WO2007029378A1 - Power generating device - Google Patents
Power generating device Download PDFInfo
- Publication number
- WO2007029378A1 WO2007029378A1 PCT/JP2006/310144 JP2006310144W WO2007029378A1 WO 2007029378 A1 WO2007029378 A1 WO 2007029378A1 JP 2006310144 W JP2006310144 W JP 2006310144W WO 2007029378 A1 WO2007029378 A1 WO 2007029378A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic flux
- coil
- generating means
- power generator
- magnetic
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/24—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2793—Rotors axially facing stators
- H02K1/2795—Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2798—Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the stator face a rotor
Definitions
- the present invention relates to a power generator that generates electricity by changing a magnetic flux passing through a coil and generating a current in the coil.
- a force that is small in shape In order to provide a predetermined power generation capacity, a high-efficiency power of the wind power generation machine itself is required.
- increasing the magnetic flux passing through the power generation coil to increase the magnetic flux density, or increasing the amount of change in the magnetic flux passing through the coil is known as a basic principle.
- Patent Document 1 JP 2002-320364 A
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a power generator that can increase the electromotive force to be generated without increasing the scale of the apparatus.
- the present invention has been made to solve the above-described problem, and is a power generator that generates an electromotive force in the coil by changing a magnetic flux passing through the coil.
- a second magnetic flux generation means for generating a magnetic flux in the direction.
- the power generator according to the present invention uses any one of a neodymium iron magnet, an iron boron magnet, and a rare earth cobalt magnet as the first magnetic flux generating means or the second magnetic flux generating means.
- a gap for changing the magnetic flux passing through the coil by passing the coil is formed in the magnetic circuit, and the second magnetic flux generating means. Is installed at a position farthest from the gap in the magnetic circuit. To do.
- the coil is fixed, and the first magnetic flux generation means and the second magnetic flux generation means move relative to the coil, so that the coil An electromotive force is generated.
- the power generation device is a power generation device that generates an electromotive force in the coil by changing a magnetic flux passing through the coil, and generates a magnetic flux passing through the coil.
- a third permanent magnet is provided at the center of the U-shaped yoke and generates a magnetic flux in the same direction as the magnetic flux generated by the first and second permanent magnets.
- the second magnetic flux generation that generates the magnetic flux in the same direction as the magnetic flux generated by the first magnetic flux generation means simply by providing the first magnetic flux generation means for generating the magnetic flux passing through the inside of the coil.
- the means was installed in the magnetic circuit.
- the magnetic flux density in the gap through which the coil passes through the magnetic circuit can be increased, so that the electromotive force generated in the coil can be increased without increasing the scale of the apparatus.
- FIG. 1 is a cross-sectional view showing a configuration of a yoke Y of a wind turbine generator according to an embodiment of the present invention.
- FIG. 2 is an exploded perspective view of a yoke Y according to the present embodiment.
- FIG. 3 is a front sectional view showing a configuration of a rotating part of the wind turbine generator according to the present embodiment.
- FIG. 4 is a side sectional view showing a configuration of a rotating part of the wind turbine generator according to the present embodiment. Explanation of symbols
- FIG. 1 is a cross-sectional view showing a configuration of a yoke rod of a wind turbine generator (power generator) according to an embodiment of the present invention.
- Yoke ⁇ consists of back yoke block 11 (1 la, l ib, l lc, l id), permanent magnet (second magnetic flux generating means, third permanent magnet) 12, permanent magnet (first magnetic flux generating means, The first permanent magnet) 13a and the permanent magnet (first magnetic flux generating means, second permanent magnet) 13b.
- iron which is a ferromagnetic material
- the material of the knock yoke block l la, l lb, l lc, and l id iron, which is a ferromagnetic material, can be used.
- the material of the permanent magnets 12, 13a, 13b neodymium iron magnets, iron boron magnets, rare earth cobalt magnets, and the like can be used.
- FIG. 2 is an exploded perspective view of the yoke Y according to the present embodiment.
- the knock yoke block 11a has a rectangular plate shape.
- the knock yoke block 1 Id has the same shape as the back yoke block 1 la!
- the knock yoke block l ib has a rectangular parallelepiped columnar shape.
- the knock yoke block 1 lc has the same shape as the back yoke block 1 lb! /.
- the permanent magnet 12 has a cylindrical shape.
- the permanent magnet 13a has a rectangular plate shape.
- the permanent magnet 13b has the same shape as the permanent magnet 13a.
- the surface ml of the knock yoke block 11a is bonded to the surface m2 of the south pole of the permanent magnet 13a. . Further, the surface m3 of the knock yoke block l id is bonded to the N pole surface m4 of the permanent magnet 13b.
- the surface m6 of the back yoke block l ib is bonded to the N pole surface m5 of the permanent magnet 12, and the surface m8 of the back yoke block 11c is bonded to the S pole surface m7 of the permanent magnet 12.
- the knock yoke blocks l la to l ld are fixed to the wind power generator by nonmagnetic brackets 14 (14 a and 14 b) and a coupling ring 15, respectively.
- a loop-shaped magnetic circuit B1 is formed inside the back yoke blocks lla to lld and the permanent magnets 12, 13a, 13b by the magnetic flux generated by the permanent magnets 13a, 13b. Further, a loop-shaped magnetic circuit B2 is formed by the magnetic flux generated by the permanent magnet 12.
- the permanent magnet 12 is disposed so that the magnetic flux directions of the magnetic circuit B1 and the magnetic circuit B2 are the same. Therefore, the magnetic flux density inside the back yoke blocks lla to lld and the permanent magnets 12, 13a, and 13b is increased.
- a gap 16 exists in a region between the back yoke block 11a and the back yoke block l id.
- the coil C and the coil holder 18 that are fixed to the wind power generator pass through the gap 16.
- the magnetic flux generated between the north pole of the permanent magnet 13a and the south pole of the permanent magnet 13b crosses the inside of the coil C. Therefore, an electromotive force is generated, and a current flows through the coil C.
- the wind power generator uses this current to supply power to the outside.
- FIG. 3 is a front sectional view showing the configuration of the rotating unit 19 of the wind turbine generator according to the present embodiment.
- the rotating part 19 has a circular shape and can rotate around the central axis 20.
- a plurality of yokes Y (Y1 to Y24) are radially arranged at equal intervals on a circumference separated from the central axis 20 by a predetermined distance.
- a total of 24 yokes Y are installed on the rotating unit 19 will be described.
- the yokes Yl, ⁇ 3, ⁇ 5, ⁇ 7, ⁇ 9, Yll, ⁇ 13, ⁇ 15, ⁇ 17, ⁇ 19, ⁇ 21, and ⁇ 23 are installed in the rotary unit 19 with the side surface on the back yoke block 11a side facing upward. Therefore, these yokes Y generate magnetic fluxes that are directed from the front side to the back side in FIG.
- the yoke Y2, ⁇ 4, ⁇ 6, ⁇ 8, ⁇ 10, ⁇ 12, ⁇ 14, ⁇ 16, ⁇ 18, ⁇ 20, ⁇ 22, and ⁇ 24 are installed in the rotating unit 19 with the side surface on the back yoke block id side facing up. It has been done. Therefore, these yokes Y generate a directional magnetic flux on the front side as well as on the back side in FIG.
- the plurality of coil C forces are installed in the wind power generator so that the axes of the coils C are parallel to the direction perpendicular to the paper surface.
- Coil C has a rounded trapezoidal opening, and is installed in the wind turbine generator with the upper base of the trapezoid facing the central axis 20.
- the coil C of this embodiment is fixed to the wind power generator, and the coil C does not move even if the rotating part 19 rotates!
- a blade (not shown) is attached to the rotating unit 19, and when the blade receives wind, the rotating unit 19 rotates around the central axis 20. As a result, the coil C passes through the gap 16 of the yoke Y. Each time the rotating part 19 rotates 15 degrees around the central axis 20, the magnetic flux passing through the coil C is changed to "magnetic flux directed from the front side to the back side in Fig. 3" and “back side force in Fig. 3 “Magnetic flux directed to the front side” is repeated alternately, and the magnetic flux passing through coil C changes with time, so an electromotive force is generated in coil C. The electric power generated in the coil C is taken out of the wind turbine generator through a circuit not shown.
- FIG. 4 is a side sectional view showing the configuration of the rotating unit 19 of the wind turbine generator according to the present embodiment. This figure shows the configuration of the AA cross section of FIG. Since the structure of the rotating part 19 is the same with the rotating shaft 20 in between, only the specific structure of the upper half from the rotating part 19 is shown here, and the specific structure of the lower half is shown. The illustration is omitted.
- the permanent magnet 12 is not provided in the yoke Y, but the permanent magnet 12 is provided in this embodiment.
- the experiment was conducted using an apparatus constructed of the same material as that of the back block yoke 1 la to l Id. As the permanent magnets 12, 13a and 13b, neodymium iron magnets were used.
- the magnetic flux density in the air gap was 5200 gauss.
- the magnetic flux density in the air gap was 6775 gauss.
- the magnetic flux density is increased by about 30% compared to the conventional wind turbine generator.
- the magnetic circuit B2 formed by the permanent magnet 12 is added to the magnetic circuit B1 formed by the permanent magnets 13a and 13b.
- the coil C is fixed, and the rotating unit 19 in which the permanent magnets 12, 13a, 13b are installed is rotated. Therefore, the electromotive force generated in the coil C can be used more easily than in the case where the permanent magnets 12, 13a, 13b are fixed and the coil C is rotated.
- the present invention is not limited to this.
- a large electromotive force can be obtained by installing the yoke Y in another power generation device such as a hydroelectric power generation device.
- the permanent magnet 12 is installed at the center of the U-shaped yoke Y farthest from the gap 16 gaps of the magnetic circuits Bl and B2 formed in a loop shape.
- the present invention is not limited to such a configuration.
- the permanent magnet 12 may be installed at an arbitrary position of the magnetic circuits Bl and B2.
- permanent magnets 13a and 13b installed at both ends of the U-shaped yoke Y
- permanent magnets provided on the magnetic circuits Bl and B2 are also provided.
- the number of permanent magnets 12 is not limited to one.
- the force described for the case where the permanent magnet 12 is installed between the knock block yokes ib and 11c is not limited to such a configuration.
- the permanent magnet 12 may also be constituted by a back block yoke, and a coil may be wound around the back block yoke. Then, by passing a current through the coil, a magnetic flux is generated in the knock block yoke, and the magnetic flux density of the air gap 16 may be increased.
- the present invention can be suitably used for various power generators such as wind power generators and hydroelectric power generators.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Provided is a power generating device which permits a coil to generate an electromotive force by changing a magnetic flux passing through the coil. The power generating device is characterized in that the device is provided with a first magnetic flux generating means for generating the magnetic flux passing through the coil; and a second magnetic flux generating means, which is arranged inside a magnetic circuit formed by the magnetic flux generated by the first magnetic flux generating means and generates a magnetic flux in the same direction as the magnetic flux generated by the first magnetic flux generating means.
Description
明 細 書 Specification
発電装置 Power generator
技術分野 Technical field
[0001] 本発明は、コイルを通る磁束を変化させて、コイルに電流を発生させることにより発 電を行う発電装置に関する。 TECHNICAL FIELD [0001] The present invention relates to a power generator that generates electricity by changing a magnetic flux passing through a coil and generating a current in the coil.
本願は、 2005年 09月 07日に出願された日本国特許出願第 2005— 259041号 に対し優先権を主張し、その内容をここに援用する。 This application claims priority to Japanese Patent Application No. 2005-259041 filed on Sep. 7, 2005, the contents of which are incorporated herein by reference.
背景技術 Background art
[0002] 近年、二酸ィヒ炭素の排出の抑制や環境対策としての使用電力削減の要求や、電 力の自由化による発電装置への期待の高まりを受けて、例えば、太陽光発電、水力 発電、廃棄物処理時の熱利用による発電などが始まっている。国も温暖化対策の一 環として補助金制度を設けることなどにより、それらの技術の普及を図ろうとしている。 [0002] In recent years, in response to demands for reducing carbon dioxide emissions, reducing power consumption as an environmental measure, and increasing expectations for power generation devices due to the liberalization of power, for example, solar power generation, hydropower Power generation and power generation using heat during waste disposal have begun. The country is also trying to spread these technologies by establishing a subsidy system as a part of global warming countermeasures.
[0003] そのような状況の中で、風力発電についても関心が高まっており、全国各地で大型 施設を建設して発電を行い、事業化する試みがなされている。この風力発電装置の 動向を見ると、大規模な装置や、小規模な装置は数多く存在するが、中規模の発電 装置につ 、ては開発が遅れて 、る。 [0003] Under such circumstances, there is an increasing interest in wind power generation, and attempts have been made to construct large-scale facilities throughout the country to generate power and commercialize it. Looking at the trends in wind power generation equipment, there are many large-scale equipment and small-scale equipment, but development of medium-scale power generation equipment is delayed.
[0004] このような状況は、大型の風力発電装置であれば、事業として成立する可能性が高 いが、家庭などで簡便に設置できるのは小型の風力発電装置に限定され、部分的な 電力供給、すなわち、補助電源としての利用が主となっていることに起因する。また、 家庭での維持管理を考慮した場合には小型でな 、と維持が難 、ことが理由として 考えられる。 [0004] Such a situation is likely to be established as a business if it is a large wind power generator, but it is limited to small wind power generators that can be easily installed at home, etc. This is because power supply, that is, use as an auxiliary power source is mainly used. In addition, considering the maintenance at home, it is considered that it is difficult to maintain because it is small.
[0005] 形状的には小型である力 所定の発電能力を具備させるためには、風力発電の機 械自体の高効率ィ匕が必要である。その方法としては、発電用のコイルを通る磁束を 増やして磁束密度を上げることや、コイル内を通る磁束の変化量を大きくすると 、うこ とが基本原則として知られて 、る。 [0005] A force that is small in shape In order to provide a predetermined power generation capacity, a high-efficiency power of the wind power generation machine itself is required. As its method, increasing the magnetic flux passing through the power generation coil to increase the magnetic flux density, or increasing the amount of change in the magnetic flux passing through the coil, is known as a basic principle.
[0006] 磁束密度を上げる方法としては、従来から数々の方法が提案されている。例えば、 発電装置を構成するヨークの形状を工夫したり、磁石部分の形状を設計したり、強磁
性体の材料を使用したりすることが行われてきた。近年、磁石に用いる材料が進歩し たため、磁気異方性を有する材料が見つ力 ている。例えば、希土類コバルト磁石 は平板形状でありながら、平板に垂直な方向に磁ィ匕させることが可能である。 [0006] Numerous methods have been proposed for increasing the magnetic flux density. For example, devise the shape of the yoke that constitutes the power generation device, design the shape of the magnet part, It has been practiced to use sex material. In recent years, as materials used for magnets have advanced, materials with magnetic anisotropy have been gaining attention. For example, a rare earth cobalt magnet can be magnetized in a direction perpendicular to a flat plate while having a flat plate shape.
[0007] このような技術の進歩から、風力発電装置を構成するヨークの形状にっ ヽても、従 来実現できな力つた形状を作製することができるようになり、ヨークの先端の磁石部分 に希土類磁石の平板を配することができるようになってきた (特許文献 1)。 [0007] With the advancement of such technology, even if the shape of the yoke constituting the wind power generator is used, it is possible to produce a powerful shape that cannot be realized conventionally, and the magnet portion at the tip of the yoke It has become possible to arrange a flat plate of rare earth magnets (Patent Document 1).
特許文献 1:特開 2002— 320364号公報 Patent Document 1: JP 2002-320364 A
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0008] しかしながら、従来の技術では、風力発電装置を小規模な形状に保ちつつ、磁気 回路内をコイルが通過する空隙における磁束密度を増加させることは難しいという問 題があった。 [0008] However, in the conventional technology, there is a problem that it is difficult to increase the magnetic flux density in the air gap through which the coil passes through the magnetic circuit while keeping the wind power generator in a small-scale shape.
[0009] 本発明は、上記事情に鑑みてなされたものであり、その目的は、装置の規模を大き くすることなぐ発生させる起電力を大きくすることができる発電装置を提供することに ある。 [0009] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a power generator that can increase the electromotive force to be generated without increasing the scale of the apparatus.
課題を解決するための手段 Means for solving the problem
[0010] 本発明は、上記課題を解決するためになされたものであって、コイル内を通る磁束 を変化させることにより、前記コイルに起電力を発生させる発電装置であって、前記コ ィル内を通る磁束を発生させる第 1の磁束発生手段と、前記第 1の磁束発生手段が 発生する磁束により形成される磁気回路内に設置され、前記第 1の磁束発生手段が 発生する磁束と同方向の磁束を発生させる第 2の磁束発生手段と、を有することを特 徴とする発電装置である。 [0010] The present invention has been made to solve the above-described problem, and is a power generator that generates an electromotive force in the coil by changing a magnetic flux passing through the coil. A first magnetic flux generating means for generating a magnetic flux passing through the inside, and a magnetic circuit formed by the magnetic flux generated by the first magnetic flux generating means, and the same as the magnetic flux generated by the first magnetic flux generating means And a second magnetic flux generation means for generating a magnetic flux in the direction.
[0011] また、本発明に係る発電装置は、前記第 1の磁束発生手段、又は、第 2の磁束発生 手段として、ネオジゥム鉄磁石、鉄ボロン磁石、希土類コバルト磁石のいずれかを用 いることを特徴とする。 [0011] Further, the power generator according to the present invention uses any one of a neodymium iron magnet, an iron boron magnet, and a rare earth cobalt magnet as the first magnetic flux generating means or the second magnetic flux generating means. Features.
[0012] 更に、本発明に係る発電装置は、前記磁気回路には、前記コイルを通過させて前 記コイル内を通る磁束を変化させるための空隙が形成され、前記第 2の磁束発生手 段は、前記磁気回路のうち、前記空隙から最も離れた位置に設置されることを特徴と
する。 [0012] Further, in the power generation device according to the present invention, a gap for changing the magnetic flux passing through the coil by passing the coil is formed in the magnetic circuit, and the second magnetic flux generating means. Is installed at a position farthest from the gap in the magnetic circuit. To do.
[0013] 更に、本発明に係る発電装置は、前記コイルは固定され、前記第 1の磁束発生手 段、及び、第 2の磁束発生手段が前記コイルに対して移動することにより、前記コイル に起電力を発生させることを特徴とする。 Furthermore, in the power generation device according to the present invention, the coil is fixed, and the first magnetic flux generation means and the second magnetic flux generation means move relative to the coil, so that the coil An electromotive force is generated.
[0014] 更に、本発明に係る発電装置は、コイル内を通る磁束を変化させることにより、前記 コイルに起電力を発生させる発電装置であって、前記コイル内を通る磁束を発生させ 、U字状のヨークの両端部にそれぞれ向かい合わせに設置される第 1及び第 2の永 久磁石と、前記第 1及び第 2の永久磁石が発生する磁束により形成される磁気回路 内であって、前記 U字状のヨークの中央部に設置され、前記第 1及び第 2の永久磁 石が発生する磁束と同方向の磁束を発生させる第 3の永久磁石とを有することを特 徴とする。 Furthermore, the power generation device according to the present invention is a power generation device that generates an electromotive force in the coil by changing a magnetic flux passing through the coil, and generates a magnetic flux passing through the coil. A magnetic circuit formed by magnetic flux generated by the first and second permanent magnets and the first and second permanent magnets installed opposite to both ends of the yoke. A third permanent magnet is provided at the center of the U-shaped yoke and generates a magnetic flux in the same direction as the magnetic flux generated by the first and second permanent magnets.
発明の効果 The invention's effect
[0015] 本発明では、コイル内を通る磁束を発生させる第 1の磁束発生手段を設けるだけで なぐ第 1の磁束発生手段により発生される磁束と同方向の磁束を発生させる第 2の 磁束発生手段を、磁気回路内に設置するようにした。 [0015] In the present invention, the second magnetic flux generation that generates the magnetic flux in the same direction as the magnetic flux generated by the first magnetic flux generation means simply by providing the first magnetic flux generation means for generating the magnetic flux passing through the inside of the coil. The means was installed in the magnetic circuit.
これにより、磁気回路内をコイルが通過する空隙における磁束密度を増加すること ができるため、装置の規模を大型化することなくコイルに発生する起電力を増加させ ることがでさる。 As a result, the magnetic flux density in the gap through which the coil passes through the magnetic circuit can be increased, so that the electromotive force generated in the coil can be increased without increasing the scale of the apparatus.
図面の簡単な説明 Brief Description of Drawings
[0016] [図 1]本発明の一実施形態に係る風力発電装置のヨーク Yの構成を示す断面図であ る。 FIG. 1 is a cross-sectional view showing a configuration of a yoke Y of a wind turbine generator according to an embodiment of the present invention.
[図 2]本実施形態に係るヨーク Yの分解斜視図である。 FIG. 2 is an exploded perspective view of a yoke Y according to the present embodiment.
[図 3]本実施形態に係る風力発電装置の回転部の構成を示す正面断面図である。 FIG. 3 is a front sectional view showing a configuration of a rotating part of the wind turbine generator according to the present embodiment.
[図 4]本実施形態による風力発電装置の回転部の構成を示す側面断面図である。 符号の説明 FIG. 4 is a side sectional view showing a configuration of a rotating part of the wind turbine generator according to the present embodiment. Explanation of symbols
[0017] l l (l la、 l lb、 l lc、 l id) ノックヨークブロック [0017] l l (l la, l lb, l lc, l id) knock yoke block
12 永久磁石 (第 2の磁束発生手段、第 3の永久磁石) 12 Permanent magnet (2nd magnetic flux generating means, 3rd permanent magnet)
13a 永久磁石 (第 1の磁束発生手段、第 1の永久磁石)
13b 永久磁石 (第 1の磁束発生手段、第 2の永久磁石) 13a Permanent magnet (first magnetic flux generating means, first permanent magnet) 13b Permanent magnet (first magnetic flux generating means, second permanent magnet)
14 (14a, 14b) 非磁性ブラケット 14 (14a, 14b) Non-magnetic bracket
15 連結リング 15 Connecting ring
16 空隙 16 Air gap
18 コイルホルダ 18 Coil holder
19 回転部 19 Rotating part
20 中心軸 20 Center axis
C (C1〜C12) コイル C (C1 to C12) Coil
Y (Y1〜Y24) ヨーク Y (Y1-Y24) York
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、図面を参照し、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、本発明の実施形態による風力発電装置 (発電装置)のヨーク Υの構成を示 す断面図である。 FIG. 1 is a cross-sectional view showing a configuration of a yoke rod of a wind turbine generator (power generator) according to an embodiment of the present invention.
ヨーク Υは、バックヨークブロック 11 (1 la、 l ib, l lc、 l id)、永久磁石(第 2の磁束 発生手段、第 3の永久磁石) 12、永久磁石 (第 1の磁束発生手段、第 1の永久磁石) 13a、及び永久磁石 (第 1の磁束発生手段、第 2の永久磁石) 13bにより構成されて いる。 Yoke Υ consists of back yoke block 11 (1 la, l ib, l lc, l id), permanent magnet (second magnetic flux generating means, third permanent magnet) 12, permanent magnet (first magnetic flux generating means, The first permanent magnet) 13a and the permanent magnet (first magnetic flux generating means, second permanent magnet) 13b.
ノックヨークブロック l la、 l lb、 l lc、 l idの材質としては、強磁性体である鉄など を用いることができる。また、永久磁石 12、 13a、 13bの材質としては、ネオジゥム鉄 磁石、鉄ボロン磁石、希土類コバルト磁石などを用いることができる。 As the material of the knock yoke block l la, l lb, l lc, and l id, iron, which is a ferromagnetic material, can be used. Further, as the material of the permanent magnets 12, 13a, 13b, neodymium iron magnets, iron boron magnets, rare earth cobalt magnets, and the like can be used.
[0019] 図 2は、本実施形態によるヨーク Yの分解斜視図である。 FIG. 2 is an exploded perspective view of the yoke Y according to the present embodiment.
ノックヨークブロック 11aは、長方形の板状の形状をしている。また、ノ ックヨークブ ロック 1 Idは、バックヨークブロック 1 laと同じ形状をして!/、る。 The knock yoke block 11a has a rectangular plate shape. The knock yoke block 1 Id has the same shape as the back yoke block 1 la!
ノックヨークブロック l ibは、直方体の柱状の形状をしている。また、ノ ックヨークブ ロック 1 lcは、バックヨークブロック 1 lbと同じ形状をして!/、る。 The knock yoke block l ib has a rectangular parallelepiped columnar shape. The knock yoke block 1 lc has the same shape as the back yoke block 1 lb! /.
永久磁石 12は、円柱状の形状をしている。永久磁石 13aは、長方形の板状の形状 をしている。また、永久磁石 13bは、永久磁石 13aと同じ形状をしている。 The permanent magnet 12 has a cylindrical shape. The permanent magnet 13a has a rectangular plate shape. The permanent magnet 13b has the same shape as the permanent magnet 13a.
[0020] ノックヨークブロック 11aの面 mlは、永久磁石 13aの S極の面 m2と接着されている
。また、ノ ックヨークブロック l idの面 m3は、永久磁石 13bの N極の面 m4と接着され ている。 [0020] The surface ml of the knock yoke block 11a is bonded to the surface m2 of the south pole of the permanent magnet 13a. . Further, the surface m3 of the knock yoke block l id is bonded to the N pole surface m4 of the permanent magnet 13b.
また、永久磁石 12の N極の面 m5には、バックヨークブロック l ibの面 m6が接着さ れており、永久磁石 12の S極の面 m7には、バックヨークブロック 11cの面 m8が接着 されている。 Further, the surface m6 of the back yoke block l ib is bonded to the N pole surface m5 of the permanent magnet 12, and the surface m8 of the back yoke block 11c is bonded to the S pole surface m7 of the permanent magnet 12. Has been.
[0021] ノックヨークブロック 11aの面 m9は、バックヨークブロック l ibの面 ml3に接着され ており、また、バックヨークブロック l idの面 mlOは、ノ ックヨークブロック 11cの面 ml 4に接着されている。このとき、ノックヨークブロック l idに接着された永久磁石 13aの 面 mi lと、バックヨークブロック l idに接着された永久磁石 13bの面 ml2とは、互い に向か!/、合った状態とされて 、る。 [0021] Surface m9 of knock yoke block 11a is bonded to surface ml3 of back yoke block l ib, and surface mlO of back yoke block l id is bonded to surface ml 4 of knock yoke block 11c. Has been. At this time, the surface mi l of the permanent magnet 13a bonded to the knock yoke block l id and the surface ml2 of the permanent magnet 13b bonded to the back yoke block l id face each other! / It has been.
[0022] 図 1に戻り、ノ ックヨークブロック l la〜l ldは、非磁性ブラケット 14 (14a、 14b)、連 結リング 15によりそれぞれ風力発電装置に固定されている。 Returning to FIG. 1, the knock yoke blocks l la to l ld are fixed to the wind power generator by nonmagnetic brackets 14 (14 a and 14 b) and a coupling ring 15, respectively.
バックヨークブロック l la〜l ld、永久磁石 12、 13a、 13bの内部には、図 1に示す ように、永久磁石 13a、 13bが発生する磁束により、ループ状の磁気回路 B1が形成さ れる。また、永久磁石 12が発生する磁束により、ループ状の磁気回路 B2が形成され る。磁気回路 B1と磁気回路 B2の磁束の向きが同じになるように、永久磁石 12は設 置されている。よって、バックヨークブロック l la〜l ld、永久磁石 12、 13a、 13bの内 部の磁束密度は大きくなる。 As shown in FIG. 1, a loop-shaped magnetic circuit B1 is formed inside the back yoke blocks lla to lld and the permanent magnets 12, 13a, 13b by the magnetic flux generated by the permanent magnets 13a, 13b. Further, a loop-shaped magnetic circuit B2 is formed by the magnetic flux generated by the permanent magnet 12. The permanent magnet 12 is disposed so that the magnetic flux directions of the magnetic circuit B1 and the magnetic circuit B2 are the same. Therefore, the magnetic flux density inside the back yoke blocks lla to lld and the permanent magnets 12, 13a, and 13b is increased.
[0023] バックヨークブロック 11aとバックヨークブロック l idに挟まれた領域には、空隙 16が 存在する。本実施形態では、ヨーク Yが移動することにより、空隙 16の間を、風力発 電装置に固定されたコイル C、及びコイルホルダ 18が通過する。これにより、コイル C の内部を、永久磁石 13aの N極と永久磁石 13bの S極の間に生じる磁束が横切ること になる。よって、起電力が発生し、コイル Cに電流が流れる。風力発電装置は、この電 流を利用して外部に電力を供給する。 [0023] A gap 16 exists in a region between the back yoke block 11a and the back yoke block l id. In the present embodiment, when the yoke Y moves, the coil C and the coil holder 18 that are fixed to the wind power generator pass through the gap 16. As a result, the magnetic flux generated between the north pole of the permanent magnet 13a and the south pole of the permanent magnet 13b crosses the inside of the coil C. Therefore, an electromotive force is generated, and a current flows through the coil C. The wind power generator uses this current to supply power to the outside.
[0024] 図 3は、本実施形態による風力発電装置の回転部 19の構成を示す正面断面図で ある。回転部 19は、円形の形状をしており、中心軸 20を軸として回転できるようにな つている。回転部 19には、中心軸 20から所定距離離れた円周上に、等間隔を離れ て放射状に複数のヨーク Y(Y1〜Y24)が設置されている。
[0025] 本実施形態では回転部 19に、ヨーク Yが合計 24個設置されている場合について 説明する。ヨーク Yl、 Υ3、 Υ5、 Υ7、 Υ9、 Yl l、 Υ13、 Υ15、 Υ17、 Υ19、 Υ21、 Υ2 3は、バックヨークブロック 11a側の側面を紙面上方に向けて回転部 19に設置されて いる。よって、これらのヨーク Yは、図 3の紙面表側から紙面裏側に向力う磁束が発生 する。 FIG. 3 is a front sectional view showing the configuration of the rotating unit 19 of the wind turbine generator according to the present embodiment. The rotating part 19 has a circular shape and can rotate around the central axis 20. In the rotating part 19, a plurality of yokes Y (Y1 to Y24) are radially arranged at equal intervals on a circumference separated from the central axis 20 by a predetermined distance. In the present embodiment, a case where a total of 24 yokes Y are installed on the rotating unit 19 will be described. The yokes Yl, Υ3, Υ5, Υ7, Υ9, Yll, 、 13, 、 15, 、 17, Υ19, 、 21, and Υ23 are installed in the rotary unit 19 with the side surface on the back yoke block 11a side facing upward. Therefore, these yokes Y generate magnetic fluxes that are directed from the front side to the back side in FIG.
[0026] 一方、ヨーク Y2、 Υ4、 Υ6、 Υ8、 Υ10、 Υ12、 Υ14、 Υ16、 Υ18、 Υ20、 Υ22、 Υ24 は、バックヨークブロック l id側の側面を紙面上方に向けて回転部 19に設置されてい る。よって、これらのヨーク Yは、図 3の紙面裏側力も紙面表側に向力 磁束が発生す る。 [0026] On the other hand, the yoke Y2, Υ4, Υ6, Υ8, Υ10, Υ12, Υ14, Υ16, Υ18, Υ20, Υ22, and Υ24 are installed in the rotating unit 19 with the side surface on the back yoke block id side facing up. It has been done. Therefore, these yokes Y generate a directional magnetic flux on the front side as well as on the back side in FIG.
[0027] また、複数のコイル C力 コイル Cの軸が紙面と垂直な方向と平行になるように、風 力発電装置に設置されている。本実施形態では風力発電装置に、コイル C (C1〜C 12)を合計 12個設置する場合について説明する。コイル Cは、丸みを帯びた台形状 の開口部を有しており、台形の上底側を中心軸 20に向けて、風力発電装置に設置 されている。本実施形態のコイル Cは風力発電装置に固定されており、回転部 19が 回転しても、コイル Cは動かな!/、ようになって!/、る。 [0027] Further, the plurality of coil C forces are installed in the wind power generator so that the axes of the coils C are parallel to the direction perpendicular to the paper surface. In this embodiment, a case where a total of 12 coils C (C1 to C12) are installed in the wind turbine generator will be described. Coil C has a rounded trapezoidal opening, and is installed in the wind turbine generator with the upper base of the trapezoid facing the central axis 20. The coil C of this embodiment is fixed to the wind power generator, and the coil C does not move even if the rotating part 19 rotates!
[0028] 回転部 19には、図示を省略した羽根が取り付けられており、その羽根に風を受ける と、回転部 19が中心軸 20の周りを回転する。これにより、ヨーク Yの空隙 16を、コイル Cが通過する。回転部 19が中心軸 20の周りを 15度回転するたびに、コイル C内を通 る磁束が、「図 3の紙面表側から紙面裏側に向力う磁束」と「図 3の紙面裏側力 紙面 表側に向力う磁束」を交互に繰り返し、コイル Cを通る磁束が時間と共に変化するた め、コイル Cに起電力が生じる。コイル Cに生じた電力は、図示を省略した回路を介し て、風力発電装置の外部に取り出される。 [0028] A blade (not shown) is attached to the rotating unit 19, and when the blade receives wind, the rotating unit 19 rotates around the central axis 20. As a result, the coil C passes through the gap 16 of the yoke Y. Each time the rotating part 19 rotates 15 degrees around the central axis 20, the magnetic flux passing through the coil C is changed to "magnetic flux directed from the front side to the back side in Fig. 3" and "back side force in Fig. 3 “Magnetic flux directed to the front side” is repeated alternately, and the magnetic flux passing through coil C changes with time, so an electromotive force is generated in coil C. The electric power generated in the coil C is taken out of the wind turbine generator through a circuit not shown.
[0029] 図 4は、本実施形態による風力発電装置の回転部 19の構成を示す側面断面図で ある。この図は、図 3の A— A断面の構成を示している。なお、回転部 19の構造は、 回転軸 20を挟んで同じ構造をしているため、ここでは、回転部 19から上半分の具体 的な構造のみを示し、下半分の具体的な構造にっ 、ては図示を省略して 、る。 FIG. 4 is a side sectional view showing the configuration of the rotating unit 19 of the wind turbine generator according to the present embodiment. This figure shows the configuration of the AA cross section of FIG. Since the structure of the rotating part 19 is the same with the rotating shaft 20 in between, only the specific structure of the upper half from the rotating part 19 is shown here, and the specific structure of the lower half is shown. The illustration is omitted.
[0030] 次に、本実施形態による風力発電装置を用いた場合の効果について説明する。 Next, the effect when using the wind turbine generator according to the present embodiment will be described.
本実施形態の風力発電装置(図 3及び図 4)を作動させた時に空隙 16に発生する
磁束の磁束密度と、従来の構造を有する風力発電装置を作動させた時に空隙に発 生する磁束の磁束密度とを比較した。なお、従来の風力発電装置としては、図 3及び 図 4に示した本実施形態による風力発電装置において、ヨーク Yに永久磁石 12を設 けず、本実施形態で永久磁石 12を設けて 、る領域をバックブロックヨーク 1 la〜l Id の材質と同じ材質で構成した装置を用いて実験を行った。なお、永久磁石 12、 13a、 13bとしては、ネオジゥム鉄磁石を用いた。 Generated in the gap 16 when the wind turbine generator of this embodiment (FIGS. 3 and 4) is operated. The magnetic flux density of the magnetic flux was compared with the magnetic flux density of the magnetic flux generated in the air gap when the conventional wind power generator was operated. As a conventional wind turbine generator, in the wind turbine generator according to this embodiment shown in FIGS. 3 and 4, the permanent magnet 12 is not provided in the yoke Y, but the permanent magnet 12 is provided in this embodiment. The experiment was conducted using an apparatus constructed of the same material as that of the back block yoke 1 la to l Id. As the permanent magnets 12, 13a and 13b, neodymium iron magnets were used.
[0031] その結果、従来の風力発電装置では、空隙の磁束密度は、 5200ガウスであった。 As a result, in the conventional wind power generator, the magnetic flux density in the air gap was 5200 gauss.
それに対して、本実施形態による風力発電装置では、空隙の磁束密度は、 6775ガ ウスであった。この結果から分かるように、本実施形態による風力発電装置を使用す ると、従来の風力発電装置に比べて、磁束密度が約 30パーセント程度増加する。 In contrast, in the wind turbine generator according to the present embodiment, the magnetic flux density in the air gap was 6775 gauss. As can be seen from this result, when the wind turbine generator according to the present embodiment is used, the magnetic flux density is increased by about 30% compared to the conventional wind turbine generator.
[0032] このように、本実施形態による風力発電装置を使用すれば、永久磁石 13a、 13bに より形成される磁気回路 B1に、永久磁石 12により形成される磁気回路 B2が加わる ので、コイル Cが通過する空隙 16における磁束密度を増カロさせることができ、これに 伴い、コイル Cに発生する起電力を大きくすることができる。よって、風力発電装置か ら大きな起電力を得るために、装置を中規模、大規模にする必要がなくなり、風力発 電装置の製造コストを抑えることができる。 [0032] Thus, when the wind power generator according to the present embodiment is used, the magnetic circuit B2 formed by the permanent magnet 12 is added to the magnetic circuit B1 formed by the permanent magnets 13a and 13b. Can increase the magnetic flux density in the gap 16 through which the coil passes, and the electromotive force generated in the coil C can be increased accordingly. Therefore, in order to obtain a large electromotive force from the wind turbine generator, it is not necessary to make the device medium-scale or large-scale, and the manufacturing cost of the wind turbine generator can be suppressed.
また、本実施形態による風力発電装置では、コイル Cを固定しておき、永久磁石 12 、 13a、 13bが設置されている回転部 19を回転させるようにした。よって、永久磁石 1 2、 13a、 13bを固定しておき、コイル Cを回転させる場合に比べて、コイル Cに生じる 起電力を容易に利用することができる。 Further, in the wind turbine generator according to the present embodiment, the coil C is fixed, and the rotating unit 19 in which the permanent magnets 12, 13a, 13b are installed is rotated. Therefore, the electromotive force generated in the coil C can be used more easily than in the case where the permanent magnets 12, 13a, 13b are fixed and the coil C is rotated.
[0033] なお、上述した実施形態では、風力発電装置にヨーク Yを設置する場合について 説明したが、これに限定されるものではない。例えば、水力発電装置などのその他の 発電装置にヨーク Yを設置することにより、大きな起電力を得ることもできる。 In the above-described embodiment, the case where the yoke Y is installed in the wind turbine generator has been described. However, the present invention is not limited to this. For example, a large electromotive force can be obtained by installing the yoke Y in another power generation device such as a hydroelectric power generation device.
また、上述した実施形態では、ループ状に形成された磁気回路 Bl、 B2の空隙 16 カゝら最も離れた U字状のヨーク Yの中央部に、永久磁石 12を設置する場合について 説明したが、このような構成に限定されるものではない。例えば、磁気回路 Bl、 B2の 任意の位置に永久磁石 12を設置するようにしてもよい。また、 U字状のヨーク Yの両 端部に設置されている永久磁石 13a、 13b以外に、磁気回路 Bl、 B2上に設ける永
久磁石 12の数は 1つに限定されるものではなぐ複数個設置するようにしてもょ 、。 In the above-described embodiment, the case where the permanent magnet 12 is installed at the center of the U-shaped yoke Y farthest from the gap 16 gaps of the magnetic circuits Bl and B2 formed in a loop shape has been described. However, the present invention is not limited to such a configuration. For example, the permanent magnet 12 may be installed at an arbitrary position of the magnetic circuits Bl and B2. In addition to the permanent magnets 13a and 13b installed at both ends of the U-shaped yoke Y, permanent magnets provided on the magnetic circuits Bl and B2 are also provided. The number of permanent magnets 12 is not limited to one.
[0034] また、上述した実施形態では、ノ ックブロックヨーク l ibと 11cの間に、永久磁石 12 を設置する場合について説明した力 このような構成に限定されるものではない。例 えば、永久磁石 12もバックブロックヨークにより構成し、そのバックブロックヨークの周 囲にコイルを卷きつけるようにしてもよい。そして、そのコイルに電流を流すことにより 、 ノックブロックヨーク内に磁束を発生させて、空隙 16の磁束密度を増加させるように してちよい。 In the embodiment described above, the force described for the case where the permanent magnet 12 is installed between the knock block yokes ib and 11c is not limited to such a configuration. For example, the permanent magnet 12 may also be constituted by a back block yoke, and a coil may be wound around the back block yoke. Then, by passing a current through the coil, a magnetic flux is generated in the knock block yoke, and the magnetic flux density of the air gap 16 may be increased.
[0035] 以上、この発明の実施形態について図面を参照して詳述してきた力 具体的な構 成はこの実施形態に限られるものではなぐこの発明の要旨を逸脱しない範囲の設 計等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. The specific configuration is not limited to this embodiment, and includes design and the like within the scope of the present invention. It is.
産業上の利用可能性 Industrial applicability
[0036] 本発明は、風力発電装置や水力発電装置といった各種発電装置に、好適に利用 できるものである。
The present invention can be suitably used for various power generators such as wind power generators and hydroelectric power generators.
Claims
[1] コイル内を通る磁束を変化させることにより、前記コイルに起電力を発生させる発電 装置であって、 [1] A power generator that generates an electromotive force in the coil by changing a magnetic flux passing through the coil,
前記コイル内を通る磁束を発生させる第 1の磁束発生手段と、 First magnetic flux generating means for generating a magnetic flux passing through the coil;
前記第 1の磁束発生手段が発生する磁束により形成される磁気回路内に設置され 、前記第 1の磁束発生手段が発生する磁束と同方向の磁束を発生させる第 2の磁束 発生手段と、 A second magnetic flux generating means installed in a magnetic circuit formed by the magnetic flux generated by the first magnetic flux generating means and generating a magnetic flux in the same direction as the magnetic flux generated by the first magnetic flux generating means;
を有することを特徴とする発電装置。 A power generator characterized by comprising:
[2] 前記第 1の磁束発生手段として、ネオジゥム鉄磁石、鉄ボロン磁石、希土類コバルト 磁石の 、ずれかを用いることを特徴とする請求項 1に記載の発電装置。 [2] The power generator according to claim 1, wherein any one of a neodymium iron magnet, an iron boron magnet, and a rare earth cobalt magnet is used as the first magnetic flux generation means.
[3] 前記第 2の磁束発生手段として、ネオジゥム鉄磁石、鉄ボロン磁石、希土類コバルト 磁石の 、ずれかを用いることを特徴とする請求項 1に記載の発電装置。 [3] The power generator according to claim 1, wherein any one of a neodymium iron magnet, an iron boron magnet, and a rare earth cobalt magnet is used as the second magnetic flux generation means.
[4] 前記磁気回路には、前記コイルを通過させて前記コイル内を通る磁束を変化させる ための空隙が形成され、 [4] The magnetic circuit is formed with a gap for changing the magnetic flux passing through the coil through the coil,
前記第 2の磁束発生手段は、前記磁気回路のうち、前記空隙から最も離れた位置 に設置されることを特徴とする請求項 1に記載の発電装置。 2. The power generator according to claim 1, wherein the second magnetic flux generation means is installed at a position farthest from the gap in the magnetic circuit.
[5] 前記コイルは固定され、 [5] The coil is fixed,
前記第 1の磁束発生手段、及び、第 2の磁束発生手段が前記コイルに対して移動 することにより、前記コイルに起電力を発生させる、 The first magnetic flux generating means and the second magnetic flux generating means move relative to the coil to generate an electromotive force in the coil;
ことを特徴とする請求項 1に記載の発電装置。 The power generation device according to claim 1, wherein:
[6] コイル内を通る磁束を変化させることにより、前記コイルに起電力を発生させる発電 装置であって、 [6] A power generator that generates an electromotive force in the coil by changing a magnetic flux passing through the coil,
前記コイル内を通る磁束を発生させ、 U字状のヨークの両端部にそれぞれ向かい 合わせに設置される第 1及び第 2の永久磁石と、 First and second permanent magnets that generate magnetic flux passing through the inside of the coil and are installed facing each other at both ends of the U-shaped yoke;
前記第 1及び第 2の永久磁石が発生する磁束により形成される磁気回路内の、前 記 U字状のヨークの中央部に設置され、前記第 1及び第 2の永久磁石が発生する磁 束と同方向の磁束を発生させる第 3の永久磁石と、 Magnetic flux generated by the first and second permanent magnets installed in the center of the U-shaped yoke in the magnetic circuit formed by the magnetic flux generated by the first and second permanent magnets A third permanent magnet that generates a magnetic flux in the same direction as
を有することを特徴とする発電装置。
A power generator characterized by comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-259041 | 2005-09-07 | ||
JP2005259041A JP3763841B1 (en) | 2005-09-07 | 2005-09-07 | Power generator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007029378A1 true WO2007029378A1 (en) | 2007-03-15 |
Family
ID=36240979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/310144 WO2007029378A1 (en) | 2005-09-07 | 2006-05-22 | Power generating device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3763841B1 (en) |
CN (1) | CN101273512A (en) |
WO (1) | WO2007029378A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010009486B4 (en) * | 2010-02-26 | 2013-05-29 | Ivan Bystrican | Double-disk magnetic generator with rectangular waveform of the output voltage |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100940182B1 (en) | 2007-07-27 | 2010-02-04 | 안종석 | Magnetically open / close generator that generates power by using the blocking member as a permanent magnet |
JP2010045880A (en) * | 2008-08-08 | 2010-02-25 | Nakagawa Electric Ind Co Ltd | Power generator |
GB2532478B (en) * | 2014-11-20 | 2021-08-25 | Time To Act Ltd | Generator |
US10608516B2 (en) * | 2015-03-09 | 2020-03-31 | Panasonic Intellectual Property Management Co., Ltd. | Power generation device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS614456A (en) * | 1984-06-14 | 1986-01-10 | Mitsubishi Electric Corp | Actuator |
JPH0471343A (en) * | 1990-07-11 | 1992-03-05 | Sankyo Seiki Mfg Co Ltd | Small-sized motor |
JPH08251894A (en) * | 1995-03-07 | 1996-09-27 | Daido Steel Co Ltd | Alternate current generator provided with voltage control mechanism |
JP2000261994A (en) * | 1999-03-12 | 2000-09-22 | Hideo Kawamura | Motor generator increasing low-speed torque and suppressing high-speed torque |
JP2002537749A (en) * | 1999-02-12 | 2002-11-05 | シラー,ヘルムート | Electric machine |
JP2002354724A (en) * | 2001-05-24 | 2002-12-06 | Mitsubishi Heavy Ind Ltd | Permanent magnet generator |
-
2005
- 2005-09-07 JP JP2005259041A patent/JP3763841B1/en not_active Expired - Fee Related
-
2006
- 2006-05-22 CN CNA2006800324358A patent/CN101273512A/en active Pending
- 2006-05-22 WO PCT/JP2006/310144 patent/WO2007029378A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS614456A (en) * | 1984-06-14 | 1986-01-10 | Mitsubishi Electric Corp | Actuator |
JPH0471343A (en) * | 1990-07-11 | 1992-03-05 | Sankyo Seiki Mfg Co Ltd | Small-sized motor |
JPH08251894A (en) * | 1995-03-07 | 1996-09-27 | Daido Steel Co Ltd | Alternate current generator provided with voltage control mechanism |
JP2002537749A (en) * | 1999-02-12 | 2002-11-05 | シラー,ヘルムート | Electric machine |
JP2000261994A (en) * | 1999-03-12 | 2000-09-22 | Hideo Kawamura | Motor generator increasing low-speed torque and suppressing high-speed torque |
JP2002354724A (en) * | 2001-05-24 | 2002-12-06 | Mitsubishi Heavy Ind Ltd | Permanent magnet generator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010009486B4 (en) * | 2010-02-26 | 2013-05-29 | Ivan Bystrican | Double-disk magnetic generator with rectangular waveform of the output voltage |
Also Published As
Publication number | Publication date |
---|---|
JP3763841B1 (en) | 2006-04-05 |
JP2007074820A (en) | 2007-03-22 |
CN101273512A (en) | 2008-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhu et al. | Overview of flux-modulation machines based on flux-modulation principle: Topology, theory, and development prospects | |
JP6781489B2 (en) | Electromagnetic device | |
US7982350B2 (en) | Conical magnets and rotor-stator structures for electrodynamic machines | |
JP4312245B2 (en) | Rotor / stator structure for electric machines | |
US8638016B2 (en) | Electromagnetic structure having a core element that extends magnetic coupling around opposing surfaces of a circular magnetic structure | |
Shen et al. | General analytical model for calculating electromagnetic performance of permanent magnet brushless machines having segmented Halbach array | |
WO2007029378A1 (en) | Power generating device | |
Mörée et al. | Overview of hybrid excitation in electrical machines | |
US7830065B2 (en) | Solid state electric generator | |
JP2013524747A (en) | Three-phase AC permanent magnet motor | |
JP2015133895A (en) | permanent magnet synchronous machine | |
CN102013739B (en) | Hal-Bach permanent magnet actuator capable of lineally rotating two degrees of freedom | |
KR20140028007A (en) | Power generating device | |
WO2009057916A3 (en) | Construction device of generator have to switching magnetic flux. | |
US20190207499A1 (en) | Vibration actuator and electronic device | |
JP2013223417A (en) | Fixed permanent magnet generator | |
WO2007148736A1 (en) | Inductor type synchronizer | |
JP2012244874A (en) | Rotary electric machine | |
CN104455141A (en) | Series magnetic circuit mixed excitation linear electromagnetic damper | |
JP2020191692A (en) | Motor device | |
US20200304000A1 (en) | Generator with reduced magnetic resistance | |
JP3172205U (en) | High efficiency and powerful motor integrated with generator | |
CN103595150B (en) | There is the motor of magnetic flux intensifier | |
CN201928178U (en) | Permanent magnetic synchronous linear motor with separating arrangement of each phase winding coil | |
JP2004343999A (en) | Generator with rotation plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680032435.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06756450 Country of ref document: EP Kind code of ref document: A1 |