[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007023903A1 - Method for predicting carcinogenicity of test substance - Google Patents

Method for predicting carcinogenicity of test substance Download PDF

Info

Publication number
WO2007023903A1
WO2007023903A1 PCT/JP2006/316618 JP2006316618W WO2007023903A1 WO 2007023903 A1 WO2007023903 A1 WO 2007023903A1 JP 2006316618 W JP2006316618 W JP 2006316618W WO 2007023903 A1 WO2007023903 A1 WO 2007023903A1
Authority
WO
WIPO (PCT)
Prior art keywords
expression
carcinogen
administered
test substance
group
Prior art date
Application number
PCT/JP2006/316618
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Matsumoto
Yoshikuni Yakabe
Yoshihisa Sudo
Koichi Saito
Kayo Sumida
Koji Nakayama
Masaru Sekijima
Tomoyuki Shirai
Original Assignee
Chemicals Evaluation And Research Institute
Sumitomo Chemical Co., Ltd.
Mitsubishi Chemical Safety Institute Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemicals Evaluation And Research Institute, Sumitomo Chemical Co., Ltd., Mitsubishi Chemical Safety Institute Ltd. filed Critical Chemicals Evaluation And Research Institute
Publication of WO2007023903A1 publication Critical patent/WO2007023903A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a carcinogenicity prediction method for administering a test substance to an animal and predicting the carcinogenicity of the test substance in terms of the amount of mRNA expressed in the test substance administration group.
  • Patent Document 1 describes a method for predicting a toxic effect of a chemical substance by detecting a difference in gene expression between tissues and cells exposed to the chemical substance.
  • a DNA microarray (DNA chip) is composed of a substrate such as a glass slide and hundreds of thousands of kinds of DNA immobilized on the substrate. Obtain information on the expression level of mRNA by binding cDNA or cDNA prepared from mRNA using the complementarity of nucleic acid molecules to DNA immobilized on the DNA microarray substrate. Is possible.
  • DNA microarrays equipped with known genes have already been commercialized and generally used. Is in an environment where However, commercially available arrays are not designed or built for the purpose of chemical toxicity assessment. The use of DNA microarrays at normal toxicology scales requires significant costs to build the entire system, including data analysis. For these reasons, DNA microarrays are not widely used in the toxicity test field.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-304888 (Claims)
  • the object of the present invention is to conduct long-term animal experiments by detecting differential expression and analyzing data for genes that are likely to be involved in the carcinogenic mechanism in the early stages of cancer development. It is intended to provide a method for predicting the carcinogenicity of a test substance without any problems.
  • the present inventors paid attention to mRNA whose expression level fluctuates when a carcinogen is administered to animals, and tried to predict the carcinogenicity of the test substance. Initially, we thought that these mRNA increase and decrease patterns were similar among carcinogens. However, in reality it behaved differently and it was hard to share one similarity.
  • the present inventors grouped carcinogens with similar mRNA increase / decrease patterns (that is, gene expression patterns) to obtain an expression pattern for each group in advance, and then added a test substance. An attempt was made to compare the expression pattern when administered with the expression pattern of each group of carcinogens and evaluate the degree of agreement. Then, it was found that the carcinogenicity of the test substance can be predicted with high accuracy even in the initial stage of animal experiments, and the present invention has been completed. [0012] That is, the present invention for solving the above problems is described below.
  • a plurality of carcinogens are administered to each carcinogen-administered group, and after a predetermined period of time, each carcinogen-administered group force mRNA is collected, and the mRNA expression level is measured to determine the mRNA expression level.
  • the expression pattern of the expression variation gene selected in the first step is compared among the carcinogen-administered groups, and the expression pattern is classified into multiple groups based on the similarity of the expression pattern, and the expression variation is classified into multiple groups.
  • test substance is administered to a test substance administration group, and mR from the test substance administration group after a lapse of a predetermined period
  • a plurality of carcinogens are administered to each carcinogen-administered group, and after a predetermined period, each carcinogen-administered group force mRNA is collected, and the mRNA expression level is measured to determine the mRNA expression level.
  • the expression pattern of the expression variation gene selected in the first step is compared among the carcinogen-administered groups, and the expression pattern is classified into multiple groups based on the similarity of the expression pattern, and the expression variation is classified into multiple groups.
  • test substance is administered to a test substance administration group, and mR from the test substance administration group after a lapse of a predetermined period.
  • a method for predicting the carcinogenicity of a test substance having the following three steps: Carcinogen administration group strength Fluorescently labeled cDNA or cRNA prepared using the collected mRNA is hybridized to a DNA microarray. And the fluorescence pattern obtained by hybridizing fluorescence-labeled cDNA or cRNA prepared using the collected mRNA to a DNA microarray.
  • Each of the carcinogen-administered groups was compared by comparing the fluorescent patterns obtained by hybridizing fluorescence-labeled cDNA or cRNA prepared using the collected mRNA to a DNA microarray. Expression between carcinogen-administered groups, comparing expression patterns of variable genes and classifying the expression patterns of carcinogen-administered groups into multiple groups,
  • Fluorescence pattern obtained by hybridizing fluorescence-labeled cDNA or cRNA prepared from mRNA collected from carcinogen-administered group to DNA microarray, and mRNA force collected from test substance-administered group Prepared fluorescence Comparison of the expression variation gene of the carcinogen-administered group and the expression-variable gene of the test substance-administered group by comparison with the fluorescence pattern obtained by hybridization of labeled cDNA or cRNA to the DNA microarray
  • a method for predicting the carcinogenicity of a test substance comprising the step of comparing the expression patterns of and calculating the degree of coincidence thereof.
  • Carcinogen power to be administered to carcinogen administered groups Clofibrate, di (2-ethylhexyl) phthalate, carbon tetrachloride, 2,4-diaminotoluene, quinoline, phenobarbiter , Jetylnitrosamine, 2-nitropropane, N-nitrosomorpholine, aldrin, di (2-ethylhexyl) adipate, ethur estradiol, hexacyclobenzene, a- hexachlorocyclohexane, trichloroethylene, Butylated hydroxy vinylol, limonene, safrole, 1,4-dichlorobenzene, 1,4-dioxane, furan, methyl carbamate, thioacetamide, N-nitrosodimethylamine, N-nitrosopiperidine, 2-amino- 3,8-dimethyl imimidazo [4,5-f
  • Non-carcinogenic substance power administered to non-carcinogen-administered group 2,6-Diaminotoluene, 8-Hydroxyquinoline, D-mannthol, L-ascorbic acid, 2-clo oral ethanol, 2- (Chloromethyl) pyridine hydrochloride, cQ-menthol, 4-nitro-0-phenol-diamine, benzoin, odoform, lithocholic acid, lindane, 2-chloro-p-phenol-diamine amine sulfate, p-phenylene Diamine dihydrochloride, 2,5-toluenediamine sulfate, aspirin, 4- (chloroacetyl) acetaldehyde, phthalamide, force prolatatam, 1-chloro-2-2-propanol, 3-chloro-p-toluidine
  • the method for predicting carcinogenicity of a test substance according to any one of [2] to [7], comprising at
  • test substance according to any one of [2] to [7], wherein the non-carcinogen administered to the non-carcinogen-administered group contains at least 10 non-carcinogens according to [8].
  • Carcinogenicity prediction method
  • [0023] Carcinogenicity prediction of the test substance according to any one of [1] to [10], wherein the expression pattern of the expression variation gene in the carcinogen-administered group is classified by cluster analysis or a decision tree. Method.
  • the expression pattern of the expression variable gene is classified into three or more groups [1] to [1]
  • each carcinogen-administered group force mRNA is collected.
  • [1] to [12] A method for predicting the carcinogenicity of a test substance.
  • test substance-administered group force is also sampled after 1 to 90 days after the test substance is administered to the test substance-administered group, [1] to [14] A method for predicting the carcinogenicity of a test substance.
  • test substance administration group force mRNA is collected after 14 to 28 days after administration of the test substance to the test substance administration group [1] to [14] A method for predicting the carcinogenicity of a test substance.
  • the carcinogenicity of the test substance is predicted by comparing the mRNA expression pattern of the test substance administration group with the mRNA expression pattern of each group of the carcinogen administration group. can do.
  • the carcinogenicity of the test substance is predicted from the expression level of mRNA, it is not necessary to conduct a long-term animal experiment in which the compound is continuously administered until cancer appears in the test animal.
  • Carcinogenicity of chemical substances can be easily predicted by animal experiments in a short period of about 1 to 90 days.
  • FIG. 1 is a part of a saddle diagram in which chemical substances are classified by cluster analysis in Example 1.
  • FIG. 2 is another part of the saddle diagram shown in FIG.
  • FIG. 3 is a part of a saddle diagram in which chemical substances are classified by cluster analysis in Example 1.
  • FIG. 5 is a part of a saddle diagram in which chemical substances are classified by cluster analysis in Example 1.
  • FIG. 6 is another part of the saddle diagram shown in FIG.
  • FIG. 7 is a saddle diagram in which chemical substances are classified by cluster analysis in Example 1.
  • FIG. 8 is a saddle diagram in which chemical substances are classified by cluster analysis in Example 1.
  • FIG. 9 is a saddle diagram in which chemical substances are classified by cluster analysis in Example 1.
  • FIG. 10 is a flowchart showing the carcinogenicity prediction method constructed in Example 1.
  • FIG. 11 is a saddle diagram in which chemical substances are classified by a decision tree in Example 2.
  • the method for predicting carcinogenicity of a test substance of the present invention is performed according to the following procedure.
  • tissue of the test animal is collected for each group, and the expression level of each mRNA is measured.
  • the number of carcinogens administered to the carcinogen administered group is 4 or more, it is preferable to use 6 or more, and more preferably 9 or more to improve the accuracy of prediction.
  • There is no upper limit on the number of carcinogens because the greater the number of carcinogens used, the higher the accuracy of predicting the carcinogenicity of the test substance, but the carcinogenicity of the test substance is sufficiently accurate if about 30 substances are administered. Can be predicted.
  • a known chemical substance that has been confirmed to be carcinogenic can be administered.
  • the medium for dissolving the carcinogen can be used without particular limitation as long as it is a non-carcinogenic medium in which the carcinogen is dissolved.
  • a non-carcinogenic medium in which the carcinogen is dissolved for example, corn oil, purified water, and the like can be used.
  • the concentration of the carcinogen solution is preferably set to a concentration that causes an appropriate increase or decrease in the expression level of mRNA that varies characteristically by stimulation of the carcinogen.
  • the carcinogen solution is administered to each group continuously by repeating it for a predetermined period of about 1 to 90 days, 1 to several times a day (preferably once a day).
  • the administration method of the carcinogen solution to the carcinogen administration group is not particularly limited, and general-purpose methods such as oral administration, intraperitoneal administration, and intravenous administration can be used.
  • Rats, mice, dogs, monkeys, guinea pigs, rabbits, etc. can be used as test animals.
  • the period from the administration of the carcinogenic substance to the collection of the test animal tissues in each group is about 1 to 90 days. It is preferable to set it to about 13 to 14 days in the medium term. Liver, intestine, lung, kidney, stomach, spleen, brain, blood and the like can be used as test animal tissues to be collected in order to measure the expression level of mRNA.
  • the expression level of each mRNA is measured.
  • Methods for measuring the expression level of mRNA include DNA microarrays and microplates in which cDNA or DNA having a sequence complementary to mRNA is immobilized.
  • Known methods such as a method of binding a fluorescently labeled cDNA or cRNA prepared by mRNA to a yeast, Northern blotting, quantitative RT-PCR, RNase protection assay and the like can be used.
  • the method using DNA microarray can simultaneously acquire the expression level data for many mRNAs in each carcinogen-administered group, and it is easy to compare the expression patterns between groups. It is.
  • a commercially available microarray selected according to the type of test animal can also be used.
  • Gene Chip trade name, manufactured by Affymetritas
  • Rat Oligo Microarray Kit trade name, manufactured by Agilent
  • a method for grouping gene expression patterns from mRNA expression levels will be described below.
  • a gene expression pattern is a collection of data composed of gene types and their expression levels.
  • a gene whose expression level is significantly increased or decreased (varied) by administration of the carcinogen (hereinafter referred to as an expression variable gene) is selected.
  • the determination of whether the gene expression level changed significantly in each group was based on the relative expression of the non-carcinogenic substance administered group dissolved in the medium used to prepare the carcinogen solution. Perform by comparison.
  • Non-carcinogenic substances include NTP (National Toxicology Program; EPA Among the compounds officially evaluated as non-carcinogens by IAR (International Agency for Research on Cancer), etc., at least 1 or more, preferably 5 or more, more preferably 10 or more compounds are used.
  • Non-carcinogenic substances include, for example, 2,6-diaminotoluene, 8-hydroxyquinoline, D-mannthol, L-ascorbic acid, 2-chloromethyl ethanol, 2- (chloromethyl) pyridine hydrochloride, cQ-menthol, 4 -Nitro-0-phen-diamine, benzoin, odoform, lithocholic acid, lindane, 2-chloro-P-phen-diamine amine sulfate, P-phenol-diamine dihydrochloride, 2,5-toluene diamine sulfate, Aspirin, 4- (chloroacetyl) acetolide, phthalamide, force prolatatam, 1-chloro-2-propanol, 3-chloro-p-toluidine, glutaraldehyde, 4-nitroanth
  • the expression variable gene used for classification of the expression pattern is more preferably at least about 10 to 150, and particularly preferably about 30 to 120 U.
  • SEQ ID NOs: 1 to 2844 show base sequences showing a part of the base sequences of genes whose expression levels tend to vary in the carcinogen-administered group.
  • the expression variable gene is selected so as to contain 5 or more, preferably 7 or more, more preferably 10 or more of these genes, the accuracy of predicting the carcinogenicity of the test substance can be increased.
  • the expression pattern is compared between the carcinogen-administered groups, and the expression pattern is classified by a statistical method according to the similarity.
  • Examples of statistical methods for classifying expression patterns include analysis methods such as cluster analysis and decision trees.
  • expression patterns can be classified by the following method, for example.
  • cluster analysis is performed on the expression pattern of the selected expression variable gene. After that, change the selection condition of the expression variation gene, select a different expression variation gene, and perform the cluster analysis even if the combination of other expression variation genes. Select carcinogen groups that are classified into the same cluster even if the combination of expression variation genes is changed. It can be presumed that the carcinogen group that stably forms the same cluster even if the combination of expression variable genes is changed has the same carcinogenic mechanism that does not occur in the cluster formed by chance by the selected expression variable gene. In addition, a group is formed! /, !, and the remaining carcinogens are newly selected. Expression variation genes are newly selected, and cluster analysis and grouping are similarly performed for the remaining carcinogens. Do the trap. Stable operation of this operation Repeat until the group of carcinogens that forms the star is no longer detected, and use the expression pattern of the expression variable gene that is common to the group of carcinogens as the expression pattern of the group.
  • the expression pattern of the carcinogen is classified, and the expression pattern of the expression variable gene is obtained for each classified group.
  • the test substance is administered to the test substance administration group under the same conditions as the carcinogen, and the expression level of the expression variable gene in the test substance administration group is measured after a predetermined period of time. To do.
  • the expression pattern of the expression variable gene obtained by administering the test substance is compared with the expression pattern of each expression variable gene obtained by administering the carcinogen, and the expression of each group is compared. Evaluate the degree of coincidence with the pattern. If the expression pattern of the test substance is high / matched with the expression pattern of the group of carcinogens of 1%, the test substance is judged to have carcinogenicity and the degree of match with any expression pattern is low. In some cases, it is determined that there is no carcinogenicity.
  • a method for evaluating the degree of coincidence of expression patterns for example, a method of evaluating from the hierarchy of the morphological map obtained by performing cluster analysis or decision tree analysis together with carcinogens, expression of expression variable genes For example, a method for calculating a correlation between quantities can be used.
  • cDNA having a sequence complementary to mRNA is synthesized by reverse transcription reaction from mRNA extracted from the tissue strength of a test animal administered with a carcinogen.
  • reverse transcription PCR method RT—PCR
  • PCR reverse transcription PCR method
  • cDNA synthesized using a DNA microarray preparation device was coated on a slide glass that had been surface-treated with polycations such as poly-L-lysine and polyalkylamine in advance, and the DNA microarray was coated. Is made.
  • Tissue strength of carcinogen-administered group and tissue strength of medium control group Extracted mRNA and fluorescently labeled cDNA or cRNA obtained with different fluorescent substances were obtained. Hybridize them to a DNA microarray.
  • Examples of fluorescent substances used for mRNA labeling include Cy3 (red) and Cy5 (green).
  • a labeling method there are known methods such as a method using a primer having a fluorescent material introduced at the 5 ′ end, a method of incorporating a deoxynucleotide derivative of the fluorescent material with a reverse transcriptase, and a method using a post-labeling reagent. Can be adopted.
  • a fluorescently labeled cDNA or cRNA hybridized DNA microarray is read with a scanner, and the fluorescence intensity of each spot is measured.
  • the fluorescence pattern of the DNA microarray was obtained in the same manner as in the carcinogen-administered group, and the fluorescence wavelength and fluorescence intensity power of each spot obtained were also expressed. To do.
  • the comparison of the fluorescence wavelength and fluorescence intensity of each spot read by the scanner shows that the mRNA of each group The expression level can be easily compared.
  • the fluorescence pattern of the selected expression variation gene is classified, and each group is compared with the fluorescence pattern of the test substance administration group.
  • the carcinogenicity of the test substance is predicted by evaluating the degree of coincidence.
  • the DNA mounted on the DNA microarray includes, in addition to DNA obtained by amplifying the whole or part of the cDNA sequence synthesized by reverse transcription from mRNA extracted from the tissue of the test animal by PCR or the like, DNA obtained by chemically synthesizing part of the cDNA sequence can also be used.
  • the sequence length of the DNA mounted on the DNA microarray is about 20 to 500 bp. 1S is preferably 50 to 400 bp, more preferably 60 to 300 bp.
  • Anchored oligo (dT) primer was tagged with information about the origin of the library and cDNA using a 6-base tag sequence.
  • a full-length cDNA was selected using a cap trapper method, followed by second strand synthesis and restriction enzyme cleavage, followed by orientation and cloning to create a full-length cDNA library. This full-length cDNA library was subtracted by using a cDNA library derived from a compound-untreated rat organ as a driver to increase its specificity.
  • the homology between clones was examined from the 3'-end nucleotide sequence of a clone in a full-length cDNA library derived from a carcinogen-treated adult animal.
  • the total number of genes derived from carcinogen-treated adult animals was 15,762, of which 4,139 were derived from the liver.
  • the number of non-overlapping base sequences based on UniGene ID was 6,954.
  • 8862 clones were selected from the following criteria as gene pools for selection of genes carrying clones derived from untreated rat organs and clones derived from carcinogen-treated rat organs.
  • genes included in a) were 2,890 clones, b) included 5,759 clones, c) included 44 genes, and d) included 185 clones.
  • Partial sequences that are non-complementary to each other were designed from the base sequences of the selected genes, and the gene fragments were amplified by the polymerase chain reaction (PCR) method using the 8,862 clones selected in (2) as templates.
  • the length of the amplified gene was designed to be about 300 bp, excluding some genes.
  • Primers for amplifying gene fragments to be loaded on cDNA microarrays by PCR were designed using the Takara Bio Inc. design algorithm.
  • PCR reaction was performed using 35 pmol of each of the forward primer and reverse primer, 2.5 units of Ex-Taq polymerase and a buffer attached to the enzyme, and a reaction volume of 100 L.
  • the reaction was carried out for 37 cycles of 95 ° C for 45 seconds, 95 ° C for 45 seconds, 54 ° C for 30 seconds, 72 ° C for 60 seconds, and further for 72 ° C for 3 minutes. After completion of the reaction, a PCR product was confirmed by subjecting a part of the reaction solution to agarose electrophoresis.
  • Tables 1 to 4 Each chemical substance shown in Tables 1 to 4 was dissolved in a medium to prepare a solution.
  • Tables 1 to 4 show the chemical substances, their substance numbers, carcinogenicity, used media, and doses administered to test animals.
  • RNAlater registered trademark
  • RNA Stabilization Reagent a reagent for stabilizing and storing total RNA. At 24 hours at room temperature And then stored at -20 ° C while immersed in RNAlater RNA Stabilization Reagent
  • RNA solution was eluted by centrifugation at 3,000-5,000 X g for 2 minutes. In order to improve the concentration and recovery rate, the eluted RNA solution was again added to the column and allowed to stand for 5 minutes, and then centrifuged at 3,000-5,000 X g for 2 minutes to obtain the final purified RNA solution.
  • the 260 nm / 280 nm ratio indicating the purity of the purified total RNA was measured using an optical measuring device.
  • the purified total RNA was examined for its electrophoretic pattern using Agilent BioAnalyser2100.
  • Agilent BioAnalyser2100 For the electrophoresis, an RNA6000nano chip (Agilent) was used, and the operation was performed according to the method used by the manufacturer.
  • the concentration of purified total RNA was measured by a method using an optical measuring device.
  • fluorescently labeled cDNA was prepared using CyScript reverse transcriptase.
  • Fluorescent labeling was performed using total RNA or mRNA (self-purified, manufactured by Clontech or Kitayama Labes Co., Ltd.) under the following reaction conditions. Final reaction volume was 50 L
  • the final concentration of the reaction solution is 10-20 ⁇ g of total RNA, Anchored Oligo (dT) (manufactured by Amersham Bioscience) 0.075 ⁇ go dCTP Nucleotide Mix 1 L, 1 X CyScript buffer (manufactured by Amersham Bioscience) 10 mM DTT ⁇ Cy3- dCTP or Cy5-dCTP (Amersham Bioscience) 1 nmol.
  • RNA and Anchored Oligo were allowed to stand at 70 ° C for 5 minutes, and then allowed to stand on ice for 1 minute. After adding other components, CyScript reverse transcriptase (manufactured by Amersham Bioscience) was added with 100 units and allowed to stand at 42 ° C for 90 minutes in the dark. 12.5 ⁇ L of 1 N NaOH was added, and the mixture was left to stand at 65 ° C for 10 minutes to digest the RNA. After 1 N HC1 15 L was added and neutralized, the fluorescent label was purified using the MinElute PCR Purification Kit manufactured by QIAGEN. In order to remove unreacted fluorescently labeled nucleic acid, washing with a PE nozzle was performed twice.
  • the administration group (high dose, low dose) was labeled with Cy3, and the control group was labeled with Cy5.
  • Cy5-labeled cDNA which was also produced in the control group of 4 animals, was mixed in equal amounts at the end of purification, and the mixed-solution power was also dispensed to prepare the hybridization solution.
  • the cDNA microarray was then removed from the hybrid cassette and immersed in a 2X SSC / 0.1% SDS solution to remove the cover glass. It was immersed in a 2 X SSC / 0.1% SDS solution at room temperature for 20 minutes in a light-shielded manner, and further immersed in a 0.2 X SSC / 0.1% SDS solution for 20 minutes in a light-shielded manner. After immersion in a 0.2 X SSC / 0.1% SDS solution at 42 ° C twice for 20 minutes, the plate was washed with 0.2 X SSC / 0.1% SDS solution and 0.05 X SSC solution. After drying using a centrifuge, detection was performed using an Agilent Microarray Scanner. PMT value indicating detection sensitivity is 100% It was. Axon Instruments' GenePix is used to quantify the fluorescence value of each spot from the scanned image.
  • BSA blocking of the cDNA microarray is performed at 42 ° C for 45 minutes in a 1% BSA blocking solution (1% BSA, 4 X SSC, 2% SDS) filtered with 0.1 or 0.22 ⁇ m of finolet. I went there. After washing twice in water and drying using a centrifuge, it was used for high lysis.
  • 1% BSA blocking solution 1% BSA, 4 X SSC, 2% SDS
  • Tables 5 to 45 show the gene numbers (UniGene) of the genes having base sequences complementary to the base sequences shown in SEQ ID NOs: 1 to 2844 and the clone IDs assigned to the respective base sequences. .
  • a gene set having a significant difference in expression level between the carcinogen group and the non-carcinogen group was selected based on Welch's t-value.
  • the expression pattern of the selected gene set was classified using the cluster analysis function of Gene Maths (Applied Maths, Sint-Martens- Latem, Belgium) to determine the shape force cluster of the saddle diagram. Change the Welch t-value selection conditions, confirm the cluster structure of the substance with several patterns of gene sets V, group 1 of two carcinogens that stably form the same cluster even if the gene set is changed, 2 was selected.
  • Table 43 shows the gene set selection conditions (Welch t-value) and the clone ID of the selected gene.
  • Figures 1 to 6 show saddle diagrams that were clustered using the gene set selected for each Welch t value.
  • Figures 1, 3, and 5 are part of the saddle plots obtained by cluster analysis using gene sets selected under conditions of
  • Figures 2, 4, and 6 are the remainder of the saddle view shown in Figures 1, 3, and 5, respectively.
  • represents a carcinogen and ⁇ represents a non-carcinogen.
  • the substance groups were selected in the same way using the same expression patterns that exist in the remaining carcinogens. That is, the genes that varied characteristically between the remaining carcinogen-administered group and all the non-carcinogen-administered groups were selected based on the Welch t value, and then cluster analysis was performed using the gene set.
  • We changed the Welch t-value selection conditions confirmed the cluster structure of the substances using several gene sets, and selected carcinogen group 3 that always forms clusters stably.
  • Table 44 shows the gene set selection conditions (Welch t-value) and the clone ID of the selected gene. In addition, Figs.
  • FIGS. 7-9 show the saddle diagrams that were cluster-analyzed using the gene set selected for each Welch t value.
  • Figures 7, 8 and 9 show the t values
  • represents a carcinogen and ⁇ represents a non-carcinogen.
  • the chemical substances classified into carcinogen groups 1 to 3 are as follows.
  • Clofibrate ⁇ -hexachlorocyclohexane, trichlorethylene, ⁇ ⁇ ⁇ -nitrosodimethylmethylamine, 2-amino-3,8-dimethylirimidazo [4,5-f] quinoxaline, 2-amino-1-methyl-6-phen- Rimidazo [4,5-b] _pyridine, Benz (a) Anthracene, 7, 12-Dimethylbenzanthracene, 3-Methylcholanthrene, 4-Nitroquinoline-1-oxide, N-Ethyl-N-nitrosourea Tannic acid, urethane, sodium phosphate salt, D, L-ethionine
  • the target carcinogen group and non-carcinogen group were determined.
  • the carcinogen group was selected from carcinogen groups 1-3.
  • the non-carcinogenic substance group used all non-carcinogenic substances that can be analyzed.
  • Welch t-values are gene sets that show characteristic variation between the selected carcinogen group and non-carcinogen group, and the absolute value of the average LogRatio of each carcinogen group is the non-carcinogen group. It was selected under the condition that it was larger than the absolute value of the average value of LogRatio of the group.
  • SVM Support Vector Machine
  • free software SVMlight based on URL http://svmlight.joachims.org/
  • Carcinogenicity prediction formula for carcinogen group 1 (0 was created according to the procedures in (6) a). Table 45 shows the results of prediction of the training set and test set using the prediction formula (0) for the constructed group 1.
  • Tables 46 and 47 show the results of predicting each training set and test set using each prediction formula.
  • Example 2 (carcinogenicity prediction by decision tree)
  • Node indicates a branch point
  • Terminal node indicates a terminal branch point
  • ID is the clone ID number
  • W is the number of substances classified at the branch point
  • TS is the substance number classified at the terminal branch point.
  • Substance numbers with underline indicate carcinogens, underlined! Indicate non-carcinogens.
  • the saddle diagram constructed with seven branch points could predict the carcinogenicity of 52 substances, excluding 7 substances that could not be distinguished.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Hospice & Palliative Care (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

A method for predicting carcinogenicity of a test substance comprising a first step in which a plurality of carcinogens is administered to each group administered with each carcinogen and mRNA is collected from each group administered with each carcinogen after a lapse of a predetermined period of time and expression altered genes whose mRNA expression level is increased or decreased are selected, a second step in which the expression patterns of the expression altered genes are compared among each group administered with each carcinogen and the expression patterns are classified into a plurality of groups according to the similarity of the expression patterns and the expression patterns of the expression altered genes are prepared for each group and a third step in which a test substance is administered to a group administered with a test substance and mRNA is collected from the group administered with a test substance after a lapse of a predetermined period of time and expression patterns are obtained for the expression altered genes and compared with the expression patterns of the expression altered genes prepared in advance for each group of the groups administered with carcinogens and a concordance degree thereof is calculated and the carcinogenicity of the test substance is predicted.

Description

明 細 書  Specification
被検物質の発がん性予測方法  Method for predicting carcinogenicity of test substance
技術分野  Technical field
[0001] 本発明は、動物に被検物質を投与し、被検物質投与群に発現する mRNAの発現 量力 被検物質の発がん性を予測する発がん性予測方法に関する。  The present invention relates to a carcinogenicity prediction method for administering a test substance to an animal and predicting the carcinogenicity of the test substance in terms of the amount of mRNA expressed in the test substance administration group.
背景技術  Background art
[0002] 化学物質の有害性 (ハザード)評価にお!、ては、発がん性など長期毒性を評価す るには多額の費用と長期の試験期間を要する動物実験の実施が必要とされる。また 、動物実験の結果をヒトへ外挿する際は、種差や作用機序などを考慮しなければな らな ヽなど様々な課題がある。  [0002] In order to evaluate the toxicity of chemical substances! Long-term toxicity such as carcinogenicity requires animal experiments that require a large amount of cost and a long test period. In addition, when extrapolating the results of animal experiments to humans, there are various problems such as drought that must take into account species differences and mechanisms of action.
[0003] 一方、近年のゲノム情報に関する技術の著しい発展により、遺伝子レベルで化学 物質の有害性評価が行われるようになつている。例えば、特許文献 1には、化学物質 を曝露した組織や細胞の遺伝子の発現の差異を検出することにより化学物質の毒性 作用を予測する方法が記載されて 、る。  [0003] On the other hand, due to the remarkable development of technologies related to genomic information in recent years, the hazard assessment of chemical substances has been carried out at the gene level. For example, Patent Document 1 describes a method for predicting a toxic effect of a chemical substance by detecting a difference in gene expression between tissues and cells exposed to the chemical substance.
[0004] 化学物質の発がん性の評価においても発がんメカニズムに関与している遺伝子の 存在が予想されることから、これらの遺伝子の発現の差異を検出することにより遺伝 子レベルでの評価が可能であると考えられる。し力しながら、現段階では、化学物質 が引き起こす遺伝子レベルでの発がんメカニズムはほとんど解明されておらず、遺伝 子の発現の差異力 化学物質の発がん性予測を行うことは非常に困難である。  [0004] Since the presence of genes involved in carcinogenic mechanisms is also expected in the evaluation of carcinogenicity of chemical substances, it is possible to evaluate at the gene level by detecting differences in the expression of these genes. It is believed that there is. However, at the present stage, the carcinogenic mechanisms at the gene level caused by chemical substances are hardly elucidated, and it is very difficult to predict the carcinogenicity of chemical substances.
[0005] 最近では、遺伝子の発現プロファイルデータを網羅的に収集し解析する手法として DNAマイクロアレイを使用する手法が開発され、様々な分野で使用されるようになつ ている。 DNAマイクロアレイ(DNAチップ)は、スライドガラス等の基板と、その基板 上に固定された数百力も数万種類の微量の DNAとから構成される。 DNAマイクロア レイの基板上に固定された DNAに、核酸分子同士の相補性を利用して mRNAから 作成した cDNA或 、は cRN Aを結合させることにより、 mRNAの発現量に関する情 報を得ることが可能である。  [0005] Recently, a method using a DNA microarray has been developed as a method for comprehensively collecting and analyzing gene expression profile data, and has been used in various fields. A DNA microarray (DNA chip) is composed of a substrate such as a glass slide and hundreds of thousands of kinds of DNA immobilized on the substrate. Obtain information on the expression level of mRNA by binding cDNA or cDNA prepared from mRNA using the complementarity of nucleic acid molecules to DNA immobilized on the DNA microarray substrate. Is possible.
[0006] 既知の遺伝子を搭載した DNAマイクロアレイは、既に商品化され、一般に使用で きる環境にある。しかし、市販のアレイは化学物質の毒性評価を目的に設計'製作さ れたものではない。通常の毒性試験規模で DNAマイクロアレイを使用するには、デ ータの解析を含めたシステム全体を構築する多大なコストが必要とされる。これらの 理由により、 DNAマイクロアレイは毒性試験分野で広く活用されていないのが現状 である。 [0006] DNA microarrays equipped with known genes have already been commercialized and generally used. Is in an environment where However, commercially available arrays are not designed or built for the purpose of chemical toxicity assessment. The use of DNA microarrays at normal toxicology scales requires significant costs to build the entire system, including data analysis. For these reasons, DNA microarrays are not widely used in the toxicity test field.
特許文献 1:特開 2003— 304888号公報 (特許請求の範囲)  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-304888 (Claims)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 一般に、化学物質の発がん性を評価する動物実験では、試験動物に癌が出現す るまで、あるいは試験動物が死亡するまでィ匕学物質の連続投与が行われる。癌は長 い潜伏期間を経て出現するため、長期にわたる動物実験が必要とされる。 [0007] In general, in an animal experiment for evaluating the carcinogenicity of a chemical substance, the chemical substance is continuously administered until cancer appears in the test animal or the test animal dies. Since cancer appears after a long incubation period, long-term animal experiments are required.
[0008] し力しながら、癌が出現する前段階においても、発がん物質により刺激されて遺伝 子レベルでは何らかの変化が生じていることが予想される。 However, even before the appearance of cancer, it is expected that some change occurs at the gene level by being stimulated by a carcinogen.
[0009] 本発明の目的は、がん発生の初期段階に発がんメカニズムに関与している可能性 が高い遺伝子群について発現の差異を検出してデータ解析することにより、長期に わたる動物実験を行うことなく被検物質の発がん性を予測する方法を提供することに ある。 [0009] The object of the present invention is to conduct long-term animal experiments by detecting differential expression and analyzing data for genes that are likely to be involved in the carcinogenic mechanism in the early stages of cancer development. It is intended to provide a method for predicting the carcinogenicity of a test substance without any problems.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者らは動物に発がん物質を投与することにより発現量が変動する mRNAに 着目し、その発現量の変化力 被検物質の発がん性を予測することを試みた。当初 は、これら mRNAの増減パターンが発がん物質間で類似性を持つものと考えて 、た 。しかし、実際には異なる挙動を示し、 1つの類似性を共有することはな力つた。  [0010] The present inventors paid attention to mRNA whose expression level fluctuates when a carcinogen is administered to animals, and tried to predict the carcinogenicity of the test substance. Initially, we thought that these mRNA increase and decrease patterns were similar among carcinogens. However, in reality it behaved differently and it was hard to share one similarity.
[0011] そこで本発明者らは、 mRNAの増減パターン (即ち、遺伝子の発現パターン)が類 似する発がん物質をグループィ匕してグループごとの発現パターンを予め得ておき、 次いで被検物質を投与したときの発現パターンを発がん物質のグループごとの発現 パターンと比較してその一致度を評価することを試みた。すると、動物実験の初期段 階においても被検物質の発がん性が高い精度で予測できることを見出し、本発明を 完成するに到った。 [0012] 即ち、上記課題を解決する本発明は以下に記載するものである。 [0011] Therefore, the present inventors grouped carcinogens with similar mRNA increase / decrease patterns (that is, gene expression patterns) to obtain an expression pattern for each group in advance, and then added a test substance. An attempt was made to compare the expression pattern when administered with the expression pattern of each group of carcinogens and evaluate the degree of agreement. Then, it was found that the carcinogenicity of the test substance can be predicted with high accuracy even in the initial stage of animal experiments, and the present invention has been completed. [0012] That is, the present invention for solving the above problems is described below.
[0013] 〔1〕 複数の発がん物質をそれぞれ各発がん物質投与群に投与し、所定期間経過 後に各発がん物質投与群力 mRNAを採取し、その mRNAの発現量を測定して m RNAの発現量が有意に増加又は減少した発現変動遺伝子を選定する第一の工程 と、 [0013] [1] A plurality of carcinogens are administered to each carcinogen-administered group, and after a predetermined period of time, each carcinogen-administered group force mRNA is collected, and the mRNA expression level is measured to determine the mRNA expression level. A first step of selecting an expression variable gene with significantly increased or decreased; and
第一の工程で選定した発現変動遺伝子の発現パターンを各発がん物質投与群の間 で比較して、発現パターンの類似性により発現パターンを複数のグループに分類し、 複数のグループに分類した発現変動遺伝子の発現パターンを用意する第二の工程 と、  The expression pattern of the expression variation gene selected in the first step is compared among the carcinogen-administered groups, and the expression pattern is classified into multiple groups based on the similarity of the expression pattern, and the expression variation is classified into multiple groups. A second step of preparing a gene expression pattern;
被検物質を被検物質投与群に投与し、所定期間経過後に被検物質投与群から mR A test substance is administered to a test substance administration group, and mR from the test substance administration group after a lapse of a predetermined period
NAを採取して発現変動遺伝子について発現パターンを取得し、被検物質投与群の 発現変動遺伝子の発現パターンを予め第二の工程で用意しておいた発がん物質投 与群のグループ毎の発現変動遺伝子の発現パターンと比較してその一致度を算出 する第三の工程と Change in expression of carcinogen-administered group in which NA was collected and expression pattern of expression-variable gene was obtained, and expression pattern of expression-variable gene of test substance administration group was prepared in the second step in advance A third step of calculating the degree of coincidence compared to the gene expression pattern;
を有する被検物質の発がん性予測方法。  Method for predicting carcinogenicity of test substance having
[0014] 〔2〕 複数の発がん物質をそれぞれ各発がん物質投与群に投与し、所定期間経過 後に各発がん物質投与群力 mRNAを採取し、その mRNAの発現量を測定して m RNAの発現量が有意に増加又は減少した発現変動遺伝子を選定する第一の工程 と、 [0014] [2] A plurality of carcinogens are administered to each carcinogen-administered group, and after a predetermined period, each carcinogen-administered group force mRNA is collected, and the mRNA expression level is measured to determine the mRNA expression level. A first step of selecting an expression variable gene with significantly increased or decreased; and
第一の工程で選定した発現変動遺伝子の発現パターンを各発がん物質投与群の間 で比較して、発現パターンの類似性により発現パターンを複数のグループに分類し、 複数のグループに分類した発現変動遺伝子の発現パターンを用意する第二の工程 と、  The expression pattern of the expression variation gene selected in the first step is compared among the carcinogen-administered groups, and the expression pattern is classified into multiple groups based on the similarity of the expression pattern, and the expression variation is classified into multiple groups. A second step of preparing a gene expression pattern;
被検物質を被検物質投与群に投与し、所定期間経過後に被検物質投与群から mR A test substance is administered to a test substance administration group, and mR from the test substance administration group after a lapse of a predetermined period.
NAを採取して発現変動遺伝子について発現パターンを取得し、被検物質投与群の 発現変動遺伝子の発現パターンを予め第二の工程で用意しておいた発がん物質投 与群のグループ毎の発現変動遺伝子の発現パターンと比較してその一致度を算出 する第三の工程と、 を有する被検物質の発がん性予測方法であって、次の 3つの工程: 発がん物質投与群力 採取した mRNAを用いて調製した蛍光標識化 cDNA又は c RNAを DNAマイクロアレイにハイブリダィゼーシヨンして得られる蛍光パターンと、非 発がん物質を投与した非発がん物質投与群力 採取した mRNAを用いて調製した 蛍光標識化 cDNA又は cRNAを DNAマイクロアレイにハイブリダィゼーシヨンして得 られる蛍光パターンとを比較し、蛍光パターンの各スポットの蛍光強度から有意差検 定により発現変動遺伝子を選定する工程、 Change in expression of carcinogen-administered group in which NA was collected and expression pattern of expression-variable gene was obtained, and expression pattern of expression-variable gene of test substance administration group was prepared in the second step in advance A third step of calculating the degree of coincidence in comparison with the gene expression pattern; A method for predicting the carcinogenicity of a test substance having the following three steps: Carcinogen administration group strength Fluorescently labeled cDNA or cRNA prepared using the collected mRNA is hybridized to a DNA microarray. And the fluorescence pattern obtained by hybridizing fluorescence-labeled cDNA or cRNA prepared using the collected mRNA to a DNA microarray. A step of comparing and selecting an expression variation gene by detecting a significant difference from the fluorescence intensity of each spot of the fluorescence pattern,
複数の発がん物質投与群力 採取した mRNAを用いて調製した蛍光標識化 cDNA 又は cRNAを DNAマイクロアレイにハイブリダィゼーシヨンして得られる蛍光パター ンを各発がん物質投与群間で比較することにより各発がん物質投与群の間の発現 変動遺伝子の発現パターンを比較し、発がん物質投与群の発現パターンを複数の グループに分類する工程、  Multiple carcinogen-administered group strength Each of the carcinogen-administered groups was compared by comparing the fluorescent patterns obtained by hybridizing fluorescence-labeled cDNA or cRNA prepared using the collected mRNA to a DNA microarray. Expression between carcinogen-administered groups, comparing expression patterns of variable genes and classifying the expression patterns of carcinogen-administered groups into multiple groups,
発がん物質投与群カゝら採取した mRNAから調製した蛍光標識化 cDNA又は cRNA を DNAマイクロアレイにハイブリダィゼーシヨンして得られる蛍光パターンと、被検物 質投与群から採取した mRNA力 調製した蛍光標識化 cDNA又は cRNAを DNA マイクロアレイにハイブリダィゼーシヨンして得られる蛍光パターンとの比較により発が ん物質投与群の発現変動遺伝子のグループ毎の発現パターンと被検物質投与群の 発現変動遺伝子の発現パターンを比較してその一致度を算出する工程、 の少なくとも 1つの工程を含む被検物質の発がん性予測方法。  Fluorescence pattern obtained by hybridizing fluorescence-labeled cDNA or cRNA prepared from mRNA collected from carcinogen-administered group to DNA microarray, and mRNA force collected from test substance-administered group Prepared fluorescence Comparison of the expression variation gene of the carcinogen-administered group and the expression-variable gene of the test substance-administered group by comparison with the fluorescence pattern obtained by hybridization of labeled cDNA or cRNA to the DNA microarray A method for predicting the carcinogenicity of a test substance, comprising the step of comparing the expression patterns of and calculating the degree of coincidence thereof.
[0015] 〔3〕 DNAマイクロアレイ力 発がん物質を投与した試験動物力 mRNAを抽出し 、発現量が増加又は減少した mRNAから逆転写反応により合成した cDNAの配列 の全部又は一部を PCRにより増幅又は化学合成した DNAを搭載した DN Aマイクロ アレイである〔2〕に記載の被検物質の発がん性予測方法。  [3] DNA microarray power Test animal power administered with a carcinogen Extracting mRNA, and amplifying or amplifying all or part of the cDNA sequence synthesized by reverse transcription from mRNA with increased or decreased expression level [2] The method for predicting the carcinogenicity of a test substance according to [2], which is a DNA microarray equipped with chemically synthesized DNA.
[0016] 〔4〕 発現変動遺伝子が、配列番号 1〜2844に記載する塩基配列に相補的な塩 基配列を有する遺伝子から 5つ以上選定されたものである〔1〕乃至〔3〕のいずれか に記載の被検物質の発がん性予測方法。  [4] Any one of [1] to [3], wherein the expression variable gene is selected from five or more genes having a base sequence complementary to the base sequence described in SEQ ID NOs: 1 to 2844 The method for predicting the carcinogenicity of a test substance according to claim 1.
[0017] [5] 発がん物質投与群に投与する発がん物質力 クロフイブレート、ジ (2-ェチル へキシル)フタレート、四塩化炭素、 2,4-ジァミノトルエン、キノリン、フエノバルビター ル、ジェチルニトロサミン、 2-ニトロプロパン、 N-ニトロソモルホリン、アルドリン、アジピ ン酸ジ (2-ェチルへキシル)、ェチュルエストラジオール、へキサクロ口ベンゼン、 a - へキサクロロシクロへキサン、トリクロロエチレン、ブチル化ヒドロキシァ二ノール、リモ ネン、サフロール、 1,4-ジクロロベンゼン、 1,4-ジォキサン、フラン、メチルカルバメート 、チオアセトアミド、 N-二トロソジメチラミン、 N-二トロソピペリジン、 2-ァミノ- 3,8-ジメチ ルイミダゾ [4,5-f]キノキサリン、 2-ァミノ- 1-メチル -6-フエ-ルイミダゾ [4,5-b]-ピリジン 、ベンツ (a)アントラセン、 7, 12-ジメチルベンズアントラセン、 3-メチルコラントレン、 4- ニトロキノリン- 1-オキサイド、 N-ェチル -N-二トロソ尿素、トリクロ口酢酸、タンニン酸、 ウレタン、ペンタクロルェタン、クロ口ホルム、ベンゾ(a)ピレン、 N-メチル - Ν'-ニトロ- N -ニトロソグァ二ジン、テトラクロロエチレン、ァセタミド、ジェチルスチルベストロール、 フエ-トインナトリウム塩、 D,L-ェチォニン、 4-ジメチルアミノアゾベンゼン、及びクロレ ンド酸力 選ばれる少なくとも 4個を含む〔1〕乃至〔4〕の 、ずれかに記載の被検物質 の発がん性予測方法。 [0017] [5] Carcinogen power to be administered to carcinogen administered groups Clofibrate, di (2-ethylhexyl) phthalate, carbon tetrachloride, 2,4-diaminotoluene, quinoline, phenobarbiter , Jetylnitrosamine, 2-nitropropane, N-nitrosomorpholine, aldrin, di (2-ethylhexyl) adipate, ethur estradiol, hexacyclobenzene, a- hexachlorocyclohexane, trichloroethylene, Butylated hydroxy vinylol, limonene, safrole, 1,4-dichlorobenzene, 1,4-dioxane, furan, methyl carbamate, thioacetamide, N-nitrosodimethylamine, N-nitrosopiperidine, 2-amino- 3,8-dimethyl imimidazo [4,5-f] quinoxaline, 2-amino-1-methyl-6-fe-louimidazo [4,5-b] -pyridine, benz (a) anthracene, 7, 12-dimethylbenz Anthracene, 3-methylcholanthrene, 4-nitroquinoline-1-oxide, N-ethyl-N-nitrosourea, trichloroacetic acid, tannic acid, urethane, pen Chlorethane, black mouth form, benzo (a) pyrene, N-methyl-Ν'-nitro-N-nitrosoguanidine, tetrachloroethylene, acetamide, jetylstilbestrol, pheotoin sodium salt, D, L-ethionine, 4 -The method for predicting the carcinogenicity of a test substance according to any one of [1] to [4], comprising at least four selected from dimethylaminoazobenzene and chlorinated acid power.
[0018] 〔6〕 発がん物質投与群に投与する発がん物質が、〔5〕に記載の発がん物質を少 なくとも 6個含む〔1〕乃至〔4〕の 、ずれかに記載の被検物質の発がん性予測方法。  [0018] [6] The test substance according to any one of [1] to [4], wherein the carcinogen administered to the carcinogen administered group includes at least six carcinogens according to [5]. Carcinogenicity prediction method.
[0019] 〔7〕 発がん物質投与群に投与する発がん物質が、〔5〕に記載の発がん物質を少 なくとも 9個含む〔1〕乃至〔4〕の 、ずれかに記載の被検物質の発がん性予測方法。  [0019] [7] The test substance according to any one of [1] to [4], wherein the carcinogen administered to the carcinogen administration group includes at least nine carcinogens according to [5]. Carcinogenicity prediction method.
[0020] 〔8〕 非発がん物質投与群に投与する非発がん物質力 2,6-ジァミノトルエン、 8-ヒ ドロキシキノリン、 D-マン-トール、 L-ァスコルビン酸、 2-クロ口エタノール、 2- (クロロメ チル)ピリジン塩酸塩、 cQ-メントール、 4-ニトロ- 0-フエ-レンジァミン、ベンゾイン、ョー ドホルム、リトコール酸、リンダン、 2-クロ口- p -フエ-レンジァミン硫酸塩、 p-フエ-レン ジァミン二塩酸塩、 2,5-トルエンジァミン硫酸塩、アスピリン、 4- (クロロアセチル)ァセ トァ-リド、フタルアミド、力プロラタタム、 1-クロ口- 2-プロパノール、 3-クロ口- p-トルイ ジン、グルタルアルデヒド、 4-ニトロアントラ-ル酸、及び 1 -トロナフタレンから選ば れる少なくとも 1個を含む〔2〕乃至〔7〕の 、ずれかに記載の被検物質の発がん性予 測方法。  [0020] [8] Non-carcinogenic substance power administered to non-carcinogen-administered group 2,6-Diaminotoluene, 8-Hydroxyquinoline, D-mannthol, L-ascorbic acid, 2-clo oral ethanol, 2- (Chloromethyl) pyridine hydrochloride, cQ-menthol, 4-nitro-0-phenol-diamine, benzoin, odoform, lithocholic acid, lindane, 2-chloro-p-phenol-diamine amine sulfate, p-phenylene Diamine dihydrochloride, 2,5-toluenediamine sulfate, aspirin, 4- (chloroacetyl) acetaldehyde, phthalamide, force prolatatam, 1-chloro-2-2-propanol, 3-chloro-p-toluidine The method for predicting carcinogenicity of a test substance according to any one of [2] to [7], comprising at least one selected from the group consisting of glutaraldehyde, 4-nitroanthralic acid, and 1-tronaphthalene.
[0021] 〔9〕 非発がん物質投与群に投与する非発がん物質が、〔8〕に記載の非発がん物 質を少なくとも 5個含む〔2〕乃至〔7〕の 、ずれかに記載の被検物質の発がん性予測 方法。 [0021] [9] The test according to any one of [2] to [7], wherein the non-carcinogenic substance administered to the non-carcinogen-administered group includes at least five non-carcinogenic substances according to [8]. Carcinogenicity prediction of substances Method.
[0022] 〔10〕 非発がん物質投与群に投与する非発がん物質が、〔8〕に記載の非発がん 物質を少なくとも 10個含む〔2〕乃至〔7〕の 、ずれかに記載の被検物質の発がん性予 測方法。  [0022] [10] The test substance according to any one of [2] to [7], wherein the non-carcinogen administered to the non-carcinogen-administered group contains at least 10 non-carcinogens according to [8]. Carcinogenicity prediction method.
[0023] 〔11〕 発がん物質投与群の発現変動遺伝子の発現パターンの分類が、クラスタ解 析又は決定木により行われる〔1〕乃至〔10〕のいずれかに記載の被検物質の発がん 性予測方法。  [0023] [11] Carcinogenicity prediction of the test substance according to any one of [1] to [10], wherein the expression pattern of the expression variation gene in the carcinogen-administered group is classified by cluster analysis or a decision tree. Method.
[0024] 〔12〕 発現変動遺伝子の発現パターンが 3以上のグループに分類される〔1〕乃至 [12] The expression pattern of the expression variable gene is classified into three or more groups [1] to [1]
〔11〕のいずれかに記載の被検物質の発がん性予測方法。 [11] The method for predicting carcinogenicity of a test substance according to any one of [11].
[0025] 〔13〕 発がん物質を各発がん物質投与群に投与した後、 1〜90日経過後に各発 がん物質投与群力 mRNAを採取する〔1〕乃至〔12〕のいずれかに記載の被検物 質の発がん性予測方法。 [13] The carcinogen is administered to each carcinogen-administered group, and after 1 to 90 days have passed, each carcinogen-administered group force mRNA is collected. [1] to [12] A method for predicting the carcinogenicity of a test substance.
[0026] 〔14〕 発がん物質を各発がん物質投与群に投与した後、 14〜28日経過後に各発 がん物質投与群力 mRNAを採取する〔1〕乃至〔12〕のいずれかに記載の被検物 質の発がん性予測方法。 [0026] [14] After administering a carcinogen to each carcinogen-administered group, collect the mRNA of each carcinogen-administered group after 14 to 28 days, [1] to [12] A method for predicting the carcinogenicity of a test substance.
[0027] [15] 被検物質を被検物質投与群に投与した後、 1〜90日経過後に被検物質投 与群力も mRNAを採取する〔1〕乃至〔14〕のいずれかに記載の被検物質の発がん 性予測方法。 [15] The test substance-administered group force is also sampled after 1 to 90 days after the test substance is administered to the test substance-administered group, [1] to [14] A method for predicting the carcinogenicity of a test substance.
[0028] 〔16〕 被検物質を被検物質投与群に投与した後、 14〜28日経過後に被検物質 投与群力 mRNAを採取する〔1〕乃至〔14〕のいずれかに記載の被検物質の発が ん性予測方法。  [0028] [16] The test substance administration group force mRNA is collected after 14 to 28 days after administration of the test substance to the test substance administration group [1] to [14] A method for predicting the carcinogenicity of a test substance.
発明の効果  The invention's effect
[0029] 本発明によれば、被検物質投与群の mRNAの発現パターンと、発がん物質投与 群のグループごとの mRNAの発現パターンとを比較することにより、被検物質の発が ん性を予測することができる。本発明の予測方法においては、 mRNAの発現量から 被検物質の発がん性を予測するので、試験動物に癌が出現するまで化合物の連続 投与を行うような長期にわたる動物実験を必要としない。 1〜90日程度の短期間の 動物実験で容易に化学物質の発がん性を予測することができる。 図面の簡単な説明 [0029] According to the present invention, the carcinogenicity of the test substance is predicted by comparing the mRNA expression pattern of the test substance administration group with the mRNA expression pattern of each group of the carcinogen administration group. can do. In the prediction method of the present invention, since the carcinogenicity of the test substance is predicted from the expression level of mRNA, it is not necessary to conduct a long-term animal experiment in which the compound is continuously administered until cancer appears in the test animal. Carcinogenicity of chemical substances can be easily predicted by animal experiments in a short period of about 1 to 90 days. Brief Description of Drawings
[0030] [図 1]実施例 1においてクラスタ解析により化学物質を分類した榭形図の一部である。  [0030] FIG. 1 is a part of a saddle diagram in which chemical substances are classified by cluster analysis in Example 1.
[図 2]図 1に示す榭形図の他の部分である。  FIG. 2 is another part of the saddle diagram shown in FIG.
[図 3]実施例 1においてクラスタ解析により化学物質を分類した榭形図の一部である。  FIG. 3 is a part of a saddle diagram in which chemical substances are classified by cluster analysis in Example 1.
[図 4]図 3に示す榭形図の他の部分である。  4 is another part of the saddle diagram shown in FIG.
[図 5]実施例 1においてクラスタ解析により化学物質を分類した榭形図の一部である。  FIG. 5 is a part of a saddle diagram in which chemical substances are classified by cluster analysis in Example 1.
[図 6]図 5に示す榭形図の他の部分である。  FIG. 6 is another part of the saddle diagram shown in FIG.
[図 7]実施例 1においてクラスタ解析により化学物質を分類した榭形図である。  FIG. 7 is a saddle diagram in which chemical substances are classified by cluster analysis in Example 1.
[図 8]実施例 1においてクラスタ解析により化学物質を分類した榭形図である。  FIG. 8 is a saddle diagram in which chemical substances are classified by cluster analysis in Example 1.
[図 9]実施例 1においてクラスタ解析により化学物質を分類した榭形図である。  FIG. 9 is a saddle diagram in which chemical substances are classified by cluster analysis in Example 1.
[図 10]実施例 1において構築した発がん性予測方法を示すフロー図である。  FIG. 10 is a flowchart showing the carcinogenicity prediction method constructed in Example 1.
[図 11]実施例 2において決定木により化学物質を分類した榭形図である。  FIG. 11 is a saddle diagram in which chemical substances are classified by a decision tree in Example 2.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 本発明の被検物質の発がん性予測方法は、以下の手順で行う。  [0031] The method for predicting carcinogenicity of a test substance of the present invention is performed according to the following procedure.
[0032] まず、複数の発がん物質を各発がん物質投与群に投与した後、各群毎に試験動 物の組織を採取し、各 mRNAの発現量を測定する。  [0032] First, after administering a plurality of carcinogens to each carcinogen-administered group, tissue of the test animal is collected for each group, and the expression level of each mRNA is measured.
[0033] 発がん物質投与群に投与する発がん物質の数は 4物質以上とするが、予測の精度 を高めるため 6物質以上とすることが好ましぐ 9物質以上とすることがより好ましい。 使用する発がん物質の数は多いほど被検物質の発がん性予測の精度が高くなるの で発がん物質の数に上限はないが、 30物質程度を投与すれば充分な精度で被検 物質の発がん性が予測できる。  [0033] Although the number of carcinogens administered to the carcinogen administered group is 4 or more, it is preferable to use 6 or more, and more preferably 9 or more to improve the accuracy of prediction. There is no upper limit on the number of carcinogens because the greater the number of carcinogens used, the higher the accuracy of predicting the carcinogenicity of the test substance, but the carcinogenicity of the test substance is sufficiently accurate if about 30 substances are administered. Can be predicted.
[0034] 発がん物質投与群に投与する発がん物質は、発がん性が確認されている公知の 化学物質を投与することが可能である。例えば、クロフイブレート、ジ (2-ェチルへキ シル)フタレート、四塩化炭素、 2,4-ジァミノトルエン、キノリン、フエノバルビタール、ジ ェチル二トロサミン、 2-ニトロプロパン、 N-ニトロソモルホリン、アルドリン、アジピン酸 ジ (2-ェチルへキシル)、ェチニルエストラジオール、へキサクロ口ベンゼン、 α -へキ サクロロシクロへキサン、トリクロロエチレン、ブチル化ヒドロキシァ-ソール、リモネン、 サフロール、 1,4-ジクロロベンゼン、 1,4-ジォキサン、フラン、メチルカルバメート、チ オアセトアミド、 N-ニトロソジメチラミン、 N-ニトロソピペリジン、 2-ァミノ- 3,8-ジメチルイ ミダゾ [4,5-f]キノキサリン、 2-ァミノ- 1-メチル -6-フエ-ルイミダゾ [4,5-b]-ピリジン、ベ ンッ (a)アントラセン、 7, 12-ジメチルベンズアントラセン、 3-メチルコラントレン、 4-ニトロ キノリン- 1-オキサイド、 N-ェチル -N-二トロソ尿素、トリクロ口酢酸、タンニン酸、ウレタ ン、ペンタクロルェタン、クロ口ホルム、ベンゾ(a)ピレン、 N-メチル - Ν'-ニトロ- N-ニト 口ソグァ二ジン、テトラクロロエチレン、ァセタミド、ジェチルスチルベストロール、フエ[0034] As the carcinogen administered to the carcinogen-administered group, a known chemical substance that has been confirmed to be carcinogenic can be administered. For example, clofibrate, di (2-ethylhexyl) phthalate, carbon tetrachloride, 2,4-diaminotoluene, quinoline, phenobarbital, dimethyl ditrosamine, 2-nitropropane, N-nitrosomorpholine, aldrin, Di (2-ethylhexyl) adipate, ethynyl estradiol, hexane cyclobenzene, α-hexachlorocyclohexane, trichloroethylene, butylated hydroxy-sol, limonene, safrole, 1,4-dichlorobenzene, 1 , 4-dioxane, furan, methyl carbamate, thio Oacetamide, N-nitrosodimethylamine, N-nitrosopiperidine, 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline, 2-amino-1-methyl-6-phei-louimidazo [4,5 -b] -pyridine, benzene (a) anthracene, 7, 12-dimethylbenzanthracene, 3-methylcholanthrene, 4-nitroquinoline-1-oxide, N-ethyl-N-nitrosourea, triclo oral acetic acid, Tannic acid, urea, pentachloroethane, black mouth form, benzo (a) pyrene, N-methyl-Ν'-nitro-N-nitrate mouth soguanidine, tetrachloroethylene, acetamide, jetylstilbestrol, fe
-トインナトリウム塩、 D,L-ェチォニン、 4-ジメチルアミノアゾベンゼン、及びクロレンド 酸等を挙げることができる。 -Toin sodium salt, D, L-ethionine, 4-dimethylaminoazobenzene, and chlorendic acid.
[0035] 発がん物質を動物群に投与するに際しては発がん物質を媒体に溶解した発がん 物質溶液を調製する。 [0035] When a carcinogen is administered to a group of animals, a carcinogen solution in which the carcinogen is dissolved in a medium is prepared.
[0036] 発がん物質を溶解させる媒体としては、発がん物質が溶解する非発がん性の媒体 であれば特に制限することなく使用でき、例えば、トウモロコシ油、精製水等を使用す ることがでさる。  [0036] The medium for dissolving the carcinogen can be used without particular limitation as long as it is a non-carcinogenic medium in which the carcinogen is dissolved. For example, corn oil, purified water, and the like can be used.
[0037] 発がん物質溶液の濃度は、発がん物質の刺激により特徴的に変動する mRNAの 発現量に適度な増加又は減少を引き起こす濃度とすることが好ましい。  [0037] The concentration of the carcinogen solution is preferably set to a concentration that causes an appropriate increase or decrease in the expression level of mRNA that varies characteristically by stimulation of the carcinogen.
[0038] 発がん物質溶液の各群への投与は、 1日 1〜数回 (好ましくは 1日 1回)、 1〜90日 程度の所定期間反復して連続投与する。  [0038] The carcinogen solution is administered to each group continuously by repeating it for a predetermined period of about 1 to 90 days, 1 to several times a day (preferably once a day).
[0039] 発がん物質投与群への発がん物質溶液の投与方法は特に制限されず、経口投与 、腹腔内投与、静脈内投与等の汎用的な方法を使用できる。  [0039] The administration method of the carcinogen solution to the carcinogen administration group is not particularly limited, and general-purpose methods such as oral administration, intraperitoneal administration, and intravenous administration can be used.
[0040] 試験動物には、ラット、マウス、ィヌ、サル、モルモット、ゥサギ等が使用できる。  [0040] Rats, mice, dogs, monkeys, guinea pigs, rabbits, etc. can be used as test animals.
[0041] 発がん性ィヒ学物質を投与後、各群の試験動物の組織を採取するまでの期間として は、 1〜90日程度とする力 より迅速に試験する観点力も短期的には 1〜13日、中期 的には 14〜28日程度とすることが好ましい。 mRNAの発現量を測定するために採 取する試験動物の組織としては、肝臓、腸、肺、腎臓、胃、脾臓、脳、血液等が使用 できる。  [0041] The period from the administration of the carcinogenic substance to the collection of the test animal tissues in each group is about 1 to 90 days. It is preferable to set it to about 13 to 14 days in the medium term. Liver, intestine, lung, kidney, stomach, spleen, brain, blood and the like can be used as test animal tissues to be collected in order to measure the expression level of mRNA.
[0042] 試験動物の組織力ゝら公知の方法により mRNAを抽出、精製した後、各 mRNAにつ いて発現量を測定する。 mRNAの発現量の測定方法としては、 mRNAと相補的な 配列を有する cDNA又は DNAが固定してある DNAマイクロアレイやマイクロプレー トに mRNAカゝら調製した蛍光標識化 cDNA又は cRNAを結合させる方法、ノーザン ブロッテイング、定量的 RT— PCR、 RNaseプロテクションアツセィ等の公知の方法が 使用できる。中でも、 DNAマイクロアレイを用いる方法は、各発がん物質投与群にお いて多くの mRNAについての発現量のデータを同時に取得することができ、各群間 での発現パターンの比較を容易に行うことが可能である。 [0042] After extracting and purifying mRNA by a known method such as tissue strength of test animals, the expression level of each mRNA is measured. Methods for measuring the expression level of mRNA include DNA microarrays and microplates in which cDNA or DNA having a sequence complementary to mRNA is immobilized. Known methods such as a method of binding a fluorescently labeled cDNA or cRNA prepared by mRNA to a yeast, Northern blotting, quantitative RT-PCR, RNase protection assay and the like can be used. Above all, the method using DNA microarray can simultaneously acquire the expression level data for many mRNAs in each carcinogen-administered group, and it is easy to compare the expression patterns between groups. It is.
[0043] mRNAの発現量の測定には、試験動物の種類に応じて選択した市販のマイクロア レイを使用することもできる。例えば、試験動物にラットを使用する場合には、 Gene C hip (商品名、ァフィメトリタス社製)、 Rat Oligo Microarray Kit (商品名、アジレント社製 )等が使用できる。  [0043] For the measurement of the expression level of mRNA, a commercially available microarray selected according to the type of test animal can also be used. For example, when a rat is used as a test animal, Gene Chip (trade name, manufactured by Affymetritas), Rat Oligo Microarray Kit (trade name, manufactured by Agilent) and the like can be used.
[0044] mRNAの発現量から、遺伝子の発現パターンをグループ化する方法につき以下 説明する。遺伝子の発現パターンは、遺伝子の種類とその発現量から構成されるデ ータの集まりである。  [0044] A method for grouping gene expression patterns from mRNA expression levels will be described below. A gene expression pattern is a collection of data composed of gene types and their expression levels.
[0045] まず、それぞれの発がん物質投与群について発がん物質の投与により有意に発現 量が増加又は減少 (変動)した遺伝子 (以下、発現変動遺伝子と称す)を選択する。 遺伝子の発現量が各群において有意に変動したかどうかの判断は、非発がん物質 を発がん物質溶液の調製に使用した媒体に溶解して投与した非発がん物質投与群 の遺伝子の発現量との相対比較により行う。非発がん物質としては、 NTP (National Toxicology Program;、 EPA
Figure imgf000011_0001
、 IARし (International Agency for Re search on Cancer)等で公式に非発がん物質と評価されたィ匕合物のうち、少なくとも 1 以上、好ましくは 5以上、より好ましくは 10以上の化合物を使用する。使用する非発 がん物質の数に上限はないが、 20物質程度を投与すれば充分な精度とすることが できる。非発がん物質としては、例えば 2,6-ジァミノトルエン、 8-ヒドロキシキノリン、 D- マン-トール、 L-ァスコルビン酸、 2-クロ口エタノール、 2- (クロロメチル)ピリジン塩酸 塩、 cQ-メントール、 4-二トロ- 0-フエ-レンジァミン、ベンゾイン、ョードホルム、リトコ一 ル酸、リンダン、 2-クロ口- P-フエ-レンジァミン硫酸塩、 P-フエ-レンジアミンニ塩酸 塩、 2,5-トルエンジァミン硫酸塩、アスピリン、 4- (クロロアセチル)ァセトァ-リド、フタ ルアミド、力プロラタタム、 1-クロ口- 2-プロパノール、 3-クロ口- p-トルイジン、グルタル アルデヒド、 4-ニトロアントラ-ル酸、及び 1 -トロナフタレン等を挙げることができる [0046] 発現パターンの解析には、それぞれの発がん物質投与群において発現量が変動 した発現変動遺伝子の発現量のデータを全て使用してもよ!/、。発現量が変動した遺 伝子の数が多 、場合には解析の操作が煩雑となるので、発がん物質投与群と非発 がん物質投与群の間で発現量の差が大きい発現変動遺伝子を選定して使用するこ とが好ましい。
[0045] First, for each carcinogen administered group, a gene whose expression level is significantly increased or decreased (varied) by administration of the carcinogen (hereinafter referred to as an expression variable gene) is selected. The determination of whether the gene expression level changed significantly in each group was based on the relative expression of the non-carcinogenic substance administered group dissolved in the medium used to prepare the carcinogen solution. Perform by comparison. Non-carcinogenic substances include NTP (National Toxicology Program; EPA
Figure imgf000011_0001
Among the compounds officially evaluated as non-carcinogens by IAR (International Agency for Research on Cancer), etc., at least 1 or more, preferably 5 or more, more preferably 10 or more compounds are used. There is no upper limit to the number of non-carcinogenic substances to be used, but sufficient accuracy can be achieved by administering about 20 substances. Non-carcinogenic substances include, for example, 2,6-diaminotoluene, 8-hydroxyquinoline, D-mannthol, L-ascorbic acid, 2-chloromethyl ethanol, 2- (chloromethyl) pyridine hydrochloride, cQ-menthol, 4 -Nitro-0-phen-diamine, benzoin, odoform, lithocholic acid, lindane, 2-chloro-P-phen-diamine amine sulfate, P-phenol-diamine dihydrochloride, 2,5-toluene diamine sulfate, Aspirin, 4- (chloroacetyl) acetolide, phthalamide, force prolatatam, 1-chloro-2-propanol, 3-chloro-p-toluidine, glutaraldehyde, 4-nitroanthracic acid, and 1- Tronaphthalene etc. can be mentioned [0046] For the analysis of expression patterns, all expression level data of expression variable genes whose expression levels fluctuated in each carcinogen-administered group may be used! /. Since there are many genes whose expression levels fluctuated and the analysis operation becomes complicated, it is necessary to select genes whose expression levels vary greatly between the carcinogen-administered group and the non-carcinogen-administered group. It is preferable to select and use.
[0047] 発現パターンの分類に使用する発現変動遺伝子は、少なくとも 5以上とする力 10 〜 150程度とすることがより好ましく、 30〜 120程度とすることが特に好ま U、。  [0047] The expression variable gene used for classification of the expression pattern is more preferably at least about 10 to 150, and particularly preferably about 30 to 120 U.
[0048] 試験動物にラットを使用する場合、発がん物質投与群において発現量が変動する 傾向がある遺伝子の塩基配列の一部を示す塩基配列を配列番号 1〜2844に示す。 これらの遺伝子を 5以上、好ましくは 7以上、より好ましくは 10以上含むように発現変 動遺伝子を選択した場合には、被検物質の発がん性予測の精度を高めることができ る。  [0048] When rats are used as test animals, SEQ ID NOs: 1 to 2844 show base sequences showing a part of the base sequences of genes whose expression levels tend to vary in the carcinogen-administered group. When the expression variable gene is selected so as to contain 5 or more, preferably 7 or more, more preferably 10 or more of these genes, the accuracy of predicting the carcinogenicity of the test substance can be increased.
[0049] 選定した発現変動遺伝子について、発がん物質投与群間で発現パターンを比較し 、その類似性により発現パターンを統計学的手法により分類する。  [0049] With respect to the selected expression variation gene, the expression pattern is compared between the carcinogen-administered groups, and the expression pattern is classified by a statistical method according to the similarity.
[0050] 発現パターンを分類する統計学的手法としては、例えばクラスタ解析、決定木等の 解析方法を挙げることができる。  [0050] Examples of statistical methods for classifying expression patterns include analysis methods such as cluster analysis and decision trees.
[0051] クラスタ解析を用いる場合には、例えば以下の方法により発現パターンの分類を行 うことができる。  [0051] When cluster analysis is used, expression patterns can be classified by the following method, for example.
[0052] まず、選定した発現変動遺伝子の発現パターンにつ!/ヽてクラスタ解析を行う。その 後、発現変動遺伝子の選定条件を変化させて異なる発現変動遺伝子を選定し、他 の発現変動遺伝子の組み合わせにつ!ヽてもクラスタ解析を行う。発現変動遺伝子の 組み合わせを変えても同じクラスタに分類される発がん物質群を選定し、それぞれを 1のグループとする。発現変動遺伝子の組み合わせを変化させても安定して同じクラ スタを形成する発がん物質群は、選定された発現変動遺伝子により偶然に形成され たクラスタではなぐ発がんメカニズムが同じであると推定できる。更に、グループを形 成して!/、な!/、残りの発がん物質につ!、て新たに発現変動遺伝子を選定し、残りの発 がん物質にっ ヽて同様にクラスタ解析とグループィ匕を行う。この操作を安定してクラ スタを形成する発がん物質群が検出されなくなるまで繰り返し行い、発がん物質群の グループに共通する発現変動遺伝子の発現パターンを当該グループの発現パター ンとする。 [0052] First, cluster analysis is performed on the expression pattern of the selected expression variable gene. After that, change the selection condition of the expression variation gene, select a different expression variation gene, and perform the cluster analysis even if the combination of other expression variation genes. Select carcinogen groups that are classified into the same cluster even if the combination of expression variation genes is changed. It can be presumed that the carcinogen group that stably forms the same cluster even if the combination of expression variable genes is changed has the same carcinogenic mechanism that does not occur in the cluster formed by chance by the selected expression variable gene. In addition, a group is formed! /, !!, and the remaining carcinogens are newly selected. Expression variation genes are newly selected, and cluster analysis and grouping are similarly performed for the remaining carcinogens. Do the trap. Stable operation of this operation Repeat until the group of carcinogens that forms the star is no longer detected, and use the expression pattern of the expression variable gene that is common to the group of carcinogens as the expression pattern of the group.
[0053] 発がん物質の発現パターンを分類し、分類したグループごとに発現変動遺伝子の 発現パターンを得ておく。被検物質の発がん性を予測するに際しては、被検物質を 発がん物質と同じ条件で被検物質投与群に投与し、所定期間経過後に被検物質投 与群の発現変動遺伝子の発現量を測定する。  [0053] The expression pattern of the carcinogen is classified, and the expression pattern of the expression variable gene is obtained for each classified group. When predicting the carcinogenicity of a test substance, the test substance is administered to the test substance administration group under the same conditions as the carcinogen, and the expression level of the expression variable gene in the test substance administration group is measured after a predetermined period of time. To do.
[0054] 被検物質を投与して得られた発現変動遺伝子の発現パターンを、発がん物質を投 与して得られた発現変動遺伝子のグループ毎の発現パターンと比較して、それぞれ のグループの発現パターンとの一致度を評価する。被検物質の発現パターンが!/ヽず れカ 1の発がん物質のグループの発現パターンと一致度が高い場合には被検物質 は発がん性有りと判定し、いずれの発現パターンとも一致度が低い場合には発がん 性無しと判定する。  [0054] The expression pattern of the expression variable gene obtained by administering the test substance is compared with the expression pattern of each expression variable gene obtained by administering the carcinogen, and the expression of each group is compared. Evaluate the degree of coincidence with the pattern. If the expression pattern of the test substance is high / matched with the expression pattern of the group of carcinogens of 1%, the test substance is judged to have carcinogenicity and the degree of match with any expression pattern is low. In some cases, it is determined that there is no carcinogenicity.
[0055] 発現パターンの一致度を評価する方法としては、例えば発がん物質と一緒にクラス タ分析や決定木による解析を行って得られた榭形図の階層から評価する方法、発現 変動遺伝子の発現量の相関を算出する方法等が使用できる。  [0055] As a method for evaluating the degree of coincidence of expression patterns, for example, a method of evaluating from the hierarchy of the morphological map obtained by performing cluster analysis or decision tree analysis together with carcinogens, expression of expression variable genes For example, a method for calculating a correlation between quantities can be used.
[0056] 以下、 DNAマイクロアレイを用いて被検物質の発がん性を予測する方法の一例に つき具体的に説明する。  [0056] Hereinafter, an example of a method for predicting the carcinogenicity of a test substance using a DNA microarray will be specifically described.
[0057] まず、 DNAマイクロアレイに搭載する遺伝子を得るため、発がん物質を投与した試 験動物の組織力ゝら抽出した mRNAから mRNAと相補的な配列をもつ cDNAを逆転 写反応により合成する。 mRNAから cDNAを合成する際には、配列情報から得た P CRプライマーを用いて、各 mRNAを铸型にして増幅する逆転写 PCR法 (RT— PC R)、逆転写酵素を使用する方法等が使用できる。  [0057] First, in order to obtain a gene to be mounted on a DNA microarray, cDNA having a sequence complementary to mRNA is synthesized by reverse transcription reaction from mRNA extracted from the tissue strength of a test animal administered with a carcinogen. When synthesizing cDNA from mRNA, reverse transcription PCR method (RT—PCR), which uses PCR primers obtained from sequence information to amplify each mRNA in a cage shape, reverse transcriptase, etc. Can be used.
[0058] 次いで、予めポリ L リシンやポリアルキルァミンなどの多価陽イオンで表面処理 したスライドガラス上に、 DNAマイクロアレイ作製装置を用いて合成した cDNAを順 次スポット状にコーティングし、 DNAマイクロアレイを作製する。  [0058] Next, cDNA synthesized using a DNA microarray preparation device was coated on a slide glass that had been surface-treated with polycations such as poly-L-lysine and polyalkylamine in advance, and the DNA microarray was coated. Is made.
[0059] 発がん物質投与群の組織力 抽出した mRNAと媒体対照群の組織力 抽出した mRNAをそれぞれ異なる蛍光物質で蛍光標識ィ匕した cDNA又は cRNAを得、これ らを DNAマイクロアレイにハイブリダィゼーシヨンする。 [0059] Tissue strength of carcinogen-administered group and tissue strength of medium control group Extracted mRNA and fluorescently labeled cDNA or cRNA obtained with different fluorescent substances were obtained. Hybridize them to a DNA microarray.
[0060] mRNAの標識に使用する蛍光物質としては、 Cy3 (赤色)、 Cy5 (緑色)を挙げるこ とができる。標識方法としては、 5'末端に蛍光物質を導入したプライマーを使用する 方法、蛍光物質のデォキシヌクレオチド誘導体を逆転写酵素で取り込ませる方法、 ポストラベリング試薬を使用する方法などの公知の方法が採用できる。  [0060] Examples of fluorescent substances used for mRNA labeling include Cy3 (red) and Cy5 (green). As a labeling method, there are known methods such as a method using a primer having a fluorescent material introduced at the 5 ′ end, a method of incorporating a deoxynucleotide derivative of the fluorescent material with a reverse transcriptase, and a method using a post-labeling reagent. Can be adopted.
[0061] 蛍光標識化 cDNA又は cRNAをハイブリダィゼーシヨンした DNAマイクロアレイを スキャナで読み取り、各スポットの蛍光強度を測定する。  [0061] A fluorescently labeled cDNA or cRNA hybridized DNA microarray is read with a scanner, and the fluorescence intensity of each spot is measured.
[0062] 非発がん物質投与群にっ 、ても発がん物質投与群と同様にして DNAマイクロアレ ィの蛍光パターンを得ておき、得られた各スポットの蛍光波長及び蛍光強度力も発現 変動遺伝子を選定する。  [0062] Even in the non-carcinogen-administered group, the fluorescence pattern of the DNA microarray was obtained in the same manner as in the carcinogen-administered group, and the fluorescence wavelength and fluorescence intensity power of each spot obtained were also expressed. To do.
[0063] 発がん物質投与群の mRNAと媒体対照群の mRNAは異なる蛍光物質で標識さ れているので、スキャナで読み取った各スポットの蛍光波長と蛍光強度の比較により 、各群の間で mRNAの発現量の比較を容易に行うことができる。  [0063] Since the mRNA of the carcinogen-administered group and the mRNA of the vehicle control group are labeled with different fluorescent substances, the comparison of the fluorescence wavelength and fluorescence intensity of each spot read by the scanner shows that the mRNA of each group The expression level can be easily compared.
[0064] 次 ヽで、クラスタ解析、決定木等の統計学的手法を用いて、選定した発現変動遺 伝子の蛍光パターンの分類を行い、グループ毎に被検物質投与群の蛍光パターン との一致度を評価することにより、被検物質の発がん性を予測する。  [0064] In the next step, using a statistical method such as cluster analysis or decision tree, the fluorescence pattern of the selected expression variation gene is classified, and each group is compared with the fluorescence pattern of the test substance administration group. The carcinogenicity of the test substance is predicted by evaluating the degree of coincidence.
[0065] なお、 DNAマイクロアレイに搭載する DNAとしては、試験動物の組織から抽出し た mRNAから逆転写反応により合成した cDNAの配列の全部又は一部を PCR等に より増幅した DNAのほかに、 cDNAの配列の一部を化学合成して得た DNAも使用 できる。 DNAマイクロアレイに搭載する DNAの配列長さは、 20〜500bp程度とする 1S 好ましくは 50〜400bp、より好ましくは 60〜300bpである。  [0065] The DNA mounted on the DNA microarray includes, in addition to DNA obtained by amplifying the whole or part of the cDNA sequence synthesized by reverse transcription from mRNA extracted from the tissue of the test animal by PCR or the like, DNA obtained by chemically synthesizing part of the cDNA sequence can also be used. The sequence length of the DNA mounted on the DNA microarray is about 20 to 500 bp. 1S is preferably 50 to 400 bp, more preferably 60 to 300 bp.
実施例  Example
[0066] 製造例 l (cDNAマイクロアレイの作製)  [0066] Production Example l (Preparation of cDNA microarray)
(1)完全長 cDNAクローン及びライブラリーの作製 (理ィ匕学研究所法) 発がん剤投与成獣 (6週齢)ラット由来の肝臓、腎臓、脾臓及び大腸組織から、株式 会社ダナフォームが作製したラット完全長 cDNAライブラリーを利用して完全長 cDNA クローンを得た。なお当該ラット完全長 cDNAライブラリーの作製手順の概略は以下 の通りであった。 [0067] F344ラット成獣 (6週齢)に作用機構が異なる 4種の既知発がん物質 (Diethylnitros oamine :投与量 100mg/kg/day:投与期間 3時間, 1 日, 3 日、 2- amino- 3,8- dimethyl imadazo[4,5- flquinoxaline :投与量 20mg/kg/day:投与期間 3時間, 1 日, 4 日、 Clofi brate :投与量 100mg/kg/day:投与期間 1 日, 2 0 , 4 日、 Phenobarbital:投与量 80mg /kg/day:投与期間 1 日, 2 日, 4 日)を投与し、肝臓、腎臓、脾臓及び大腸を採取し た。採取した組織から AGPC法により total RNAを抽出し、 MACS mRNA Isolation Ki t (Miltenyi Biotec社製)を用いて mRNAを精製した。その後、 Anchored oligo(dT)を プライマーとしてトレハロース存在下で耐熱化した逆転写酵素により逆転写反応を行 つた。この Anchored oligo(dT)プライマーには、 6塩基のタグ配列を用いてライブラリ 一及び cDNAの起源に関する情報を付した。次にキャップトラッパ一法を用いて完全 長 cDNAを選択し、第 2鎖合成、制限酵素切断を行った後、方向を定めてクローニン グし、完全長 cDNAライブラリーを作製した。この完全長 cDNAライブラリ一は、化合物 未処理ラット臓器由来の cDNAライブラリーをドライバーとすることでサブトラクシヨン 処理を行い、特異性を高めた。 (1) Preparation of full-length cDNA clones and libraries (RIKEN method) Carcinogen-treated adult animals (6 weeks old) Danaform Inc. was prepared from liver, kidney, spleen and colon tissue from rats A full-length cDNA clone was obtained using a rat full-length cDNA library. The outline of the procedure for preparing the rat full-length cDNA library was as follows. [0067] Four known carcinogens (Diethylnitros oamine: dose 100 mg / kg / day: administration period 3 hours, 1 day, 3 days, 2-amino-3) , 8-dimethyl imadazo [4,5- flquinoxaline: Dose 20 mg / kg / day: Dose duration 3 hours, 1 day, 4 days, Clofi brate: Dose 100 mg / kg / day: Dose duration 1 day, 20, 4 days, Phenobarbital: dose 80 mg / kg / day: administration period 1 day, 2 days, 4 days), and liver, kidney, spleen and large intestine were collected. Total RNA was extracted from the collected tissues by the AGPC method, and mRNA was purified using MACS mRNA Isolation Kit (Miltenyi Biotec). Thereafter, reverse transcription reaction was performed with reverse transcriptase that had been heat-resistant in the presence of trehalose using Anchored oligo (dT) as a primer. This Anchored oligo (dT) primer was tagged with information about the origin of the library and cDNA using a 6-base tag sequence. Next, a full-length cDNA was selected using a cap trapper method, followed by second strand synthesis and restriction enzyme cleavage, followed by orientation and cloning to create a full-length cDNA library. This full-length cDNA library was subtracted by using a cDNA library derived from a compound-untreated rat organ as a driver to increase its specificity.
[0068] (2) cDNAマイクロアレイに搭載する遺伝子の選択  [0068] (2) Selection of genes to be loaded on cDNA microarray
発がん物質投与成獣由来完全長 cDNAライブラリ一中のクローンの 3 '端の塩基配 列からクローン間の相同性を調べた。発がん物質投与成獣由来遺伝子の合計数は 1 5,762で、このうちの肝臓由来の遺伝子数は 4,139であった。また、 UniGene IDを元 にした非重複塩基配列数は 6,954であった。  The homology between clones was examined from the 3'-end nucleotide sequence of a clone in a full-length cDNA library derived from a carcinogen-treated adult animal. The total number of genes derived from carcinogen-treated adult animals was 15,762, of which 4,139 were derived from the liver. The number of non-overlapping base sequences based on UniGene ID was 6,954.
[0069] 未処理ラット臓器由来クローンと、発がん物質処理ラット臓器由来クローンを搭載す る遺伝子の選定対象の遺伝子プールとして、以下の基準から 8,862クローンを選定し た。  [0069] 8,862 clones were selected from the following criteria as gene pools for selection of genes carrying clones derived from untreated rat organs and clones derived from carcinogen-treated rat organs.
[0070] a) 発がん物質の投与によりコントロール動物と比較して 2倍以上あるいは 1/2以下 に発現量が変動した遺伝子。  [0070] a) A gene whose expression level fluctuates by 2 times or more or 1/2 of that of a control animal by administration of a carcinogen.
[0071] b) 発がん物質処理ラット臓器由来クローン。 [0071] b) Carcinogen-treated rat organ-derived clone.
[0072] c) 文献等で発がん性に関連していることが報告されている遺伝子。これらの遺伝 子の中にはがん遺伝子やがん抑制遺伝子、転写因子、増殖因子などが含まれる。な お、文献等で発がん性に関連していることが報告されている遺伝子で、上記の遺伝 子プールに入っていないが発がん性評価には重要と考えられる 24種の遺伝子につ いては、個別にクローンを購入あるいは単離した。 [0072] c) Genes reported to be related to carcinogenicity in literature. These genes include oncogenes, tumor suppressor genes, transcription factors, and growth factors. It is a gene that has been reported to be related to carcinogenicity in the literature. For 24 genes that are not in the offspring pool but are considered important for carcinogenicity assessment, clones were purchased or isolated individually.
[0073] d) 市販の毒性評価用マイクロアレイに共通に搭載されている遺伝子。巿販アレイ としては、 Clontech Rat Toxicologyl.2 array, TAKARA Rat Toxicology CHIP verl.O 、 NIEHS Rat Chipゝ MWG Rat Liverゝ Mergen Rat R01を調査した。  [0073] d) A gene commonly mounted on a commercially available microarray for toxicity evaluation. As sales arrays, we investigated Clontech Rat Toxicology.2 array, TAKARA Rat Toxicology CHIP ver.O, and NIEHS Rat Chip-MWG Rat Liver-Mergen Rat R01.
[0074] e) ポジティブコントロールとして 3遺伝子 (ベータ-ァクチン、 GAPDH、ュビキチン) 及びネガティブコントロールとしてのラムダファージ遺伝子。  [0074] e) Three genes (beta-actin, GAPDH, ubiquitin) as a positive control and lambda phage gene as a negative control.
[0075] a)に含まれる遺伝子は 2,890クローン、 b)に含まれるのは 5,759クローン、 c)に含ま れる遺伝子は 44クローン、 d)に含まれる遺伝子は 185クローンであった。  [0075] The genes included in a) were 2,890 clones, b) included 5,759 clones, c) included 44 genes, and d) included 185 clones.
[0076] (3) cDNAマイクロアレイの作製  [0076] (3) Preparation of cDNA microarray
選定した遺伝子の塩基配列からお互いに非相補的な部分配列を設計し、 (2)で 選択した 8,862クローンをテンプレートとして、ポリメラーゼ連鎖反応 (PCR)法により遺 伝子断片を増幅した。増幅遺伝子の長さは、一部の遺伝子を除いて約 300bpに設計 した。 cDNAマイクロアレイに搭載する遺伝子断片を PCR法で増幅するためのプライ マーはタカラバイオ株式会社の設計アルゴリズムを用いて設計した。フォワードプライ マー、リバースプライマーを各 35pmol、 Ex-Taqポリメラーゼ 2.5 unit及び酵素に添付 されたバッファーを用いて、反応液量を 100 Lとして PCR反応を行った。反応は、 9 5°C 30秒間の後、 95°C 45秒間、 54°C 30秒間、 72°C 60秒間を 1サイクルとしてこ れを 37サイクル行い、さらに 72°C 3分間行った。反応終了後、反応液の一部をァガ ロース電気泳動に供することで、 PCR産物を確認した。  Partial sequences that are non-complementary to each other were designed from the base sequences of the selected genes, and the gene fragments were amplified by the polymerase chain reaction (PCR) method using the 8,862 clones selected in (2) as templates. The length of the amplified gene was designed to be about 300 bp, excluding some genes. Primers for amplifying gene fragments to be loaded on cDNA microarrays by PCR were designed using the Takara Bio Inc. design algorithm. PCR reaction was performed using 35 pmol of each of the forward primer and reverse primer, 2.5 units of Ex-Taq polymerase and a buffer attached to the enzyme, and a reaction volume of 100 L. The reaction was carried out for 37 cycles of 95 ° C for 45 seconds, 95 ° C for 45 seconds, 54 ° C for 30 seconds, 72 ° C for 60 seconds, and further for 72 ° C for 3 minutes. After completion of the reaction, a PCR product was confirmed by subjecting a part of the reaction solution to agarose electrophoresis.
[0077] PCR反応後、産物が増幅されたものは 8,261クローンであった。さらに産物を詳しく 検討した結果、 PCR産物が単一の遺伝子断片でないものやスメアーなものを除き、 最終的な解析対象としては 8,051クローンとした。なお 2003/01/06版の UniGeneデ ータベースでァノテーシヨンし直した結果、非重複な UniGene ID数としては 6,353で めつに。  [0077] After the PCR reaction, 8,261 clones were amplified. As a result of detailed examination of the products, the final analysis target was 8,051 clones, except for PCR products that were not single gene fragments or smears. As a result of re-ananotation using the 2003/01/06 version of UniGene database, the number of non-overlapping UniGene IDs was 6,353.
[0078] 得られた PCR産物は QIAGEN社製 QIAquick PCR Purification Kitで精製したの ち、ガラス基板上にスポットし、 cDNAマイクロアレイを得た。 1グラス当たり 2アレイをス ットした。 [0079] 実施例 1 (クラスタ解析による発がん性予測) [0078] The obtained PCR product was purified with QIAGEN QIAquick PCR Purification Kit and then spotted on a glass substrate to obtain a cDNA microarray. Two arrays per glass were installed. [0079] Example 1 (carcinogenicity prediction by cluster analysis)
(1) total RNAの取得  (1) Acquisition of total RNA
表 1〜4に示す化学物質をそれぞれ媒体に溶解し、溶液を調製した。化学物質とそ の物質番号、発がん性、使用した媒体、試験動物に投与した用量を表 1〜4に示す。  Each chemical substance shown in Tables 1 to 4 was dissolved in a medium to prepare a solution. Tables 1 to 4 show the chemical substances, their substance numbers, carcinogenicity, used media, and doses administered to test animals.
[0080] [表 1] [0080] [Table 1]
表 1 table 1
Figure imgf000018_0001
表 2
Figure imgf000018_0001
Table 2
Figure imgf000019_0001
表 3
Figure imgf000019_0001
Table 3
Figure imgf000020_0001
表 4
Figure imgf000020_0001
Table 4
Figure imgf000021_0001
日本チヤ一ルス ·リバ一社から入手した 5週令の雄性ラット (F344、 SPF系統)を 4 匹 Z群に分け、各群のラットに調製した溶液又は媒体を強制経口投与した。投与は 1 日 1回、 1、 3、 7、 14、 28日間行った。投与開女台力ら 2、 4、 8、 15、又は 29日目に各 個体の肝臓を採取した。肝臓から断片を切り出し、 total RNA保存安定用試薬である RNAlater (登録商標) RNA Stabilization Reagentに浸漬させた。これを室温で 24時 間放置後、 RNAlater RNA Stabilization Reagentに浸漬させたまま- 20°Cで保存した
Figure imgf000021_0001
Five-week-old male rats (F344, SPF strain) obtained from Nippon Chirus Riva Co., Ltd. were divided into 4 groups Z, and the prepared solution or vehicle was orally administered to the rats of each group. Administration was once a day for 1, 3, 7, 14, 28 days. The liver of each individual was collected on days 2, 4, 8, 15, or 29 of the administration platform. A fragment was excised from the liver and immersed in RNAlater (registered trademark) RNA Stabilization Reagent, a reagent for stabilizing and storing total RNA. At 24 hours at room temperature And then stored at -20 ° C while immersed in RNAlater RNA Stabilization Reagent
[0085] ラット組織から total RNAを抽出し、 QIAGEN社 BioRobot 3000を用いて QIAGEN 社 RNeasy Midi Kitにより精製した。精製法は製造会社の使用法に準じて行ったが、 概略は以下のとおりである。 [0085] Total RNA was extracted from rat tissue and purified using QIAGEN BioRobot 3000 using QIAGEN RNeasy Midi Kit. The purification method was performed according to the manufacturer's method of use. The outline is as follows.
[0086] 切り出した組織サンプル 50-100mgと破砕用ビーズ(直径 5 mm、ジルコ-ァ製)を 2 mLエツペンドルフチューブに入れた。 RLTバッファーを添カ卩した後、 Mixer Mill (QI AGEN社製)により 25 Hz 4分間で 2回組織破砕を行った。 5,000 X g 5分間遠心し、 未破砕物を沈殿させた。上清に 70%エタノールを添加、混合した後、 RNeasy Midi col umnへ添カ卩した。 3,000- 5,000 X g 5分間遠心した後、 RW1バッファーを添カ卩した。 3 ,000-5,000 X g 5分間遠心した後、 DNase I溶液 (QIAGEN社製)を添加し室温で 15 分間放置しさらに RW1 ノ ッファーを添カ卩した。 3,000-5,000 X g 5分間遠心した後、 R PEバッファーを添カ卩した。 3,000- 5,000 X g 2分間遠心した後、再度 RPEバッファー を添カ卩した。 3,000-5,000 X g 2分間遠心した後、 3,000-5,000 X gでさらに 5分間遠 心しカラムを乾燥させた。 RNase-free水を添カ卩し 5分間放置した後、 3,000-5,000 X g 2分間遠心することで RNA溶液を溶出させた。濃度及び回収率を向上させるために 溶出した RNA溶液を再度カラムに添カ卩し 5分間放置した後、 3,000-5,000 X g 2分間 遠心することで最終的な精製 RNA溶液を得た。  [0086] 50-100 mg of the excised tissue sample and crushing beads (diameter 5 mm, manufactured by Zircoa) were placed in a 2 mL Eppendorf tube. After adding RLT buffer, tissue disruption was performed twice at 25 Hz for 4 minutes using a Mixer Mill (QI AGEN). Centrifugation was performed at 5,000 × g for 5 minutes to precipitate uncrushed material. 70% ethanol was added to the supernatant, mixed, and added to RNeasy Midi column. After centrifugation at 3,000-5,000 X g for 5 minutes, RW1 buffer was added. After centrifuging at 3,000-5,000 X g for 5 minutes, DNase I solution (QIAGEN) was added and left at room temperature for 15 minutes to add RW1 knocker. After centrifugation at 3,000-5,000 × g for 5 minutes, RPE buffer was added. After centrifugation at 3,000-5,000 X g for 2 minutes, RPE buffer was added again. After centrifuging at 3,000-5,000 X g for 2 minutes, centrifuge at 3,000-5,000 X g for an additional 5 minutes to dry the column. After adding RNase-free water and allowing to stand for 5 minutes, the RNA solution was eluted by centrifugation at 3,000-5,000 X g for 2 minutes. In order to improve the concentration and recovery rate, the eluted RNA solution was again added to the column and allowed to stand for 5 minutes, and then centrifuged at 3,000-5,000 X g for 2 minutes to obtain the final purified RNA solution.
[0087] 精製 total RNAの純度を示す 260 nm/280 nm比は光学的測定装置を用いて測定 した。さらに精製 total RNAは Agilent社 BioAnalyser2100を用いてその泳動パターン を検査した。泳動には RNA6000nanoチップ (Agilent社製)を用い、操作法は製造会 社の使用法に準じて行った。精製 total RNAの濃度測定は光学的測定装置を用い た方法で行った。  [0087] The 260 nm / 280 nm ratio indicating the purity of the purified total RNA was measured using an optical measuring device. The purified total RNA was examined for its electrophoretic pattern using Agilent BioAnalyser2100. For the electrophoresis, an RNA6000nano chip (Agilent) was used, and the operation was performed according to the method used by the manufacturer. The concentration of purified total RNA was measured by a method using an optical measuring device.
[0088] 光学的測定装置として、分光光度計による場合は光路長 lcmの場合 1{吸光度 (260 nm)-吸光度 (320 nm)} = 40 ^ g RNA/mLとして計算した。  [0088] When the optical path length was 1 cm as an optical measuring apparatus, the calculation was made as 1 {absorbance (260 nm) -absorbance (320 nm)} = 40 ^ g RNA / mL.
[0089] (2)蛍光標識化 cDNAの作製 [0089] (2) Preparation of fluorescently labeled cDNA
精製 total RNA 20または 10 μ gを用いて、 CyScript逆転写酵素を用いて蛍光ラベ ル化 cDNAを作製した。 [0090] total RNAまたは mRNA(自家精製、クロンテック社製または北山ラベス株式会社製) を用い、以下の反応条件で蛍光ラベルイ匕を行った。最終反応液量は 50 Lで行った Using 20 or 10 μg of purified total RNA, fluorescently labeled cDNA was prepared using CyScript reverse transcriptase. [0090] Fluorescent labeling was performed using total RNA or mRNA (self-purified, manufactured by Clontech or Kitayama Labes Co., Ltd.) under the following reaction conditions. Final reaction volume was 50 L
[0091] 反応溶液の終濃度は total RNA 10-20 μ g、 Anchored Oligo(dT) (Amersham Biosci ence社製) 0.075 μ gゝ dCTP Nucleotide Mix 1 L、 1 X CyScript buffer (Amersham B ioscience社製)、 10 mM DTTゝ Cy3— dCTPまたは Cy5— dCTP (Amersham Bioscience 社製) 1 nmolである。 [0091] The final concentration of the reaction solution is 10-20 μg of total RNA, Anchored Oligo (dT) (manufactured by Amersham Bioscience) 0.075 μgo dCTP Nucleotide Mix 1 L, 1 X CyScript buffer (manufactured by Amersham Bioscience) 10 mM DTT ゝ Cy3- dCTP or Cy5-dCTP (Amersham Bioscience) 1 nmol.
[0092] RNAと Anchored Oligo(dT)の混合液を 70°C 5分静置した後、氷上に 1分静置した 。その他の成分を添カ卩した後 CyScript逆転写酵素 (Amersham Bioscience社製)を 10 0 unit添カ卩し 42°C 90分遮光静置した。 1 N NaOH 12.5 μ Lを添加し、 65°C 10分遮 光静置し、 RNAをカ卩水分解した。 1 N HC1 15 Lを添カ卩し中和した後 QIAGEN社製 MinElute PCR Purification Kitを用いて蛍光ラベル体を精製した。未反応の蛍光標 識核酸を除去するために PEノ ッファーによる洗浄は 2回行った。  [0092] A mixture of RNA and Anchored Oligo (dT) was allowed to stand at 70 ° C for 5 minutes, and then allowed to stand on ice for 1 minute. After adding other components, CyScript reverse transcriptase (manufactured by Amersham Bioscience) was added with 100 units and allowed to stand at 42 ° C for 90 minutes in the dark. 12.5 μL of 1 N NaOH was added, and the mixture was left to stand at 65 ° C for 10 minutes to digest the RNA. After 1 N HC1 15 L was added and neutralized, the fluorescent label was purified using the MinElute PCR Purification Kit manufactured by QIAGEN. In order to remove unreacted fluorescently labeled nucleic acid, washing with a PE nozzle was performed twice.
[0093] 投与群(高用量、低用量)を Cy3で標識し、コントロール群を Cy5で標識した。コント ロール群の 4匹力も作製した Cy5標識化 cDNAは精製が終了した時点で等量づっ 混合し、ノ、イブリダィゼーシヨン溶液作製には混合液力も分注した。  [0093] The administration group (high dose, low dose) was labeled with Cy3, and the control group was labeled with Cy5. Cy5-labeled cDNA, which was also produced in the control group of 4 animals, was mixed in equal amounts at the end of purification, and the mixed-solution power was also dispensed to prepare the hybridization solution.
[0094] (3) cDNAマイクロアレイへのハイブリダィゼーシヨン及び検出  [0094] (3) Hybridization to cDNA microarray and detection
最終的なハイブリダィゼーシヨン溶液 12 L当たりに Cy3ラベル体 4.2 μ L、 Cy5ラ ベル体 4.2 μ L、 20 X SSC 3 μ 10%SDS 0.6 μ Lになるように混合した後、 95°C 2分 遮光静置した。室温 3分遮光静置した後、 BSAブロッキング処理済みの cDNAマイク ロアレイに 12 μ L/アレイでスポットした。速やかに 24 mm X 32 mmカバーグラス (松 浪硝子製)でカバーした後、ハイプリカセット (Telechem社製、 日立ソフトウェア社製等 )にセットし 55°Cでー晚遮光静置した。その後ハイブリカセットから cDNAマイクロアレイ を取り出し, 2 X SSC/0.1%SDS溶液に浸漬してカバーグラスを取り除いた。室温で 2 X SSC/0.1%SDS溶液に 20分遮光浸漬し、さらに 0.2 X SSC/0.1%SDS溶液に 20分遮光 浸漬した。 42°Cの 0.2 X SSC/0.1%SDS溶液に 2回 20分遮光浸漬した後、 0.2 X SSC/ 0.1%SDS溶液、 0.05 X SSC溶液で洗浄した。遠心器を用いて乾燥させた後、 Agilent 社製 Microarray Scannerを用いて検出した。検出感度を示す PMT値は 100%を用い た。スキャン画像から各スポットの蛍光値の数値化は Axon Instruments社製 GenePixAfter mixing to 12 μL of the final hybridization solution to 4.2 μL of Cy3 label, 4.2 μL of Cy5 label, 20 μSSC 3 μ10% SDS 0.6 μL, 95 ° C 2 minutes left in the dark. After standing at room temperature for 3 minutes in the dark, it was spotted at 12 μL / array on a BSA-blocked cDNA microarray. After promptly covering with a 24 mm X 32 mm cover glass (manufactured by Matsunami Glass), it was set in a high pre-cassette (manufactured by Telechem, Hitachi Software, etc.) and allowed to stand at 55 ° C. with light shielding. The cDNA microarray was then removed from the hybrid cassette and immersed in a 2X SSC / 0.1% SDS solution to remove the cover glass. It was immersed in a 2 X SSC / 0.1% SDS solution at room temperature for 20 minutes in a light-shielded manner, and further immersed in a 0.2 X SSC / 0.1% SDS solution for 20 minutes in a light-shielded manner. After immersion in a 0.2 X SSC / 0.1% SDS solution at 42 ° C twice for 20 minutes, the plate was washed with 0.2 X SSC / 0.1% SDS solution and 0.05 X SSC solution. After drying using a centrifuge, detection was performed using an Agilent Microarray Scanner. PMT value indicating detection sensitivity is 100% It was. Axon Instruments' GenePix is used to quantify the fluorescence value of each spot from the scanned image.
Pro ver.4.0.1.17を用いて行った。 Pro version 4.0.1.17 was used.
[0095] cDNAマイクロアレイの BSAブロッキングは 0.1または 0.22 μ mのフイノレターで膜ろ 過した 1%BSAブロッキング溶液 (1%BSA、 4 X SSC、 2%SDS)中で 42°C 45分遮光静 置することで行った。 2回水中で振とう洗浄し遠心器を用いて乾燥させた後、ハイプリ ダイゼーシヨンに用いた。 [0095] BSA blocking of the cDNA microarray is performed at 42 ° C for 45 minutes in a 1% BSA blocking solution (1% BSA, 4 X SSC, 2% SDS) filtered with 0.1 or 0.22 μm of finolet. I went there. After washing twice in water and drying using a centrifuge, it was used for high lysis.
[0096] (4)解析に有効な遺伝子の選定 [0096] (4) Selection of effective genes for analysis
cDNAマイクロアレイに搭載した各遺伝子の発現量データに対して、以下に示すデ 一タクレンジングを行ヽ、解析に使用する遺伝子の選定を行った。  The following data cleansing was performed on the expression level data of each gene mounted on the cDNA microarray, and the genes used for analysis were selected.
[0097] a) cDNAマイクロアレイの数値化発現データには、それぞれのアレイ上のスポット( 遺伝子)の有効性を表すフラグ (flag)がつ 、ており、フラグが" 0〃 (有効)を示すスポッ トを選定した。 [0097] a) In the digitized expression data of cDNA microarrays, there is a flag (flag) indicating the effectiveness of the spot (gene) on each array, and the flag indicates “0〃 (valid)”. Selected.
[0098] b) 陰性対照遺伝子の lambda DNAの平均の発現量に標準偏差の 2倍を加えた値 以下の発現量を示す遺伝子は、ノイズデータと判断して除外した。 a)及び b)で選定後 の解析可能なスポット数力 3000未満のアレイのデータは解析には用いないこととし た。  [0098] b) Genes showing expression levels below the average expression level of lambda DNA of the negative control gene plus 2 standard deviations were excluded because they were judged as noise data. The data of the array that can be analyzed after selection in a) and b) is not used for the analysis.
[0099] c) 4個体力 抽出した 2個体間の相関計数を計算し、総当りで 6通りの組み合わせ のうち相関係数力 以下を 2回以上示す場合は、相関の悪いデータとみなし解析対 象力も除外した。  [0099] c) Four individual forces When the correlation coefficient between the two extracted individuals is calculated, and the correlation coefficient power is less than two times out of the six combinations in total, it is regarded as data with poor correlation and the analysis pair Elephant power was also excluded.
[0100] d) 実験毎にばらつきの少ない遺伝子を選定するため、サンプル投与群のシグナ ル値 (n=4)と媒体対照群(コントロール)のシグナル値 (n=4)間でウエルチ t検定 (Welc h's t-test)を行い、 p≤ 0.05である遺伝子を選定した (帰無仮説:サンプル投与群 (n= 4)のシグナル値と媒体対照群 (n=4)の遺伝子発現量 (シグナル値)には差がな 、)。  [0100] d) Welch t test between the signal value (n = 4) of the sample administration group and the signal value (n = 4) of the vehicle control group (control) in order to select genes with little variation for each experiment. Welc h's t-test) and selected genes with p ≤ 0.05 (null hypothesis: signal value in sample administration group (n = 4) and gene expression level in vehicle control group (n = 4) (signal value) ) Is no difference,).
[0101] e) 統計的に有意といえる n=4の平均発現比を示す遺伝子を選定するため、検出力 を基準にしきい値を算出した。結果、 LogRatio (化合物投与群の発現量と媒体対照 群の発現量の比を Log変換した値)が 0を基準に 0.8以上離れていれば、有意な発現 比であることが確認できた為、 LogRatio=|0.8|をしき!、値とし、 LogRatioが 0.8以上- 0.8 以下変動して!/ヽる遺伝子を選定した。 [0102] 上記 〜 e)に従ってデータクレンジングを行った結果、解析に有効な遺伝子数は 28 44であった。これらの遺伝子の部分塩基配列に相補的な塩基配列を配列番号 1〜28 44に示す。 [0101] e) Threshold values were calculated based on power to select genes with an average expression ratio of n = 4, which were statistically significant. As a result, if the LogRatio (log-transformed ratio of the expression level in the compound-administered group and the expression level in the vehicle control group) was 0.8 or more apart from the reference 0, it was confirmed that the expression ratio was significant. LogRatio = | 0.8 | was set as the threshold value, and the gene whose logRatio fluctuated between 0.8 and 0.8 was selected. [0102] As a result of data cleansing according to the above-e), the number of genes effective for the analysis was 2844. The nucleotide sequences complementary to the partial nucleotide sequences of these genes are shown in SEQ ID NOs: 1 to 2844.
[0103] 更に、配列番号 1〜2844に示す塩基配列に相補的な塩基配列を有する遺伝子の ュ-ジーン(UniGene)番号と、それぞれの塩基配列に付与したクローン IDとを表 5〜 45に示す。  [0103] Further, Tables 5 to 45 show the gene numbers (UniGene) of the genes having base sequences complementary to the base sequences shown in SEQ ID NOs: 1 to 2844 and the clone IDs assigned to the respective base sequences. .
[0104] [表 5] [0104] [Table 5]
[9挲] [SOTO] [9 挲] [SOTO]
Figure imgf000026_0001
Figure imgf000026_0001
s拏  s 拏
8T99lC/900Zdf/13d z C06Cl0/.00i OAV 表 6 8T99lC / 900Zdf / 13d z C06Cl0 / .00i OAV Table 6
Figure imgf000027_0001
7] 表 7
Figure imgf000027_0001
7] Table 7
Figure imgf000028_0001
] 表 8
Figure imgf000028_0001
] Table 8
Figure imgf000029_0001
9] [Οΐ挲] [60Ϊ0]
Figure imgf000029_0001
9] [Οΐ 挲] [60Ϊ0]
Figure imgf000030_0001
Figure imgf000030_0001
6拏 6 拏
l99l£/900Zdf/X3d 83 £06CZ0/Z.00r OAV 表 1 0 l99l £ / 900Zdf / X3d 83 £ 06CZ0 / Z.00r OAV Table 1 0
Figure imgf000031_0001
1] m [τπο]
Figure imgf000031_0001
1] m [τπο]
Figure imgf000032_0001
Figure imgf000032_0001
I T拏 I T 拏
T99l£/900Zdf/X3d OS εο6εζο/ζ.οοζ OAV βπο] T99l £ / 900Zdf / X3d OS εο6εζο / ζ.οοζ OAV βπο]
Figure imgf000033_0001
Figure imgf000033_0001
T99l£/900Zdf/13d e06€I0/L00I O 表 1 3 T99l £ / 900Zdf / 13d e06 € I0 / L00I O Table 1 3
Figure imgf000034_0001
4] 表 1 4
Figure imgf000034_0001
Four] Table 1 4
Figure imgf000035_0001
5] m [sno]
Figure imgf000035_0001
Five] m [sno]
Figure imgf000036_0001
T99lC/900Zdf/X3d εοόεζο/ζ,οοζ OAV
Figure imgf000037_0001
Figure imgf000036_0001
T99lC / 900Zdf / X3d εοόεζο / ζ, οοζ OAV
Figure imgf000037_0001
Figure imgf000037_0003
Figure imgf000037_0003
Figure imgf000037_0002
T99lC/900Zdf/X3d εο6εζο .οοε O 表 1 7
Figure imgf000037_0002
T99lC / 900Zdf / X3d εο6εζο .οοε O Table 1 7
Figure imgf000038_0001
8] 表 1 8
Figure imgf000038_0001
8] Table 1 8
Figure imgf000039_0001
9]
Figure imgf000040_0001
Figure imgf000039_0001
9]
Figure imgf000040_0001
Figure imgf000040_0002
Figure imgf000040_0002
6 I 6 I
T99lC/900Zdf/X3d 8S C06CZ0/.00Z OAV 表 2 0 T99lC / 900Zdf / X3d 8S C06CZ0 / .00Z OAV Table 2 0
Figure imgf000041_0001
1]
Figure imgf000042_0001
Figure imgf000041_0001
1]
Figure imgf000042_0001
Figure imgf000042_0002
Figure imgf000042_0002
l99l£/900Zdf/13d 0ャ £06£Z0IL00Z O L06££ 89SI 8 oi 'ua 9ΐ9εε l99l £ / 900Zdf / 13d 0 £ 06 £ Z0IL00Z O L06 ££ 89SI 8 oi 'ua 9ΐ9εε
Λ 688EC im iti ' ua 6281  Λ 688EC im iti 'ua 6281
8998 998SS 99£I 96, 'u U322  8998 998SS 99 £ I 96, 'u U322
8 l9"UH S98SS 99CI 69 t'u 9952C
Figure imgf000043_0001
8 l9 "UH S98SS 99CI 69 t'u 9952C
Figure imgf000043_0001
098CS I nz\  098CS I nz \
S9S1 9 SSC \  S9S1 9 SSC \
9S101 · Z2S££ 6丽 'n S S mi  9S101Z2S ££ 6 丽 'n S S mi
1981 mi οΐδεε 09SI zz  1981 mi οΐδεε 09SI zz
808CC 69£1 \zn a 'U 89SI 609εε \ 808CC 69 £ 1 \ zn a 'U 89SI 609εε \
n 1921 z z 6121  n 1921 z z 6121
OOOi 'ua 9921 9989 εε 8121  OOOi 'ua 9921 9989 εε 8121
S9C1 i!SI  S9C1 i! SI
909 £ 'u m\ ΙίΗ2 91C1  909 £ 'u m \ ΙίΗ2 91C1
89 SSSl 9189 -u¾ SlSl  89 SSSl 9189 -u¾ SlSl
igoif 29 1 in  igoif 29 1 in
0i6iru¾ 19CI U8 ' u¾ ειει  0i6iru¾ 19CI U8 'u¾ ειει
\ z 09CI 8 (^m zin  \ z 09CI 8 (^ m zin
OOiSS 666S01 -UH L^ Π81 OOiSS 666S01 -UH L ^ Π81
z 01C1  z 01C1
OSAOOI ~ in\ 8腦 60Π  OSAOOI ~ in \ 8 腦 60Π
069εε \ ZZKZ 80S1  069εε \ ZZKZ 80S1
889εε s si LOU z z m\ 90SI  889εε s si LOU z z m \ 90SI
O 899εε \ I818E'UH torn 90Π  O 899εε \ I818E'UH torn 90Π
90 S m\  90 S m \
18SC6"u¾ 6 S m\ ma C0CI  18SC6 "u¾ 6 S m \ ma C0CI
8 60I 'u¾ \mz 0^1 z  8 60I 'u¾ \ mz 0 ^ 1 z
19019 'u¾ 6CS1 ιοει e iiru¾ I ε οοει  19019 'u¾ 6CS1 ιοει e iiru¾ I ε οοει
ζεει 09m 6621  ζεει 09m 6621
Z 9Cl "u¾ mzz 9C8I 86ZI  Z 9Cl "u¾ mzz 9C8I 86ZI
0 I 'u¾ 9εει m\  0 I 'u¾ 9εει m \
z\ \ 8H6'ua H222 96SI z \\ 8H6'ua H222 96SI
\ 20999 'UH 龍 ¾ ιεει I9Sil "UH m\  \ 20999 'UH Dragon ¾ ιεει I9Sil "UH m \
αιく一 二て GI :— ニて ^泰 a l99TC/900Zdf/X3d εοόεζο/.οοζ OAV m ιζζιο] αι く 一二 GI : — ニ て ^ 泰 a l99TC / 900Zdf / X3d εοόεζο / .οοζ OAV m ιζζιο]
Figure imgf000044_0001
Figure imgf000044_0001
T99l£/900rdf/X3d zv εο6ε oo OAV T99l £ / 900rdf / X3d zv εο6ε oo OAV
Figure imgf000045_0001
T99TC/900Zdf/13d C06fl0/.00Z O m [esTo]
Figure imgf000045_0001
T99TC / 900Zdf / 13d C06fl0 / .00Z O m [esTo]
Figure imgf000046_0001
Figure imgf000046_0001
s s拏 l99TC/900Zdf/X3d ャャ εο6εζο/.οοζ; OAV 表 2 6 ss 拏 l99TC / 900Zdf / X3d εο6εζο / .οοζ; OAV Table 26
Figure imgf000047_0001
27] 表 2 7
Figure imgf000047_0001
27] Table 2 7
Figure imgf000048_0001
8] 表 2 8
Figure imgf000048_0001
8] Table 2 8
Figure imgf000049_0001
9] [OS挲] [62 TO]
Figure imgf000049_0001
9] [OS 挲] [62 TO]
Figure imgf000050_0001
Figure imgf000050_0001
6 S拏 6 S 拏
T99lC/900Zdf/X3d 817 C06CZ0/ .00Z OAV [οετο] T99lC / 900Zdf / X3d 817 C06CZ0 / .00Z OAV [οετο]
Figure imgf000051_0001
Figure imgf000051_0001
o ε拏 o ε 拏
l99TC/900Zdf/13d 6ャ eo6czo/ .ooz OJW 表 3 1 l99TC / 900Zdf / 13d 6 eo6czo / .ooz OJW Table 3 1
Figure imgf000052_0001
2] [εε挲] βειο]
Figure imgf000052_0001
2] [εε 挲] βειο]
Figure imgf000053_0001
Figure imgf000053_0001
z ε拏 T99lC/900Zdf/X3d 1-9 εο6εζο/ .οοζ OAV mm [εειο] z ε 拏 T99lC / 900Zdf / X3d 1-9 εο6εζο / .οοζ OAV mm [εειο]
Figure imgf000054_0001
Figure imgf000054_0001
£ ε拏  £ ε 拏
8l99l£/900idf/13«I 39 εοόειο/ιοοζ OAV [ss挲] [^ετο] 8l99l £ / 900idf / 13 «I 39 εοόειο / ιοοζ OAV [ss 挲] [^ ετο]
Figure imgf000055_0001
Figure imgf000055_0001
^ ε拏 ^ ε 拏
T99lC/900Zdf/X3d 89 εο6εζο/ .οοζ OAV [9ε挲] [ssio] T99lC / 900Zdf / X3d 89 εο6εζο / .οοζ OAV [9ε 挲] [ssio]
Figure imgf000056_0001
Figure imgf000056_0001
l99TC/900Zdf/X3d £06£WL00Z OAV
Figure imgf000057_0001
l99TC / 900Zdf / X3d £ 06 £ WL00Z OAV
Figure imgf000057_0001
Figure imgf000057_0002
Figure imgf000057_0002
9 ε拏 9 ε 拏
T99lC/900Zdf/X3d 99 εο6εζο/.οοζ OAV
Figure imgf000058_0001
T99lC / 900Zdf / X3d 99 εο6εζο / .οοζ OAV
Figure imgf000058_0001
Figure imgf000058_0002
Figure imgf000058_0002
L ε拏 T99lC/900Zdf/X3d 99 εο6εζο/.οοζ OAV [6ε挲] [8ε TO] L ε 拏 T99lC / 900Zdf / X3d 99 εο6εζο / .οοζ OAV [6ε 挲] [8ε TO]
Figure imgf000059_0001
Figure imgf000059_0001
8 ε拏 8 ε 拏
T99lC/900idf/X3d Z9 C06CZ0/Z,00∑; 表 3 9 T99lC / 900idf / X3d Z9 C06CZ0 / Z, 00∑; Table 3 9
Figure imgf000060_0001
40] [ 挲] [0W0]
Figure imgf000060_0001
40] [挲] [0W0]
Figure imgf000061_0001
Figure imgf000061_0001
0 拏 0 拏
T99lC/900Zdf/X3d 69 εοόεζο/ .οοζ OAV zrni [ ΪΟ] T99lC / 900Zdf / X3d 69 εοόεζο / .οοζ OAV zrni [ΪΟ]
Figure imgf000062_0001
Figure imgf000062_0001
l 拏  l 拏
8l99lC/900Zdf/X3d 09 £06 0脚 Z ΟΛ / 8ϊ99ϊε9002/:τ1£ OAV 8l99lC / 900Zdf / X3d 09 £ 06 0 leg Z ΟΛ / 8ϊ99ϊε9002 /: τ1 £ OAV
Figure imgf000063_0002
Figure imgf000063_0001
Figure imgf000063_0002
Figure imgf000063_0001
[0142] (5)発がん物質の分類 [0142] (5) Classification of carcinogens
発がん物質 39物質 (表 1〜4に示した発がん物質力 ジ (2-ェチルへキシル)フタレ ートとフエノバルビタールを除外)及び非発がん物質 20物質 (表 1〜4に示した非発が ん物質)の投与期間 28日間の投与群について、以下の手順で化学物質の発がん性 を予測した。  39 carcinogens (excluding the carcinogens di (2-ethylhexyl) phthalate and phenobarbital shown in Tables 1 to 4) and 20 non-carcinogens (non-carcinogens shown in Tables 1 to 4) The carcinogenicity of the chemical substance was predicted in the following procedure for the 28-day administration group.
[0143] 発がん物質群と非発がん物質群の間で発現量差が有意である遺伝子セットを、ゥ エルチ t値 (Welch's t-value)により選定した。選定した遺伝子セットの発現パターン の分類を Gene Maths (Applied Maths, Sint- Martens- Latem, Belgium)のクラスタ解析 機能を用いて行い、榭形図の形状力 クラスタを決定した。ウエルチ t値の選定条件 を変化させ、数パターンの遺伝子セットにより物質のクラスタ構成について確認を行 V、、遺伝子セットを変化させても安定して同じクラスタを形成する 2つの発がん物質の グループ 1、 2を選定した。  [0143] A gene set having a significant difference in expression level between the carcinogen group and the non-carcinogen group was selected based on Welch's t-value. The expression pattern of the selected gene set was classified using the cluster analysis function of Gene Maths (Applied Maths, Sint-Martens- Latem, Belgium) to determine the shape force cluster of the saddle diagram. Change the Welch t-value selection conditions, confirm the cluster structure of the substance with several patterns of gene sets V, group 1 of two carcinogens that stably form the same cluster even if the gene set is changed, 2 was selected.
[0144] 遺伝子セットの選定条件(ウエルチ t値の値)と、選定した遺伝子のクローン IDを表 4 3に示す。更に、それぞれのウエルチ t値で選定した遺伝子セットを用いてクラスタ解 祈した榭形図を図 1〜6に示す。図 1、 3、 5は、それぞれ |t値 |≥2.0、 2.3、 2.5の条件 で選定した遺伝子セットを用いたクラスタ解析により得られた榭形図の一部である。 図 2、 4、 6は、それぞれ図 1、 3、 5に示す榭形図の残りの部分である。図 1〜6中、參 は発がん物質、〇は非発がん物質を表す。  [0144] Table 43 shows the gene set selection conditions (Welch t-value) and the clone ID of the selected gene. In addition, Figures 1 to 6 show saddle diagrams that were clustered using the gene set selected for each Welch t value. Figures 1, 3, and 5 are part of the saddle plots obtained by cluster analysis using gene sets selected under conditions of | t values | ≥2.0, 2.3, and 2.5, respectively. Figures 2, 4, and 6 are the remainder of the saddle view shown in Figures 1, 3, and 5, respectively. In Figures 1-6, 參 represents a carcinogen and ◯ represents a non-carcinogen.
[0145] [表 43] [0145] [Table 43]
表 4 3 Table 4 3
Figure imgf000065_0001
次に、発がん物質グループ 1、 2を除いた残りの発がん物質と、全非発がん物質を 用いて、残りの発がん物質中に存在する発現パターンの近!、物質グループを同じ方 法で選定した。即ち、残りの発がん物質投与群と、全非発がん物質投与群の間で特 徴的に変動して 、る遺伝子をウエルチ t値で選定した後、その遺伝子セットを用いて クラスタ解析を行った。ウエルチ t値の選定条件を変化させ、数パターンの遺伝子セッ トにより物質のクラスタ構成の確認を行い、常に安定してクラスタを形成する発がん物 質グループ 3を選定した。遺伝子セットの選定条件(ウエルチ t値の値)と、選定した遺 伝子のクローン IDを表 44に示す。更に、それぞれのウエルチ t値で選定した遺伝子 セットを用いてクラスタ解析した榭形図を図 7〜9に示す。図 7、 8、 9は、それぞれ |t値 |≥2.3、 2.5、 2.8の条件で選定した遺伝子セットを用いたクラスタ解析により得られた 榭形図である。図 7〜9中、參は発がん物質、〇は非発がん物質を表す。
Figure imgf000065_0001
Next, using the remaining carcinogens excluding carcinogen groups 1 and 2 and all non-carcinogens, the substance groups were selected in the same way using the same expression patterns that exist in the remaining carcinogens. That is, the genes that varied characteristically between the remaining carcinogen-administered group and all the non-carcinogen-administered groups were selected based on the Welch t value, and then cluster analysis was performed using the gene set. We changed the Welch t-value selection conditions, confirmed the cluster structure of the substances using several gene sets, and selected carcinogen group 3 that always forms clusters stably. Table 44 shows the gene set selection conditions (Welch t-value) and the clone ID of the selected gene. In addition, Figs. 7-9 show the saddle diagrams that were cluster-analyzed using the gene set selected for each Welch t value. Figures 7, 8 and 9 show the t values | ≥Diagrams obtained by cluster analysis using gene sets selected under conditions of 2.3, 2.5, and 2.8. In Figures 7-9, 參 represents a carcinogen and ◯ represents a non-carcinogen.
[表 44]  [Table 44]
表 4 4 Table 4 4
Figure imgf000066_0001
Figure imgf000066_0001
発がん物質グループ 1〜3に分類された化学物質は以下の通りである。  The chemical substances classified into carcinogen groups 1 to 3 are as follows.
(グループ 1) 四塩化炭素、ジェチル-トロサミン、 2--トロプロパン、 N-二トロソモルホリン、ェチニ ルエストラジオール、サフロール、 N-ニトロソピペリジン、ァセタミド、ジェチルスチル ベストローノレ (Group 1) Carbon tetrachloride, jetyl-tolosamine, 2-tropropane, N-nitrosomorpholine, ethynylestradiol, safrole, N-nitrosopiperidine, acetamide, jetylstil bestronore
(グループ 2)  (Group 2)
クロフイブレート、 α -へキサクロロシクロへキサン、トリクロロエチレン、 Ν-ニトロソジメ チラミン、 2-ァミノ- 3,8-ジメチリミダゾ [4,5-f]キノキサリン、 2-ァミノ- 1-メチル -6-フエ- リミダゾ [4,5-b]_ピリジン、ベンツ (a)アントラセン、 7, 12-ジメチルベンツアントラセン、 3- メチルコラントレン、 4-ニトロキノリン- 1-オキサイド、 N-ェチル -N-二トロソ尿素、タン- ン酸、ウレタン、フエ-トインナトリウム塩、 D,L-ェチォニン Clofibrate, α -hexachlorocyclohexane, trichlorethylene, ニ ト ロ -nitrosodimethylmethylamine, 2-amino-3,8-dimethylirimidazo [4,5-f] quinoxaline, 2-amino-1-methyl-6-phen- Rimidazo [4,5-b] _pyridine, Benz (a) Anthracene, 7, 12-Dimethylbenzanthracene, 3-Methylcholanthrene, 4-Nitroquinoline-1-oxide, N-Ethyl-N-nitrosourea Tannic acid, urethane, sodium phosphate salt, D, L-ethionine
(グループ 3)  (Group 3)
トリクロ口酢酸、ペンタクロルェタン、クロ口ホルム、ベンゾ(a)ピレン、 N-メチル - Ν'- -ト 口- Ν-ニトロソグァ二ジン、テトラクロロエチレン Trichloro oral acetic acid, pentachloroethane, black mouth form, benzo ( a ) pyrene, N-methyl-Ν '-to --- nitrosoguanidine, tetrachloroethylene
(6)予測式作成手順と検証方法  (6) Prediction formula creation procedure and verification method
予測式を作成する前に、対象とする発がん物質グループ ·非発がん物質グループ を決定した。発がん物質グループは、発がん物質グループ 1〜3から選択した。非発 がん物質グループとしては、解析が可能な全ての非発がん物質を用いた。  Before creating the prediction formula, the target carcinogen group and non-carcinogen group were determined. The carcinogen group was selected from carcinogen groups 1-3. The non-carcinogenic substance group used all non-carcinogenic substances that can be analyzed.
[0149] 選択した発がん物質グループと非発がん物質グループの間で、特徴的な変動を示 す遺伝子セットをそれぞれウエルチ t値と、各発がん物質グループの LogRatioの平均 値の絶対値が、非発がん物質グループの LogRatioの平均値の絶対値より大き!/ヽと!ヽ う条件で選定した。 [0149] Welch t-values are gene sets that show characteristic variation between the selected carcinogen group and non-carcinogen group, and the absolute value of the average LogRatio of each carcinogen group is the non-carcinogen group. It was selected under the condition that it was larger than the absolute value of the average value of LogRatio of the group.
[0150] Support Vector Machine (SVM)と!、う教師付き分類方法に基づ 、て作成されたフリ 一ソフト SVMlight (URL http://svmlight.joachims.org/から入手)を用い、以下の手順 で発がん性予測式を作成した。  [0150] Using Support Vector Machine (SVM) and free software SVMlight (based on URL http://svmlight.joachims.org/) created based on supervised classification method, follow the steps below A carcinogenicity prediction formula was created in
[0151] a) 発がん物質グループと、非発がん物質グループに属する各物質数が等しくない 場合、多 、方の物質グループ力 少な 、方の物質の数だけランダムサンプリングを 行い、両グループの物質数を等しくした。 [0151] a) If the number of substances belonging to the carcinogen group and the non-carcinogen group is not equal, perform random sampling for the number of the two substances with the smaller number of substances in both groups, and calculate the number of substances in both groups. It was equal.
[0152] b) 物質数を等しくした両物質グループと、選定した遺伝子セットを用いて SVMlight で学習させ、予測式を作成した。 [0153] c) 予測式の有効性を検証する為に、予測式を作成する為に用いた両物質グルー プ(トレーニングセット)の発がん性予測と、検証手法の一つである物質のリーブ ワン アウト(Leave one out)によるクロスバリデーシヨンを行なった。 [0152] b) Using both substance groups with the same number of substances and the selected gene set, we learned with SVMlight and created a prediction formula. [0153] c) Carcinogenicity prediction of both substance groups (training set) used to create the prediction formula to verify the effectiveness of the prediction formula, and leave one of the substances that is one of the verification methods Cross validation by Leave one out was performed.
[0154] d) 予測式作成に用いていない残りの物質データ (テストセット)の予測を行なった。 [0154] d) Prediction of the remaining substance data (test set) not used in creating the prediction formula.
[0155] e) 最も高い予測率を示す遺伝子セットが得られるまで選定条件を調整し、 a)〜 ま での手順を繰り返し行った。 [0155] e) The selection conditions were adjusted until the gene set showing the highest prediction rate was obtained, and the procedures from a) to were repeated.
[0156] (7)発現パターン毎の予測式作成 [0156] (7) Predictive formula creation for each expression pattern
発がん物質グループ 1に関する発がん性予測式 (0を、 (6) a)〜 の手順に従って作 成した。構築したグループ 1に関する予測式 (0を用いて、トレーニングセットとテストセ ットの予測を行なった結果を表 45に示す。  Carcinogenicity prediction formula for carcinogen group 1 (0 was created according to the procedures in (6) a). Table 45 shows the results of prediction of the training set and test set using the prediction formula (0) for the constructed group 1.
[0157] [表 45] 表 4 5 [0157] [Table 45] Table 4 5
Figure imgf000068_0001
Figure imgf000068_0001
[0158] 結果として、トレーニングセットは、 100%予測できた。予測式 (0は、 L00クロスバリデ ーシヨンにより 89.7%の確率で、未知の発がん物質グループ 1を予測できることが確 認できた。また、テストセットの発がん物質はほとんど予測できず、非発がん物質につ いては 81.8%予測できた。この結果から、予測式 (0は、グループ 1の変動パターンに 特ィ匕した予測式であり、発がん物質グループ 2、 3は、変動パターンが異なる為に予 測できな力つたと考えられる。 [0158] As a result, the training set was 100% predictable. Prediction formula (0 was confirmed to be able to predict group 1 of unknown carcinogens with a probability of 89.7% by L00 cross-validation. Also, carcinogens in the test set could hardly be predicted, and non-carcinogens Was 81.8%, and this result shows that the prediction formula (0 is the fluctuation pattern of group 1) It is a special prediction formula, and carcinogen groups 2 and 3 are thought to have been unable to predict due to different fluctuation patterns.
[0159] 同様に発がん物質グループ 2、グループ 3につ!/、ての予測式 GO及び (iii)を作成した[0159] Similarly, for Carcinogen Group 2 and Group 3, the prediction formula GO and (iii) were created.
。それぞれの予測式を用いて各々のトレーニングセット、テストセットを予測した結果 を表 46、 47に示す。 . Tables 46 and 47 show the results of predicting each training set and test set using each prediction formula.
[0160] [表 46] 表 4 6 [0160] [Table 46] Table 4 6
Figure imgf000069_0001
Figure imgf000069_0001
[0161] [表 47] [0161] [Table 47]
表 4 7 Table 4 7
Figure imgf000070_0001
Figure imgf000070_0001
[0162] グループ 2、 3の予測結果についても、グループ 1の結果と同じくトレーニングセット とテストセットの非発がん物質は比較的高 、予測率を示した。 L00クロスノくリデーショ ンの結果、予測式 GOについては 82.9%、予測式 (iii)については 84.6%の確率で、グ ループ 2、グループ 3を予測できることが確認できた。グループ 1の場合と同様に、予 測式 (ii)、 Gii)は、物質グループに特異的な予測式であるため、テストセットの発がん物 質は予測できな力つた。 [0162] As with the results of Group 1, the prediction results for Groups 2 and 3 were relatively high for the non-carcinogens in the training set and test set. As a result of L00 cross-reduction, it was confirmed that Group 2 and Group 3 could be predicted with a probability of 82.9% for the prediction equation GO and 84.6% for the prediction equation (iii). As in the case of Group 1, the prediction formulas (ii) and Gii) are predictive formulas specific to the substance group, so the carcinogenicity of the test set was unpredictable.
[0163] (8)予測フローの構築  [0163] (8) Construction of prediction flow
(7)で作成した各発がん物質グループ毎の予測式を組み合わせることにより、遺伝 子発現パターンの異なる発がん物質を予測する予測フローを構築した(図 10)。予測 式作成に用いた 59物質のデータを、予測フローに適用した結果、予測式 (0では発が ん物質力 ¾物質予測できたが、非発がん物質 2物質を発がん物質と誤って予測した。 予測式 (0で発がん物質と予測された 11物質を除!ヽた残りの物質につ!ヽて予測式 GO で予測した結果、発がん物質は 27物質予測できたが、非発がん物質 5物質を誤って 発がん物質と予測した。更に、予測式 GOで発がん物質と予測された 22物質を除き、 残りの物質について予測式 (iii)で予測した結果、発がん物質 1物質を予測できたが、 非発がん物質 2物質を誤って発がん物質と予測した。最終的に予測できない発がん 物質は 2物質だった。 By combining the prediction formulas for each carcinogen group created in (7), a prediction flow for predicting carcinogens with different gene expression patterns was constructed (Figure 10). As a result of applying the data of 59 substances used in creating the prediction formula to the prediction flow, the prediction formula (0 was able to predict carcinogenicity ¾ substance, but two non-carcinogenic substances were incorrectly predicted as carcinogens. Prediction formula (excluding 11 substances that were predicted to be carcinogens at 0!) For the remaining substances! As a result of predicting by the prediction formula GO, 27 carcinogens could be predicted, but 5 non-carcinogens. As a result of predicting the remaining substances using the prediction formula (iii) except for 22 substances that were predicted to be carcinogens using the prediction formula GO, one carcinogen could be predicted. Two non-carcinogens were incorrectly predicted as carcinogens. There were two carcinogens that could not be predicted in the end.
[0164] 発がん物質に特徴的なパターンによる発がん物質グループ毎に作成した予測式を 組み合わせ、予測フローによる発がん性予測を行なった結果、 37物質の発がん物質 を予測することができた。  [0164] As a result of combining the prediction formulas created for each carcinogen group with patterns characteristic to carcinogens and performing carcinogenicity prediction using the prediction flow, 37 carcinogens could be predicted.
[0165] 実施例 2 (決定木による発がん性予測)  [0165] Example 2 (carcinogenicity prediction by decision tree)
実施例 1の(1)〜 (4)で得られた発現量データについて決定木による解析を行った  The expression data obtained in (1) to (4) of Example 1 were analyzed using a decision tree
[0166] 決定木による解析を行うにあたり、データクレンジング後のデータに対して次のよう な数値変換を行った。 [0166] In performing analysis using a decision tree, the following numerical conversion was performed on the data after data cleansing.
[0167] 化合物投与群の発現量と媒体対照群の発現量の比 (Ratio)を Logに変換した値 (Log Ratio)を算出した。 LogRatio≥0.8 (LogRatioで変動が有意といえる 0.8を採用)の時は 、発現量が上がったとみなし、全て 1に変換した。同様に、 LogRatio≤_0.8の時は発 現量が下がったとみなし、全て- 1に変換した。それ以外の場合は、全て変動していな いとみなし、 0に変換した。  [0167] A value (Log Ratio) obtained by converting the ratio (Ratio) between the expression level of the compound administration group and the expression level of the vehicle control group into Log was calculated. When LogRatio ≥ 0.8 (0.8, which can be said to have a significant change in LogRatio), it was considered that the expression level had increased, and all were converted to 1. Similarly, when LogRatio ≤_0.8, the amount of expression was considered to have decreased, and all were converted to -1. In all other cases, it was assumed that there was no change and converted to 0.
[0168] 決定木の解析は Classification and Regression Trees Ver.5 (Salford Systems)を用 V、て行った。以下の条件で解析を行った結果を図 11に示す。  [0168] The decision tree was analyzed using Classification and Regression Trees Ver.5 (Salford Systems). Figure 11 shows the results of analysis under the following conditions.
•解析対象物質 発がん物質 40物質、非発がん物質 21物質  • Substances to be analyzed 40 carcinogens, 21 noncarcinogens
•遺伝子セット データクレンジングで残った 897遺伝子  • 897 genes remaining after gene set data cleansing
'分岐アルゴリズム Gini分岐ルールを採用  'Branch algorithm Gini branch rule is adopted
'クロスバリデーシヨン 10- fold Cross Validation  '10 -fold Cross Validation
なお、図 11中、「Node」は分岐点を、「Terminal node」は末端分岐点を示す。「ID」 はクローン ID番号、「W」はその分岐点に分類された物質数、「TS」はその末端分岐点 に分類された物質番号である。物質番号のうち、下線があるものは発がん物質を、下 線がな!、ものは非発がん物質を示す。  In FIG. 11, “Node” indicates a branch point, and “Terminal node” indicates a terminal branch point. “ID” is the clone ID number, “W” is the number of substances classified at the branch point, and “TS” is the substance number classified at the terminal branch point. Substance numbers with underline indicate carcinogens, underlined! Indicate non-carcinogens.
[0169] 図 11に示すように、分岐点 1で選定された ID:35953の遺伝子発現量が上がった場 合について (分岐点 7)、末端分岐点 7では発がん物質のみが分類され、末端分岐点 8では両カテゴリの物質が混在した。また、遺伝子発現量が下がった又は変動しなか つた場合 (分岐点 2より右側の Tree)について、末端分岐点 1,3,4,6では発がん物質の みが分類された。末端分岐点 2に分類された 9物質のうち、 7物質は発がん物質であ つたことから、末端分岐点 2は発がん物質が分類されており、非発がん物質 2物質が 誤って発がん物質に分類されたと考えられる。末端分岐点 5では非発がん物質のみ 分類された。 7つの分岐点で選定された遺伝子を表 48に示す。 [0169] As shown in Fig. 11, when the gene expression level of ID: 35953 selected at branch point 1 is increased (branch point 7), only carcinogens are classified at terminal branch point 7, and terminal branching is performed. At point 8, substances from both categories were mixed. In addition, gene expression level decreased or did not fluctuate In this case (Tree on the right side of branch point 2), only carcinogens were classified at terminal branch points 1,3,4,6. Of the 9 substances classified as terminal branch point 2, 7 were carcinogens, so terminal branch point 2 was classified as a carcinogen, and 2 non-carcinogens were mistakenly classified as carcinogens. It is thought. At terminal branch point 5, only non-carcinogenic substances were classified. Table 48 shows the genes selected at the seven branch points.
[0170] [表 48] 表 4 8 [0170] [Table 48] Table 4 8
Figure imgf000072_0001
Figure imgf000072_0001
[0171] 7つの分岐点で構築した榭形図は、クロスバリデーシヨンの結果、判別不能の 7物質 を除いた 52物質の発がん性を予測することができた。 [0171] As a result of cross-validation, the saddle diagram constructed with seven branch points could predict the carcinogenicity of 52 substances, excluding 7 substances that could not be distinguished.
[0172] 実施例 1及び 2においては、化学物質の発がん性の予測率を算出するため、発が ん物質と非発がん物質を解析の対象にして榭形図を作成した。発がん物質のみを用 いて榭形図を作成した場合であっても発がん物質は実施例 1又は 2と同様に分類さ れ、被検物質の発がん性を予測することができる。 [0172] In Examples 1 and 2, in order to calculate the predictive rate of carcinogenicity of chemical substances, saddle diagrams were created for carcinogenic and non-carcinogenic substances. Even when a saddle diagram is created using only carcinogens, carcinogens are classified in the same way as in Example 1 or 2, and the carcinogenicity of the test substance can be predicted.

Claims

請求の範囲 The scope of the claims
[1] 複数の発がん物質をそれぞれ各発がん物質投与群に投与し、所定期間経過後に各 発がん物質投与群から mRNAを採取し、その mRNAの発現量を測定して mRNAの 発現量が有意に増加又は減少した発現変動遺伝子を選定する第一の工程と、 第一の工程で選定した発現変動遺伝子の発現パターンを各発がん物質投与群の間 で比較して、発現パターンの類似性により発現パターンを複数のグループに分類し、 複数のグループに分類した発現変動遺伝子の発現パターンを用意する第二の工程 と、  [1] Multiple carcinogens are administered to each carcinogen-administered group, and mRNA is collected from each carcinogen-administered group after a predetermined period, and the mRNA expression level is measured to significantly increase the mRNA expression level. Alternatively, compare the expression pattern of the expression variation gene selected in the first step and the expression variation gene selected in the first step between the carcinogen administration groups and the expression pattern based on the similarity of the expression pattern. A second step of classifying into a plurality of groups and preparing expression patterns of expression variable genes classified into a plurality of groups;
被検物質を被検物質投与群に投与し、所定期間経過後に被検物質投与群から mR A test substance is administered to a test substance administration group, and mR from the test substance administration group after a lapse of a predetermined period.
NAを採取して発現変動遺伝子について発現パターンを取得し、被検物質投与群の 発現変動遺伝子の発現パターンを予め第二の工程で用意しておいた発がん物質投 与群のグループ毎の発現変動遺伝子の発現パターンと比較してその一致度を算出 する第三の工程と Change in expression of carcinogen-administered group in which NA was collected and expression pattern of expression-variable gene was obtained, and expression pattern of expression-variable gene of test substance administration group was prepared in the second step in advance A third step of calculating the degree of coincidence compared to the gene expression pattern;
を有する被検物質の発がん性予測方法。  Method for predicting carcinogenicity of test substance having
[2] 複数の発がん物質をそれぞれ各発がん物質投与群に投与し、所定期間経過後に各 発がん物質投与群から mRNAを採取し、その mRNAの発現量を測定して mRNAの 発現量が有意に増加又は減少した発現変動遺伝子を選定する第一の工程と、 第一の工程で選定した発現変動遺伝子の発現パターンを各発がん物質投与群の間 で比較して、発現パターンの類似性により発現パターンを複数のグループに分類し、 複数のグループに分類した発現変動遺伝子の発現パターンを用意する第二の工程 と、 [2] Multiple carcinogens were administered to each carcinogen-administered group, and mRNA was collected from each carcinogen-administered group after a predetermined period of time, and the mRNA expression level was measured to significantly increase the mRNA expression level. Alternatively, compare the expression pattern of the expression variation gene selected in the first step and the expression variation gene selected in the first step between the carcinogen administration groups and the expression pattern based on the similarity of the expression pattern. A second step of classifying into a plurality of groups and preparing expression patterns of expression variable genes classified into a plurality of groups;
被検物質を被検物質投与群に投与し、所定期間経過後に被検物質投与群から mR A test substance is administered to a test substance administration group, and mR from the test substance administration group after a lapse of a predetermined period.
NAを採取して発現変動遺伝子について発現パターンを取得し、被検物質投与群の 発現変動遺伝子の発現パターンを予め第二の工程で用意しておいた発がん物質投 与群のグループ毎の発現変動遺伝子の発現パターンと比較してその一致度を算出 する第三の工程と、 Change in expression of carcinogen-administered group in which NA was collected and expression pattern of expression-variable gene was obtained, and expression pattern of expression-variable gene of test substance administration group was prepared in the second step in advance A third step of calculating the degree of coincidence in comparison with the gene expression pattern;
を有する被検物質の発がん性予測方法であって、次の 3つの工程:  A method for predicting the carcinogenicity of a test substance having the following three steps:
発がん物質投与群力 採取した mRNAを用いて調製した蛍光標識化 cDNA又は c RNAを DNAマイクロアレイにハイブリダィゼーシヨンして得られる蛍光パターンと、非 発がん物質を投与した非発がん物質投与群力 採取した mRNAを用いて調製した 蛍光標識化 cDNA又は cRNAを DNAマイクロアレイにハイブリダィゼーシヨンして得 られる蛍光パターンとを比較し、蛍光パターンの各スポットの蛍光強度から有意差検 定により発現変動遺伝子を選定する工程、 Carcinogen administration group strength Fluorescently labeled cDNA or c prepared using collected mRNA Fluorescence pattern obtained by hybridization of RNA to DNA microarray and non-carcinogenic substance administration group administered non-carcinogenic substance Fluorescently labeled cDNA or cRNA prepared using collected mRNA hybridized to DNA microarray Comparing the fluorescence pattern obtained by sizing and selecting the expression variation gene by detecting the significant difference from the fluorescence intensity of each spot of the fluorescence pattern,
複数の発がん物質投与群力 採取した mRNAを用いて調製した蛍光標識化 cDNA 又は cRNAを DNAマイクロアレイにハイブリダィゼーシヨンして得られる蛍光パター ンを各発がん物質投与群間で比較することにより各発がん物質投与群の間の発現 変動遺伝子の発現パターンを比較し、発がん物質投与群の発現パターンを複数の グループに分類する工程、  Multiple carcinogen-administered group strength Each of the carcinogen-administered groups was compared by comparing the fluorescent patterns obtained by hybridizing fluorescence-labeled cDNA or cRNA prepared using the collected mRNA to a DNA microarray. Expression between carcinogen-administered groups, comparing expression patterns of variable genes and classifying the expression patterns of carcinogen-administered groups into multiple groups,
発がん物質投与群カゝら採取した mRNAから調製した蛍光標識化 cDNA又は cRNA を DNAマイクロアレイにハイブリダィゼーシヨンして得られる蛍光パターンと、被検物 質投与群から採取した mRNA力 調製した蛍光標識化 cDNA又は cRNAを DNA マイクロアレイにハイブリダィゼーシヨンして得られる蛍光パターンとの比較により発が ん物質投与群の発現変動遺伝子のグループ毎の発現パターンと被検物質投与群の 発現変動遺伝子の発現パターンを比較してその一致度を算出する工程、 の少なくとも 1つの工程を含む被検物質の発がん性予測方法。  Fluorescence pattern obtained by hybridizing fluorescence-labeled cDNA or cRNA prepared from mRNA collected from carcinogen-administered group to DNA microarray, and mRNA force collected from test substance-administered group Prepared fluorescence Comparison of the expression variation gene of the carcinogen-administered group and the expression-variable gene of the test substance-administered group by comparison with the fluorescence pattern obtained by hybridization of labeled cDNA or cRNA to the DNA microarray A method for predicting the carcinogenicity of a test substance, comprising the step of comparing the expression patterns of and calculating the degree of coincidence thereof.
[3] DNAマイクロアレイ力 発がん物質を投与した試験動物から mRNAを抽出し、発現 量が増加又は減少した mRNAカゝら逆転写反応により合成した cDNAの配列の全部 又は一部を PCRにより増幅又は化学合成した DNAを搭載した DNAマイクロアレイ である請求項 2に記載の被検物質の発がん性予測方法。  [3] DNA microarray ability mRNA is extracted from test animals to which carcinogens have been administered, and the expression level is increased or decreased. All or part of the cDNA sequence synthesized by reverse transcription reaction is amplified or chemically synthesized by mRNA. The method for predicting carcinogenicity of a test substance according to claim 2, which is a DNA microarray on which the synthesized DNA is mounted.
[4] 発現変動遺伝子が、配列番号 1〜2844に記載する塩基配列に相補的な塩基配列 を有する遺伝子から 5つ以上選定されたものである請求項 1乃至 3のいずれかに記 載の被検物質の発がん性予測方法。  [4] The subject of any one of claims 1 to 3, wherein the expression variable gene is selected from five or more genes having a base sequence complementary to the base sequence described in SEQ ID NOs: 1 to 2844. A method for predicting the carcinogenicity of test substances.
[5] 発がん物質投与群に投与する発がん物質が、クロフイブレート、ジ (2-ェチルへキシ ル)フタレート、四塩化炭素、 2,4-ジァミノトルエン、キノリン、フエノバルビタール、ジェ チルニトロサミン、 2-ニトロプロパン、 N-ニトロソモルホリン、アルドリン、アジピン酸ジ (2 -ェチノレへキシノレ)、ェチニノレエストラジオ一ノレ、へキサクロ口ベンゼン、 a -へキサクロ ロシクロへキサン、トリクロロエチレン、ブチル化ヒドロキシァ-ソール、リモネン、サフ ロール、 1,4-ジクロロベンゼン、 1,4-ジォキサン、フラン、メチルカルバメート、チオア セトアミド、 N-二トロソジメチラミン、 N-二トロソピペリジン、 2-ァミノ- 3,8-ジメチルイミダ ゾ [4,5-f]キノキサリン、 2-ァミノ- 1-メチル -6-フエ-ルイミダゾ [4,5-b]-ピリジン、ベンツ (a)アントラセン、 7, 12-ジメチルベンズアントラセン、 3-メチルコラントレン、 4-ニトロキノ リン- 1-オキサイド、 N-ェチル -N-二トロソ尿素、トリクロ口酢酸、タン-ン酸、ウレタン、 ペンタクロルェタン、クロ口ホルム、ベンゾ(a)ピレン、 N-メチル - Ν'-ニトロ- N-ニトロソ グァニジン、テトラクロロエチレン、ァセタミド、ジェチルスチルベストロール、フエ二トイ ンナトリウム塩、 D,L-ェチォニン、 4-ジメチルアミノアゾベンゼン、及びクロレンド酸か ら選ばれる少なくとも 4個を含む請求項 1乃至 4のいずれかに記載の被検物質の発が ん性予測方法。 [5] The carcinogens administered to the carcinogen administered group are clofibrate, di (2-ethylhexyl) phthalate, carbon tetrachloride, 2,4-diaminotoluene, quinoline, phenobarbital, jetylnitrosamine, 2 -Nitropropane, N-nitrosomorpholine, aldrin, di-adipate (2-ethinorehexinole), ethinoreest radionore, hexacyclobenzene, a- hexaclo Rocyclohexane, Trichlorethylene, Butylated hydroxyasol, Limonene, Safrol, 1,4-Dichlorobenzene, 1,4-Dioxane, Furan, Methyl carbamate, Thioacetamide, N-Nitrosodimethylamine, N-Nitroso Piperidine, 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline, 2-amino-1-methyl-6-fe-louimidazo [4,5-b] -pyridine, benz (a) anthracene, 7, 12-dimethylbenzanthracene, 3-methylcholanthrene, 4-nitroquinoline-1-oxide, N-ethyl-N-nitrosourea, trichloroacetic acid, tannic acid, urethane, pentachloroethane, chloro Mouth form, benzo ( a ) pyrene, N-methyl --'- nitro-N-nitrosoguanidine, tetrachloroethylene, acetamide, jetylstilbestrol, sodium phenyloline The method for predicting the carcinogenicity of a test substance according to any one of claims 1 to 4, comprising at least four selected from a salt, D, L-ethionine, 4-dimethylaminoazobenzene, and chlorendic acid.
[6] 発がん物質投与群に投与する発がん物質が、請求項 5に記載の発がん物質を少なく とも 6個含む請求項 1乃至 4のいずれかに記載の被検物質の発がん性予測方法。  [6] The method for predicting carcinogenicity of a test substance according to any one of claims 1 to 4, wherein the carcinogen administered to the carcinogen-administered group contains at least six carcinogens according to claim 5.
[7] 発がん物質投与群に投与する発がん物質が、請求項 5に記載の発がん物質を少なく とも 9個含む請求項 1乃至 4のいずれかに記載の被検物質の発がん性予測方法。  [7] The method for predicting carcinogenicity of a test substance according to any one of claims 1 to 4, wherein the carcinogen administered to the carcinogen administered group contains at least nine carcinogens according to claim 5.
[8] 非発がん物質投与群に投与する非発がん物質が、 2,6-ジァミノトルエン、 8-ヒドロキ シキノリン、 D-マン-トール、 L-ァスコルビン酸、 2-クロ口エタノール、 2- (クロロメチル) ピリジン塩酸塩、 dl-メントール、 4--トロ- 0-フエ-レンジァミン、ベンゾイン、ョードホ ルム、リトコール酸、リンダン、 2-クロ口- p-フエ-レンジァミン硫酸塩、 p-フエ-レンジ アミンニ塩酸塩、 2,5-トルエンジァミン硫酸塩、アスピリン、 4- (クロロアセチル)ァセト ァニリド、フタルアミド、力プロラタタム、 1—クロ口— 2—プロパノール、 3—クロ口— p—トルイジ ン、グルタルアルデヒド、 4-ニトロアントラ-ル酸、及び 1 -トロナフタレンから選ばれ る少なくとも 1個を含む請求項 2乃至 7のいずれかに記載の被検物質の発がん性予 測方法。  [8] Non-carcinogens administered to the non-carcinogen-administered group are 2,6-diaminotoluene, 8-hydroxyquinoline, D-manntol, L-ascorbic acid, 2-chloroethanol, 2- (chloromethyl) Pyridine hydrochloride, dl-menthol, 4--tro- 0-phenol-diamine, benzoin, odoform, lithocholic acid, lindane, 2-chloro-p-phenol-diamine amine sulfate, p-phenol-diamine amine hydrochloride , 2,5-toluenediamine sulfate, aspirin, 4- (chloroacetyl) acetanilide, phthalamide, force prolatatum, 1-black mouth—2-propanol, 3-chloro mouth—p-toluidine, glutaraldehyde, 4-nitro The method for predicting carcinogenicity of a test substance according to any one of claims 2 to 7, comprising at least one selected from anthrallic acid and 1-tronaphthalene.
[9] 非発がん物質投与群に投与する非発がん物質が、請求項 8に記載の非発がん物質 を少なくとも 5個含む請求項 2乃至 7のいずれかに記載の被検物質の発がん性予測 方法。  [9] The method for predicting carcinogenicity of a test substance according to any one of claims 2 to 7, wherein the non-carcinogenic substance administered to the non-carcinogen-administered group contains at least five non-carcinogenic substances according to claim 8.
[10] 非発がん物質投与群に投与する非発がん物質が、請求項 8に記載の非発がん物質 を少なくとも 10個含む請求項 2乃至 7のいずれかに記載の被検物質の発がん性予測 方法。 [10] The non-carcinogenic substance according to claim 8, wherein the non-carcinogenic substance administered to the non-carcinogenic substance-administered group is The method for predicting the carcinogenicity of a test substance according to any one of claims 2 to 7, comprising at least 10 substances.
[11] 発がん物質投与群の発現変動遺伝子の発現パターンの分類が、クラスタ解析又は 決定木により行われる請求項 1乃至 10のいずれかに記載の被検物質の発がん性予 測方法。  [11] The method for predicting carcinogenicity of a test substance according to any one of [1] to [10], wherein the classification of the expression pattern of the expression variable gene in the carcinogen-administered group is performed by cluster analysis or decision tree.
[12] 発現変動遺伝子の発現パターンが 3以上のグループに分類される請求項 1乃至 11 の!、ずれかに記載の被検物質の発がん性予測方法。  [12] The method for predicting the carcinogenicity of a test substance according to any one of claims 1 to 11, wherein the expression pattern of the expression variable gene is classified into 3 or more groups.
[13] 発がん物質を各発がん物質投与群に投与した後、 1〜90日経過後に各発がん物質 投与群力も mRNAを採取する請求項 1乃至 12のいずれかに記載の被検物質の発 がん性予測方法。 [13] The carcinogenicity of the test substance according to any one of claims 1 to 12, wherein mRNA is collected for each carcinogen-administered group force after 1 to 90 days after administration of the carcinogen to each carcinogen-administered group. Sex prediction method.
[14] 発がん物質を各発がん物質投与群に投与した後、 14〜28日経過後に各発がん物 質投与群力も mRNAを採取する請求項 1乃至 12のいずれかに記載の被検物質の 発がん性予測方法。  [14] The carcinogenicity of the test substance according to any one of claims 1 to 12, wherein after the administration of the carcinogen to each carcinogen-administered group, mRNA is also collected from each carcinogen-administered group force after 14 to 28 days. Prediction method.
[15] 被検物質を被検物質投与群に投与した後、 1〜90日経過後に被検物質投与群から mRNAを採取する請求項 1乃至 14のいずれかに記載の被検物質の発がん性予測 方法。  [15] The carcinogenicity of the test substance according to any one of claims 1 to 14, wherein mRNA is collected from the test substance administration group 1 to 90 days after the test substance is administered to the test substance administration group Prediction method.
[16] 被検物質を被検物質投与群に投与した後、 14〜28日経過後に被検物質投与群か ら mRNAを採取する請求項 1乃至 14のいずれかに記載の被検物質の発がん性予 測方法。  [16] Carcinogenesis of a test substance according to any one of claims 1 to 14, wherein mRNA is collected from the test substance administration group after 14 to 28 days after the test substance is administered to the test substance administration group Sex prediction method.
PCT/JP2006/316618 2005-08-26 2006-08-24 Method for predicting carcinogenicity of test substance WO2007023903A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-246583 2005-08-26
JP2005246583A JP4806234B2 (en) 2005-08-26 2005-08-26 Method for predicting carcinogenicity of test substance

Publications (1)

Publication Number Publication Date
WO2007023903A1 true WO2007023903A1 (en) 2007-03-01

Family

ID=37771646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316618 WO2007023903A1 (en) 2005-08-26 2006-08-24 Method for predicting carcinogenicity of test substance

Country Status (2)

Country Link
JP (1) JP4806234B2 (en)
WO (1) WO2007023903A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079552A (en) * 2006-09-28 2008-04-10 Biomarker Science:Kk Method for evaluating carcinogenicity
WO2010127317A1 (en) * 2009-04-30 2010-11-04 Helicon Therapeutics, Inc. Quantitatively measuring the degree of concordance between or among microarray probe level data sets
CN108844932A (en) * 2018-05-30 2018-11-20 中国烟草总公司郑州烟草研究院 A kind of time-resolved fluoroimmunoassay chromatograph test strip and its preparation method and application detecting safrole
CN111489794A (en) * 2019-01-28 2020-08-04 国际商业机器公司 Method for creating a prediction model
CN111871378A (en) * 2020-07-08 2020-11-03 中国药科大学 Color-changeable zeolite imidazole ester framework material and preparation method and application thereof
CN116395672A (en) * 2023-03-31 2023-07-07 西南交通大学 Preparation method of fluorescent carbon dots, antibacterial material and method for inhibiting gram bacteria

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001939A1 (en) 2007-06-28 2008-12-31 Nissin Foods Holdings Co., Ltd. Marker gene for detection of tumor promoter, and method for detection of tumor promoter
JP5154215B2 (en) * 2007-12-28 2013-02-27 一般財団法人 化学物質評価研究機構 Rodent carcinogenicity prediction method of test substance
CN111487212B (en) * 2020-05-22 2021-03-30 中南民族大学 Rapid colorimetric detection method for di (2-ethylhexyl) phthalate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003304888A (en) * 2002-03-14 2003-10-28 F Hoffmann La Roche Ag Method for toxicity prediction of compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003304888A (en) * 2002-03-14 2003-10-28 F Hoffmann La Roche Ag Method for toxicity prediction of compound

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BOLT H.M. ET AL.: "Carcinogenicity categorization of chemicals-new aspects to the considered in a European perspective", TOXICOL. LETT., vol. 151, no. 1, 15 June 2004 (2004-06-15), pages 29 - 41, XP003009119 *
KAWAHARA K.: "Koseido.Kan'i Yugaisei (Hazard) Hyoka System no Kaihatsu", KAGAKU BUSSHITSU RISK SOGO KANRI GIJUTSU KENKYU INITIATIVE GODO PROGRAM KAIGO KOENSHU, SOGO KAGAKU GIJUTSU KAIGI KAGAKU BUSSHITSU RISK SOGO KANRI GIJUTSU KENKYU INITATIVE, 31 May 2005 (2005-05-31), pages 23 - 30, XP003009116, Retrieved from the Internet <URL:http://www8.cao.go.jp/cstp/project/envpt/progmeet/chem/proc02/chempg02_023.pdf> *
SARRIF A. ET AL.: "Toxicogenomics in genetic toxicology and hazard determination: Introduction and overview", EDITORIAL, MUTATION RESEARCH/FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, vol. 575, no. 1-2, 4 August 2005 (2005-08-04), pages 1 - 3, XP004941722 *
SHIRAI T.: "2. cDNA Microa ray o Mochiita 4 Shukan Toyo ni yoru Kagaku Busshitsu no Kan Hatsugansei Yosoku", JAPANESE JOURNAL OF CLINICAL PHARMACOLOGY, vol. 36, no. 1, 31 January 2005 (2005-01-31), pages 8S - 9S, XP003009117 *
SHIRAI T.: "cDNA Microarray Shuho o Mochiita Hatsugansei no Yochi", JAPANESE SOCIETY OF VETERIANY SCIENCE GAKUJUTSU SHUKAI KOEN YOSHISHU, vol. 139TH, 1 March 2005 (2005-03-01), pages 109, B-SY-4, XP003009118 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079552A (en) * 2006-09-28 2008-04-10 Biomarker Science:Kk Method for evaluating carcinogenicity
WO2010127317A1 (en) * 2009-04-30 2010-11-04 Helicon Therapeutics, Inc. Quantitatively measuring the degree of concordance between or among microarray probe level data sets
US8868349B2 (en) 2009-04-30 2014-10-21 Dart Neuroscience (Cayman) Ltd. Methods, systems, and products for quantitatively measuring the degree of concordance between or among microarray probe level data sets
CN108844932A (en) * 2018-05-30 2018-11-20 中国烟草总公司郑州烟草研究院 A kind of time-resolved fluoroimmunoassay chromatograph test strip and its preparation method and application detecting safrole
CN108844932B (en) * 2018-05-30 2020-10-30 中国烟草总公司郑州烟草研究院 Time-resolved fluorescence immunochromatographic test strip for detecting safrole as well as preparation method and application thereof
CN111489794A (en) * 2019-01-28 2020-08-04 国际商业机器公司 Method for creating a prediction model
CN111489794B (en) * 2019-01-28 2024-03-19 国际商业机器公司 Method for creating a predictive model
CN111871378A (en) * 2020-07-08 2020-11-03 中国药科大学 Color-changeable zeolite imidazole ester framework material and preparation method and application thereof
CN111871378B (en) * 2020-07-08 2022-11-11 中国药科大学 Color-changeable zeolite imidazole ester framework material and preparation method and application thereof
CN116395672A (en) * 2023-03-31 2023-07-07 西南交通大学 Preparation method of fluorescent carbon dots, antibacterial material and method for inhibiting gram bacteria

Also Published As

Publication number Publication date
JP2007054022A (en) 2007-03-08
JP4806234B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
Oh et al. U1 snRNP telescripting regulates a size–function-stratified human genome
WO2007023903A1 (en) Method for predicting carcinogenicity of test substance
Sugnet et al. Unusual intron conservation near tissue-regulated exons found by splicing microarrays
Li et al. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis
Otaegui et al. Differential micro RNA expression in PBMC from multiple sclerosis patients
van Straalen et al. Ecological and evolutionary functional genomics How can it contribute to the risk assessment of chemicals?
Burger et al. Changes in transcription within the CA1 field of the hippocampus are associated with age-related spatial learning impairments
Song et al. Identification of molecular signatures predicting the carcinogenicity of polycyclic aromatic hydrocarbons (PAHs)
Ding et al. Enhanced identification and biological validation of differential gene expression via Illumina whole-genome expression arrays through the use of the model-based background correction methodology
Nault et al. RNA-Seq versus oligonucleotide array assessment of dose-dependent TCDD-elicited hepatic gene expression in mice
WO2009105154A2 (en) Diagnostic and prognostic methods for cancer
Lezar et al. Development and assessment of microarray-based DNA fingerprinting in Eucalyptus grandis
Clemens et al. Emerging insights into the distinctive neuronal methylome
Procházka et al. Global transcriptional analysis of nontransformed human intestinal epithelial cells (FHs 74 Int) after exposure to selected drinking water disinfection by-products
Van Leeuwen et al. Genome-wide differential gene expression in children exposed to air pollution in the Czech Republic
US20020192671A1 (en) Method and system for predicting the biological activity, including toxicology and toxicity, of substances
Alghanim et al. DNA methylation assay based on pyrosequencing for determination of smoking status
JP4841279B2 (en) Method for predicting carcinogenicity of test substance
Garcia-Reyero et al. Biomarker discovery and transcriptomic responses in Daphnia magna exposed to munitions constituents
Pruteanu et al. Using transcriptomics and cell morphology data in drug discovery: The long road to practice
Ghemrawi et al. Pyrosequencing: Current forensic methodology and future applications—A review
Zhang et al. Mini-review of DNA Methylation Detection Techniques and Their Potential Applications in Disease Diagnosis, Prognosis, and Treatment
Craig et al. Quantitative trait loci for IQ and other complex traits: single‐nucleotide polymorphism genotyping using pooled DNA and microarrays
Tanase et al. Mutation spectrum of hepatocellular carcinoma from eastern-European patients betrays the impact of a complex exposome
Fennell et al. Comparative analysis of Illumina Mouse Methylation BeadChip and reduced-representation bisulfite sequencing for routine DNA methylation analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796731

Country of ref document: EP

Kind code of ref document: A1