[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007018183A1 - 鉛蓄電池用正極集電体、及びその製造方法 - Google Patents

鉛蓄電池用正極集電体、及びその製造方法 Download PDF

Info

Publication number
WO2007018183A1
WO2007018183A1 PCT/JP2006/315605 JP2006315605W WO2007018183A1 WO 2007018183 A1 WO2007018183 A1 WO 2007018183A1 JP 2006315605 W JP2006315605 W JP 2006315605W WO 2007018183 A1 WO2007018183 A1 WO 2007018183A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
titanium
positive electrode
electrode current
lead
Prior art date
Application number
PCT/JP2006/315605
Other languages
English (en)
French (fr)
Inventor
Kohei Fujita
Original Assignee
Gs Yuasa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gs Yuasa Corporation filed Critical Gs Yuasa Corporation
Priority to JP2006527791A priority Critical patent/JP5303837B2/ja
Priority to US12/063,340 priority patent/US9059468B2/en
Priority to CN2006800287433A priority patent/CN101238601B/zh
Publication of WO2007018183A1 publication Critical patent/WO2007018183A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a positive electrode current collector in which a conductive ceramic layer is formed on the surface of a current collector base material of titanium or a titanium alloy, and a method for manufacturing the same.
  • a positive electrode current collector cannot be produced only with these conductive ceramic materials. This is because, 'although it is less cm, generally it (volume resistivity 10_ 6 ⁇ : ⁇ _5 ⁇ metals' such volume resistivity of the conductive ceramic 10 Omega cm or less) because compared if too large the is there.
  • Non-Patent Documents 1 and 2 there is a proposal to form a positive electrode current collector for a lead storage battery by forming a conductive ceramic layer on the surface of a current collector base material of titanium or a titanium alloy (for example, Non-Patent Documents 1 and 2). These positive electrode current collectors are made of SnO (Sb doped), PtO, IrO, RuO, etc. on the surface of titanium.
  • a 2 x 2 2 conductive ceramic is coated, and the surface is further coated with j8-PbO.
  • the surface of the current collector base material of titanium or titanium alloy is coated with conductive ceramics having PtO force, and further coated with ⁇ -PbO and
  • a lead dioxide electrode used as a solution DSA electrode has also been proposed (for example, see Patent Document 1).
  • titanium having a conductive ceramic layer on its surface is used for a positive electrode current collector
  • the conductivity of titanium is sufficiently higher than that of conductive ceramics.
  • the conductivity of the positive electrode current collector is ensured.
  • Titanium has high corrosion resistance Therefore, it is inherently difficult to dissolve in dilute sulfuric acid, which is the electrolyte for lead-acid batteries.
  • a conductive ceramic layer is provided, dissolution of titanium will not be a problem.
  • the melting point of titanium is high, it can withstand high temperatures of around 500 ° C in the process of providing a conductive ceramic layer.
  • titanium has the property of being passivated, so that passivation of titanium is prevented by covering titanium with a conductive ceramic layer, so that passivation of titanium does not become a problem. Furthermore, since titanium is less expensive than conductive ceramics, material costs can be reduced.
  • Non-Patent Document 1 Journal of the Electrochemical Society, Vol. 47 (668) The Electrochemical Society of Japan 1979
  • Non-Patent Document 2 Journal of the Electrochemical Society, Vol. 48 (384) The Electrochemical Society of Japan 1980 Patent Document 1: JP-A 63-57791
  • the cause of the above problem was a titanium oxide titanium coating between the current collector base material of titanium or titanium alloy and the conductive ceramic layer. I got it. That is, since there is titanium oxide having low conductivity between the current collector base material of titanium or titanium alloy and the conductive ceramic layer, the resistance of the positive electrode current collector is increased, which leads to the internal resistance of the lead-acid battery. It was getting bigger. It should be noted that this titanium oxide-titanium coating film is a titanium or titanium alloy current collector base material when firing is performed in such a manner that a conductive ceramic layer is provided on the surface of the titanium or titanium alloy current collector base material. It is thought that the surface layer part of this is generated by being oxidized.
  • the present invention includes a current collector base material of titanium or a titanium alloy, a titanium oxide film provided on the surface of the current collector base material, and a conductive property provided on the surface of the film.
  • a positive electrode current collector for a lead storage battery comprising a ceramic layer, wherein the thickness of the coating is 0.09 / zm or less.
  • the titanium oxide film formed between the current collector substrate and the conductive ceramic layer is sufficiently thin. Therefore, the electrical resistance is reduced. Therefore, when a lead storage battery is manufactured using this positive electrode current collector, the high rate discharge performance of the lead storage battery is excellent.
  • titanium oxide the stoichiometric ratio of titanium to oxygen is not always 1: 2. Therefore, in the present application, titanium oxide which is a component of the coating is represented as TiO. In this case, X is greater than 0 and less than or equal to 2.
  • the thickness of the titanium oxide coating is determined by the Marcus high-frequency glow discharge luminescent surface analysis
  • the conductive ceramic is a ceramic obtained by firing a metal compound such as a metal oxide or a metal silicide at a high temperature, and has a volume resistivity of 10 ⁇ 'cm or less.
  • a metal compound such as a metal oxide or a metal silicide
  • a volume resistivity 10 ⁇ 'cm or less.
  • only one layer may be strong, or another layer such as ⁇ -PbO and
  • the present invention relates to a method for producing a positive electrode current collector for a lead storage battery, the method comprising first annealing a current collector base material of titanium or a titanium alloy in a vacuum or in an inert atmosphere. And a second step of forming a conductive ceramic layer on the surface of the current collector base material that has undergone the first step.
  • a positive electrode current collector for a lead storage battery having a coating thickness of 0.09 m or less. That is, current collector base material of titanium or titanium alloy Before the conductive ceramic layer is formed, the current collector base material of titanium or titanium alloy is annealed in a vacuum or in an inert atmosphere. For this reason, the recrystallization associated with annealing removes the crystal distortion of titanium or the titanium alloy and increases the crystallinity of the titanium or the titanium alloy.
  • a vacuum refers to a vacuum in which a titanium or titanium alloy film is hardly formed on titanium or a titanium alloy during annealing. Therefore, although the vacuum here is preferably a high vacuum, it is not always necessary. In the examples of the present application, a low vacuum of 1 ⁇ 10_4 Pa was used as described later.
  • An inert atmosphere means an atmosphere filled with a gas or an atmosphere in which such a gas is sufficiently circulated without reacting with titanium or a titanium alloy to form an acid film.
  • the annealing temperature may be any temperature that can remove the crystal distortion of the current collector base material, and thus the temperature is not limited. Further, in the annealing step, a process of changing the annealing temperature with time may be performed. In the embodiment of the present application, examples of annealing after 700 hours at 700 ° C. are mainly shown.
  • the second step includes a firing step. That is, the second step of forming the conductive ceramic layer includes a step of firing the current collector base material such as a dip coating method or a spray pyrolysis method. Details of these dip coating methods or spray pyrolysis methods will be described later.
  • the half width of the peak having the maximum intensity in the XRD pattern of the titanium or the titanium alloy is set to 0. It is characterized by being 38 ° or less. Further, in the manufacturing method as described above, when the four peaks are selected in descending order of the intensity in the XRD pattern of the titanium or the titanium alloy by the first step, the total value of the intensity of the four peaks The It is characterized by being 85% or more of the total intensity of all peaks.
  • the surface of the current collector substrate has sufficiently high crystallinity, and crystal distortion is reliably removed. Therefore, even when the current collector substrate is heated at a high temperature to form a conductive ceramic layer, it is difficult to form a titanium oxide film. And the electrical resistance between the current collector substrate and the conductive ceramic layer is reduced.
  • all peaks means that when the current collector base material is titanium, the (100) plane, (002) plane, (101) of titanium It is defined as a diffraction peak attributed to the plane, (102) plane, (110) plane, (103) plane, (200) plane, (112) plane, and (201) plane.
  • These are diffraction peaks that appear when scanning 2 ⁇ up to 80 ° at 20 ° in XRD measurement.
  • the current collector base material is a titanium alloy
  • the XRD measurement shows a diffraction peak that appears when 2 ⁇ is scanned up to 80 ° at 20 ° force, and the intensity with respect to the peak having the maximum intensity. Those with a ratio of 1% or more (including peaks with maximum intensity).
  • the present invention relates to a positive electrode current collector for a lead storage battery comprising a current collector base material of titanium or a titanium alloy and a conductive ceramic layer, wherein the conductive ceramic layer includes the current collector base.
  • a positive electrode current collector for a lead storage battery comprising a current collector base material of titanium or a titanium alloy and a conductive ceramic layer, wherein the conductive ceramic layer includes the current collector base.
  • the half width of the peak having the maximum intensity among the peaks of the titanium or titanium alloy is 0.38 ° or less. .
  • the present invention relates to a positive electrode current collector for a lead storage battery comprising a current collector base material of titanium or a titanium alloy and a conductive ceramic layer, wherein the conductive ceramic layer is the current collector base material.
  • the total value of the intensity of the four peaks when four peaks are selected in descending order of the intensity of the titanium or titanium alloy peaks. It is characterized by being greater than 85% of the total peak intensity.
  • a thick titanium oxide film is not formed between the current collector base material and the conductive ceramic layer in the positive electrode current collector. Therefore, the electrical resistance between the current collector substrate and the conductive ceramic layer is reduced.
  • the present invention is characterized in that a lead storage battery is provided with the positive electrode current collector as described above.
  • the present invention also relates to a lead storage device including the positive current collector as described above in an uninterruptible power supply. It is equipped with a pond.
  • the high-rate discharge performance of the lead storage battery and the uninterruptible power supply is excellent.
  • the present invention provides a method for producing a lead-acid battery including a positive electrode current collector, wherein the method for producing the positive electrode current collector is a production method as described above. To do.
  • the present invention relates to a method for manufacturing an uninterruptible power supply equipped with a lead-acid battery equipped with a positive electrode current collector, and that the method for manufacturing the positive electrode current collector is a method as described above.
  • the high rate discharge performance of the lead storage battery manufactured by these inventions is excellent. Moreover, the high rate discharge performance of the uninterruptible power supply manufactured by these inventions is excellent.
  • the present invention relates to a positive electrode current collector for a lead storage battery comprising a current collector base material of titanium or a titanium alloy and a conductive ceramic layer, wherein the titanium or titanium alloy has four or less types of crystals. It is characterized by being selectively oriented on the crystal plane.
  • “selectively oriented on four or less crystal planes” means that peaks are selected in descending order of intensity in the XRD pattern, and the total value of the intensity of the selected peaks is selected. This is the case where the number of selected power is less than or equal to 85% of the total value of all peaks (including the case where there are four). In other words, even if four peaks are selected in descending order of intensity, if the total intensity of the four peaks does not reach 85% of the total intensity of all peaks, the XRD pattern is present. It is not said that the current collector base material is “preferentially oriented in four or less crystal planes”.
  • the current collector base material is titanium
  • the titanium crystals are selectively oriented in the three planes (101), (102), and (103). Is preferred. These three types of crystal planes are examples of crystal planes that can reliably improve the high rate discharge characteristics.
  • FIG. 1 is an XRD pattern of a current collector base S of titanium before annealing.
  • FIG. 2 is an XRD pattern of the current collector base material S obtained by annealing the current collector base material S.
  • FIG. 3 is a diagram showing the results of surface analysis of positive electrode current collectors U and U.
  • FIG. 4 is a diagram showing the relationship between the half width of the peak where the intensity is maximum and the voltage drop in the first embodiment.
  • FIG. 5 is a longitudinal sectional view showing the structure of a unit cell of a control valve type lead-acid battery using a current collector base material of titanium or titanium alloy as a positive electrode plate.
  • FIG. 6 is a longitudinal sectional view showing the structure of a lead storage battery in which unit cell power is combined.
  • FIG. 7 Single cells (B, B, and B) as examples of the present invention, and single cells (B
  • FIG. 8 is an XRD pattern of current collector substrate S in the second embodiment.
  • FIG. 9 is an XRD pattern of current collector substrate S in the second embodiment.
  • the crystalline state of titanium or titanium alloy was analyzed by an X-ray diffractometer using CuK alpha rays. Specifically, 2 ⁇ was scanned from 20 ° to 80 ° while irradiating titanium or titanium alloy with X-rays of a predetermined wavelength at an incident angle ⁇ , and the intensity of X-rays diffracted during this period was counted. By plotting 2 ⁇ on the horizontal axis and the intensity of X-rays on the vertical axis, a so-called X-ray diffraction pattern (XRD pattern) can be obtained.
  • XRD pattern X-ray diffraction pattern
  • the type of crystal plane corresponding to the diffraction angle 2 ⁇ where the peak of the X-ray diffraction intensity appears can be specified.
  • Table 1 shows the correspondence between the diffraction angle 2 ⁇ and the crystal plane in titanium based on an ICDD (International Center for Diffraction Data) card, which is a collection of XRD data.
  • ICDD International Center for Diffraction Data
  • Embodiment 1 pure titanium CFIS (1 type) was used as the current collector base material.
  • Plate-like pure titanium was cold-rolled to form a plate with a thickness of 0.1 mm.
  • Cold rolling refers to rolling performed at or below the recrystallization temperature of the metal (generally at room temperature).
  • the force indicating cold rolling is merely an example. Therefore, the processing method may be rolling by another method or a method other than rolling. Further, in the first embodiment, the force indicating an example in which the current collector substrate is plate-like. This is merely an example.
  • the structure of the current collector substrate is arbitrary, and may be, for example, a lattice.
  • Figure 1 shows the measured XRD pattern.
  • Current collector substrate S 1S lX10 _4 Pa was annealed under a pressure (low vacuum) and 700 ° C.
  • the annealing time was 3 hours, 6 hours, and 12 hours, respectively.
  • the obtained current collector base materials are referred to as current collector base materials S 1, S, and S, respectively. Note that annealing is performed under a low vacuum.
  • titanium is not oxidized during annealing.
  • Table 2 shows that current collector substrate S with an annealing time of 0 hour (this is different from the comparative example)
  • the annealing time and temperature may be adjusted. For example
  • the annealing time may be lengthened.
  • the coating solution is a solution dissolved in tin tetrachloride (0.1 mole), antimony trichloride (0.03 mole), and a small amount of hydrochloric acid propanol. Thereafter, drying was performed at room temperature for 15 minutes. Dry current collector substrate S, S, S, and S force in an electric furnace at a temperature of 00 ° C for 30 minutes. Was placed. The atmosphere when left unattended was in the atmosphere.
  • current collector base SS current collector base SS
  • a conductive ceramic layer of tin dioxide was formed on the surfaces of 1, 2, and S. These are the positive electrode
  • the positive electrode current collector after being formed is referred to as a positive electrode current collector U.
  • the above method is referred to as a dip coating method.
  • a conductive ceramic layer is formed by the drive coating method has been shown, but the present invention is not limited to this.
  • the conductive ceramic layer may be formed by a spray pyrolysis method in which the raw material solution is sprayed on the titanium surface.
  • the positive electrode current collectors U and U were analyzed by GD—OES.
  • the model of the equipment used for the analysis is
  • the analysis mode is the sputtering rate
  • the RF output is 20 W
  • the gas pressure is 400 Pa
  • the anode diameter is S4 mm.
  • Figure 3 shows the results of the GD- OES analysis.
  • the horizontal axis indicates the depth of the surface force of each positive electrode current collector.
  • the vertical axis indicates the amount (mass%) of the element detected at a depth from the surface.
  • the first layer is a conductive ceramic layer of tin dioxide. It is confirmed that the amount of tin is large.
  • the second layer is a titanium oxide (TiO 2) layer. This is confirmed by the sharp decrease in the amount of Sn and the rapid increase in the amount of oxygen.
  • the boundary between the first layer and the second layer is obtained from the inflection points of the tin and oxygen curves in Fig. 3.
  • the third layer is a titanium current collector substrate. This is confirmed by the fact that the amount of oxygen decreases and the elemental force detected is almost titanium only.
  • the boundary between the second layer and the third layer is obtained from the point that the differential coefficient of the oxygen curve in Fig. 3 is almost zero.
  • the thickness of the titanium oxide titanium coating on the positive electrode current collector U is 0.07 ⁇ m.
  • the coating of acid titanium In order to make the thickness of the steel further smaller than 0.07 m, the crystallinity and orientation of titanium or titanium alloy as the current collector base material should be made higher.
  • the coating thickness of 1 2 1 2 tan was 0.09 ⁇ m and 0.08 ⁇ m, respectively.
  • the XRD pattern of the body U was greatly different from that of the current collector substrate S.
  • Positive electrode current collector U, U, U, and U are sandwiched between 30 mm x 30 mm copper plates
  • the pressure was further reduced to 50 kPa. While maintaining this state, a current of 0.4 A was passed between the two copper plates. The voltage drop when the current was passed was measured. From the measurement result, the resistance value per unit area was calculated. The results are shown in Table 3.
  • Fig. 5 shows the structure of the cell 1 of the valve-regulated lead-acid battery.
  • the battery case 4 is an insulating frame for hermetically housing the positive electrode active material 5, the separator 6, and the negative electrode active material 7, and is sandwiched between the positive electrode current collector 2 and the negative electrode current collector 3. .
  • the battery case 4 includes an exhaust port 4a that communicates with the outside. The opening of the exhaust port 4a is provided with a control valve 8.
  • a positive electrode active material 5, a separator 6, and a negative electrode active material 7 are disposed inside the battery case 4.
  • the positive electrode active material 5, the separator 6, and the negative electrode active material 7 are impregnated with an electrolytic solution containing dilute sulfuric acid as a main component.
  • the inventor of the present application manufactured a control valve type lead storage battery having the above-described structure.
  • the specific manufacturing method is as follows.
  • the positive electrode current collector 2 As the positive electrode current collector 2, the above-described positive electrode current collectors U, U, U, and U in which a conductive ceramic layer of tin dioxide was formed were used. Provide positive electrode current collector 2 with positive electrode active material 5
  • the positive electrode active material 5 is mainly composed of lead dioxide (PbO).
  • the negative electrode current collector 3 is a copper plate (thickness 0.1 mm) plated with lead (thickness: 20 to 30 ⁇ m).
  • a negative electrode plate was manufactured by providing the negative electrode current collector 3 with the negative electrode active material 7.
  • the negative electrode active material 7 is a plate-like active material mainly composed of spongy metallic lead.
  • the separator 6 is a glass fiber mat-shaped. The positive electrode plate and the negative electrode plate were laminated via a separator and stored in a battery case. The battery case was covered with a lid, and a control valve type lead-acid battery was manufactured by injecting electrolyte.
  • Positive cell current collector U, U, U, and U are used as positive electrode current collector 2 Single cell 1 (nominal voltage 2V
  • the rated capacity 2.3 Ah) is referred to as single cells B, B, B, and B, respectively.
  • the difference in the degree of improvement in performance was observed because the current collector base material S was annealed for 3 hours, so the half width of the peak at which the strength was maximum was greater than 0.38 °.
  • the annealing time of the current collector base materials S and S is 6 hours and 12 hours, respectively.
  • the thickness of the titanium oxide film is 0.07 m or less.
  • FIG. 6 shows the configuration of a lead-acid battery that combines four single cells.
  • This lead-acid battery is a lead-acid battery for uninterruptible power supplies (hereinafter referred to as a lead-acid battery for UPS.
  • UPS is an abbreviation for Uninter ruptible Power Supply).
  • Four unit cells 1 were stacked and connected in series so that the negative electrode current collector 3 of the unit cell 1 was placed on the positive electrode current collector 2 of another unit cell 1.
  • the compression members 9 and 10 made of a conductive material such as a metal plate were disposed above and below the four unit cells 1.
  • the periphery of the unit cell 1 was surrounded by an auxiliary frame material 11 made of an insulating material such as resin.
  • the separator 6 is in a compressed state. With this repulsive force, the positive electrode active material 5 is pressed against the positive electrode current collector 2 and the negative electrode active material 7 is pressed against the negative electrode current collector 3 at a gauge pressure of about 250 kPa. Separator 6 In order to obtain a pressing force, the material and thickness of the separator 6 may be adjusted appropriately. The pressing force can be appropriately changed according to the structure, capacity, size, etc. of the unit cell 1. In general, charging and discharging performance is stabilized by applying a pressure of about 100 to 400 kPa as the gauge pressure.
  • UPS lead-acid batteries 160% and 140%, respectively, when control valve-type lead-acid batteries that use lead instead of titanium for the positive electrode plate are 100%.
  • the lead-acid battery for UPS was mounted on the uninterruptible power supply.
  • the high-rate discharge performance of the lead-acid battery for UPS is the lead for UPS manufactured using the cell B
  • the case where pure titanium (JIS type 1) is used as the current collector base material has been described.
  • the inventor of this application uses a titanium alloy (specifically, Ti-5A1-2.5V, ⁇ -3 ⁇ 1-2.5V, and Ti6Al-4V). Using the same test as in the first embodiment, the same result as in the first embodiment was obtained.
  • Embodiment 2 various types of pure titanium (five types) were used as the current collector base material.
  • the manufacturing process of these five types of pure titanium is different from that of pure titanium used in the first embodiment.
  • Become. Therefore, the XRD patterns of five types of pure titanium (JIS type 1) used in the second embodiment are different from those in the first embodiment.
  • Five types of pure titanium plates were cold-rolled to form a plate with a thickness of 0.1 mm.
  • Table 5 The XRD peak intensities are summarized in Table 5. The unit of the numbers in Table 5 is “countZsecond”. Table 5 also shows S and S data used in the first embodiment. In addition
  • the bottom row of Table 5 shows the total peak intensity that appears in each XRD pattern.
  • the XRD patterns of S and S are shown in Figs. 8 and 9, respectively.
  • the current collector base material S will be specifically described as an example so that the component force can be easily applied. Based on Table 5
  • the total strength of the four selected peaks is 73.9% of the total strength of all peaks, not 85% or more.
  • the total strength of the selected five peaks was over 85% of the total value of all peaks. Therefore, in the present specification, the number of orientations of the current collector substrate S is counted as 5.
  • current collector base materials S, S, S, S, and S are selected with two, three, and four peaks.
  • the total intensity was 85% or more of the total intensity of all peaks.
  • a conductive ceramic layer is formed on each of the current collector base materials S, S, S, S, and S.
  • the thicknesses of the titanium coatings were 0.04 ⁇ m, 0.06 ⁇ m, 0.05 ⁇ m, 0.06 ⁇ m, and 0.03 ⁇ m, respectively.
  • a voltage drop test was performed on the positive electrode current collectors U, U, U, U, and U.
  • the positive electrode current collectors U, U, U, U, and U are used as the positive electrode current collector, and the above-mentioned (2. 1.
  • a control valve type lead acid battery was manufactured by the same method as 6).
  • the valve-regulated lead-acid batteries are called single cells B, B, B, B, B, B, and B, respectively. Using these cells
  • unit cell B (comparative example), the terminal voltage suddenly decreased in the early stage of discharge, and the terminal voltage was shortened in a short time.
  • Embodiment 2 various pure titanium (JIS type 1) was used as the current collector base material. The case was explained.
  • the present inventor replaced the pure titanium CFIS type 1) with a titanium alloy (specifically, Ti-5A1-2.5V, ⁇ -3 ⁇ 1-2.5V, and Ti-6A1-4V)
  • a titanium alloy specifically, Ti-5A1-2.5V, ⁇ -3 ⁇ 1-2.5V, and Ti-6A1-4V
  • the present invention relates to a lead storage battery widely used in industry. Since the present invention reduces the internal resistance of the lead battery and improves the high rate discharge performance, its industrial value is extremely high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

鉛蓄電池用正極集電体、及びその製造方法
技術分野
[0001] 本発明は、チタン又はチタン合金の集電体基材の表面に導電性セラミックス層が形 成された正極集電体、及びその製造方法に関する。
背景技術
[0002] 鉛蓄電池用正極集電体に用いられる鉛又は鉛合金に代わる新たな材料が研究さ れている。その材料には、高い導電性、電解液に対する不溶性、電解液中での電気 化学安定性、及び高い酸素過電圧などが要求される。この要求を満足するものとして 、金属酸化物や金属珪化物等からなる導電性セラミックスが知られている。例えば、 S nO、 Ti Ta O、 TiSi、 Ti Si、 TaSi、 TaSi、 NbSi、 Nb Si、 Ti Oなど力 S
2 x (1 -x) 2 2 5 3 2 3 2 5 3 4 7 ある。
[0003] しかし、これらの導電性セラミックスの材料のみによっては、正極集電体は製造され えない。なぜなら、このような導電性セラミックスの体積固有抵抗は 10 Ω 'cm以下で あるものの、一般の金属のそれ (体積固有抵抗が 10_6〜: ίΟ_5 Ω 'cm以下)に比べれ ば大きすぎるからである。
[0004] そこで、チタン又はチタン合金の集電体基材の表面に導電性セラミックス層を形成 して鉛蓄電池用正極集電体とする提案がある (例えば、非特許文献 1及び 2)。これら の正極集電体は、チタンの表面に、 SnO (Sbドープ)、 PtO、 IrO、 RuOなどから
2 x 2 2 なる導電性セラミックスが被覆され、その表面にさらに j8— PbOが被覆されている。
2
[0005] また、チタン又はチタン合金の集電体基材の表面が PtO力 なる導電性セラミック スで被覆され、さらに α— PbOと |8— PbOで被覆されることによって製造された電
2 2
解用 DSA電極に用いられる二酸化鉛電極も提案されている(例えば、特許文献 1参 照。)。
[0006] これらの文献に示されるように、その表面に導電性セラミックス層を備えたチタンを 正極集電体に使用した場合、チタンの導電性が導電性セラミックスのそれに比べて 十分に高いので、正極集電体の導電性は確保される。また、チタンは耐食性が高い ので、鉛蓄電池の電解液である希硫酸には、元来、溶解しにくい。し力も、導電性セ ラミックス層を備えさせれば、チタンの溶解が問題となることも無い。また、チタンの融 点が高いので、導電性セラミックス層を備えさせる工程において 500°C前後の高温に まで耐える。また、チタンは不働態化する性質を有するところ、チタンを導電性セラミ ックス層で覆うことによってチタンの不働態化が防止されるので、チタンの不働態化が 問題となることもない。さらに、チタンは導電性セラミックスより安価であるので、材料コ ス卜ち低減することがでさる。
以上の理由によって、導電性セラミックスをその表面に備えたチタン又はチタン合 金の研究が進められてきて 、た。
[0007] 非特許文献 1 :「電気化学会誌」第 47卷 (668)社団法人電気化学会 1979年
非特許文献 2 :「電気化学会誌」第 48卷 (384)社団法人電気化学会 1980年 特許文献 1 :特開昭 63— 57791号公報
発明の開示
発明が解決しょうとする課題
[0008] ところが、チタン又はチタン合金の集電体基材の表面に導電性セラミックス層を形 成した鉛蓄電池用正極集電体を使用して鉛蓄電池を製造した場合、その鉛蓄電池 の内部抵抗が大きいという問題があった。そのため、その鉛蓄電池の高率放電性能 が優れな 、と 、う問題があった。
[0009] 本願発明者が前記問題の原因を調査したところ、チタン又はチタン合金の集電体 基材と導電性セラミックス層との間の酸ィ匕チタンの被膜が原因であることが明らかとな つた。すなわち、チタン又はチタン合金の集電体基材と導電性セラミックス層との間に 導電性の低い酸化チタンが存在するため、正極集電体の抵抗が大きくなり、ひいて は鉛蓄電池の内部抵抗も大きくなつていたのである。なお、この酸ィ匕チタンの被膜は 、チタン又はチタン合金の集電体基材の表面に導電性セラミックス層を備えさせるェ 程で焼成がおこなわれる時に、チタン又はチタン合金の集電体基材の表層部が酸ィ匕 されることによって生成すると考えられて 、る。
課題を解決するための手段
[0010] 以上の問題および原因に鑑み、本願発明がなされた。 (A)本願発明は、チタン又はチタン合金の集電体基材と、前記集電体基材の表面に 備えられた酸ィ匕チタンの被膜と、及び前記被膜の表面に備えられた導電性セラミック ス層とを備えた鉛蓄電池用正極集電体において、前記被膜の厚さが 0. 09 /z m以下 であることを特徴とする。
[0011] この発明によれば、集電体基材と導電性セラミックス層との間に形成される酸化チタ ンの被膜が十分に薄い。そのため、電気抵抗が低減する。よって、この正極集電体を 使用して鉛蓄電池が製造された場合、その鉛蓄電池の高率放電性能が優れる。
[0012] ここで、一般に、酸化チタンの化学式は TiOと表される。しかし、本願で記載された
2
酸ィ匕チタンにおいては、チタンと酸素との化学量論比が必ずしも 1: 2であるとは限ら ない。そのため、被膜の成分である酸ィ匕チタンを本願では、 TiOと表す。この場合に おいて、 Xは、 0より大きく、 2以下である。
[0013] 酸化チタンの被膜の厚みは、マーカス型高周波グロ一放電発光表面分析 (以下、
GD— OES分析という。 )により測定される。測定の具体的方法や条件は、本願図 3と ともに、実施の形態の(2. 1. 4)において説明する。
[0014] なお、酸化チタンの被膜の厚さが 0. 09 m以下である場合において、この厚さが さらに小さければ小さいほど電気抵抗が小さくなることは、当業者にとって当然に予 想される。
[0015] 導電性セラミックスとは、金属酸化物又は金属珪化物等の金属化合物を高温で焼 成したセラミックスであって、体積固有抵抗は 10 Ω 'cm以下のものをいう。導電性セ ラミックス層は、ひとつの層のみ力もなつていてもよいし、当該ひとつの層の表面にさ らに α— PbOと |8— PbO等の別の層を形成してもよい。このような場合であっても、
2 2
本願発明における高率放電性能の向上と ヽぅ効果は得られる。
[0016] (B)本願発明は、鉛蓄電池用正極集電体の製造方法において、その製造方法は、 チタン又はチタン合金の集電体基材を真空中又は不活性雰囲気中で焼鈍する第 1 の工程、及び前記第 1の工程を経た集電体基材の表面に導電性セラミックス層を形 成する第 2の工程を備えることを特徴とする。
[0017] この発明により、前述 (A)のように、被膜の厚さが 0. 09 m以下である鉛蓄電池用 正極集電体を製造することができる。すなわち、チタン又はチタン合金の集電体基材 に導電性セラミックス層が形成されるより前に、チタン又はチタン合金の集電体基材 が真空中又は不活性雰囲気中で焼鈍される。そのため、焼鈍に伴う再結晶化によつ て、チタン又はチタン合金の結晶歪みが除去され、チタン又はチタン合金の結晶性 が高くなる。
[0018] 従って、集電体基材に導電性セラミックス層を形成する過程で高温 (たとえば 500 °C)に加熱されても、チタン又はチタン合金に酸ィ匕チタンの被膜が形成されにくい。 その結果、集電体基材と導電性セラミックス層との間の電気抵抗が低減する。そして 、この集電体基材を使用して鉛蓄電池が製造された場合、鉛蓄電池の高率放電性 能が優れる。
[0019] ここで、真空中とは、焼鈍の際に、チタン又はチタン合金に酸ィ匕チタンの被膜がほ とんど形成されない程度の真空をいう。したがって、ここでいう真空は高真空であるこ とが好ましいが、必ずしもこれを必要とするものではない。なお、本願の実施例にお いては、後述するように 1 X 10_4Paの低真空とした。不活性雰囲気中とは、チタン又 はチタン合金と反応して酸ィ匕被膜が形成されることがな 、ガスで満たした雰囲気、又 はそのようなガスを十分に流通させた雰囲気を!、う。
[0020] 焼鈍の温度は、集電体基材の結晶歪みを除去できる温度であれば良 、ので、温度 は限定されない。さらに、焼鈍する工程において、時間とともに焼鈍の温度を変化さ せるようなプロセスを経るものであってもよい。なお、本願の実施の形態においては、 700°Cで 12時間のぁ 、だ焼鈍した例が主に示されて 、る。
[0021] ここで、第 2の工程には、焼成の工程が含まれる。すなわち、導電性セラミックス層 を形成する第 2の工程は、ディップコーティング法又はスプレー熱分解法などのように 、集電体基材が焼成される工程が含まれる。これらのディップコーティング法又はス プレー熱分解法の詳細は、後述する。
[0022] (C)本願発明は、前述のような製造方法において、前記第 1の工程によって、前記チ タン又は前記チタン合金の XRDパターンにおいて、強度が最大となるピークの半価 幅を 0. 38° 以下にすることを特徴とする。また、前述のような製造方法において、前 記第 1の工程によって、前記チタン又は前記チタン合金の XRDパターンにおいて、 強度の大きな順にピークを 4つ選択したときの当該 4つのピークの強度の合計値を、 すべてのピークの強度の合計値の 85%以上にすることを特徴とする。
[0023] これらの発明によれば、集電体基材の表面の結晶性が十分に高く、結晶歪みが確 実に除去される。従って、集電体基材が導電性セラミックス層の形成のために高温で 加熱されても、酸ィ匕チタンの被膜が形成されにくい。そして、集電体基材と導電性セ ラミックス層との間の電気抵抗が低減する。
[0024] ここで、本願の請求の範囲で 、う「すべてのピーク」とは、集電体基材がチタンの場 合においては、チタンの(100)面、(002)面、(101)面、 (102)面、 (110)面、 (10 3)面、(200)面、(112)面、及び(201)面に帰属する回折ピークと定義する。これら は、 XRD測定において、 2 Θを 20° 力 80° まで走査した場合に現れる回折ピーク である。また、集電体基材がチタン合金の場合においては、 XRD測定において、 2 Θを 20° 力も 80° まで走査した場合に現れる回折ピークであって、最大強度を有す るピークに対して強度比が 1%以上のもの(最大強度を有するピークを含む)をいう。
[0025] (D)本願発明は、チタン又はチタン合金の集電体基材、及び導電性セラミックス層を 備えた鉛蓄電池用正極集電体において、前記導電性セラミックス層は、前記集電体 基材の表面に備えられ、前記正極集電体の XRDパターンにおいて、チタン又はチタ ン合金のピークの中で強度が最大となるピークの半価幅が 0. 38° 以下であることを 特徴とする。
[0026] また、本願発明は、チタン又はチタン合金の集電体基材、及び導電性セラミックス 層を備えた鉛蓄電池用正極集電体において、前記導電性セラミックス層は、前記集 電体基材の表面に備えられ、前記正極集電体の XRDパターンにおいて、チタン又 はチタン合金のピークの中で強度の大きな順にピークを 4つ選択したときの当該 4つ のピークの強度の合計値力 すべてのピークの強度の合計値に対して 85%より大き いことを特徴とする。
[0027] これらの発明によれば、正極集電体にぉ 、て、集電体基材と導電性セラミックス層 との間には、厚い酸化チタンの被膜が形成されていない。よって、集電体基材と導電 性セラミックス層との間の電気抵抗が低減する。
[0028] (E)本願発明は、鉛蓄電池に前述のような正極集電体を備えさせることを特徴とする 。また、本願発明は、無停電電源装置に、前述のような正極集電体を備えた鉛蓄電 池を搭載することを特徴とする。
これらの発明により、当該鉛蓄電池および無停電電源装置の高率放電性能が優れ る。
[0029] (F)本願発明は、正極集電体を備えた鉛蓄電池の製造方法にお!、て、前記正極集 電体の製造方法が、前述のような製造方法であることを特徴とする。本願発明は、正 極集電体を備えた鉛蓄電池を搭載した無停電電源装置の製造方法にお!、て、前記 正極集電体の製造方法が、前述のような製造方法であることを特徴とする。
これらの発明により製造された鉛蓄電池の高率放電性能が優れる。また、これらの 発明により製造された無停電電源装置の高率放電性能が優れる。
[0030] (G)本願発明は、チタン又はチタン合金の集電体基材、及び導電性セラミックス層を 備えた鉛蓄電池用正極集電体において、チタン又はチタン合金の結晶が 4種類以 下の結晶面に選択的に配向していることを特徴とする。
[0031] 本願明細書において、「4種類以下の結晶面に選択的に配向している」とは、 XRD パターンにおいて、強度が大きい順にピークを選択し、その選択したピークの強度の 合計値力 全ピークの強度の合計値の 85%以上に最初に達したときの選択数力 つ 以下である場合 (4つである場合を含む)をいう。言換えると、強度が大きい順にピー クを 4つ選択したとしても、当該 4つのピークの強度の合計値が、全ピークの強度の合 計値の 85%に達しない場合、その XRDパターンを有する集電体基材は「4種類以下 の結晶面に選択的に配向されている」とは言わない。
[0032] この発明よれば、集電体基材の結晶歪みが除去されているため、集電体基材を導 電性セラミックス層との間に、厚い酸化チタンの被膜が形成されていない。よって、集 電体基材と導電性セラミックス層との間の電気抵抗が低減する。
[0033] なお、集電体基材がチタンである場合においては、チタンの結晶が(101)面、(10 2)面、及び(103)面の 3つに選択的に配向されていることが好ましい。これら 3種類 の結晶面は、高率放電特性を確実に向上させることができる結晶面の一例である。
[0034] (H)本出願は、 2005年 8月 8日に日本国特許庁に出願された特許出願 (特願 2005
- 229826)に基づくものであり、その内容はここに参照として取り込まれる。
図面の簡単な説明 [0035] [図 1]焼鈍処理を行う前におけるチタンの集電体基材 Sの XRDパターンである。
0
[図 2]集電体基材 Sに焼鈍処理を行った集電体基材 Sの XRDパターンである。
0 3
[図 3]正極集電体 U及び Uの表面分析の結果を示す図である。
0 3
[図 4]実施の形態 1において、強度が最大となるピークの半価幅と電圧降下の関係を 示す図である。
[図 5]チタン又はチタン合金の集電体基材を正極板に用いた制御弁式鉛蓄電池の単 電池の構造を示す縦断面図である。
[図 6]単電池力 個組み合わせられた鉛蓄電池の構造を示す縦断面図である。
[図 7]本発明の実施例となる単電池 (B、 B、及び B )、及び比較例となる単電池 (B
1 2 3 0
)の高率放電性能を示す図である。
[図 8]実施の形態 2における集電体基材 Sの XRDパターンである。
4
[図 9]実施の形態 2における集電体基材 Sの XRDパターンである。
5
発明を実施するための最良の形態
[0036] (1)はじめに、集電体基材となるチタン又はチタン合金の分析方法について述べる。
チタン又はチタン合金の結晶状態 (表面の配向状態やピークの半価幅)は、 CuK α線を用いた X線回折装置によって分析された。具体的には、チタン又はチタン合 金に所定波長の X線を入射角 Θで照射しながら 2 Θを 20° 〜80° まで走査し、この 間に回折した X線の強度が計数された。横軸に 2 Θを、縦軸に X線の強度をとつてプ ロットすることによって、いわゆる X線回折パターン (XRDパターン)が得られる。これ によれば、チタンの結晶構造と照射する X線の波長に基づき、 X線回折強度のピーク が現れた回折角 2 Θに対応する結晶面の種類を特定することができる。
[0037] なお、参考として、 XRDのデータ集である ICDD (International Center for D iffraction Data)カードに基づいて、チタンにおける回折角 2 Θと結晶面との対応 を表 1に示しておく。
[0038] [表 1] 2 Θ (d e g.) 結晶面
35. 06 (100)
38. 40 (002)
40. 1 5 (101)
53. 01 (102)
62. 96 (1 1 o)
70. 66 (103)
74. 26 (200)
76. 30 (1 12)
77. 32 (201)
[0039] (2)以下、本発明の実施の形態 1及び 2について、図 1〜図 9を参照して説明する。
[0040] (2. 1)実施の形態 1
(2. 1.1)圧延
実施の形態 1では、集電体基材として純チタン CFIS1種)が使用された。板状の純 チタンが冷間圧延されることによって、厚さ 0.1mmの板状にされた。冷間圧延とは、 金属の再結晶温度以下(一般には、常温)で行う圧延のこという。なお、この実施の形 態 1においては冷間圧延を示す力 これは一例に過ぎない。よって、加工方法は、他 の方法による圧延でも良いし、圧延以外の方法であってもよい。また、この実施の形 態 1においては集電体基材が板状である例を示す力 これは一例に過ぎない。集電 体基材の構造は任意であり、例えば格子状であってもよい。
[0041] 冷間圧延後の集電体基材 (以下、集電体基材 Sと呼ぶ。)の XRD測定がおこなわ
0
れた。測定による XRDパターンを図 1に示す。図 1と表 1とを対照させることにより、 S
0 のチタンには、(100)面、(002)面、(101)面、 (102)面、 (110)面、(103)面、及 び(112)面の合計 7つの結晶面が確認された。図 1の XRDパターンには多数のピー クが存在することから、 Sのチタンは多種類の結晶面に配向し、チタンの結晶方位が
0
不均一である。また、ピークの強度は比較的小さく且つ半価幅も大きいため、集電体 基材 Sの表面の結晶性は低い。冷間圧延加工時の結晶歪みが多く残っているため
0
と考えられる。
[0042] (2. 1.2)焼鈍
集電体基材 S 1S lX10_4Paの圧力(低真空)及び 700°Cのもとで、焼鈍された。 焼鈍の時間は、それぞれ 3時間、 6時間、及び 12時間とした。得られた集電体基材を 、それぞれ集電体基材 S 、 S、及び Sと呼ぶ。なお、焼鈍は低真空下で行われるの
1 2 3
で、焼鈍の際にはチタンが酸ィ匕されない。
[0043] 集電体基材 S 、 S、及び Sについて XRD測定がおこなわれた。それぞれの XRD
1 2 3
ノターンにおいて、強度が最大となるピークの面指数、及びそのピークの半価幅を表
2に示す。表 2には、焼鈍処理時間が 0時間である集電体基材 S (これは比較例に対
0
応する。)の結果も掲げた。
[0044] [表 2]
Figure imgf000011_0001
[0045] 焼鈍によって、強度が最大であるピークの半価幅が小さくなつた。また、焼鈍の時間 が長くなればなるほど、当該ピークの半価幅が小さくなつた。これらのことから、焼鈍 時の再結晶によって集電体基材 Sに存在した結晶歪みが除去されること、及び焼鈍
0
時間の長さに応じて当該歪みの除去が進むことがわ力つた。また、強度が最大となる ピークの半価幅を調整したい場合、焼鈍の時間や温度を調整すれば良い。たとえば
、半価幅を小さくする場合には、焼鈍の時間を長くすれば良い。
[0046] 集電体基材 S 、 S、及び Sの代表として、集電体基材 Sの XRDパターンを図 2に
1 2 3 3
示す。図 2では、(101)面、(102)面、及び(103)面の 3つの XRDピークが認められ た。ピークの強度は十分に大きぐ半価幅が十分に小さいことから、集電体基材 Sに
0 存在していた結晶歪み力 ほとんど除去されたと考えられる。
[0047] (2. 1. 3)導電性セラミックス層の形成
集電体基材 S 、 S 、 S、及び S力 二酸化スズ (SnO )のコーティング溶液に浸漬
0 1 2 3 2
された後、 30cmZminの速度で引き上げられた。ここで、コーティング溶液とは、四 塩化スズ(0. 1モル)、三塩化アンチモン(0. 03モル)、及び少量の塩酸力 プロパノ ールに溶解された溶液である。その後、 15分間のあいだ室温で乾燥がおこなわれた 。乾燥した集電体基材 S 、 S 、 S、及び S力 00°Cの温度の電気炉内に 30分間放 置された。放置時の雰囲気は大気中とされた。以上により、集電体基材 S S
0、 S
1、 2、 及び Sの表面に、二酸化スズの導電性セラミックス層が形成された。これらが正極集
3
電体である。集電体基材 S
0、 S
1、 S、及び Sに二酸化スズの導電性セラミックス層が 2 3
形成された後の正極集電体を、それぞれ正極集電体 U と呼ぶ。
0、 U 、及び U
1、 U
2 3
[0048] なお、上記のような方法をディップコーティング法という。実施の形態 1では、このデ イッブコーティング法によって導電性セラミックス層を形成する例を示したが、本願発 明はこれに限定されな ヽ。チタンの表面に原料溶液を噴霧するスプレー熱分解法 (S pray Pyrolysis method)その他の方法によって導電性セラミックス層が形成され てもよい。
[0049] (2. 1. 4)正極集電体の評価
正極集電体 U及び Uが GD— OES分析された。分析に使用された装置の機種は
0 3
、堀場製作所製のマーカス型高周波グロ一放電発光表面分析装置 CFY— 5000RF) である。測定の条件については、分析モードがスパッタリングレート、 RF出力が 20W 、ガス圧力が 400Pa、及びアノード径カ S4mmである。
[0050] GD— OES分析の結果を図 3に示す。図 3において、横軸はそれぞれの正極集電 体の表面力 の深さを示す。縦軸は、当該表面からの深さにおいて検出された元素 の量 (mass%)を示す。
[0051] 正極集電体 U及び Uのいずれにおいても、 3つの層が確認された。最も表面にあ
0 3
る第 1の層が、二酸化スズの導電性セラミックス層である。スズの量が多いこと力ゝら確 認される。第 2の層が、酸ィ匕チタン (TiO )の層である。 Snの量が急減すること、及び 酸素の量が急増することから確認される。第 1の層と第 2の層との境界は、図 3におけ るスズ及び酸素の曲線の変曲点から求めている。第 3の層が、チタンの集電体基材 である。酸素の量が減少すること、及び検出される元素力 ほぼチタンのみであること から確認される。第 2の層と第 3の層との境界は、図 3における酸素の曲線の微分係 数がほぼゼロになる点から求めている。
[0052] 図 3によれば、正極集電体 Uにおける酸ィ匕チタンの被膜の厚みは、 0. 07 μ mであ
3
つた。これは、正極集電体 Uの厚みである 0· l l ^ mより小さ力つた。この図 3は、本
0
願発明によって得られる効果を明確に示しているといえる。なお、酸ィ匕チタンの被膜 の厚みを 0. 07 mよりさらに小さくする場合には、集電体基材であるチタン又はチタ ン合金の結晶性を及び配向性をより高くしておけば良い。
[0053] 同様に、正極集電体 U及び Uを分析した結果、正極集電体 U及び Uの酸化チ
1 2 1 2 タンの被膜の厚さは、それぞれ 0. 09 μ m及び 0. 08 μ mであった。
[0054] つぎに、正極集電体 U及び Uの XRD測定がおこなわれた。その結果、正極集電
0 3
体 Uの XRDパターンは、集電体基材 Sのそれと大きく変わらな力つた。導電性セラ
0 0
ミックス層及び酸ィ匕チタンの層が極めて薄いことから、導電性セラミックス層や酸化チ タンに帰属する XRDピークの強度がチタンに帰属する XRDピークの強度にくらべて 極めて弱いためである。正極集電体 Uにおいても、同様であった。
3
[0055] (2. 1. 5)電圧降下試験とその結果
正極集電体 U、 U、 U、及び Uのそれぞれが 30mm X 30mmの銅板の間に挟ま
0 1 2 3
れ、さらに 50kPaの圧力で圧迫された。その状態を保ちながら、 0. 4Aの電流が 2つ の銅板のあいだに流された。そして、その電流を流しているときの電圧降下が測定さ れた。測定結果から、単位面積あたりの抵抗値が計算された。結果を表 3に示す。
[0056] [表 3]
Figure imgf000013_0001
[0057] 正極集電体 Uの電圧降下、及び抵抗値は大きカゝつた。集電体基材 Sと導電性セ
0 0
ラミックス層とのあいだに存在する酸ィ匕チタンの被膜が影響を及ぼしていると考えら れる。一方、正極集電体 u、 u、及び uの場合は、電圧降下、及び抵抗値が小さ
1 2 3
かった。また、焼鈍の時間が長くなればなるほど、電圧降下、及び抵抗値が小さかつ た。
[0058] 表 3の半価幅と電圧降下との関係を、図 4に示す。強度が最大となるピークの半価 幅が 0. 38° 以下の場合、集電体基材と導電性セラミックス層との間の電圧降下が急 激に小さくなつている。すなわち、 0. 38° の半価幅を境界として、効果に顕著な差 が認められる。すなわち、酸化チタンの被膜の厚さが、 0. 07 m以下の場合に、効 果が顕著に現れている。このような顕著な差は、本願発明の当業者に予測されない。
[0059] (2. 1. 6)制御弁式鉛蓄電池の単電池の製造
制御弁式鉛蓄電池の単電池 1の構造を図 5に示す。
電池ケース 4は、正極活物質 5、セパレータ 6、及び負極活物質 7を密閉収納するた めの絶縁性の枠体であり、正極集電体 2及び負極集電体 3によって挟持されて 、る。 電池ケース 4は、外部に通じる排気口 4aを備える。排気口 4aの開口部は、制御弁 8 を備える。電池ケース 4の内部には、正極活物質 5、セパレータ 6、及び負極活物質 7 が配置される。正極活物質 5、セパレータ 6、及び負極活物質 7には、希硫酸を主成 分とする電解液が含浸される。
[0060] 本願発明者は、以上のような構造を有する制御弁式鉛蓄電池を製造した。具体的 な製造方法は次のとおりである。
正極集電体 2には、二酸化スズの導電性セラミックス層が形成された前記の正極集 電体 U、 U、 U、及び Uが使用された。正極集電体 2に正極活物質 5を備えさせる
0 1 2 3
こと〖こよって、正極板が製造された。ここで、正極活物質 5は、二酸化鉛 (PbO )を主
2 体とした板状の活物質である。負極集電体 3は、鉛メツキ (厚さ: 20〜30 μ m)された 銅板 (厚さ 0. 1mm)である。負極集電体 3に負極活物質 7を備えさせることによって、 負極板が製造された。ここで、負極活物質 7は、海綿状金属鉛を主体とした板状の活 物質である。セパレータ 6は、ガラス繊維をマット状にしたものである。正極板と負極 板とがセパレータを介して積層され、電槽に収納された。電槽が蓋で覆われ、電解液 を注入することにより制御弁式鉛蓄電池が製造された。
[0061] (2. 1. 7)制御弁式鉛蓄電池の単電池の性能評価
正極集電体 U、 U、 U、及び Uを正極集電体 2に用いた単電池 1 (公称電圧 2V
0 1 2 3
、定格容量 2. 3Ah)をそれぞれ単電池 B、 B、 B、及び Bと呼ぶ。単電池 B、 B、
0 1 2 3 0 1
B、及び Bを満充電した後に、 6A(3CA相当)の高率放電を行ったときの端子電圧
2 3
の変化を測定した。その結果を図 7に示す。この場合において、放電終止電圧は 1. 6Vとした。
[0062] 参考のための放電曲線として、正極集電体がチタンではなく鉛である制御弁式鉛 蓄電池 (公称電圧 12V、定格容量 2. 3Ah)である電池 B も併せて示す。ただし、 B ref r の結果を、 B、 B、 B、及び Bの結果と比較する必要は無い。
ef 0 1 2 3
[0063] 図 7のように、単電池 B (比較例)では、放電初期に端子電圧が急激に低下した。
0
その後、端子電圧は短時間で 1. 6V以下にまで下がった。集電体基材 Sと導電性セ
0 ラミックス層との間の厚 ヽ酸ィ匕チタンの被膜が影響を及ぼして 、る。
[0064] 単電池 B、 B、及び Bの高率放電性能は、単電池 Bのそれより優れていた。集電
1 2 3 0
体基材と導電性セラミックス層との間の酸ィ匕チタンの被膜の影響が小さいためと考え られる。
[0065] 単電池 Bおよび Bの高率放電性能は、単電池 Bのそれより優れていた。高率放電
2 3 1
性能の向上の程度に差が認められたのは、集電体基材 Sの焼鈍時間が 3時間であ るため、強度が最大となるピークの半価幅は、 0. 38° よりも大きいのに対し、集電体 基材 S及び Sの焼鈍時間は、それぞれ、 6時間及び 12時間であるため、強度が最
2 3
大となるピークの半価幅が 0. 38° 以下であるためと考えられる。すなわち、単電池 を構成した際においても、 0. 38° を境界として、効果に顕著な差が認められた。本 願発明においては、酸化チタンの被膜の厚さが 0. 07 m以下である場合、特に好 ましいと考えられる。
[0066] (2. 1. 8)無停電電源装置用鉛蓄電池
図 6に、 4つの単電池が組み合わせられた鉛蓄電池の構成を示す。この鉛蓄電池 は、無停電電源装置用鉛蓄電池(以下、 UPS用鉛蓄電池という。 UPSは、 Uninter ruptible Power Supplyの略である。)である。単電池 1の負極集電体 3は、別の 単電池 1の正極集電体 2の上に載置されるようにして、 4つの単電池 1が直列に積層 接続された。 4つの単電池 1の上と下には、金属板等の導電材料からなる圧迫部材 9 、 10が配置された。単電池 1の周囲は、榭脂等の絶縁材料カゝらなる補助枠材 11によ つて囲まれた。圧迫部材 9、 10をそれぞれ複数本のネジ 12で補助枠材 11の上下端 面に固着することにより、 4個の単電池 1が強く圧迫され挟持固定された。
[0067] ここで、挟持固定された各単電池 1においては、セパレータ 6が圧縮された状態とな る。この反発力によって、ゲージ圧で 250kPa前後の圧力で正極活物質 5を正極集 電体 2に押圧し、また、負極活物質 7を負極集電体 3に押圧する。セパレータ 6によつ て押圧力を得るためには、セパレータ 6の材質と厚さを適度に調整すればよい。押圧 力は、単電池 1の構造、容量、大きさ等に応じて適宜変更し得る。一般的には、ゲー ジ圧で 100〜400kPa程度の圧力が加わることにより、充放電性能は安定ィ匕する。
[0068] 以上により、 UPS用鉛蓄電池が製造された。なお、 UPS用鉛蓄電池の質量エネル ギー密度及び体積エネルギー密度は、正極板にチタンではなく鉛が使用された制御 弁式鉛蓄電池のそれらを 100%とした場合に、それぞれ 160%及び 140%であった
[0069] 次に、 UPS用鉛蓄電池が、無停電電源装置に搭載された。この無停電電源装置 の性能を評価した結果、単電池 B、 B、及び Bをそれぞれ使用して製造された 3種
1 2 3
の UPS用鉛蓄電池の高率放電性能は、単電池 Bを使用して製造された UPS用鉛
0
蓄電池のそれより優れて!/ヽた。
[0070] (2. 1. 9)その他
以上のように、実施の形態 1においては、集電体基材として純チタン (JIS1種)を使 用した場合についての説明をおこなった。本願発明者が、この純チタン CFIS1種)に 代えて、チタン合金(具体的には、 Ti— 5A1— 2. 5V、 ΤΪ- 3Α1- 2. 5V、及び Ti 6 Al— 4Vの 3種)を使用して、実施の形態 1と同様の試験をおこなったところ、実施の 形態 1と同様の結果が得られた。
[0071] すなわち、これらの 3種のチタン合金を使用した場合においても、焼鈍により強度が 最大となるピークの半価幅が小さくなつた。焼鈍の時間が長ければ長いほど、当該ピ ークの半価幅が小さくなつた。そして、焼鈍の時間が長ければ長いほど、チタン合金 と導電性セラミックス層との間に生成する酸ィ匕チタンの被膜の厚さを小さくすることが できた。酸ィ匕チタンの被膜の厚さを小さくすることによって、高率放電性能を向上させ ることができた。特に、ピークの半価幅が 0. 38° 以下になった場合に、顕著な効果 が認められた。
[0072] (2. 2)実施の形態 2
(2. 2. 1)圧延
実施の形態 2では、集電体基材として種々の純チタン (5種類)が使用された。これ ら 5種類の純チタンの製造過程は、実施の形態 1で用いられた純チタンのそれとは異 なる。そのため、実施の形態 2で用いられる 5種類の純チタン (JIS1種)の XRDパター ンは、実施の形態 1のそれらとは異なる。 5種類の純チタンの板が冷間圧延されること によって、厚さ 0. 1mmの板状にされた。
[0073] (2. 2. 2)焼鈍
5種類の板状の純チタン力 1 X 10_4Paの圧力(低真空)のもとで、 700°Cに焼鈍さ れた。焼鈍の時間は 12時間とした。焼鈍した後の 7種類の集電体基材を、それぞれ 集電体基材 S、 S、 S、 S、及び Sと呼ぶ。
4 5 6 7 8
[0074] 集電体基材 S、 S、 S、 S、及び Sの XRDパターンにおける各面指数に対応する
4 5 6 7 8
XRDピークの強度を、表 5にまとめた。表 5中の数字の単位は、「countZsecond」 である。表 5には、実施の形態 1で用いられた S及び Sのデータも掲載された。なお
0 3
、表 5の最下行には、それぞれの XRDパターンにおいて現れるピークの強度の合計 値を示している。参考として、 S及び Sの XRDパターンを図 8及び図 9にそれぞれ示
4 5
す。
[0075] [表 4]
Figure imgf000017_0001
つぎに、表 4における各集電体基材 S、 S、 S、 S、 S、 S、及び S の XRDパター
0 3 4 5 6 7 8
ンのそれぞれに関して、強度が大きい順に 2つのピークが選択され、全ピークの強度 の合計値に対する選択された当該 2つのピークの強度の合計値の割合が調査された 。同様に、 3つのピークを選択した場合、及び 4つのピークを選択した場合の割合に ついても調査された。
[0077] 分力りやすいように、集電体基材 Sの場合を例に具体的に説明する。表 5に基づき
3
、集電体基材 Sの強度が大きい順に 2つのピークを選択すると、それは(103)面と(
3
101)面である。これら 2つのピークの強度の合計値は「2462 ( = 1598 + 864)」であ る。この値は、全ピークの強度の合計値である「3431」に対して、約 71. 8%となる。 同様に、強度が大きい順に 3つのピークを選択すると、それは(103)面と(101)面と(
102)面である。これら 3つのピークの強度の合計値は「3205 ( = 1598 + 864 + 743 ;)」である。この値は、全ピークの強度の合計値である「3431」に対して約 93. 4%で ある。
[0078] 以上の調査結果を、表 5に示した。
[表 5]
Figure imgf000018_0001
[0079] 表 5によれば、集電体基材 Sにおいては、強度の大きい順にピークを 4つ選択して
0
も、選択した当該 4つのピークの強度の合計値力 全ピークの強度の合計値に対して 73. 9%であって、 85%以上ではない。強度の大きい順にピークを 5つ選択した場合 に、選択した当該 5つのピークの強度の合計値力 全ピークの合計値に対して 85% 以上となった。したがって、本願明細書では、集電体基材 Sの配向数を 5と数える。
0
[0080] 一方、集電体基材 S、 S、 S、 S、 S、及び Sは、ピークを 2つ、 3つ、及び 4つ選
3 4 5 6 7 8
択した場合の ヽずれかの場合に、強度の合計値が全ピークの強度の合計値の 85% 以上となった。
[0081] (2. 2. 3)導電性セラミックス層の形成
集電体基材 S、 S、 S、 S、及び Sのそれぞれに、導電性セラミックス層が形成さ
4 5 6 7 8
れた。方法は、前述の(2. 1. 3)と同様である。集電体基材 S、 S、 S、 S、及び S
4 5 6 7 8 に二酸化スズの導電性セラミックス層が形成された後の正極集電体を、それぞれ正 極集電体 u、 u、 u、 u、及び uと呼ぶ。
4 5 6 7 8
[0082] (2. 2. 4)正極集電体の評価
正極集電体 U、 U、 U、 U、及び U力 SGD— OES分析された。分析方法は、 (2.
4 5 6 7 8
1. 4)と同様である。分析の結果、正極集電体 U、 U、 U、 U、及び Uにおける酸
4 5 6 7 8
ィ匕チタンの被膜の厚みは、それぞれ、 0. 04 μ m、 0. 06 μ m、 0. 05 μ m、 0. 06 μ m、及び 0. 03 μ mであった。
[0083] (2. 2. 5)電圧降下試験とその結果
正極集電体 U、 U、 U、 U、及び Uについて、電圧降下試験がおこなわれた。
4 5 6 7 8
試験方法は、前述の(2. 1. 5)と同様である。結果を表 6に示す。
[0084] [表 6]
Figure imgf000019_0001
[0085] (2. 2. 6)制御弁式鉛蓄電池の製造及び性能評価
正極集電体に、正極集電体 U、 U、 U、 U、及び Uが使用され、前述の(2. 1.
4 5 6 7 8
6)と同様の方法により制御弁式鉛蓄電池が製造された。その制御弁式鉛蓄電池を、 それぞれ単電池 B、 B、 B、 B、 B、 B、及び Bと呼ぶ。これらの単電池を使用して
0 3 4 5 6 7 8
、前述の(2. 1. 7)と同様の性能評価をおこなった。
[0086] 単電池 B (比較例)において、放電初期に端子電圧が急激に低下し、短時間で端
0
子電圧が 1. 6Vに下がるのは、前述のとおりである。一方、単電池 B、 B、 B、 B、 B
3 4 5 6
、及び Bの高率放電特性は、単電池 Bのそれより優れていた。集電体基材と導電
7 8 0
性セラミックス層との間で、酸ィ匕チタンの被膜の形成が抑制されたためと考えられる。
[0087] (2. 2. 7)その他
実施の形態 2においては、集電体基材として種々の純チタン (JIS1種)を使用した 場合についての説明をおこなった。本願発明者が、この純チタン CFIS1種)に代えて 、チタン合金(具体的には、 Ti— 5A1— 2. 5V、 ΤΪ- 3Α1- 2. 5V、及び Ti— 6A1— 4 Vの 3種)を使用して、実施の形態 2と同様の評価をおこなったところ、実施の形態 1と 同様の結果が得られた。
産業上の利用可能性
本願発明は、産業上広く利用される鉛蓄電池に関する。本願発明は、その鉛蓄電 池の内部抵抗を低減し、高率放電性能を向上させるものであるから、その産業上の 価値は、きわめて大きい。

Claims

請求の範囲
[1] チタン又はチタン合金の集電体基材と、前記集電体基材の表面に備えられた酸化 チタンの被膜と、及び前記被膜の表面に備えられた導電性セラミックス層とを備えた 鉛蓄電池用正極集電体にぉ 、て、
前記被膜の厚さが 0. 09 μ m以下であることを特徴とする。
[2] 鉛蓄電池用正極集電体の製造方法にお!、て、その製造方法は、
チタン又はチタン合金の集電体基材を真空中又は不活性雰囲気中で焼鈍する第 1の工程、及び
前記第 1の工程を経た集電体基材の表面に導電性セラミックス層を形成する第 2の 工程
を備えることを特徴とする。
[3] 請求項 2に記載された鉛蓄電池用正極集電体の製造方法にお 、て、
前記第 1の工程によって、前記チタン又は前記チタン合金の XRDパターンにおい て、強度が最大となるピークの半価幅を 0. 38° 以下にすることを特徴とする。
[4] 請求項 2に記載された鉛蓄電池用正極集電体の製造方法にお ヽて、
前記第 1の工程によって、前記チタン又は前記チタン合金の XRDパターンにおい て、強度の大きな順にピークを 4つ選択したときの当該 4つのピークの強度の合計値 を、すべてのピークの強度の合計値の 85%以上にすることを特徴とする。
[5] チタン又はチタン合金の集電体基材、及び導電性セラミックス層を備えた鉛蓄電池 用正極集電体において、
前記導電性セラミックス層は、前記集電体基材に備えられ、
前記正極集電体の XRDパターンにお!/、て、チタン又はチタン合金のピークの中で 強度が最大となるピークの半価幅が 0. 38° 以下であることを特徴とする。
[6] チタン又はチタン合金の集電体基材、及び導電性セラミックス層を備えた鉛蓄電池 用正極集電体において、
前記導電性セラミックス層は、前記集電体基材に備えられ、
前記正極集電体の XRDパターンにお!/、て、チタン又はチタン合金のピークの中で 強度の大きな順にピークを 4つ選択したときの当該 4つのピークの強度の合計値が、 すべてのピークの強度の合計値に対して 85%以上であることを特徴とする。
[7] 請求項 1、 5又は 6に記載された正極集電体を備えた鉛蓄電池。
[8] 正極集電体を備えた鉛蓄電池の製造方法にお!、て、
前記正極集電体の製造方法が、請求項 2、 3又は 4に記載された製造方法である。
[9] 正極集電体を備えた鉛蓄電池を搭載した無停電電源装置の製造方法にお!、て、 前記正極集電体の製造方法が、請求項 2、 3又は 4に記載された製造方法である。
[10] 請求項 7に記載された正極集電体を備えた鉛蓄電池を搭載した無停電電源装置。
PCT/JP2006/315605 2005-08-08 2006-08-07 鉛蓄電池用正極集電体、及びその製造方法 WO2007018183A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006527791A JP5303837B2 (ja) 2005-08-08 2006-08-07 鉛蓄電池用正極集電体、及びその製造方法
US12/063,340 US9059468B2 (en) 2005-08-08 2006-08-07 Positive electrode collector for lead acid storage battery and method for producing the same
CN2006800287433A CN101238601B (zh) 2005-08-08 2006-08-07 铅蓄电池的正极集电体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-229826 2005-08-08
JP2005229826 2005-08-08

Publications (1)

Publication Number Publication Date
WO2007018183A1 true WO2007018183A1 (ja) 2007-02-15

Family

ID=37727366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315605 WO2007018183A1 (ja) 2005-08-08 2006-08-07 鉛蓄電池用正極集電体、及びその製造方法

Country Status (4)

Country Link
US (1) US9059468B2 (ja)
JP (1) JP5303837B2 (ja)
CN (1) CN101238601B (ja)
WO (1) WO2007018183A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114738A1 (ja) * 2007-03-15 2008-09-25 Gs Yuasa Corporation 鉛蓄電池および組電池
US20110274969A1 (en) * 2010-05-10 2011-11-10 Xiaogang Wang Current collector for lead acid battery
US11050093B2 (en) 2018-06-25 2021-06-29 Eskra Technical Products, Inc. Bipolar lead acid battery cells with increased energy density

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090181306A1 (en) * 2005-09-29 2009-07-16 Gs Yuasa Corporation Positive electrode current collector for lead accumulator
US10535853B2 (en) 2010-09-21 2020-01-14 Hollingsworth & Vose Company Glass compositions with leachable metal oxides and ions
KR20120054336A (ko) * 2010-11-19 2012-05-30 삼성에스디아이 주식회사 복합 집전체를 구비한 연료전지 모듈
CN107946598B (zh) * 2017-11-29 2021-11-02 中宝(天津)集团有限公司 一种高效环保的铅基蓄电池
CN111254372B (zh) * 2020-02-14 2022-01-11 西北工业大学 一种减轻TiAl合金氧化的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742935B2 (ja) * 1972-02-28 1982-09-11
JPH09283151A (ja) * 1996-04-18 1997-10-31 Matsushita Electric Ind Co Ltd 鉛蓄電池用集電体とその製造法およびこれを用いた極板
JP3482605B2 (ja) * 1993-08-20 2003-12-22 日本電池株式会社 鉛蓄電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0052986B1 (en) * 1980-11-26 1983-12-28 Imi Kynoch Limited Electrode, method of manufacturing an electrode and electrolytic cell using such an electrode
US4861689A (en) * 1987-11-23 1989-08-29 Ensci, Inc. Battery element and method for making same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742935B2 (ja) * 1972-02-28 1982-09-11
JP3482605B2 (ja) * 1993-08-20 2003-12-22 日本電池株式会社 鉛蓄電池
JPH09283151A (ja) * 1996-04-18 1997-10-31 Matsushita Electric Ind Co Ltd 鉛蓄電池用集電体とその製造法およびこれを用いた極板

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114738A1 (ja) * 2007-03-15 2008-09-25 Gs Yuasa Corporation 鉛蓄電池および組電池
JPWO2008114738A1 (ja) * 2007-03-15 2010-07-01 株式会社ジーエス・ユアサコーポレーション 鉛蓄電池および組電池
US20110274969A1 (en) * 2010-05-10 2011-11-10 Xiaogang Wang Current collector for lead acid battery
US8709663B2 (en) * 2010-05-10 2014-04-29 Xiaogang Wang Current collector for lead acid battery
US11050093B2 (en) 2018-06-25 2021-06-29 Eskra Technical Products, Inc. Bipolar lead acid battery cells with increased energy density
JP2021528821A (ja) * 2018-06-25 2021-10-21 イスクラ テクニカル プロダクツ,インク. エネルギー密度が増加したバイポーラ型鉛蓄電池セル
JP7218004B2 (ja) 2018-06-25 2023-02-06 イスクラ テクニカル プロダクツ,インク. エネルギー密度が増加したバイポーラ型鉛蓄電池セル

Also Published As

Publication number Publication date
JP5303837B2 (ja) 2013-10-02
CN101238601B (zh) 2010-10-27
US9059468B2 (en) 2015-06-16
CN101238601A (zh) 2008-08-06
JPWO2007018183A1 (ja) 2009-02-19
US20090130557A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
US11011795B2 (en) Barrier for thin film lithium batteries made on flexible substrates and related methods
KR100940695B1 (ko) 리튬이온 이차전지용 음극과 그 제조방법, 및 리튬이온이차전지
EP3121885B1 (en) Electrolytic copper foil, and collector, negative electrode, and lithium battery comprising same
EP3316363B1 (en) Electrolytic copper foil, current collector including same electrolytic copper foil, electrode including same current collector, secondary battery including same electrode, and method for manufacturing same
CN101495666B (zh) 含锂过渡金属氧化物靶及其制造方法以及锂离子薄膜二次电池
JP5303837B2 (ja) 鉛蓄電池用正極集電体、及びその製造方法
EP3121884B1 (en) Electrolytic copper foil, and collector, negative electrode, and lithium battery comprising same
JP5168904B2 (ja) 鉛蓄電池用正極集電体
EP2472648B1 (en) Negative electrode for lithium ion battery and method for producing the same, and lithium ion battery
KR100916436B1 (ko) 리튬이온 이차전지용 음극 및 그것을 이용하는 리튬이온이차전지
US20120208079A1 (en) Method for producing negative electrode precursor material for battery, negative electrode precursor material for battery, and battery
JP2003077529A (ja) リチウム電池及びリチウム二次電池
JP6527219B2 (ja) 最適化したピーク粗さを有する電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法
US20120082892A1 (en) Lithium secondary battery
KR102721378B1 (ko) 주름 및 말림이 최소화된 고강도 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
Sengupta et al. Investigation on lithium conversion behavior and degradation mechanisms in Tin based ternary component alloy anodes for lithium ion batteries
WO2016140306A1 (ja) チタン材、セパレータ、および固体高分子形燃料電池、ならびにチタン材の製造方法
KR102314065B1 (ko) 인-시츄 침전법을 통한 잎모양의 산화구리 나노 구조체의 제조방법 및 리튬 이온 배터리 전극으로의 응용
JP4145061B2 (ja) リチウム二次電池用電極の製造方法
KR20240066005A (ko) 비정질 금속 합금 코팅층을 구비하는 무음극 리튬 이차전지, 리튬금속 이차전지, 리튬 이차전지 및 전고체 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680028743.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006527791

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12063340

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782447

Country of ref document: EP

Kind code of ref document: A1