / or external road users by the trigger signal (xzl, xz2).
Somit wird ein Schutzverfahren zum Schutz von Fahrzeuginsassen und/oder externen Verkehrsteilnehmern realisiert, welches den Ort der Kollision eines Objektes am Fahrzeug in der Entscheidung, ob und welche Schutzmittel ausgelöst werden, berücksichtigt .Thus, a protection method for the protection of vehicle occupants and / or external road users is realized, which takes into account the location of the collision of an object on the vehicle in the decision as to whether and which protection means are triggered.
Ausführungsbeispiele der Erfindung sind in den schematischen Figuren der Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen hier:Embodiments of the invention are illustrated in the schematic figures of the drawings and explained in more detail in the following description. It show here:
Fig. 1 ein Schutzsystem eines Kraftfahrzeugs mit einerFig. 1 is a protection system of a motor vehicle with a
Kollisionslokalisierungsvorrichtung nach einer erfindungsgemäßen Ausführungsform;Collision locating device according to an embodiment of the invention;
Fig. 2A den Verlauf von Sensorsignalen, für den Fall, dass sich der Ort der Kollision in der Mitte des Stoßfängers zwischen den beiden Sensoren befindet;2A shows the course of sensor signals, in the event that the location of the collision is in the middle of the bumper between the two sensors.
Fig. 2B den Verlauf von Sensorsignalen, für den Fall, dass sich der Ort der Kollision näher an einem der beiden Sensoren befindet;2B shows the course of sensor signals, in the event that the location of the collision is closer to one of the two sensors.
Fig. 2C den Verlauf von Sensorsignalen, für den Fall, dass sich der Ort der Kollision außerhalb dem zwischen den beiden Sensoren liegenden Stoßfängerbereich befindet;
Fig. 3 die Amplitude des Sensorsignals in Abhängigkeit von der Distanz zum Kollisionsort;FIG. 2C shows the course of sensor signals in the event that the location of the collision is outside the bumper area located between the two sensors; FIG. 3 shows the amplitude of the sensor signal as a function of the distance to the collision location;
Fig. 4A die Anordnung der Kollisionssensoren in einer erfindungsgemäßen Ausführungsform;Fig. 4A shows the arrangement of the collision sensors in an embodiment according to the invention;
Fig. 4B die Anordnung der Kollisionssensoren in einer weiteren erfindungsgemäßen Ausführungsform.4B, the arrangement of the collision sensors in a further embodiment of the invention.
In den Figuren bezeichnen gleiche Bezugszeichen gleiche oder funktionsgleiche Elemente, Merkmale und Signale.In the figures, like reference numerals designate like or functionally identical elements, features and signals.
Fig. 1 zeigt ein Schutzsystem 1 eines Kraftfahrzeugs mit einer Kollisionslokalisierungsvorrichtung nach einer erfindungsgemäßen Ausführungsform.1 shows a protection system 1 of a motor vehicle with a collision location device according to an embodiment of the invention.
Die Kollisionslokalisierungsvorrichtung nach dieser Ausführungsform enthält eine Kollisionssensoreinrichtung mit einem ersten Kollisionssensor 3a und einem zweiten Kollisionssensor 3b, sowie eine programmgesteuerte Auswerteeinrichtung 4. Das Schutzsystem 1 enthält neben der Kollisionslokalisierungsvor- richtung eine programmgesteuerte Entscheidungseinrichtung sowie Schutzmittel 6a und 6b.The collision locating apparatus according to this embodiment includes a collision sensor device having a first collision sensor 3a and a second collision sensor 3b, and a program-controlled evaluation device 4. The protection system 1 includes a collision locator, program-controlled decider, and protection means 6a and 6b.
Die Kollisionssensoren 3a und 3b sind an der Außenseite 2 eines Kraftfahrzeugs, z.B. im vorderen Stoßfänger des Kraftfahrzeugs angebracht. Die Kollisionssensoren 3a und 3b können beispielsweise als Beschleunigungssensoren, Drucksensoren, Körperschallsensoren oder Biegesensoren ausgelegt werden. In der vorliegenden Ausführungsform sind die Kollisionssensoren 3a und 3b beabstandet voneinander angeordnet. Die Kollisionssensoren 3a und 3b erfassen eine Messgröße, die mit einer Richtung behaftet ist, wie durch die Pfeile in den Kollisionssensoren in Fig. 1 zeichnerisch angedeutet ist. In der in Fig. 1 dargestellten Ausführungsform erfassen die Kollisionssensoren 3a und 3b eine Messgröße in x-Richtung, also längs zur Fahrzeugrichtung. Falls die Kollisionssensoren 3a und 3b als Beschleunigungssensoren ausgelegt sind, dann erfassen sie also die x-Komponente der auf den Stoßfänger an dieser Stelle wirkenden Beschleunigung.
Die Kollisionssensoren 3a und 3b geben Sensorsignale xsl bzw. xs2 an die programmgesteuerte Auswerteeinrichtung 4 aus, welche die Sensorsignale xsl bzw. xs2 weiterverarbeitet. Die Sensorsignale xsl und xs2 können bereits von den Kollisionssensoren 3a bzw. 3b vorverarbeitet (z.B. gefiltert und digitalisiert) werden, eine solche Signalverarbeitung kann aber auch von der Auswerteeinrichtung 4 durchgeführt werden. Im Falle einer Kollision mit einem Objekt 7, vergleicht die Auswerteeinrichtung 4 die Sensorsignale xsl und xs2 miteinander und erzeugt mittels dem unten beschriebenen Verfahren ein mit dem Kollisionsort korrelierendes Ortssignal xo . Hierbei bedeutet "mit dem Kollisionsort korrelierend", dass das Ortssignal xo eine Information über den Kollisionsort enthält. Ein Beispiel dafür ist, dass der Stoßfänger in eine Mehrzahl von Abschnitten unterteilt ist und das Ortssignal xo eine gleiche Anzahl von diskreten Werten annehmen kann, wobei jeder dieser Wert einem der Abschnitte entspricht. Ein weiteres Beispiel ist, dass das Ortssignal xo stetig veränderlich ist, wobei ein niedriger Wert einem Kollisionsort zur Linken und ein höherer Wert einem Kollisionsort zur Rechten am Stoßfänger entspricht.The collision sensors 3a and 3b are mounted on the outside 2 of a motor vehicle, for example in the front bumper of the motor vehicle. The collision sensors 3a and 3b can be designed, for example, as acceleration sensors, pressure sensors, structure-borne sound sensors or bending sensors. In the present embodiment, the collision sensors 3a and 3b are spaced apart from each other. The collision sensors 3a and 3b detect a measured variable having a direction as indicated by arrows in the collision sensors in FIG. 1. In the embodiment illustrated in FIG. 1, the collision sensors 3 a and 3 b detect a measured variable in the x-direction, that is to say along the vehicle direction. If the collision sensors 3a and 3b are designed as acceleration sensors, then they detect the x-component of the acceleration acting on the bumper at this point. The collision sensors 3a and 3b output sensor signals xsl or xs2 to the program-controlled evaluation device 4, which further processes the sensor signals xsl and xs2. The sensor signals xs1 and xs2 can already be preprocessed (eg filtered and digitized) by the collision sensors 3a and 3b, respectively, but such signal processing can also be performed by the evaluation device 4. In the event of a collision with an object 7, the evaluation device 4 compares the sensor signals xsl and xs2 with one another and generates a location signal xo which correlates with the collision location by means of the method described below. Here, "correlating with the collision location" means that the location signal xo contains information about the collision location. An example of this is that the bumper is subdivided into a plurality of sections and the location signal xo can assume an equal number of discrete values, each of these values corresponding to one of the sections. Another example is that the location signal xo is continuously variable, with a low value corresponding to a collision location to the left and a higher value to a collision location to the right of the bumper.
Das Ortssignal xo wird der Entscheidungsvorrichtung 5, welche entscheidet, ob und welche Schutzmittel 6a und 6b ausgelöst werden sollen. In diese Entscheidung können nicht nur die Information zum Kollisionsort (also das Ortssignal xo) einfließen, sondern auch weitere Informationen oder Parameter, wie z.B. die Fahrzeuggeschwindigkeit, die geschätzte Masse des kollidierenden Objektes 7 oder die Position von Fahrzeuginsassen, welche von weiteren, nicht näher dargestellten Sensoren und Vorrichtungen ermittelt werden.The location signal xo becomes the decision device 5, which decides whether and which protection means 6a and 6b should be triggered. Not only the information about the location of the collision (that is, the location signal xo) can be included in this decision, but also other information or parameters, such as the signal xo. the vehicle speed, the estimated mass of the colliding object 7 or the position of vehicle occupants, which are determined by other sensors and devices, not shown.
Das Schutzmittel 6a ist ein Schutzmittel zum Schutz von Fahrzeuginsassen, wie z.B. ein Airbag (Seitenairbag, Knieairbag, etc.) oder ein Gurtstraffer. Das Schutzmittel 6b ist ein Schutzmittel zum Schutz von externen Verkehrsteilnehmern, wie
z.B. ein nach außen gerichteter Airbag oder eine Vorrichtung zum Hochklappen der Motorhaube des Fahrzeugs.The protection means 6a is a protection means for protecting vehicle occupants, such as an airbag (side airbag, knee airbag, etc.) or a belt tensioner. The protection means 6b is a protection means for the protection of external road users, such as For example, an outwardly directed airbag or a device for folding up the hood of the vehicle.
Die Schutzmittel 6a und 6b werden durch Auslösesignale xzl bzw. xz2 ausgelöst, die von der Entscheidungsvorrichtung 5 erzeugt werden, falls die Entscheidungsvorrichtung 5 entscheidet, dass ein Lastfall vorliegt, der ein Auslösen der Schutzmittel 6a bzw. 6b erfordert.The protection means 6a and 6b are triggered by trigger signals xzl and xz2, respectively, which are generated by the decision device 5 if the decision device 5 decides that there is a load case which requires triggering of the protection means 6a or 6b.
Im Folgenden wird erläutert, wie die programmgesteuerte Auswerteeinrichtung 4 aus dem Verlauf der Sensorsignale xsl und xs2 den Ort der Kollision mit dem Objekt 7 ermittelt.The text below explains how the program-controlled evaluation device 4 determines the location of the collision with the object 7 from the course of the sensor signals xsl and xs2.
Fig. 2A zeigt den Verlauf der Sensorsignale xsl und xs2 für den Fall, dass sich der Ort der Kollision mit dem Objekt 7 in der Mitte des Stoßfängers zwischen den beiden Sensoren 3a und 3b befindet. Der Zeitpunkt der Kollision ist bei t = 0, jedoch vergeht eine gewisse Zeit, bis sich die durch die Kollision erzeugten Schwingungen bis zu den Kollisionssensoren 3a und 3b ausgebreitet haben. Aufgrund der Dämpfung der Schwingungen im Stoßfänger stellen die Sensorsignale eine gedämpften Oszillation mit einer charakteristischen Periode und Dämpfung dar. Die Periode der Oszillation hängt von den Eigenschaften (Masse, Steifigkeit, usw.) des Stoßfängers und des kollidierenden Objekts 7b ab, und kann somit weitere Aufschlüsse über den Lastfall liefern.FIG. 2A shows the course of the sensor signals xsl and xs2 in the event that the location of the collision with the object 7 is in the middle of the bumper between the two sensors 3a and 3b. The time of the collision is at t = 0, but a certain time elapses until the vibrations generated by the collision have spread to the collision sensors 3a and 3b. Due to the damping of the vibrations in the bumper, the sensor signals represent a damped oscillation with a characteristic period and damping. The period of the oscillation depends on the properties (mass, rigidity, etc.) of the bumper and the colliding object 7b, and thus can have more Provide information about the load case.
Die Zeitdauer von der Kollision bis zur Zeit des Ansprechens der jeweiligen Sensoren 3a und 3b ist etwa gleich; mit anderen Worten, der Unterschied zwischen den Ansprechzeiten Tl und T2 (also T2 - Tl) ist sehr klein. Hierbei wird unter der „Zeit des Ansprechens der Sensoren" diejenige Zeit verstanden, zu der das Sensorsignal einen bestimmten Schwellwert ü- berschreitet, der in der Fig. 2 durch eine gestrichelte Linie angedeutet ist. Ferner ist auch die Amplitude der beiden Sensorsignale xsl und xs2 etwa gleich.
Fig. 2B zeigt den Verlauf von Sensorsignalen xsl und xs2 für den Fall, dass sich der Ort der Kollision näher am Kollisionssensor 3a als am Kollisionssensor 3b befindet. In diesem Fall ist die Zeitdauer Tl von der Kollision bis zum Ansprechen des Kollisionssensors 3a wesentlich kürzer als die Zeitdauer T2 von der Kollision bis zum Ansprechen des Kollisionssensors 3b. Ferner ist auch die Amplitude des Sensorsignals xsl wesentlich größer als die Amplitude des Sensorsignals xs2.The time from the collision to the time of the response of the respective sensors 3a and 3b is about the same; in other words, the difference between the response times Tl and T2 (ie T2 - Tl) is very small. In this case, the "time of the response of the sensors" is understood to be the time at which the sensor signal exceeds a specific threshold value, which is indicated by a dashed line in FIG. 2. Also, the amplitude of the two sensor signals xsl and xs2 about the same. 2B shows the course of sensor signals xsl and xs2 in the event that the location of the collision is closer to the collision sensor 3a than to the collision sensor 3b. In this case, the time Tl from the collision to the response of the collision sensor 3a is much shorter than the time T2 from the collision to the response of the collision sensor 3b. Furthermore, the amplitude of the sensor signal xsl is also substantially greater than the amplitude of the sensor signal xs2.
Zur Lokalisierung des Orts der Kollision mit dem Objekt 7 ermittelt die Auswerteeinrichtung 4 daher zunächst den Laufzeitunterschied T2 - Tl zwischen den Sensorsignalen xsl und xs2. Anhand des Laufzeitunterschieds T2 - Tl ermittelt die Auswerteeinrichtung 4 dann die genaue Position der Kollision. So weist ein sehr kleiner Laufzeitunterschied T2 - Tl auf eine Kollision mit der Mitte des Stoßfängers hin; ein großer positiver Laufzeitunterschied T2 - Tl weist auf eine Kollision nahe dem ersten Kollisionssensor 3a hin; und ein großer negativer Laufzeitunterschied T2 - Tl weist auf eine Kollision nahe dem zweiten Kollisionssensor 3b hin.To locate the location of the collision with the object 7, the evaluation device 4 therefore first determines the transit time difference T2-T1 between the sensor signals xsl and xs2. Based on the transit time difference T2 - Tl the evaluation device 4 then determines the exact position of the collision. Thus, a very small transit time difference T2 - T1 indicates a collision with the center of the bumper; a large positive skew T2 - T1 indicates a collision near the first collision sensor 3a; and a large negative skew T2 - T1 indicates a collision near the second collision sensor 3b.
Fig. 2C zeigt den Verlauf von Sensorsignalen xsl und xs2 für den Fall, dass sich der Ort der Kollision außerhalb dem zwischen den beiden Sensoren 3a und 3b liegenden Stoßfängerbereich befindet. In diesem Fall ist der Laufzeitunterschied T2 - Tl nahezu unabhängig von der genauen Lage des Kollisionsortes, also unabhängig vom Abstand des Kollisionsortes zum Sensor 3a.2C shows the course of sensor signals xs1 and xs2 in the event that the location of the collision is outside the area of the bumper located between the two sensors 3a and 3b. In this case, the transit time difference T2-T1 is almost independent of the exact location of the collision location, that is, independent of the distance of the collision location to the sensor 3a.
Da in diesem Falle die Lokalisierung des Kollisionsortes aus dem Laufzeitunterschied T2 - Tl alleine schwierig ist, wird zusätzlich noch die Amplitude der Sensorsignale xsl und xs2 zur Lokalisierung des Kollisionsortes berücksichtigt. Die Amplitude der von den Kollisionssensoren ausgegebenen Sensorsignalen nimmt mit zunehmendem Abstand der Kollisionssensoren vom Kollisionsort in bekannter Weise ab. Dies ist in Fig. 3 veranschaulicht, welche die Amplitude des Sensorsignals in
Abhängigkeit von der Distanz zum Kollisionsort zeigt. SA markiert die Position des Sensors 3a und SB markiert die Position des Sensors 3b. Dabei gibt das Verhältnis der Amplituden A(SA) und A(SB) Aufschluss über den Kollisionsort IPLOC (im- pact location) . Es gilt also:Since in this case the localization of the collision location from the transit time difference T2-T1 alone is difficult, the amplitude of the sensor signals xsl and xs2 for locating the collision location is additionally taken into account. The amplitude of the sensor signals output by the collision sensors decreases with increasing distance of the collision sensors from the collision location in a known manner. This is illustrated in FIG. 3, which shows the amplitude of the sensor signal in FIG Depends on the distance to the collision location. SA marks the position of the sensor 3a and SB marks the position of the sensor 3b. The ratio of the amplitudes A (SA) and A (SB) gives information about the collision location IPLOC (impact location). It therefore applies:
IPLOC = f (A(SA) /A(SB) )IPLOC = f (A (SA) / A (SB))
Aus einem Vergleich der Amplituden A(SA) und A(SB) oder aus einer Auswertung des Quotienten A(SA) /A(SB) kann die Auswerteeinrichtung 4 also den Kollisionsort IPLOC bestimmen. Die in Fig. 3 nur schematisch dargestellte Abklingkurve der Sensorsignale kann beispielsweise zumindest stückweise exponen- tiell verlaufen. Dabei kann der genau Verlauf der Abklingkurve ortsabhängig und insbesondere abhängig von der lokalen Steifigkeit sein. Es sollte beachtet werden, dass die in Fig. 3 gezeigte Abklingkurve auch von der Masse des kollidierenden Objektes abhängen kann und die Sensorsignale xsl und xs2 somit auch Aufschlüsse über die Masse des Objektes 7 neben seinem Kollisionsort liefern können.From a comparison of the amplitudes A (SA) and A (SB) or from an evaluation of the quotient A (SA) / A (SB), the evaluation device 4 can thus determine the collision location IPLOC. The decay curve of the sensor signals shown only schematically in FIG. 3 may, for example, run exponentially at least piecewise. In this case, the exact course of the decay curve can be location-dependent and in particular dependent on the local stiffness. It should be noted that the decay curve shown in Fig. 3 may also depend on the mass of the colliding object and thus the sensor signals xsl and xs2 can also provide information about the mass of the object 7 next to its collision location.
Selbstverständlich können die Amplituden der Sensorsignale xsl und xs2 auch für die Lokalisierung des Kollisionsortes herangezogen werden falls die Kollision im Bereich zwischen den Kollisionssensoren 3a und 3b stattfindet. In diesem Fall weist eine etwa gleiche Amplitude der Sensorsignale xsl und xs2 darauf hin, dass die Abstände der Kollisionssensoren 3a und 3b vom Kollisionsort etwa gleicht sind, wie in Fig. 3A dargestellt, während eine größere Amplitude des Sensorsignals xsl darauf hinweist, dass der Kollisionsort näher am Kollisionssensor 3a liegt.Of course, the amplitudes of the sensor signals xsl and xs2 can also be used for the localization of the collision location if the collision takes place in the area between the collision sensors 3a and 3b. In this case, an approximately equal amplitude of the sensor signals xsl and xs2 indicates that the distances of the collision sensors 3a and 3b from the collision location are approximately equal, as shown in Fig. 3A, while a larger amplitude of the sensor signal xsl indicates that the collision location closer to the collision sensor 3a.
Wie in Fig. 4A dargestellt, sind die Kollisionssensoren 3a und 3b in der oben beschriebenen Ausführungsform beabstandet von einander angeordnet und messen beide die X-Komponente einer bestimmten Messgröße (z.B. Beschleunigung).
Fig. 4B zeigt die Anordnung der Kollisionssensoren in einer weiteren erfindungsgemäßen Ausführungsform. In dieser Ausführungsform sind die Sensoren nicht beabstandet voneinander sondern ortsnah zueinander angeordnet. Der Kollisionssensor 3a misst die X-Komponente einer bestimmten Messgröße und der Kollisionssensor 3b misst die Y-Komponente einer bestimmten (gleichen oder verschiedenen) Messgröße. Hierbei bezeichnet „X-Komponente" die Komponente längs zum Fahrzeug und „Y- Komponente" die Komponente quer zum Fahrzeug.As shown in FIG. 4A, the collision sensors 3a and 3b are spaced apart from each other in the above-described embodiment, and both measure the X component of a certain measured quantity (eg, acceleration). Fig. 4B shows the arrangement of the collision sensors in another embodiment of the invention. In this embodiment, the sensors are not spaced apart from each other but arranged close to each other. The collision sensor 3a measures the X component of a certain measurement, and the collision sensor 3b measures the Y component of a certain (same or different) measurement. Here, "X component" means the component along the vehicle and "Y component" the component across the vehicle.
In einer solchen Ausführungsform können die beiden Kollisionssensoren 3a und 3b beide Beschleunigungssensoren sein. Bei einer Kollision mit einem Objekt 7 wird der Stoßfänger in Schwingung versetzt, und zwar mit einer longitudinalen Komponente (in Y-Richtung) und einer transversalen Komponente (in X-Richtung) , der so genannten Biegeschwingung. Die longitudi- nale Komponente dieser Schwingung breitet sich im Stoßfänger schneller aus als die transversale Komponente. Bei einer Kollision in einem bestimmten Abstand zu den (am selben Ort angeordneten) Kollisionssensoren 3a und 3b tritt somit wiederum ein Laufzeitunterschied T2 - Tl auf (ähnlich dem beispielsweise in Fig. 2A dargestellten Fall), der es ermöglicht daraus den Kollisionsort mit der Auswerteeinrichtung 4 in der oben beschriebenen Weise zu bestimmen.In such an embodiment, the two collision sensors 3a and 3b may both be acceleration sensors. In a collision with an object 7, the bumper is vibrated, with a longitudinal component (in the Y direction) and a transverse component (in the X direction), the so-called bending vibration. The longitudinal component of this vibration propagates faster in the bumper than the transversal component. In the event of a collision at a certain distance from the collision sensors 3a and 3b (arranged at the same location), a transit time difference T2 - T1 thus again occurs (similar to the case shown in FIG. 2A, for example), which enables the collision location with the evaluation device 4 in the manner described above.
Es sollte beachtet werden, das in Fig. 4B aus darstellerischen Gründen die Kollisionssensoren 3a und 3b an zwei verschiedenen Position in Y-Richtung dargestellt sind; tatsächlich sind sie jedoch nahezu an der selben Position in Y- Richtung (z.B. übereinander oder miteinander integriert) angeordnet. Insbesondere können sie im selben Sensormodul angeordnet sein.It should be noted that in FIG. 4B, for illustrative purposes, the collision sensors 3a and 3b are shown at two different positions in the Y direction; in fact, however, they are located nearly at the same position in the Y direction (e.g., one above the other or integrated with each other). In particular, they can be arranged in the same sensor module.
In einer weiteren Ausführungsform sind die Kollisionssensoren 3a und 3b wie in Fig. 4B dargestellt ebenfalls ortsnah zueinander angeordnet, sprechen jedoch auf unterschiedliche Messgrößen an. Beispielsweise kann der Kollisionssensor 3a als Beschleunigungssensor und der Kollisionssensor 3b als Körper-
schallsensor (so genannter CISS-Sensor; CISS = crash impact sound sensing) ausgelegt sein. Beschleunigungssensoren messen typischerweise Schwingungen im Frequenzbereich von 0 bis 400 Hz, während Körperschallsensoren typischerweise auf Schwingungen im Frequenzbereich von 7 kHz bis 30 kHz ansprechen. Die Ausbreitungsgeschwindigkeit von Schwingungen im Stoßfänger ist frequenzabhängig: Hochfrequente Schwingungen (Körperschallsschwingungen) breiten sich wesentlich schneller aus als niederfrequente Schwingungen (Biegeschwingungen) . Bei einer Kollision in einem bestimmten Abstand zu den (am selben Ort angeordneten) Kollisionssensoren 3a und 3b spricht also der Kollisionssensor 3b früher an als der Beschleunigungssensor 3a. Es tritt also wiederum ein Laufzeitunterschied T2 - Tl auf (ähnlich dem beispielsweise in Fig. 3A dargestellten Fall), der es ermöglicht daraus den Kollisionsort mit der Auswerteeinrichtung 4 in der oben beschriebenen Weise zu bestimmen .In a further embodiment, the collision sensors 3a and 3b are likewise arranged close to one another as shown in FIG. 4B, but respond to different measured variables. For example, the collision sensor 3 a may be used as the acceleration sensor and the collision sensor 3 b as the body sensor. be designed sound sensor (so-called CISS sensor, CISS = crash impact sound sensing). Acceleration sensors typically measure oscillations in the frequency range of 0 to 400 Hz, while structure-borne sound sensors typically respond to oscillations in the frequency range of 7 kHz to 30 kHz. The propagation speed of vibrations in the bumper is frequency-dependent: high-frequency vibrations (structure-borne sound vibrations) propagate much faster than low-frequency vibrations (bending vibrations). In the event of a collision at a certain distance from the collision sensors 3a and 3b (arranged at the same location), the collision sensor 3b therefore responds earlier than the acceleration sensor 3a. Thus, once again, a transit time difference T2 - T1 occurs (similar to the case illustrated, for example, in FIG. 3A), which makes it possible to determine the collision location with the evaluation device 4 in the manner described above.
Die in der oben beschriebenen Weise ermittelten Informationen zum Kollisionsort (also das Ortssignal xo) können weiterhin herangezogen werden, um eine bessere Unterscheidung der Lastfälle zu ermöglichen. Wie in der Fig. 3 dargestellt, fällt die Amplitude des Sensorsignals mit zunehmendem Abstand zum Kollisionsort ab. Da die Sensorsignale xsl und xs2 die Auslenkung der Messgröße am Ort der (punktuell und nicht flächig vorgesehenen) Kollisionssensoren anzeigen, machen die Sensorsignale xsl und xs2 keine direkte Aussage über die Auslenkung der selben Messgröße am Ort der Kollision. Die Auslenkung der selben Messgröße am Ort der Kollision kann jedoch aus der gemessenen Auslenkung unter Berücksichtigung a) des Abstands der Kollisionssensoren zum Kollisionsort und b) der vom Stoßfänger bedingten Dämpfung der Messgröße berechnet werden. Eine genauere Kenntnis der Auslenkung der Messgröße am Kollisionsort ermöglicht wiederum eine genauere Bestimmung des Lastfalles (zum Beispiel mittels einer Massenschätzung) .The information about the collision location (ie the location signal xo) determined in the manner described above can furthermore be used to enable a better differentiation of the load cases. As shown in FIG. 3, the amplitude of the sensor signal decreases with increasing distance to the collision location. Since the sensor signals xsl and xs2 indicate the deflection of the measured variable at the location of the collision sensors (punctiform and non-planar), the sensor signals xsl and xs2 make no direct statement about the deflection of the same measured variable at the location of the collision. However, the deflection of the same measurand at the collision location can be calculated from the measured deflection taking into account a) the distance of the collision sensors to the collision location and b) the attenuation of the measurand due to the bumper. A more accurate knowledge of the deflection of the measured variable at the collision location in turn allows a more accurate determination of the load case (for example by means of a mass estimate).
Ferner ermöglicht die Kenntnis des Kollisionsortes, unterschiedliche Steifigkeiten des Stoßfängers oder des Front-Ends
zu berücksichtigen. Beispielsweise liegt im Bereich eines am Stoßfänger vorgesehenen Nummernschildes typischerweise eine höhere Steifigkeit vor als außerhalb dieses Bereiches, so sich dass auch die von den Kollisionssensoren 3a und 3b aufgenommenen Signale im Falle einer Kollision mit diesem Bereich von Signalen im Falle einer Kollision außerhalb dieses Bereiches unterscheiden. Falls der genaue Kollisionsort bekannt ist, dann können solche unterschiedlichen Steifigkeiten berücksichtigt werden und beispielsweise die Schwellwerte für die Kollisionserkennung entsprechend angepasst werden.Furthermore, the knowledge of the collision location allows different stiffnesses of the bumper or the front-end to take into account. For example, there is typically a higher stiffness in the area of a license plate provided on the bumper than outside this range, so that the signals picked up by the collision sensors 3a and 3b also differ in the event of a collision with this range of signals in the event of a collision outside this range. If the exact location of the collision is known, such different stiffnesses can be taken into account and, for example, the thresholds for the collision detection can be adapted accordingly.
Obwohl die obigen Ausführungsformen vorstehend anhand von bevorzugten Ausführungsbeispielen beschrieben wurde, sind sie darauf nicht beschränkt, sondern auf vielfältige Art und Weise modifizierbar.Although the above embodiments have been described above with reference to preferred embodiments, they are not limited thereto but are modifiable in a variety of ways.
So wurden die oben beschriebenen Ausführungsbeispiele für zwei Kollisionssensoren beschrieben. Selbstverständlich ist es aber auch möglich drei oder mehr Kollisionssensoren vorzusehen. Mehr Kollisionssensoren können dabei eine präzisere Bestimmung des Kollisionsortes oder des Lastfalles ermöglichen .Thus, the embodiments described above for two collision sensors have been described. Of course, it is also possible to provide three or more collision sensors. More collision sensors can thereby enable a more precise determination of the collision location or the load case.
Ferner sind in den oben beschriebenen Ausführungsbeispiele die Kollisionssensoren am vorderen Stoßfänger angeordnet. Die Kollisionssensoren können jedoch an beliebigen Orten an der Außenseite des Kraftfahrzeugs angeordnet sein, so zum Beispiel an der Seite, um Kollisionen mit der Seite des Kraftfahrzeugs zu lokalisieren. Die einzige Voraussetzung ist dabei, das die für die Kollisionslokalisierung herangezogenen Sensorsignale in bekannter Weise miteinander korrelieren, d.h. also auf den selben Anprall in einer Weise ansprechen, die Rückschlüsse auf den Ort des Anpralls zulässt.Further, in the above-described embodiments, the collision sensors are disposed on the front bumper. However, the collision sensors may be located at any locations on the outside of the motor vehicle, such as on the side, to locate collisions with the side of the motor vehicle. The only requirement is that the sensor signals used for the collision localization correlate with each other in a known manner, i. so respond to the same impact in a way that allows conclusions about the location of the impact.
Ferner wurden die programmgesteuerte Auswerteeinrichtung und die programmgesteuerte Entscheidungsvorrichtung oben als getrennte Einheiten dargestellt. Es ist jedoch auch möglich, sie miteinander integriert als oder in einer einzigen pro-
grammgesteuerten Steuervorrichtung (z.B. Mikroprozessor, Mik- rocontroller oder dergl . ) ausgeführt sein.
Furthermore, the program-controlled evaluation device and the program-controlled decision device were shown above as separate units. However, it is also possible to integrate them as one or more than one program controlled control device (eg microprocessor, microcontroller or the like).
Claims
1. Vorrichtung zur Lokalisierung einer Kollision eines Objektes (7) an einem Kraftfahrzeug,1. Device for locating a collision of an object (7) on a motor vehicle,
mit mindestens einer mit einer Außenseite (2) des Kraftfahrzeugs gekoppelten Sensoreinrichtung, umfassend einen ersten Sensor (3a) und einen zweiten Sensor (3b) , die bei einer Kollision eines Objekts (7) mit der Außenseite (2) ansprechen und abhängig von der Kollision ein erstes Sensorsignal (xsl) bzw. ein zweites Sensorsignal (xs2) ausgeben, undwith at least one sensor device coupled to an outer side (2) of the motor vehicle, comprising a first sensor (3a) and a second sensor (3b) which respond to the outside (2) in the event of a collision of an object (7) and depending on the collision output a first sensor signal (xsl) or a second sensor signal (xs2), and
mit einer Auswerteeinrichtung (4), welche aus dem ersten Sensorsignal (xsl) und dem zweiten Sensorsignal (xs2) eine Differenz zwischen dem Zeitpunkt des Ansprechens des ersten Sensors (3a) und dem Zeitpunkt des Ansprechens des zweiten Sensors (3b) ermittelt und welche aus dieser Differenz ein Ortssignal (xo) erzeugt, das eine Information über den Ort der Kollision des Objektes (7) bezogen auf die Außenseite (2) des Kraftfahrzeugs enthält.with an evaluation device (4) which determines from the first sensor signal (xsl) and the second sensor signal (xs2) a difference between the time of the response of the first sensor (3a) and the time of the response of the second sensor (3b) and which this difference generates a location signal (xo) containing information about the location of the collision of the object (7) relative to the outside (2) of the motor vehicle.
2. Vorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass der erste Sensor (3a) und der zweite Sensor (3b) voneinander beabstandet an der Außenseite (2) des Kraftfahrzeugs vorgesehen sind.2. Device according to claim 1, d a d e r c h e c e n e c e s in that the first sensor (3a) and the second sensor (3b) are provided at a distance from each other on the outer side (2) of the motor vehicle.
3. Vorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass der erste Sensor (3a) und der zweite Sensor (3b) ortsnah zueinander an der Außenseite (2) des Kraftfahrzeugs angeordnet sind, wobei der erste Sensor (3a) aus einer sich im Falle einer Kollision entlang der Außenseite (2) des Kraftfahrzeugs ausbreitenden Schwingung eine erste Messgröße ermittelt, die eine erste Richtungsinformation aufweist, und der zweite Sensor (3b) aus dieser Schwingung eine zweite Messgröße ermittelt, die eine zweite, von der ersten Richtungsinformation verschiedene Richtungsinformation aufweist. 3. Device according to claim 1, characterized in that the first sensor (3a) and the second sensor (3b) are arranged close to each other on the outside (2) of the motor vehicle, wherein the first sensor (3a) of a in the event of a collision along the outside (2) of the motor vehicle propagating vibration determines a first measured variable having a first direction information, and the second sensor (3b) from this oscillation determines a second measured variable having a second, different from the first direction information direction information.
4. Vorrichtung nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, dass die erste Richtungsinformation und die zweite Richtungsinformation einen Winkel in der horizontalen Ebene, insbesondere einen Winkel von 45 bis 90 Grad, definieren.4. The apparatus of claim 3, wherein: said first direction information and said second direction information define an angle in the horizontal plane, in particular an angle of 45 to 90 degrees.
5. Vorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass der erste Sensor (3a) und der zweite Sensor (3b) ortsnah zueinander angeordnet sind, wobei der erste Sensor (3a) und der zweite Sensor (3b) aus einer sich im Falle einer Kollision entlang der Außenseite (2) des Kraftfahrzeugs ausbreitenden Schwingung jeweils unterschiedliche Messgrößen ermitteln, die sich mit unterschiedlichen Geschwindigkeiten an der Außenseite (2) des Kraftfahrzeugs ausbreiten.5. The device according to claim 1, characterized in that the first sensor (3a) and the second sensor (3b) are arranged close to each other, wherein the first sensor (3a) and the second sensor (3b) from a in the event of a collision along determine the vibration of the outer side (2) of the motor vehicle respectively different measurement variables which propagate at different speeds on the outer side (2) of the motor vehicle.
6. Vorrichtung nach wenigstens einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass der erste Sensor (3a) und der zweite Sensor (3b) in einem Sensormodul angeordnet sind.6. Device according to at least one of the preceding claims, characterized in that the first sensor (3a) and the second sensor (3b) are arranged in a sensor module.
7. Vorrichtung nach wenigstens einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die Auswerteeinrichtung (2) zur Ermittlung des Ortssignals (xo) zusätzlich eine Amplitude des ersten Sensorsignals (xsl) und/oder eine Amplitude des zweiten Sensorsignals (xs2) heranzieht.7. Device according to at least one of the preceding claims, characterized in that the evaluation device (2) additionally uses an amplitude of the first sensor signal (xsl) and / or an amplitude of the second sensor signal (xs2) for determining the position signal (xo).
8. Vorrichtung nach wenigstens einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass der erste Sensor (3a) und/oder der zweite Sensor (3b) als Beschleunigungssensor, Drucksensor, Körperschallsensor und/oder Biegesensor ausgebildet ist/sind. 8. The device according to at least one of the preceding claims, characterized in that the first sensor (3a) and / or the second sensor (3b) as an acceleration sensor, pressure sensor, structure-borne noise sensor and / or bending sensor is / are formed.
9. Vorrichtung nach wenigstens einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass der erste Sensor (3a) als Beschleunigungssensor und der zweite Sensor (3b) als Körperschallsensor ausgebildet ist.9. Device according to at least one of the preceding claims, characterized in that the first sensor (3a) is designed as an acceleration sensor and the second sensor (3b) as a structure-borne sound sensor.
10. Vorrichtung nach wenigstens einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass eine Entscheidungsvorrichtung (5) vorgesehen ist, welche anhand des von der Vorrichtung (1) ermittelten Ortssignals (xo) entscheidet, ob eine vom Ort der Kollision des Objektes (7) am Kraftfahrzeug abhängige Auslösebedingung zutrifft, und welche bei Zutreffen der Auslösebedingung ein Auslösesignal (xzl, xz2) zum Auslösen von Schutzmitteln ausgibt.10. The device according to at least one of the preceding claims, characterized in that a decision device (5) is provided which decides based on the device (1) determined location signal (xo), whether one of the location of the collision of the object (7) on the motor vehicle dependent trigger condition applies, and which outputs a trigger signal (xzl, xz2) for triggering protection means when the trigger condition applies.
11. Vorrichtung nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, dass ein Schutzmittel (6a, 6b) zum Schutz von Fahrzeuginsassen und/oder externen Verkehrsteilnehmern, welches durch das Auslösesignal (xzl, xz2) ausgelöst wird, vorgesehen ist.11. The device according to claim 10, characterized in that a protective means (6a, 6b) is provided for the protection of vehicle occupants and / or external road users, which is triggered by the triggering signal (xzl, xz2).
12. Verfahren, bei dem zur Lokalisierung einer Kollision eines Objektes an einer Außenseite eines Kraftfahrzeugs folgende Schritte vorgenommen werden:12. Method in which the following steps are carried out to localize a collision of an object on an outside of a motor vehicle:
- Bereitstellen eines ersten Sensors (3a) und eines zweiten Sensors (3b), die bei einer Kollision eines Objekts (7) mit einer Außenseite (2) des Kraftfahrzeugs ansprechen und abhängig von der Kollision ein erstes Sensorsignal (xsl) bzw. ein zweites Sensorsignal (xs2) ausgeben,- Providing a first sensor (3a) and a second sensor (3b) responsive to a collision of an object (7) with an outside (2) of the motor vehicle and depending on the collision, a first sensor signal (xsl) or a second sensor signal spend (xs2),
- Ermitteln einer Differenz zwischen dem Zeitpunkt des Ansprechens des ersten Sensors (3a) und dem Zeitpunkt des Ansprechens des zweiten Sensors (3b) aus dem ersten Sensorsignal (xsl) und dem zweiten Sensorsignal (xs2), und- Determining a difference between the time of the response of the first sensor (3a) and the timing of the response of the second sensor (3b) from the first sensor signal (xsl) and the second sensor signal (xs2), and
- Erzeugen eines Ortssignals (xo) , das eine Information über den Ort der Kollision des Objektes (7) bezogen auf die Außenseite (2) des Kraftfahrzeugs enthält, aus dieser Differenz . - Generating a location signal (xo) containing information about the location of the collision of the object (7) relative to the outside (2) of the motor vehicle, from this difference.
13. Verfahren nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t, dass zur Ermittlung des Ortssignals (xo) zusätzlich eine Amplitude des ersten Sensorsignals (xsl) und eine Amplitude des zweiten Sensorsignals (xs2) herangezogen werden.13. Method according to claim 12, wherein an additional amplitude of the first sensor signal (xsl) and an amplitude of the second sensor signal (xs2) are used to determine the location signal (xo).
14. Verfahren nach Anspruch 12 oder 13, d a d u r c h g e k e n n z e i c h n e t, dass die folgenden weiteren Schritte vorgesehen sind:14. A method according to claim 12 or 13, wherein a further step is provided:
- Entscheiden, anhand des ermittelten Ortssignals (xo) , ob eine vom Ort der Kollision des Objektes (7) am Kraftfahrzeug abhängige Auslösebedingung zutrifft, undDecide, based on the determined location signal (xo), whether a tripping condition that depends on the location of the collision of the object (7) on the motor vehicle is true, and
- Ausgeben eines Auslösesignals (xzl, xz2) zum Auslösen von Schutzmitteln bei Zutreffen der Auslösebedingung.- Output of a trigger signal (xzl, xz2) for triggering protection means when the trigger condition applies.
15. Vorrichtung nach Anspruch 14, d a d u r c h g e k e n n z e i c h n e t, der folgende weitere Schritt vorgesehen ist:15. The device according to claim 14, characterized in that the following further step is envisaged:
Auslösen eines Schutzmittels (6a, 6b) zum Schutz von Fahrzeuginsassen und/oder externen Verkehrsteilnehmern durch das Auslösesignal (xzl, xz2). Triggering of a protection means (6a, 6b) for the protection of vehicle occupants and / or external road users by the trigger signal (xzl, xz2).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005046928A DE102005046928A1 (en) | 2005-09-30 | 2005-09-30 | Apparatus and method for locating a collision of an object on a motor vehicle |
DE102005046928.0 | 2005-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007036565A1 true WO2007036565A1 (en) | 2007-04-05 |
Family
ID=37547490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2006/066885 WO2007036565A1 (en) | 2005-09-30 | 2006-09-29 | Device and method for localizing a collision of an object with a motor vehicle |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102005046928A1 (en) |
WO (1) | WO2007036565A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113907665A (en) * | 2021-10-26 | 2022-01-11 | 苏州灵动佳芯科技有限公司 | Self-moving equipment and collision position detection method |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006001366B4 (en) | 2006-01-11 | 2019-03-07 | Robert Bosch Gmbh | Device and method for detecting a pedestrian impact |
DE102006040653B4 (en) * | 2006-08-30 | 2017-02-16 | Robert Bosch Gmbh | Device and method for detecting a pedestrian impact |
DE102008051796B4 (en) | 2008-10-17 | 2010-10-07 | Benteler Automobiltechnik Gmbh | Method for detecting deformations on a vehicle component and motor vehicle |
DE102008051794B3 (en) | 2008-10-17 | 2010-06-24 | Benteler Automobiltechnik Gmbh | Method for detecting deformations on a vehicle component |
JP5420889B2 (en) | 2008-12-16 | 2014-02-19 | トヨタ自動車株式会社 | Collision detection device |
DE102009015238B4 (en) | 2009-04-01 | 2012-08-09 | Benteler Automobiltechnik Gmbh | Method for detecting deformations on a vehicle component and motor vehicle |
DE102009052500A1 (en) | 2009-11-11 | 2011-05-12 | Benteler Automobiltechnik Gmbh | Method for detecting deformations of energy absorption element of motor vehicle, involves detecting resulting light pulses, and transferring light pulses as lateral modulated signal to evaluation unit |
DE102012224451B4 (en) | 2012-12-27 | 2023-09-28 | Robert Bosch Gmbh | Method for operating a vehicle occupant safety device of a motor vehicle and corresponding vehicle occupant safety device |
DE102014001258A1 (en) * | 2014-01-30 | 2015-07-30 | Hella Kgaa Hueck & Co. | Device and method for detecting at least one structure-borne sound signal |
DE102018201547B4 (en) * | 2018-02-01 | 2020-09-17 | Audi Ag | Vehicle and method for operating a release control for a safety device of a vehicle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001047750A1 (en) * | 1999-12-24 | 2001-07-05 | Volkswagen Aktiengesellschaft | Method and device for detecting the point of force exertion on a vehicle and for controlling the release of at least one airbag |
DE102004015474A1 (en) * | 2004-03-26 | 2004-12-23 | Conti Temic Microelectronic Gmbh | Vehicle passenger safety system sensor, has piezo sensor fixed to housing through visco elastic fixing layer filtering body noise and acceleration spectra |
WO2005056345A1 (en) * | 2003-12-09 | 2005-06-23 | Robert Bosch Gmbh | Device for activating protecting means for individuals |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19537546B4 (en) * | 1995-10-09 | 2004-12-02 | Conti Temic Microelectronic Gmbh | Impact detection device, in particular for a security system for vehicles for the transportation of people |
JPH11344503A (en) * | 1998-06-02 | 1999-12-14 | Akebono Brake Ind Co Ltd | Auxiliary acceleration sensor device for air bag |
DE10002471A1 (en) * | 2000-01-21 | 2001-07-26 | Daimler Chrysler Ag | Method for operating a sensor module with direction-sensitive sensors and corresponding accelerometer group |
DE10114465B4 (en) * | 2001-03-24 | 2012-12-13 | Volkswagen Ag | Contact sensor and method for evaluating the signal of the contact sensor |
DE10346870A1 (en) * | 2003-10-09 | 2005-05-04 | Conti Temic Microelectronic | Device for activating a security system in a vehicle comprises a vehicle sensor having a direction of sensitivity for a sensor for detecting acceleration and a direction of sensitivity for a sensor for detecting structure noise |
DE10361095A1 (en) * | 2003-12-22 | 2005-07-21 | Conti Temic Microelectronic Gmbh | Occupant protection system for vehicle, comprising reduced number of auxiliary sensors |
DE102004029532A1 (en) * | 2004-06-18 | 2006-01-05 | Robert Bosch Gmbh | Contact sensor system for vehicle to identify impact on obstacle has at least one sensor by which sound created by impact is detected and transmitted to computing unit which evaluates time characteristic of sound signals |
DE102004031575A1 (en) * | 2004-06-29 | 2006-02-02 | Daimlerchrysler Ag | Motor vehicle collision detecting device, has two pressure sensors that are arranged at specific distance in hollow body, and run time differences for pressure signals of pressure surge between sensors are determined at impact place |
-
2005
- 2005-09-30 DE DE102005046928A patent/DE102005046928A1/en not_active Ceased
-
2006
- 2006-09-29 WO PCT/EP2006/066885 patent/WO2007036565A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001047750A1 (en) * | 1999-12-24 | 2001-07-05 | Volkswagen Aktiengesellschaft | Method and device for detecting the point of force exertion on a vehicle and for controlling the release of at least one airbag |
WO2005056345A1 (en) * | 2003-12-09 | 2005-06-23 | Robert Bosch Gmbh | Device for activating protecting means for individuals |
DE102004015474A1 (en) * | 2004-03-26 | 2004-12-23 | Conti Temic Microelectronic Gmbh | Vehicle passenger safety system sensor, has piezo sensor fixed to housing through visco elastic fixing layer filtering body noise and acceleration spectra |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113907665A (en) * | 2021-10-26 | 2022-01-11 | 苏州灵动佳芯科技有限公司 | Self-moving equipment and collision position detection method |
Also Published As
Publication number | Publication date |
---|---|
DE102005046928A1 (en) | 2007-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007036565A1 (en) | Device and method for localizing a collision of an object with a motor vehicle | |
DE10065518B4 (en) | Method for triggering restraint devices in a motor vehicle | |
EP1678013B1 (en) | Device for activating a security system in a vehicle | |
EP1296859B1 (en) | Method and device for recognition of a collision with a pedestrian | |
DE102005024319B3 (en) | Apparatus and method for controlling a personal protection system of a vehicle | |
DE102006042769B3 (en) | Method and device for triggering a personal protection device for a vehicle | |
EP0830271B1 (en) | Control device for triggering a restraint system in a vehicle during a sideways-on collision | |
EP1523688A1 (en) | Device for monitoring the surroundings of a vehicle | |
DE102008039957A1 (en) | Method for determining an accident severity criterion by means of an acceleration signal and a structure-borne sound signal | |
EP1863683B1 (en) | Method and device for generating a triggering signal for a passenger protection device | |
EP1697177A1 (en) | Method for controlling personal protection means | |
DE10157203B4 (en) | Passive security system | |
DE19817334C1 (en) | Method of adapting the triggering threshold of passenger protection devices for motor vehicles | |
EP2821283B1 (en) | Method and device for rapid collision preparation of a motor vehicle | |
DE102005020146A1 (en) | Control unit for occupants and pedestrian protecting system at vehicle, comprising impact sensor and structure-borne sound detector | |
DE102008002549B4 (en) | A sensor for determining an impact velocity for a vehicle and method for determining an impact velocity for a vehicle | |
DE102007046982B3 (en) | Accident situation i.e. motor vehicle collision, detecting device for protecting passenger, has evaluation unit verifying whether functionality of rotational speed sensor is impaired based on sound detected by impact sound receiver unit | |
DE102005005959A1 (en) | Device for controlling safety device of motor vehicles has control unit which is designed for adjusting colliding objects on basis of characteristic features in precrash sensor which measures signal processes which determines tripping time | |
DE10309714A1 (en) | Sensor with multiple switches for impact detection in vehicle, has switches attached to energy-absorbing structure for determining impact time point, deceleration and mass | |
DE102006056839B4 (en) | Method and device for controlling personal protective equipment for a vehicle | |
DE102004036833A1 (en) | Apparatus and method for generating a triggering criterion for an impact protection system of a vehicle | |
DE102005033937B4 (en) | Method and device for controlling personal protective equipment | |
DE102004049380B4 (en) | vehicle sensor | |
DE102004036834A1 (en) | Apparatus and method for generating a triggering criterion for an impact protection system of a vehicle | |
DE102007024195B4 (en) | Method and control device for controlling personal protective equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06806883 Country of ref document: EP Kind code of ref document: A1 |