[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007017064A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2007017064A1
WO2007017064A1 PCT/EP2006/007087 EP2006007087W WO2007017064A1 WO 2007017064 A1 WO2007017064 A1 WO 2007017064A1 EP 2006007087 W EP2006007087 W EP 2006007087W WO 2007017064 A1 WO2007017064 A1 WO 2007017064A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
tubes
tube
housing
exchanger according
Prior art date
Application number
PCT/EP2006/007087
Other languages
German (de)
French (fr)
Inventor
Walter Aupperle
Volker Döring
Peter Kalisch
Volker Lindemann
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2007017064A1 publication Critical patent/WO2007017064A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1653Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having a square or rectangular shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0236Header boxes; End plates floating elements
    • F28F9/0241Header boxes; End plates floating elements floating end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/02Flexible elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements

Definitions

  • the invention relates to a heat exchanger, in particular for a motor vehicle according to the preamble of patent claim 1.
  • a multi-tube heat exchanger with a strain joint is known, which is provided around a housing 2 around to compensate for the differences in thermal thermal expansion between the housing side and tube side.
  • the heat exchanger includes a perforated plate for distributing the medium, wherein the one end of the perforated plate is connected to the housing 2 and the other end by a flexible sealing means 7, which is located in a gap between the housing 2 and sealing ring 1 is held.
  • Such heat exchangers are subjected to high thermal stresses due to high temperatures, the considerable temperature gradient of the individual media between the inlet and the outlet, and, above all, the large temperature differences between the two media, for example between the highly heated exhaust gases and the incoming coolant.
  • the resulting in the components of the heat exchanger high thermal stresses can be superimposed additional stresses due to operational rapid temperature fluctuations, eg load changes of the internal combustion engine.
  • the thermally highly stressed attachment points of the pipes their confluence with the chambers are usually additionally exposed to considerable mechanical stress caused by bending moments and tensile forces caused by the overpressure of a medium.
  • the invention is therefore based on the object to reduce these thermally induced voltages, i. reduce the resulting stresses in the components of the heat exchanger in order to achieve greater safety and longer life for the heat exchanger mentioned above.
  • the invention solves this problem by providing a heat exchanger with the features of claim 1.
  • the heat exchanger according to the invention at least one of the tube sheets is connected via an elastic, deformable molded part to the housing shell, wherein the molding different thermal expansion of the housing shell on the one hand and the tubes on the other compensated by deformation.
  • the molded part absorbs deformations of the housing jacket and the tubes that expand to different degrees under the effect of the hot exhaust gases and the less hot coolant.
  • the tube sheet is elastically deformable.
  • An elastic tube plate allows the expansion of the tubes or tube bundles and avoids favorably critical component stresses in the field of force flow tubes or tube bundles - tubesheet - housing shell.
  • the molding is an integral part of the tube sheet.
  • the molding additionally has a bead.
  • the housing shell is arranged at a distance L to the tubes.
  • the housing shell is flared at the ends of the heat exchanger in the region of the tube plate.
  • the housing shell on several inlet openings and / or outlet openings for the coolant.
  • FIG. 1 shows a longitudinal section through a heat exchanger according to the invention with just executed molding
  • FIG. 2 shows a longitudinal section through a heat exchanger according to the invention with arched executed molding
  • Fig. 3 is a longitudinal section through an inventive
  • Heat exchanger perpendicular to the sectional plane of Fig. 1, 4 is a second longitudinal section through a heat exchanger according to the invention perpendicular to the sectional plane of Fig. 1,
  • FIG. 6a is a perspective view of a heat exchanger according to the invention.
  • FIG. 6b is a front view of a heat exchanger according to the invention without gas diffuser and coolant inlet: inventive tube sheet with integrated molding and bead,
  • FIG. 7 is a second perspective view of a heat exchanger according to the invention.
  • Fig. 8 is a third perspective view of a heat exchanger according to the invention.
  • a heat exchanger according to the invention here preferably an exhaust gas heat exchanger shown how it is used in motor vehicles in the exhaust gas recirculation (EGR) for cooling the hot exhaust gases.
  • the exhaust gas heat exchanger according to the invention comprises a plurality of mutually parallel tubes 1, which are designed to flow through a first medium, here exhaust gas, a housing jacket 2 enclosing the tubes 1, which for flowing through a second medium, here a coolant, which does not separate shown is designed, wherein the tubes 1 by at least two, spaced tube sheets 3 are held, which in turn are connected to the inner wall 4 of the housing shell 2.
  • the first and / or the second medium may be gaseous and / or liquid.
  • the individual tubes 1 are also combined to form so-called tube bundles 1.2 (see FIG. 6a).
  • the inlet 5 of the coolant into the heat exchanger in this case preferably water, is effected by a coolant inlet nozzle 6 placed on the housing jacket 2, which is located near the inlet opening 7 of a gas diffuser 8 for hot exhaust gases (direct current principle).
  • the heat exchanger according to the invention can in principle also be operated in a counterflow principle.
  • the exhaust gas heat exchanger tubes 1 and housing shell 2 heat differently because the exhaust gases flowing through the tubes 1 have a higher temperature than the coolant flowing around the housing jacket 2. This results in different strains between the tubes 1 and the tube bundles and the housing shell 2, which leads to thermally induced stresses, ie stresses in the axial direction of the tubes 1 and tensile stresses in the housing shell 2 and bending stresses in the tube sheets.
  • the tubes 1 of the at least one tube bundle, not shown here, the tube ends 1, 3 receiving tube sheets 3 and the housing shell 2 thus form a power flow, in which the tubes 1 are supported on the tube sheets 3 on the housing shell 2.
  • exhaust gas heat exchangers such as those used in commercial vehicles, high media flows and high cooling capacities lead to large dimensions.
  • the tubesheets 3 is therefore advantageously connected to the housing jacket 2 via an elastic, deformable molded part 3.1, wherein the molded article 3.1 compensates for different thermal expansions of the housing jacket 2 on the one hand and the tubes 1 on the other hand due to deformation.
  • the molded part 3.1 may be connected as a separate component with the tube sheet 3, wherein only the molded part can be elastically deformable and the tube sheet largely rigid.
  • the tube sheet 3 may be elastically deformable.
  • the molded part 3.1 is an integral part of the tube bottom 3, so that both elements, the tube sheet 3 and the molded part 3.1, may be of the same or different elasticity. The elasticity can be controlled, for example, by appropriate thickness ratios or material selection with respect to the molded part 3.1 and tube sheet 3.
  • Tube bottom 3 with molded part 3.1 can also be referred to as expansion compensation device.
  • the molded part 3.1 can for example be designed as a straight connection (FIG. 1) from the tube bottom 3 to the housing jacket 2 or else in the form of a bead 10 (FIG. 2).
  • the bead 10 has due to their shape by the larger central axis a longer lever arm and thus can respond even more elastic to thermal stresses.
  • Other suitable embodiments of the molded part 3.1 for receiving the different thermal expansions are exemplified in FIG. 5.
  • the tubes 1 and tube bundle are spaced at a distance L from the housing shell 2, to a deformation of the molding 3.1 to ensure.
  • the housing shell 2 is widened at the ends 2.1 of the heat exchanger in the region of the tube bottom 3.
  • a greater deformation capacity of the molded part 3.1 is made possible in a favorable manner, without having to provide for the core of the heat exchanger large structural changes or further space.
  • Fig. 3 and Fig. 4 show a longitudinal section through a heat exchanger according to the invention perpendicular to the sectional plane of Fig. 1, wherein Fig. 4 in contrast to Fig. 3 shows a widening of the housing shell 2 at the ends or the edge region of the heat exchanger.
  • the elastic molded part 3.1 where 3.1 ( K > the undeformed state and 3.1 (L ) represents the deformed state, deforms by a length change ⁇ L / L to the thermal stresses in the longitudinal direction of the tubes 1 due to the different thermal expansions between Housing jacket 2 and pipes 1.
  • the tube plate 3 can be made rigid except for the molded part 3.1 or flexible, so that it can also absorb thermal expansion between the individual tubes 1 or tube bundles The order of magnitude depends on the material used for the molded part 3.1 or tube bottom 3.
  • the heat exchanger according to the invention can also be operated in the countercurrent principle.
  • countercurrent coolers are the gas inlet and the water outlet at the same end, whereby these are preferably arranged in the thermally highly stressed area, ie at the gas inlet.
  • Fig. 6a shows a perspective view of the heat exchanger according to the invention with at the ends 2.1 and the edge region not flared housing shell 2, at the end, adjacent to the inlet opening 7 of a gas diffuser 8, a coolant inlet nozzle 6 is placed.
  • the heat exchanger consists of at least one of a preferably gaseous medium here flowed through and flowed around by a preferably liquid coolant tube bundle 1.2, the tubes 1 are received with their tube ends in the tube sheets 3 and cohesively connected thereto, wherein the housing shell 2, the end cohesively is connected to the tube plates 3, flows through the coolant.
  • the two tube bundles 1.2 shown here are thus encompassed by the tubesheets 3 and are spaced from the housing jacket 2 by a distance L from the integrated elastic shaped parts 3.1, which have a bead 10. Due to the integrated expansion compensation device 3, 3.1 results in a high stability and long life of the heat exchanger according to the invention, since the expansion compensation device 3, 3.1 is capable of critical component stresses in the field of power flow between "housing shell 2 - tubes 1 and tube bundles 1.2 - tubesheets In this way, in contrast to solutions with an elastic housing jacket, there is the advantage that the exhaust gas heat exchanger and connected exhaust gas exchanger have a high dimensional stability.
  • Coolant lines can be attached as rigid as desired to the engine, while a stretchable housing always limits the connection options to the engine and requires the appropriate elasticity in the lines.
  • the present inventive solution thus integrates the length compensation in the interior of the heat exchanger and is therefore independent of the outer periphery.
  • Fig. 6b shows the elastic molded part 3.1, which is provided with recesses 11 which receive the ends of the pipes 1 not shown separately.
  • the bead 10 located in the region of the molded part 3.1 gives the expansion compensation device 3, 3.1 sufficient elasticity to be able to compensate for the thermal expansion or deformation taking place in the longitudinal direction of the tubes 1, so that the molded part 3.1 can follow the greater expansion of the exhaust tubes by elastic stretching , Without this leading to an impermissible deformation and thus to an impairment of the connection between pipes 1 - tube plates 3 and housing shell 2.
  • Expansion compensation device 3, 3.1 is also easy to produce and without great expense and is equally suitable for sealing between the liquid and gaseous region of the exhaust gas heat exchanger.
  • Fig. 7 and Fig. 8 show further perspective views of a heat exchanger according to the invention.
  • the housing jacket 2 has coolant inlet openings 12 and coolant outlet openings, not shown here, and is flowed through by the coolant, wherein in the case of DC coolers, the coolant inlet openings 12 are preferably arranged in the thermally highly stressed part, ie at the gas inlet.
  • the additional water distribution channel in the form of the coolant inlet nozzle 6 with coolant inlet and -Out openings 12 thus allows an optimized inflow and distribution of coolant in the heat exchanger and thus a better cooling effect than would be the case with only a large coolant inlet opening.
  • the exhaust pipes 1 When operating an exhaust gas heat exchanger, the exhaust pipes 1 are flowed through on the inside of the hot exhaust gas and flows around on the outside of the coolant. This coolant also flows around the inside of the housing shell 2.
  • the exhaust pipes 1 thus reach a much higher temperature than the housing shell 2, resulting in the different strains between exhaust pipes 1 and housing shell 2. This leads to thermal stresses, ie to pressure or tensile stresses in the housing shell 2 and the tubes 1.
  • the tubes press on the tube sheets and cause deformation or even damage the pipe / floor or tube bottom / housing connections, ie the exhaust gas heat exchanger can leak ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The invention relates to a heat exchanger, in particular, for a motor vehicle, comprising a plurality of tubes (1) which extend in a manner parallel to each other, and which are arranged so that they can be cross-flown by a first medium, a housing cover (2) which surrounds the tubes (1) and which is arranged such that it can be cross-flown by a second medium. The tubes (1) are maintained by at least two tube plates (3) which are maintained at a distance from each other, which are also connected to the inner wall (4) of the housing cover (2). According to the invention, at least one of the tube plates (3) is connected to the housing cover (2) by means of an elastic, moulding part (3.1) which can be shaped. The moulding part (3.1) compensates different thermal expansions of the housing cover (2) and the tubes (1) by shaping.

Description

Wärmetauscher heat exchangers
Die Erfindung betrifft einen Wärmetauscher, insbesondere für ein Kraftfahrzeug nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a heat exchanger, in particular for a motor vehicle according to the preamble of patent claim 1.
Aus der JP 05187792 Al ist ein Multiröhren-Wärmetauscher mit einer Dehnungsverbindung bekannt, welche um ein Gehäuse 2 herum vorgesehen ist, um die Unterschiede in der thermischen Wärmeausdehnung zwischen Gehäuseseite und Röhrenseite auszugleichen. Der Wärmetauscher enthält eine Lochplatte zur Verteilung des Mediums, wobei das eine Ende der Lochplatte mit dem Gehäuse 2 verbunden ist und das andere Ende durch ein flexibles Dichtmittel 7, welches sich in einer Lücke zwischen Gehäuse 2 und Dichtring 1 befindet, gehalten ist.From JP 05187792 Al a multi-tube heat exchanger with a strain joint is known, which is provided around a housing 2 around to compensate for the differences in thermal thermal expansion between the housing side and tube side. The heat exchanger includes a perforated plate for distributing the medium, wherein the one end of the perforated plate is connected to the housing 2 and the other end by a flexible sealing means 7, which is located in a gap between the housing 2 and sealing ring 1 is held.
Derartige Wärmetauscher werden durch hohe Temperaturen, das beträchtliche Temperaturgefälle der einzelnen Medien zwischen Einlass und Auslass sowie vor allem durch die großen Temperaturunterschiede zwischen den beiden Medien, z.B. zwischen den stark erhitzten Abgasen und dem einströmenden Kühlmittel, thermisch hoch beansprucht. Den dadurch in den Bauteilen des Wärmetauschers hervorgerufenen hohen Wärmespannungen können sich noch zusätzliche Spannungen durch betriebsbedingte rasche Temperaturschwankungen, z.B. bei Lastwechsel der Brennkraftmaschine, überlagern. Die thermisch besonders hoch beanspruchten Befestigungsstellen der Rohre an ihrer Einmündung in die Kammern sind meist zusätzlich erheblichen mechanischen Belastungen durch Biegemomente und Zugkräfte, die vom Überdruck eines Medium hervorgerufen werden, ausgesetzt.Such heat exchangers are subjected to high thermal stresses due to high temperatures, the considerable temperature gradient of the individual media between the inlet and the outlet, and, above all, the large temperature differences between the two media, for example between the highly heated exhaust gases and the incoming coolant. The resulting in the components of the heat exchanger high thermal stresses can be superimposed additional stresses due to operational rapid temperature fluctuations, eg load changes of the internal combustion engine. The thermally highly stressed attachment points of the pipes their confluence with the chambers are usually additionally exposed to considerable mechanical stress caused by bending moments and tensile forces caused by the overpressure of a medium.
Der Erfindung liegt daher die Aufgabe zugrunde, diese thermisch bedingten Spannungen abzubauen, d.h. die daraus resultierenden Beanspruchungen in den Bauteilen des Wärmetauschers herabzusetzen, um damit eine größere Sicherheit und höhere Lebensdauer für den eingangs genannten Wärmetauscher zu erreichen.The invention is therefore based on the object to reduce these thermally induced voltages, i. reduce the resulting stresses in the components of the heat exchanger in order to achieve greater safety and longer life for the heat exchanger mentioned above.
Die Erfindung löst dieses Problem durch die Bereitstellung eines Wärmetauschers mit den Merkmalen des Anspruchs 1. Bei dem erfindungsgemäßen Wärmetauscher ist mindestens einer der Rohrböden über ein elastisches, verformbares Formteil mit dem Gehäusemantel verbunden, wobei das Formteil unterschiedliche thermische Ausdehnungen des Gehäusemantels einerseits und der Rohre andererseits durch Verformung ausgleicht. Das Formteil nimmt Verformungen der sich unter der Einwirkung der heißen Abgase und des weniger heißen Kühlmittels verschieden stark ausdehnenden Gehäusemantels und der Rohre auf. Dadurch werden vorteilhafter Weise Schäden durch Spannungsspitzen in dem thermisch stark beanspruchten Gehäuse im Bereich der Einmündungen der Rohre vermieden.The invention solves this problem by providing a heat exchanger with the features of claim 1. In the heat exchanger according to the invention at least one of the tube sheets is connected via an elastic, deformable molded part to the housing shell, wherein the molding different thermal expansion of the housing shell on the one hand and the tubes on the other compensated by deformation. The molded part absorbs deformations of the housing jacket and the tubes that expand to different degrees under the effect of the hot exhaust gases and the less hot coolant. As a result, damage by voltage peaks in the thermally stressed housing in the region of the junctions of the pipes are advantageously avoided.
In einer Weiterbildung der Erfindung nach Anspruch 2 ist der Rohrboden elastisch verformbar. Ein elastischer Rohrboden ermöglicht die Ausdehnung der Rohre bzw. der Rohrbündel und vermeidet in günstiger Weise kritische Bauteilspannungen im Bereich des Kraftflusses Rohre bzw. Rohrbündel - Rohrboden - Gehäusemantel . In einer alternativen Weiterbildung nach Anspruch 3 ist das Formteil ein integraler Bestandteil des Rohrbodens.In one embodiment of the invention according to claim 2, the tube sheet is elastically deformable. An elastic tube plate allows the expansion of the tubes or tube bundles and avoids favorably critical component stresses in the field of force flow tubes or tube bundles - tubesheet - housing shell. In an alternative development according to claim 3, the molding is an integral part of the tube sheet.
In einer bevorzugten Weiterbildung der Erfindung nach Anspruch 4 weist das Formteil zusätzlich eine Sicke auf.In a preferred embodiment of the invention according to claim 4, the molding additionally has a bead.
In einer vorteilhaften Weiterbildung der Erfindung nach Anspruch 5 ist der Gehäusemantel mit einem Abstand L zu den Rohren angeordnet.In an advantageous development of the invention according to claim 5, the housing shell is arranged at a distance L to the tubes.
In einem besonders bevorzugten Weiterbildung der Erfindung nach Anspruch 6 ist der Gehäusemantel an den Enden des Wärmetauschers im Bereich des Rohrbodens aufgeweitet.In a particularly preferred embodiment of the invention according to claim 6, the housing shell is flared at the ends of the heat exchanger in the region of the tube plate.
In einer Weiterbildung der Erfindung nach Anspruch 7 weist der Gehäusemantel mehrere Eintrittsöffnungen und/oder Austrittsöffnungen für das Kühlmittel auf.In a further development of the invention according to claim 7, the housing shell on several inlet openings and / or outlet openings for the coolant.
Weitere Merkmale, Vorteile und vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Ansprüchen, sowie aus der nachstehenden Beschreibung der Erfindung anhand der beigefügten Zeichnungen. Dabei zeigen beispielhaft auf vereinfachte schematische Weise:Further features, advantages and advantageous embodiments of the invention will become apparent from the claims, as well as from the following description of the invention with reference to the accompanying drawings. By way of example, in a simplified schematic manner:
Fig. 1 einen Längsschnitt durch einen erfindungsgemäßen Wärmetauscher mit gerade ausgeführtem Formteil,1 shows a longitudinal section through a heat exchanger according to the invention with just executed molding,
Fig. 2 einen Längsschnitt durch einen erfindungsgemäßen Wärmetauscher mit gewölbt ausgeführtem Formteil,2 shows a longitudinal section through a heat exchanger according to the invention with arched executed molding,
Fig. 3 einen Längsschnitt durch einen erfindungsgemäßenFig. 3 is a longitudinal section through an inventive
Wärmetauscher senkrecht zur Schnittebene von Fig. 1, Fig. 4 einen zweiten Längsschnitt durch einen erfindungsgemäßen Wärmetauscher senkrecht zur Schnittebene von Fig. 1,Heat exchanger perpendicular to the sectional plane of Fig. 1, 4 is a second longitudinal section through a heat exchanger according to the invention perpendicular to the sectional plane of Fig. 1,
Fig. 5 bevorzugte Ausführungsformen des erfindungsgemäßen elastischen Formteils,5 shows preferred embodiments of the elastic molded part according to the invention,
Fig. 6a eine perspektivische Ansicht eines erfindungsgemäßen Wärmetauschers,6a is a perspective view of a heat exchanger according to the invention,
Fig. 6b eine Vorderansicht eines erfindungsgemäßen Wärmetauschers ohne Gasdiffusor und Kühlmitteleinlassstutzen: erfindungsgemäßer Rohrboden mit integriertem Formteil und Sicke,6b is a front view of a heat exchanger according to the invention without gas diffuser and coolant inlet: inventive tube sheet with integrated molding and bead,
Fig. 7 eine zweite perspektivische Ansicht eines erfindungsgemäßen Wärmetauschers ,7 is a second perspective view of a heat exchanger according to the invention,
Fig. 8 eine dritte perspektivische Ansicht eines erfindungsgemäßen Wärmetauschers .Fig. 8 is a third perspective view of a heat exchanger according to the invention.
In Fig. 1 und Fig. 2 ist ein erfindungsgemäßer Wärmetauscher, hier bevorzugt ein Abgaswärmetauscher dargestellt, wie er in Kraftfahrzeugen bei der Abgasrückführung (AGR) zur Kühlung der heißen Abgase eingesetzt wird. Der erfindungsgemäße Abgaswärmetauscher umfasst eine Mehrzahl parallel zueinander verlaufender Rohre 1, die zur Durchströmung mit einem ersten Medium, hier Abgas, ausgelegt sind, einem die Rohre 1 umschließenden Gehäusemantel 2, der zur Durchströmung mit einem zweiten Medium, hier ein Kühlmittel, welches dem nicht gesondert dargestellten Kühlmittelkreislauf des Verbrennungsmotors des Kraftfahrzeugs entnommen wird, ausgelegt ist, wobei die Rohre 1 durch mindestens zwei, voneinander beabstandete Rohrböden 3 gehalten werden, die wiederum mit der Innenwandung 4 des Gehäusemantels 2 verbunden sind. Prinzipiell kann das erste und/oder das zweite Medium gasförmig und/oder flüssig sein. Die einzelnen Rohre 1 sind ferner zu so genannten Rohrbündeln 1.2 (siehe Fig.6a) zusammengefasst . Der Eintritt 5 des Kühlmittels in den Wärmetauscher, hier bevorzugt Wasser, erfolgt durch einen auf den Gehäusemantel 2 aufgesetzten Kühlmitteleinlassstutzen 6, welcher sich in der Nähe der Eintrittsöffnung 7 eines Gasdiffusors 8 für heiße Abgase befindet (Gleichstromprinzip) . Der erfindungsgemäße Wärmetauscher kann grundsätzlich auch im Gegenstromprinzip betrieben werden.In Fig. 1 and Fig. 2, a heat exchanger according to the invention, here preferably an exhaust gas heat exchanger shown how it is used in motor vehicles in the exhaust gas recirculation (EGR) for cooling the hot exhaust gases. The exhaust gas heat exchanger according to the invention comprises a plurality of mutually parallel tubes 1, which are designed to flow through a first medium, here exhaust gas, a housing jacket 2 enclosing the tubes 1, which for flowing through a second medium, here a coolant, which does not separate shown is designed, wherein the tubes 1 by at least two, spaced tube sheets 3 are held, which in turn are connected to the inner wall 4 of the housing shell 2. In principle, the first and / or the second medium may be gaseous and / or liquid. The individual tubes 1 are also combined to form so-called tube bundles 1.2 (see FIG. 6a). The inlet 5 of the coolant into the heat exchanger, in this case preferably water, is effected by a coolant inlet nozzle 6 placed on the housing jacket 2, which is located near the inlet opening 7 of a gas diffuser 8 for hot exhaust gases (direct current principle). The heat exchanger according to the invention can in principle also be operated in a counterflow principle.
Beim Betrieb des Abgaswärmetauschers erwärmen sich Rohre 1 und Gehäusemantel 2 unterschiedlich, weil die die Rohre 1 durchströmenden Abgase eine höhere Temperatur aufweisen als das den Gehäusemantel 2 umspülende Kühlmittel . Dadurch treten unterschiedliche Dehnungen zwischen den Rohren 1 bzw. den Rohrbündeln und dem Gehäusemantel 2 auf, was zu thermisch bedingten Spannungen, d.h. Spannungen in axialer Richtung der Rohre 1 und Zugspannungen im Gehäusemantel 2 sowie Biegespannungen in den Rohrböden führt. Die Rohre 1 des mindestens einen, hier nicht gezeigten Rohrbündels, die die Rohrenden 1.1 aufnehmenden Rohrböden 3 und der Gehäusemantel 2 bilden somit einen Kraftfluss, bei dem sich die Rohre 1 über die Rohrböden 3 am Gehäusemantel 2 abstützen. Vor allem bei Abgaswärmetauschern, wie sie insbesondere bei Nutzfahrzeugen eingesetzt werden, führen hohe Medienströme und hohe Kühlleistungen zu großen Abmessungen. Ab gewissen Baugrößen muss der unterschiedlichen thermischen Ausdehnung der gasführenden Rohre 1 relativ zum Gehäusemantel 2 des Wärmetauschers vermehrt Rechnung getragen werden, da die auftretenden Spannungen aufgrund der unterschiedlichen Dehnungen zum Versagen einzelner Bauteile oder gar zur Zerstörung der Rohrbodenverbindung des Wärmetauschers führen können.During operation of the exhaust gas heat exchanger tubes 1 and housing shell 2 heat differently because the exhaust gases flowing through the tubes 1 have a higher temperature than the coolant flowing around the housing jacket 2. This results in different strains between the tubes 1 and the tube bundles and the housing shell 2, which leads to thermally induced stresses, ie stresses in the axial direction of the tubes 1 and tensile stresses in the housing shell 2 and bending stresses in the tube sheets. The tubes 1 of the at least one tube bundle, not shown here, the tube ends 1, 3 receiving tube sheets 3 and the housing shell 2 thus form a power flow, in which the tubes 1 are supported on the tube sheets 3 on the housing shell 2. Especially in exhaust gas heat exchangers, such as those used in commercial vehicles, high media flows and high cooling capacities lead to large dimensions. From certain sizes of the different thermal expansion of the gas-conducting tubes 1 relative to the housing shell 2 of the heat exchanger must be increasingly taken into account, since the stresses due to the different strains to failure of individual components or even to Destruction of the tube plate connection of the heat exchanger can lead.
Erfindungsgemäß ist daher in vorteilhafter Weise mindestens einer der Rohrböden 3 über ein elastisches, verformbares Formteil 3.1 mit dem Gehäusemantel 2 verbunden ist, wobei das Formteil 3.1 unterschiedliche thermische Ausdehnungen des Gehäusemantels 2 einerseits und der Rohre 1 andererseits durch Verformung ausgleicht. Hierbei kann das Formteil 3.1 als separates Bauteil mit dem Rohrboden 3 verbunden sein, wobei nur das Formteil elastisch verformbar sein kann und der Rohrboden weitgehend starr. In einer anderen, bevorzugten Ausführungsform kann jedoch auch der Rohrboden 3 elastisch verformbar sein. Ferner ist in einer besonders bevorzugten Ausführungsform das Formteil 3.1 ein integraler Bestandteil des Rohrbodens 3, so dass beide Elemente, der Rohrboden 3 und das Formteil 3.1, von gleicher oder von unterschiedlicher Elastizität sein können. Die Elastizität lässt sich beispielsweise durch entsprechende Dickenverhältnisse bzw. Materialauswahl in Bezug auf Formteil 3.1 und Rohrboden 3 steuern. Rohrboden 3 mit Formteil 3.1 kann im weiteren auch als Dehnungsausgleichseinrichtung bezeichnet werden.According to the invention, at least one of the tubesheets 3 is therefore advantageously connected to the housing jacket 2 via an elastic, deformable molded part 3.1, wherein the molded article 3.1 compensates for different thermal expansions of the housing jacket 2 on the one hand and the tubes 1 on the other hand due to deformation. Here, the molded part 3.1 may be connected as a separate component with the tube sheet 3, wherein only the molded part can be elastically deformable and the tube sheet largely rigid. In another preferred embodiment, however, the tube sheet 3 may be elastically deformable. Furthermore, in a particularly preferred embodiment, the molded part 3.1 is an integral part of the tube bottom 3, so that both elements, the tube sheet 3 and the molded part 3.1, may be of the same or different elasticity. The elasticity can be controlled, for example, by appropriate thickness ratios or material selection with respect to the molded part 3.1 and tube sheet 3. Tube bottom 3 with molded part 3.1 can also be referred to as expansion compensation device.
Das Formteil 3.1 kann beispielsweise als gerade Verbindung (Fig. 1) vom Rohrboden 3 zum Gehäusemantel 2 oder auch in Form einer Sicke 10 (Fig. 2) ausgeführt sein. Die Sicke 10 besitzt aufgrund ihrer Ausformung durch die größere Mittelachse einen längeren Hebelarm und kann somit noch elastischer auf thermische Spannungen reagieren. Weitere geeignete Ausführungsformen des Formteils 3.1 zur Aufnahme der unterschiedlichen thermischen Ausdehnungen sind beispielhaft in Fig. 5 ausgeführt.The molded part 3.1 can for example be designed as a straight connection (FIG. 1) from the tube bottom 3 to the housing jacket 2 or else in the form of a bead 10 (FIG. 2). The bead 10 has due to their shape by the larger central axis a longer lever arm and thus can respond even more elastic to thermal stresses. Other suitable embodiments of the molded part 3.1 for receiving the different thermal expansions are exemplified in FIG. 5.
Die Rohre 1 bzw. Rohrbündel sind in einem Abstand L vom Gehäusemantel 2 beabstandet, um eine Verformung des Formteils 3.1 zu gewährleisten. Besonders bevorzugt ist der Gehäusemantel 2 an den Enden 2.1 des Wärmetauschers im Bereich des Rohrbodens 3 aufgeweitet. Damit wird in günstiger Weise ein größeres Verformungsvermögen des Formteils 3.1 ermöglicht, ohne für den Kern des Wärmetauschers große konstruktive Änderungen bzw. weiteren Bauraum vorsehen zu müssen.The tubes 1 and tube bundle are spaced at a distance L from the housing shell 2, to a deformation of the molding 3.1 to ensure. Particularly preferably, the housing shell 2 is widened at the ends 2.1 of the heat exchanger in the region of the tube bottom 3. Thus, a greater deformation capacity of the molded part 3.1 is made possible in a favorable manner, without having to provide for the core of the heat exchanger large structural changes or further space.
Fig. 3 und Fig. 4 zeigen einen Längsschnitt durch einen erfindungsgemäßen Wärmetauscher senkrecht zur Schnittebene von Fig. 1, wobei Fig. 4 im Gegensatz zu Fig. 3 eine Aufweitung des Gehäusemantels 2 an den Enden bzw. dem Randbereich des Wärmetauschers zeigt. In beiden Zeichnungen kann sich das elastische Formteil 3.1, wobei 3.1(K> der unverformte Zustand und 3.1(L) der verformte Zustand darstellt, um eine Längenänderung ΔL/L verformen, um die thermischen Spannungen in Längsrichtung der Rohre 1 aufgrund der unterschiedlichen Wärmeausdehnungen zwischen Gehäusemantel 2 und Rohren 1 auszugleichen. Der Rohrboden 3 kann bis auf das Formteil 3.1 starr ausgeführt oder ebenfalls flexibel ausgeführt sein, so dass er Wärmeausdehnungen zwischen den einzelnen Rohren 1 bzw. Rohrbündeln ebenfalls auffangen kann. Die jeweils notwendige Längenänderung ΔL/L ist in ihrer Größenordnung abhängig vom verwendeten Material des Formteils 3.1 bzw. Rohrbodens 3. Die Rohre 1, die durch die heißen Abgase in Ströπvungsrichtung der Pfeile durchströmt werden, werden durch das in den Kühlmittelkanälen 9 strömende Kühlmittel, welches bevorzugt in Strömungsrichtung der Abgase (Gleichstromprinzip) strömt, gekühlt. Wird der Abgaskühler im Gleichstromprinzip betrieben, befinden sich Gaseintritt und Kühlmitteleintritt am gleichen Ende, bevorzugt angeordnet im thermisch hochbeanspruchten Bereich, d.h. am Gaseintritt. Grundsätzlich kann der erfindungsgemäße Wärmetauscher auch im Gegenstromprinzip betrieben werden. Bei Gegenstromkühlern befindet sich dagegen der Gaseintritt und der Wasseraustritt am gleichen Ende, wobei auch diese bevorzugt im thermisch hochbeanspruchten Bereich, d.h. am Gaseintritt angeordnet sind.Fig. 3 and Fig. 4 show a longitudinal section through a heat exchanger according to the invention perpendicular to the sectional plane of Fig. 1, wherein Fig. 4 in contrast to Fig. 3 shows a widening of the housing shell 2 at the ends or the edge region of the heat exchanger. In both drawings, the elastic molded part 3.1, where 3.1 ( K > the undeformed state and 3.1 (L ) represents the deformed state, deforms by a length change ΔL / L to the thermal stresses in the longitudinal direction of the tubes 1 due to the different thermal expansions between Housing jacket 2 and pipes 1. The tube plate 3 can be made rigid except for the molded part 3.1 or flexible, so that it can also absorb thermal expansion between the individual tubes 1 or tube bundles The order of magnitude depends on the material used for the molded part 3.1 or tube bottom 3. The tubes 1, which are flowed through by the hot exhaust gases in the direction of flow of the arrows, are flowed through the coolant flowing into the coolant channels 9, which preferably flows in the flow direction of the exhaust gases (direct current principle), Is the exhaust gas cooler in the Gleic operated hstromprinzip, are gas inlet and coolant inlet at the same end, preferably arranged in the thermally highly stressed area, ie at the gas inlet. In principle, the heat exchanger according to the invention can also be operated in the countercurrent principle. at Conversely, countercurrent coolers are the gas inlet and the water outlet at the same end, whereby these are preferably arranged in the thermally highly stressed area, ie at the gas inlet.
Fig. 6a zeigt eine perspektivische Darstellung des erfindungsgemäßen Wärmetauschers mit an den Enden 2.1 bzw. dem Randbereich nicht aufgeweiteten Gehäusemantel 2, an dessen Ende, benachbart zur Eintrittsöffnung 7 eines Gasdiffusors 8 ein Kühlmitteleinlassstutzen 6 aufgesetzt ist. Der Wärmetauscher besteht aus mindestens einem von einem hier bevorzugt gasförmigen Medium durchströmten und von einem hier bevorzugt flüssigen Kühlmittel umströmten Rohrbündel 1.2, dessen Rohre 1 mit ihren Rohrenden in den Rohrböden 3 aufgenommen und stoffschlüssig mit diesen verbunden sind, wobei der Gehäusemantel 2, der endseitig stoffschlüssig mit den Rohrböden 3 verbunden ist, vom Kühlmittel durchströmt wird. Die beiden hier gezeigten Rohrbündel 1.2 sind somit von den Rohrböden 3 umfasst und durch die integrierten elastischen Formteile 3.1, welche eine Sicke 10 aufweisen, mit einem Abstand L vom Gehäusemantel 2 beabstandet. Aufgrund der integrierten Dehnungsausgleichseinrichtung 3, 3.1 ergibt sich eine große Standfestigkeit und lange Lebensdauer des erfindungsgemäßen Wärmetauschers, da die Dehnungsausgleichseinrichtung 3, 3.1 in der Lage ist, kritische Bauteilspannungen im Bereich des Kraftflusses zwischen „Gehäusemantel 2 - Rohren 1 bzw. Rohrbündeln 1.2 - Rohrböden 3" auszugleichen und dadurch in vorteilhafter Weise etwaige durch die thermische Ausdehnung bedingte Schäden am Wärmetauscher zuverlässig zu verhindern. Einteilige hochbeanspruchte Abgaswärmetauscher mit großen Abmessungen sind somit dauerfest darstellbar. Im Gegensatz zu Lösungen mit elastischen Gehäusemantel besteht hier der Vorteil, dass der Abgaswärmetauscher und angeschlossene Abgas- und Kühlmitteleitungen beliebig steif an den Motor angebracht werden können, während ein dehnbares Gehäuse immer die Anbindungsmöglichkeiten an den Motor einschränkt und die entsprechende Elastizität in den Leitungen erfordert. Die hier vorliegende erfindungsgemäße Lösung integriert somit den Längenausgleich in das Innere des Wärmetauschers und ist daher unabhängig von der äußeren Peripherie.Fig. 6a shows a perspective view of the heat exchanger according to the invention with at the ends 2.1 and the edge region not flared housing shell 2, at the end, adjacent to the inlet opening 7 of a gas diffuser 8, a coolant inlet nozzle 6 is placed. The heat exchanger consists of at least one of a preferably gaseous medium here flowed through and flowed around by a preferably liquid coolant tube bundle 1.2, the tubes 1 are received with their tube ends in the tube sheets 3 and cohesively connected thereto, wherein the housing shell 2, the end cohesively is connected to the tube plates 3, flows through the coolant. The two tube bundles 1.2 shown here are thus encompassed by the tubesheets 3 and are spaced from the housing jacket 2 by a distance L from the integrated elastic shaped parts 3.1, which have a bead 10. Due to the integrated expansion compensation device 3, 3.1 results in a high stability and long life of the heat exchanger according to the invention, since the expansion compensation device 3, 3.1 is capable of critical component stresses in the field of power flow between "housing shell 2 - tubes 1 and tube bundles 1.2 - tubesheets In this way, in contrast to solutions with an elastic housing jacket, there is the advantage that the exhaust gas heat exchanger and connected exhaust gas exchanger have a high dimensional stability. and Coolant lines can be attached as rigid as desired to the engine, while a stretchable housing always limits the connection options to the engine and requires the appropriate elasticity in the lines. The present inventive solution thus integrates the length compensation in the interior of the heat exchanger and is therefore independent of the outer periphery.
Fig. 6b zeigt das elastische Formteil 3.1, welches mit Ausnehmungen 11 versehen ist, die die Enden der nicht gesondert gezeigten Rohre 1 aufnehmen. Die im Bereich des Formteils 3.1 befindliche Sicke 10 verleiht der Dehnungsausgleicheinrichtung 3, 3.1 eine hinreichende Elastizität, um die in Längsrichtung der Rohre 1 erfolgende thermische Ausdehnung oder Verformung ausgleichen zu können, so dass das Formteil 3.1 durch elastische Dehnung der stärkeren Dehnung der Abgasrohre folgen kann, ohne dass es dabei zu einer unzulässigen Verformung und damit zu einer Beeinträchtigung der Verbindung zwischen Rohren 1 - Rohrböden 3 und Gehäusemantel 2 kommt. DieFig. 6b shows the elastic molded part 3.1, which is provided with recesses 11 which receive the ends of the pipes 1 not shown separately. The bead 10 located in the region of the molded part 3.1 gives the expansion compensation device 3, 3.1 sufficient elasticity to be able to compensate for the thermal expansion or deformation taking place in the longitudinal direction of the tubes 1, so that the molded part 3.1 can follow the greater expansion of the exhaust tubes by elastic stretching , Without this leading to an impermissible deformation and thus to an impairment of the connection between pipes 1 - tube plates 3 and housing shell 2. The
Dehnungsausgleichseinrichtung 3, 3.1 ist zudem einfach und ohne große Kosten herstellbar und eignet sich gleichermaßen zur Abdichtung zwischen dem flüssigem und gasförmigen Bereich des Abgaswärmetauschers.Expansion compensation device 3, 3.1 is also easy to produce and without great expense and is equally suitable for sealing between the liquid and gaseous region of the exhaust gas heat exchanger.
Fig. 7 und Fig. 8 zeigen weitere perspektivische Ansichten eines erfindungsgemäßen Wärmetauschers. Der Gehäusemantel 2 weist Kühlmitteleintrittsöffnungen 12 und hier nicht gezeigte Kühlmittelaustrittsöffnungen auf und wird vom Kühlmittel durchströmt, wobei im Falle von Gleichstromkühlern die Kühlmitteleintrittsöffnungen 12 bevorzugt im thermisch hochbeanspruchten Teil, d.h. am Gaseintritt angeordnet sind. Der zusätzliche Wasserverteilkanal in Form des Kühlmitteleintrittsstutzens 6 mit Kühlmittelein- und -austrittsöffnungen 12 ermöglicht somit eine optimierte Einströmung und Verteilung von Kühlmittel in den Wärmetauscher und somit eine bessere Kühlwirkung als dies bei nur einer großen Kühlmitteleinlassöffnung der Fall wäre. Beim Betrieb eines Abgaswärmetauschers werden die Abgasrohre 1 auf der Innenseite vom heißen Abgas durchströmt und auf der Außenseite vom Kühlmittel umströmt. Dieses Kühlmittel umspült auch die Innenseite des Gehäusemantels 2. Die Abgasrohre 1 erreichen somit eine wesentlich höhere Temperatur als der Gehäusemantel 2, wodurch sich die unterschiedlichen Dehnungen zwischen Abgasrohren 1 und Gehäusemantel 2 ergeben. Dies führt zu thermischen Spannungen, d.h. zu Druck bzw. Zugspannungen im Gehäusemantel 2 und den Rohren 1. Die Rohre drücken auf die Rohrböden und verursachen Verformungen oder gar Beschädigungen der Rohr/Boden- oder Rohrboden/Gehäuse- Verbindungen, d.h. der Abgaswärmetauscher kann undicht werden . Fig. 7 and Fig. 8 show further perspective views of a heat exchanger according to the invention. The housing jacket 2 has coolant inlet openings 12 and coolant outlet openings, not shown here, and is flowed through by the coolant, wherein in the case of DC coolers, the coolant inlet openings 12 are preferably arranged in the thermally highly stressed part, ie at the gas inlet. The additional water distribution channel in the form of the coolant inlet nozzle 6 with coolant inlet and -Out openings 12 thus allows an optimized inflow and distribution of coolant in the heat exchanger and thus a better cooling effect than would be the case with only a large coolant inlet opening. When operating an exhaust gas heat exchanger, the exhaust pipes 1 are flowed through on the inside of the hot exhaust gas and flows around on the outside of the coolant. This coolant also flows around the inside of the housing shell 2. The exhaust pipes 1 thus reach a much higher temperature than the housing shell 2, resulting in the different strains between exhaust pipes 1 and housing shell 2. This leads to thermal stresses, ie to pressure or tensile stresses in the housing shell 2 and the tubes 1. The tubes press on the tube sheets and cause deformation or even damage the pipe / floor or tube bottom / housing connections, ie the exhaust gas heat exchanger can leak ,

Claims

Patentansprüche claims
1. Wärmetauscher, insbesondere für ein Kraftfahrzeug, mit einer Mehrzahl parallel zueinander verlaufender Rohre (1), die zur Durchströmung mit einem ersten Medium ausgelegt sind, einem die Rohre (1) umschließenden Gehäusemantel (2), der zur Durchströmung mit einem zweiten Medium ausgelegt ist, wobei die Rohre (1) durch mindestens zwei, voneinander beabstandete Rohrböden (3) gehalten werden, die wiederum mit der Innenwandung (4) des Gehäusemantels (2) verbunden sind, dadurch gekennzeichnet, dass mindestens einer der Rohrböden (3) über ein elastisches, verformbares Formteil .(3.1) mit dem Gehäusemantel (2) verbunden ist, wobei das Formteil (3.1) unterschiedliche thermische Ausdehnungen des Gehäusemantels (2) einerseits und der Rohre (1) andererseits durch Verformung ausgleicht .1. Heat exchanger, in particular for a motor vehicle, with a plurality of mutually parallel tubes (1), which are designed to flow through a first medium, a the tubes (1) enclosing the housing shell (2) designed for flow with a second medium is, wherein the tubes (1) by at least two spaced apart tube sheets (3) are held, which in turn are connected to the inner wall (4) of the housing shell (2), characterized in that at least one of the tube sheets (3) via a (3.1) is connected to the housing shell (2), wherein the molding (3.1) compensates for different thermal expansion of the housing shell (2) on the one hand and the tubes (1) on the other hand by deformation.
2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass der Rohrboden (3) elastisch verformbar ist. 2. Heat exchanger according to claim 1, characterized in that the tube sheet (3) is elastically deformable.
3. Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Formteil (3.1) ein integraler Bestandteil des Rohrbodens (3) ist.3. Heat exchanger according to claim 1 or 2, characterized in that the molded part (3.1) is an integral part of the tube sheet (3).
4. Wärmetauscher nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Formteil (3.1) eine Sicke (10) aufweist.4. Heat exchanger according to one of the preceding claims, characterized in that the molded part (3.1) has a bead (10).
5. Wärmetauscher nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Gehäusemantel (2) mit einem Abstand (L) zu den Rohren (1) angeordnet ist.5. Heat exchanger according to one of the preceding claims, characterized in that the housing jacket (2) with a distance (L) to the tubes (1) is arranged.
6. Wärmetauscher nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Gehäusemantel (2) an den Enden (2.1) des Wärmetauschers im Bereich des Rohrbodens (3) aufgeweitet ist .6. Heat exchanger according to one of the preceding claims, characterized in that the housing jacket (2) at the ends (2.1) of the heat exchanger in the region of the tube bottom (3) is widened.
7. Wärmetauscher nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Gehäusemantel (2) mehrere Eintrittsöffnungen (12) und/oder Austrittsöffnungen für das Kühlmittel aufweist. 7. Heat exchanger according to one of the preceding claims, characterized in that the housing jacket (2) has a plurality of inlet openings (12) and / or outlet openings for the coolant.
PCT/EP2006/007087 2005-08-06 2006-07-19 Heat exchanger WO2007017064A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005037156A DE102005037156A1 (en) 2005-08-06 2005-08-06 heat exchangers
DE102005037156.6 2005-08-06

Publications (1)

Publication Number Publication Date
WO2007017064A1 true WO2007017064A1 (en) 2007-02-15

Family

ID=37025276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/007087 WO2007017064A1 (en) 2005-08-06 2006-07-19 Heat exchanger

Country Status (2)

Country Link
DE (1) DE102005037156A1 (en)
WO (1) WO2007017064A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525609A (en) * 2008-06-26 2011-09-22 ヴァレオ システム テルミク Heat exchanger and its housing
JP2012127312A (en) * 2010-12-17 2012-07-05 Hino Motors Ltd Egr cooler

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2933175B1 (en) 2008-06-26 2014-10-24 Valeo Systemes Thermiques HEAT EXCHANGER HAVING A HEAT EXCHANGE BEAM AND A HOUSING
FR2933176B1 (en) 2008-06-26 2017-12-15 Valeo Systemes Thermiques Branche Thermique Moteur HEAT EXCHANGER HAVING A HEAT EXCHANGE BEAM AND A HOUSING
FR2933177B1 (en) 2008-06-26 2018-05-25 Valeo Systemes Thermiques Branche Thermique Moteur HEAT EXCHANGER AND CARTER FOR THE EXCHANGER
EP2322890A1 (en) * 2009-11-16 2011-05-18 Thermex Ltd. A marine heat exchanger
JP5051212B2 (en) * 2009-12-18 2012-10-17 トヨタ自動車株式会社 Exhaust cooler and exhaust gas recirculation device for internal combustion engine
DE102011018846A1 (en) * 2011-01-19 2012-07-19 GETAS GESELLSCHAFT FüR THERMODYNAMISCHE ANTRIEBSSYSTEME MBH Axial piston motor and method for operating an axial piston motor
ES2409534B1 (en) * 2011-12-22 2014-09-02 Valeo Térmico, S. A. HEAT EXCHANGER FOR GASES, ESPECIALLY OF EXHAUST GASES OF AN ENGINE
DE102013100885B4 (en) * 2013-01-29 2020-02-27 Benteler Automobiltechnik Gmbh Heat exchangers for a motor vehicle
DE102016200634A1 (en) * 2016-01-19 2017-07-20 Mahle International Gmbh Heat exchanger
CN207815653U (en) * 2017-06-28 2018-09-04 珠海格力电器股份有限公司 Air port component and air conditioner
FR3073613A1 (en) * 2017-06-30 2019-05-17 Valeo Systemes Thermiques COLLECTOR PLATE, COLLECTOR BOX, AND THERMAL EXCHANGER CORRESPONDING
EP3454001B1 (en) * 2017-09-06 2020-05-06 Borgwarner Emissions Systems Spain, S.L.U. Compact heat exchanger
CN112664955A (en) * 2020-12-21 2021-04-16 湖南长科诚享石化科技有限公司 System for be used for handling solid sediment of oiliness

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB763896A (en) * 1954-04-27 1956-12-19 Wilfried Strik Strikfeldt Improvements in heat exchangers
FR1228182A (en) * 1958-03-05 1960-08-26 Superheater Co Ltd Improvements to tubular heat exchangers
DE2224211A1 (en) * 1972-05-18 1973-11-29 Scheer & Cie C F Movement compensating disc - between two fluid conducting components esp in heat exchanger
DE2457873A1 (en) * 1974-11-29 1975-06-12 Topsoe Haldor As HEAT EXCHANGER
US4434840A (en) * 1981-07-24 1984-03-06 O'donnell & Associates Inc. Expansion joint for reactor or heat exchanger
DE3408412A1 (en) * 1983-06-10 1984-12-13 VEB Kombinat Luft- und Kältetechnik, DDR 8080 Dresden Terminal plate for shell-and-tube heat exchangers
WO1991015728A1 (en) * 1988-10-05 1991-10-17 Sune Malm Unloaded heat exchanger tube sheet
DE10224263A1 (en) * 2002-05-31 2003-12-11 Behr Gmbh & Co Exhaust heat exchanger, particularly for motor vehicles with an exhaust gas return system, comprises a second tube plate which is constituted as an elastic movable bearing for the tube ends
WO2004107491A1 (en) * 2003-06-03 2004-12-09 Alpps Fuel Cell Systems Gmbh Microreactor
WO2005008055A1 (en) * 2003-07-18 2005-01-27 Hino Motors, Ltd. Egr cooler

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB763896A (en) * 1954-04-27 1956-12-19 Wilfried Strik Strikfeldt Improvements in heat exchangers
FR1228182A (en) * 1958-03-05 1960-08-26 Superheater Co Ltd Improvements to tubular heat exchangers
DE2224211A1 (en) * 1972-05-18 1973-11-29 Scheer & Cie C F Movement compensating disc - between two fluid conducting components esp in heat exchanger
DE2457873A1 (en) * 1974-11-29 1975-06-12 Topsoe Haldor As HEAT EXCHANGER
US4434840A (en) * 1981-07-24 1984-03-06 O'donnell & Associates Inc. Expansion joint for reactor or heat exchanger
DE3408412A1 (en) * 1983-06-10 1984-12-13 VEB Kombinat Luft- und Kältetechnik, DDR 8080 Dresden Terminal plate for shell-and-tube heat exchangers
WO1991015728A1 (en) * 1988-10-05 1991-10-17 Sune Malm Unloaded heat exchanger tube sheet
DE10224263A1 (en) * 2002-05-31 2003-12-11 Behr Gmbh & Co Exhaust heat exchanger, particularly for motor vehicles with an exhaust gas return system, comprises a second tube plate which is constituted as an elastic movable bearing for the tube ends
WO2004107491A1 (en) * 2003-06-03 2004-12-09 Alpps Fuel Cell Systems Gmbh Microreactor
WO2005008055A1 (en) * 2003-07-18 2005-01-27 Hino Motors, Ltd. Egr cooler
EP1647697A1 (en) * 2003-07-18 2006-04-19 Hino Motors, Ltd. Egr cooler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525609A (en) * 2008-06-26 2011-09-22 ヴァレオ システム テルミク Heat exchanger and its housing
JP2012127312A (en) * 2010-12-17 2012-07-05 Hino Motors Ltd Egr cooler

Also Published As

Publication number Publication date
DE102005037156A1 (en) 2007-02-08

Similar Documents

Publication Publication Date Title
WO2007017064A1 (en) Heat exchanger
EP1816425B1 (en) Exhaust gas heat exchanger in an exhaust gas recirculation assembly
EP1474645B1 (en) Waste gas heat exchanger
DE102006028578B4 (en) Heat exchangers, in particular exhaust gas heat exchangers
EP1903207A1 (en) Heat exchanger, in particular exhaust gas heat exchanger
DE112008003077T5 (en) Heat exchanger with connector reinforcement projection
DE3039787A1 (en) HEAT EXCHANGER
EP3585509A1 (en) Heat exchanger and reactor
DE102010022225A1 (en) Heat transfer assembly, heat exchanger and manufacturing process
DE2457873A1 (en) HEAT EXCHANGER
EP3022510A1 (en) Heat exchanger having an elastic element
EP2700795B1 (en) Heat transfer assembly
DE112017000586T5 (en) STRUCTURELY INTEGRAL HEAT EXCHANGER IN A PLASTIC HOUSING
DE102010021334A1 (en) Method for producing a heat exchanger and heat exchanger
DE102007048824B4 (en) Heat exchanger, in particular for exhaust gas cooling
EP2795219B1 (en) Modular heat exchanger
WO2011045152A2 (en) Plate heat exchanger
DE60217492T2 (en) Plate heat exchanger
EP3977533B1 (en) Fluid-temperature-controllable traction battery and battery housing assembly having a feed-through for a heat transmission device
DE102015007975B4 (en) Coolant cooler for cooling a coolant and method for producing a coolant cooler
DE102011088635A1 (en) Heat exchanger i.e. refrigerant evaporator, for evaporating refrigerant in air-conditioning apparatus of motor car, has inflow pipe, and fluid gap interrupting connecting elements at inner and outer pipes that are bonded to each other
DE102011103635A1 (en) Heat exchanger
EP3070426B1 (en) Exhaust gas heat transfer device
DE102016207192A1 (en) Flat tube for a heat exchanger
DE10138626A1 (en) Device for the entry of hot gas into a heating surface tube of a waste heat boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06762688

Country of ref document: EP

Kind code of ref document: A1