WO2007013540A1 - Mask blank fabrication method and exposure mask fabrication method - Google Patents
Mask blank fabrication method and exposure mask fabrication method Download PDFInfo
- Publication number
- WO2007013540A1 WO2007013540A1 PCT/JP2006/314832 JP2006314832W WO2007013540A1 WO 2007013540 A1 WO2007013540 A1 WO 2007013540A1 JP 2006314832 W JP2006314832 W JP 2006314832W WO 2007013540 A1 WO2007013540 A1 WO 2007013540A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resist
- substrate
- resist solution
- dropped
- mask
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/16—Coating processes; Apparatus therefor
- G03F7/162—Coating on a rotating support, e.g. using a whirler or a spinner
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/68—Preparation processes not covered by groups G03F1/20 - G03F1/50
- G03F1/76—Patterning of masks by imaging
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/16—Coating processes; Apparatus therefor
- G03F7/168—Finishing the coated layer, e.g. drying, baking, soaking
Definitions
- the present invention relates to a method for manufacturing a mask blank having a resist coating process in which a resist solution is uniformly spin-coated on a rectangular substrate and a resist film is formed with reduced in-plane variation in resist sensitivity, and
- This mask blank force It is related with the manufacturing method of the mask for exposure which manufactures the mask for exposure, Specifically, It is related with the manufacturing method of the mask blank for semiconductor device manufacture, and the manufacturing method of the exposure mask for semiconductor device manufacture.
- the resist spin coating method described in Patent Document 2 attempts to reduce coating unevenness by dropping the coating solution so that the coating solution draws an annular locus on the surface of the object to be coated.
- the line width dimension (CD: Critical Dimen- sion) of the pattern line in the mask pattern of the exposure mask is the target of interest.
- the “in-plane CD variation”, which varies in-plane with respect to the line width dimension (CD) of the line, is 5. lnm for the line and space pattern and 3.6 nm for the isolated line pattern. This is becoming difficult to achieve with exposure mask manufacturing technology.
- the object of the present invention has been made in consideration of the above-mentioned circumstances, and suppresses in-plane CD variation in the mask pattern of the exposure mask based on the sensitivity difference between the vicinity of the center and the periphery of the mask blank.
- a mask blank manufacturing method capable of realizing an exposure mask capable of meeting a request for pattern miniaturization of a transfer target, for example, a request for adapting to a half pitch 65 nm node in a semiconductor device, and the mask
- An object of the present invention is to provide a method of manufacturing an exposure mask that uses a blank to manufacture an exposure mask. Means for solving the problem
- the resist solution when the resist solution is dropped on the substrate surface by the nozzle means, the distance from the center of rotation of the substrate below the resist droplet, The resist solution is dropped in the shape of a slant by adjusting the relative movement speed of the substrate and the nozzle.
- a mask blank manufacturing method that works on the fifth means is a mask blank manufacturing method including a resist coating process in which a resist solution is formed on a rectangular substrate to form a resist film, and the resist coating process includes: A dropping step of spreading a resist solution on the surface of the substrate, a dropping step; a uniforming step of uniformly spreading the dropped resist solution over the entire surface of the substrate to form a resist film having a uniform thickness; A drying process for drying the resist film formed to a desired film thickness.
- the resist liquid is applied to the substrate when a predetermined amount or more of the resist liquid capable of obtaining the required film thickness is dropped by the nozzle force.
- the distance from the substrate rotation center at the position below the resist droplet and the number of rotations of the substrate are adjusted in the following range so that the sensitivity of the resist is suppressed compared to other positions at the position where it is dropped on the surface. And on It is characterized in that dropped on the surface of the substrate by dispersing Les resist solution.
- the distance from the center of rotation of the substrate below the resist droplet is 1 cm or more and 5 cm or less.
- the rotation speed of the plate shall be 0.5 rpm or more and 50 rpm or less.
- a method for manufacturing a mask blank that works on the sixth means is characterized in that, in the fourth or fifth means, the resist solution is dropped onto the substrate surface in the form of a slanting ball.
- the method for producing a mask blank that works on the seventh means is that the dropping step includes a step of applying a resist solution of a predetermined amount or more that can obtain a required film thickness from the nozzle to the substrate. When dripping onto the surface, the dripping position is changed.
- the mask blank manufacturing method that works on the eighth means is that the dropping of the resist solution is performed while rotating the substrate or around the center of the surface of the substrate.
- the resist solution is dropped at a position eccentric to the center of the substrate surface while moving the nozzle.
- the resist solution is dropped by using the resist solution dropped on the surface of the substrate as the center of the surface. It is characterized by including the process of extending to a maximum.
- a method for manufacturing a mask blank that works on the tenth means includes the step of spreading the resist liquid to the center of the surface of the substrate in addition to the dropping of the resist liquid in the ninth means. After the completion of the dropping of the resist liquid force, the resist liquid force is a step of waiting until it spreads to the center of the surface.
- the method for producing a mask blank that works on the eleventh means includes a nozzle that drops a resist solution during the rotation of the substrate, and the center of the surface. The center force on the surface of the substrate on a straight line passing through is moved to an eccentric position.
- the dripping step in the method of manufacturing the mask blank, which acts on the twelfth means is a straight line passing through the center of the surface through a nozzle for dropping the resist solution while the substrate is rotating.
- the eccentric positional force of the surface of the substrate is moved toward the center of the surface of the substrate.
- a method for manufacturing a mask blank that is applied to the thirteenth means is the method according to the eleventh means, wherein the dropping step is performed at a position where the center of the surface of the substrate or the central force is decentered during the rotation of the substrate.
- the nozzle for dropping the resist solution on the device is moved outward on a straight line passing through the center of the surface.
- a mask blank manufacturing method which is effective for the fourteenth means is characterized in that, in any of the first to thirteenth means, the resist blank is made of the chemically amplified resist.
- the substrate is a substrate with a thin film in which a thin film serving as a mask pattern is formed on the substrate. It is characterized by this.
- the thin film is made of a material force containing chromium.
- a method for manufacturing an exposure mask that is applied to the seventeenth means patterns a resist film of the mask blank manufactured by the mask blank manufacturing method according to any one of the first to sixteenth means. Then, a resist pattern is formed, and a mask pattern is formed using this resist pattern as a mask to manufacture an exposure mask.
- the resist liquid is applied to an exposure mask provided with a mask pattern formed using the resist pattern formed by exposure and development processing on the resist film of the mask blank produced by the above manufacturing method as a mask.
- the line width dimension (CD) of the pattern line of the mask pattern varies in the plane due to variations in the sensitivity of the resist film at the dropping position of the film and its vicinity and other positions. It can suppress “in-plane CD variation”. As a result, it is possible to realize an exposure mask that can meet the demand for pattern miniaturization of a transfer target (for example, generation after a half pitch 65 nm node in a semiconductor device).
- the dropping position force of a predetermined amount or more of the resist solution that can obtain the required film thickness is changed on the surface of the substrate. Can be dispersed and dropped onto the substrate surface, so that the resist liquid can be prevented from being dropped on the substrate surface, and in-plane CD variation in the mask pattern of the exposure mask can be suppressed.
- the dropping step force includes the step of spreading the resist solution dropped onto the surface of the substrate to the center of the surface, so that in the homogenizing step of rotating the substrate, The resist solution can be spread uniformly over the entire surface of the substrate, and a resist film with good in-plane film thickness uniformity can be formed.
- the central force on the surface of the substrate is dropped on the straight line passing through the center of the surface during rotation of the substrate. Since it is moved, the resist solution dripped onto the surface of the substrate can be spread quickly to the center of this surface, and the resist solution dripped onto the surface of the substrate can be spread quickly and uniformly outward of the substrate surface. be able to.
- a nozzle for dropping the resist solution at a position eccentric from the center of the surface of the substrate during rotation of the substrate is applied on a straight line passing through the center of the surface. Since the substrate is moved in the central direction, the resist solution dropped on the surface of the substrate can be quickly spread to the center of the surface.
- the chemically amplified resist has a low viscosity and is easily dried, but even with this chemically amplified resist, the resist solution dripping traces are formed on the surface of the substrate.
- Generation, chemical amplification at the position below and near the resist droplet, and other positions It is possible to suppress concentration of components constituting the resist solution affecting the resist sensitivity of the mold resist at the dropping position. Therefore, in-plane CD variation in the mask pattern of the exposure mask due to variation in sensitivity of the resist film in the mask blank can be suppressed.
- FIG. 1 is a side sectional view showing a spin coating apparatus for performing a resist coating process in an embodiment of a mask blank manufacturing method according to the present invention.
- FIG. 4 (A) is a cross-sectional view showing a mask blank manufactured as shown in FIG.
- FIG. 4B is a cross-sectional view showing an exposure mask in which the mask blank force of FIG. 4A is also manufactured.
- the thin film 14 also changes optically with respect to exposure light (eg, ArF excimer laser). Specifically, a light-shielding film that shields exposure light and a phase shift film that changes the phase of exposure light (this phase shift film also includes a black-tone film having a light-shielding function and a phase shift function) Included).
- exposure light eg, ArF excimer laser
- a light-shielding film that shields exposure light and a phase shift film that changes the phase of exposure light (this phase shift film also includes a black-tone film having a light-shielding function and a phase shift function) Included).
- the thin film 14 is not limited to a single layer and may be laminated.
- the laminated film of the thin film 14 for example, a laminated film of a light shielding film or a laminated film in which a phase shift film and a light shielding film are laminated may be used.
- the mask blank 10 is a transmissive mask blank or a reflective mask blank.
- a transmissive mask blank a translucent substrate was used as the substrate 11, and a mask blank having a light shielding film formed as the thin film 14 and a phase shift film (including a halftone film) formed as the thin film 14 were formed.
- Phase shift mask blank In the case of a reflective mask blank, a substrate having a low thermal expansion coefficient is used as the substrate 11, and the mask blank 10 has a light reflecting multilayer film and a light absorber film serving as a mask pattern sequentially on the substrate 11. It is formed. These light reflecting multilayer film and light absorber film are the thin film 14.
- the above-mentioned constituent materials are included in the mask blank surface. Due to the in-plane variation, the effect of the present invention is most obtained in a resist material in which in-plane CD variation is likely to occur.
- the number of rotations when the thin film-coated substrate 15 is rotated is set by appropriately adjusting the force such as the final discharge amount and discharge speed of the resist solution 26 and the dropping position of the resist solution 26.
- the dropping position of the resist solution 26 is preferably such that the distance (eccentric position Q) from the substrate rotation center 0 at the position below the resist droplet is 1 cm or more and 5 cm or less.
- the pattern line of the mask pattern 13 can be prevented. It is possible to suppress the “in-plane CD variation” in which the line width dimension (CD) of 28 (Fig. 4 (B)) varies within the plane with respect to the target target line width dimension (CD). As a result, it is possible to realize an exposure mask 18 that can meet the demand for pattern miniaturization of a transfer target (for example, a half pitch 65 nm node in a semiconductor device).
- a resist solution was spin-coated by a resist coating process to form a resist film on the surface of the thin film.
- Each condition in the resist coating process is as follows.
- the line width dimension of this mask pattern which is 13 X 13 in the exposure mask plane, is measured with the SEM, and the line width dimension (CD) of the pattern line in the mask pattern of the exposure mask is “In-plane CD variation”, which varies within the plane of the mask, was measured.
- in-plane CD variation of 4 nm was achieved at 3 ⁇ , which is a demand for next-generation semiconductor device pattern miniaturization (norf pitch 65 nm node) 5. lnm (in the case of line and space no-turn) ) was satisfied.
- the in-plane CD variation (3 ⁇ ) of the obtained exposure mask was 2 nm.
- This in-plane CD variation (3 ⁇ ) of 2 nm was able to satisfy 3.6 nm (in the case of an isolated line pattern), which is a request for pattern miniaturization of semiconductor devices in the next generation (node pitch 65 nm node). This is thought to be due to the fact that the polymer, PAG, and Quencher's constituent materials that make up the chemically amplified resist are uniformly contained in the mask blank surface.
- the in-plane CD variation (3 ⁇ ) of the exposure mask produced with this mask blank force was 6.8 nm.
- This in-plane CD variation (3 ⁇ ) 6.8 nm does not satisfy the demand for next-generation semiconductor device pattern miniaturization (norf pitch 65 nm node) 5. lnm (in the case of a line-and-space pattern). It ’s nasty.
- the polymer, PAG, and quencher constituent materials that make up the chemically amplified resist with a high resist solution pressure on the substrate under the resist droplets are not evenly contained in the mask blank surface and vary. Having one of these is considered to be one factor.
- a mask blank was produced in the same manner as in Example 1 except that the resist dropping position was set to 1 cm (Example 3) and 5 cm (Example 4) from the center of the surface of the substrate with the thin film. This mask blank force exposure mask was produced.
- the average film thickness and in-plane film thickness uniformity of the resist film in the obtained mask blank were almost the same as those in Example 1.
- the in-plane CD variation (3 ⁇ ) of the exposure mask produced with this mask blank force was 5 nm (Example 3) and 4.7 nm (Example 4). This in-plane CD variation (3 ⁇ ) satisfied 5.
- lnm in the case of a line and space pattern, which is a demand for pattern miniaturization of semiconductor devices in the next generation (a node pitch of 65 nm).
- Example 4 the number of rotations of the substrate at the time of dropping the resist was 0.5 rpm (Example 5), and in Example 3 above, the number of rotations of the substrate at the time of dropping the resist was 50 rpm (Example 6).
- a mask blank was produced in the same manner as in Examples 3 and 4, and an exposure mask was produced with this mask blank force.
- the in-plane CD variation (3 ⁇ ) of the exposure mask produced with this mask blank force was 4.8 nm (Example 5) and 5 nm (Example 6). This in-plane CD variation (3 ⁇ ) satisfied 5. lnm (in the case of a line and space pattern), which is a demand for pattern miniaturization of semiconductor devices in the next generation (a node pitch of 65 nm).
- FIG. 5 is a plan view showing a state of the resist solution dripping on the substrate surface in the dropping step in the mask blank manufacturing method according to the present invention, in which (A) shows the resist solution at the start of the dropping of the resist solution.
- FIG. 5B is a plan view showing a dropping state and a dropping trajectory of the resist solution, and
- FIG. 5B is a plan view showing a dropping state of the resist solution at the time when the resist liquid is dropped after the completion of dropping.
- (C) is a plan view showing a state in which a resist pool is formed in the vicinity of the center of the substrate after the resist solution has been dropped onto the substrate surface.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Materials For Photolithography (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
It is possible to suppress CD irregularities in a plane in a mask pattern of an exposure mask based on sensitivity difference between the center portion and the peripheral portion of a mask blank, so as to match, for example, a half pitch 65 nm node in a semiconductor device. When resist liquid is dropped from a nozzle onto a substrate surface, a distance of substrate rotation center where the resist liquid has dropped and the rpm of the substrate are adjusted in the following range so as to suppress resist sensitivity increase at the position where the resist liquid has dropped on the substrate surface as compared to the other positions. The resist liquid which has dropped is spread to form a resist pool at the substrate central portion. The resist pool is spread to the peripheral portion of the substrate surface by centrifugal force and then dried to form a resist film.
Description
明 細 書 Specification
マスクブランクの製造方法及び露光用マスクの製造方法 Mask blank manufacturing method and exposure mask manufacturing method
技術分野 Technical field
[0001] 本発明は、四角形状の基板上にレジスト液を均一に回転塗布し、かつレジスト感度 の面内ばらつきを抑えたレジスト膜を形成するレジスト塗布工程を有するマスクブラン クの製造方法、及びこのマスクブランク力 露光用マスクを製造する露光用マスクの 製造方法に関し、特に、半導体デバイス製造用のマスクブランクの製造方法、及び半 導体デバイス製造用の露光用マスクの製造方法に関する。 背景技術 [0001] The present invention relates to a method for manufacturing a mask blank having a resist coating process in which a resist solution is uniformly spin-coated on a rectangular substrate and a resist film is formed with reduced in-plane variation in resist sensitivity, and This mask blank force It is related with the manufacturing method of the mask for exposure which manufactures the mask for exposure, Specifically, It is related with the manufacturing method of the mask blank for semiconductor device manufacture, and the manufacturing method of the exposure mask for semiconductor device manufacture. Background art
[0002] 従来、四角形状の基板上、またはこの基板上に成膜された薄膜を有する薄膜付き 基板上にレジスト膜を形成する場合、基板を回転させてレジスト液を塗布する回転塗 布装置を利用したレジスト回転塗布方法が一般に用いられている。この回転塗布方 法の代表例として、特に、基板四隅に厚膜が形成されることなく均一なレジスト膜を形 成するための、特許文献 1に記載のレジスト回転塗布方法が知られている。 [0002] Conventionally, when a resist film is formed on a rectangular substrate or on a substrate with a thin film having a thin film formed on the substrate, a rotary coating apparatus that rotates the substrate and applies a resist solution is provided. The resist spin coating method used is generally used. As a typical example of this spin coating method, a resist spin coating method described in Patent Document 1 for forming a uniform resist film without forming thick films at four corners of the substrate is known.
[0003] このレジスト回転塗布方法は、基板の回転数と回転時間との積が、例えば 24000 (r pm*秒)以下になるように選定すると共に、回転時間を 20秒以下に選定することによ り基板回転数及び基板回転時間を設定し、レジスト液を基板に滴下した後、上述の ように設定した基板回転数で基板回転時間だけ基板を回転させて、レジスト膜の膜 厚を均一化させる均一化工程を実施し、その後、この均一化工程の基板回転数より も低い回転数で基板を回転させて、均一化工程により得られたレジスト膜の膜厚の均 一性を保持しながら当該レジスト膜を乾燥させる乾燥工程を実施するものである。 また、レジスト液の塗布ムラを防止する均一なレジスト塗布方法として、特許文献 2 に記載のレジスト回転塗布方法が知られて 、る。この特許文献 2に記載のレジスト塗 布方法は、塗布液が被塗布物表面上で環状の軌跡を描くように塗布液を滴下するこ とにより、塗布ムラを低減しょうとするものである。 In this resist spin coating method, the product of the number of rotations and the rotation time of the substrate is selected so as to be, for example, 24000 (r pm * second) or less, and the rotation time is selected to be 20 seconds or less. After setting the substrate rotation speed and substrate rotation time and dropping the resist solution onto the substrate, the substrate is rotated for the substrate rotation time at the substrate rotation speed set as described above, and the film thickness of the resist film is made uniform. Then, the substrate is rotated at a rotation speed lower than the substrate rotation speed of this homogenization process, and the uniformity of the resist film thickness obtained by the homogenization process is maintained. A drying process for drying the resist film is performed. Also, as a uniform resist coating method for preventing uneven coating of the resist solution, the resist spin coating method described in Patent Document 2 is known. The resist coating method described in Patent Document 2 attempts to reduce coating unevenness by dropping the coating solution so that the coating solution draws an annular locus on the surface of the object to be coated.
特許文献 1 :特公平 4-29215号公報 Patent Document 1: Japanese Patent Publication No. 4-29215
特許文献 2:特開昭 57- 130570号公報
発明の開示 Patent Document 2: JP-A-57-130570 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0004] ところが、近年では、半導体デバイスなどの被転写体のパターン微細化の要請が高 くなり、光リソグラフィー技術において使用される露光光は ArFエキシマレーザや F2 エキシマレーザーへと短波長化が進み、また、露光装置に用いられるレンズの焦点 距離も短くなつてきている。更に、光リソグラフィー技術において使用される露光用マ スクや、この露光用マスクを製造するマスクブランクにおいても、上述の露光光の露 光波長に対して光を遮光する遮光膜や、位相をシフトさせる位相シフト膜の開発が急 速に行われ、様々な膜材料が提案されている。 However, in recent years, there has been a growing demand for pattern miniaturization of transferred objects such as semiconductor devices, and exposure light used in photolithography technology has been shortened to ArF excimer lasers and F2 excimer lasers. In addition, the focal length of lenses used in exposure apparatuses is becoming shorter. Furthermore, in an exposure mask used in photolithography technology and a mask blank for manufacturing the exposure mask, a light-shielding film that blocks light with respect to the exposure wavelength of the exposure light described above, and a phase shift. Phase shift films are rapidly being developed, and various film materials have been proposed.
[0005] このような光リソグラフィー技術の革新の流れは今後も継続されるため、露光用マス クゃマスクブランクに要求される精度も年々厳しくなつている。例えば、被転写体とし ての半導体デバイスのパターン微細化の要請であるハーフピッチ 65nmノードでは、 露光用マスクのマスクパターンにおけるパターンラインの線幅寸法(CD: Critical Dim ension)が、目標とするターゲットラインの線幅寸法 (CD)に対して面内でばらつく「面 内 CDばらつき」は、ラインアンドスペースパターンで 5. lnm、孤立ラインパターンで 3. 6nmとされ、現状のマスクブランクの製造技術や露光用マスクの製造技術では、 その達成が困難になりつつある。 [0005] Since the trend of such innovations in optical lithography technology will continue, the accuracy required for exposure masks and mask blanks is becoming stricter year by year. For example, at a half-pitch 65nm node, which is a demand for pattern miniaturization of semiconductor devices as the transfer target, the line width dimension (CD: Critical Dimen- sion) of the pattern line in the mask pattern of the exposure mask is the target of interest. The “in-plane CD variation”, which varies in-plane with respect to the line width dimension (CD) of the line, is 5. lnm for the line and space pattern and 3.6 nm for the isolated line pattern. This is becoming difficult to achieve with exposure mask manufacturing technology.
マスクブランクの製造プロセスにおける「面内 CDばらつき」に起因する要因としては 、基板又は薄膜付き基板上に形成されたレジスト膜厚の面内均一性、レジスト膜形成 後のプリベータ処理温度の面内均一性などが挙げられる。また、露光用マスクの製造 プロセスにおける「面内 CDばらつき」に起因する要因としては、露光後ベータ処理温 度の面内均一性、現像処理の面内均一性などが挙げられる。 Factors attributable to “in-plane CD variation” in the mask blank manufacturing process include in-plane uniformity of the resist film thickness formed on the substrate or the substrate with the thin film, and in-plane uniformity of the pre-beta treatment temperature after the resist film formation. Sex and so on. Factors arising from “in-plane CD variation” in the exposure mask manufacturing process include in-plane uniformity of post-exposure beta processing temperature and in-plane uniformity of development processing.
尚、上記の「面内 CDばらつき」は、面内均一性評価用のテストパターンを用いて、 レジスト膜に対して描画、現像処理してレジストパターンを形成した後、測長用 SEMな どの線幅寸法測定装置を用いて、基板中央力 外周までの面内の決められた複数 の箇所でパターン寸法の測定をして評価される。 Note that the above “in-plane CD variation” refers to a line such as a SEM for length measurement after a resist pattern is formed by drawing and developing the resist film using a test pattern for in-plane uniformity evaluation. Using a width dimension measuring device, pattern dimensions are measured and evaluated at a plurality of predetermined locations in the plane up to the outer periphery of the central force of the substrate.
[0006] 上記「面内 CDばらつき」に起因するマスクブランク製造プロセス、露光用マスク製 造プロセスにおける各面内均一性を向上させてもなお、「面内 CDばらつき」が改善さ
れないという問題が発生した。この問題は、特に、近年、半導体デバイスのパターン 微細化のために、レジスト膜の高感度化及び高解像度化が必要とされ、それらの要 求を兼ね備えたィ匕学増幅型レジスト膜が使用されるようになってきて、問題が顕著に なった。 [0006] Even if the in-plane uniformity in the mask blank manufacturing process and the exposure mask manufacturing process due to the above "in-plane CD variation" is improved, the "in-plane CD variation" is still improved. The problem of not being able to occur. In particular, in recent years, in order to miniaturize the pattern of semiconductor devices, it is necessary to increase the sensitivity and resolution of resist films, and the use of chemical amplification resist films that meet these requirements has been used. The problem became more prominent.
上記の評価手法により面内 CDばらつきの傾向を観察したところ、基板の中央位置 、即ち、レジスト液が基板に滴下した位置において CDがオーバー、即ち、高感度化 になり、基板外周部の CDがアンダー、即ち、低感度化になっていることが確認できた これは、化学増幅型レジストは、一般にポリマー(Polymer)と PAG (Photo Acid Generator)とクェンチヤ一(Quencher)を基本構成となって!/、るが、化学増幅型レ ジストをマスクブランク上に形成する際、特に、化学増幅型レジスト液を基板に滴下す る際、基板が回転したとしても、ある構成成分が中央付近に留まりやすくなる状況が 発生し、マスクブランクの中央付近と、外周部とで、レジスト膜の構成物質の量のばら つきが発生し、それが原因で、マスクブランク面内の基板中央付近と外周部とで感度 ばらつきが生じ、マスクブランク面内の CDばらつきに影響して、被転写体のパターン 微細化の要請にこたえることが難しいことを突き止めた。 When the tendency of in-plane CD variation was observed by the above evaluation method, the CD was over at the center position of the substrate, that is, the position where the resist solution dropped on the substrate, that is, the sensitivity was increased, and the CD on the outer periphery of the substrate was It was confirmed that under-sensitivity, that is, low sensitivity. This is because chemically amplified resists generally consist of a polymer, PAG (Photo Acid Generator) and Quencher! However, when a chemically amplified resist is formed on a mask blank, especially when a chemically amplified resist solution is dropped on the substrate, certain components tend to stay near the center even if the substrate rotates. As a result, a variation in the amount of the constituent material of the resist film occurs near the center of the mask blank and at the outer periphery, and this causes a difference between the substrate center and the outer periphery in the mask blank surface. Feeling Variations occur, affecting the CD variation in the mask blank surface was found that it is difficult to meet the demand for fine patterns of the transfer member.
[0007] 本発明の目的は、上述の事情を考慮してなされたものであり、マスクブランクの中央 付近と外周付近の感度相違に基づく露光用マスクのマスクパターンにおける面内 C Dばらつき等を抑制して、被転写体のパターン微細化の要請、例えば、半導体デバ イスにおけるハーフピッチ 65nmノードに適合できるというような要請に応えることがで きる露光用マスクを実現できるマスクブランクの製造方法、及びこのマスクブランクを 用 ヽて露光用マスクを製造する露光用マスクの製造方法を提供することにある。 課題を解決するための手段 The object of the present invention has been made in consideration of the above-mentioned circumstances, and suppresses in-plane CD variation in the mask pattern of the exposure mask based on the sensitivity difference between the vicinity of the center and the periphery of the mask blank. Thus, a mask blank manufacturing method capable of realizing an exposure mask capable of meeting a request for pattern miniaturization of a transfer target, for example, a request for adapting to a half pitch 65 nm node in a semiconductor device, and the mask An object of the present invention is to provide a method of manufacturing an exposure mask that uses a blank to manufacture an exposure mask. Means for solving the problem
[0008] 上述の課題を解決するための手段として、 [0008] As means for solving the above problems,
第 1の手段に力かるマスクブランクの製造方法は、レジスト液を基板表面に滴下す る際、基板表面におけるレジスト液の滴下位置が異なった位置になるように勾玉状に 滴下した後、この滴下したレジスト液を広がらせて基板中央近傍にレジスト溜りを形成 し、このレジスト溜りを遠心力によって基板表面の周辺部に拡散させ、その後、乾燥さ
せてレジスト膜を形成することを特徴とするものである。 In the mask blank manufacturing method that works on the first means, when the resist solution is dropped on the substrate surface, the resist solution is dropped on the substrate surface so that the dropping position of the resist solution is different. The resist solution is spread to form a resist pool near the center of the substrate. This resist pool is diffused to the periphery of the substrate surface by centrifugal force and then dried. Thus, a resist film is formed.
第 2の手段に力かるマスクブランクの製造方法は、第 1の手段において、上記レジス ト液の滴下位置が時間の経過と共に異なった位置になるように、上記基板とレジスト 液を滴下するノズルを相対的に移動させることを特徴とするものである。 A mask blank manufacturing method that works on the second means is the first means in which a nozzle for dropping the substrate and the resist solution is provided so that the resist solution dropping position is different with time. It is characterized by relatively moving.
第 3の手段に力かるマスクブランクの製造方法は、第 1又は第 2の手段において、ノ ズルカゝらレジスト液を基板表面に滴下する際、レジスト液滴下位置の基板回転中心 からの距離と、基板とノズルの相対移動速度を調整して、勾玉状にレジスト液を滴下 することを特徴とするものである。 According to the first or second means, when the resist solution is dropped on the substrate surface by the nozzle means, the distance from the center of rotation of the substrate below the resist droplet, The resist solution is dropped in the shape of a slant by adjusting the relative movement speed of the substrate and the nozzle.
第 4の手段に力かるマスクブランクの製造方法は、ノズル力 レジスト液を基板表面 に滴下する際、レジスト液が基板表面に滴下した位置にぉ 、て他の位置と比べてレ ジストの高感度化を抑制するように、レジスト液滴下位置の基板回転中心からの距離 と、基板の回転数を以下の範囲で調整してレジスト液を滴下し、この滴下したレジスト 液を広がらせて基板中央部近傍にレジスト溜りを形成し、このレジスト溜りを遠心力に よって基板表面の周辺部に拡散させ、その後、乾燥させてレジスト膜を形成すること を特徴とするものである。 The mask blank manufacturing method that works as a fourth means is that the nozzle force When the resist solution is dropped on the substrate surface, the resist solution is more sensitive than the other locations at the position where the resist solution is dropped on the substrate surface. The resist solution is dropped by adjusting the distance from the substrate rotation center at the position below the resist droplet and the rotation speed of the substrate within the following range so as to suppress the formation of the resist droplet. A resist pool is formed in the vicinity, the resist pool is diffused to the peripheral portion of the substrate surface by centrifugal force, and then dried to form a resist film.
但し、レジスト液滴下位置の基板回転中心からの距離は、 1cm以上 5cm以下、基 板の回転数は、 0. 5rpm以上 50rpm以下とする。 However, the distance from the substrate rotation center at the position below the resist droplet is 1 cm to 5 cm, and the rotation speed of the substrate is 0.5 rpm to 50 rpm.
第 5の手段に力かるマスクブランクの製造方法は、四角形状の基板上にレジスト液 を塗布してレジスト膜を形成するレジスト塗布工程を有するマスクブランクの製造方法 であって、上記レジスト塗布工程は、上記基板の表面にレジスト液を滴下して広げる 滴下工程と、滴下されたレジスト液を上記基板表面の全面に均一に広げて、均一な 膜厚のレジスト膜を形成する均一化工程と、均一な膜厚に形成されたレジスト膜を乾 燥する乾燥工程とを有し、上記滴下工程は、必要な膜厚が得られる所定量以上のレ ジスト液をノズル力 滴下する際、レジスト液が基板表面に滴下した位置にぉ 、て他 の位置と比べてレジストの高感度化を抑制するように、レジスト液滴下位置の基板回 転中心からの距離と、基板の回転数を以下の範囲で調整して、上記基板の表面にレ ジスト液を分散して滴下することを特徴とするものである。 A mask blank manufacturing method that works on the fifth means is a mask blank manufacturing method including a resist coating process in which a resist solution is formed on a rectangular substrate to form a resist film, and the resist coating process includes: A dropping step of spreading a resist solution on the surface of the substrate, a dropping step; a uniforming step of uniformly spreading the dropped resist solution over the entire surface of the substrate to form a resist film having a uniform thickness; A drying process for drying the resist film formed to a desired film thickness. In the dropping process, the resist liquid is applied to the substrate when a predetermined amount or more of the resist liquid capable of obtaining the required film thickness is dropped by the nozzle force. The distance from the substrate rotation center at the position below the resist droplet and the number of rotations of the substrate are adjusted in the following range so that the sensitivity of the resist is suppressed compared to other positions at the position where it is dropped on the surface. And on It is characterized in that dropped on the surface of the substrate by dispersing Les resist solution.
但し、レジスト液滴下位置の基板回転中心からの距離は、 1cm以上 5cm以下、基
板の回転数は、 0. 5rpm以上 50rpm以下とする。 However, the distance from the center of rotation of the substrate below the resist droplet is 1 cm or more and 5 cm or less. The rotation speed of the plate shall be 0.5 rpm or more and 50 rpm or less.
[0009] 第 6の手段に力かるマスクブランクの製造方法は、第 4又は第 5の手段において、上 記レジスト液は、基板表面に勾玉状にレジスト液を滴下することを特徴とする。 [0009] A method for manufacturing a mask blank that works on the sixth means is characterized in that, in the fourth or fifth means, the resist solution is dropped onto the substrate surface in the form of a slanting ball.
第 7の手段に力かるマスクブランクの製造方法は、第 5又は第 6の手段において、上 記滴下工程は、必要な膜厚が得られる所定量以上のレジスト液をノズルから、上記基 板の上記表面に滴下する際に、その滴下位置を変更することを特徴とするものである In the fifth or sixth means, the method for producing a mask blank that works on the seventh means is that the dropping step includes a step of applying a resist solution of a predetermined amount or more that can obtain a required film thickness from the nozzle to the substrate. When dripping onto the surface, the dripping position is changed.
[0010] 第 8の手段に力かるマスクブランクの製造方法は、第 1乃至第 7の手段のいずれか において、上記レジスト液の滴下は、基板を回転させながら、または上記基板の表面 の中心周りにノズルを移動させながら、上記基板表面の中心に対し偏心した位置に レジスト液を滴下することを特徴とするものである。 [0010] In any one of the first to seventh means, the mask blank manufacturing method that works on the eighth means is that the dropping of the resist solution is performed while rotating the substrate or around the center of the surface of the substrate. The resist solution is dropped at a position eccentric to the center of the substrate surface while moving the nozzle.
[0011] 第 9の手段に力かるマスクブランクの製造方法は、第 1乃至第 8の手段のいずれか において、上記レジスト液の滴下は、基板の表面に滴下されたレジスト液を上記表面 の中心まで広げる工程を含むことを特徴とするものである。 [0011] In the mask blank manufacturing method according to the ninth means, in any one of the first to eighth means, the resist solution is dropped by using the resist solution dropped on the surface of the substrate as the center of the surface. It is characterized by including the process of extending to a maximum.
[0012] 第 10の手段に力かるマスクブランクの製造方法は、第 9の手段において、上記レジ スト液の滴下にぉ 、てレジスト液を基板の表面の中心まで広げる工程は、上記表面 に滴下されたレジスト液力 滴下終了後に、上記表面の中心に広がるまで待機する 工程であることを特徴とするものである。 [0012] A method for manufacturing a mask blank that works on the tenth means includes the step of spreading the resist liquid to the center of the surface of the substrate in addition to the dropping of the resist liquid in the ninth means. After the completion of the dropping of the resist liquid force, the resist liquid force is a step of waiting until it spreads to the center of the surface.
[0013] 第 11の手段に力かるマスクブランクの製造方法は、第 8または第 9の手段において 、上記滴下工程は、上記基板の回転中に、レジスト液を滴下するノズルを、上記表面 の中心を通る直線上で基板の表面の中心力 偏心した位置に移動させることを特徴 とするちのである。 [0013] In the eighth or ninth means, the method for producing a mask blank that works on the eleventh means includes a nozzle that drops a resist solution during the rotation of the substrate, and the center of the surface. The center force on the surface of the substrate on a straight line passing through is moved to an eccentric position.
[0014] 第 12の手段に力かるマスクブランクの製造方法は、第 11の手段において、上記滴 下工程は、基板の回転中に、レジスト液を滴下するノズルを、上記表面の中心を通る 直線上で基板の表面の偏心した位置力 基板表面の中心方向へ移動させることを 特徴とするものである。 [0014] In the eleventh means, in the eleventh means, the dripping step in the method of manufacturing the mask blank, which acts on the twelfth means, is a straight line passing through the center of the surface through a nozzle for dropping the resist solution while the substrate is rotating. The eccentric positional force of the surface of the substrate is moved toward the center of the surface of the substrate.
[0015] 第 13の手段に力かるマスクブランクの製造方法は、第 11の手段において、上記滴 下工程は、上記基板の回転中に、基板の表面の中心又は当該中心力 偏心した位
置にレジスト液を滴下するノズルを、上記表面の中心を通る直線上において外方へ 移動させることを特徴とするちのである。 [0015] A method for manufacturing a mask blank that is applied to the thirteenth means is the method according to the eleventh means, wherein the dropping step is performed at a position where the center of the surface of the substrate or the central force is decentered during the rotation of the substrate. The nozzle for dropping the resist solution on the device is moved outward on a straight line passing through the center of the surface.
[0016] 第 14の手段に力かるマスクブランクの製造方法は、第 1乃至第 13の手段のいずれ かにおいて、上記レジスト液力 化学増幅型レジストからなることを特徴とするもので ある。 [0016] A mask blank manufacturing method which is effective for the fourteenth means is characterized in that, in any of the first to thirteenth means, the resist blank is made of the chemically amplified resist.
[0017] 第 15の手段に力かるマスクブランクの製造方法は、第 1乃至第 14の手段いずれか において、上記基板は、基板上にマスクパターンとなる薄膜を形成した薄膜付きの基 板であることを特徴とするものである。 [0017] In the mask blank manufacturing method according to the fifteenth means, in any one of the first to fourteenth means, the substrate is a substrate with a thin film in which a thin film serving as a mask pattern is formed on the substrate. It is characterized by this.
第 16の手段に力かるマスクブランクの製造方法は、第 15の手段において、上記薄 膜は、クロムを含む材料力 なることを特徴とするものである。 According to a sixteenth means for producing a mask blank, the thin film is made of a material force containing chromium.
[0018] 第 17の手段に力かる露光用マスクの製造方法は、第 1乃至第 16の手段のいずれ かに記載のマスクブランクの製造方法によって製造されたマスクブランクのレジスト膜 をパター-ングしてレジストパターンを形成し、このレジストパターンをマスクにしてマ スクパターンを形成して露光用マスクを製造することを特徴とするものである。 発明の効果 [0018] A method for manufacturing an exposure mask that is applied to the seventeenth means patterns a resist film of the mask blank manufactured by the mask blank manufacturing method according to any one of the first to sixteenth means. Then, a resist pattern is formed, and a mask pattern is formed using this resist pattern as a mask to manufacture an exposure mask. The invention's effect
[0019] 第 1〜4、 15の手段によれば、レジスト液を基板表面に滴下する際、基板表面にお けるレジスト液の滴下位置が異なるように勾玉状に滴下するようにし、より詳細には、 レジスト液の滴下位置が時間の経過と共に異なった位置になるように、基板とレジスト 液を滴下するノズルを相対的に移動させて勾玉状に滴下するようにし、さらに詳細に は、レジスト液滴下位置の基板回転中心力ゝらの距離を lcm以上 5cm以下、基板の回 転数を 0. 5rpm以上 50rpm以下で調整してレジスト液を滴下するようにしたものであ る。それによつて、レジスト液が基板表面の一箇所に集中して滴下されることがなぐ また、レジスト感度に影響するレジスト液を構成する成分が滴下位置の箇所に集中す ることを抑制することを可能にしたものである。従って、上記の製造方法によって作製 されたマスクブランクのレジスト膜に対して露光'現像処理によって形成されたレジスト パターンをマスクとして形成されるマスクパターンを備えた露光用マスクにぉ 、て、レ ジスト液の滴下位置およびその近傍と、それ以外の位置において、レジスト膜の感度 ばらつきによる上記マスクパターンのパターンラインの線幅寸法 (CD)が面内でばら
つく「面内 CDばらつき」を抑制できる。これらの結果、被転写体のパターン微細化の 要請 (例えば、半導体デバイスにおけるハーフピッチ 65nmノード以降の世代)に適 合できる露光用マスクを実現できる。上記レジスト液の滴下手法により「面内 CDばら つき」が抑制されるメカニズムについては定かでないが、基板表面にレジスト液が勾 玉状に滴下される条件は、基板表面に対するレジスト液の圧力が弱ぐかつレジスト 液の滴下開始力 滴下終了まで基板表面をレジスト液が緩やかに広がりながら、基 板中央近傍にレジスト溜りを形成することができる。つまり、レジスト液滴下の際の基 板表面に対するレジスト液の圧力が弱 ヽことで、レジスト感度に影響するレジスト液を 構成する成分が、基板表面の表面状態などが原因により基板表面の滴下位置に停 留しゃすくなるのが抑制され、レジスト感度に影響するレジスト液を構成する成分が 基板表面に均一に分散されることで、面内 CDばらつきが抑制されるものと考えられる 第 5、 15の手段によれば、レジスト塗布工程における滴下工程では、必要な膜厚が 得られる所定量以上のレジスト液力 基板の表面に分散して滴下されることから、この 所定量以上のレジスト液が基板の表面の一箇所に集中して滴下されることがないの で、基板の表面に滴下跡が発生することを防止できると共に、レジスト膜から形成さ れるレジストパターンをマスクとして形成されるマスクパターンを備えた露光用マスク において、上記マスクパターンのパターンラインの線幅寸法(CD)が面内でばらつく「 面内 CDばらつき」を抑制できる。これらの結果、被転写体のパターン微細化の要請( 例えば、半導体デバイスにおけるハーフピッチ 65nmノード)に適合できる露光用マ スクを実現できる。 [0019] According to the first to fourth and fifteenth means, when the resist solution is dropped onto the substrate surface, the resist solution is dropped in a ball shape such that the dropping position of the resist solution on the substrate surface is different. In this case, the substrate and the nozzle for dropping the resist solution are moved relative to each other so that the resist solution dropping position becomes different with time. The resist solution is dropped by adjusting the distance of the substrate rotation central force at the dropping position from 1 cm to 5 cm and adjusting the number of substrate rotations from 0.5 rpm to 50 rpm. As a result, the resist solution is not concentrated and dripped at one place on the substrate surface, and it is also possible to suppress the concentration of the components constituting the resist solution affecting the resist sensitivity from being concentrated at the position of the dropping position. It is possible. Therefore, the resist liquid is applied to an exposure mask provided with a mask pattern formed using the resist pattern formed by exposure and development processing on the resist film of the mask blank produced by the above manufacturing method as a mask. The line width dimension (CD) of the pattern line of the mask pattern varies in the plane due to variations in the sensitivity of the resist film at the dropping position of the film and its vicinity and other positions. It can suppress “in-plane CD variation”. As a result, it is possible to realize an exposure mask that can meet the demand for pattern miniaturization of a transfer target (for example, generation after a half pitch 65 nm node in a semiconductor device). Although the mechanism by which “in-plane CD variation” is suppressed by the above-mentioned resist solution dropping method is not clear, the resist solution pressure on the substrate surface is weak when the resist solution is dripped onto the substrate surface. Resist liquid dropping start force The resist pool can be formed near the center of the substrate while the resist liquid gently spreads on the substrate surface until the dropping is completed. In other words, the pressure of the resist solution against the substrate surface under the resist droplets is weakened, so that the components that make up the resist solution that affects the resist sensitivity are at the dropping position on the substrate surface due to the surface condition of the substrate surface. In-plane CD variation is considered to be suppressed by suppressing the stagnant suspension and by uniformly dispersing the components of the resist solution that affect the resist sensitivity on the substrate surface. According to the means, in the dropping step in the resist coating step, a predetermined amount or more of resist liquid force that provides a required film thickness is dispersed and dropped on the surface of the substrate. Since it is not dripped concentrated on one spot on the surface, it is possible to prevent dripping marks from being generated on the surface of the substrate and to mask the resist pattern formed from the resist film. In the exposure mask provided with the mask pattern formed as “in-plane CD variation” in which the line width dimension (CD) of the pattern line of the mask pattern varies in the plane. As a result, it is possible to realize an exposure mask that can meet the demand for pattern miniaturization of a transfer target (for example, a half pitch 65 nm node in a semiconductor device).
[0020] 第 7の手段によれば、レジスト塗布工程における滴下工程では、必要な膜厚が得ら れる所定量以上のレジスト液の滴下位置力 基板の表面において変更されることから 、このレジスト液を基板表面に分散して滴下することができるので、基板表面にレジス ト液の滴下跡の発生を防止できると共に、露光用マスクのマスクパターンにおける面 内 CDばらつきを抑制できる。 [0020] According to the seventh means, in the dropping step in the resist coating step, the dropping position force of a predetermined amount or more of the resist solution that can obtain the required film thickness is changed on the surface of the substrate. Can be dispersed and dropped onto the substrate surface, so that the resist liquid can be prevented from being dropped on the substrate surface, and in-plane CD variation in the mask pattern of the exposure mask can be suppressed.
[0021] 第 8の手段によれば、滴下工程では、基板を回転させながら、または基板の表面の 中心周りにノズルを回転させながら、基板の表面の中心に対し偏心した位置にレジス
ト液を滴下することから、レジスト液を基板の表面に分散して滴下できる。即ち、所定 量以上のレジスト液が基板の表面の一箇所に集中して滴下されることがなぐレジスト 感度に影響するレジスト液を構成する成分が滴下位置の箇所に集中することを抑制 できる。従って、基板表面にレジスト液の滴下跡の発生、レジスト液滴下位置および その近傍と、それ以外の位置において、レジスト膜の感度ばらつきを抑制できると共 に、露光用マスクのマスクパターンにおける面内 CDばらつきを抑制でき、更に、基板 表面の中心に対し対称にレジスト液を滴下することができる。 [0021] According to the eighth means, in the dropping step, the resist is placed at a position eccentric to the center of the substrate surface while rotating the substrate or rotating the nozzle around the center of the substrate surface. Since the resist solution is dropped, the resist solution can be dispersed and dropped on the surface of the substrate. That is, it is possible to suppress the concentration of the components constituting the resist solution affecting the sensitivity of the resist, where a predetermined amount or more of the resist solution is concentrated and dropped at one place on the surface of the substrate. Therefore, it is possible to suppress resist film droplet traces on the substrate surface, the position under and near the resist droplet, and other positions, and to suppress variations in the sensitivity of the resist film, as well as in-plane CD in the mask pattern of the exposure mask. Variations can be suppressed, and the resist solution can be dropped symmetrically with respect to the center of the substrate surface.
[0022] 第 9または第 10の手段によれば、滴下工程力 基板の表面に滴下されたレジスト液 を上記表面の中心まで広げる工程を含むことから、基板を回転させる均一化工程に おいて、レジスト液を基板表面の全面に均一に広げることができ面内膜厚均一性が 良好なレジスト膜を形成することができる。 [0022] According to the ninth or tenth means, the dropping step force includes the step of spreading the resist solution dropped onto the surface of the substrate to the center of the surface, so that in the homogenizing step of rotating the substrate, The resist solution can be spread uniformly over the entire surface of the substrate, and a resist film with good in-plane film thickness uniformity can be formed.
[0023] 第 11の手段によれば、滴下工程では、基板の表面の中心力 偏心した位置にレジ スト液を滴下するノズルを、上記基板の回転中に、上記表面の中心を通る直線上で 移動させることから、基板の表面に滴下されたレジスト液をこの表面の中心まで迅速 に広げることができ、また、基板の表面に滴下されたレジスト液を基板表面の外方へ 迅速且つ均一に広げることができる。 [0023] According to the eleventh means, in the dropping step, the central force on the surface of the substrate is dropped on the straight line passing through the center of the surface during rotation of the substrate. Since it is moved, the resist solution dripped onto the surface of the substrate can be spread quickly to the center of this surface, and the resist solution dripped onto the surface of the substrate can be spread quickly and uniformly outward of the substrate surface. be able to.
[0024] 第 12の手段によれば、滴下工程では、基板の回転中に当該基板の表面の中心か ら偏心した位置にレジスト液を滴下するノズルを、上記表面の中心を通る直線上で当 該中心方向へ移動させることから、基板の表面に滴下されたレジスト液を、この表面 の中心まで迅速に広げることができる。 [0024] According to the twelfth means, in the dropping step, a nozzle for dropping the resist solution at a position eccentric from the center of the surface of the substrate during rotation of the substrate is applied on a straight line passing through the center of the surface. Since the substrate is moved in the central direction, the resist solution dropped on the surface of the substrate can be quickly spread to the center of the surface.
[0025] 第 13の手段によれば、滴下工程では、基板の表面の中心、または当該中心力 偏 心した位置にレジスト液を滴下するノズルを、上記基板の回転中に、上記表面の中 心を通る直線上において外方へ移動させることから、基板の表面に滴下されたレジス ト液をこの表面の中心まで迅速に広げることができると共に、この表面に滴下されたレ ジスト液を基板表面の外方へ迅速且つ均一に広げることができる。 [0025] According to the thirteenth means, in the dropping step, the nozzle for dropping the resist solution at the center of the surface of the substrate or the position where the central force is decentered is provided at the center of the surface during rotation of the substrate. Since the resist solution dripped onto the surface of the substrate can be quickly spread to the center of the surface, the resist solution dripped onto the surface of the substrate can be spread on the surface of the substrate. It can be spread quickly and uniformly outward.
[0026] 第 14の手段によれば、化学増幅型レジストは粘度が低ぐ且つ乾燥され易いレジス トであるが、この化学増幅型レジストであっても、基板の表面にレジスト液の滴下跡の 発生、レジスト液滴下位置およびその近傍と、それ以外の位置において、化学増幅
型レジストのレジスト感度に影響するレジスト液を構成する成分が滴下位置に集中す ることを抑制できる。従って、マスクブランクにおけるレジスト膜の感度ばらつきによる 、露光用マスクのマスクパターンにおける面内 CDばらつきを抑制できる。 [0026] According to the fourteenth means, the chemically amplified resist has a low viscosity and is easily dried, but even with this chemically amplified resist, the resist solution dripping traces are formed on the surface of the substrate. Generation, chemical amplification at the position below and near the resist droplet, and other positions It is possible to suppress concentration of components constituting the resist solution affecting the resist sensitivity of the mold resist at the dropping position. Therefore, in-plane CD variation in the mask pattern of the exposure mask due to variation in sensitivity of the resist film in the mask blank can be suppressed.
[0027] 第 16の手段によれば、クロムを含む材料力 なる薄膜、更には、薄膜表面に反射 防止機能を持たせるために酸素、窒素、弗素のうち少なくとも 1つの元素を含むクロ ム系材料力 なる薄膜の場合、薄膜の表面状態は比較的に表面粗さが粗くなる状態 となり、レジスト液の滴下位置において感度が高くなりやすいが、そのような薄膜の表 面状態であっても、本発明の上記方法を適用することによって、露光用マスクのマス クパターンにおける面内 CDばらつきを抑制することができる。 [0027] According to the sixteenth means, a chromium-based material containing at least one element of oxygen, nitrogen, and fluorine in order to provide a thin film having a material strength containing chromium and further to provide an antireflection function on the surface of the thin film In the case of a strong thin film, the surface state of the thin film becomes relatively rough, and the sensitivity tends to be high at the position where the resist solution is dropped. By applying the above method of the invention, in-plane CD variation in the mask pattern of the exposure mask can be suppressed.
第 17の手段によれば、第 1乃至第 16の手段のいずれかに記載のマスクブランクの 製造方法によって製造されたマスクブランクのレジスト膜をパターユングしてレジスト パターンを形成し、このレジストパターンをマスクにしてマスクパターンを形成して露 光用マスクを製造することから、露光用マスクのマスクパターンにおける面内 CDばら つき等を抑制できるので、被転写体のパターン微細化の要請 (例えば、半導体デバ イスにおけるハーフピッチ 65nmノード)に適合できる露光用マスクを実現できる。 発明を実施するための最良の形態 According to the seventeenth means, a resist pattern of the mask blank manufactured by the mask blank manufacturing method according to any one of the first to sixteenth means is patterned to form a resist pattern. Since an exposure mask is manufactured by forming a mask pattern using a mask, in-plane CD variation in the mask pattern of the exposure mask can be suppressed. It is possible to realize an exposure mask that can be adapted to a half-pitch 65nm node in the device. BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下、本発明を実施するための最良の形態を、図面に基づき説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
図 1は、本発明に係るマスクブランクの製造方法の一実施形態におけるレジスト塗 布工程を実施するための回転塗布装置を示す側断面図である。図 4 (A)は、図 1の 薄膜付き基板力 製造されたマスクブランクを示す断面図である。図 4 (B)は、図 4 ( A)のマスクブランク力も製造された露光用マスクを示す断面図である。 FIG. 1 is a side sectional view showing a spin coating apparatus for performing a resist coating process in an embodiment of a mask blank manufacturing method according to the present invention. FIG. 4 (A) is a cross-sectional view showing a mask blank manufactured as shown in FIG. FIG. 4B is a cross-sectional view showing an exposure mask in which the mask blank force of FIG. 4A is also manufactured.
[0029] 図 4に示すマスクブランク 10の製造方法は、四角形状の基板 11の主表面 12に、被 転写体へ転写するためのマスクパターン 13となる薄膜 14を、スパッタリング法や蒸着 法、 CVD法などを用いて成膜し、この薄膜付き基板 15の薄膜 14の表面 19に、レジ スト塗布工程によってレジスト膜 16を形成してマスクブランク 10を製造する。また、上 記マスクブランク 10の製造方法は、四角形状の基板 11の主表面 12に直接レジスト 膜 16を形成して、マスクブランク 10を製造する場合も含む。 [0029] The mask blank 10 shown in FIG. 4 is manufactured by forming a thin film 14 to be a mask pattern 13 to be transferred onto a transfer surface on a main surface 12 of a rectangular substrate 11 by sputtering, vapor deposition, or CVD. A mask blank 10 is manufactured by forming a resist film 16 on the surface 19 of the thin film 14 of the substrate 15 with a thin film by a resist coating process. The manufacturing method of the mask blank 10 includes a case where the mask blank 10 is manufactured by directly forming the resist film 16 on the main surface 12 of the rectangular substrate 11.
[0030] 上記薄膜 14は、露光光 (例えば ArFエキシマレーザなど)に対して光学的変化をも
たらすものであり、具体的には、露光光を遮光する遮光膜や、露光光の位相を変化さ せる位相シフト膜 (この位相シフト膜には、遮光機能及び位相シフト機能を有するノヽ ーフトーン膜も含む)である。また、上記薄膜 14は、単層に限らず積層しても良い。上 記薄膜 14の積層膜としては、例えば遮光膜の積層膜や、位相シフト膜と遮光膜を積 層した積層膜としても良い。 [0030] The thin film 14 also changes optically with respect to exposure light (eg, ArF excimer laser). Specifically, a light-shielding film that shields exposure light and a phase shift film that changes the phase of exposure light (this phase shift film also includes a black-tone film having a light-shielding function and a phase shift function) Included). The thin film 14 is not limited to a single layer and may be laminated. As the laminated film of the thin film 14, for example, a laminated film of a light shielding film or a laminated film in which a phase shift film and a light shielding film are laminated may be used.
[0031] また、上記マスクブランク 10には、薄膜付き基板 15の薄膜 14における中心部の領 域にマスクパターン形成領域 17 (図 3)を有する。このマスクパターン形成領域 17は、 薄膜付き基板 15を露光用マスク 18としたときに、半導体基板などの被転写体の回路 パターンを転写して形成するためのマスクパターン 13が形成されることになる領域で ある。このマスクパターン形成領域 17は、マスクブランク 10のサイズなどによって異な る力 例えばマスクブランク 10が 152mm X 152mmのサイズの場合には、薄膜付き 基板 15の薄膜 14における中心部の 132mm X 132mmの領域である。 In addition, the mask blank 10 has a mask pattern formation region 17 (FIG. 3) in the central region of the thin film 14 of the substrate 15 with a thin film. In this mask pattern forming region 17, when the substrate 15 with a thin film is used as an exposure mask 18, a mask pattern 13 for transferring and forming a circuit pattern of a transfer target such as a semiconductor substrate is formed. It is an area. This mask pattern formation region 17 is a region of 132 mm X 132 mm in the center of the thin film 14 of the substrate 15 with a thin film when the mask blank 10 has a size of 152 mm X 152 mm, for example, when the mask blank 10 has a size of 152 mm X 152 mm. is there.
[0032] 尚、上記マスクブランク 10は、透過型マスクブランクまたは反射型マスクブランクで ある。透過型マスクブランクの場合には、基板 11に透光性基板が用いられ、薄膜 14 として遮光膜が形成されたマスクブランクと、薄膜 14として位相シフト膜 (ハーフトーン 膜も含む)が形成された位相シフトマスクブランクとを含む。また、反射型マスクブラン クの場合には、基板 11として熱膨張係数の小さいものが用いられ、マスクブランク 10 は、この基板 11上に光反射多層膜、マスクパターンとなる光吸収体膜を順次形成し たものである。これらの光反射多層膜及び光吸収体膜が薄膜 14である。 Note that the mask blank 10 is a transmissive mask blank or a reflective mask blank. In the case of a transmissive mask blank, a translucent substrate was used as the substrate 11, and a mask blank having a light shielding film formed as the thin film 14 and a phase shift film (including a halftone film) formed as the thin film 14 were formed. Phase shift mask blank. In the case of a reflective mask blank, a substrate having a low thermal expansion coefficient is used as the substrate 11, and the mask blank 10 has a light reflecting multilayer film and a light absorber film serving as a mask pattern sequentially on the substrate 11. It is formed. These light reflecting multilayer film and light absorber film are the thin film 14.
[0033] さて以下に、薄膜付き基板 15の薄膜 14の表面 19にレジスト液を塗布してレジスト 膜 16を形成する前記レジスト塗布工程にっ ヽて説明する。このレジスト塗布工程で は、図 1に示す回転塗布装置 20が用いられる。 Now, the resist coating process in which the resist film 16 is formed by applying a resist solution to the surface 19 of the thin film 14 of the substrate with thin film 15 will be described below. In this resist coating process, a spin coater 20 shown in FIG. 1 is used.
[0034] 回転塗布装置 20は、薄膜付き基板 15を載置して回転可能に保持するスピンナー チャック 21と、薄膜付き基板 15の表面 19にレジスト液 26を滴下するためのノズル 22 と、滴下されたレジスト液 26が薄膜付き基板 15の回転によりこの薄膜付き基板 15の 外方へ飛散して、回転塗布装置 20の周辺に飛散するのを防止するカップ 23と、この カップ 23の下部に設けられて、薄膜付き基板 15の回転中にこの薄膜付き基板 15外 へ飛散したレジスト液 26を回収して排液する図示しな 、排液手段とを有する。上記ス
ピンナーチャック 21はモータ 25に連結され、このモータ 25の駆動により、スピンナー チャック 21に保持された薄膜付き基板 15が、後述の回転条件によって回転する。 The spin coater 20 is dropped by a spinner chuck 21 on which the substrate 15 with thin film is placed and rotatably held, and a nozzle 22 for dropping the resist solution 26 on the surface 19 of the substrate 15 with thin film. The resist solution 26 is provided on the lower part of the cup 23 and the cup 23 for preventing the resist solution 26 from scattering to the outside of the thin film substrate 15 by the rotation of the thin film substrate 15 and to the periphery of the spin coater 20. In addition, there is a drainage means (not shown) that collects and drains the resist solution 26 scattered outside the thin-film substrate 15 during the rotation of the thin-film substrate 15. Above The pinner chuck 21 is connected to a motor 25, and the driving of the motor 25 causes the thin film-coated substrate 15 held by the spinner chuck 21 to rotate under a rotation condition described later.
[0035] 上記回転塗布装置 20を用いたレジスト塗布工程では、まず最初に、薄膜付き基板 15を基板搬送装置 (不図示)によって回転塗布装置 20のスピンナーチャック 21へ移 送し、このスピンナーチャック 21上に薄膜付き基板 15を保持する。次に、モータ 25に よりスピンナーチャック 21を介して薄膜付き基板 15を回転させながら、この薄膜付き 基板 15の薄膜 14の表面 19にレジスト液 26をノズル 22から滴下して広げる滴下工程 と、モータ 25により薄膜付き基板 15を回転させながら、滴下されたレジスト液 26を薄 膜付き基板 15の薄膜 14の表面 19における全面に均一に広げて、均一な膜厚のレ ジスト膜 16を形成する均一化工程と、モータ 25により薄膜付き基板 15を回転させな がら、均一な膜厚に形成されたレジスト膜 16を乾燥する乾燥工程とを順次実施して、 薄膜付き基板 15の薄膜 14の表面 19にレジスト膜 16を形成する。 In the resist coating process using the spin coater 20, first, the substrate 15 with a thin film is transferred to the spinner chuck 21 of the spin coater 20 by a substrate transport device (not shown). The substrate 15 with a thin film is held on it. Next, while rotating the substrate 15 with a thin film through the spinner chuck 21 by the motor 25, a dropping step of spreading the resist solution 26 from the nozzle 22 onto the surface 19 of the thin film 14 of the substrate 15 with the thin film, and a motor While rotating the substrate with thin film 15 by 25, the dropped resist solution 26 is uniformly spread over the entire surface 19 of the thin film 14 of the substrate 15 with thin film to form a resist film 16 having a uniform film thickness. The surface of the thin film 14 of the substrate 15 with the thin film 15 is sequentially carried out by the crystallization process and the drying process of drying the resist film 16 having a uniform film thickness while rotating the substrate 15 with the thin film by the motor 25. Then, a resist film 16 is formed.
[0036] ここで、上記レジスト液 26は特に限定されないが、粘度が lOmPa ' sを超え、平均分 子量が 10万以上である高分子量榭脂からなる高分子型レジストや、粘度が lOmPa' s未満で、平均分子量が 10万未満であるノボラック榭脂と溶解阻害剤など力もなるノ ポラック型レジストや、ポリヒドロキシスチレン系榭脂と酸発生剤など力もなる化学増幅 型レジストなどである。特に、本実施の形態において効果があるのは、粘度が 10mP a ' s未満で、平均分子量が 10万未満のレジストである。また、化学増幅レジストのよう に、ポリマー (Polymer)と PAG (Photo Acid Generator)とクェンチヤ一 (Quenc her)とを含む複数の構成物質から成るレジストの場合、マスクブランク面内で、上記 構成物質の面内ばらつきが生じることで、面内 CDばらつきが生じやすいレジスト材 料において、本発明の効果が最も得られる。 Here, the resist solution 26 is not particularly limited. However, the resist solution 26 has a viscosity exceeding lOmPa's and a high molecular weight resist composed of a high molecular weight resin having an average molecular weight of 100,000 or more, or a viscosity of lOmPa '. These include novolak-type resists having an average molecular weight of less than 100,000 and novolak-type resins having a power such as dissolution inhibitors, and chemically amplified resists having a power such as polyhydroxystyrene-type resin and acid generators. Particularly effective in this embodiment is a resist having a viscosity of less than 10 mPa's and an average molecular weight of less than 100,000. In addition, in the case of a resist composed of a plurality of constituent materials including a polymer (Polymer), a PAG (Photo Acid Generator), and a Quencher, such as a chemically amplified resist, the above-mentioned constituent materials are included in the mask blank surface. Due to the in-plane variation, the effect of the present invention is most obtained in a resist material in which in-plane CD variation is likely to occur.
[0037] 上記均一化工程と上記乾燥工程における薄膜付き基板 15の回転数及び回転時間 は、レジスト液 26の種類によって設定される力 いずれの場合も、図 2に示すように、 均一化工程における薄膜付き基板 15の回転数は、乾燥工程における薄膜付き基板 15の回転数よりも高く設定されている。これ〖こより、四角形状の薄膜付き基板 15にお ける内接円 27 (図 3)の外側領域にまで至るマスクパターン形成領域 17においても、 均一な膜厚のレジスト膜 16を形成することが可能となる。
[0038] 例えば、化学増幅型レジストゃノボラック系レジストでは、粘度が低!、ので(lOmPa •s以下)、均一化工程では、基板回転数は 850〜2000rpmに、基板回転時間は 1 〜 10秒にそれぞれ設定され、乾燥工程では、基板回転数は 100〜450rpmに設定 される。また、高分子型レジストでは、粘性が高いので(lOmPa' s超)、均一化工程 では、基板回転数は 850〜2000rpmに、基板回転時間は 2〜 15秒にそれぞれ設 定され、乾燥工程では、基板回転数は 50〜450rpmに設定される。乾燥工程での基 板回転時間は、レジスト膜 16が完全に乾燥するまでに (それ以上乾燥回転を続けて もレジスト膜 16の膜厚が減少しなくなるまでに)要す時間が設定される。 [0037] The number of rotations and the rotation time of the thin film-coated substrate 15 in the homogenization step and the drying step are the forces set according to the type of the resist solution 26, as shown in FIG. The rotational speed of the substrate with thin film 15 is set higher than the rotational speed of the substrate with thin film 15 in the drying process. From this, it is possible to form a resist film 16 having a uniform thickness even in the mask pattern formation region 17 that extends to the outer region of the inscribed circle 27 (Fig. 3) on the substrate 15 with a rectangular thin film. It becomes. [0038] For example, a chemically amplified resist novolac resist has a low viscosity (lOmPa • s or less), so in the homogenization process, the substrate rotation speed is 850 to 2000 rpm and the substrate rotation time is 1 to 10 seconds. In the drying process, the substrate rotation speed is set to 100 to 450 rpm. In addition, since the viscosity of polymer resist is high (more than lOmPa's), the substrate rotation speed is set to 850 to 2000 rpm and the substrate rotation time is set to 2 to 15 seconds in the homogenization process. The substrate rotation speed is set to 50 to 450 rpm. The substrate rotation time in the drying process is set to a time required until the resist film 16 is completely dried (until the film thickness of the resist film 16 does not decrease even if the drying rotation is continued further).
[0039] 尚、レジスト塗布工程では、上記乾燥工程終了後に、薄膜付き基板 15上に形成さ れたレジスト膜 16に含まれる溶剤を完全に蒸発させるため、このレジスト膜 16を加熱 して乾燥処理する加熱乾燥処理工程を有してもよい。この加熱乾燥処理工程は、通 常、レジスト膜 16が形成された薄膜付き基板 15を加熱プレートにより加熱する加熱 工程と、レジスト膜 16が形成された薄膜付き基板 15を冷却プレートにより冷却する冷 却工程とを含む。これらの加熱工程における加熱温度及び時間、冷却工程における 冷却温度及び時間は、レジスト液 26の種類に応じて適宜調整される。 [0039] In the resist coating step, after completion of the drying step, the resist film 16 is heated and dried to completely evaporate the solvent contained in the resist film 16 formed on the thin film-coated substrate 15. You may have the heat drying process process to do. This heating and drying process is usually performed by a heating process in which the thin film-coated substrate 15 on which the resist film 16 is formed is heated by a heating plate, and a cooling process in which the thin film-coated substrate 15 in which the resist film 16 is formed is cooled by a cooling plate. Process. The heating temperature and time in these heating steps and the cooling temperature and time in the cooling step are appropriately adjusted according to the type of the resist solution 26.
[0040] ところで、上述の均一化工程の前に実施する前記滴下工程は、図 1に示すように、 必要な膜厚が得られるための所定量のレジスト液 26をノズル 22から、薄膜付き基板 15の薄膜 14の表面 19に分散し滴下して、このレジスト液 26を薄膜付き基板 15の表 面 19に広げる工程である。更に詳細には、必要な膜厚が得られるための所定量のレ ジスト液 26をノズル 22から表面 19に滴下する際、レジスト液滴下位置の基板回転中 心 0力もの距離 (偏心位置 Q、図 3参照)と、基板 15とノズル 22の相対移動速度 (ノズ ル 22の位置を固定した場合は基板 15の回転速度)を調整して、ドーナツ状の滴下 軌跡 Cを描きつつ(図 5 (A)参照)、滴下開始 (滴下開始部 16a)力も滴下終了まで勾 玉状にレジスト液 26を滴下した後(図 5 (B)参照)、この勾玉状レジスト液 16bを広が らせて基板中央近傍に略円形状のレジスト溜り 16cを形成する(図 5 (C)参照)工程 である。 [0040] By the way, as shown in FIG. 1, the dropping step performed before the above-described homogenization step is performed by applying a predetermined amount of resist solution 26 for obtaining a required film thickness from a nozzle 22 to a substrate with a thin film. In this step, the resist solution 26 is spread and spread on the surface 19 of the substrate 15 with a thin film. More specifically, when a predetermined amount of resist liquid 26 for obtaining a required film thickness is dropped from the nozzle 22 onto the surface 19, the distance of the substrate rotation center 0 force below the resist droplet position (the eccentric position Q, Adjusting the relative movement speed of the substrate 15 and the nozzle 22 (rotation speed of the substrate 15 when the position of the nozzle 22 is fixed) and drawing a donut-shaped drop locus C (see Fig. 5) (See A)), start dripping (dropping start part 16a) and drop the resist solution 26 in the shape of a ball until the end of dripping (see Fig. 5 (B)), then spread this ball-shaped resist solution 16b and spread the substrate This is a process of forming a substantially circular resist reservoir 16c near the center (see FIG. 5C).
具体的には、モータ 25によりスピンナーチャック 21を介して薄膜付きレジスト 15を 回転させ、この薄膜付きレジスト 15の表面 19の中心 0 (図 3参照)に対し所定距離だ
け偏心した偏心位置 Qにノズル 22を設定し、薄膜付き基板 15の回転中に上記ノズ ル 22からレジスト液 26を滴下して、薄膜付き基板 15の表面 19の中心 Oに対し対称 な位置に、レジスト液 26をドーナツ状の軌跡を描きながら勾玉状に滴下するものであ り、これにより、薄膜付き基板 15の表面 19に対するレジスト液 16の滴下位置を変更 させて、この薄膜付き基板 15の表面 19にレジスト液 26を分散して滴下することがで きる。 Specifically, the thin film resist 15 is rotated by the motor 25 via the spinner chuck 21, and a predetermined distance from the center 0 (see FIG. 3) of the surface 19 of the thin film resist 15 is obtained. The nozzle 22 is set at the eccentric position Q, and the resist solution 26 is dropped from the nozzle 22 while the thin film substrate 15 is rotating, so that it is symmetrical with respect to the center O of the surface 19 of the thin film substrate 15. Then, the resist solution 26 is dropped in a ball shape while drawing a donut-like trajectory, and this changes the dropping position of the resist solution 16 with respect to the surface 19 of the substrate 15 with a thin film, thereby The resist solution 26 can be dispersed and dropped on the surface 19.
[0041] 尚、薄膜付き基板 15を静止させた状態で、ノズル 22を薄膜付き基板 15の表面 19 の中心 O周りに回転させながら、このノズル 22からレジスト液 26を薄膜付き基板 15の 表面 19に滴下して、この薄膜付き基板 15の表面 19の中心 Oに対し対称な位置にレ ジスト液 26をドーナツ状の軌跡を描きながら勾玉状に滴下してもよい。 [0041] While the substrate 15 with a thin film is stationary, the nozzle 22 is rotated around the center O of the surface 19 of the substrate 15 with a thin film, and the resist solution 26 is supplied from the nozzle 22 to the surface 19 of the substrate 15 with a thin film. The resist solution 26 may be dropped in a ball shape while drawing a donut-like locus at a position symmetrical to the center O of the surface 19 of the surface 19 of the substrate 15 with a thin film.
[0042] この滴下工程において薄膜付き基板 15を回転させる場合の回転数は、レジスト液 2 6の最終的な吐出量と吐出速度、レジスト液 26の滴下位置など力 適宜調整して設 定される力 例えば 0. 5〜50rpmが好ましぐ更に好ましくは 5〜25rpmである。また 、レジスト液 26の滴下位置は、レジスト液滴下位置の基板回転中心 0からの距離 (偏 心位置 Q)は、 1cm以上 5cm以下が好ましい。 [0042] In this dropping step, the number of rotations when the thin film-coated substrate 15 is rotated is set by appropriately adjusting the force such as the final discharge amount and discharge speed of the resist solution 26 and the dropping position of the resist solution 26. For example, 0.5 to 50 rpm is preferable, and 5 to 25 rpm is more preferable. In addition, the dropping position of the resist solution 26 is preferably such that the distance (eccentric position Q) from the substrate rotation center 0 at the position below the resist droplet is 1 cm or more and 5 cm or less.
回転数が 50rpmを越えると、薄膜付き基板 15の回転数が大きすぎて滴下したレジ スト液 26が飛散したり、薄膜付き基板 15の表面 19の中心 Oにレジスト液 26が広がら ない事態が発生して、均一な膜厚のレジスト膜 16が形成されない恐れがある。 If the rotation speed exceeds 50 rpm, the number of rotations of the thin film-coated substrate 15 is too large, and the resist solution 26 dripped may scatter or the resist solution 26 may not spread at the center O of the surface 19 of the thin film-coated substrate 15. As a result, the resist film 16 having a uniform thickness may not be formed.
また、回転数が 0. 5rpm未満であると、レジスト液 26の使用量が増大したり、薄膜 付き基板 15の裏面側にレジスト液 26が回り込んでパーティクル発生の原因になる恐 れがある。また、 0. 5rpm未満だと、レジスト液滴下位置と他の位置と比べてレジスト の高感度化を抑制する効果が小さくなる。従って、滴下工程における薄膜付き基板 1 5の回転数は、 0. 5〜50rpmの範囲に設定される。 If the rotational speed is less than 0.5 rpm, the amount of the resist solution 26 used may increase, or the resist solution 26 may enter the back side of the thin film-coated substrate 15 and cause particles. Also, if it is less than 0.5 rpm, the effect of suppressing the high sensitivity of the resist is smaller than the position below the resist droplet and other positions. Therefore, the rotation speed of the thin film-attached substrate 15 in the dropping step is set in the range of 0.5 to 50 rpm.
[0043] 更に、当該滴下工程では、薄膜付き基板 15の表面 19の中心 Oに対し対称な位置 に、レジスト液 26をドーナツ状の滴下軌跡を描きながら勾玉状に滴下する場合にお いては、均一化工程においてレジスト液 26を薄膜付き基板 15の表面 19の全面に均 一に広げて均一な膜厚の(面内膜厚均一性が良好な)レジスト膜 16を形成するため に、薄膜付き基板 15の表面 19の中心 O位置までレジスト液 26を広げる工程を含む
必要がある。この工程は、ノズル 22からのレジスト液 26の滴下終了後に薄膜付き基 板 15の回転を停止させ、この薄膜付き基板 15の表面 19の中心 O周りにドーナツ状 の滴下軌跡を描きながら勾玉状に滴下されて勾玉状レジスト液 16bに形成されたレ ジスト液 26が、この表面 19の中心 O位置に広がるまで待機する工程である。 [0043] Further, in the dropping step, in the case where the resist solution 26 is dropped in a ball shape while drawing a donut-shaped dropping locus at a position symmetrical to the center O of the surface 19 of the substrate 15 with a thin film, In the homogenization process, the resist solution 26 is spread evenly over the entire surface 19 of the substrate 15 with a thin film to form a resist film 16 having a uniform thickness (good in-plane film thickness uniformity). Includes the step of spreading the resist solution 26 to the center O position of the surface 19 of the substrate 15 There is a need. This process stops the rotation of the substrate 15 with the thin film after the completion of the dropping of the resist solution 26 from the nozzle 22 and draws a donut-shaped dropping trajectory around the center O of the surface 19 of the substrate 15 with this thin film. This is a process of waiting until the resist solution 26 dropped and formed in the ball-shaped resist solution 16b spreads to the center O position of the surface 19.
[0044] 更に、薄膜付き基板 15の表面 19の中心 O位置までレジスト液 26を広げる工程は、 薄膜付き基板 15の回転中に、この薄膜付き基板 15の表面 19の上方に設定したノズ ル 22を、薄膜付き基板 15の表面 19にお 、て中心 O及び偏心位置 Qを通る直線 L上 で移動させる滴下工程においても実現可能であり、次の 2つの滴下工程が挙げられ る。 [0044] Further, the step of spreading the resist solution 26 to the center O position of the surface 19 of the substrate 15 with a thin film is performed by rotating the nozzle 22 set above the surface 19 of the substrate 15 with a thin film during the rotation of the substrate 15 with a thin film. Can also be realized in the dropping step of moving on the surface 19 of the substrate with thin film 15 on the straight line L passing through the center O and the eccentric position Q, and the following two dropping steps can be mentioned.
[0045] 1つ目の滴下工程は、薄膜付き基板 15の回転中に当該薄膜付き基板 15の表面 1 9の偏心位置 Qに設定されてレジスト液 26を滴下するノズル 22を、上記直線 L上に おいて中心 O方向へ移動させるものである。上記偏心位置 Qに設定されたノズル 22 力も滴下されたレジスト液 26は、回転する薄膜付き基板 15の表面 19において、この 表面 19の中心 O周りにドーナツ状に滴下軌跡を描きながら勾玉状に滴下されるが、 ノズル 22が上述の如く中心 O方向へ移動することで、この移動中のノズル 22から滴 下されたレジスト液 26が、回転する薄膜付き基板 15の表面 19上において中心 O付 近に滴下されることになる。この結果、薄膜付き基板 15の表面 19に滴下されたレジ スト液 26を、この表面 19の中心 O位置まで迅速に広げることが可能となる。 [0045] In the first dropping step, a nozzle 22 that drops the resist solution 26 and is set at an eccentric position Q of the surface 19 of the substrate 15 with a thin film while the substrate 15 with a thin film rotates is placed on the straight line L. In this case, it is moved in the center O direction. The resist solution 26 to which the nozzle 22 force set at the eccentric position Q is also dropped is dropped in a slanting shape while drawing a dropping locus around the center O of the surface 19 on the surface 19 of the rotating thin film-coated substrate 15. However, as the nozzle 22 moves in the direction of the center O as described above, the resist solution 26 dropped from the moving nozzle 22 moves closer to the center O on the surface 19 of the rotating thin film-coated substrate 15. Will be dripped. As a result, the resist liquid 26 dropped on the surface 19 of the substrate 15 with a thin film can be quickly spread to the center O position of the surface 19.
[0046] 2つ目の滴下工程は、薄膜付き基板 15の表面 19の中心 0、またはこの中心 Oから 若干偏心した偏心位置 Qに設定されたノズル 22を、薄膜付き基板 15の回転中に上 記直線 L上で薄膜付き基板 15の外方へ徐々に移動させながら、当該ノズル 22からレ ジスト液 26を滴下するものである。この滴下工程では、滴下工程の当初ノズル 22が、 回転する薄膜付き基板 15の表面 19の中心 Oまたはその付近に滴下されるので、薄 膜付き基板 15の表面 19の中心 O位置までレジスト液 26を迅速に広げることが可能 になると共に、薄膜付き基板 15の表面 19に対し遠心力が作用する方向にレジスト液 26が滴下されることで、このレジスト液 26を薄膜付き基板 15の表面 19の外方へ迅速 且つ均一に広げることが可能となる。 [0046] In the second dropping step, the nozzle 22 set at the center 0 of the surface 19 of the substrate 15 with a thin film or the eccentric position Q slightly deviated from the center O is moved up while the substrate 15 with a thin film is rotating. The resist liquid 26 is dropped from the nozzle 22 while being gradually moved to the outside of the substrate 15 with a thin film on the straight line L. In this dropping step, the initial nozzle 22 of the dropping step is dropped at or near the center O of the surface 19 of the rotating thin film-coated substrate 15, so that the resist solution 26 reaches the position of the center O of the surface 19 of the thin film-coated substrate 15. The resist solution 26 is dropped in the direction in which the centrifugal force acts on the surface 19 of the substrate 15 with a thin film, so that the resist solution 26 is applied to the surface 19 of the substrate 15 with a thin film. It can be spread quickly and uniformly outward.
[0047] 上述のような滴下工程、均一化工程及び乾燥工程を実施することで、薄膜付き基
板 15の薄膜 14の表面 19にレジスト膜 16を形成して、図 4 (A)に示すマスクブランク 10を作製する。そして、このマスクブランク 10のレジスト膜 16に所定パターンを描画' 現像処理してレジストパターンを形成し、このレジストパターンをマスクにして薄膜 14 ( 例えば遮光膜)をドライエッチングしてマスクパターン 13 (図 4 (B) )を形成して、露光 用マスク 18を作製する。 [0047] By carrying out the dropping step, the homogenizing step and the drying step as described above, the substrate with a thin film A resist film 16 is formed on the surface 19 of the thin film 14 of the plate 15 to produce a mask blank 10 shown in FIG. Then, a predetermined pattern is drawn on the resist film 16 of the mask blank 10 and developed to form a resist pattern, and the thin film 14 (for example, a light shielding film) is dry-etched using the resist pattern as a mask to mask pattern 13 (FIG. 4 (B)) is formed, and an exposure mask 18 is produced.
従って、上記実施の形態によれば、次の効果(1)〜(5)を奏する。 Therefore, according to the said embodiment, there exist the following effects (1)-(5).
(1)レジスト塗布工程における滴下工程では、薄膜付き基板 15を回転させながら、 当該薄膜付き基板 15の表面 19の中心 Oに対し偏心した偏心位置 Qにノズル 22から レジスト液 26を滴下することから、必要な膜厚が得られるための所定量のレジスト液 2 6の滴下位置が、薄膜基板 15の表面 19において変更され、このレジスト液 26が薄膜 付き基板 15の表面 19に分散して滴下されることになる。従って、この所定量のレジス ト液 26が薄膜付き基板 15の表面 19の一箇所に集中して (例えば表面 19の中心 O 位置に集中して)滴下されることがないので、薄膜付き基板 15の表面 19に滴下跡が 発生することを防止できると共に、レジスト膜 16から形成されるレジストパターンをマス クとして形成されるマスクパターン 13を備えた露光用マスク 18において、上記マスク パターン 13のパターンライン 28 (図 4 (B) )の線幅寸法 (CD)が、目標とするターゲッ トラインの線幅寸法 (CD)に対して面内でばらつく「面内 CDばらつき」を抑制できる。 これらの結果、被転写体のパターン微細化の要請 (例えば、半導体デバイスにおける ハーフピッチ 65nmノード)に適合できる露光用マスク 18を実現できる。 (1) In the dropping step in the resist coating process, the resist solution 26 is dropped from the nozzle 22 to the eccentric position Q that is eccentric with respect to the center O of the surface 19 of the surface 15 of the substrate with thin film 15 while rotating the substrate 15 with thin film. Then, the dropping position of a predetermined amount of resist solution 26 for obtaining the required film thickness is changed on the surface 19 of the thin film substrate 15, and this resist solution 26 is dispersed and dropped on the surface 19 of the substrate 15 with thin film. Will be. Therefore, the predetermined amount of resist solution 26 is not concentrated and dropped at one place on the surface 19 of the substrate 15 with a thin film (for example, concentrated at the center O position of the surface 19). In the exposure mask 18 having the mask pattern 13 formed by using the resist pattern formed from the resist film 16 as a mask, the pattern line of the mask pattern 13 can be prevented. It is possible to suppress the “in-plane CD variation” in which the line width dimension (CD) of 28 (Fig. 4 (B)) varies within the plane with respect to the target target line width dimension (CD). As a result, it is possible to realize an exposure mask 18 that can meet the demand for pattern miniaturization of a transfer target (for example, a half pitch 65 nm node in a semiconductor device).
(2)レジスト液 26を基板表面 19に滴下する際、基板表面 19におけるレジスト液 26の 滴下位置が異なるように勾玉状に滴下するようにし、より詳細には、レジスト液 26の滴 下位置が時間の経過と共に異なった位置になるように、基板 15とレジスト液 26を滴 下するノズル 22を相対的に移動させて勾玉状に滴下するようにし、さらに詳細には、 レジスト液滴下位置の基板回転中心 O力ゝらの距離を lcm以上 5cm以下、基板の回 転数を 0. 5rpm以上 50rpm以下で調整してレジスト液 22を滴下するようにしたので 、レジスト液 22が基板表面 19の一箇所に集中して滴下されることがなぐまた、レジス ト感度に影響するレジスト液を構成する成分が滴下位置の箇所に集中することを抑 制できる。従って、上記の製造方法によって作製されたマスクブランクのレジスト膜 16
に対して露光 ·現像処理によって形成されたレジストパターンをマスクとして形成され るマスクパターン 13を備えた露光用マスク 18において、レジスト液 26の滴下位置お よびその近傍と、それ以外の位置において、レジスト膜の感度ばらつきによる上記マ スクパターンのパターンライン 28 (図 4 (B) )の線幅寸法 (CD)が目標とするターゲット ラインの線幅寸法 (CD)に対して面内でばらつく「面内 CDばらつき」を抑制できる。こ れらの結果、被転写体のパターン微細化の要請 (例えば、半導体デバイスにおける ハーフピッチ 65nmノード以降の世代)に適合できる露光用マスク 18を実現できる。 (2) When the resist solution 26 is dropped on the substrate surface 19, the resist solution 26 is dropped in a ball shape so that the dropping position of the resist solution 26 on the substrate surface 19 is different. The nozzles 22 for dropping the substrate 15 and the resist solution 26 are moved relative to each other so that the positions of the substrate 15 and the resist solution 26 drop over time. Since the resist solution 22 was dropped by adjusting the distance of the center of rotation O force from 1 cm to 5 cm and adjusting the number of rotations of the substrate from 0.5 rpm to 50 rpm, the resist solution 22 was applied to the substrate surface 19. It is possible to prevent the concentration of the components constituting the resist solution affecting the resist sensitivity from concentrating on the position of the dropping position. Therefore, the mask blank resist film 16 produced by the above manufacturing method 16 In the exposure mask 18 having the mask pattern 13 formed by using the resist pattern formed by the exposure / development process as a mask, the resist solution 26 is dropped at and near the dropping position of the resist solution 26 and other positions. The line width dimension (CD) of the mask pattern pattern line 28 (Fig. 4 (B)) due to variations in film sensitivity varies in-plane with respect to the target line width dimension (CD) of the target line. CD variation can be suppressed. As a result, it is possible to realize an exposure mask 18 that can meet the demand for pattern miniaturization of a transfer target (for example, a generation after a half pitch 65 nm node in a semiconductor device).
[0049] (3)レジスト塗布工程における滴下工程が、薄膜付き基板 15の表面 19に滴下され たレジスト液 26を上記表面 19の中心 O位置まで広げる工程を含むことから、薄膜付 き基板 15を回転させる均一化工程において、レジスト液 26を薄膜付き基板 15の表 面 19の全面に均一に広げて、均一な膜厚のレジスト膜 16を形成することができる。 [0049] (3) Since the dropping step in the resist coating step includes the step of spreading the resist solution 26 dropped on the surface 19 of the substrate 15 with a thin film to the center O position of the surface 19, the substrate 15 with a thin film is formed. In the rotating homogenization step, the resist solution 26 can be spread uniformly over the entire surface 19 of the substrate 15 with a thin film, so that the resist film 16 having a uniform film thickness can be formed.
[0050] (4)レジスト塗布工程における滴下工程では、薄膜付き基板 15の回転中に当該薄 膜付き基板 15の表面 19の中心 O力も偏心した偏心位置 Qにレジスト液を滴下するノ ズル 22を、滴下終了直前に、上記表面 19の中心 O及び偏心位置 Qを通る直線 L上 で当該中心 O方向へ移動させる場合には、薄膜付き基板 15の表面 19に滴下された レジスト液 26を、この表面 19の中心 O位置まで迅速に広げることができる。 [0050] (4) In the dropping step in the resist coating step, a nozzle 22 for dropping the resist solution at the eccentric position Q where the center O force of the surface 19 of the substrate 15 with the thin film is also eccentric during the rotation of the substrate 15 with the thin film is used. When moving in the direction of the center O on the straight line L passing through the center O and the eccentric position Q of the surface 19 immediately before the completion of dropping, the resist solution 26 dropped on the surface 19 of the substrate 15 with a thin film Can be quickly expanded to the center O position of surface 19.
[0051] (5)レジスト塗布工程における滴下工程では、薄膜付き基板 15の表面 19の中心 O 、または当該中心 Oカゝら偏心した偏心位置 Qにレジスト液を滴下するノズル 22を、上 記薄膜付き基板 15の回転中に、上記表面 19の中心 O及び偏心位置 Qを通る直線 L 上において外方へ移動させる場合には、薄膜付き基板 15の表面 19に滴下されたレ ジスト液 26をこの表面 19の中心 O位置まで迅速に広げることができると共に、この表 面 19に滴下されたレジスト液 26を薄膜付き基板 15の表面 19上の外方へ迅速且つ 均一〖こ広げることができる。 [0051] (5) In the dropping step in the resist coating step, the nozzle 22 for dropping the resist solution on the center O of the surface 19 of the substrate 15 with a thin film or the eccentric position Q eccentric from the center O is provided with the thin film In the case of moving outward on a straight line L passing through the center O of the surface 19 and the eccentric position Q during the rotation of the substrate 15 with the surface, the resist solution 26 dropped on the surface 19 of the substrate 15 with the thin film is added to this. The resist solution 26 dripped onto the surface 19 can be spread quickly and uniformly outward on the surface 19 of the substrate 15 with a thin film.
[0052] (6)必要な膜厚が得られるための所定量のレジスト液 26の滴下位置が、薄膜付き 基板 15の表面 19において変更され、このレジスト液 26が薄膜付き基板 15の表面 19 に分散して滴下されることから、レジスト液 26が、粘度が低く且つ乾燥され易い化学 増幅型レジストであっても、薄膜付き基板 15の表面 19にレジスト液 26の滴下跡の発 生、レジスト液滴下位置およびその近傍と、それ以外の位置において、化学増幅型
レジストのレジスト感度に影響するレジスト液を構成する成分が滴下位置に集中する ことを抑制できる。従って、マスクブランクにおけるレジスト膜 16の感度ばらつきによる 、露光用マスク 18のマスクパターン 13における面内 CDばらつきを抑制できる。 実施例 (6) The dropping position of a predetermined amount of the resist solution 26 for obtaining the required film thickness is changed on the surface 19 of the substrate 15 with a thin film, and the resist solution 26 is applied to the surface 19 of the substrate 15 with a thin film. Since the resist solution 26 is a chemically amplified resist that has a low viscosity and is easily dried, the trace of the dripping of the resist solution 26 is generated on the surface 19 of the substrate 15 with a thin film. Chemical amplification type at the dripping position, its vicinity and other positions Concentration of the components constituting the resist solution that affects the resist sensitivity of the resist at the dropping position can be suppressed. Therefore, in-plane CD variation in the mask pattern 13 of the exposure mask 18 due to variation in sensitivity of the resist film 16 in the mask blank can be suppressed. Example
[0053] 次に、マスクブランクの製造方法及び露光用マスクの製造方法について、具体的に 説明する。 Next, a method for manufacturing a mask blank and a method for manufacturing an exposure mask will be specifically described.
[0054] (実施例 1) [Example 1]
サイズが 152. 4mm X 152. 4mmの合成石英ガラス基板上に、スパッタリング法に よりクロム膜と酸化窒化クロム膜を順次形成し、遮光膜と反射防止膜の薄膜が形成さ れた薄膜付き基板を得た。 A thin film substrate in which a chromium film and a chromium oxynitride film are sequentially formed on a synthetic quartz glass substrate having a size of 152.4 mm x 152.4 mm by a sputtering method, and a thin film of a light shielding film and an antireflection film is formed. Obtained.
次に、レジスト塗布工程によりレジスト液を回転塗布し、薄膜の表面にレジスト膜を 形成した。レジスト塗布工程における各条件は以下のとおりである。 Next, a resist solution was spin-coated by a resist coating process to form a resist film on the surface of the thin film. Each condition in the resist coating process is as follows.
レジスト:ポジ型化学増幅型レジスト FEP171 (富士フィルムエレクト口-クスマテリア ルズ社製) Resist: Positive chemically amplified resist FEP171 (Fuji Film Elect Mouth-Cusmaterials)
滴下工程:薄膜付き基板を回転させながらレジスト液を滴下した。 Dropping step: The resist solution was dropped while rotating the substrate with the thin film.
基板回転数: 5rpm Board rotation speed: 5rpm
基板へのレジスト滴下方法:薄膜付き基板の表面の中心から 3cm偏心した偏心位 置にレジスト液を滴下し、この基板を少なくとも 1回転させた後、レジスト液の滴下を終 了した。基板に対するレジスト液の滴下は、ドーナツ状に滴下軌跡を描きながら、滴 下開始力 滴下終了まで勾玉状に滴下されるように適宜、ノズルからのレジスト液の 吐出速度を調整して行った。レジスト液の滴下終了後、薄膜付き基板の表面に滴下 されたレジスト液が、この薄膜付き基板の中心位置に広がるまで待機させた。この待 機中にレジスト液は、滴下位置カゝら薄膜付き基板の外周方向へも、中心方向と同様 に広がる。つまり、基板表面の中央近傍(中心近傍)に略円形のレジスト溜りを形成さ せた。 Resist dropping method on the substrate: The resist solution was dropped at an eccentric position 3 cm eccentric from the center of the surface of the substrate with the thin film, and after the substrate was rotated at least once, the dropping of the resist solution was terminated. The resist solution was dropped onto the substrate by appropriately adjusting the discharge speed of the resist solution from the nozzle so that the dripping start force was dropped until the completion of dropping while drawing the dropping locus in a donut shape. After completion of the dropping of the resist solution, the resist solution dropped on the surface of the substrate with the thin film was kept waiting until it spreads to the center position of the substrate with the thin film. During this waiting time, the resist solution spreads in the same way as the center direction in the outer peripheral direction of the substrate with the thin film as well as the dropping position. That is, a substantially circular resist pool was formed near the center of the substrate surface (near the center).
均一化工程 Uniformization process
基板回転数: 1500rpm Board rotation speed: 1500rpm
基板回転時間:2秒
乾燥工程 Substrate rotation time: 2 seconds Drying process
基板回転数: 250rpm Substrate rotation speed: 250rpm
次に、加熱乾燥装置及び冷却装置に、レジスト膜が形成された薄膜付き基板を搬 送し、所定の加熱乾燥処理を行ってレジスト膜を乾燥させ、 ArFエキシマレーザー露 光用マスクブランクを作製した。 Next, the substrate with the thin film on which the resist film was formed was transported to a heating / drying device and a cooling device, and a predetermined heating / drying process was performed to dry the resist film, thereby producing a mask blank for ArF excimer laser exposure. .
[0055] 得られたマスクブランクのレジスト膜について膜厚分布を測定した。その結果、レジ スト膜の平均膜厚は 300nm、レジスト膜の面内膜厚均一性は 3nmであった。 [0055] The film thickness distribution of the obtained mask blank resist film was measured. As a result, the average thickness of the resist film was 300 nm, and the in-plane film thickness uniformity of the resist film was 3 nm.
ここで、上記レジスト膜の膜厚分布は、薄膜付き基板の表面中央の 132mm X 132 mm角エリア(つまり、マスクパターン形成領域)の全体に均等に配置した 29 X 29 = 841の測定点で、分光反射型膜厚計けノメトリックスジャパン社製: AFT6100M)を 用いて膜厚を測定し、この測定した膜厚データ力も上記平均膜厚を求めた。また、上 記面内膜厚均一性は、各測定点における膜厚データ力 「(膜厚の最大値) (膜厚 の最小値) = (面内膜厚均一性)」として求めた。 Here, the film thickness distribution of the resist film, the surface center of the thin-film-coated substrate 132 mm X 132 m m square area (i.e., a mask pattern formation region) at the measurement point of the uniformly arranged on the entire 29 X 29 = 841 The film thickness was measured using a spectral reflection type film thickness meter manufactured by Nometrics Japan Co., Ltd. (AFT6100M), and the measured film thickness data power also determined the average film thickness. The in-plane film thickness uniformity was obtained as the film thickness data force “(maximum value of film thickness) (minimum value of film thickness) = (in-plane film thickness uniformity)” at each measurement point.
[0056] 次に、上記レジスト膜に対して電子線描画装置により所定パターンを描画し、加熱 処理、現像処理してレジストパターンを形成した。このレジストパターンをマスクにして 、塩素と酸素を含むガスを用いてドライエッチング処理を施し、マスクパターン (遮光 膜パターン)を形成し、レジスト膜を剥離して露光用マスクを作製した。得られた露光 用マスクのマスクパターンは、ラインアンドスペースパターンであり、そのパターンライ ンの線幅寸法(CD)は 260nmである。 Next, a predetermined pattern was drawn on the resist film by an electron beam drawing apparatus, and a resist pattern was formed by heat treatment and development treatment. Using this resist pattern as a mask, dry etching treatment was performed using a gas containing chlorine and oxygen to form a mask pattern (light-shielding film pattern), and the resist film was peeled off to produce an exposure mask. The mask pattern of the obtained exposure mask is a line and space pattern, and the line width dimension (CD) of the pattern line is 260 nm.
露光用マスクの面内に 13 X 13ケ配置した本マスクパターンの線幅寸法を測長 SEM で測長して、露光用マスクのマスクパターンにおけるパターンラインの線幅寸法 (CD )が、露光用マスクの面内においてばらつく「面内 CDばらつき」を測定した。その結 果、面内 CDばらつきは 3 σで 4nmを達成し、次世代における半導体デバイスのパタ ーン微細化の要請(ノヽーフピッチ 65nmノード)である 5. lnm (ラインアンドスペース ノ《ターンの場合)を満足できる結果となった。 The line width dimension of this mask pattern, which is 13 X 13 in the exposure mask plane, is measured with the SEM, and the line width dimension (CD) of the pattern line in the mask pattern of the exposure mask is “In-plane CD variation”, which varies within the plane of the mask, was measured. As a result, in-plane CD variation of 4 nm was achieved at 3 σ, which is a demand for next-generation semiconductor device pattern miniaturization (norf pitch 65 nm node) 5. lnm (in the case of line and space no-turn) ) Was satisfied.
[0057] (比較例) [0057] (Comparative example)
上記実施例 1におけるレジスト塗布工程の滴下工程を、以下の方法にした以外は、 上記実施例 1と同様にしてマスクブランクを作製し、このマスクブランク力も露光用マ
スクを作製した。 A mask blank was prepared in the same manner as in Example 1 except that the dropping process of the resist coating process in Example 1 was changed to the following method. A disc was prepared.
滴下工程:薄膜付き基板を回転させず、この薄膜付き基板の表面の中心位置に、 必要な膜厚が得られるための所定量のレジスト液を滴下した。 Dropping step: Without rotating the substrate with a thin film, a predetermined amount of resist solution was dropped at the center position of the surface of the substrate with a thin film to obtain a required film thickness.
得られたマスクブランクにおけるレジスト膜の平均膜厚、面内膜厚均一性は、実施 例 1とほぼ同程度であった。 The average film thickness and in-plane film thickness uniformity of the resist film in the obtained mask blank were almost the same as those in Example 1.
また、このマスクブランク力 作製された露光用マスクの面内 CDばらつき(3 σ )は 7 nmであった。この面内 CDばらつき(3 σ ) 7nmは、次世代における半導体デバイス のパターン微細化の要請(ノヽーフピッチ 65nmノード)である 5. lnm (ラインアンドス ペースパターンの場合)を満足できるものではなかった。 Also, the in-plane CD variation (3σ) of the exposure mask produced with this mask blank force was 7 nm. This in-plane CD variation (3 σ) of 7 nm did not satisfy 5. lnm (in the case of a line and space pattern), which is a demand for pattern miniaturization of semiconductor devices in the next generation (node pitch 65 nm node). .
上記実施例 1におけるレジスト膜付きマスクブランクと比較例 1におけるレジスト膜付 きマスクブランクに形成されたレジスト膜表面を、基板中央部と外周部において TOF SIMS (飛行時間型 2次イオン質量分析法)により測定した。その結果、実施例 1に おけるレジスト膜表面における PAG成分の濃度は、中央部と外周部とほぼ同じであ つたが、比較例 1における PAG成分の濃度は、中央部よりも外周部の方が低い傾向 であった。 The resist film surfaces formed in the mask blank with resist film in Example 1 and the mask blank with resist film in Comparative Example 1 are analyzed with TOF SIMS (time-of-flight secondary ion mass spectrometry) at the center and outer periphery of the substrate. It was measured by. As a result, the concentration of the PAG component on the resist film surface in Example 1 was almost the same in the central portion and the outer peripheral portion, but the concentration of the PAG component in Comparative Example 1 was more in the outer peripheral portion than in the central portion. The trend was low.
これは、実施例 1のマスクブランクに形成されたィ匕学増幅型レジストは、該化学増幅 型レジストを構成するポリマー、 PAG及びクェンチヤ一の構成物質力 マスクブランク 面内で均一に含まれている力 比較例 1のマスクブランクに形成された化学増幅型レ ジストは、化学増幅型レジストを構成するポリマー、 PAG及びクェンチヤ一の構成物 質力 マスクブランク面内で均一に含まれておらず、ばらつきを持っており、その違い が面内 CDばらつきの違いに現われたものと考えられる。 This is because the chemically amplified resist formed in the mask blank of Example 1 is uniformly contained in the surface of the mask blank, which is the constituent material force of the polymer, PAG and quencher constituting the chemically amplified resist. Force The chemically amplified resist formed in the mask blank of Comparative Example 1 is the only polymer, PAG, and quencher constituent material in the chemically amplified resist. It is thought that the difference appears in the difference in in-plane CD variation.
(実施例 2) (Example 2)
上記実施例 1におけるレジスト液をネガ型化学増幅型レジスト NEB22 (住友化学ェ 業社製)に変更し、レジスト塗布工程において、均一化工程で、基板回転数を 800rp mとし、基板回転時間を 4秒とし、乾燥工程で、基板回転数を 300rpmとした以外は 実施例 1と同様にしてマスクブランクを作製し、このマスクブランクから、マスクパター ンが孤立ラインパターンであり、そのパターンラインの線幅寸法(CD)力 l80nmの露 光用マスクを作製した。
得られたマスクブランクにおけるレジスト膜の平均膜厚、面内膜厚均一性は、実施 例 1とほぼ同程度であった。また、得られた露光用マスクの面内 CDばらつき(3 σ )は 2nmであった。この面内 CDばらつき(3 σ ) 2nmは、次世代における半導体デバイス のパターン微細化の要請(ノヽーフピッチ 65nmノード)である 3. 6nm (孤立ラインパタ ーンの場合)を満足できる結果となった。これは、化学増幅型レジストを構成するポリ マー、 PAG及びクェンチヤ一の構成物質力 マスクブランク面内で均一に含まれて V、ることが一つの要因と考えられる。 The resist solution in Example 1 was changed to the negative chemical amplification resist NEB22 (manufactured by Sumitomo Chemical Co., Ltd.). In the resist coating process, the substrate rotation speed was set to 800 rpm and the substrate rotation time was set to 4 in the homogenization process. A mask blank was prepared in the same manner as in Example 1 except that the substrate rotation speed was set to 300 rpm in the drying process. From this mask blank, the mask pattern was an isolated line pattern, and the line width of the pattern line An exposure mask with dimensional (CD) force of l80nm was fabricated. The average film thickness and in-plane film thickness uniformity of the resist film in the obtained mask blank were almost the same as those in Example 1. The in-plane CD variation (3σ) of the obtained exposure mask was 2 nm. This in-plane CD variation (3 σ) of 2 nm was able to satisfy 3.6 nm (in the case of an isolated line pattern), which is a request for pattern miniaturization of semiconductor devices in the next generation (node pitch 65 nm node). This is thought to be due to the fact that the polymer, PAG, and Quencher's constituent materials that make up the chemically amplified resist are uniformly contained in the mask blank surface.
(比較例 2) (Comparative Example 2)
基板へのレジスト滴下方法が、上記特許文献 2となるように、レジスト液の滴下位置 、基板回転数を適宜調整して、基板に対するレジスト液の滴下をドーナツ状に滴下し 、勾玉状のレジスト状態を経ることなく直ちにレジスト溜りを基板中央近傍に形成した 以外は、実施例 1と同様にしてマスクブランクを作製し、このマスクブランク力も露光用 マスクを作製した。 The resist dropping method onto the substrate is adjusted to the position of dropping the resist solution and the number of rotations of the substrate as appropriate, as described in Patent Document 2, and the dropping of the resist solution onto the substrate is dropped into a donut shape. A mask blank was prepared in the same manner as in Example 1 except that a resist reservoir was immediately formed near the center of the substrate without going through the process, and an exposure mask was also prepared with this mask blank force.
得られたマスクブランクにおけるレジスト膜の平均膜厚、面内膜厚均一性は、実施 例 1とほぼ同程度であった。 The average film thickness and in-plane film thickness uniformity of the resist film in the obtained mask blank were almost the same as those in Example 1.
また、このマスクブランク力 作製された露光用マスクの面内 CDばらつき(3 σ )は 6 . 8nmであった。この面内 CDばらつき(3 σ ) 6. 8nmは、次世代における半導体デ バイスのパターン微細化の要請(ノヽーフピッチ 65nmノード)である 5. lnm (ラインァ ンドスペースパターンの場合)を満足できるものではなカゝつた。レジスト液滴下の際の 基板へのレジスト液圧力が大きぐ化学増幅型レジストを構成するポリマー、 PAG及 びクェンチヤ一の構成物質が、マスクブランク面内で均一に含まれておらず、ばらつ きを持って 、ることが一つの要因と考えられる。 Further, the in-plane CD variation (3σ) of the exposure mask produced with this mask blank force was 6.8 nm. This in-plane CD variation (3 σ) 6.8 nm does not satisfy the demand for next-generation semiconductor device pattern miniaturization (norf pitch 65 nm node) 5. lnm (in the case of a line-and-space pattern). It ’s nasty. The polymer, PAG, and quencher constituent materials that make up the chemically amplified resist with a high resist solution pressure on the substrate under the resist droplets are not evenly contained in the mask blank surface and vary. Having one of these is considered to be one factor.
(実施例 3〜4) (Examples 3 to 4)
上記実施例 1において、レジストの滴下位置を、薄膜付き基板の表面の中心から lc m (実施例 3)、 5cm (実施例 4)とした以外は実施例 1と同様にしてマスクブランクを作 製し、このマスクブランク力 露光用マスクを作製した。 A mask blank was produced in the same manner as in Example 1 except that the resist dropping position was set to 1 cm (Example 3) and 5 cm (Example 4) from the center of the surface of the substrate with the thin film. This mask blank force exposure mask was produced.
得られたマスクブランクにおけるレジスト膜の平均膜厚、面内膜厚均一性は、実施 例 1とほぼ同程度であった。
また、このマスクブランク力 作製された露光用マスクの面内 CDばらつき(3 σ )は 5 nm (実施例 3)、 4. 7nm (実施例 4)であった。この面内 CDばらつき(3 σ )は、次世 代における半導体デバイスのパターン微細化の要請 (ノヽーフピッチ 65nmノード)で ある 5. lnm (ラインアンドスペースパターンの場合)を満足するものであった。 The average film thickness and in-plane film thickness uniformity of the resist film in the obtained mask blank were almost the same as those in Example 1. The in-plane CD variation (3 σ) of the exposure mask produced with this mask blank force was 5 nm (Example 3) and 4.7 nm (Example 4). This in-plane CD variation (3 σ) satisfied 5. lnm (in the case of a line and space pattern), which is a demand for pattern miniaturization of semiconductor devices in the next generation (a node pitch of 65 nm).
(実施例 5〜6) (Examples 5 to 6)
上記実施例 4において、レジスト滴下時の基板回転数を 0. 5rpm (実施例 5)、上記 実施例 3にお 、てレジスト滴下時の基板の回転数を 50rpm (実施例 6)とした以外は 実施例 3、 4と同様にして、マスクブランクを作製し、このマスクブランク力も露光用マ スクを作製した。 In Example 4 above, the number of rotations of the substrate at the time of dropping the resist was 0.5 rpm (Example 5), and in Example 3 above, the number of rotations of the substrate at the time of dropping the resist was 50 rpm (Example 6). A mask blank was produced in the same manner as in Examples 3 and 4, and an exposure mask was produced with this mask blank force.
得られたマスクブランクにおけるレジスト膜の平均膜厚、面内膜厚均一性は、実施 例 1とほぼ同程度であった。 The average film thickness and in-plane film thickness uniformity of the resist film in the obtained mask blank were almost the same as those in Example 1.
また、このマスクブランク力 作製された露光用マスクの面内 CDばらつき(3 σ )は 4 . 8nm (実施例 5)、 5nm (実施例 6)であった。この面内 CDばらつき(3 σ )は、次世 代における半導体デバイスのパターン微細化の要請 (ノヽーフピッチ 65nmノード)で ある 5. lnm (ラインアンドスペースパターンの場合)を満足するものであった。 The in-plane CD variation (3σ) of the exposure mask produced with this mask blank force was 4.8 nm (Example 5) and 5 nm (Example 6). This in-plane CD variation (3 σ) satisfied 5. lnm (in the case of a line and space pattern), which is a demand for pattern miniaturization of semiconductor devices in the next generation (a node pitch of 65 nm).
尚、本件発明におけるレジスト滴下の最適条件 (基板回転中心からの距離が lcm 以上 5cm以下、基板回転数が 0. 5rpm以上 50rpm以下)から逸脱した条件にてレ ジスト液を滴下した場合においては、面内 CDばらつきが次世代における半導体デ バイスのパターン微細化の要請 (ノ、ーフピッチ 65nmノード)を満足するものが発生し たり、レジスト液が基板回転中心にいきわたらずに均一な膜厚のレジスト膜が形成さ れな 、ものが発生すると!/、う不具合が生じる結果となった。 In the case where the resist solution is dropped under the conditions deviating from the optimum resist dropping conditions in the present invention (distance from the substrate rotation center of 1 cm to 5 cm and substrate rotation speed of 0.5 rpm to 50 rpm), In-plane CD variation may occur to meet the demands for next-generation semiconductor device pattern miniaturization (node pitch: 65nm node), and resists with a uniform film thickness do not reach the substrate rotation center. When a film is not formed and something happens!
以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定され るものではない。例えば、レジスト塗布工程の滴下工程において使用されるノズル 22 を、薄膜付き基板 15の表面 19の中心 Oに対し対称な複数の位置にレジスト液 26を 滴下可能な、リング形状または馬蹄形状に形成して、薄膜付き基板 15の表面 19の 複数箇所にレジスト液 26を分散して滴下してもよい。また、レジスト塗布工程における 滴下工程においては、基板回転数を一定回転数とせず、低い回転数から高い回転 数へ、または高い回転数力も低い回転数へ連続的に、または段階的に変更させても
よい。 Although the present invention has been described based on the above embodiment, the present invention is not limited to this. For example, the nozzle 22 used in the dropping step of the resist coating step is formed in a ring shape or a horseshoe shape that can drop the resist solution 26 at a plurality of positions symmetrical to the center O of the surface 19 of the substrate 15 with a thin film. Then, the resist solution 26 may be dispersed and dropped at a plurality of locations on the surface 19 of the substrate 15 with a thin film. In addition, in the dropping step in the resist coating process, the substrate rotation speed is not set to a constant rotation speed, but is changed continuously or stepwise from a low rotation speed to a high rotation speed or a high rotation speed force from a low rotation speed. Also Good.
図面の簡単な説明 Brief Description of Drawings
[0060] [図 1]本発明に係るマスクブランクの製造方法の一実施形態におけるレジスト塗布ェ 程を実施するための回転塗布装置を示す側断面図である。 FIG. 1 is a side cross-sectional view showing a spin coating apparatus for performing a resist coating process in an embodiment of a mask blank manufacturing method according to the present invention.
[図 2]図 1の回転塗布装置を用いたレジスト塗布工程における基板の回転数と回転時 間との関係を示すグラフである。 2 is a graph showing the relationship between the number of rotations of a substrate and the rotation time in a resist coating process using the spin coater of FIG.
[図 3]図 1の薄膜付き基板を示す平面図である。 FIG. 3 is a plan view showing the thin film-coated substrate of FIG.
[図 4] (A)は、図 1の薄膜付き基板力も製造されたマスクブランクを示す断面図であり 、(B)は、図 4 (A)のマスクブランク力も製造された露光用マスクを示す断面図である [FIG. 4] (A) is a sectional view showing a mask blank in which the substrate force with a thin film of FIG. 1 is also manufactured, and (B) is an exposure mask in which the mask blank force of FIG. 4 (A) is also manufactured. It is a sectional view
[図 5]本発明に係るマスクブランクの製造方法における滴下工程の基板表面のレジス ト液の滴下状態を示す平面図であって、(A)は、レジスト液の滴下開始時点のレジス ト液の滴下状態及び、レジスト液の滴下軌跡を示す平面図、(B)は、レジスト液の滴 下開始力 滴下終了まで行った後のレジスト液滴下終了時点のレジスト液の滴下状 態を示す平面図であり、(C)は、基板表面にレジスト液を滴下し終わって、基板中央 近傍にレジスト溜りを形成した状態を示す平面図である。 FIG. 5 is a plan view showing a state of the resist solution dripping on the substrate surface in the dropping step in the mask blank manufacturing method according to the present invention, in which (A) shows the resist solution at the start of the dropping of the resist solution. FIG. 5B is a plan view showing a dropping state and a dropping trajectory of the resist solution, and FIG. 5B is a plan view showing a dropping state of the resist solution at the time when the resist liquid is dropped after the completion of dropping. (C) is a plan view showing a state in which a resist pool is formed in the vicinity of the center of the substrate after the resist solution has been dropped onto the substrate surface.
符号の説明 Explanation of symbols
[0061] 10 マスクブランク [0061] 10 mask blank
11 基板 11 Board
13 マスクパターン 13 Mask pattern
14 薄膜 14 Thin film
15 薄膜付き基板 15 Substrate with thin film
16 レジスト膜 16 Resist film
16b 勾玉状レジスト液 16b Jade-shaped resist solution
18 露光用マスク 18 Exposure mask
19 表面 19 Surface
20 回転塗布装置
26 レジスト液 O 中心 Q 偏心位置
20 spin coater 26 Resist solution O center Q Eccentric position
Claims
[1] ノズル力 レジスト液を基板表面に滴下する際、基板表面におけるレジスト液の滴 下位置が異なった位置になるように勾玉状に滴下した後、この滴下したレジスト液を 広がらせて基板中央近傍にレジスト溜りを形成し、このレジスト溜りを遠心力によって 基板表面の周辺部に拡散させ、その後、乾燥させてレジスト膜を形成することを特徴 とするマスクブランクの製造方法。 [1] Nozzle force When the resist solution is dropped onto the substrate surface, the resist solution is dropped onto the surface of the substrate so that the resist solution drops at different positions, and then the dropped resist solution is spread to center the substrate. A method for manufacturing a mask blank, comprising: forming a resist pool in the vicinity, diffusing the resist pool to a peripheral portion of the substrate surface by centrifugal force, and then drying to form a resist film.
[2] 上記レジスト液の滴下位置が時間の経過と共に異なった位置になるように、上記基 板とレジスト液を滴下するノズルを相対的に移動させることを特徴とする請求項 1記載 のマスクブランクの製造方法。 [2] The mask blank according to claim 1, wherein the substrate and the nozzle for dropping the resist solution are relatively moved so that the dropping position of the resist solution becomes a different position as time passes. Manufacturing method.
[3] 上記ノズルカゝらレジスト液を基板表面に滴下する際、レジスト液滴下位置の基板回 転中心からの距離と、基板とノズルの相対移動速度を調整して勾玉状にレジスト液を 滴下することを特徴とする請求項 1又は 2記載のマスクブランクの製造方法。 [3] When the resist solution is dropped onto the substrate surface from the nozzle cover, the resist solution is dropped in the shape of a slant by adjusting the distance from the substrate rotation center below the resist droplet and the relative movement speed of the substrate and the nozzle. The method for producing a mask blank according to claim 1 or 2, wherein:
[4] ノズル力もレジスト液を基板表面に滴下する際、レジスト液が基板表面に滴下した 位置にお 、て他の位置と比べてレジストの高感度化を抑制するように、レジスト液滴 下位置の基板回転中心力ゝらの距離と、基板の回転数を以下の範囲で調整してレジス ト液を滴下し、この滴下したレジスト液を広がらせて基板中央部近傍にレジスト溜りを 形成し、このレジスト溜りを遠心力によって基板表面の周辺部に拡散させ、その後、 乾燥させてレジスト膜を形成することを特徴とするマスクブランクの製造方法。 [4] When the resist solution is dropped onto the substrate surface, the nozzle force is also positioned below the resist droplet so that the resist solution is less sensitive to the position where the resist solution is dropped onto the substrate surface than at other locations. Adjust the distance of the substrate rotation central force and the number of rotations of the substrate within the following range, drop the resist solution, spread the dropped resist solution to form a resist pool near the center of the substrate, A resist blank is formed by diffusing the resist pool to the periphery of the substrate surface by centrifugal force, and then drying to form a resist film.
レジスト液滴下位置の基板回転中心からの距離: lcm以上 5cm以下 Distance from the substrate rotation center under the resist droplet: lcm or more and 5cm or less
基板の回転数: 0. 5rpm以上 50rpm以下 Board rotation speed: 0.5rpm or more and 50rpm or less
[5] 四角形状の基板上にレジスト液を塗布してレジスト膜を形成するレジスト塗布工程 を有するマスクブランクの製造方法であって、 [5] A mask blank manufacturing method comprising a resist coating step of forming a resist film by coating a resist solution on a rectangular substrate,
上記レジスト塗布工程は、 The resist coating process
上記基板の表面にレジスト液を滴下して広げる滴下工程と、 A dropping step in which a resist solution is dropped on the surface of the substrate and spread;
滴下されたレジスト液を上記基板表面の全面に均一に広げて、均一な膜厚のレジ スト膜を形成する均一化工程と、 A uniformizing step of uniformly spreading the dropped resist solution over the entire surface of the substrate to form a resist film having a uniform thickness;
均一な膜厚に形成されたレジスト膜を乾燥する乾燥工程とを有し、 A drying step of drying the resist film formed in a uniform film thickness,
上記滴下工程は、必要な膜厚が得られる所定量以上のレジスト液をノズルカゝら滴下
する際、レジスト液が基板表面に滴下した位置にぉ 、て他の位置と比べてレジストの 高感度化を抑制するように、レジスト液滴下位置の基板回転中心からの距離と、基板 の回転数を以下の範囲で調整して、上記基板の表面にレジスト液を分散して滴下す ることを特徴とするマスクブランクの製造方法。 In the dropping step, a predetermined amount or more of a resist solution that gives the required film thickness is dropped from the nozzle cover. When the resist solution is dropped onto the substrate surface, the distance from the substrate rotation center at the position below the resist droplet and the number of rotations of the substrate so that the sensitivity of the resist is suppressed compared with other positions. Is adjusted within the following range, and a resist solution is dispersed and dropped on the surface of the substrate.
レジスト液滴下位置の基板回転中心からの距離: lcm以上 5cm以下 Distance from the substrate rotation center under the resist droplet: lcm or more and 5cm or less
基板の回転数: 0. 5rpm以上 50rpm以下 Board rotation speed: 0.5rpm or more and 50rpm or less
[6] 前記レジスト液が、化学増幅型レジストからなることを特徴とする請求項 1乃至 5の 何れかに記載のマスクブランクの製造方法。 [6] The mask blank manufacturing method according to any one of [1] to [5], wherein the resist solution is made of a chemically amplified resist.
[7] 前記基板は、基板上にマスクパターンとなる薄膜を形成した薄膜付き基板であるこ とを特徴とする請求項 1乃至 6の何れかに記載のマスクブランクの製造方法。 7. The method for manufacturing a mask blank according to any one of claims 1 to 6, wherein the substrate is a substrate with a thin film in which a thin film serving as a mask pattern is formed on the substrate.
[8] 前記薄膜は、クロムを含む材料力 なることを特徴とする請求項 7記載のマスクブラ ンクの製造方法。 8. The method of manufacturing a mask blank according to claim 7, wherein the thin film has a material force including chromium.
[9] 請求項 1乃至 8の何れかに記載のマスクブランクの製造方法によって製造されたマ スタブランクのレジスト膜をパターユングしてレジストパターンを形成し、このレジストパ ターンをマスクにしてマスクノ ターンを形成して露光用マスクを製造することを特徴と する露光用マスクの製造方法。
[9] A resist pattern of the master blank manufactured by the mask blank manufacturing method according to any one of claims 1 to 8 is patterned to form a resist pattern, and the mask pattern is formed using the resist pattern as a mask. An exposure mask manufacturing method characterized by forming an exposure mask.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-219081 | 2005-07-28 | ||
JP2005219081 | 2005-07-28 | ||
JP2006204000A JP2007058200A (en) | 2005-07-28 | 2006-07-26 | Mask blank manufacturing method and exposure mask manufacturing method |
JP2006-204000 | 2006-07-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007013540A1 true WO2007013540A1 (en) | 2007-02-01 |
Family
ID=37683431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/314832 WO2007013540A1 (en) | 2005-07-28 | 2006-07-27 | Mask blank fabrication method and exposure mask fabrication method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2007058200A (en) |
KR (1) | KR20080034004A (en) |
TW (1) | TW200710561A (en) |
WO (1) | WO2007013540A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5332249B2 (en) | 2007-06-05 | 2013-11-06 | 旭硝子株式会社 | Glass substrate polishing method |
JP4748192B2 (en) * | 2008-08-07 | 2011-08-17 | 東京エレクトロン株式会社 | Coating device, coating method, coating, developing device and storage medium |
JP5327238B2 (en) * | 2011-01-20 | 2013-10-30 | 東京エレクトロン株式会社 | Coating processing apparatus, coating processing method, and storage medium |
JP5682521B2 (en) * | 2011-09-14 | 2015-03-11 | 東京エレクトロン株式会社 | Perimeter coating apparatus, peripheral coating method, and storage medium |
KR102239197B1 (en) * | 2012-09-13 | 2021-04-09 | 호야 가부시키가이샤 | Method for manufacturing mask blank and method for manufacturing transfer mask |
KR102167485B1 (en) * | 2012-09-13 | 2020-10-19 | 호야 가부시키가이샤 | Mask blank manufacturing method and a method of manufacturing mask for transfer |
KR102298087B1 (en) * | 2013-07-26 | 2021-09-02 | 세메스 주식회사 | Method for coating photo-resist |
JP6318012B2 (en) * | 2014-06-04 | 2018-04-25 | 株式会社Screenホールディングス | Substrate processing method |
JP5931230B1 (en) | 2015-01-15 | 2016-06-08 | 東京エレクトロン株式会社 | Liquid processing method, liquid processing apparatus, and recording medium. |
JPWO2017195549A1 (en) * | 2016-05-13 | 2019-03-07 | 東京エレクトロン株式会社 | Coating film forming apparatus, coating film forming method, and storage medium |
KR102414893B1 (en) * | 2016-12-02 | 2022-06-30 | 도쿄엘렉트론가부시키가이샤 | Substrate processing apparatus, substrate processing method and recording medium |
CN111505906B (en) * | 2020-06-10 | 2023-09-05 | 沈阳芯源微电子设备股份有限公司 | Gluing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61244029A (en) * | 1985-04-22 | 1986-10-30 | Toshiba Mach Co Ltd | Prevention of uneven spin coating and spin coater |
JPH05259049A (en) * | 1992-03-10 | 1993-10-08 | Kawasaki Steel Corp | Spin coating on semiconductor substrate |
JP2005021803A (en) * | 2003-07-02 | 2005-01-27 | Fuji Electric Device Technology Co Ltd | Method for rotary coating and method for manufacturing semiconductor device using it |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57130570A (en) * | 1981-02-04 | 1982-08-13 | Hitachi Ltd | Spinner coating method and apparatus |
JPS59109273A (en) * | 1982-12-15 | 1984-06-23 | Matsushita Electric Ind Co Ltd | Nozzle for rotary coater |
JPH0521306A (en) * | 1991-07-11 | 1993-01-29 | Canon Sales Co Inc | Method and device for applying resist to substrate |
JP3337150B2 (en) * | 1993-01-20 | 2002-10-21 | シャープ株式会社 | Spin type coating equipment |
JPH0780387A (en) * | 1993-09-14 | 1995-03-28 | Nordson Kk | Spin coating method for liquid and device therefor |
JPH07335532A (en) * | 1994-06-13 | 1995-12-22 | Fujitsu Ltd | Method for spin coating of resin |
JPH09319094A (en) * | 1996-05-27 | 1997-12-12 | Mitsubishi Electric Corp | Spin coating method and spin coating device |
JP4022282B2 (en) * | 1997-04-07 | 2007-12-12 | 大日本スクリーン製造株式会社 | Coating device |
WO1998057757A1 (en) * | 1997-06-16 | 1998-12-23 | Massachusetts Institute Of Technology | High efficiency photoresist coating |
JPH11207250A (en) * | 1998-01-23 | 1999-08-03 | Tokyo Electron Ltd | Film forming method |
JP3338804B2 (en) * | 1999-08-31 | 2002-10-28 | 秋田日本電気株式会社 | Resist coating apparatus and method |
JP4353626B2 (en) * | 2000-11-21 | 2009-10-28 | 東京エレクトロン株式会社 | Coating method and coating apparatus |
JP2006108433A (en) * | 2004-10-06 | 2006-04-20 | Sharp Corp | Manufacturing method of semiconductor device |
-
2006
- 2006-07-26 JP JP2006204000A patent/JP2007058200A/en active Pending
- 2006-07-27 KR KR1020087004668A patent/KR20080034004A/en not_active Application Discontinuation
- 2006-07-27 WO PCT/JP2006/314832 patent/WO2007013540A1/en active Application Filing
- 2006-07-28 TW TW095127675A patent/TW200710561A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61244029A (en) * | 1985-04-22 | 1986-10-30 | Toshiba Mach Co Ltd | Prevention of uneven spin coating and spin coater |
JPH05259049A (en) * | 1992-03-10 | 1993-10-08 | Kawasaki Steel Corp | Spin coating on semiconductor substrate |
JP2005021803A (en) * | 2003-07-02 | 2005-01-27 | Fuji Electric Device Technology Co Ltd | Method for rotary coating and method for manufacturing semiconductor device using it |
Also Published As
Publication number | Publication date |
---|---|
KR20080034004A (en) | 2008-04-17 |
JP2007058200A (en) | 2007-03-08 |
TW200710561A (en) | 2007-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007013540A1 (en) | Mask blank fabrication method and exposure mask fabrication method | |
KR101045177B1 (en) | Mask blanks and method of producing the same | |
JPH0669114A (en) | Formation method of photoresist film on semiconductor substrate, photoresist solution used for it and surface antireflection film | |
US5413898A (en) | Method of forming a pattern on a substrate having a step change in height | |
KR100964772B1 (en) | Method and apparatus for producing a photo mask blank, and apparatus for removing an unnecessary portion of a film | |
TWI619143B (en) | Manufacturing method of mask base and manufacturing method of transfer mask (2) | |
US4621042A (en) | Absorptive planarizing layer for optical lithography | |
US6040118A (en) | Critical dimension equalization across the field by second blanket exposure at low dose over bleachable resist | |
JP4629396B2 (en) | Mask blank manufacturing method and transfer mask manufacturing method | |
CN1761913B (en) | Method of manufacturing mask blank | |
JP7280869B2 (en) | High-definition pattern manufacturing method and display element manufacturing method using the same | |
JPS59178729A (en) | Controlling method of photoresist process | |
KR100366615B1 (en) | Spinner Apparatus With Chemical Supply Nozzle, Method Of Forming Pattern And Method Of Etching Using The Same | |
KR100291331B1 (en) | Apparatus for fabricating semiconductor device and method for forming pattern of semiconductor device | |
US7816070B2 (en) | Substrate used for immersion lithography process, method of manufacturing substrate used for immersion lithography process, and immersion lithography | |
US20060134559A1 (en) | Method for forming patterns on a semiconductor device | |
CN111247624A (en) | Method for manufacturing fine pattern and method for manufacturing display device using the same | |
KR100464654B1 (en) | Method for forming contact hole of semiconductor device | |
KR101107346B1 (en) | Method Of Fabricating Photoresist | |
JPH0745498A (en) | Formation of antireflection and antiinterference resin film | |
CN116430690A (en) | Photoetching developing method and semiconductor structure | |
JPS58122726A (en) | Manufacture of semiconductor element by close control of resist dimension | |
KR100772245B1 (en) | Method for coating photo-resist | |
JP2011158814A (en) | Method and device for manufacturing pellicle film | |
JPH04264714A (en) | Resist application method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087004668 Country of ref document: KR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06781743 Country of ref document: EP Kind code of ref document: A1 |