[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007023643A1 - Elastic wave filter - Google Patents

Elastic wave filter Download PDF

Info

Publication number
WO2007023643A1
WO2007023643A1 PCT/JP2006/315098 JP2006315098W WO2007023643A1 WO 2007023643 A1 WO2007023643 A1 WO 2007023643A1 JP 2006315098 W JP2006315098 W JP 2006315098W WO 2007023643 A1 WO2007023643 A1 WO 2007023643A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
arm resonator
trap
wave filter
inductor
Prior art date
Application number
PCT/JP2006/315098
Other languages
French (fr)
Japanese (ja)
Inventor
Kazumasa Haruta
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2007532038A priority Critical patent/JP4640412B2/en
Publication of WO2007023643A1 publication Critical patent/WO2007023643A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/60Electric coupling means therefor
    • H03H9/605Electric coupling means therefor consisting of a ladder configuration

Definitions

  • the present invention relates to an acoustic wave filter such as a surface acoustic wave filter device or a boundary acoustic wave filter device, and more specifically, at least one inductor is provided in a series arm connecting an input end and an output end.
  • the present invention relates to an acoustic wave filter in which a parallel arm resonator is connected between a series arm and a ground potential.
  • a surface acoustic wave filter has been used as an RF stage bandpass filter for communication devices such as mobile phones.
  • an inductance is connected between the input and output terminals, and parallel arm resonance is performed between one end of the inductance and the ground potential and between the other end of the inductance and the ground potential.
  • a bandstop filter with a child connected is disclosed!
  • FIG. 15A is a circuit diagram showing a circuit configuration of the band rejection filter 100.
  • An inductor 101 is connected between the input terminal IN and the output terminal OUT.
  • a parallel arm resonator P1 is connected between the input terminal IN and the ground potential.
  • a parallel arm resonator P2 is connected between the output terminal OU T and the ground potential.
  • the parallel arm resonators PI and P2 are each composed of a surface acoustic wave resonator formed by forming an IDT electrode on a piezoelectric substrate. Further, the resonance frequencies F1 and F2 of the parallel arm resonators PI and P2 are substantially equal to each other and are located in the stop band.
  • FIG. 15B is a diagram showing the frequency characteristics of the band rejection filter 100.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-129238
  • a trap is provided in the vicinity of 880 MHz.
  • This trap is arranged on the high band side of the pass band. That is, the band rejection filter 100 is used to provide a trap on the high frequency side of the pass band.
  • the steepness of the filter characteristics in the low frequency band within the trap band is not sufficient. . For this reason, there is a problem that the insertion loss tends to be large in the vicinity of the high end of the passband in the passband.
  • An object of the present invention is an elastic wave filter that eliminates the above-mentioned drawbacks of the prior art and has a pass band and a pass band provided on the low band side of the trap band.
  • the acoustic wave filter has a trap band and a pass band provided outside the low band of the trap band, and is disposed on a series arm that connects the input terminal and the output terminal. At least one first inductor and at least one first parallel arm resonator provided between one end of the portion where the first inductor is provided and a ground potential; and A second parallel arm resonator provided between the other end of the portion where the first inductor is provided and a ground potential, and a plurality of the first inductors are adjacent to each other.
  • a trap circuit portion having a third parallel arm resonator connected between the inductors of 1 and a ground potential, between the input terminal and the trap circuit portion, and between the output terminal and the trap circuit portion. At least between A filter circuit part provided on the other side, and the filter circuit part is arranged in the series arm between the input terminal or the output terminal and the trap circuit part, and A second arm connected between one end or the other end of the series arm resonator and a ground potential, and the resonance frequency of the series arm resonator is a high-frequency side end of the passband of the acoustic wave filter.
  • An elastic wave filter is provided, characterized in that the elastic wave filter is substantially matched.
  • the filter circuit portion is provided both between the input terminal and the trap circuit portion and between the output terminal and the trap circuit portion. It has been.
  • a resonance frequency of a resonance circuit including the capacitance of the series arm resonator and the second inductor is lower than an end portion on a lower band side of the passband. Low It is said to be a frequency.
  • the acoustic wave filter further includes a piezoelectric substrate on which the parallel arm resonator and the series arm resonator are formed.
  • the first and second inductors are formed in the piezoelectric substrate.
  • the capacitance of the series arm resonator is Cs
  • the inductance value of the first inductor is Ls
  • the capacitance of the parallel arm resonator is Cp
  • the inductance value of inductor 2 is Lp
  • the trap circuit portion includes the at least one inductor, the first parallel arm resonator, the second parallel arm resonator, and a plurality of inductors.
  • the third parallel arm resonator is provided, and at the resonance frequency of the first and second parallel arm resonators or the first to third parallel arm resonators, the amount of attenuation increases and a trap is formed. It is.
  • the filter circuit portion having the second inductance and the series arm resonator is provided between at least one of the input terminal and the trap circuit portion and between the output terminal and the trap circuit portion.
  • the resonance frequency of the series arm resonator is substantially coincident with the high band side end of the passband of the elastic wave filter. Accordingly, the steepness of the filter characteristics in the low frequency band within the trap band can be enhanced, and the insertion loss near the high band side end in the pass band of the elastic wave filter can be reduced.
  • the impedance of the series arm resonator is an inductive impedance between the resonance frequency and the anti-resonance frequency in the lower frequency range within the trap band.
  • the value of the inductive impedance varies greatly depending on the frequency. Therefore, by making the resonance frequency of the series arm resonator substantially coincide with the end portion on the high band side of the pass band, the steepness of the filter characteristics on the low band side within the trap band can be effectively enhanced, and the frequency within the pass band can be effectively increased. It is possible to reduce the insertion loss in the vicinity of the end portion on the high side of the passband.
  • the bullet having the pass band provided outside the lower band of the trap band.
  • an acoustic wave filter it is possible to increase the steepness of the low frequency region in the trap band, effectively reduce the insertion loss in the vicinity of the high-frequency side end in the pass band, and to provide an elastic wave having good filter characteristics.
  • a filter can be provided.
  • the filter circuit portion when the filter circuit portion is provided both between the input terminal and the trap circuit portion and between the output terminal and the trap circuit portion, It becomes possible to further effectively reduce the insertion loss in the vicinity of the high frequency side end.
  • the resonance frequency of the resonance circuit composed of the capacitance of the series arm resonator and the second inductor is set to be lower than that of the low-frequency side end of the pass band. In this case, the amount of attenuation in the frequency range lower than the pass band can be made sufficiently large.
  • a piezoelectric substrate on which a parallel arm resonator and a series arm resonator are formed is further provided, and the first and second inductors are formed on or in the piezoelectric substrate. Since the first and second inductors are formed on or in the piezoelectric substrate, the acoustic wave filter can be reduced in size.
  • FIG. 1 is a circuit diagram of a surface acoustic wave filter according to a first embodiment of the present invention.
  • FIG. 2 (a) is a diagram showing a circuit configuration of a low-pass LC filter composed of a series inductor and a parallel capacitor, and (b) is a diagram schematically showing its frequency characteristics.
  • FIG. 3 (a) is a diagram showing a circuit configuration of an LC filter composed of a series capacitance and a parallel inductance, and (b) is a diagram schematically showing its frequency characteristics.
  • FIG. 4 is a diagram showing impedance characteristics of series arm resonators SI and S2 and parallel arm resonators PI and P2 used in the first embodiment.
  • FIG. 5 shows the frequency characteristics of the trap circuit used in the first embodiment and the direct
  • Each of the frequency characteristics of the filter circuit portion composed of the column arm resonator and the second inductance has a solid line! Is a diagram indicated by a broken line.
  • FIG. 6 is a diagram showing frequency characteristics of the surface acoustic wave filter according to the first embodiment.
  • FIG. 7 shows a structure in which the series arm resonators SI and S2 and the parallel arm resonators PI and P2 are formed on the lower surface of the piezoelectric substrate in the surface acoustic wave filter according to the first embodiment. It is a typical top view shown with permeability.
  • FIG. 8 is a plan view schematically showing an electrode structure of a surface wave resonator.
  • FIG. 9 is a plan view of a knock board on which the piezoelectric substrate shown in FIG. 7 is mounted.
  • FIG. 10 is a schematic plan view for explaining an inductor externally attached to a piezoelectric substrate
  • FIG. 10 (b) is a surface acoustic wave chip mounted on a cage substrate.
  • FIG. 3 is a schematic front sectional view schematically showing the structure.
  • FIG. 11 is a plan view schematically showing a structure in which the first and second inductances are formed as electrodes on the piezoelectric substrate in the first embodiment.
  • FIG. 3 is a plan view schematically showing an electrode structure.
  • FIG. 12 is a circuit diagram of a surface acoustic wave filter according to a second embodiment of the present invention.
  • FIG. 13 is a diagram showing frequency characteristics of the surface acoustic wave filter according to the second embodiment.
  • FIG. 14 is a circuit diagram for explaining a modification of the surface acoustic wave filter of the present invention.
  • FIG. 15 (a) is a circuit diagram for explaining an example of a conventional surface acoustic wave filter
  • FIG. 15 (b) is a diagram showing its frequency characteristics.
  • FIG. 1 is a circuit diagram of a surface acoustic wave filter according to a first embodiment of the present invention.
  • the first inductor L 1 is connected between the input terminal IN and the output terminal OUT.
  • the first parallel arm resonator P1 is connected between one end of the first inductor L1 and the ground potential, and the second parallel arm is connected between the other end of the first inductor L1 and the ground potential.
  • Resonator P2 is connected.
  • the trap circuit portion A having the first inductor L1 and the first and second parallel arm resonators PI and P2 is substantially the same as the conventional band rejection filter 100 shown in FIG.
  • inductors L2a, L2a are arranged on both sides of a trap circuit portion A composed of the first inductor L1 and the first and second parallel arm resonators PI, P2.
  • Filter circuit parts Bl and B2 consisting of L2b and series arm resonators SI and S2 are provided.
  • the series arm resonator S 1 is connected between the input terminal IN and the first inductor L 1, and the connection point between the input terminal IN and the series arm resonator S 1 and the ground potential
  • the second inductor L2a is connected between the two.
  • the series arm resonator S2 is also connected between the first inductor L1 and the output terminal OUT, and the connection point between the output terminal OUT and the series arm resonator S2 and the ground potential are connected. of A second inductor L2b is connected between them.
  • the series arm resonator Sl, the first inductor L1, and the series arm resonator S2 are arranged in this order on the series arm connecting the input terminal IN and the output terminal OUT. Will be placed.
  • an inductance Lx is connected in series between the input terminal IN and the output terminal OUT, and a parallel capacitor C1 is connected between the input terminal IN and the ground potential.
  • an LC circuit with an inductance Lx and a capacitance C1 provides low-pass filter characteristics as shown in Fig. 2 (b).
  • a series capacitor C2 is connected in series between the input terminal IN and the output terminal OUT, and an inductance Ly is connected between the input terminal IN and the ground potential.
  • the high-pass filter characteristics shown in Fig. 3 (b) can be obtained by the LC circuit consisting of the capacitor C2 and the inductance Ly.
  • the low-pass filter includes the inductances of the inductors LI, L2a, and L2b and the capacitances of the series arm resonators SI and S2 and the parallel arm resonators PI and P2, respectively.
  • a band-pass filter or a high-pass filter is configured, and as a whole, characteristics having a pass band can be obtained.
  • the trap band portion A having the first inductor L 1 and the parallel arm resonators PI and P 2 is used in the trap band as in the conventional band-stop filter 100 shown in FIG. As a result, a pass band outside the lower band of the trap band is formed.
  • the filter circuit portion including the series arm resonator S1 and the second inductor L2a and the filter circuit portion B2 including the series arm resonator S2 and the second inductor L2b are described above. Since it is connected to both sides of the trap circuit part A and the resonance frequency of the series arm resonators SI and S2 is substantially the same as the high band side end of the pass band of the surface acoustic wave filter 1, The steepness of the filter characteristics in the low frequency band is enhanced, and the insertion loss at the end of the high pass band is effectively reduced.
  • the passband is 470 to 770 MHz
  • the mobile phone transmission band is higher than the passband.
  • 830 to 845 MHz must be configured as the trap band.
  • the impedance characteristics of the surface acoustic wave resonator in a frequency range lower than the resonance frequency, it becomes a capacitive impedance, and the impedance changes gently with respect to the change in frequency.
  • the impedance in the frequency region between the resonance frequency and the anti-resonance frequency, the impedance becomes an inductive impedance, and the impedance changes greatly with respect to the change in frequency.
  • the low frequency side in the trap band is configured using the impedance characteristic in the frequency range lower than the resonance frequency of the parallel arm resonators PI and P2, that is, the capacitive impedance. Become. For this reason, in the conventional surface acoustic wave filter 100 in which the steepness in the low frequency region within the trap band is not sufficient, the insertion loss tends to be large near the high band side end of the pass band. .
  • the resonance frequencies of the series arm resonators SI and S2 are substantially matched with the end portion on the high side of the pass band. Accordingly, the impedances of the series arm resonators SI and S2 are inductive impedances in the low frequency region within the trap band, and therefore the impedance changes greatly in response to the change. Therefore, the steepness of the filter characteristics in the low frequency region within the trap band can be increased, and the insertion loss of the surface acoustic wave filter 1 in the vicinity of the end of the high pass region in the pass band can be significantly reduced. .
  • the capacitive impedance and the inductive impedance can be regarded as capacitive and inductive reactance, respectively. Therefore, the voltage at the connection point between the series arm resonators SI and S2 and the parallel arm resonators P1 and P2 in the low frequency range within the trap band is the voltage X [parallel arm resonance The capacitive reactance Z of the child P1 or P2 (capacitive reactance of the parallel arm resonator P1 or P2 + inductive reactance of the series arm resonator S1 or S2)].
  • the capacitive reactance and the inductive reactance have opposite polarities, the voltage at the above-mentioned connection point is higher than the input terminal voltage, which indicates that the insertion loss on the high passband side can be reduced. [0039] Since the impedance values of the inductors LI, L2a, and L2b have a large impedance in the trap band, the influence of the impedances of the inductors LI, L2a, and L2b can be ignored.
  • the solid line C in FIG. 5 shows the characteristics of the trap circuit portion A composed of the inductor L1 and the parallel arm resonators PI and P2.
  • the characteristics of the high-pass filter circuit parts Bl and B2 composed of the capacitance of the series arm resonator S1 or S2 and the inductor L2a or L2b are indicated by a broken line D.
  • the cutoff frequency in the frequency characteristics of the filter circuit parts Bl and B2 is a resonance frequency due to resonance between the capacitance of the series arm resonator S1 or S2 and the inductance of the inductor L2a or L2b.
  • the resonance frequency fr of the series arm resonator S1 or S2 substantially coincide with the end of the high side of the pass band, the steepness in the low frequency range within the trap band can be increased and the pass in the pass band can be increased. The insertion loss in the vicinity of the band high band end can be reduced.
  • FIG. 6 is a diagram showing attenuation frequency characteristics indicating the characteristics of the surface acoustic wave filter 1.
  • the characteristics shown in FIG. 6 are as follows.
  • the equivalent circuit constants of the resonators SI and S2 and the parallel arm resonators PI and P2 are as shown in Table 1 below, and the inductance value of the inductor L1 is 13 nH.
  • the inductance value of L2a is 27nH
  • the inductance value of inductor L2b is 27nH.
  • the attenuation in the trap band can be set to 50 dB or more, and the steepness in the low frequency region within the trap band can be increased. It can be seen that the loss can be 2 dB or less.
  • the capacitance of the series arm resonators SI and S2 is Cs
  • the inductance value of the first inductor L1 is Ls
  • the parallel arm resonators PI and P2 When the capacitance is Cp and the inductance value of the second inductor is Lp, Cs / Cp> 1 and LpZLs> l, so that the insertion loss can be further reduced. The This will be described below.
  • the resonance frequency of the LC resonance circuit composed of the inductor L1 and the parallel arm resonators PI and P2 is the resonance frequency of the LC circuit composed of the series arm resonator S1 or S2 and the second inductor L2a or L2b. Is getting higher than. Therefore, the following formula (1) is established.
  • the resonance frequency of the series arm resonators Sl, S2 is not necessarily the same as the force that is substantially coincident with the end of the passband high band side, and substantially coincidence.
  • the frequency at the end of the high side of the pass band is within the range of 5% or more and 0% or less.
  • the resonance frequency of the series arm resonators SI and S2 is in the range of 5% or more and 0% or less of the frequency at the high-frequency side end of the passband of the surface acoustic wave filter 1. .
  • the filter circuit portion is connected to only one of the forces to which the filter circuit portions Bl and B2 are connected to both the input side and the output side of the trap circuit portion A. Also good. That is, only the filter circuit part B1 consisting of the series arm resonator S1 and the inductor L2a may be connected to the trap circuit part A, or only the filter circuit part B2 consisting of the series arm resonator S2 and the inductor L2b. It may be connected to the trap circuit part A.
  • the series arm resonators SI and S2 and the parallel arm resonators PI and P2 preferably have interdigital electrodes (IDT electrodes) on a single piezoelectric substrate. It is comprised by the surface acoustic wave resonator comprised by forming.
  • FIG. 7 is a plan view schematically showing the electrode structure formed on the lower surface of the piezoelectric substrate 12 through the piezoelectric substrate 12 in the surface acoustic wave chip 11.
  • the piezoelectric substrate 12 is made of ceramics or a piezoelectric single crystal, and the IDT electrodes are formed on the lower surface thereof to form the series arm resonators SI and S2 and the parallel arm resonators PI and P2. .
  • the force at which the series arm resonators SI and S2 and the parallel arm resonators PI and P2 are formed is schematically shown.
  • Fig. 8 schematically shows the specific structure of this IDT electrode. . As shown in FIG. 8, reflectors 13b and 13c are formed on both sides of the IDT electrode 13a to constitute one surface acoustic wave resonator.
  • Each of the series arm resonators SI and S2 and the parallel arm resonators P1 and P2 includes an IDT electrode and reflectors disposed on both sides of the IDT electrode.
  • the specifications of the series arm resonators SI and S2 and the parallel arm resonators PI and P2 are different depending on the required characteristics.
  • the surface acoustic wave chip 11 is provided with metal bumps 14a to 14f.
  • the surface acoustic wave chip 11 is mounted on the knock board 15 by flip chip bonding using these metal bumps 14a to 14f.
  • the knock substrate 15 is made of an appropriate insulating material, and has electrode lands 16a to 16e on the upper surface thereof.
  • Metal bump 14a on electrode land 16a, metal bump 14b on electrode land 16b, electrode land 16c connected to ground potential Metal bump 14c, 14d force Metal bump 14e on electrode land 16d, metal bump 14 f is joined to the electrode land 16e.
  • FIG. 10 (b) is a schematic front sectional view of a structure in which the surface acoustic wave chip 11 is mounted on a package substrate 15.
  • the inductors LI, L2a, and L2b may also be provided by forming a meander-shaped electrode, that is, a meandering electrode on the lower surface of the piezoelectric substrate 12.
  • FIG. 11 is a plan view schematically showing the electrodes formed on the lower surface of the piezoelectric substrate 12 through the piezoelectric substrate 12 as in FIG.
  • the inductors LI, L2a, and L2b forces are configured by forming the electrodes in a meander shape.
  • the inductors L1, L2a, and L2b are not necessarily configured by forming a meandering electrode pattern on the lower surface of the piezoelectric substrate 12.
  • a coiled electrode pattern may be formed on the lower surface of the piezoelectric substrate 12.
  • the surface acoustic wave filter 1 can be reduced in size by forming the inductors LI, L2a, and L2b by applying the electrode material integrally to the surface of the piezoelectric substrate. .
  • FIG. 12 is a circuit diagram of a surface acoustic wave filter according to the second embodiment of the present invention.
  • the surface acoustic wave filter 21 according to the second embodiment has a trap circuit portion A configured in the same manner as the trap circuit portion A shown in FIG. 1 between the input terminal IN and the output terminal OUT.
  • the trap circuit portion A includes a first inductor L1, a parallel arm resonator P1 connected between one end of the first inductor L1 and the ground potential, and the other end of the first inductor L2 and the ground potential. And a parallel arm resonator P2 connected between the two.
  • the filter circuit portion B3 and the series arm resonator S12 including the series arm resonator S11 and the second inductor L2a are provided on the both sides of the trap circuit portion A.
  • a filter circuit portion B4 including the inductor L2b is connected to each other.
  • the resonance frequency of the series arm resonators Sl l, S12 is made to substantially coincide with the end portion on the high side of the passband so that the resonance frequency of the series arm resonators Sl l, S12 and the anti-resonance
  • the inductive impedance with the frequency the steepness of the filter characteristics in the low frequency region of the trap band can be enhanced. Therefore, it is possible to reduce the insertion loss in the vicinity of the end on the high band side in the pass band.
  • the second inductor in the filter circuit portion is limited as long as it is connected between one end or the other end of the series arm resonator and the ground potential.
  • the series arm resonator may be connected to one end or the other end of the displacement.
  • FIG. 13 is a diagram showing frequency characteristics of the surface acoustic wave filter 21 shown in FIG.
  • the steepness in the low frequency region within the trap band is enhanced, and the insertion loss near the high frequency side end in the pass band is also achieved. It can be seen that the insertion loss is 2 dB or less over the entire passband.
  • the equivalent circuit constants of the series arm resonators Sl l and S12 and the parallel arm resonators PI and P2 are as shown in Table 2 below.
  • Inductor L1 has an inductance value of 11 ⁇
  • inductor L2a has an inductance value of 16nH
  • inductor L2b has an inductance value of 13 ⁇ .
  • the trap circuit portion ⁇ includes the first inductor L1 and the first inductor L1.
  • the trap circuit portion may have a structure in which a plurality of first inductors are connected.
  • the trap circuit portion A force first inductor L1 You may have a, Lib, and Lie.
  • the third parallel arm resonator P3 is connected between the adjacent inductors Lla and Lib, between the adjacent inductors Lib and Lie, and the ground potential.
  • the number of stages of the LC circuit which is the inductor and the parallel arm resonator force in the trap circuit portion including the first inductor and the parallel arm resonator is not particularly limited. Absent.
  • the surface acoustic wave filter using a surface acoustic wave has been described.
  • the present invention can also be applied to a boundary acoustic wave filter using a boundary acoustic wave.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

There is provided an elastic wave filter having a passing band at a lower outer side of the trap band. Steepness of the filter characteristic in the low frequency range in the trap band is increased and the insert loss at the pass band high range side end portion is sufficiently reduced. The elastic wave filter (1) includes: a trap circuit section (A) having a first inductance L1 and a first and a second parallel arm resonator (P1, P2); and a filter circuit section having series arm resonators (S1, S2) and a second inductance (L2a or L2b), and connected between an input terminal and/or an output terminal and the trap circuit section (A). The series arm resonators (S1, S2) have a resonance frequency which substantially coincides with the pass band high range side end portion.

Description

明 細 書  Specification
弾性波フィルタ  Elastic wave filter
技術分野  Technical field
[0001] 本発明は、弾性表面波フィルタ装置や弾性境界波フィルタ装置などの弾性波フィ ルタに関し、より詳細には、入力端と出力端との間を結ぶ直列腕に少なくとも 1つのィ ンダクタが配置されており、直列腕とグラウンド電位との間に並列腕共振子が接続さ れている、弾性波フィルタに関する。  The present invention relates to an acoustic wave filter such as a surface acoustic wave filter device or a boundary acoustic wave filter device, and more specifically, at least one inductor is provided in a series arm connecting an input end and an output end. The present invention relates to an acoustic wave filter in which a parallel arm resonator is connected between a series arm and a ground potential.
背景技術  Background art
[0002] 従来、携帯電話機などの通信機器の RF段の帯域フィルタとして弾性表面波フィル タが用いられている。例えば、下記の特許文献 1には、入出力端の間にインダクタン スが接続されており、インダクタンスの一端とグラウンド電位との間及びインダクタンス の他端とグラウンド電位との間にそれぞれ並列腕共振子が接続されている帯域阻止 型フィルタが開示されて!、る。  Conventionally, a surface acoustic wave filter has been used as an RF stage bandpass filter for communication devices such as mobile phones. For example, in Patent Document 1 below, an inductance is connected between the input and output terminals, and parallel arm resonance is performed between one end of the inductance and the ground potential and between the other end of the inductance and the ground potential. A bandstop filter with a child connected is disclosed!
[0003] 図 15 (a)は、この帯域阻止型フィルタ 100の回路構成を示す回路図である。入力 端子 INと出力端子 OUTとの間にインダクタ 101が接続されている。また、入力端子 I Nとグラウンド電位との間に並列腕共振子 P1が接続されている。また、出力端子 OU Tとグラウンド電位との間に並列腕共振子 P2が接続されている。  FIG. 15A is a circuit diagram showing a circuit configuration of the band rejection filter 100. An inductor 101 is connected between the input terminal IN and the output terminal OUT. A parallel arm resonator P1 is connected between the input terminal IN and the ground potential. A parallel arm resonator P2 is connected between the output terminal OU T and the ground potential.
[0004] 並列腕共振子 PI, P2は、それぞれ、圧電基板上に IDT電極を形成してなる弾性 表面波共振子により構成されている。また、並列腕共振子 PI, P2の共振周波数 F1 , F2が略等しくされており、阻止域に位置されている。図 15 (b)は、上記帯域阻止型 フィルタ 100の周波数特性を示す図である。  [0004] The parallel arm resonators PI and P2 are each composed of a surface acoustic wave resonator formed by forming an IDT electrode on a piezoelectric substrate. Further, the resonance frequencies F1 and F2 of the parallel arm resonators PI and P2 are substantially equal to each other and are located in the stop band. FIG. 15B is a diagram showing the frequency characteristics of the band rejection filter 100.
特許文献 1 :特開 2004— 129238号公報  Patent Document 1: Japanese Unexamined Patent Application Publication No. 2004-129238
発明の開示  Disclosure of the invention
[0005] 図 15 (b)に示すように、上記帯域阻止型フィルタ 100では、トラップが 880MHz付 近に設けられている。このトラップは、通過帯域の高域側に配置されている。すなわ ち、帯域阻止型フィルタ 100は、通過帯域の高域側にトラップを設けるために用いら れている。 [0006] し力しながら、特許文献 1に記載の帯域阻止型フィルタ 100では、矢印 Xで示すよう に、トラップ帯域内の低域側の周波数域におけるフィルタ特性の急峻性が充分でな かった。そのため、通過帯域内の通過帯域高域側端部近傍における挿入損失が大 きくなりがちであるという問題があった。 [0005] As shown in Fig. 15 (b), in the band rejection filter 100, a trap is provided in the vicinity of 880 MHz. This trap is arranged on the high band side of the pass band. That is, the band rejection filter 100 is used to provide a trap on the high frequency side of the pass band. [0006] However, in the band rejection filter 100 described in Patent Document 1, as indicated by the arrow X, the steepness of the filter characteristics in the low frequency band within the trap band is not sufficient. . For this reason, there is a problem that the insertion loss tends to be large in the vicinity of the high end of the passband in the passband.
[0007] 本発明の目的は上述した従来技術の欠点を解消し、通過帯域とトラップ帯域の低 域側に設けられた通過帯域とを有する弾性波フィルタであって、トラップ帯域内の低 域側周波数域側におけるフィルタ特性の急峻性が高められており、それによつて通 過帯域内の高域側端部近傍における挿入損失を小さくすることが可能とされている、 弾性波フィルタを提供することにある。  [0007] An object of the present invention is an elastic wave filter that eliminates the above-mentioned drawbacks of the prior art and has a pass band and a pass band provided on the low band side of the trap band. To provide an acoustic wave filter in which the steepness of the filter characteristic on the frequency band side is enhanced, thereby making it possible to reduce the insertion loss in the vicinity of the end on the high band side in the passband. It is in.
[0008] 本発明によれば、トラップ帯域と、該トラップ帯域の低域外側に設けられた通過帯域 とを有する弾性波フィルタであって、入力端子と出力端子とを結ぶ直列腕に配置され た少なくとも 1個の第 1のインダクタと、少なくとも 1個の前記第 1のインダクタが設けら れている部分の一端とグラウンド電位との間に設けられた第 1の並列腕共振子と、少 なくとも 1個の前記第 1のインダクタが設けられている部分の他端とグラウンド電位との 間に設けられた第 2の並列腕共振子と、前記第 1のインダクタが複数の場合に、隣り 合う第 1のインダクタ間とグラウンド電位との間に接続された第 3の並列腕共振子とを 有するトラップ回路部分と、前記入力端子と前記トラップ回路部分との間及び前記出 力端子と前記トラップ回路部分との間の少なくとも一方に設けられたフィルタ回路部 分を備え、該フィルタ回路部分が、前記直列腕において、前記入力端子または前記 出力端子と前記トラップ回路部分との間に配置された直列腕共振子と、前記直列腕 共振子の一端または他端とグラウンド電位との間に接続された第 2のインダクタとを有 し、前記直列腕共振子の共振周波数が前記弾性波フィルタの通過帯域の高域側端 部と略一致されて ヽることを特徴とする、弾性波フィルタが提供される。  [0008] According to the present invention, the acoustic wave filter has a trap band and a pass band provided outside the low band of the trap band, and is disposed on a series arm that connects the input terminal and the output terminal. At least one first inductor and at least one first parallel arm resonator provided between one end of the portion where the first inductor is provided and a ground potential; and A second parallel arm resonator provided between the other end of the portion where the first inductor is provided and a ground potential, and a plurality of the first inductors are adjacent to each other. A trap circuit portion having a third parallel arm resonator connected between the inductors of 1 and a ground potential, between the input terminal and the trap circuit portion, and between the output terminal and the trap circuit portion. At least between A filter circuit part provided on the other side, and the filter circuit part is arranged in the series arm between the input terminal or the output terminal and the trap circuit part, and A second arm connected between one end or the other end of the series arm resonator and a ground potential, and the resonance frequency of the series arm resonator is a high-frequency side end of the passband of the acoustic wave filter. An elastic wave filter is provided, characterized in that the elastic wave filter is substantially matched.
[0009] 本発明に係る弾性波フィルタのある特定の局面では、前記入力端子と前記トラップ 回路部分との間及び前記出力端子と前記トラップ回路部分との間の双方に前記フィ ルタ回路部分が設けられている。  [0009] In a specific aspect of the acoustic wave filter according to the present invention, the filter circuit portion is provided both between the input terminal and the trap circuit portion and between the output terminal and the trap circuit portion. It has been.
[0010] 本発明の他の特定の局面では、前記直列腕共振子の容量と、前記第 2のインダク タとで構成される共振回路の共振周波数が、前記通過帯域の低域側端部よりも低 ヽ 周波数とされている。 [0010] In another specific aspect of the present invention, a resonance frequency of a resonance circuit including the capacitance of the series arm resonator and the second inductor is lower than an end portion on a lower band side of the passband. Low It is said to be a frequency.
[0011] 本発明に係る弾性波フィルタのさらに別の特定の局面によれば、前記並列腕共振 子及び前記直列腕共振子が形成されて!ゝる圧電基板をさらに備え、圧電基板上また は圧電基板内に、前記第 1,第 2のインダクタが形成されている。  [0011] According to still another specific aspect of the acoustic wave filter according to the present invention, the acoustic wave filter further includes a piezoelectric substrate on which the parallel arm resonator and the series arm resonator are formed. The first and second inductors are formed in the piezoelectric substrate.
[0012] 本発明に係る弾性波フィルタのさらに別の特定の局面では、前記直列腕共振子の 容量を Cs、前記第 1のインダクタのインダクタンス値を Ls、並列腕共振子の容量を Cp 、第 2のインダクタのインダクタンス値を Lpとしたときに、 CsZCp> lかつ LpZLs> l とされている。 [0012] In still another specific aspect of the acoustic wave filter according to the present invention, the capacitance of the series arm resonator is Cs, the inductance value of the first inductor is Ls, the capacitance of the parallel arm resonator is Cp, When the inductance value of inductor 2 is Lp, CsZCp> l and LpZLs> l.
(発明の効果)  (The invention's effect)
[0013] 本発明に係る弾性波フィルタでは、トラップ回路部分が、上記少なくとも 1個のイン ダクタと、第 1の並列腕共振子と、第 2の並列腕共振子と、インダクタが複数の場合に 設けられる第 3の並列腕共振子とを有し、第 1,第 2の並列腕共振子あるいは第 1〜 第 3の並列腕共振子の共振周波数において、減衰量が大きくなり、トラップが形成さ れている。  [0013] In the elastic wave filter according to the present invention, the trap circuit portion includes the at least one inductor, the first parallel arm resonator, the second parallel arm resonator, and a plurality of inductors. The third parallel arm resonator is provided, and at the resonance frequency of the first and second parallel arm resonators or the first to third parallel arm resonators, the amount of attenuation increases and a trap is formed. It is.
[0014] もっとも、このようにして形成されるトラップ内の低域側の周波数領域においては、 急峻性が充分でない。そこで、本発明では、上記第 2のインダクタンスと、直列腕共 振子とを有するフィルタ回路部分が、入力端子とトラップ回路部分との間及び出力端 子とトラップ回路部分との間の少なくとも一方に設けられており、直列腕共振子の共 振周波数が弾性波フィルタの通過帯域の高域側端部と略一致されている。従って、ト ラップ帯域内の低域側の周波数域におけるフィルタ特性の急峻性が高められ、弾性 波フィルタの通過帯域内の通過帯域高域側端部近傍の挿入損失が小さくされ得る。  [0014] However, the steepness is not sufficient in the low frequency region in the trap formed in this way. Therefore, in the present invention, the filter circuit portion having the second inductance and the series arm resonator is provided between at least one of the input terminal and the trap circuit portion and between the output terminal and the trap circuit portion. The resonance frequency of the series arm resonator is substantially coincident with the high band side end of the passband of the elastic wave filter. Accordingly, the steepness of the filter characteristics in the low frequency band within the trap band can be enhanced, and the insertion loss near the high band side end in the pass band of the elastic wave filter can be reduced.
[0015] すなわち、上記直列腕共振子のインピーダンスは、トラップ帯域内の低域側の周波 数域においては共振周波数と反共振周波数との間の誘導性インピーダンスである。 誘導性インピーダンスは、その値が周波数により大きく変化する。従って、直列腕共 振子の共振周波数を、通過帯域高域側端部に略一致させることにより、トラップ帯域 内の低域側におけるフィルタ特性の急峻性が効果的に高められると共に、通過帯域 内の通過帯域高域側端部近傍における挿入損失を小さくすることが可能となる。  That is, the impedance of the series arm resonator is an inductive impedance between the resonance frequency and the anti-resonance frequency in the lower frequency range within the trap band. The value of the inductive impedance varies greatly depending on the frequency. Therefore, by making the resonance frequency of the series arm resonator substantially coincide with the end portion on the high band side of the pass band, the steepness of the filter characteristics on the low band side within the trap band can be effectively enhanced, and the frequency within the pass band can be effectively increased. It is possible to reduce the insertion loss in the vicinity of the end portion on the high side of the passband.
[0016] 従って、本発明によれば、トラップ帯域の低域外側に通過帯域が設けられている弾 性波フィルタにおいて、トラップ帯域内の低周波数域の急峻性を高め、通過帯域内 の高域側端部近傍における挿入損失を効果的に小さくすることができ、良好なフィル タ特性を有する弾性波フィルタを提供することが可能となる。 [0016] Therefore, according to the present invention, the bullet having the pass band provided outside the lower band of the trap band. In an acoustic wave filter, it is possible to increase the steepness of the low frequency region in the trap band, effectively reduce the insertion loss in the vicinity of the high-frequency side end in the pass band, and to provide an elastic wave having good filter characteristics. A filter can be provided.
[0017] 本発明において、上記入力端子と上記トラップ回路部分との間及び上記出力端子 と上記トラップ回路部分との間の双方に上記フィルタ回路部分が設けられている場合 には、通過帯域内の高域側端部近傍における挿入損失をより一層効果的に小さくす ることが可能となる。  In the present invention, when the filter circuit portion is provided both between the input terminal and the trap circuit portion and between the output terminal and the trap circuit portion, It becomes possible to further effectively reduce the insertion loss in the vicinity of the high frequency side end.
[0018] 本発明にお 、て、直列腕共振子の容量と、第 2のインダクタとで構成される共振回 路の共振周波数が、通過帯域の低域側端部よりも低い周波数とされている場合には 、通過帯域よりも低い周波数域における減衰量を充分な大きさとすることが可能とな る。  [0018] In the present invention, the resonance frequency of the resonance circuit composed of the capacitance of the series arm resonator and the second inductor is set to be lower than that of the low-frequency side end of the pass band. In this case, the amount of attenuation in the frequency range lower than the pass band can be made sufficiently large.
[0019] 並列腕共振子及び直列腕共振子が形成されている圧電基板をさらに備え、圧電基 板上または圧電基板内に上記第 1,第 2のインダクタが形成されている場合には、第 1,第 2のインダクタが圧電基板上または圧電基板内に形成されているため、弾性波 フィルタの小型化を図ることができる。  [0019] A piezoelectric substrate on which a parallel arm resonator and a series arm resonator are formed is further provided, and the first and second inductors are formed on or in the piezoelectric substrate. Since the first and second inductors are formed on or in the piezoelectric substrate, the acoustic wave filter can be reduced in size.
[0020] 直列腕共振子の容量を Cs、第 1のインダクタンスを Ls、並列腕共振子の容量を Cp 、第 2のインダクタのインダクタンスを Lpとしたときに、 CsZCp> lかつ LpZLs> lと されて ヽる場合には、挿入損失の小さ ヽ弾性波フィルタを提供することが可能となる 図面の簡単な説明  [0020] When the capacitance of the series arm resonator is Cs, the first inductance is Ls, the capacitance of the parallel arm resonator is Cp, and the inductance of the second inductor is Lp, CsZCp> l and LpZLs> l. In such a case, it is possible to provide an elastic wave filter with a small insertion loss.
[0021] [図 1]図 1は、本発明の第 1の実施形態に係る弾性表面波フィルタの回路図である。  FIG. 1 is a circuit diagram of a surface acoustic wave filter according to a first embodiment of the present invention.
[図 2]図 2 (a)は、直列インダクタと並列容量とからなる低域通過型 LCフィルタの回路 構成を示す図であり、 (b)はその周波数特性を模式的に示す図である。  FIG. 2 (a) is a diagram showing a circuit configuration of a low-pass LC filter composed of a series inductor and a parallel capacitor, and (b) is a diagram schematically showing its frequency characteristics.
[図 3]図 3 (a)は、直列容量と並列インダクタンスとからなる LCフィルタの回路構成を 示す図であり、 (b)はその周波数特性を模式的に示す図である。  [FIG. 3] FIG. 3 (a) is a diagram showing a circuit configuration of an LC filter composed of a series capacitance and a parallel inductance, and (b) is a diagram schematically showing its frequency characteristics.
[図 4]図 4は、第 1の実施形態で用いられている直列腕共振子 SI, S2及び並列腕共 振子 PI, P2のインピーダンス特性を示す図である。  FIG. 4 is a diagram showing impedance characteristics of series arm resonators SI and S2 and parallel arm resonators PI and P2 used in the first embodiment.
[図 5]図 5は、第 1の実施形態で用いられているトラップ回路部分の周波数特性と、直 列腕共振子と第 2のインダクタンスで構成されるフィルタ回路部分の周波数特性をそ れぞれ実線ある!、は破線で示す図である。 FIG. 5 shows the frequency characteristics of the trap circuit used in the first embodiment and the direct Each of the frequency characteristics of the filter circuit portion composed of the column arm resonator and the second inductance has a solid line! Is a diagram indicated by a broken line.
[図 6]図 6は、第 1の実施形態の弾性表面波フィルタの周波数特性を示す図である。  FIG. 6 is a diagram showing frequency characteristics of the surface acoustic wave filter according to the first embodiment.
[図 7]図 7は、第 1の実施形態の弾性表面波フィルタにおいて、直列腕共振子 SI, S2 及び並列腕共振子 PI, P2が圧電基板の下面に構成されている構造を圧電基板を 透力して示す模式的平面図である。 FIG. 7 shows a structure in which the series arm resonators SI and S2 and the parallel arm resonators PI and P2 are formed on the lower surface of the piezoelectric substrate in the surface acoustic wave filter according to the first embodiment. It is a typical top view shown with permeability.
[図 8]図 8は、表面波共振子の電極構造を模式的に示す平面図である。  FIG. 8 is a plan view schematically showing an electrode structure of a surface wave resonator.
[図 9]図 9は、図 7に示した圧電基板が搭載されるノ ッケージ基板の平面図である。 FIG. 9 is a plan view of a knock board on which the piezoelectric substrate shown in FIG. 7 is mounted.
[図 10]図 10 (a)は、圧電基板に外付けされたインダクタを説明するための模式的平 面図であり、(b)は、ノ^ケージ基板上に弾性表面波チップが搭載されている構造を 略図的に示す模式的正面断面図である。 [FIG. 10] FIG. 10 (a) is a schematic plan view for explaining an inductor externally attached to a piezoelectric substrate, and FIG. 10 (b) is a surface acoustic wave chip mounted on a cage substrate. FIG. 3 is a schematic front sectional view schematically showing the structure.
[図 11]図 11は、第 1の実施形態で第 1,第 2のインダクタンスが圧電基板上に電極と して形成されている構造を模式的に示す平面図であり、圧電基板の下面の電極構造 を模式的に示す平面図である。  FIG. 11 is a plan view schematically showing a structure in which the first and second inductances are formed as electrodes on the piezoelectric substrate in the first embodiment. FIG. 3 is a plan view schematically showing an electrode structure.
[図 12]図 12は、本発明の第 2の実施形態に係る弾性表面波フィルタの回路図である  FIG. 12 is a circuit diagram of a surface acoustic wave filter according to a second embodiment of the present invention.
[図 13]図 13は、第 2の実施形態の弾性表面波フィルタの周波数特性を示す図である FIG. 13 is a diagram showing frequency characteristics of the surface acoustic wave filter according to the second embodiment.
[図 14]図 14は、本発明の弾性表面波フィルタの変形例を説明するための回路図で ある。 FIG. 14 is a circuit diagram for explaining a modification of the surface acoustic wave filter of the present invention.
[図 15]図 15 (a)は、従来の弾性表面波フィルタの一例を説明するための回路図、 (b) はその周波数特性を示す図である。  FIG. 15 (a) is a circuit diagram for explaining an example of a conventional surface acoustic wave filter, and FIG. 15 (b) is a diagram showing its frequency characteristics.
符号の説明 Explanation of symbols
1…弾性表面波フィルタ  1… surface acoustic wave filter
11…弾性表面波チップ  11… surface acoustic wave chip
12…圧電基板  12 ... Piezoelectric substrate
13a"-IDT電極  13a "-IDT electrode
13b, 13c…反射器 14a〜14f…金属バンプ 13b, 13c… Reflector 14a-14f ... Metal bump
15· ··パッケージ基板  15 ... Package substrate
16a〜16e…電極ランド  16a-16e ... Electrode land
21…弾性表面波フィルタ  21… Surface acoustic wave filter
L1…第 1のインダクタンス  L1 ... 1st inductance
P1, Ρ2· ··第 1,第 2の並列腕共振子  P1, Ρ2 ···· First and second parallel arm resonators
Ρ3· ··第 3の並列腕共振子  Ρ3 ··· 3rd parallel arm resonator
SI, S2 直列腕共振子  SI, S2 series arm resonator
L2a, L2b…第 2のインダクタンス  L2a, L2b ... Second inductance
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 図面を参照しつつ本発明の具体的な実施形態を説明することにより、本発明を明ら かにする。 [0023] The present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
[0024] 図 1は、本発明の第 1の実施形態に係る弾性表面波フィルタの回路図である。本実 施形態の弾性表面波フィルタ 1では、入力端子 INと、出力端子 OUTとの間に第 1の インダクタ L 1が接続されて!ヽる。第 1のインダクタ L 1の一端とグラウンド電位との間に 第 1の並列腕共振子 P1が接続されており、第 1のインダクタ L1の他端とグラウンド電 位との間に第 2の並列腕共振子 P2が接続されている。上記第 1のインダクタ L1及び 第 1,第 2の並列腕共振子 PI, P2を有するトラップ回路部分 Aは、図 15に示した従 来の帯域阻止型フィルタ 100とほぼ同様である。  FIG. 1 is a circuit diagram of a surface acoustic wave filter according to a first embodiment of the present invention. In the surface acoustic wave filter 1 according to this embodiment, the first inductor L 1 is connected between the input terminal IN and the output terminal OUT. The first parallel arm resonator P1 is connected between one end of the first inductor L1 and the ground potential, and the second parallel arm is connected between the other end of the first inductor L1 and the ground potential. Resonator P2 is connected. The trap circuit portion A having the first inductor L1 and the first and second parallel arm resonators PI and P2 is substantially the same as the conventional band rejection filter 100 shown in FIG.
[0025] 本実施形態の弾性表面波フィルタ 1では、前記第 1のインダクタ L1及び第 1,第 2の 並列腕共振子 PI, P2とで構成されるトラップ回路部分 Aの両側に、インダクタ L2a, L2b及び直列腕共振子 SI, S2からなるフィルタ回路部分 Bl, B2が設けられている  [0025] In the surface acoustic wave filter 1 of the present embodiment, inductors L2a, L2a are arranged on both sides of a trap circuit portion A composed of the first inductor L1 and the first and second parallel arm resonators PI, P2. Filter circuit parts Bl and B2 consisting of L2b and series arm resonators SI and S2 are provided.
[0026] すなわち、入力端子 INと第 1のインダクタ L 1との間に直列腕共振子 S 1が接続され ており、入力端子 INと直列腕共振子 S1との間の接続点とグラウンド電位との間に第 2 のインダクタ L2aが接続されて 、る。 That is, the series arm resonator S 1 is connected between the input terminal IN and the first inductor L 1, and the connection point between the input terminal IN and the series arm resonator S 1 and the ground potential The second inductor L2a is connected between the two.
[0027] また、第 1のインダクタ L1と出力端子 OUTとの間にも直列腕共振子 S2が接続され ており、かつ出力端子 OUTと直列腕共振子 S2との間の接続点とグラウンド電位との 間に、第 2のインダクタ L2bが接続されている。 [0027] The series arm resonator S2 is also connected between the first inductor L1 and the output terminal OUT, and the connection point between the output terminal OUT and the series arm resonator S2 and the ground potential are connected. of A second inductor L2b is connected between them.
[0028] また、弾性表面波フィルタ 1では、入力端子 INと出力端子 OUTとを結んでいる直 列腕に、直列腕共振子 Sl、第 1のインダクタ L1及び直列腕共振子 S2がこの順序で 配置されていることになる。  In the surface acoustic wave filter 1, the series arm resonator Sl, the first inductor L1, and the series arm resonator S2 are arranged in this order on the series arm connecting the input terminal IN and the output terminal OUT. Will be placed.
[0029] ところで、図 2 (a)に示すように、入力端子 INと、出力端子 OUTとの間に直列にイン ダクタンス Lxを接続し、入力端子 INとグラウンド電位との間に並列容量 C1を接続し た場合、インダクタンス Lxと容量 C1との LC回路により、図 2 (b)に示すような低域通 過帯域型のフィルタ特性が得られる。  [0029] By the way, as shown in Fig. 2 (a), an inductance Lx is connected in series between the input terminal IN and the output terminal OUT, and a parallel capacitor C1 is connected between the input terminal IN and the ground potential. When connected, an LC circuit with an inductance Lx and a capacitance C1 provides low-pass filter characteristics as shown in Fig. 2 (b).
[0030] 他方、図 3 (a)に示すように、入力端子 INと出力端子 OUTとの間に直列に直列容 量 C2を接続し、入力端子 INとグラウンド電位との間にインダクタンス Lyを接続した場 合には、容量 C2と、インダクタンス Lyとからなる LC回路により図 3 (b)に示す高域通 過帯域型のフィルタ特性が得られる。  On the other hand, as shown in FIG. 3 (a), a series capacitor C2 is connected in series between the input terminal IN and the output terminal OUT, and an inductance Ly is connected between the input terminal IN and the ground potential. In such a case, the high-pass filter characteristics shown in Fig. 3 (b) can be obtained by the LC circuit consisting of the capacitor C2 and the inductance Ly.
[0031] 図 1に示した弾性表面波フィルタ 1では、インダクタ LI, L2a, L2bのインダクタンス 、直列腕共振子 SI, S2及び並列腕共振子 PI, P2の容量とで、それぞれ、前記低 域通過帯域型フィルタあるいは高域通過型フィルタが構成され、全体として、通過帯 域を有する特性が得られて ヽる。  [0031] In the surface acoustic wave filter 1 shown in FIG. 1, the low-pass filter includes the inductances of the inductors LI, L2a, and L2b and the capacitances of the series arm resonators SI and S2 and the parallel arm resonators PI and P2, respectively. A band-pass filter or a high-pass filter is configured, and as a whole, characteristics having a pass band can be obtained.
[0032] より具体的には、第 1のインダクタ L1及び並列腕共振子 PI, P2を有するトラップ回 路部分 Aにより、図 15に示した従来の帯域阻止型フィルタ 100と同様に、トラップ帯 域と、トラップ帯域の低域外側の通過帯域とが形成されることとなる。  More specifically, the trap band portion A having the first inductor L 1 and the parallel arm resonators PI and P 2 is used in the trap band as in the conventional band-stop filter 100 shown in FIG. As a result, a pass band outside the lower band of the trap band is formed.
[0033] そして、本実施形態では、直列腕共振子 S1及び第 2のインダクタ L2aからなるフィ ルタ回路部分と直列腕共振子 S2及び第 2のインダクタ L2bとからなるフィルタ回路部 分 B2とが前記トラップ回路部分 Aの両側に接続されており、直列腕共振子 SI, S2の 共振周波数が、弾性表面波フィルタ 1の通過帯域の高域側端部と略一致されている ため、トラップ帯域内の低域側周波数域におけるフィルタ特性の急峻性が高められ、 かつ通過帯域高域側端部における挿入損失が効果的に小さくされている。  [0033] In the present embodiment, the filter circuit portion including the series arm resonator S1 and the second inductor L2a and the filter circuit portion B2 including the series arm resonator S2 and the second inductor L2b are described above. Since it is connected to both sides of the trap circuit part A and the resonance frequency of the series arm resonators SI and S2 is substantially the same as the high band side end of the pass band of the surface acoustic wave filter 1, The steepness of the filter characteristics in the low frequency band is enhanced, and the insertion loss at the end of the high pass band is effectively reduced.
[0034] 弾性表面波フィルタ 1として、携帯電話に搭載される地上波デジタル 1セグメントチ ユーナー用弾性表面波フィルタに適用した例を考えることとする。この場合、通過帯 域は 470〜770MHzであり、該通過帯域よりも高域側に、携帯電話の送信帯域であ る 830〜845MHzがトラップ帯域として構成される必要がある。このようなトラップ帯 域と通過帯域とを有する弾性表面波フィルタを構成する場合、直列腕共振子 SI, S2 及び並列腕共振子 P 1 , P2の図 4に示すインピーダンス特性が利用される。 As an example of the surface acoustic wave filter 1, let us consider an example in which the present invention is applied to a surface acoustic wave filter for a terrestrial digital one-segment tuner mounted on a mobile phone. In this case, the passband is 470 to 770 MHz, and the mobile phone transmission band is higher than the passband. 830 to 845 MHz must be configured as the trap band. When a surface acoustic wave filter having such a trap band and a pass band is configured, the impedance characteristics shown in FIG. 4 of the series arm resonators SI and S2 and the parallel arm resonators P 1 and P2 are used.
[0035] 弾性表面波共振子のインピーダンス特性においては、共振周波数よりも低い周波 数域では、容量性インピーダンスとなり周波数の変化に対してインピーダンスは緩や かに変化する。これに対して、共振周波数と反共振周波数との間の周波数領域では 、インピーダンスは誘導性インピーダンスとなり、周波数の変化に対してインピーダン スが大きく変化する。 [0035] In the impedance characteristics of the surface acoustic wave resonator, in a frequency range lower than the resonance frequency, it becomes a capacitive impedance, and the impedance changes gently with respect to the change in frequency. On the other hand, in the frequency region between the resonance frequency and the anti-resonance frequency, the impedance becomes an inductive impedance, and the impedance changes greatly with respect to the change in frequency.
[0036] トラップ回路部分 Aでは、並列腕共振子 PI, P2の共振周波数よりも低い周波数域 におけるインピーダンス特性、すなわち、容量性インピーダンスを利用してトラップ帯 域内の低域側が構成されていることになる。そのため、トラップ帯域内の低域側周波 数域における急峻性が充分でなぐ従来の弾性表面波フィルタ 100では、通過帯域 内の通過帯域高域側端部近傍における挿入損失が大きくなりがちであった。  [0036] In the trap circuit portion A, the low frequency side in the trap band is configured using the impedance characteristic in the frequency range lower than the resonance frequency of the parallel arm resonators PI and P2, that is, the capacitive impedance. Become. For this reason, in the conventional surface acoustic wave filter 100 in which the steepness in the low frequency region within the trap band is not sufficient, the insertion loss tends to be large near the high band side end of the pass band. .
[0037] これに対して、本実施形態では、上記直列腕共振子 SI, S2の共振周波数が通過 帯域高域側端部に略一致されている。従って、直列腕共振子 SI, S2のインピーダン スは、トラップ帯域内の低域側周波数域にぉ 、て誘導性インピーダンスとなって 、る ため、その変化に対してインピーダンスが大きく変化する。よって、トラップ帯域内の 低域側周波数域におけるフィルタ特性の急峻性が高められ、かつ通過帯域内の通 過帯域高域側端部近傍における弾性表面波フィルタ 1の挿入損失が著しく小さくさ れ得る。  On the other hand, in the present embodiment, the resonance frequencies of the series arm resonators SI and S2 are substantially matched with the end portion on the high side of the pass band. Accordingly, the impedances of the series arm resonators SI and S2 are inductive impedances in the low frequency region within the trap band, and therefore the impedance changes greatly in response to the change. Therefore, the steepness of the filter characteristics in the low frequency region within the trap band can be increased, and the insertion loss of the surface acoustic wave filter 1 in the vicinity of the end of the high pass region in the pass band can be significantly reduced. .
[0038] 共振子の共振抵抗が小さ!/、場合、容量性インピーダンス及び誘導性インピーダン スは、それぞれ、容量性及び誘導性のリアクタンスとみなすことができる。従って、トラ ップ帯域内の低域側周波数域において、直列腕共振子 SI, S2と並列腕共振子 P1 , P2との接続点の電圧は、入力端子に印加される電圧 X〔並列腕共振子 P1または P 2の容量性リアクタンス Z (並列腕共振子 P1または P2の容量性リアクタンス +直列腕 共振子 S1または S2の誘導性リアクタンス)〕で表されることになる。容量性リアクタンス と誘導性リアクタンスとは逆極性であるため、上記接続点の電圧は、入力端子電圧以 上となり、通過帯域高域側における挿入損失を小さくし得ることがわ力る。 [0039] なお、インダクタ LI, L2a, L2bのインピーダンス値は、トラップ帯域で大きなインピ 一ダンスとなるため、インダクタ LI, L2a, L2bのインピーダンスによる影響は無視す ることがでさる。 [0038] When the resonance resistance of the resonator is small! /, The capacitive impedance and the inductive impedance can be regarded as capacitive and inductive reactance, respectively. Therefore, the voltage at the connection point between the series arm resonators SI and S2 and the parallel arm resonators P1 and P2 in the low frequency range within the trap band is the voltage X [parallel arm resonance The capacitive reactance Z of the child P1 or P2 (capacitive reactance of the parallel arm resonator P1 or P2 + inductive reactance of the series arm resonator S1 or S2)]. Since the capacitive reactance and the inductive reactance have opposite polarities, the voltage at the above-mentioned connection point is higher than the input terminal voltage, which indicates that the insertion loss on the high passband side can be reduced. [0039] Since the impedance values of the inductors LI, L2a, and L2b have a large impedance in the trap band, the influence of the impedances of the inductors LI, L2a, and L2b can be ignored.
[0040] より具体的には、図 5の実線 Cは、インダクタ L1及び並列腕共振子 PI, P2で構成 されるトラップ回路部分 Aによる特性を示す。これに対して、上記直列腕共振子 S1ま たは S2の容量と、インダクタ L2aまたは L2bとで構成される高域通過型のフィルタ回 路部分 Bl, B2の特性を破線 Dで示す。フィルタ回路部分 Bl, B2の周波数特性に おける遮断周波数は、直列腕共振子 S1または S2の容量と、インダクタ L2aまたは L2 bのインダクタンスとの共振による共振周波数となる。直列腕共振子 S1または S2の共 振周波数 frを通過帯域高域側端部に略一致させることによりトラップ帯域内の低域 型周波数域における急峻性を高めることができると共に、通過帯域内の通過帯域高 域側端部近傍の挿入損失を小さくすることができる。  More specifically, the solid line C in FIG. 5 shows the characteristics of the trap circuit portion A composed of the inductor L1 and the parallel arm resonators PI and P2. In contrast, the characteristics of the high-pass filter circuit parts Bl and B2 composed of the capacitance of the series arm resonator S1 or S2 and the inductor L2a or L2b are indicated by a broken line D. The cutoff frequency in the frequency characteristics of the filter circuit parts Bl and B2 is a resonance frequency due to resonance between the capacitance of the series arm resonator S1 or S2 and the inductance of the inductor L2a or L2b. By making the resonance frequency fr of the series arm resonator S1 or S2 substantially coincide with the end of the high side of the pass band, the steepness in the low frequency range within the trap band can be increased and the pass in the pass band can be increased. The insertion loss in the vicinity of the band high band end can be reduced.
[0041] 図 6は、上記弾性表面波フィルタ 1の特性を示す減衰量周波数特性を示す図であ る。なお、図 6に示されている特性は、共振子 SI, S2及び並列腕共振子 PI, P2の 等価回路定数を下記の表 1に示すように、かつインダクタ L1のインダクタンス値は 13 nH、インダクタ L2aのインダクタンス値は 27nH、インダクタ L2bのインダクタンス値は 27nHとした構成の特性である。  FIG. 6 is a diagram showing attenuation frequency characteristics indicating the characteristics of the surface acoustic wave filter 1. The characteristics shown in FIG. 6 are as follows. The equivalent circuit constants of the resonators SI and S2 and the parallel arm resonators PI and P2 are as shown in Table 1 below, and the inductance value of the inductor L1 is 13 nH. The inductance value of L2a is 27nH, and the inductance value of inductor L2b is 27nH.
[0042] [表 1]
Figure imgf000011_0001
[0042] [Table 1]
Figure imgf000011_0001
[0043] 図 6から明らかなように、トラップ帯域における減衰量 50dB以上とすることができ、ト ラップ帯域内の低周波数領域における急峻性を高めることが可能とされたため、通過 帯域全域にわたり、挿入損失を 2dB以下とし得ることがわかる。 [0043] As is apparent from Fig. 6, the attenuation in the trap band can be set to 50 dB or more, and the steepness in the low frequency region within the trap band can be increased. It can be seen that the loss can be 2 dB or less.
[0044] なお、本実施形態の弾性表面波フィルタ 1では、好ましくは、直列腕共振子 SI, S2 の容量を Cs、第 1のインダクタ L1のインダクタンス値を Ls、並列腕共振子 PI, P2の 容量をそれぞれ Cp、第 2のインダクタのインダクタンスの値を Lpとしたときに Cs/Cp > 1かつ LpZLs> lとされ、それによつて、挿入損失をより一層小さくすることができ る。これを以下において説明する。 In the surface acoustic wave filter 1 of the present embodiment, preferably, the capacitance of the series arm resonators SI and S2 is Cs, the inductance value of the first inductor L1 is Ls, and the parallel arm resonators PI and P2 When the capacitance is Cp and the inductance value of the second inductor is Lp, Cs / Cp> 1 and LpZLs> l, so that the insertion loss can be further reduced. The This will be described below.
[0045] いま、インダクタ L1と並列腕共振子 PI, P2とからなる LC共振回路の共振周波数は 、直列腕共振子 S1または S2と、第 2のインダクタ L2aまたは L2bとからなる LC回路の 共振周波数よりも高くなつている。従って、下記の式(1)が成立する。  [0045] Now, the resonance frequency of the LC resonance circuit composed of the inductor L1 and the parallel arm resonators PI and P2 is the resonance frequency of the LC circuit composed of the series arm resonator S1 or S2 and the second inductor L2a or L2b. Is getting higher than. Therefore, the following formula (1) is established.
[0046] [数 1]  [0046] [Equation 1]
• ■ .式 (1 )• ■ Formula (1)
Figure imgf000012_0001
Figure imgf000012_0001
[0047] なお、トラップ回路部分 Aと、フィルタ回路部分 Bl, B2の特性インピーダンスはい ずれも 50 Ωとされている。従って、下記の式(2)が成立する。  [0047] The characteristic impedances of the trap circuit portion A and the filter circuit portions Bl and B2 are both 50 Ω. Therefore, the following formula (2) is established.
[0048] [数 2]
Figure imgf000012_0002
[0048] [Equation 2]
Figure imgf000012_0002
[0049] 式(1)を変形すると、 [0049] By transforming equation (1),
[0050] [数 3] ( (L p ■ Cs) / (L s ■ Cp) ) >1 ■ ■ ■式 (3) [0050] [Equation 3] ((L p ■ Cs) / (L s ■ Cp))> 1 ■ ■ ■ Equation (3)
[0051] となり、式(2)を変形すると、 LsZCp=Lp/Csとなる。従って、 Lp= (Cs/Cp) -Ls 及び Cp = Cs' (Ls/Lp)を式(3)に代入すると、 CsCp>l及び LpZLs>lとなる。 [0051] When Equation (2) is transformed, LsZCp = Lp / Cs. Therefore, substituting Lp = (Cs / Cp) -Ls and Cp = Cs ′ (Ls / Lp) into equation (3) results in CsCp> l and LpZLs> l.
[0052] 従って、 CsZCp>lかつ LpZLs>lとすることにより、トラップ回路部分 Aとフィル タ回路部分 Bl, B2との特性インピーダンスが揃えられ、挿入損失を小さくすることが できる。  [0052] Therefore, by setting CsZCp> l and LpZLs> l, the characteristic impedances of the trap circuit portion A and the filter circuit portions Bl and B2 can be made uniform, and the insertion loss can be reduced.
[0053] 上記実施形態では、直列腕共振子 Sl, S2の共振周波数は、通過帯域高域側端 部と略一致されている力、略一致とは必ずしも完全に一致している必要はなく、通過 帯域高域側端部の周波数— 5%以上、 0%以下の範囲内であればよいことをいうもの とする。また、通過帯域内の挿入損失を 2dB以下とするには、通過帯域高域側端部 の周波数— 5%以上、 0%以下の範囲とすればよいことが発明者の実験により確かめ られている。 [0054] 従って、好ましくは、前記直列腕共振子 SI, S2の共振周波数は、弾性表面波フィ ルタ 1の通過帯域の高域側端部の周波数 5%以上、 0%以下の範囲とされる。 [0053] In the above embodiment, the resonance frequency of the series arm resonators Sl, S2 is not necessarily the same as the force that is substantially coincident with the end of the passband high band side, and substantially coincidence. The frequency at the end of the high side of the pass band is within the range of 5% or more and 0% or less. In addition, in order to reduce the insertion loss in the passband to 2 dB or less, it has been confirmed by the inventors' experiment that the frequency at the end of the high end of the passband should be in the range of 5% to 0%. . Therefore, preferably, the resonance frequency of the series arm resonators SI and S2 is in the range of 5% or more and 0% or less of the frequency at the high-frequency side end of the passband of the surface acoustic wave filter 1. .
[0055] 上記実施形態では、前記トラップ回路部分 Aの入力側及び出力側の双方に、前記 フィルタ回路部分 Bl, B2が接続されていた力 いずれか一方にのみフィルタ回路部 分が接続されていてもよい。すなわち、直列腕共振子 S1と、インダクタ L2aからなるフ ィルタ回路部分 B1のみがトラップ回路部分 Aに接続されていてもよぐあるいは直列 腕共振子 S2とインダクタ L2bとからなるフィルタ回路部分 B2のみがトラップ回路部分 Aに接続されていてもよい。  [0055] In the above embodiment, the filter circuit portion is connected to only one of the forces to which the filter circuit portions Bl and B2 are connected to both the input side and the output side of the trap circuit portion A. Also good. That is, only the filter circuit part B1 consisting of the series arm resonator S1 and the inductor L2a may be connected to the trap circuit part A, or only the filter circuit part B2 consisting of the series arm resonator S2 and the inductor L2b. It may be connected to the trap circuit part A.
[0056] 本実施形態の弾性表面波フィルタ 1では、前記直列腕共振子 SI, S2及び並列腕 共振子 PI, P2は、好ましくは、 1枚の圧電基板上にインターデジタル電極 (IDT電極 )を形成することにより構成された弾性表面波共振子により構成される。図 7は、弾性 表面波チップ 11にお ヽて、圧電基板 12の下面に形成されて ヽる電極構造を圧電基 板 12を透視して模式的に示す平面図である。  In the surface acoustic wave filter 1 of the present embodiment, the series arm resonators SI and S2 and the parallel arm resonators PI and P2 preferably have interdigital electrodes (IDT electrodes) on a single piezoelectric substrate. It is comprised by the surface acoustic wave resonator comprised by forming. FIG. 7 is a plan view schematically showing the electrode structure formed on the lower surface of the piezoelectric substrate 12 through the piezoelectric substrate 12 in the surface acoustic wave chip 11.
[0057] 圧電基板 12は、セラミックスまたは圧電単結晶により構成され、その下面に IDT電 極を形成することにより、直列腕共振子 SI, S2及び並列腕共振子 PI, P2が形成さ れている。図 7では、直列腕共振子 SI, S2及び並列腕共振子 PI, P2が形成されて いる部分が略図的に示されている力 図 8にこの IDT電極の具体的な構造を模式的 に示す。図 8に示すように、 IDT電極 13aの両側に、反射器 13b, 13cが形成されて、 1つの弾性表面波共振子が構成される。直列腕共振子 SI, S2及び並列腕共振子 P 1, P2は、いずれも、 IDT電極と IDT電極の両側に配置された反射器とを有する。も つとも、前述した表 1に示したように、直列腕共振子 SI, S2及び並列腕共振子 PI, P 2の仕様は、求められる特性に応じて、異ならされている。  [0057] The piezoelectric substrate 12 is made of ceramics or a piezoelectric single crystal, and the IDT electrodes are formed on the lower surface thereof to form the series arm resonators SI and S2 and the parallel arm resonators PI and P2. . In Fig. 7, the force at which the series arm resonators SI and S2 and the parallel arm resonators PI and P2 are formed is schematically shown. Fig. 8 schematically shows the specific structure of this IDT electrode. . As shown in FIG. 8, reflectors 13b and 13c are formed on both sides of the IDT electrode 13a to constitute one surface acoustic wave resonator. Each of the series arm resonators SI and S2 and the parallel arm resonators P1 and P2 includes an IDT electrode and reflectors disposed on both sides of the IDT electrode. In all cases, as shown in Table 1 above, the specifications of the series arm resonators SI and S2 and the parallel arm resonators PI and P2 are different depending on the required characteristics.
[0058] 上記弾性表面波チップ 11には、金属バンプ 14a〜14fが設けられている。この金属 バンプ 14a〜14fを利用して弾性表面波チップ 11は、ノ ッケージ基板 15にフリップ チップボンディング工法により搭載される。ノ ッケージ基板 15は、適宜の絶縁性材料 からなり、その上面に、電極ランド 16a〜16eを有する。金属バンプ 14aが電極ランド 16aに、金属バンプ 14bが電極ランド 16bに、グラウンド電位に接続される電極ランド 16cに金属ノンプ 14c, 14d力 金属バンプ 14eが電極ランド 16dに、金属バンプ 14 fが電極ランド 16eにそれぞれ接合されることになる。 [0058] The surface acoustic wave chip 11 is provided with metal bumps 14a to 14f. The surface acoustic wave chip 11 is mounted on the knock board 15 by flip chip bonding using these metal bumps 14a to 14f. The knock substrate 15 is made of an appropriate insulating material, and has electrode lands 16a to 16e on the upper surface thereof. Metal bump 14a on electrode land 16a, metal bump 14b on electrode land 16b, electrode land 16c connected to ground potential Metal bump 14c, 14d force Metal bump 14e on electrode land 16d, metal bump 14 f is joined to the electrode land 16e.
[0059] なお、図 10 (b)は、上記弾性表面波チップ 11をパッケージ基板 15に搭載した構造 の略図的正面断面図である。 FIG. 10 (b) is a schematic front sectional view of a structure in which the surface acoustic wave chip 11 is mounted on a package substrate 15.
[0060] そして、図 10 (a)に略図的に示すように、上記パッケージ基板 15の外側に、インダ クタ LI, L2a, L2bを構成する外付けの素子が電極ランド 16a〜16eに適宜接続され る。 Then, as schematically shown in FIG. 10 (a), external elements constituting the inductors LI, L2a, and L2b are appropriately connected to the electrode lands 16a to 16e outside the package substrate 15. The
[0061] 図 7に示した弾性表面波チップ 11では、弾性表面波共振子力 なる直列腕共振子 SI, S2及び並列腕共振子 PI, P2のみが圧電基板 12に構成されていた力 図 11に 平面図で示すように、インダクタ LI, L2a, L2bもまた、圧電基板 12の下面にミアンダ 状の形状すなわち蛇行形状等の電極を形成することにより設けてもよい。  In the surface acoustic wave chip 11 shown in FIG. 7, only the series arm resonators SI and S2 and the parallel arm resonators PI and P2, which are surface acoustic wave resonator forces, are formed on the piezoelectric substrate 12. FIG. Further, as shown in the plan view, the inductors LI, L2a, and L2b may also be provided by forming a meander-shaped electrode, that is, a meandering electrode on the lower surface of the piezoelectric substrate 12.
[0062] 図 11は、図 7と同様に、圧電基板 12を透視して、圧電基板 12の下面に形成されて いる電極を模式的に示す平面図である。ここでは、インダクタ LI, L2a, L2b力 それ ぞれ、電極をミアンダ状の形状とすることにより構成されている。なお、インダクタ L1, L2a, L2bは、圧電基板 12の下面にミアンダ状の電極パターンを形成することにより 構成される必要は必ずしもない。例えば、コイル状の電極パターンを圧電基板 12の 下面に形成してもよい。  FIG. 11 is a plan view schematically showing the electrodes formed on the lower surface of the piezoelectric substrate 12 through the piezoelectric substrate 12 as in FIG. Here, the inductors LI, L2a, and L2b forces are configured by forming the electrodes in a meander shape. The inductors L1, L2a, and L2b are not necessarily configured by forming a meandering electrode pattern on the lower surface of the piezoelectric substrate 12. For example, a coiled electrode pattern may be formed on the lower surface of the piezoelectric substrate 12.
[0063] 図 11に示したように、圧電基板表面に一体に電極材料を付与することによりインダ クタ LI, L2a, L2bを形成することにより、弾性表面波フィルタ 1の小型化を図ることが できる。  [0063] As shown in FIG. 11, the surface acoustic wave filter 1 can be reduced in size by forming the inductors LI, L2a, and L2b by applying the electrode material integrally to the surface of the piezoelectric substrate. .
[0064] 図 12は、本発明の第 2の実施形態に係る弾性表面波フィルタの回路図である。第 2 の実施形態の弾性表面波フィルタ 21は、入力端子 INと出力端子 OUTとの間に、図 1に示したトラップ回路部分 Aと同様に構成されたトラップ回路部分 Aを有する。トラッ プ回路部分 Aは、第 1のインダクタ L1と、第 1のインダクタ L1の一端とグラウンド電位 との間に接続された並列腕共振子 P1と、第 1のインダクタ L2の他端とグラウンド電位 との間に接続された並列腕共振子 P2とを有する。  FIG. 12 is a circuit diagram of a surface acoustic wave filter according to the second embodiment of the present invention. The surface acoustic wave filter 21 according to the second embodiment has a trap circuit portion A configured in the same manner as the trap circuit portion A shown in FIG. 1 between the input terminal IN and the output terminal OUT. The trap circuit portion A includes a first inductor L1, a parallel arm resonator P1 connected between one end of the first inductor L1 and the ground potential, and the other end of the first inductor L2 and the ground potential. And a parallel arm resonator P2 connected between the two.
[0065] 第 2の実施形態では、上記トラップ回路部分 Aの両側に、直列腕共振子 S11と第 2 のインダクタ L2aとからなるフィルタ回路部分 B3及び直列腕共振子 S 12と、第 2のィ ンダクタ L2bとからなるフィルタ回路部分 B4がそれぞれ接続されている。第 1の実施 形態と異なるところは、インダクタ L2a, L2bの一端が、直列腕共振子 Sl l, S12と第 1のインダクタ L1の一端または他端との間の接続点 22, 23に接続されていることに ある。 In the second embodiment, on both sides of the trap circuit portion A, the filter circuit portion B3 and the series arm resonator S12 including the series arm resonator S11 and the second inductor L2a are provided on the both sides of the trap circuit portion A. A filter circuit portion B4 including the inductor L2b is connected to each other. First implementation The difference from the configuration is that one end of the inductors L2a and L2b is connected to connection points 22 and 23 between the series arm resonators Sl l and S12 and one end or the other end of the first inductor L1. .
[0066] 本実施形態においても、直列腕共振子 Sl l, S12の共振周波数を、通過帯域高域 側端部と略一致させることにより、直列腕共振子 Sl l, S12の共振周波数と反共振周 波数との間の誘導性インピーダンスを利用することにより、トラップ帯域の低域周波数 領域におけるフィルタ特性の急峻性を高めることができる。従って、通過帯域内の通 過帯域高域側端部近傍における挿入損失を小さくすることができる。  [0066] Also in the present embodiment, the resonance frequency of the series arm resonators Sl l, S12 is made to substantially coincide with the end portion on the high side of the passband so that the resonance frequency of the series arm resonators Sl l, S12 and the anti-resonance By using the inductive impedance with the frequency, the steepness of the filter characteristics in the low frequency region of the trap band can be enhanced. Therefore, it is possible to reduce the insertion loss in the vicinity of the end on the high band side in the pass band.
[0067] 第 1,第 2の実施形態から明らかなように、上記フィルタ回路部分における第 2のィ ンダクタは、直列腕共振子の一端または他端とグラウンド電位との間に接続される限 り、直列腕共振子の一端または他端の 、ずれに接続されて 、てもよ 、。  As apparent from the first and second embodiments, the second inductor in the filter circuit portion is limited as long as it is connected between one end or the other end of the series arm resonator and the ground potential. The series arm resonator may be connected to one end or the other end of the displacement.
[0068] 図 13は、図 12に示した弾性表面波フィルタ 21の周波数特性を示す図である。図 1 3から明らかなように、本実施形態においても、通過特性において、トラップ帯域内の 低域側周波数域における急峻性が高められ、かつ通過帯内の高域側端部近傍の挿 入損失が小さくされ、通過帯域の全域にわたり、挿入損失が 2dB以下とされているこ とがわかる。なお、直列腕共振子 Sl l, S12及び並列腕共振子 PI, P2の等価回路 定数を下記の表 2に示す通りとした。また、インダクタ L1のインダクタンス値は 11ηΗ、 インダクタ L2aのインダクタンス値は 16nH,インダクタ L2bのインダクタンス値は 13η Ηとした。  FIG. 13 is a diagram showing frequency characteristics of the surface acoustic wave filter 21 shown in FIG. As is apparent from FIG. 13, also in this embodiment, in the pass characteristics, the steepness in the low frequency region within the trap band is enhanced, and the insertion loss near the high frequency side end in the pass band is also achieved. It can be seen that the insertion loss is 2 dB or less over the entire passband. The equivalent circuit constants of the series arm resonators Sl l and S12 and the parallel arm resonators PI and P2 are as shown in Table 2 below. Inductor L1 has an inductance value of 11ηΗ, inductor L2a has an inductance value of 16nH, and inductor L2b has an inductance value of 13ηΗ.
[0069] [表 2]
Figure imgf000015_0001
[0069] [Table 2]
Figure imgf000015_0001
[0070] 図 1及び図 12に示した第 1,第 2の実施形態の弾性表面波フィルタ 1, 21では、トラ ップ回路部分 Αは、第 1のインダクタ L1と、第 1のインダクタ L1の両端に接続された並 列腕共振子 PI, P2を有していたが、トラップ回路部分は、複数の第 1のインダクタを 接続した構造を有して ヽてもよ ヽ。 In the surface acoustic wave filters 1 and 21 of the first and second embodiments shown in FIG. 1 and FIG. 12, the trap circuit portion Α includes the first inductor L1 and the first inductor L1. Although the parallel arm resonators PI and P2 connected to both ends are provided, the trap circuit portion may have a structure in which a plurality of first inductors are connected.
[0071] すなわち、図 14に示す変形例のように、トラップ回路部分 A力 第 1のインダクタ L1 a, Lib, Lieを有していてもよい。この場合、隣り合うインダクタ Lla, Lib間及び隣り 合うインダクタ Lib, Lie間と、グラウンド電位との間のそれぞれに第 3の並列腕共振 子 P3が接続されることになる。 That is, as in the modification shown in FIG. 14, the trap circuit portion A force first inductor L1 You may have a, Lib, and Lie. In this case, the third parallel arm resonator P3 is connected between the adjacent inductors Lla and Lib, between the adjacent inductors Lib and Lie, and the ground potential.
[0072] このように、本発明においては、第 1のインダクタと、並列腕共振子とからなるトラッ プ回路部分におけるインダクタ及び並列腕共振子力 なる LC回路の段数は特に限 定されるものではない。 [0072] Thus, in the present invention, the number of stages of the LC circuit which is the inductor and the parallel arm resonator force in the trap circuit portion including the first inductor and the parallel arm resonator is not particularly limited. Absent.
[0073] また、上記実施形態では、弾性表面波を利用した弾性表面波フィルタにっき説明 したが、本発明は、弾性境界波を利用した弾性境界波フィルタに適用することも可能 である。  In the above embodiment, the surface acoustic wave filter using a surface acoustic wave has been described. However, the present invention can also be applied to a boundary acoustic wave filter using a boundary acoustic wave.

Claims

請求の範囲 The scope of the claims
[1] トラップ帯域と、該トラップ帯域の低域外側に設けられた通過帯域とを有する弾性波 フィルタであって、  [1] An elastic wave filter having a trap band and a pass band provided outside a low band of the trap band,
入力端子と出力端子とを結ぶ直列腕に配置された少なくとも 1個の第 1のインダクタ と、少なくとも 1個の前記第 1のインダクタが設けられている部分の一端とグラウンド電 位との間に設けられた第 1の並列腕共振子と、少なくとも 1個の前記第 1のインダクタ が設けられている部分の他端とグラウンド電位との間に設けられた第 2の並列腕共振 子と、前記第 1のインダクタが複数の場合に、隣り合う第 1のインダクタ間とグラウンド 電位との間に接続された第 3の並列腕共振子とを有するトラップ回路部分と、 前記入力端子と前記トラップ回路部分との間及び前記出力端子と前記トラップ回路 部分との間の少なくとも一方に設けられたフィルタ回路部分を備え、  Provided between at least one first inductor arranged in a series arm connecting the input terminal and the output terminal, and one end of the portion where at least one first inductor is provided, and the ground potential. The first parallel arm resonator provided, the second parallel arm resonator provided between the other end of the portion where at least one of the first inductors is provided and the ground potential, and the first parallel arm resonator, A trap circuit portion having a third parallel arm resonator connected between adjacent first inductors and a ground potential when there are a plurality of inductors, and the input terminal and the trap circuit portion. And at least one of the filter circuit portion provided between the output terminal and the trap circuit portion,
該フィルタ回路部分が、前記直列腕において、前記入力端子または前記出力端子 と前記トラップ回路部分との間に配置された直列腕共振子と、  The filter circuit portion is a series arm resonator disposed between the input terminal or the output terminal and the trap circuit portion in the series arm;
前記直列腕共振子の一端または他端とグラウンド電位との間に接続された第 2のィ ンダクタとを有し、  A second inductor connected between one end or the other end of the series arm resonator and a ground potential;
前記直列腕共振子の共振周波数が前記弾性波フィルタの通過帯域の高域側端部 と略一致されていることを特徴とする、弾性波フィルタ。  The elastic wave filter according to claim 1, wherein a resonance frequency of the series arm resonator substantially coincides with a high band side end of a pass band of the elastic wave filter.
[2] 前記入力端子と前記トラップ回路部分との間及び前記出力端子と前記トラップ回路 部分との間の双方に前記フィルタ回路部分が設けられている、請求項 1に記載の弹 性波フィルタ。 [2] The electrostatic wave filter according to claim 1, wherein the filter circuit portion is provided both between the input terminal and the trap circuit portion and between the output terminal and the trap circuit portion.
[3] 前記直列腕共振子の容量と前記第 2のインダクタとで構成される共振回路の共振 周波数が、前記通過帯域の低域側端部よりも低い周波数とされている、請求項 1また は 2に記載の弾性波フィルタ。  [3] The resonance frequency of the resonance circuit including the capacitance of the series arm resonator and the second inductor is lower than the lower end of the passband. The elastic wave filter according to 2.
[4] 前記並列腕共振子及び前記直列腕共振子が形成されて!、る圧電基板をさらに備 え、  [4] The parallel arm resonator and the series arm resonator are formed !, further comprising a piezoelectric substrate,
該圧電基板上または圧電基板内に、前記第 1,第 2のインダクタが形成されている、 請求項 1〜3のいずれか 1項に記載の弾性波フィルタ。  The elastic wave filter according to any one of claims 1 to 3, wherein the first and second inductors are formed on or in the piezoelectric substrate.
[5] 前記直列腕共振子の容量を Cs、前記第 1のインダクタのインダクタンス値を Ls、前 記並列腕共振子の容量を Cp、前記第 2のインダクタのインダクタンス値を Lpとしたと きに、 CsZCp> lかつ LpZLs> lとされている、請求項 1〜4のいずれ力 1項に記載 の弾性波フィルタ。 [5] The capacitance of the series arm resonator is Cs, and the inductance value of the first inductor is Ls. The force according to any one of claims 1 to 4, wherein CsZCp> l and LpZLs> l, where Cp is a capacitance of the parallel arm resonator and Lp is an inductance value of the second inductor. Elastic wave filter.
PCT/JP2006/315098 2005-08-23 2006-07-31 Elastic wave filter WO2007023643A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007532038A JP4640412B2 (en) 2005-08-23 2006-07-31 Elastic wave filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005241483 2005-08-23
JP2005-241483 2005-08-23

Publications (1)

Publication Number Publication Date
WO2007023643A1 true WO2007023643A1 (en) 2007-03-01

Family

ID=37771394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315098 WO2007023643A1 (en) 2005-08-23 2006-07-31 Elastic wave filter

Country Status (2)

Country Link
JP (1) JP4640412B2 (en)
WO (1) WO2007023643A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1804377A2 (en) 2005-12-26 2007-07-04 Nihon Dempa Kogyo Co., Ltd. SAW filter and portable terminal
JPWO2007094139A1 (en) * 2006-02-13 2009-07-02 株式会社村田製作所 SAW filter device
JP2010035132A (en) * 2008-02-05 2010-02-12 Nippon Dempa Kogyo Co Ltd Filter, portable terminal, and electronic component
WO2010116776A1 (en) * 2009-03-30 2010-10-14 株式会社村田製作所 Elastic wave filter
WO2012020595A1 (en) * 2010-08-11 2012-02-16 株式会社村田製作所 High frequency module and communication device
WO2012176508A1 (en) * 2011-06-23 2012-12-27 株式会社村田製作所 Frequency splitter
WO2016013659A1 (en) * 2014-07-25 2016-01-28 株式会社村田製作所 Bandpass filter and filter module
JP2016225727A (en) * 2015-05-28 2016-12-28 京セラ株式会社 Elastic wave device and communication device
US9729125B2 (en) 2015-01-23 2017-08-08 Murata Manufacturing Co., Ltd. Filter apparatus comprising series connected low pass and high pass filters with acoustic resonators
WO2018180648A1 (en) * 2017-03-31 2018-10-04 株式会社村田製作所 Multiplexer, high-frequency front-end circuit, and communication device
JP2018170755A (en) * 2016-08-05 2018-11-01 株式会社村田製作所 High frequency circuit and communication device
CN109286387A (en) * 2017-07-21 2019-01-29 株式会社村田制作所 High frequency filter, multiplexer, high frequency front end circuit and communication device
CN109964409A (en) * 2016-11-22 2019-07-02 株式会社村田制作所 Filter apparatus and multiplexer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661782A (en) * 1992-08-07 1994-03-04 Hitachi Ltd Surface acoustic wave filter, branching device and mobile radio equipment
JPH1065490A (en) * 1996-08-26 1998-03-06 Matsushita Electric Ind Co Ltd Saw frequency band blocking filter and electronic device using the same
JP2004088778A (en) * 2002-08-08 2004-03-18 Matsushita Electric Ind Co Ltd Surface acoustic wave filter, antenna duplexer using same, and communication equipment
JP2004129238A (en) * 2002-09-10 2004-04-22 Matsushita Electric Ind Co Ltd Bandstop filter, filter device, antenna duplexer, and communication device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879224B2 (en) * 2002-09-12 2005-04-12 Agilent Technologies, Inc. Integrated filter and impedance matching network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661782A (en) * 1992-08-07 1994-03-04 Hitachi Ltd Surface acoustic wave filter, branching device and mobile radio equipment
JPH1065490A (en) * 1996-08-26 1998-03-06 Matsushita Electric Ind Co Ltd Saw frequency band blocking filter and electronic device using the same
JP2004088778A (en) * 2002-08-08 2004-03-18 Matsushita Electric Ind Co Ltd Surface acoustic wave filter, antenna duplexer using same, and communication equipment
JP2004129238A (en) * 2002-09-10 2004-04-22 Matsushita Electric Ind Co Ltd Bandstop filter, filter device, antenna duplexer, and communication device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1804377A3 (en) * 2005-12-26 2008-01-02 Nihon Dempa Kogyo Co., Ltd. SAW filter and portable terminal
EP1804377A2 (en) 2005-12-26 2007-07-04 Nihon Dempa Kogyo Co., Ltd. SAW filter and portable terminal
JPWO2007094139A1 (en) * 2006-02-13 2009-07-02 株式会社村田製作所 SAW filter device
JP4640502B2 (en) * 2006-02-13 2011-03-02 株式会社村田製作所 SAW filter device
JP2010035132A (en) * 2008-02-05 2010-02-12 Nippon Dempa Kogyo Co Ltd Filter, portable terminal, and electronic component
WO2010116776A1 (en) * 2009-03-30 2010-10-14 株式会社村田製作所 Elastic wave filter
JP5088416B2 (en) * 2009-03-30 2012-12-05 株式会社村田製作所 Elastic wave filter
US9184782B2 (en) 2010-08-11 2015-11-10 Murata Manufacturing Co., Ltd. High-frequency module and communication device
WO2012020595A1 (en) * 2010-08-11 2012-02-16 株式会社村田製作所 High frequency module and communication device
JP5429384B2 (en) * 2010-08-11 2014-02-26 株式会社村田製作所 High frequency module and communication device
DE112012004229B4 (en) 2011-06-23 2019-05-09 Murata Manufacturing Co., Ltd. splinter
US10148297B2 (en) 2011-06-23 2018-12-04 Murata Manufacturing Co., Ltd. Splitter
JPWO2012176508A1 (en) * 2011-06-23 2015-02-23 株式会社村田製作所 Duplexer
US20140113580A1 (en) * 2011-06-23 2014-04-24 Murata Manufacturing Co., Ltd. Splitter
JP5668852B2 (en) * 2011-06-23 2015-02-12 株式会社村田製作所 Duplexer
WO2012176508A1 (en) * 2011-06-23 2012-12-27 株式会社村田製作所 Frequency splitter
US10340887B2 (en) 2014-07-25 2019-07-02 Murata Manufacturing Co., Ltd. Band pass filter and filter module
WO2016013659A1 (en) * 2014-07-25 2016-01-28 株式会社村田製作所 Bandpass filter and filter module
US9729125B2 (en) 2015-01-23 2017-08-08 Murata Manufacturing Co., Ltd. Filter apparatus comprising series connected low pass and high pass filters with acoustic resonators
JP2016225727A (en) * 2015-05-28 2016-12-28 京セラ株式会社 Elastic wave device and communication device
JP2018170755A (en) * 2016-08-05 2018-11-01 株式会社村田製作所 High frequency circuit and communication device
CN109964409B (en) * 2016-11-22 2023-08-25 株式会社村田制作所 filter device and multiplexer
CN109964409A (en) * 2016-11-22 2019-07-02 株式会社村田制作所 Filter apparatus and multiplexer
US10804882B2 (en) 2017-03-31 2020-10-13 Murata Manufacturing Co., Ltd. Multiplexer, high-frequency front end circuit, and communication device
KR20190112114A (en) * 2017-03-31 2019-10-02 가부시키가이샤 무라타 세이사쿠쇼 Multiplexers, High-Frequency Front-End Circuits and Communications Devices
CN110476354A (en) * 2017-03-31 2019-11-19 株式会社村田制作所 Multiplexer, high-frequency front-end circuit and communication device
WO2018180648A1 (en) * 2017-03-31 2018-10-04 株式会社村田製作所 Multiplexer, high-frequency front-end circuit, and communication device
KR102294095B1 (en) * 2017-03-31 2021-08-26 가부시키가이샤 무라타 세이사쿠쇼 Multiplexers, high-frequency front-end circuits and communication devices
CN110476354B (en) * 2017-03-31 2023-01-13 株式会社村田制作所 Multiplexer, high-frequency front-end circuit, and communication device
CN109286387A (en) * 2017-07-21 2019-01-29 株式会社村田制作所 High frequency filter, multiplexer, high frequency front end circuit and communication device

Also Published As

Publication number Publication date
JPWO2007023643A1 (en) 2009-02-26
JP4640412B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
WO2007023643A1 (en) Elastic wave filter
US7479848B2 (en) Acoustic wave filter device
JP5799990B2 (en) Tunable filter
JP4640502B2 (en) SAW filter device
CN106253877B (en) Ladder-type acoustic wave filter and notch diplexer
JP6603012B2 (en) Duplexer
JP4270206B2 (en) Surface acoustic wave duplexer
CN105247786B (en) Tunable optic filter
JP5041063B2 (en) Band stop filter
US20060091977A1 (en) Duplexer
US9093980B2 (en) Elastic wave filter device
JP5482972B1 (en) Elastic wave filter device and duplexer
US10666229B2 (en) Duplexer
WO2015104938A1 (en) Filter apparatus
WO2004112246A1 (en) Surface acoustic wave duplexer
US11323098B2 (en) Duplexer
WO2007015331A1 (en) Elastic wave filter device
CN111342806B (en) Piezoelectric filter having lamb wave resonator, duplexer, and electronic device
JPWO2006040927A1 (en) Duplexer
CN110771040B (en) Elastic wave filter device, composite filter device, and multiplexer
JP4618299B2 (en) Piezoelectric thin film filter
CN111342789A (en) Filter unit with coupling inductor, filter and electronic equipment
JPWO2006040923A1 (en) Duplexer
WO2007088683A1 (en) Filter device
WO2017154260A1 (en) Elastic wave apparatus and duplexer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007532038

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781976

Country of ref document: EP

Kind code of ref document: A1