WO2007013386A1 - Method for inspecting semiconductor device, semiconductor device, semiconductor integrated circuit, method and equipment for testing semiconductor integrated circuit - Google Patents
Method for inspecting semiconductor device, semiconductor device, semiconductor integrated circuit, method and equipment for testing semiconductor integrated circuit Download PDFInfo
- Publication number
- WO2007013386A1 WO2007013386A1 PCT/JP2006/314549 JP2006314549W WO2007013386A1 WO 2007013386 A1 WO2007013386 A1 WO 2007013386A1 JP 2006314549 W JP2006314549 W JP 2006314549W WO 2007013386 A1 WO2007013386 A1 WO 2007013386A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inspection
- semiconductor integrated
- integrated circuit
- semiconductor
- circuit
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
Definitions
- the present invention provides a semiconductor device, an inspection method thereof, and an inspection apparatus. More specifically, an inspection method for a semiconductor device, a semiconductor device, and a semiconductor that can eliminate the inspection process at a fixed location by allocating the inspection process at a conventional fixed location to a process such as transportation and standby.
- the present invention relates to a test method and a test apparatus for integrated circuits and semiconductor integrated circuits.
- FIG. 54 shows the conventional semiconductor product diffusion completion 101 to product shipment 108.
- the PCM measurement process 104, the wafer condition inspection process 105, the assembly process 106, and the knock condition inspection process 107 are shown in 2100.
- Patent Document 1 US20020171449A1 (TEST SYSTEM AND MANUFACTURING OF SEMI CONDUCTOR DEVICE)
- Patent Document 2 US65945834Al (SEMICONDUCTOR WAFER PACKAGE.METHOD AN D APPARATUS FORCONNECTING TESTING IC TERMINALS OF SEMICONDUC TOR WAFER AND PROBE TERMINALS, TESTING
- Patent Document 3 US20010046168A1 (STRUCTURES FOR WAFER LEVEL TEST AND B URN- IN
- the conventional inspection circuit does not have a circuit for storing the progress of the inspection, if the inspection is interrupted due to some power interruption, it is difficult to perform the subsequent inspection.
- the inspection standard for determining the semiconductor device to be inspected may vary depending on the elapsed time from the end of a specific inspection to the start of the next inspection, from the end of a specific inspection to the start of the next inspection It is necessary to manage the elapsed time.
- a semiconductor inspection apparatus for inspecting a semiconductor device is installed at a specific location, and since the semiconductor inspection apparatus itself that can measure a plurality of semiconductor integrated circuits is large, it is difficult to move the semiconductor inspection apparatus. is there. Further, inspection is impossible in a place where there is no power supply source.
- the antenna of the radio wave transmission / reception circuit used in a non-contact state increases the chip area or the number of manufacturing. End up.
- an object of the present invention is to provide a semiconductor device inspection method, a semiconductor device, a semiconductor integrated circuit, a semiconductor integrated circuit test method, and a test apparatus that solve the above-described problems.
- a semiconductor device inspection method includes a wafer transfer process, a standby process, an assembly process, and an assembly process from completion of diffusion of a semiconductor product to shipment. Including at least one of the product transfer processes, the wafer state inspection process and the package state inspection process are distributed during any of the processes.
- a semiconductor device is a semiconductor device having an inspection device for carrying out the semiconductor device inspection method according to claim 1 in a semiconductor integrated circuit, and the inspection device is any of the following: Record inspection progress information when inspection is completed during the process or when inspection during the process is interrupted, and the inspection in the process can be continued by referring to the inspection progress information Have means.
- the inspection progress information is stored, and if the interruption does not occur, the inspection is continued. If the test is applicable, store the progress information, and if the test is not applicable, continue the test. If it falls within a certain period of inspection, the test progress information is stored, and if it does not fall within a certain period of inspection, the inspection is continued. After the inspection progress information is stored, if the inspection is completed, the inspection is terminated. If not, the inspection is continued.
- a semiconductor device is the semiconductor device according to the second aspect, wherein the inspection is performed by the inspection device by supplying power to the semiconductor integrated circuit.
- the semiconductor device according to claim 4 is the semiconductor device according to claim 3, wherein the inspection device is
- the semiconductor device according to claim 5 is the semiconductor device according to claim 4, wherein the inspection device uses a RAM.
- the semiconductor device according to claim 6 is the semiconductor device according to claim 3, wherein the inspection device stores software for inspecting the external force of the semiconductor integrated circuit in the nonvolatile semiconductor memory inside the semiconductor integrated circuit. Transfer to device.
- the semiconductor device according to claim 7 uses a fuse as storage means for storing the inspection progress information in the semiconductor device according to claim 2.
- the semiconductor device according to claim 8 uses a non-volatile semiconductor memory device as storage means for storing the inspection progress information in the semiconductor device according to claim 2.
- the semiconductor device according to claim 9 is the semiconductor device according to claim 2, and has means for storing the inspection progress information outside.
- the semiconductor device according to claim 10 uses the semiconductor memory device provided on the device for supplying power as the memory means for storing the inspection progress information in the semiconductor device according to claim 9. .
- the inspection progress information is a ROM address or a RAM address.
- a semiconductor device is the semiconductor device according to claim 2 or 9, wherein the semiconductor integrated circuit includes a counter and stores inspection progress information at a constant period.
- a semiconductor device according to claim 13 is the semiconductor device according to claim 2 or 9, wherein the inspection progress information is stored in accordance with the time of the inspection.
- the semiconductor device according to claim 14 is the semiconductor device according to claim 2 or 9, wherein the test progress information is fed when the power-off signal output to the semiconductor integrated circuit is activated. .
- a semiconductor device according to claim 15 is the semiconductor device according to claim 2 or 9, wherein the semiconductor device has a detection circuit at a power supply terminal in the semiconductor integrated circuit. Store information.
- the detection circuit detects the power supply level supplied to the power supply terminal.
- the inspection progress information is stored.
- the inspection of the circuit to be inspected is interrupted.
- the semiconductor device according to claim 16 is the semiconductor device according to claim 2, wherein the power supply path in the semiconductor integrated circuit has a capacitance, and the power supply path from the outside when the power supply is unexpectedly interrupted. Is shut off, the power supply path of the electrostatic capacitance in the semiconductor integrated circuit is opened, and the inspection progress information is stored in the meantime. [0034] In this case, when inspecting the semiconductor integrated circuit, the detection circuit detects the power level supplied to the power supply terminal, and when the level falls below the power determination level, the power path of the external force is cut off. Select the capacitance.
- the semiconductor device according to claim 17 is the semiconductor device according to claim 2, wherein the power source path outside the semiconductor integrated circuit has a capacitance, which is unexpected! The power path of the power-on device is cut off, the electrostatic capacity power path outside the semiconductor integrated circuit is opened, and the inspection progress information is stored during that time.
- the detection circuit detects the power level supplied to the power supply terminal. When the level falls below the power determination level, the power path of the external force is cut off, Select the capacitance.
- a semiconductor device according to claim 18 is the semiconductor device according to claim 17, wherein a package covering the semiconductor integrated circuit is provided with a capacitance.
- the detection circuit detects the power level supplied to the power supply terminal.
- the level is lower than the power determination level, the power path of the external force is shut off, and the package static electricity is detected. Select the capacitance.
- the semiconductor device according to claim 19 is the semiconductor device according to claim 2, wherein the inspection execution time is managed, the elapsed time is grasped by comparing the inspection execution time before and after each inspection, Is variable.
- the inspection execution time is taken from the outside of the semiconductor integrated circuit to the inside, the time information is stored, the time information taken at the next inspection is taken into the semiconductor integrated circuit, and the time information before and after the taking is obtained. By subtracting, it is possible to select inspection judgment information according to the elapsed time stored in the internal memory.
- a semiconductor device is the semiconductor device according to claim 19, further comprising a circuit for storing the inspection execution time of each inspection and comparing the inspection execution time of the next inspection outside the semiconductor device circuit.
- the semiconductor integrated circuit external force elapsed time information is transferred.
- a circuit for storing the start (end) time of each inspection according to claim 19 and comparing the start (end) time of the next inspection is provided in the semiconductor inspection apparatus, and the elapsed time information is stored in the semiconductor. Accumulation Realized by transferring to the circuit.
- a semiconductor device is the semiconductor device according to claim 19, further comprising a circuit in the semiconductor device circuit that stores the inspection execution time of each inspection and compares the inspection execution time of the next inspection.
- the elapsed time information is stored inside the semiconductor integrated circuit.
- the circuit is realized by storing a circuit for storing the start (end) time of each inspection according to claim 19 and comparing the start (end) time of the next inspection in the semiconductor integrated circuit.
- a semiconductor device according to claim 22 is the semiconductor device according to claim 3, wherein an inspection device including an RF transmitter is used as means for supplying power to the semiconductor integrated circuit. It is converted to a power source by transmitting radio waves to the RF receiver equipped in
- the semiconductor inspection apparatus and the semiconductor integrated circuit are brought into contact with each other by transmitting radio waves and supplying power to the RF power receiver installed in the semiconductor device and the semiconductor integrated circuit using the RF power supply. It is possible to inspect multiple semiconductor devices at the same time, reduce the function of the extra semiconductor inspection device, and reduce the weight and size of the device itself.
- the semiconductor device according to claim 23 is the semiconductor device according to claim 6, wherein the memory card is inspected as means for externally inputting software for automatically inspecting the semiconductor integrated circuit.
- the test program stored in the memory card is transferred into the test target semiconductor integrated circuit, and the test is executed.
- the semiconductor device according to claim 24 is an RF transmitter as a means for inputting external power to the semiconductor device according to claim 6 for automatically inspecting the semiconductor integrated circuit.
- the inspection program is transferred to the inside of the semiconductor integrated circuit to be inspected by transmitting the electric wave to the RF receiver provided in the semiconductor integrated circuit, and the inspection is executed.
- the semiconductor device according to claim 25 automatically inspects the substrate, a plurality of semiconductor integrated circuits formed on the surface of the substrate at once, and the power supply of the semiconductor integrated circuit collectively. 4.
- the semiconductor device according to claim 26 is the semiconductor device according to claim 24, wherein the RF receiver coil is provided on the back surface of the substrate, and the power supply wiring is provided on the substrate surface through the through hole. Connect to.
- the semiconductor device according to claim 27 is automatically inspected by collectively supplying a substrate, a plurality of semiconductor integrated circuits formed on the surface of the substrate at once, and a power supply of the semiconductor integrated circuits. 4.
- the semiconductor device according to claim 28 automatically inspects the substrate, the plurality of semiconductor integrated circuits formed on the surface of the substrate at once, and the power supply of the semiconductor integrated circuit collectively. 4.
- a volatile register, power supply wiring, and an antifuse arranged between all the semiconductor integrated circuits formed on the substrate are provided, and it is determined whether or not the antifuse can be blown depending on the contents of the volatile register. This makes it possible to identify good and defective semiconductor integrated circuits.
- the semiconductor device according to claim 29 is automatically inspected by collectively supplying a substrate, a plurality of semiconductor integrated circuits formed on the surface of the substrate at once, and a power supply of the semiconductor integrated circuits. 4.
- a semiconductor device is the temperature sensor for detecting the temperature at the time of writing or erasing of the semiconductor storage device and the semiconductor storage device in the semiconductor device according to claim 3.
- the test data storage area that stores the test circuit information, the test temperature information, the write / erase temperature information at the time of inspection of the test data storage area, and the temperature information at the time of read of the write / erase level judgment test
- an inspection standard changing circuit for changing the standard of the temperature sensor, automatically storing the temperature of the temperature sensor circuit in the semiconductor memory device, and automatically correcting the inspection standard according to the temperature.
- a semiconductor integrated circuit according to claim 31 is a semiconductor integrated circuit having an inspection device using the method for inspecting a semiconductor device according to claim 1, and includes a power supply pad, a ground pad, and a self-test circuit, The pad and ground pad are used in combination with the signal pins, and the self test circuit performs a self test with the input / output signals superimposed on the power and ground pads.
- a semiconductor integrated circuit according to claim 32 is a semiconductor integrated circuit having an inspection device using the method for inspecting a semiconductor device according to claim 1, and includes an optical power conversion element, and driving power is external. It is supplied by selective irradiation to the optical power conversion element by convergent light.
- a semiconductor collector that includes an optical power conversion element such as a PN junction, and that can irradiate the optical power conversion element with converging light such as an external laser to supply power without contact.
- the method for testing a semiconductor integrated circuit according to claim 33 is the method for testing a semiconductor integrated circuit according to claim 32, wherein the convergent light is cut off to the semiconductor integrated circuit determined to be defective during the test. Exclude from subsequent tests.
- a semiconductor integrated circuit according to claim 34 is a semiconductor integrated circuit having an inspection apparatus using the method for inspecting a semiconductor device according to claim 1, comprising an optical power conversion element and a light emitting element, and an optical power
- the conversion element is responsible for supplying drive power and receiving external data
- the light emitting element is responsible for transmitting internal data.
- a semiconductor integrated circuit test apparatus is the semiconductor integrated circuit test apparatus according to claim 34, and has a light receiving sensor element for data reception, and functions of power supply and data transmission.
- a plurality of laser light sources, and the semiconductor integrated circuit is contactlessly tested in a wafer state. Strike.
- a semiconductor integrated circuit according to claim 37 is a semiconductor integrated circuit having an inspection device using the method for inspecting a semiconductor device according to claim 1, and includes an optical power conversion element and a wireless data transmission circuit,
- the optical power conversion element is responsible for supplying drive power and receiving external data
- the wireless data transmission circuit is responsible for transmitting internal data.
- an optical power conversion element such as a PN junction responsible for supply of drive power and reception of external data and a wireless data transmission circuit responsible for transmission of internal data are provided, and the output of the semiconductor integrated circuit power is provided.
- a semiconductor integrated circuit that enables high-speed reading when performed wirelessly, realizes high-speed and high-SN communication through data input using optical input, and enables wireless contactless testing that functions with the smallest antenna. It is.
- a semiconductor integrated circuit according to claim 38 is a semiconductor integrated circuit having an inspection device using the method for inspecting a semiconductor device according to claim 1, comprising a photoelectric power conversion element and a wireless data transmission circuit, and an optical device.
- the power conversion element is only responsible for supplying drive power
- the wireless data transmission circuit is responsible for transmission and reception of internal data.
- the convergence of the convergence light of the test apparatus can be modulated.
- a photoelectric power conversion element such as a PN junction that is responsible only for the supply of drive power
- a wireless data transmission circuit that is responsible for transmission and reception of internal data
- the wireless data transmission circuit transmits an identification ID unique to the semiconductor integrated circuit.
- the method for testing a semiconductor integrated circuit according to claim 40 is the method for testing a semiconductor integrated circuit according to claim 37, wherein the wireless data transmission circuit transmits a unique identification ID to the semiconductor integrated circuit.
- the identification ID is set via the optical power conversion element.
- the method for testing a semiconductor integrated circuit according to claim 41 is the method for testing a semiconductor integrated circuit according to claim 38, wherein the wireless data transmission circuit transmits a unique identification ID to the semiconductor integrated circuit.
- the identification ID is selected based on whether the photoelectric conversion element is irradiated with convergent light, and is set via wireless.
- the semiconductor integrated circuit according to claim 42 is the semiconductor integrated circuit according to claim 39.
- different or unique identification IDs are formed in advance in the process steps for each chip in the wafer of the semiconductor integrated circuit.
- a semiconductor integrated circuit test apparatus is the semiconductor integrated circuit test apparatus according to claim 37, wherein the wireless data reception apparatus for receiving data, power supply, and data transmission are provided.
- the semiconductor integrated circuit is tested in a contactless manner in the wafer state.
- a test apparatus for a semiconductor integrated circuit according to claim 44 is the test apparatus for a semiconductor integrated circuit according to claim 38, and includes a plurality of radio data transmitting / receiving apparatuses for transmitting and receiving data, and a plurality of units for supplying power.
- the semiconductor integrated circuit is tested in a non-contact state in a wafer state.
- any one of a wafer transfer process, a standby process, an assembly process, and an assembly transfer process that exists between product diffusion and shipment By performing the inspection by assigning the wafer state inspection process and the package state inspection process to these processes, the inspection time can be apparently “0” and the inspection cost can be reduced to zero.
- the inspection place is fixed because the inspection progress information is stored even when the inspection is interrupted in the middle or across the process.
- inspection can be performed in any process, the inspection process can be reduced, and the inspection cost can be reduced to zero.
- all the inspections can be completed only by turning on the power to the inspection circuit.
- the use of a mask ROM leads to a low manufacturing cost.
- the use of RAM makes it possible to read out the inspection program at a high speed, thereby shortening the inspection time.
- the inspection program can be divided and transferred to the nonvolatile semiconductor memory device in the semiconductor integrated circuit.
- the area can be reduced by using a rewritable nonvolatile semiconductor memory device as a memory means for storing the inspection progress information.
- the semiconductor integrated circuit since the inspection progress information is stored outside, the semiconductor integrated circuit can be reduced in area.
- the semiconductor integrated circuit is provided. Can be small area.
- the semiconductor integrated circuit can be reduced in area.
- the inspection progress information since the inspection progress information is stored at a constant cycle, the inspection progress information can be read and the inspection can be continued.
- the inspection progress information since the inspection progress information is stored at the time of the inspection, the inspection progress information can be read and the inspection can be continued.
- the inspection progress information since the inspection progress information is stored when the power-off signal is activated, the inspection progress information can be read and the inspection can be continued.
- the semiconductor device of the fifteenth aspect of the present invention even if the power supply is interrupted in the middle, erroneous writing of the detection progress information can be prevented, and the inspection can be performed without degrading the inspection quality.
- the inspection can be continued by using the capacitance in the semiconductor integrated circuit even if the power supply is interrupted in the middle.
- the inspection can be continued by using the capacitance outside the semiconductor integrated circuit. Further, since the electrostatic capacity is outside the semiconductor integrated circuit, the capacity can be increased. Furthermore, the chip area can be reduced.
- the inspection can be continued by using the capacitance of the package. Further chip area Can be suppressed.
- the semiconductor device of claim 19 of the present invention even when the inspection is executed at an arbitrary time between a plurality of processes, the time at which the inspection is executed is stored, and the difference is calculated. It is possible to grasp the elapsed time information and automatically change the inspection standard according to the elapsed time to prevent margin of the inspection standard and to prevent a decrease in yield.
- the semiconductor device of claim 20 of the present invention by providing the semiconductor inspection apparatus itself with a circuit for subtracting the elapsed time from the previous inspection to the next inspection, the time management of the entire semiconductor device is performed. And the circuit area of the semiconductor integrated circuit itself can be reduced.
- the semiconductor device of claim 21 of the present invention by providing the semiconductor integrated circuit with a circuit for subtracting the elapsed time from the previous test to the next test, the time management of the semiconductor integrated circuit alone In addition, it is possible to reduce useless terminals that do not need to transmit a signal for storing the inspection time outside the semiconductor integrated circuit.
- the semiconductor device of claim 22 of the present invention since the power is supplied to the semiconductor device using the RF power supply, the terminal of the semiconductor integrated circuit and the semiconductor inspection device do not come into contact with each other.
- the size of the inspection apparatus can be reduced, and a plurality of semiconductor devices can be accommodated.
- the size of the semiconductor inspection apparatus is small, it can be easily carried and inspected while moving. Furthermore, by using a single battery as the power source for the RF power supply, it is possible to inspect even where there is no power source.
- a memory card that can be attached to the semiconductor inspection apparatus is used for the program for operating the BIST circuit included in the semiconductor integrated circuit.
- the developer can easily change the program, and the inspection program can be changed and the program can be changed when analyzing and evaluating during mass production.
- the semiconductor device of claim 24 of the present invention even if the power supply means is performed in a non-contact manner by transferring an inspection program into the semiconductor integrated circuit using an RF transmitter, the semiconductor device There is no need to make contact with the input / output pad that does not route wiring for transferring the inspection program to the device and the semiconductor integrated circuit.
- the antifuse is provided between the power supply wiring and all the semiconductor integrated circuits formed on the substrate, so that the power supply is short-circuited.
- a defective semiconductor integrated circuit such as a power supply short circuit is disconnected from the common power supply wiring, and a drop in power supply voltage of a good semiconductor integrated circuit can be prevented.
- an RF coil is formed on the back surface of the substrate to receive a radio wave transmitted from the radio wave transmitter, and a voltage is supplied to the power supply wiring on the substrate surface.
- a test data storage area for storing inspection PASS / FAIL information, and a volatile memory for transferring the PASS / FAIL information stored in the test data storage area.
- a P / N junction element that determines whether or not to pass a P / N junction current depending on the contents of the volatile register and PASS / FAIL information without sending the result of automatic inspection to an external device.
- only non-defective products can be assembled in an assembly system (not shown) equipped with an emission device as it is after non-contact inspection.
- the emission pattern due to the heat of the diode in the P / N junction element on the semiconductor integrated circuit formed on the substrate by the emission device is taken for each substrate, and only non-defective products are diced according to the information. After picking up the product, it is possible to assemble only good products.
- a test data storage area for storing inspection PASS / FAIL information and a volatile memory for transferring the PASS / FAIL information stored in the test data storage area.
- test data storage area for storing inspection PASS / FAIL information, and a volatile memory for transferring the PASS / FAIL information stored in the test data storage area.
- a temperature detection circuit that detects a temperature at the time of inspection, a test data storage area that stores information such as an inspection temperature, and an inspection of the test data storage area It is equipped with an inspection standard changing circuit that changes the inspection standard based on the temperature information at the time of writing / erasing and the temperature information at the time of reading of the writing / erasing level judgment inspection, so that it can be stored at the time of transportation or in the warehouse. Inspection at a place where temperature control is not possible is possible.
- the semiconductor integrated circuit can be tested with the minimum number of contacts of the power supply pad and the ground pad.
- the number of contacts can be greatly reduced, and high-parallel tests can be performed with inexpensive hardware, resulting in a reduction in test costs.
- the number of contacts is significantly reduced, it is possible to suppress a decrease in yield due to contact failure.
- the power supply and the input / output data can be communicated in a non-contact manner, and the power supply noise caused by the test apparatus and the noise caused by the operation of the pad circuit are completely eliminated. Can be eliminated.
- the light emitting element can be integrated at a low cost by a normal CM OS process.
- the output of the semiconductor integrated circuit is performed wirelessly, integration time is not required as compared with the light emitting element of the PN junction, and high-speed reading is possible.
- Data input to the semiconductor integrated circuit is low noise and high bandwidth due to optical input.
- the radio circuit of the semiconductor integrated circuit is dedicated for transmission, it can be equipped with the smallest antenna, and the increase in the chip area due to the antenna can be minimized.
- the identification I is obtained by incorporating the identification ID into the semiconductor integrated circuit.
- the process of setting D can be omitted. Even if it is in a state after dicing, the position on the wafer can be easily identified.
- FIG. 1 is a flowchart showing Embodiment 1 of the present invention.
- FIG. 2 is a flowchart showing Embodiment 2 of the present invention.
- FIG. 3 is a block diagram showing Embodiment 3 of the present invention.
- FIG. 4 is a circuit configuration diagram showing Embodiment 3 of the present invention.
- FIG. 5 is a circuit configuration diagram showing Embodiment 3 of the present invention.
- Figure 6 shows instructions from MaskROM
- FIG. 7 is a diagram showing an inspection program according to Embodiment 3 of the present invention.
- FIG. 8 is a block diagram showing a fourth embodiment of the present invention.
- FIG. 9 is a circuit configuration diagram showing Embodiment 4 of the present invention.
- FIG. 10 is an explanatory diagram of an external device in the fourth embodiment of the present invention.
- FIG. 11 is an explanatory diagram of an external device in Embodiment 4 of the present invention.
- FIG. 12 is a block diagram showing a fifth embodiment of the present invention.
- FIG. 13 is a circuit configuration diagram showing Embodiment 5 of the present invention.
- FIG. 14 is an explanatory diagram of an external device in the fifth embodiment of the present invention.
- FIG. 15 is an explanatory diagram of an external device according to the fifth embodiment of the present invention.
- FIG. 16 is a circuit configuration diagram showing Embodiment 6 of the present invention.
- FIG. 17 is an explanatory diagram of the detection circuit in the sixth embodiment of the present invention.
- FIG. 18 is a graph showing the transition of the power supply level in the sixth embodiment of the present invention.
- FIG. 19 is a circuit configuration diagram showing the seventh embodiment of the present invention.
- FIG. 20 is an explanatory diagram of a detection circuit in the seventh embodiment of the present invention.
- FIG. 21 is a graph showing the transition of the power supply level in the seventh embodiment of the present invention.
- FIG. 22 is a circuit configuration diagram showing the eighth embodiment of the present invention.
- FIG. 23 is a circuit configuration diagram showing another example of the eighth embodiment of the present invention.
- FIG. 24 is a circuit configuration diagram showing Embodiment 9 of the present invention.
- FIG. 25 is a circuit configuration diagram showing another example of the ninth embodiment of the present invention.
- FIG. 26 is a circuit configuration diagram showing another example of the ninth embodiment of the present invention.
- FIG. 27 is a circuit configuration diagram showing the tenth embodiment of the present invention.
- FIG. 28 is a circuit configuration diagram showing another example of the tenth embodiment of the present invention.
- FIG. 29 is a circuit configuration diagram showing another example of the tenth embodiment of the present invention.
- ⁇ 30] FIG. Circuit configuration diagram showing Embodiment 10 of the present invention
- FIG. 31 is a circuit configuration diagram showing the eleventh embodiment of the present invention.
- FIG. 32 is a block diagram showing the twelfth embodiment of the present invention and an enlarged view of the main part.
- FIG. 33 is a block diagram showing the thirteenth embodiment of the present invention and an enlarged sectional view of the main part.
- FIG. 34 is a circuit configuration diagram showing Embodiment 14 of the present invention.
- FIG. 35 is a block diagram of a P / N junction element showing Embodiment 14 of the present invention.
- FIG. 36 is an enlarged cross-sectional view of FIG.
- FIG. 37 is a block diagram showing the fifteenth embodiment of the present invention and an enlarged view of the main part.
- FIG. 38 is a circuit configuration diagram showing Embodiment 15 of the present invention.
- FIG. 39 is a block diagram showing the sixteenth embodiment of the present invention and an enlarged view of the main part.
- FIG. 40 is a circuit configuration diagram showing Embodiment 16 of the present invention.
- FIG. 41 is a circuit configuration diagram showing Embodiment 17 of the present invention.
- FIG. 42 is a block diagram of the temperature detection circuit in the embodiment 17 of the present invention.
- FIG. 43 is a block diagram of the inspection standard changing means in Embodiment 17 of the present invention.
- FIG. 44 is a circuit configuration diagram showing Embodiment 18 of the present invention.
- FIG. 45 is a waveform diagram showing an input signal from the test apparatus in Embodiment 18 of the present invention.
- FIG. 46 is a waveform diagram showing an output signal to the test apparatus in Embodiment 18 of the present invention.
- FIG. 47 is a circuit configuration diagram showing Embodiment 19 of the present invention.
- FIG. 48 is a circuit configuration diagram showing Embodiment 20 of the present invention.
- FIG. 49 is a circuit configuration diagram showing Embodiment 21 of the present invention.
- FIG. 50 is a sectional view of a test apparatus showing Embodiment 22 of the present invention.
- FIG. 51 is a top view of FIG.
- FIG. 52 is a sectional view of a test apparatus showing Embodiment 23 of the present invention.
- Figure 53 is a top view of Figure 52
- Nonvolatile semiconductor memory devices such as flash memory
- 100 is the flow from the completion of diffusion to product shipment
- 101 is the completion of wafer diffusion
- 102 is the transfer process
- 103 is the standby process for the next process
- 104 is the PCM (Process Control Module) of the wafer PCM measurement process to measure
- 105 is a wafer state inspection process to inspect in the wafer state
- 106 is an assembly process to seal in the package
- 107 is a package state inspection process to inspect the product sealed in the package
- 108 is It is a product shipment.
- the wafer condition inspection process 105 and the package condition inspection process 107 which were conventionally performed in a fixed location, are assigned to the transfer process 102, standby process 103, PCM measurement process 104, and assembly process 106, and the wafer is then inspected.
- the condition inspection process 105 and the package condition inspection process 107 are eliminated.
- Embodiment 2 of the present invention will be described with reference to FIG. 200 in FIG. 2 is a flowchart showing the flow of inspection
- 201 is inspection inspection information reference
- 202 is inspection start
- 203 is inspection interruption
- 204 is inspection milestone
- 205 is inspection period
- 206 is inspection Progress information storage
- 207 is the end of the examination. After the power is turned on, the inspection progress information 201 is referred to, and the inspection start 202 is obtained. If an interruption 203 occurs during the inspection, the inspection progress information is stored in the inspection progress information storage 206, and if the interruption 203 does not occur, the inspection is continued.
- the test progress information is stored in the test progress information storage 206, and the test is continued if it does not correspond to the test point 204. If the inspection period is 205, the inspection progress information is stored in the inspection progress information storage 206. If the inspection period 205 is not satisfied, the inspection is continued. After the test progress information is stored in the test progress information storage 206, if the test is completed 207, the test is completed. If the test is not completed 207, the test is continued.
- FIG. 301 is a semiconductor integrated circuit
- 3 03 is an external device
- 400 is an inspection means
- 401 is a circuit to be inspected
- 402 is a progress information storage means
- 403 is a counting means
- 404 is an inspection program storage means (hereinafter referred to as an inspection program storage means)
- 405 is a power receiving means
- 406 is a power supplying means.
- the power source 405 in the semiconductor integrated circuit 301 receives the power source generated by the power supply unit 406 in the external device 303.
- the inspection means 400 When the power receiving means 405 receives the power supply, the inspection means 400 reads the progress information of the inspection from the advance information storage means 402, and uses the advance information to access the inspection pro storage means 404 and read the inspection program.
- the inspection target circuit 401 is inspected.
- the progress information is written to the advance information storage means 402 when the signal is output from the counting means 403, when the inspection means 400 executes the advance information write command, and when the power receiving means 405 outputs a power shutoff signal. If you do.
- the power receiving means 405 supplies power to a POR (POWER ON RESET circuit) in the inspection means 400.
- a reset signal is output to POI ⁇ 3 ⁇ 4CTRL (CON TROL circuit), and CTRL reads the ROM address from the PC storage fuse in progress information storage means 402 and sets it in the PC (PROGRAM COUNTER circuit).
- the instruction is read from MaskROM which is inspection pro storage means 404 and set in IR (INSTR UCTION RESISTER circuit).
- a RAM may be placed between MaskROM and IR for memory hierarchy. As shown in Fig.
- the instruction consists of OP CODE, test number, input pattern, and expected value.
- OP CODE is sent to CTRL
- test number is sent to progress information storage means 402
- input pattern is sent to the circuit under test 401.
- the expected value is sent to CMP (COMPARE circuit).
- Output from test target circuit 401 The value is compared with the expected value by CMP, and the result is written in the inspection result storage fuse corresponding to the test number in the progress information storage means 402.
- the instruction read from the Mask ROM which is the inspection program storage unit 404 indicates the end of the inspection, it is written in the inspection end storage fuse corresponding to the end of the inspection in the advance information storage unit 402.
- FIG. 7 shows an inspection program stored in the Mask ROM which is the inspection program storage means 404.
- the counting unit 403 When the CTRL in the inspection unit 400 receives a reset signal from the POR, the counting unit 403 is operated. The counting means 403 outputs a progress information write signal to the CTRL at regular intervals, and the CTRL stores the ROM address in the PC storage fuse in the progress information storage means 402. The second is that the CTRL detects the power shutoff in the power receiving means 405 and also stores the ROM address when the power shutoff signal is received. Third, the ROM address is stored when the progress information write command shown in Figure 7 is executed.
- a force using a fuse in FIG. 4 can be used as shown in FIG.
- FIG. 500 An outline of the fourth embodiment of the present invention will be described with reference to FIG. 500 is an advanced information communication means.
- the progress information storage unit 402 exists in the semiconductor integrated circuit 301, but in the fourth embodiment, the progress information storage means 402 is placed in the external device 303.
- a specific example of the apparatus of the present embodiment will be described with reference to Figs.
- a specific example of the advance information storage means 402 uses a fuse or a nonvolatile memory (FIGS. 10 and 11). Access to the progress information storage means 402 in the external device 303 is performed via the progress information communication means 500 in the semiconductor integrated circuit 301 and the progress information communication means 500 in the external device 303.
- the progress information storage means 402 is provided in the external device 303, the area of the semiconductor integrated circuit 301 can be reduced and the storage capacity can be increased.
- Reference numeral 600 denotes inspection professional reception means
- reference numeral 601 denotes inspection professional transmission means.
- the inspection program is stored in the Mask ROM serving as the inspection program storage means 404 in the semiconductor integrated circuit 301.
- an inspection program is placed in the external device 303 and transmitted to the semiconductor integrated circuit 301.
- a specific inspection program transfer procedure of the apparatus of the present embodiment will be described with reference to FIGS.
- a specific example of the inspection program storage means 404 in the semiconductor integrated circuit 301 uses a nonvolatile memory
- a specific example of the inspection program storage means 404 in the external device 303 uses a fuse or a nonvolatile memory (FIGS. 14 and 15).
- the power receiving means 405 receives the power, it supplies power to the POR in the inspection means 400.
- POR outputs a reset signal to CTRL
- CTR L reads ROM address and inspection program number from PC storage fuse in 402, sets ROM address to PC, and receives inspection program number Set to 600.
- the inspection professional receiving means 600 requests the inspection professional transmission means 601 to transmit the inspection program corresponding to the inspection program number.
- the inspection professional transmission means 601 reads the inspection program corresponding to the inspection program number from the inspection professional storage means 404 in the external device 303 and transmits it to the inspection professional reception means 600.
- the inspection port receiving means 600 writes the received inspection program into the inspection professional storage means 404 in the semiconductor integrated circuit 301. Thereafter, the instruction is read from the non-volatile memory which is the inspection professional storage means 404 and set in the IR. An instruction requesting transmission of the next inspection program is inserted in the last line of the inspection program.
- the inspection program storage means 404 is provided in the external device 303 and the inspection program is divided and transmitted, the semiconductor integrated circuit 301 can be reduced in area, and the inspection program The storage capacity can be increased.
- FIG. 16 301 is a semiconductor integrated circuit
- 400 is an inspection means
- 401 is an inspection target circuit
- 402 is a progress information storage means
- 801 is a power supply terminal
- 802 is a detection circuit
- FIG. 17 illustrates the detection circuit 802.
- 806 is an A / D converter
- 807 is a decision circuit
- the power supply level supplied to the power supply terminal 801 is detected by the detection circuit 802, and the A / D converter 806 of the detection circuit 802 converts the power supply level into a control signal, and the determination circuit 807 determines the transition 809 of the power supply level.
- the inspection progress information 402 is stored through the inspection means 400, and when the power level transition 809 falls below the second power judgment level 811, the tester The inspection of the circuit under test 401 is interrupted through the stage 400.
- the reason for the difference in the power judgment level is that the advance information is stored at the first power judgment level 810 to prevent erroneous writing to the advance information storage means, and the second power judgment level. This is because the inspection quality is not degraded by interrupting the inspection at 811.
- 301 is a semiconductor integrated circuit
- 400 is an inspection means
- 401 is a circuit to be inspected
- 402 is a progress information storage means
- 801 is a power supply terminal
- 902 is a detection circuit
- 903 is a multiplexer
- 904 is a capacitance
- 20 is a diagram for explaining the detection circuit 902
- 806 is an A / D converter
- 909 is a determination circuit
- 911 in FIG. 21 is a graph showing the transition of the power level
- the horizontal axis is time [t]
- vertical The axis shows the power level [V]
- 911 is the power level transition
- 912 is the power judgment level.
- the detection circuit 902 When inspecting the semiconductor integrated circuit 301, the power supply level supplied to the power supply terminal 801 is detected by the detection circuit 902, and the A / D converter 806 of the detection circuit 902 converts the power supply level into a control signal, and the determination circuit 909 determines the transition 911 of the power level. When the power supply level transition 911 falls below the power supply judgment level 912, the detection circuit 902 selects the electrostatic capacitance 904 in the semiconductor integrated circuit through the multiplexer 903.
- Embodiment 8 of the present invention will be described below with reference to FIG.
- 301 is a semiconductor integrated circuit
- 400 is an inspection means
- 401 is an inspection target circuit
- 402 is a progress information storage means
- 801 is a power supply terminal
- 902 is a detection circuit
- 903 is a multiplexer
- 904 is a capacitance.
- Force using the detection circuit 902 and the graph 910 (FIG. 21) showing the transition of the power supply level The explanation of the figure is omitted here.
- the power supply level supplied to the power supply terminal 801 is detected.
- the circuit 902 detects the force
- the A / D converter 806 of the detection circuit 902 converts the power level into a control signal
- the determination circuit 909 determines the transition 911 of the power level.
- the detection circuit 902 selects the capacitance 904 outside the semiconductor integrated circuit through the multiplexer 903.
- 301 is a semiconductor integrated circuit
- 400 is an inspection means
- 401 is a circuit to be inspected
- 402 is a progress information storage means
- 801 is a power supply terminal
- 902 is a detection circuit
- 903 is a multiplexer
- 904 is a capacitance
- 913 is a package
- 914 is a lead. Force using the detection circuit 902 and the graph 910 showing the transition of the power supply level The explanation of the figure is omitted here.
- the detection circuit 902 When inspecting the semiconductor integrated circuit 301, the power supply level supplied to the power supply terminal 801 is detected by the detection circuit 902, and the A / D converter 806 of the detection circuit 902 converts the power supply level into a control signal, and the determination circuit 909 determines the transition 911 of the power level. When the power supply level transition 911 falls below the power judgment level 912, the detection circuit 902 selects the capacitance 904 on the lead 914 of the package 913 through the multiplexer 903.
- 24 and 25 show circuit configuration examples for managing the inspection elapsed time information according to the ninth embodiment corresponding to claim 19 of the present invention.
- 1000 is a circuit for managing the inspection elapsed time information in claim 19 inside the semiconductor integrated circuit
- 1001 is a circuit showing current time information
- 1002 is the current 1001 inside the semiconductor integrated circuit Memory that stores time information
- 1003 is a latch circuit that captures the information in the 1002 time storage memory
- 1004 is a latch circuit that captures the current time information of 1001
- 1005 is the time information captured by the circuit in the latches 1003 and 1004
- Subtraction circuit for subtraction 1006 is a memory for storing address information to be loaded into the program counter of 1007
- 1008 is a memory for storing an inspection program
- 1009 is an instruction register
- 1010 is a control circuit
- 1011 is using time-lapse information Peripheral circuit operating.
- the current time information 1001 converted to hexadecimal (binary) is connected to the latch circuit 1004 that owns the number that can capture the time information, and latches when the internal signal ACTLAT becomes active. Time information is captured in the circuit 1004.
- memory for time storage 100 The time information of the time storage memory 1002 is taken into the latch circuit 1003 connected to 2.
- the information of the latch circuits 1003 and 1004 is obtained by the subtraction circuit 1005 to obtain the difference between the current time information of the latch circuit 1004 and the time information stored in front of the latch circuit 1003.
- the subtracted result has a logical structure that points to one address value stored in the address storage memory 1006.
- the address information pointed to by the address storage memory 1006 is loaded into the program counter 1007 when the internal signal ACTADR becomes active, and the data in the memory 1008 that stores the test program pointed to by the program counter 1007 is read into the instruction register 1009. Then, the instruction is decoded by the control circuit 1010, and the peripheral circuit 1011 performs the operation over time.
- the information in the time storage memory 1002 is rewritten to the information captured in the latch circuit 1004 when the internal signal AC TEW becomes active.
- the instruction address storage memory 1012 functions in the same way as the instruction register 1009 in FIG. 24, but the instruction address storage memory 1012 is a dedicated instruction register for the inspection elapsed time information. Further, the test elapsed time information processed by the subtraction circuit 1005 has a logical structure that directly points to the instruction register. Therefore, the signal can be transmitted to the control circuit 1010 without going through the program counter 1007 and the program storage memory 1008 shown in FIG.
- FIG. 26 shows an example of the case where the circuit 1013 for processing time lapse information is moved from the semiconductor integrated circuit 1 000 to the semiconductor inspection apparatus 1012, and the operation itself performs the same operation as described above. .
- 27 to 30 show circuit configuration examples of the semiconductor inspection apparatus provided with the RF power supply according to the tenth embodiment corresponding to claim 22 of the present invention.
- 1100 is a semiconductor inspection device
- 1101 is a plurality of semiconductor devices
- 1102 is a semiconductor device
- 1103 is a semiconductor integrated circuit equipped with an RF power receiver
- 1104 is an RF power transmitter
- 1105 ⁇ . is there.
- FIGS. 28 and 29 there are a plurality of semiconductor device groups such as 1106 ⁇ .
- 1108 is an RF power receiver
- 1109 is a semiconductor device fixture
- 1110 is a VSS power supply port
- 1111 is a VDD power supply port.
- an RF power transmitter 1104 is provided in the semiconductor inspection apparatus, and a battery is provided in the semiconductor inspection apparatus 1100 as its power supply source.
- an outlet 1106 is provided to obtain the semiconductor inspection apparatus 1100 from the outside.
- the RF power transmitter 1104 provided in the semiconductor detection device 1100 transmits electric waves to the semiconductor integrated circuit 1103 provided with the RF power receiver, whereby the semiconductor integrated circuit 1103 can obtain power. Since power is supplied to the semiconductor device 1102 in a non-contact manner using the RF power source transmitter 1104, a plurality of semiconductor devices can be provided in the semiconductor inspection device 1100 .
- one RF power transmitter 1104 and one battery 1105 or outlet 1 106 may be provided in a plurality of semiconductor device groups 1107 in which one or more semiconductor devices 1101 are collected. Is possible.
- FIG. 30 shows a case where an RF power transmitter 1104 is provided outside the semiconductor inspection apparatus.
- FIG. 31 shows an embodiment of the present invention corresponding to claim 23 of the present invention because the test program for automatically inspecting an external force is input by using an RF transmitter by inserting a memory card into the inspection device.
- An example of the circuit configuration is shown.
- 1200 is a semiconductor inspection device
- 1201 is a plurality of semiconductor devices
- 1202 is a semiconductor device
- 1203 is a semiconductor integrated circuit equipped with an RF transceiver
- 1204 is an RF transceiver
- 1205 is a memory card inlet
- Reference numeral 1206 denotes a memory card.
- the inspection program is transferred to the semiconductor integrated circuit 1203 equipped with the RF transceiver by the RF transceiver 1204.
- the program transfer permission is granted.
- the signal is transferred from the RF transmitter / receiver installed in the semiconductor integrated circuit 1203 to the RF transmitter / receiver 1204, and the program transfer permission signal is transferred to the memory card 1206 inserted into the memory card insertion slot 1205 and stored in the memory card 1206.
- the transferred inspection program is transferred to the semiconductor integrated circuit 1203 equipped with the RF transceiver via the RF transceiver 1204, and the semiconductor integrated circuit 1203 can automatically perform the inspection using the inspection program. I can do it.
- FIG. 32 shows the configuration of the semiconductor device according to the twelfth embodiment of the present invention.
- 1300 is a semiconductor device
- 1301 is a substrate such as a wafer
- 1302 is a semiconductor integrated circuit formed on the substrate 1301
- 1303 is a power supply wiring that collectively supplies power to the semiconductor integrated circuit 1302
- Reference numeral 1304 denotes a ground wiring for collectively grounding the semiconductor integrated circuit 1302
- 1305 denotes an antifuse formed between the semiconductor integrated circuit 1302 and the power supply wiring 1303.
- the semiconductor integrated circuit 1302 formed on the substrate 1301 supplies, for example, 1.8 V to the power supply wiring 1303 and supplies 0 V to the ground wiring 1304, for example. In the display), all the semiconductor integrated circuits on the substrate 1301 are inspected collectively.
- the antifuse 1305 provided between the power supply wiring 1303 and every semiconductor integrated circuit 1302 formed on the substrate 1301 has a common power supply wiring because it breaks when an overcurrent flows due to a power supply short circuit or the like. A semiconductor integrated circuit which is defective from 1303 is separated. With this configuration, it is possible to prevent a power supply voltage drop. Note that an antifuse may be formed between the semiconductor integrated circuit 1302 and the ground wiring 1304.
- FIG. 33 shows the configuration of the semiconductor device according to the thirteenth embodiment of the present invention.
- 1306 is an RF coiner
- 1307 is a through hole connecting the power supply line 1303 and the RF coiner 1306, and 1308 is a protective insulating film for forming a through hole.
- the signal is received at 1306 and a voltage is supplied to the power supply wiring 1303 formed on the surface of the substrate 1301 through the through hole 1307 on the surface of the substrate 1301.
- FIG. 34 shows the configuration of the semiconductor memory device according to the fourteenth embodiment of the present invention.
- FIGS. 35 and 36 show the configuration of the P / N junction element according to Embodiment 14 of the present invention.
- Embodiment 14 of the semiconductor memory device of the present invention will be described below with reference to FIG. 34 and FIGS.
- 1309 is a non-volatile semiconductor memory device such as a flash memory
- 1310 is a memory array
- 1311 is a user area memory array used by the user
- 1312 is test data storage for storing PASS / FAIL information for inspection, etc.
- Area, 1313 is an address decoder
- 1314 is a read / write circuit that senses when reading / verifying the drain of the memory cell during read / write, and a high voltage is applied during write
- 1315 is a rewrite control circuit
- 1316 is a PASS / FAIL Data write control circuit that automatically writes test PASS / FAIL information to the test data storage area 1312
- 1317 is a power supply circuit such as a booster circuit that generates high voltage
- 1318 includes a rewrite algorithm controller and test circuit Inspection and control circuit
- 1319 is command decoder
- 1320 is data MUX including data input / output switching circuit
- 1321 is write Generate expected value at the time of generation and rewriting of judgment data and judge PASS / FAIL DPU 1322 stores test data immediately after test PASS / FAIL information is written in test data storage area 1312 and at power on Inspection of area 1312
- 1323 is a P
- 1329 ⁇ is a transistor
- 1330 ⁇ is a die
- the nonvolatile semiconductor device is described as a flash memory.
- a write / erase command and a write address and write data in the case of writing are input to the address bus 1328 and the input / output data bus 1325 from the outside.
- the divided block address of the memory array 1310 is input.
- the command decoder 1319 decodes the input command, and the control circuit 1318 including the rewrite algorithm controller sends an algorithm command to the rewrite control circuit 1315.
- the algorithm here is write and write verify, erase and erase verify.
- the rewrite control circuit 1315 instructs the power supply circuit 1317 according to the algorithm and the power supply circuit 1317 supplies the voltage necessary for rewrite to the memory array 1310 through the address decoder 1313 and the read / write circuit 1 314. Do by supplying.
- the DPU1321 rewrites the write data at the time of writing and "1" data at the time of erasing as the expected value. Since the memory array 1310 is divided into blocks when erasing, the address counter 1324 automatically generates an address according to the erasure area at the time of verifying the erase. Similarly, the address counter 1324 automatically generates an address according to the write address range at the time of verifying when writing a plurality of addresses at the same time as the page write.
- the operation enters the inspection mode when power is supplied from the outside in the state of the wafer, and the inspection is automatically performed according to the inspection flow of the inspection and control circuit 1318.
- the check and control circuit 1318 issues a write command.
- the rewrite control circuit 1315 instructs the power supply circuit 1317 to specify the necessary voltage.
- the power supply circuit 1317 supplies a voltage necessary for rewriting to the memory array 1310 through the address decoder 1313 and the read / write circuit 1314.
- the difference from normal writing is that the address and data are generated internally by the address counter 1324 and the data by the DPU1321 instead of inputting the address and data by external force.
- Fail information is sent from the DPU 1321 to the inspection and control circuit 1318, and the inspection stops there.
- the inspection and control circuit 1318 sends a command to the PASS / FAIL Data write control circuit 1316.
- the PASS / FAIL Data write control circuit 1316 receives the power supply circuit 131.
- the power supply circuit 1317 supplies the write voltage to the test data storage area 1312 through the address decoder 1313 and the read / write circuit 1314 by instructing the voltage required for writing to 7, and the PASS / FAIL information is supplied to the test data storage area 1312. Write to.
- the inspection and control circuit 1318 issues a command to transfer the FAIL data stored in the test data storage area 1312 to the volatile register 1322. This FAIL Data is transferred to the volatile register 1322 when the power is turned on.
- the data stored in the volatile register 1322 is input to the P / N junction element 1323 and the inspection and control circuit 1318.
- the inspection and control circuit 1318 locks the flash memory 1309 so that the entire circuit does not operate even when power is supplied.
- FIGS. 35 and 36 show the configuration and device structure of the P / N junction element 1323.
- the data stored in the volatile register 1322 is input to the gate of the transistor 1329.
- the transistor 1329 is activated and connected to the voltage supplied from the diode 1330 and the power supply circuit 1317. This voltage is higher than the breakdown voltage of the diode 1330.
- breakdown current flows through the diode 1330, heat is generated.
- By detecting the generation of this heat with, for example, an emission device it is possible to make a PASS / FAIL determination, and it is possible to determine whether or not the assembly device system is equipped with the emission device.
- the inspection end force or not can also be detected by the presence or absence of heat generation based on whether or not the entire circuit is stopped.
- the PASS / FAIL information can be divided without sending the result of automatic inspection to an external device.
- a stand-alone device system with an emission device as it is after non-contact inspection It is possible to make only good products (not shown).
- the P / N junction element 1323 on the semiconductor integrated circuit formed on the substrate by the emission device captures the light emission pattern due to the heat of the diode 1330 in the 1323 for each substrate, and only non-defective products according to the information Assembling only good products by picking up after dicing.
- the write test is taken as an example, but the PASS / FAIL information of other tests is also stored in the test data storage area 1312 in the same manner.
- FIG. 37 shows the configuration of the semiconductor device according to the fifteenth embodiment of the present invention.
- FIG. 38 shows a configuration of the semiconductor memory device according to the fifteenth embodiment of the present invention.
- FIGS. 37 and 38 a semiconductor memory device according to a fifteenth embodiment of the present invention will be described with reference to FIGS. 37 and 38.
- 1331 is the semiconductor device according to the fifteenth embodiment of the present invention
- 1332 is a substrate such as a wafer
- 1333 is the semiconductor integrated circuit according to the fifteenth embodiment formed on the substrate 1332
- 1334 is the semiconductor integrated circuit Power supply wiring for supplying power to the circuit 1333 at once
- 1335 is ground wiring for grounding the semiconductor integrated circuit 1332 at once
- 1336 is a nonvolatile semiconductor memory device such as the flash memory of Embodiment 15
- 1337 is The memory section of the semiconductor memory device 1336, 1338 is an anti-fuse formed between the semiconductor integrated circuit 1333 and the power supply wiring 1334
- 1339 is immediately after the test PASS / FAIL information is written in the test data storage area 1312 and the power supply Test data storage area 1312 at the time of startup
- 1340 is a resistor that controls the current flowing through the antifuse 1338.
- 1310 is a memory array
- 1311 is a user area memory array used by the user
- 1312 is a test data storage area for storing PASS / FAIL information of inspection
- 13 13 is an address decoder
- 1314 is read and read Sense at read / verify for memory cell drain during write
- read / write circuit that applies high voltage during write
- 1315 is rewrite control circuit
- 1316 is test data storage area 1312 PASS / FAIL for inspection PASS / FAIL Data write control circuit that automatically writes information
- 1317 is a power supply circuit such as a booster circuit that generates a high voltage
- 1318 is a test and control circuit including a rewrite algorithm controller and test circuit
- 1319 is a command decoder 1320:
- 1321 Generates write data and generates expected value when rewriting PASS / FAIL judgment DPU
- 1324 is the address counter that generates the address internally
- 1325 is the input /
- the ground wiring 1335 is electrically connected through the power supply 339 and the resistor 1340. At this time, current flows through the antifuse 1338 so that it is blown, and Pass / Fan determination is possible depending on whether or not the antifuse 1338 is blown.
- the end of the inspection also blows the fuse as in the third embodiment of the present invention, the end of the inspection can be determined by whether or not this fuse is blown.
- PASS / FAIL information can be divided without sending the result of automatic inspection to an external device.
- an assembly system with a pattern recognition device as it is after non-contact inspection (not yet) It is possible to make only good products in (Display).
- the pattern recognition device captures the fuse pattern for each board, dices only the non-defective product according to the information, and picks up the non-defective product.
- FIG. 39 shows the configuration of the semiconductor device according to the sixteenth embodiment of the present invention.
- FIG. 40 shows the configuration of the semiconductor memory device according to the sixteenth embodiment of the present invention.
- FIG. 39 a sixteenth embodiment of the semiconductor memory device of the present invention will be described with reference to FIGS. 39 and 40.
- 1341 is the semiconductor device according to the sixteenth embodiment of the present invention
- 1342 is a substrate such as a wafer
- 1343 is the semiconductor integrated circuit according to the sixteenth embodiment formed on the substrate 1342
- 1344 is the semiconductor integrated circuit.
- Power supply wiring for supplying power to the circuit 1343 at once, 1345 is ground wiring for collectively grounding the semiconductor integrated circuit 1342, 1346 is a nonvolatile semiconductor memory device such as the flash memory of Embodiment 16, and 1347 is The memory section of the semiconductor memory device 1346, 1348 is an anti-fuse formed between the semiconductor integrated circuit 1343 and the power supply wiring 1344, 1349 is immediately after the test PASS / FAIL information is written in the test data storage area 1312 and the power supply Test data storage area 1312 inspection PASS / FAIL information at startup
- a volatile register 1350 for transferring and storing is an RF transmission circuit that determines whether or not it is capable of transmitting radio waves according to the contents of the volatile register.
- 1310 is a memory array
- 1311 is a user area memory array used by the user
- 1312 is a test data storage area for storing PASS / FAIL information of inspection
- 13 13 is an address decoder
- 1314 is read and read Sense at read / verify for memory cell drain during write
- read / write circuit that applies high voltage during write
- 1315 is rewrite control circuit
- 1316 is test data storage area 1312 PASS / FAIL for inspection PASS / FAIL
- 1317 is a power supply circuit such as a booster circuit that generates a high voltage
- 1318 is a test and control circuit including a rewrite algorithm controller and test circuit
- 1319 is a command decoder 1320:
- 1321 Generates write data and generates expected value when rewriting PASS / FAIL judgment DPU
- 1324 is the address counter that generates the address internally
- 1325 is the input / output data bus of
- the end of the inspection can also be determined by the recognition of the radio wave.
- the presence / absence of these radio wave transmissions can be recognized by, for example, an RF receiving device, and a PASS / FAIL determination can be made, so that it is possible to determine whether or not the assembling apparatus system equipped with the radio wave receiving device is used.
- the result of automatic inspection is divided in a non-contact state. For example, only non-defective products in a stand-up device system (not shown) equipped with a radio wave receiver as it is after non-contact inspection It becomes possible to stand up the thread.
- the radio wave receiving device transmits the radio wave transmission pattern transmitted from the RF transmission circuit 1350 for each board, dices only the non-defective product according to the information, and picks it up to assemble only the non-defective product.
- FIG. 41 shows the configuration of a nonvolatile semiconductor memory device built in the semiconductor device according to the seventeenth embodiment of the present invention.
- FIG. 42 shows the configuration of the temperature detection circuit in the nonvolatile semiconductor memory device built in the semiconductor device according to Embodiment 17 of the present invention.
- FIG. 43 shows a block diagram of the inspection standard changing means in the nonvolatile semiconductor memory device built in the semiconductor device according to the seventeenth embodiment of the present invention.
- FIG. 41, 42, and 43 a semiconductor device according to a seventeenth embodiment of the present invention will be described with reference to FIGS. 41, 42, and 43.
- FIG. 41, 42, and 43 a semiconductor device according to a seventeenth embodiment of the present invention will be described with reference to FIGS. 41, 42, and 43.
- 1351 is a nonvolatile semiconductor memory device such as a flash memory according to the seventeenth embodiment of the present invention
- 1310 is a memory array
- 1311 is a user area memory array used by a user
- 1312 is a PASS / FAIL check.
- Test data storage area for storing information, temperature, etc. 1313 is an address decoder, 1314 is a read / write sense with respect to the memory cell drain, a read / verify sense, and a write / read to which a high voltage is applied Write circuit, 1315 is a rewrite control circuit, 1317 is a power supply circuit such as a booster circuit for generating a high voltage, 1318 is a test and control circuit including a rewrite algorithm controller and a test circuit, 1319 is a command decoder, and 1320 is a data input / output switch.
- Data MUX 1321 including the circuit, generates the expected value when generating and rewriting the write data and determines PASS / FAIL DPU
- 1323 is a P / N junction element that determines whether or not the P / N junction current flows according to the data stored in the volatile register 1322
- 1324 is an address counter that internally generates an address
- 1325 is input / output data for the flash memory 1309 1326 is an output bus that is output from the read / write circuit 1314
- 1327 is an input bus that inputs external write data, write data from the DPU 1321, etc.
- Temperature information data write control circuit that automatically writes to 312; 1354 receives test / data storage area 1312 write / erase temperature information during inspection and write / erase level judgment inspection temperature information during reading This is an inspection standard changing circuit that changes the standard.
- 1355 is a thermal sensor such as a diode
- 1356 is an A / D converter that converts the voltage level of the thermal sensor 1355 into digital information
- 1357 is a register that stores the result of the A / D converter 1356. is there.
- reference numeral 1358 denotes a power supply level changing register in the inspection and control circuit 1318
- reference numeral 1359 denotes a booster circuit in the power supply circuit 1317
- reference numeral 1360 denotes a regulator in the power supply circuit.
- the normal rewriting operation is the same as that in Embodiment 14 of the present invention.
- the operation at the time of inspection is to enter the inspection mode when power is supplied from the outside in the state of the wafer, and the inspection is automatically performed according to the inspection flow of the inspection and control circuit 1318.
- the operation of the automatic writing test will be described.
- the rewrite control circuit 1315 instructs the power supply circuit 1317 according to the algorithm to specify the necessary voltage.
- the power supply circuit 1317 supplies a voltage necessary for rewriting to the memory array 1310 through the address decoder 1313 and the read / write circuit 1314.
- the difference from normal writing is that the address and data are generated internally by the address counter 1324 and the data by the DPU1321 instead of inputting the address and data by external force.
- the inspection and control circuit 1318 notifies the temperature detection circuit 1352 that writing is in progress, and the temperature detection circuit 1352 measures the temperature and notifies the inspection and control circuit 1318 that the measurement is completed.
- the temperature information writing control circuit 1353 is activated in response to the transmission and the temperature measurement result.
- the temperature information write control circuit 1353 instructs the power supply circuit 1317 to specify the voltage required for writing, and the power supply circuit 1317 supplies the write voltage to the test data storage area 1312 through the address decoder 1313 and the read / write circuit 1314. Information is written into the test data storage area 1312.
- the inspection and control circuit 1318 sends test data to the inspection standard changing circuit 1354.
- the command to transfer the temperature information stored in the data storage area 1312 is issued.
- This temperature information is transferred to the inspection standard changing circuit 1354 even when the power is turned on.
- Inspection Standard change circuit 1354 specifies power supply circuit 1317 through inspection and control circuit 1318, and specifies the corrected inspection voltage level according to the temperature information at the time of writing and erasing and the reading temperature information at the time of writing and erasing. Supply.
- the potential difference of Thermal Sensorl355 (hereinafter referred to as a diode) such as a diode varies depending on the temperature.
- This voltage value change is converted to a digital value by the A / D converter 1356.
- the temperature information is stored in the register 1357.
- the inspection and control circuit 1318 writes the temperature information in the test data storage area 1312 by the above means.
- the temperature information written in the test data storage area 1312 is transferred to the inspection standard changing circuit 1354 to regulate the voltage level of the booster circuit 1359.
- the regulator for changing the voltage level of the 1360 and the power supply in the control circuit The level information is converted into voltage level data of the regulator 1360 and transferred to the level change register 1358 so as to correct the temperature information and the temperature information at the time of reading.
- the voltage level of the inspection standard at the time of level inspection after writing and erasing can be changed by the voltage level conversion data.
- FIG. 44 is a configuration diagram of a semiconductor integrated circuit that realizes a test using only the power supply pad and the ground pad according to the eighteenth embodiment of the present invention.
- a semiconductor integrated circuit 1900 includes an internal circuit 1905, a self-test circuit 1904 for executing a self-test of the internal circuit, and a power supply modulation circuit 1906. These circuits are powered by power pad 1901 and ground pad 1 902.
- the internal circuit 1905 is a main circuit of the semiconductor integrated circuit, and executes a normal operation outside the integrated circuit and through a normal signal pad 1903.
- the self-test circuit 1904 Upon receiving an input signal such as a command or microcode from the tuning circuit 1906, the system is started and a test pattern is given to the internal circuit 1905 to execute the test. The test result is written back to the power supply modulation circuit 1906.
- FIGS. Figures 45 and 46 show the power supply voltage and power supply current waveforms to the power supply pad as seen from the test equipment.
- the input signal of the test equipment is higher than the normal power supply potential as input signal 1907! ⁇ ⁇
- the time series of surge-like pulses is a force that appears to propagate directly to the internal circuit 1905 in the figure. Actually, it is absorbed by the power supply modulation circuit 1906 and the binos capacitor of the power supply wiring, and is hardly propagated to the internal circuit. Nah ...
- the output signal of the self-test circuit 1904 is converted into a current pulse between the power supply grounds by the power supply modulation circuit 1906, and is detected as a time-series current pulse like the output signal 1908 on the test device side.
- the test device converts the current pulse into a digital pulse and records the test result.
- a self-test of a semiconductor integrated circuit can be executed with a minimum number of pins including only a power supply pad and a ground pad.
- a test with a small number of contacts, it is possible to perform a test with a high parallel number with an inexpensive hard disk, and the test cost can be reduced. Furthermore, a decrease in yield due to contact failure can be suppressed by the minimum number of contacts.
- the power supply pad is selected as the signal superimposition destination.
- the ground pad is selected, only the power supply voltage level becomes the ground potential, and the same effect can be obtained.
- the potential of the input signal 1907 is sufficiently adjusted to match the power supply noise level. High reliability is achieved by setting a special time-series data pattern in the input signal 1907 and inputting only the input signal 1907 that matches the data pattern in the power modulation circuit 1906 as valid data to the self-test circuit 19004. Tests can be performed.
- FIG. 47 is a configuration diagram of a semiconductor integrated circuit in which a non-contact test is realized by power supply and signal input by the optical power conversion element and signal output by the light emitting element in Embodiment 19 of the present invention.
- a semiconductor integrated circuit 2000 is composed of an internal circuit 2005 in which main functions are integrated, a self-test circuit 2004 for executing a self-test of the internal circuit, a demodulating circuit 2007, an optical power conversion element 2007, and a light-emitting element 2008.
- the internal circuit 2005 is supplied with power from the power supply pad 2001 and the ground pad 2002 in normal operation other than the test.
- the optical power conversion element is responsible for power supply and signal input to the self-test circuit
- the light-emitting element is responsible for signal output of the self-test circuit power.
- the optical power conversion element 2007 is formed by a PN junction that can be formed by a CMOS process, and generates electric power by irradiating convergent light such as a semiconductor laser.
- the irradiated focused light generates electron hole pairs in the depletion layer of the PN junction and generates electromotive force.
- the voltage and current drive capability is adjusted by series-parallel of PN junctions.
- the demodulator circuit 2006 controls the generated voltage to a constant voltage by an internal power supply regulator and supplies it to the power supply pad 2001.
- the converging light from the test equipment is modulated by commands to the self-test circuit 2004 and input signals such as microcode.
- the convergent light modulated by intensity or the like is converted into a digital signal by the detection circuit in the demodulation circuit 2006 and input to the self-test circuit 2004.
- the light emitting device 2008 controls the emission phenomenon generated from a PN junction with a thin depletion layer thickness that can be formed by a CMOS process by a transistor inserted in series.
- the self-test circuit 2 004 drives the light emitting element 2008 to transmit the test result and the test progress signal as a light pulse to the test apparatus.
- the light emitting element near infrared light by breakdown by PN junction may be used.
- the non-contact power supply and the input and output data This enables communication and eliminates the need for electrical contacts, which can dramatically improve the number of parallel tests.
- the influence of power supply noise caused by the interface board of the test equipment due to non-contact In the conventional configuration that requires electrical contact, it is difficult to keep all DUTs at the same regulation during massively parallel testing.
- the power regulation of each non-measurement semiconductor integrated circuit (DUT) can be kept uniform, and the uniformity of the test can be guaranteed.
- the noise due to the operation of the pad circuit of the semiconductor integrated circuit which is still a problem in the contact test, can be completely eliminated, and the input / output data transfer speed can be increased.
- the light emitting element is realized by an element such as a normal laser or LED, communication at a higher bit rate is possible except for the cost.
- the optical power conversion element If a higher-speed and higher-efficiency element is used, communication at a higher bit rate can be performed except for the cost.
- FIG. 48 is a configuration diagram of a semiconductor integrated circuit that realizes a non-contact test by power supply and signal input by the optical power conversion element and signal output by wireless data transmission in Embodiment 20 of the present invention.
- the light emitting element in the nineteenth embodiment is replaced with a wireless data transmission circuit.
- the semiconductor integrated circuit 3000 uses the self-test circuit 2004 output as wireless data.
- the signal is modulated to a high frequency by the transmission circuit 3001 and radiated from the antenna 3002.
- ft 40—80 GHz can be realized with a 0.13 ⁇ m process
- the antenna is about 1.5 cm in 1/4 wavelength, and if it is shortened, it can be integrated into several millimeters of semiconductor integrated circuits. Since the antenna of the test equipment can be installed in the vicinity, the transmission output and the antenna radiation efficiency will not be a problem.
- the present embodiment during the test, as in the case of the nineteenth embodiment, non-contact power supply and input / output data exchange are possible, and no electrical contact is required, and the number of parallel tests is dramatically improved. be able to.
- the output of semiconductor integrated circuits is performed wirelessly, integration time is not required compared to PN junction light-emitting elements, enabling faster reading.
- the antenna 3002 can be installed on the outer periphery of the integrated circuit, on a scribe lane, or by adding a dedicated wiring layer to the top layer.
- the wireless data transmission circuit 3001 includes a semiconductor.
- An identification ID unique to the integrated circuit is set. All transmitted wireless data includes digital information of identification ID, and the test equipment can determine which semiconductor integrated circuit power information. This identification ID can be downloaded to the test equipment power semiconductor integrated circuit immediately before the start of the test, or can be created in the manufacturing process of the semiconductor integrated circuit. When creating a unique ID in the manufacturing process (EB drawing, fuse, etc.), it is preferable to provide redundant bits.
- the identification ID to be created is preferably unique at least in units of wafers, and it is most preferable in terms of defect analysis to be a unique value in lot units or completely unique values.
- FIG. 49 shows a semiconductor integrated circuit in which a non-contact test is realized by power supply by the optical power conversion element and signal input / output by wireless data transmission in Embodiment 21 of the present invention. It is a block diagram. In the present embodiment, the function of signal input (data reception of test equipment power) by the optical power conversion element in Embodiment 20 is replaced with a wireless data reception circuit.
- the semiconductor integrated circuit 4000 controls the output voltage of the test optical power conversion element 2007 to a constant voltage by the power supply regulator in the smoothing circuit 4001 and supplies it to the power supply pad 2001.
- the input / output signals of the self-test circuit communicate with the test equipment via the antenna 4003 by the wireless data transmission / reception circuit 4002. Since it is necessary to receive wireless data from the test equipment, reception sensitivity is required, but the increase in the antenna 4003 can be minimized by increasing the wireless output of the test equipment.
- the identification ID In case of wireless non-contact parallel test, it is necessary to set the identification ID for the upload signal to the test equipment. With regard to the download signal of the test equipment, an identification ID is not required for downloading microcode etc. common to all semiconductor integrated circuits, but data with an identification ID is required for individual test control. .
- the wireless data transmission / reception circuit 4002 reads the data identification ID and transmits it to the self-test circuit 2004 only when the identification ID matches the set value.
- the wireless data transmission / reception circuit 4002 is set with an identification ID, and only the identification ID setting function can be received and executed in the state. For transmission, an ID indicating that the identification ID has not been set oscillates for a certain period during irradiation of convergent light. This function is used for initial diagnosis of wireless data transmission / reception circuits. Once the identification ID is set, the identification ID does not match. The power transmission / reception circuit does not transmit the download signal including the identification ID setting to the self-test circuit.
- the identification ID When the identification ID is first set by the test apparatus, only a single semiconductor integrated circuit is activated and the desired identification ID is set with or without convergent light. Once a semiconductor integrated circuit with an identification ID is set, commands can be blocked by the identification ID, so it is kept in the convergent light irradiation state. This focused light irradiation state is indispensable when the identification ID is stored in the volatile memory. This is not required if the identification ID is stored in non-volatile memory including an electrical fuse.
- the non-contact power supply and the input and output data This enables communication and eliminates the need for electrical contacts, which can dramatically improve the number of parallel tests.
- the test apparatus does not require modulation of the convergent light, and an inexpensive light source can be used, thereby reducing the cost.
- a semiconductor integrated circuit does not require an optical data demodulation circuit.
- FIGS. 50 and 51 are cross sections and top views of a test apparatus for a semiconductor integrated circuit in which a non-contact test is realized by power supply and signal input by an optical power conversion element and signal output by a light emitting element in Embodiment 22 of the present invention. It is a block diagram.
- the test apparatus is a laser source for power supply and data transmission arranged on the array so as to correspond to the semiconductor integrated circuit on the semiconductor integrated circuit wafer 5006 on the test apparatus casing 5001 and the printed circuit board 5004. It consists of a pair of a receiving optical sensor 5002 and a laser drive circuit data communication circuit 5003, a radiator / wafer holder 5007, and a control circuit 5008.
- the radiator / wafer holder 5007 absorbs the heat generated by the semiconductor integrated circuit and the photoelectric conversion element. Moreover, it is desirable to provide an opening directly under the optical power conversion element in order to suppress irregular reflection of the laser that has penetrated.
- Laser drive circuit—data communication circuit 5003 executes power adjustment of a laser light source, modulation of a download signal, and signal processing of an upload signal from a data light receiving sensor.
- the control circuit 5008 stores the data log of the control of the laser drive circuit-data communication circuit 5003, the state of the fail pass of the test of each semiconductor integrated circuit, and the progress of the processing of the test item.
- the test result of each semiconductor integrated circuit can be determined by referring to the data log.
- the present embodiment it is possible to provide a test apparatus that realizes a non-contact parallel test of a semiconductor integrated circuit by optical communication described so far.
- a data receiving sensor is provided for each semiconductor integrated circuit. The same effect can be obtained with one configuration for each chip.
- FIGS. 52 and 53 are configuration diagrams of a test apparatus for a semiconductor integrated circuit that realizes a non-contact test by supplying power with the optical power conversion element and signal input / output by wireless data transmission / reception in Embodiment 23 of the present invention. .
- the test apparatus is a power supply laser light source 6002 and a laser drive circuit arranged on an array so as to correspond to a semiconductor integrated circuit on a semiconductor integrated circuit wafer 5006 on a test apparatus casing 6001 and a printed circuit board 5004. It consists of a pair of 6003, a wireless data transmission / reception circuit 6004, an antenna array 6006 of a wireless data transmission / reception circuit, a radiator / wafer holder 5007, and a control circuit 5008.
- the difference from the twenty-second embodiment is that wireless is used for receiving the upload signal of the semiconductor element and for the download signal to the semiconductor integrated circuit.
- an antenna array 6006 is provided so as to cover the entire surface of the semiconductor wafer. The antenna array can concentrate the beam characteristics of transmission and reception on each semiconductor integrated circuit, receive a small upload signal with high SN, poor sensitivity, download signal with high electric field strength toward the antenna of the semiconductor integrated circuit Can be supplied.
- Embodiment 22 It goes without saying that the same effect can be obtained even if the features of Embodiment 22 are incorporated as a test apparatus.
- the method for inspecting a semiconductor device includes a wafer state in any one of a wafer transport process, a standby process, an assembly process, and an assembly transport process in which product diffusion power exists before shipment.
- the inspection time can be apparently set to “0”, and the inspection progress information is stored even when the inspection is interrupted or crosses the process. Therefore, there is no need for a dedicated inspection site without fixing the inspection location, and any process can be inspected, and the number of inspection specialized processes can be reduced, thereby reducing the inspection cost to zero.
- Made of all semiconductors because it can C is useful as an inspection method and inspection apparatus goods
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Tests Of Electronic Circuits (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
It is required to perform inspection for guaranteeing the quality of a semiconductor product at a place dedicated to inspection in order to perform a plurality of inspections, but since these inspection processes require enormous time, rate of inspection cost to unit price of a chip becomes high. At least any one of wafer carrying process, waiting process, assembling process, and carrying process of assembly is included from completion of diffusion of semiconductor products to shipment thereof, and inspection is performed while allocating a wafer state inspection process and a package state inspection process to any processes. Inspection equipment employing this inspection method comprises a means for recording inspection progress information when the inspection is completed during any process or inspection is interrupted during the process and performing the remaining inspection in the process by referring to the inspection progress information.
Description
明 細 書 Specification
半導体装置の検査方法、半導体装置、半導体集積回路、半導体集積回 路のテスト方法およびテスト装置 Semiconductor device inspection method, semiconductor device, semiconductor integrated circuit, semiconductor integrated circuit test method, and test apparatus
技術分野 Technical field
[0001] 本発明は、半導体装置及びその検査手法及び検査装置を提供するものである。よ り特定的には従来の固定された場所での検査工程を搬送や待機といった工程に振り 分けることで固定された場所での検査工程をなくすことが出来る半導体装置の検査 方法、半導体装置、半導体集積回路、半導体集積回路のテスト方法およびテスト装 置に関するものである。 [0001] The present invention provides a semiconductor device, an inspection method thereof, and an inspection apparatus. More specifically, an inspection method for a semiconductor device, a semiconductor device, and a semiconductor that can eliminate the inspection process at a fixed location by allocating the inspection process at a conventional fixed location to a process such as transportation and standby. The present invention relates to a test method and a test apparatus for integrated circuits and semiconductor integrated circuits.
背景技術 Background art
[0002] 図 54は従来の半導体製品の拡散完了 101から製品出荷 108までの間 2100には 、一例として、 PCM測定工程 104、ウェハ状態検査工程 105、組立工程 106、ノッケ ージ状態検査工程 107が存在し、前記工程の合間には搬送工程 102、待機工程 10 3が存在する。 FIG. 54 shows the conventional semiconductor product diffusion completion 101 to product shipment 108. For example, the PCM measurement process 104, the wafer condition inspection process 105, the assembly process 106, and the knock condition inspection process 107 are shown in 2100. There is a transfer step 102 and a standby step 103 between the steps.
[0003] 特に、前記記載の検査工程 105,107においては検査専用の場所にてその半導体 製品の品質を保証する為の検査を行っていた。これらの検査を実施する時間には膨 大な時間を必要とし、検査する半導体製品の個数も限られており、待機工程で検査 待ちをしている半導体製品が数多く存在した。 [0003] In particular, in the inspection processes 105 and 107 described above, an inspection for assuring the quality of the semiconductor product is performed at a place dedicated to the inspection. The time required to perform these inspections requires an enormous amount of time, the number of semiconductor products to be inspected is limited, and there are many semiconductor products that are waiting for inspection in the standby process.
特許文献 1 : US20020171449A1(TEST SYSTEM AND MANUFACTURING OF SEMI CONDUCTOR DEVICE) Patent Document 1: US20020171449A1 (TEST SYSTEM AND MANUFACTURING OF SEMI CONDUCTOR DEVICE)
特許文献 2 : US65945834Al(SEMICONDUCTOR WAFER PACKAGE.METHOD AN D APPARATUS FORCONNECTING TESTING IC TERMINALS OF SEMICONDUC TOR WAFER AND PROBE TERMINALS, TESTING Patent Document 2: US65945834Al (SEMICONDUCTOR WAFER PACKAGE.METHOD AN D APPARATUS FORCONNECTING TESTING IC TERMINALS OF SEMICONDUC TOR WAFER AND PROBE TERMINALS, TESTING
特許文献 3 : US20010046168A1 (STRUCTURES FOR WAFER LEVEL TEST AND B URN- IN Patent Document 3: US20010046168A1 (STRUCTURES FOR WAFER LEVEL TEST AND B URN- IN
発明の開示 Disclosure of the invention
発明が解決しょうとする課題
[0004] 上記複数の検査を実施するには検査専用の場所にてその半導体製品の品質を保 証する為の検査をする必要がある力 これらの検査工程は膨大な時間が力かる為、 チップ単価による検査コストの割合が高くなつていた。 Problems to be solved by the invention [0004] In order to perform the above-mentioned multiple inspections, it is necessary to perform inspections to assure the quality of the semiconductor product at a place dedicated to the inspections. The proportion of inspection costs by was increasing.
[0005] また、従来検査回路が半導体集積回路に具備されて!、ても電源投入だけでは全て の検査を完了することが出来なかった。 [0005] Further, even though a conventional test circuit is provided in a semiconductor integrated circuit, all tests cannot be completed only by turning on the power.
[0006] また、半導体集積回路内に検査プログラムを全て内蔵しているため検査プログラム が増大した場合半導体集積回路のチップ面積も増大していた。 [0006] Further, since all the inspection programs are built in the semiconductor integrated circuit, when the inspection programs increase, the chip area of the semiconductor integrated circuit also increases.
[0007] また、検査プログラムを内蔵した場合は、量産出荷中などに検査プログラムを変更、 または、解析'評価をする際のプログラム変更が容易ではない。 [0007] In addition, when an inspection program is built in, it is not easy to change the inspection program during analysis or evaluation during mass production shipment or the like.
[0008] また、従来の検査回路は検査の進拔を記憶する回路が無いため、何らかの電源遮 断により検査が中断した場合は続きの検査を行うことが出来な力つた。 [0008] Further, since the conventional inspection circuit does not have a circuit for storing the progress of the inspection, if the inspection is interrupted due to some power interruption, it is difficult to perform the subsequent inspection.
[0009] また、ある特定検査終了後から次検査開始までの経過時間に応じて、検査対象半 導体装置を判定する検査規格を可変する場合がある時、ある特定検査終了後から 次検査開始までの経過時間を管理する必要がある。 [0009] Also, when the inspection standard for determining the semiconductor device to be inspected may vary depending on the elapsed time from the end of a specific inspection to the start of the next inspection, from the end of a specific inspection to the start of the next inspection It is necessary to manage the elapsed time.
[0010] また、半導体装置を検査する為の半導体検査装置は、ある特定の場所に設置され ており、且つ、複数半導体集積回路を測定出来る半導体検査装置自体大きい為、移 動させるのは困難である。また、電源供給元がない場所では検査が不可能である。 [0010] In addition, a semiconductor inspection apparatus for inspecting a semiconductor device is installed at a specific location, and since the semiconductor inspection apparatus itself that can measure a plurality of semiconductor integrated circuits is large, it is difficult to move the semiconductor inspection apparatus. is there. Further, inspection is impossible in a place where there is no power supply source.
[0011] また、基板上の全半導体集積回路に一括で電源を供給することで検査しょうとする と例えば電源ショートが発生した場合良品に対する電源も降下してしまい検査が出 来なくなってしまう。 [0011] Further, if an attempt is made to inspect by supplying power to all the semiconductor integrated circuits on the substrate at once, for example, when a power supply short-circuit occurs, the power supply for a non-defective product also drops and the inspection cannot be performed.
[0012] また、非接触での検査を行う場合、非接触状態での良品/不良品判別が必要となり 更に非接触で使用する電波送受信回路のアンテナによりチップ面積の増大或いは 製造数の減少につながってしまう。 [0012] Also, when performing non-contact inspection, it is necessary to discriminate between non-defective products and defective products in a non-contact state. Furthermore, the antenna of the radio wave transmission / reception circuit used in a non-contact state increases the chip area or the number of manufacturing. End up.
[0013] 更に温度管理が不可能な場所においての検査は例えば書き込み/消去時にレべ ル変動が起こってしま 、歩留りを落としてしまう。 [0013] Further, in the inspection at a place where temperature control is impossible, for example, level fluctuation occurs at the time of writing / erasing, and the yield is lowered.
[0014] また、半導体集積回路の並列テストにおける電源および信号コンタクトの増加にお ける検査コストの増大ならびに多ピンに伴う電気的コンタクトの信頼性および信号ノィ ズに問題が生じる。
[0015] したがって、本発明の目的は、上記課題を解決する半導体装置の検査方法、半導 体装置、半導体集積回路、半導体集積回路のテスト方法およびテスト装置を提供す ることである。 [0014] In addition, there are problems in the increase in inspection cost due to the increase in power supply and signal contacts in the parallel test of semiconductor integrated circuits, and in the reliability and signal noise of electrical contacts associated with multiple pins. Accordingly, an object of the present invention is to provide a semiconductor device inspection method, a semiconductor device, a semiconductor integrated circuit, a semiconductor integrated circuit test method, and a test apparatus that solve the above-described problems.
課題を解決するための手段 Means for solving the problem
[0016] 上記課題を解決するために本発明の請求項 1記載の半導体装置の検査方法は、 半導体製品の拡散完了から出荷までの間に、ウェハの搬送工程、待機工程、組立ェ 程、組立品の搬送工程の少なくとも何れかの工程を含み、何れかの工程中にウェハ 状態検査工程並びにパッケージ状態検査工程を振り分けて検査を行う。 [0016] In order to solve the above problems, a semiconductor device inspection method according to claim 1 of the present invention includes a wafer transfer process, a standby process, an assembly process, and an assembly process from completion of diffusion of a semiconductor product to shipment. Including at least one of the product transfer processes, the wafer state inspection process and the package state inspection process are distributed during any of the processes.
[0017] 請求項 2記載の半導体装置は、請求項 1記載の半導体装置の検査方法を実施す るための検査装置を半導体集積回路内に有する半導体装置であって、検査装置は 、何れかの工程中に検査が完了したとき、あるいは工程中の検査が途中で中断され たときに検査進拔情報を記録し、検査進拔情報を参照することで工程中の検査の続 きを実施可能な手段を有する。 [0017] A semiconductor device according to claim 2 is a semiconductor device having an inspection device for carrying out the semiconductor device inspection method according to claim 1 in a semiconductor integrated circuit, and the inspection device is any of the following: Record inspection progress information when inspection is completed during the process or when inspection during the process is interrupted, and the inspection in the process can be continued by referring to the inspection progress information Have means.
[0018] この場合、検査の途中で中断が発生した場合は、検査進拔情報を記憶し、中断が 発生しなければ検査を継続する。検査の節目に該当する場合は、検査進拔情報を 記憶し、検査の節目に非該当であれば検査を継続する。検査の一定周期に該当す る場合は、検査進拔情報記憶を記憶し、検査の一定周期に非該当であれば検査を 継続する。検査進拔情報を記憶した後、検査終了であれば終了し、終了でなければ 、検査を継続する。 [0018] In this case, if an interruption occurs during the inspection, the inspection progress information is stored, and if the interruption does not occur, the inspection is continued. If the test is applicable, store the progress information, and if the test is not applicable, continue the test. If it falls within a certain period of inspection, the test progress information is stored, and if it does not fall within a certain period of inspection, the inspection is continued. After the inspection progress information is stored, if the inspection is completed, the inspection is terminated. If not, the inspection is continued.
[0019] 請求項 3記載の半導体装置は、請求項 2記載の半導体装置において、半導体集積 回路に電源を供給することで検査装置による検査を行う。 [0019] A semiconductor device according to a third aspect is the semiconductor device according to the second aspect, wherein the inspection is performed by the inspection device by supplying power to the semiconductor integrated circuit.
[0020] 請求項 4記載の半導体装置は、請求項 3記載の半導体装置にお 、て、検査装置は[0020] The semiconductor device according to claim 4 is the semiconductor device according to claim 3, wherein the inspection device is
、マスク ROMを用いる。 Use mask ROM.
[0021] 請求項 5記載の半導体装置は、請求項 4記載の半導体装置において、検査装置は 、 RAMを用いる。 [0021] The semiconductor device according to claim 5 is the semiconductor device according to claim 4, wherein the inspection device uses a RAM.
[0022] 請求項 6記載の半導体装置は、請求項 3記載の半導体装置にお 、て、検査装置は 、半導体集積回路外部力 検査のためのソフトウェアを半導体集積回路内部の不揮 発性半導体記憶装置へ転送する。
[0023] 請求項 7記載の半導体装置は、請求項 2記載の半導体装置にお 、て、検査進拔情 報を格納する記憶手段としてヒューズを用いる。 [0022] The semiconductor device according to claim 6 is the semiconductor device according to claim 3, wherein the inspection device stores software for inspecting the external force of the semiconductor integrated circuit in the nonvolatile semiconductor memory inside the semiconductor integrated circuit. Transfer to device. [0023] The semiconductor device according to claim 7 uses a fuse as storage means for storing the inspection progress information in the semiconductor device according to claim 2.
[0024] 請求項 8記載の半導体装置は、請求項 2記載の半導体装置にお 、て、検査進拔情 報を格納する記憶手段として不揮発性半導体記憶装置を用いる。 [0024] The semiconductor device according to claim 8 uses a non-volatile semiconductor memory device as storage means for storing the inspection progress information in the semiconductor device according to claim 2.
[0025] 請求項 9記載の半導体装置は、請求項 2記載の半導体装置にお 、て、検査進拔情 報を外部に記憶する手段を有する。 [0025] The semiconductor device according to claim 9 is the semiconductor device according to claim 2, and has means for storing the inspection progress information outside.
[0026] 請求項 10記載の半導体装置は、請求項 9記載の半導体装置にお 、て、検査進拔 情報を格納する記憶手段として電源を供給する装置上に備えられた半導体記憶装 置を用いる。 [0026] The semiconductor device according to claim 10 uses the semiconductor memory device provided on the device for supplying power as the memory means for storing the inspection progress information in the semiconductor device according to claim 9. .
[0027] 請求項 11記載の半導体装置は、請求項 2記載の半導体装置にぉ 、て、検査進拔 情報は ROMアドレスまたは RAMアドレスである。 [0027] In the semiconductor device according to claim 11, in the semiconductor device according to claim 2, the inspection progress information is a ROM address or a RAM address.
[0028] 請求項 12記載の半導体装置は、請求項 2または 9記載の半導体装置において、半 導体集積回路内部にカウンタを有し、一定の周期で検査進拔情報を記憶する。 [0028] A semiconductor device according to claim 12 is the semiconductor device according to claim 2 or 9, wherein the semiconductor integrated circuit includes a counter and stores inspection progress information at a constant period.
[0029] 請求項 13記載の半導体装置は、請求項 2または 9記載の半導体装置において、検 查進拔情報を検査の節目に合わせて記憶する。 [0029] A semiconductor device according to claim 13 is the semiconductor device according to claim 2 or 9, wherein the inspection progress information is stored in accordance with the time of the inspection.
[0030] 請求項 14記載の半導体装置は、請求項 2または 9記載の半導体装置において、半 導体集積回路に出力される電源遮断信号が活性化されたときに、検査進拔情報を feす。。 [0030] The semiconductor device according to claim 14 is the semiconductor device according to claim 2 or 9, wherein the test progress information is fed when the power-off signal output to the semiconductor integrated circuit is activated. .
[0031] 請求項 15記載の半導体装置は、請求項 2または 9記載の半導体装置において、半 導体集積回路内の電源端子に検知回路を有し、電圧の低下を検知したときに、検査 進拔情報を記憶する。 [0031] A semiconductor device according to claim 15 is the semiconductor device according to claim 2 or 9, wherein the semiconductor device has a detection circuit at a power supply terminal in the semiconductor integrated circuit. Store information.
[0032] この場合、半導体集積回路を検査する際、電源端子に供給される電源レベルを検 知回路が検知し、第一の電源判定レベルを下回ると検査進拔情報を記憶し、第二の 電源判定レベルを下回ると検査対象回路の検査を中断する。 In this case, when inspecting the semiconductor integrated circuit, the detection circuit detects the power supply level supplied to the power supply terminal. When the semiconductor integrated circuit falls below the first power supply determination level, the inspection progress information is stored. When it falls below the power judgment level, the inspection of the circuit to be inspected is interrupted.
[0033] 請求項 16記載の半導体装置は、請求項 2記載の半導体装置において、半導体集 積回路内の電源パスに静電容量を有し、予期しない電源遮断時においては外部か らの電源パスを遮断し、半導体集積回路内の静電容量の電源パスを開放し、その間 に検査進拔情報を記憶する。
[0034] この場合、半導体集積回路を検査する際、電源端子に供給される電源レベルを検 知回路が検知し、電源判定レベルを下回ると外部力 の電源パスを遮断し、半導体 集積回路内の静電容量を選択する。 [0033] The semiconductor device according to claim 16 is the semiconductor device according to claim 2, wherein the power supply path in the semiconductor integrated circuit has a capacitance, and the power supply path from the outside when the power supply is unexpectedly interrupted. Is shut off, the power supply path of the electrostatic capacitance in the semiconductor integrated circuit is opened, and the inspection progress information is stored in the meantime. [0034] In this case, when inspecting the semiconductor integrated circuit, the detection circuit detects the power level supplied to the power supply terminal, and when the level falls below the power determination level, the power path of the external force is cut off. Select the capacitance.
[0035] 請求項 17記載の半導体装置は、請求項 2記載の半導体装置において、半導体集 積回路外の電源パスに静電容量を有し、予期しな!、電源遮断時にぉ 、ては外部の 電源投入装置力ゝらの電源パスを遮断し、半導体集積回路外の静電容量の電源パス を開放し、その間に検査進拔情報を記憶する。 [0035] The semiconductor device according to claim 17 is the semiconductor device according to claim 2, wherein the power source path outside the semiconductor integrated circuit has a capacitance, which is unexpected! The power path of the power-on device is cut off, the electrostatic capacity power path outside the semiconductor integrated circuit is opened, and the inspection progress information is stored during that time.
[0036] この場合、半導体集積回路を検査する際、電源端子に供給される電源レベルを検 知回路が検知し、電源判定レベルを下回ると外部力 の電源パスを遮断し、半導体 集積回路外の静電容量を選択する。 [0036] In this case, when inspecting the semiconductor integrated circuit, the detection circuit detects the power level supplied to the power supply terminal. When the level falls below the power determination level, the power path of the external force is cut off, Select the capacitance.
[0037] 請求項 18記載の半導体装置は、請求項 17記載の半導体装置において、半導体 集積回路を覆うパッケージに静電容量を備える。 [0037] A semiconductor device according to claim 18 is the semiconductor device according to claim 17, wherein a package covering the semiconductor integrated circuit is provided with a capacitance.
[0038] この場合、半導体集積回路を検査する際、電源端子に供給される電源レベルを検 知回路が検知し、電源判定レベルを下回ると外部力 の電源パスを遮断し、パッケ一 ジの静電容量を選択する。 [0038] In this case, when the semiconductor integrated circuit is inspected, the detection circuit detects the power level supplied to the power supply terminal. When the level is lower than the power determination level, the power path of the external force is shut off, and the package static electricity is detected. Select the capacitance.
[0039] 請求項 19記載の半導体装置は、請求項 2記載の半導体装置において、検査実行 時間を管理し、各検査の前後の検査実行時間を比較することで経過時間を把握し、 検査判定基準を可変する。 [0039] The semiconductor device according to claim 19 is the semiconductor device according to claim 2, wherein the inspection execution time is managed, the elapsed time is grasped by comparing the inspection execution time before and after each inspection, Is variable.
[0040] この場合、検査実行時間を半導体集積回路外部から内部へ取り込み、その時間情 報を記憶し、次の検査時に取り込んだ時間情報を半導体集積回路内部へ取り込み、 取り込んだ前後の時間情報を減算する事で内部メモリに格納した経過時間に応じた 検査判定情報を選択する事が出来る。 [0040] In this case, the inspection execution time is taken from the outside of the semiconductor integrated circuit to the inside, the time information is stored, the time information taken at the next inspection is taken into the semiconductor integrated circuit, and the time information before and after the taking is obtained. By subtracting, it is possible to select inspection judgment information according to the elapsed time stored in the internal memory.
[0041] 請求項 20記載の半導体装置は、請求項 19記載の半導体装置において、各検査 の検査実行時間を記憶し、次検査の検査実行時間とを比較する回路を半導体装置 回路外部に具備し、電源投入時に半導体集積回路外部力 経過時間情報を転送す る。 [0041] A semiconductor device according to claim 20 is the semiconductor device according to claim 19, further comprising a circuit for storing the inspection execution time of each inspection and comparing the inspection execution time of the next inspection outside the semiconductor device circuit. When the power is turned on, the semiconductor integrated circuit external force elapsed time information is transferred.
[0042] この場合、請求項 19記載の各検査の開始 (終了)時間を記憶し、次検査の開始 (終 了)時間とを比較する回路を半導体検査装置に具備し、経過時間情報を半導体集積
回路に転送する事で実現する。 [0042] In this case, a circuit for storing the start (end) time of each inspection according to claim 19 and comparing the start (end) time of the next inspection is provided in the semiconductor inspection apparatus, and the elapsed time information is stored in the semiconductor. Accumulation Realized by transferring to the circuit.
[0043] 請求項 21記載の半導体装置は、請求項 19記載の半導体装置において、各検査 の検査実行時間を記憶し、次検査の検査実行時間とを比較する回路を半導体装置 回路内部に具備し、経過時間情報を半導体集積回路内部に記憶しておく。 [0043] A semiconductor device according to claim 21 is the semiconductor device according to claim 19, further comprising a circuit in the semiconductor device circuit that stores the inspection execution time of each inspection and compares the inspection execution time of the next inspection. The elapsed time information is stored inside the semiconductor integrated circuit.
[0044] この場合、請求項 19記載の各検査の開始 (終了)時間を記憶し、次検査の開始 (終 了)時間とを比較する回路を半導体集積回路内部に具備する事で実現する。 [0044] In this case, the circuit is realized by storing a circuit for storing the start (end) time of each inspection according to claim 19 and comparing the start (end) time of the next inspection in the semiconductor integrated circuit.
[0045] 請求項 22記載の半導体装置は、請求項 3記載の半導体装置において、半導体集 積回路に電源を投入する手段として、 RF発信機を具備した検査装置を用いて、半 導体集積回路内に具備した RF受信機に電波を送信することで電源に変換する。 [0045] A semiconductor device according to claim 22 is the semiconductor device according to claim 3, wherein an inspection device including an RF transmitter is used as means for supplying power to the semiconductor integrated circuit. It is converted to a power source by transmitting radio waves to the RF receiver equipped in
[0046] この場合、 RF電源を用いて半導体装置及び半導体集積回路内部に備え付けた R F電源受信機に電波を送信し電源を供給する事で半導体検査装置と半導体集積回 路とを非接触にする事が可能で、一度に複数半導体装置の検査が出来、余分な半 導体検査装置の機能を削減'軽量化、且つ、装置自体の大きさを削減が可能である [0046] In this case, the semiconductor inspection apparatus and the semiconductor integrated circuit are brought into contact with each other by transmitting radio waves and supplying power to the RF power receiver installed in the semiconductor device and the semiconductor integrated circuit using the RF power supply. It is possible to inspect multiple semiconductor devices at the same time, reduce the function of the extra semiconductor inspection device, and reduce the weight and size of the device itself.
[0047] 請求項 23記載の半導体装置は、請求項 6記載の半導体装置において、半導体集 積回路を自動で検査をするためのソフトウェアを外部力 入力する為の手段として、メ モリカードを検査装置に挿入することで、メモリカードに記憶された検査プログラムが 検査対象半導体集積回路内部に転送され、検査を実行する。 [0047] The semiconductor device according to claim 23 is the semiconductor device according to claim 6, wherein the memory card is inspected as means for externally inputting software for automatically inspecting the semiconductor integrated circuit. The test program stored in the memory card is transferred into the test target semiconductor integrated circuit, and the test is executed.
[0048] 請求項 24記載の半導体装置は、請求項 6記載の半導体装置にぉ 、て、半導体集 積回路を自動で検査をするためのソフトウェアを外部力 入力する為の手段として、 RF発信機を具備した装置を用いて、半導体集積回路内に具備した RF受信機に電 波を送信することで検査プログラムが検査対象半導体集積回路内部に転送され、検 查を実行する。 [0048] The semiconductor device according to claim 24 is an RF transmitter as a means for inputting external power to the semiconductor device according to claim 6 for automatically inspecting the semiconductor integrated circuit. Using the apparatus equipped with the above, the inspection program is transferred to the inside of the semiconductor integrated circuit to be inspected by transmitting the electric wave to the RF receiver provided in the semiconductor integrated circuit, and the inspection is executed.
[0049] 請求項 25記載の半導体装置は、基板と、基板の表面上に一括して形成される複数 の半導体集積回路と、半導体集積回路の電源を一括で供給することで自動で検査 を行う検査装置とを備えた請求項 3記載の半導体装置であって、半導体集積回路全 てに一括で接続される電源配線と、半導体集積回路全てに接続される接地配線と、 半導体集積回路と電源配線との間あるいは半導体集積回路と接地配線の間に半導
体集積回路毎に挿入されるヒューズとを備えた。 [0049] The semiconductor device according to claim 25 automatically inspects the substrate, a plurality of semiconductor integrated circuits formed on the surface of the substrate at once, and the power supply of the semiconductor integrated circuit collectively. 4. The semiconductor device according to claim 3, further comprising: a power supply wiring connected to all of the semiconductor integrated circuits, a ground wiring connected to all of the semiconductor integrated circuits, and a semiconductor integrated circuit and a power supply wiring. Or between the semiconductor integrated circuit and the ground wiring And a fuse inserted for each body integrated circuit.
[0050] 請求項 26記載の半導体装置は、請求項 24記載の半導体装置にお 、て、 RF受信 機のコイルを基板の裏面に備え、スルーホールを通して基板表面で電源配線ある ヽ は RF送受信回路に接続する。 [0050] The semiconductor device according to claim 26 is the semiconductor device according to claim 24, wherein the RF receiver coil is provided on the back surface of the substrate, and the power supply wiring is provided on the substrate surface through the through hole. Connect to.
[0051] 請求項 27記載の半導体装置は、基板と、基板の表面上に一括して形成される複数 の半導体集積回路と、半導体集積回路の電源を一括で供給することで自動で検査 を行う検査装置とを備えた請求項 3記載の半導体装置であって、検査の PASS/FAIL 情報を記憶しておくテストデータ格納領域と、テストデータ格納領域に格納された PA SS/FAIL情報を転送する揮発性レジスタと、揮発性レジスタの内容により P/N Junctio n電流を流す力否かを行う P/N Junction素子とを備え、半導体集積回路の良品不良 品を P/N Junction素子で識別できる。 [0051] The semiconductor device according to claim 27 is automatically inspected by collectively supplying a substrate, a plurality of semiconductor integrated circuits formed on the surface of the substrate at once, and a power supply of the semiconductor integrated circuits. 4. The semiconductor device according to claim 3, further comprising a test data storage area for storing test PASS / FAIL information, and transferring the PASS / FAIL information stored in the test data storage area. Equipped with a volatile register and a P / N junction element that determines whether or not a P / N junction current can be applied depending on the contents of the volatile register, and a non-defective product of a semiconductor integrated circuit can be identified by the P / N junction element.
[0052] 請求項 28記載の半導体装置は、基板と、基板の表面上に一括して形成される複数 の半導体集積回路と、半導体集積回路の電源を一括で供給することで自動で検査 を行う検査装置とを備えた請求項 3記載の半導体装置であって、検査の PASS/FAIL 情報を記憶しておくテストデータ格納領域と、テストデータ格納領域に格納された PA SS/FAIL情報を転送する揮発性レジスタと、電源配線と、基板上に形成された全ての 半導体集積回路毎の間に配置されるアンチヒューズとを備え、揮発性レジスタの内容 によりアンチヒューズが切れる力否かを決定することで、半導体集積回路の良品不良 品を識別できる。 [0052] The semiconductor device according to claim 28 automatically inspects the substrate, the plurality of semiconductor integrated circuits formed on the surface of the substrate at once, and the power supply of the semiconductor integrated circuit collectively. 4. The semiconductor device according to claim 3, further comprising a test data storage area for storing test PASS / FAIL information, and transferring the PASS / FAIL information stored in the test data storage area. A volatile register, power supply wiring, and an antifuse arranged between all the semiconductor integrated circuits formed on the substrate are provided, and it is determined whether or not the antifuse can be blown depending on the contents of the volatile register. This makes it possible to identify good and defective semiconductor integrated circuits.
[0053] 請求項 29記載の半導体装置は、基板と、基板の表面上に一括して形成される複数 の半導体集積回路と、半導体集積回路の電源を一括で供給することで自動で検査 を行う検査装置とを備えた請求項 3記載の半導体装置であって、検査の PASS/FAIL 情報を記憶しておくテストデータ格納領域と、テストデータ格納領域に格納された PA SS/FAIL情報を転送する揮発性レジスタと、揮発性レジスタの内容により電波を発信 するか否かを決定する RF発信素子とを備え、半導体集積回路の良品不良品を RF 発信素子で識別できる。 [0053] The semiconductor device according to claim 29 is automatically inspected by collectively supplying a substrate, a plurality of semiconductor integrated circuits formed on the surface of the substrate at once, and a power supply of the semiconductor integrated circuits. 4. The semiconductor device according to claim 3, further comprising a test data storage area for storing test PASS / FAIL information, and transferring the PASS / FAIL information stored in the test data storage area. Equipped with a volatile register and an RF transmitter that determines whether or not to transmit radio waves according to the contents of the volatile register, it is possible to identify non-defective products of semiconductor integrated circuits with the RF transmitter.
[0054] 請求項 30記載の半導体装置は、請求項 3記載の半導体装置において、半導体記 憶装置と、半導体記憶装置の書き込みある!、は消去時の温度を検知する温度セン
サ回路と、検査温度の情報を格納するテストデータ格納領域と、テストデータ格納領 域の検査時の書き込み/消去の温度情報及び書き込み/消去のレベル判定検査の 読み出し時の温度情報を受けて検査の規格を変更する検査規格変更回路とを備え 、温度センサ回路の温度を半導体記憶装置に自動で記憶して、温度に従って自動 で検査規格を補正する。 [0054] A semiconductor device according to claim 30 is the temperature sensor for detecting the temperature at the time of writing or erasing of the semiconductor storage device and the semiconductor storage device in the semiconductor device according to claim 3. The test data storage area that stores the test circuit information, the test temperature information, the write / erase temperature information at the time of inspection of the test data storage area, and the temperature information at the time of read of the write / erase level judgment test And an inspection standard changing circuit for changing the standard of the temperature sensor, automatically storing the temperature of the temperature sensor circuit in the semiconductor memory device, and automatically correcting the inspection standard according to the temperature.
[0055] 請求項 31記載の半導体集積回路は、請求項 1記載の半導体装置の検査方法を用 いた検査装置を有する半導体集積回路であって、電源パッド、グランドパッドおよび セルフテスト回路を備え、電源パッドおよびグランドパッドは信号ピンと併用され、セ ルフテスト回路は電源パッドおよびグランドパッドに重畳された入出力信号によりセル フテストを実行する。 [0055] A semiconductor integrated circuit according to claim 31 is a semiconductor integrated circuit having an inspection device using the method for inspecting a semiconductor device according to claim 1, and includes a power supply pad, a ground pad, and a self-test circuit, The pad and ground pad are used in combination with the signal pins, and the self test circuit performs a self test with the input / output signals superimposed on the power and ground pads.
[0056] 請求項 32記載の半導体集積回路は、請求項 1記載の半導体装置の検査方法を用 いた検査装置を有する半導体集積回路であって、光電力変換素子を備え、駆動電 力が外部の収束光による光電力変換素子への選択的な照射により供給される。 [0056] A semiconductor integrated circuit according to claim 32 is a semiconductor integrated circuit having an inspection device using the method for inspecting a semiconductor device according to claim 1, and includes an optical power conversion element, and driving power is external. It is supplied by selective irradiation to the optical power conversion element by convergent light.
[0057] この場合、 PN接合等の光電力変換素子を備え、駆動電力を外部のレーザ等の収 束光を光電力変換素子に照射して、非接触で電源を供給することができる半導体集 積回路である。 [0057] In this case, a semiconductor collector that includes an optical power conversion element such as a PN junction, and that can irradiate the optical power conversion element with converging light such as an external laser to supply power without contact. Product circuit.
[0058] 請求項 33記載の半導体集積回路のテスト方法は、請求項 32記載の半導体集積回 路のテスト方法であって、テスト中に不良と判定された半導体集積回路には収束光を 遮断し以降のテストから除外する。 [0058] The method for testing a semiconductor integrated circuit according to claim 33 is the method for testing a semiconductor integrated circuit according to claim 32, wherein the convergent light is cut off to the semiconductor integrated circuit determined to be defective during the test. Exclude from subsequent tests.
[0059] 請求項 34記載の半導体集積回路は、請求項 1記載の半導体装置の検査方法を用 いた検査装置を有する半導体集積回路であって、光電力変換素子と発光素子を備 え、光電力変換素子は駆動電力の供給と外部データの受信を担い、発光素子は内 部データの送信を担う。 [0059] A semiconductor integrated circuit according to claim 34 is a semiconductor integrated circuit having an inspection apparatus using the method for inspecting a semiconductor device according to claim 1, comprising an optical power conversion element and a light emitting element, and an optical power The conversion element is responsible for supplying drive power and receiving external data, and the light emitting element is responsible for transmitting internal data.
[0060] 請求項 35記載の半導体集積回路は、請求項 34記載の半導体集積回路において 、発光素子として PN接合のブレイクダウンによる近赤外光を用いた。 [0060] In the semiconductor integrated circuit according to claim 35, in the semiconductor integrated circuit according to claim 34, near-infrared light due to breakdown of a PN junction is used as a light emitting element.
[0061] 請求項 36記載の半導体集積回路のテスト装置は、請求項 34記載の半導体集積回 路のテスト装置であって、データ受信用の受光センサ素子と、電力供給とデータ送信 の機能を担うレーザ光源とを複数備え、半導体集積回路をウェハ状態で非接触でテ
ストする。 [0061] A semiconductor integrated circuit test apparatus according to claim 36 is the semiconductor integrated circuit test apparatus according to claim 34, and has a light receiving sensor element for data reception, and functions of power supply and data transmission. A plurality of laser light sources, and the semiconductor integrated circuit is contactlessly tested in a wafer state. Strike.
[0062] 請求項 37記載の半導体集積回路は、請求項 1記載の半導体装置の検査方法を用 いた検査装置を有する半導体集積回路であって、光電力変換素子と無線データ送 信回路を備え、光電力変換素子は駆動電力の供給と外部データの受信を担い、無 線データ送信回路は内部データの送信を担う。 [0062] A semiconductor integrated circuit according to claim 37 is a semiconductor integrated circuit having an inspection device using the method for inspecting a semiconductor device according to claim 1, and includes an optical power conversion element and a wireless data transmission circuit, The optical power conversion element is responsible for supplying drive power and receiving external data, and the wireless data transmission circuit is responsible for transmitting internal data.
[0063] この場合、駆動電力の供給と外部データの受信を担う PN接合等の光電力変換素 子と内部データの送信を担う無線データ送信回路を備え、半導体集積回路力ゝらの出 力を無線で行うことにより高速な読みだしを可能し、光入力によるデータ入力により高 速かつ高 SNの通信を実現し、最小のアンテナの搭載で機能する無線による非接触 テストを可能にした半導体集積回路である。 [0063] In this case, an optical power conversion element such as a PN junction responsible for supply of drive power and reception of external data and a wireless data transmission circuit responsible for transmission of internal data are provided, and the output of the semiconductor integrated circuit power is provided. A semiconductor integrated circuit that enables high-speed reading when performed wirelessly, realizes high-speed and high-SN communication through data input using optical input, and enables wireless contactless testing that functions with the smallest antenna. It is.
[0064] 請求項 38記載の半導体集積回路は、請求項 1記載の半導体装置の検査方法を用 いた検査装置を有する半導体集積回路であって、光電電力変換素子と無線データ 送信回路を備え、光電力変換素子は駆動電力の供給のみを担い、無線データ送信 回路は内部データの送信と受信を担う。 [0064] A semiconductor integrated circuit according to claim 38 is a semiconductor integrated circuit having an inspection device using the method for inspecting a semiconductor device according to claim 1, comprising a photoelectric power conversion element and a wireless data transmission circuit, and an optical device. The power conversion element is only responsible for supplying drive power, and the wireless data transmission circuit is responsible for transmission and reception of internal data.
[0065] この場合、駆動電力の供給のみを担う PN接合等の光電電力変換素子と、内部デ ータの送信と受信を担う無線データ送信回路を備えることにより、テスト装置の収束 光の変調が不要でまた集積回路側にも復調回路の搭載を不要にした半導体集積回 路である。 [0065] In this case, by providing a photoelectric power conversion element such as a PN junction that is responsible only for the supply of drive power, and a wireless data transmission circuit that is responsible for transmission and reception of internal data, the convergence of the convergence light of the test apparatus can be modulated. This is a semiconductor integrated circuit that is unnecessary and does not require a demodulator on the integrated circuit side.
[0066] 請求項 39記載の半導体集積回路は、請求項 37または 38記載の半導体集積回路 において、無線データ送信回路は半導体集積回路に固有の識別 IDを送信する。 [0066] In the semiconductor integrated circuit according to claim 39, in the semiconductor integrated circuit according to claim 37 or 38, the wireless data transmission circuit transmits an identification ID unique to the semiconductor integrated circuit.
[0067] 請求項 40記載の半導体集積回路のテスト方法は、請求項 37記載の半導体集積回 路のテスト方法であって、無線データ送信回路は半導体集積回路に固有の識別 ID を送信する際、識別 IDを光電力変換素子経由で設定する。 [0067] The method for testing a semiconductor integrated circuit according to claim 40 is the method for testing a semiconductor integrated circuit according to claim 37, wherein the wireless data transmission circuit transmits a unique identification ID to the semiconductor integrated circuit. The identification ID is set via the optical power conversion element.
[0068] 請求項 41記載の半導体集積回路のテスト方法は、請求項 38記載の半導体集積回 路のテスト方法であって、無線データ送信回路は半導体集積回路に固有の識別 ID を送信する際、識別 IDを光電力変換素子に収束光の照射の有無で選択し、無線経 由で設定する。 [0068] The method for testing a semiconductor integrated circuit according to claim 41 is the method for testing a semiconductor integrated circuit according to claim 38, wherein the wireless data transmission circuit transmits a unique identification ID to the semiconductor integrated circuit. The identification ID is selected based on whether the photoelectric conversion element is irradiated with convergent light, and is set via wireless.
[0069] 請求項 42記載の半導体集積回路は、請求項 39記載の半導体集積回路において
、半導体集積回路のウェハ内のチップ毎に異なるもしくは唯一の識別 IDをプロセス 工程にお ヽて予め形成した。 [0069] The semiconductor integrated circuit according to claim 42 is the semiconductor integrated circuit according to claim 39. In addition, different or unique identification IDs are formed in advance in the process steps for each chip in the wafer of the semiconductor integrated circuit.
[0070] 請求項 43記載の半導体集積回路のテスト装置は、請求項 37記載の半導体集積回 路のテスト装置であって、データの受信用の無線データ受信装置と、電力供給とデ ータ送信を担う複数の収束光源とを備え、半導体集積回路をウェハ状態で非接触で テストする。 [0070] A semiconductor integrated circuit test apparatus according to claim 43 is the semiconductor integrated circuit test apparatus according to claim 37, wherein the wireless data reception apparatus for receiving data, power supply, and data transmission are provided. The semiconductor integrated circuit is tested in a contactless manner in the wafer state.
[0071] 請求項 44記載の半導体集積回路のテスト装置は、請求項 38記載の半導体集積回 路のテスト装置であって、データの送信受信用の無線データ送受信装置と、電力供 給を担う複数の収束光源とを備え、半導体集積回路をウェハ状態で非接触でテスト する。 [0071] A test apparatus for a semiconductor integrated circuit according to claim 44 is the test apparatus for a semiconductor integrated circuit according to claim 38, and includes a plurality of radio data transmitting / receiving apparatuses for transmitting and receiving data, and a plurality of units for supplying power. The semiconductor integrated circuit is tested in a non-contact state in a wafer state.
発明の効果 The invention's effect
[0072] 本発明の請求項 1記載の半導体装置の検査方法によれば、製品の拡散から出荷 までの間に存在するウェハの搬送工程、待機工程、組立工程、組立品の搬送工程の 何れかの工程に、ウェハ状態検査工程、並びにパッケージ状態検査工程を振り分け て検査を実施することで、検査時間を見かけ上「0」に出来、検査コストを 0にすること が出来る。 According to the method for inspecting a semiconductor device according to claim 1 of the present invention, any one of a wafer transfer process, a standby process, an assembly process, and an assembly transfer process that exists between product diffusion and shipment By performing the inspection by assigning the wafer state inspection process and the package state inspection process to these processes, the inspection time can be apparently “0” and the inspection cost can be reduced to zero.
[0073] 本発明の請求項 2記載の半導体装置によれば、検査が途中で中断された場合、或 いは工程を跨る場合も検査進拔情報が記憶されているため、検査場所を固定するこ となぐ検査専用の場所が不要で、且つどの工程でも検査が可能で、検査専門のェ 程を削減することが可能であり、検査コストが 0に出来る。 According to the semiconductor device of claim 2 of the present invention, the inspection place is fixed because the inspection progress information is stored even when the inspection is interrupted in the middle or across the process. There is no need for a dedicated inspection site, inspection can be performed in any process, the inspection process can be reduced, and the inspection cost can be reduced to zero.
[0074] 本発明の請求項 3記載の半導体装置によれば、検査回路への電源投入だけで全 ての検査を完了することが出来る。 According to the semiconductor device of the third aspect of the present invention, all the inspections can be completed only by turning on the power to the inspection circuit.
[0075] 本発明の請求項 4記載の半導体装置によれば、マスク ROMを使用することで低製 造コストとなる。 [0075] According to the semiconductor device of the fourth aspect of the present invention, the use of a mask ROM leads to a low manufacturing cost.
[0076] 本発明の請求項 5記載の半導体装置によれば、 RAMを使用することで検査プログ ラムの高速読み出しが可能となり、検査時間の短縮が図れる。 According to the semiconductor device described in claim 5 of the present invention, the use of RAM makes it possible to read out the inspection program at a high speed, thereby shortening the inspection time.
[0077] 本発明の請求項 6記載の半導体装置によれば、検査プログラムを分割して半導体 集積回路内の不揮発性半導体記憶装置へ転送できる為、半導体集積回路を小面
積にできる。 According to the semiconductor device of the sixth aspect of the present invention, the inspection program can be divided and transferred to the nonvolatile semiconductor memory device in the semiconductor integrated circuit. Can be a product.
[0078] 本発明の請求項 7記載の半導体装置によれば、検査進拔情報を格納する記憶手 段として安価なヒューズを使用することで低コストにできる。 According to the semiconductor device described in claim 7 of the present invention, it is possible to reduce the cost by using an inexpensive fuse as a storage means for storing inspection progress information.
[0079] 本発明の請求項 8記載の半導体装置によれば、検査進拔情報を格納する記憶手 段として書換可能な不揮発性半導体記憶装置を使用することで小面積にできる。 According to the semiconductor device described in claim 8 of the present invention, the area can be reduced by using a rewritable nonvolatile semiconductor memory device as a memory means for storing the inspection progress information.
[0080] 本発明の請求項 9記載の半導体装置によれば、検査進拔情報を外部に記憶する 手段を有する為、半導体集積回路を小面積にできる。 According to the semiconductor device of the ninth aspect of the present invention, since the inspection progress information is stored outside, the semiconductor integrated circuit can be reduced in area.
[0081] 本発明の請求項 10記載の半導体装置によれば、検査進拔情報を格納する記憶手 段として電源を供給する装置上に備えられた半導体記憶装置を用いる為、半導体集 積回路を小面積にできる。 According to the semiconductor device of claim 10 of the present invention, since the semiconductor memory device provided on the device for supplying power is used as the memory device for storing the inspection progress information, the semiconductor integrated circuit is provided. Can be small area.
[0082] 本発明の請求項 11記載の半導体装置によれば、検査進拔情報を ROMアドレスの み、または RAMアドレスのみとなる為、半導体集積回路を小面積にできる。 According to the semiconductor device of claim 11 of the present invention, since the inspection progress information is only the ROM address or only the RAM address, the semiconductor integrated circuit can be reduced in area.
[0083] 本発明の請求項 12記載の半導体装置によれば、一定の周期で検査進拔情報を記 憶する為、検査進拔情報を読み出して検査を続行できる。 According to the semiconductor device of the twelfth aspect of the present invention, since the inspection progress information is stored at a constant cycle, the inspection progress information can be read and the inspection can be continued.
[0084] 本発明の請求項 13記載の半導体装置によれば、検査の節目に合わせて検査進拔 情報を記憶する為、検査進拔情報を読み出して検査を続行できる。 According to the semiconductor device of the thirteenth aspect of the present invention, since the inspection progress information is stored at the time of the inspection, the inspection progress information can be read and the inspection can be continued.
[0085] 本発明の請求項 14記載の半導体装置によれば、電源遮断信号が活性化された場 合に検査進拔情報を記憶する為、検査進拔情報を読み出して検査を続行できる。 According to the semiconductor device of the fourteenth aspect of the present invention, since the inspection progress information is stored when the power-off signal is activated, the inspection progress information can be read and the inspection can be continued.
[0086] 本発明の請求項 15記載の半導体装置によれば、電源が途中で遮断されても、検 查進拔情報の誤書き込みが防止でき、検査品質を落とさず検査することができる。 [0086] According to the semiconductor device of the fifteenth aspect of the present invention, even if the power supply is interrupted in the middle, erroneous writing of the detection progress information can be prevented, and the inspection can be performed without degrading the inspection quality.
[0087] 本発明の請求項 16記載の半導体装置によれば、電源が途中で遮断されても、半 導体集積回路内の静電容量を使用することで、検査を継続することができる。 According to the semiconductor device of the sixteenth aspect of the present invention, the inspection can be continued by using the capacitance in the semiconductor integrated circuit even if the power supply is interrupted in the middle.
[0088] 本発明の請求項 17記載の半導体装置によれば、電源が途中で遮断されても、半 導体集積回路外の静電容量を使用することで、検査を継続することができる。また静 電容量が半導体集積回路外にある為、容量を大きくすることが出来る。更にチップ面 積を抑えることが可能となる。 According to the semiconductor device described in claim 17 of the present invention, even when the power supply is interrupted in the middle, the inspection can be continued by using the capacitance outside the semiconductor integrated circuit. Further, since the electrostatic capacity is outside the semiconductor integrated circuit, the capacity can be increased. Furthermore, the chip area can be reduced.
[0089] 本発明の請求項 18記載の半導体装置によれば、電源が途中で遮断されても、パッ ケージの静電容量を使用することで、検査を継続することができる。更にチップ面積
を抑えることが可能となる。 According to the semiconductor device of the eighteenth aspect of the present invention, even if the power supply is interrupted halfway, the inspection can be continued by using the capacitance of the package. Further chip area Can be suppressed.
[0090] 本発明の請求項 19記載の半導体装置によれば、複数工程間の任意の時間に検 查が実行された場合でも、検査を実行している時刻を記憶し、その差分を演算する 事で経過時間情報を把握し、自動で経過時間に応じた検査規格に変更可能で検査 規格のマージンレスを防止し、歩留まり低下を防ぐ事が可能となる。 According to the semiconductor device of claim 19 of the present invention, even when the inspection is executed at an arbitrary time between a plurality of processes, the time at which the inspection is executed is stored, and the difference is calculated. It is possible to grasp the elapsed time information and automatically change the inspection standard according to the elapsed time to prevent margin of the inspection standard and to prevent a decrease in yield.
[0091] 本発明の請求項 20記載の半導体装置によれば、前検査から次検査までの経過時 間を減算する回路を半導体検査装置自体に持たせる事で、半導体装置全体での時 間管理が可能且つ、半導体集積回路自体の回路面積を削減出来る。 [0091] According to the semiconductor device of claim 20 of the present invention, by providing the semiconductor inspection apparatus itself with a circuit for subtracting the elapsed time from the previous inspection to the next inspection, the time management of the entire semiconductor device is performed. And the circuit area of the semiconductor integrated circuit itself can be reduced.
[0092] 本発明の請求項 21記載の半導体装置によれば、前検査から次検査までの経過時 間を減算する回路を半導体集積回路内部に持たせる事で、半導体集積回路単体で の時間管理が可能且つ、半導体集積回路外部へ検査時間を記憶するタイミングの 信号を発信する必要がなぐ無駄な端子を削減出来る。 [0092] According to the semiconductor device of claim 21 of the present invention, by providing the semiconductor integrated circuit with a circuit for subtracting the elapsed time from the previous test to the next test, the time management of the semiconductor integrated circuit alone In addition, it is possible to reduce useless terminals that do not need to transmit a signal for storing the inspection time outside the semiconductor integrated circuit.
[0093] 本発明の請求項 22記載の半導体装置によれば、 RF電源を用いて半導体装置に 電源を供給する為、半導体集積回路の端子と半導体検査装置が接触する事がな 、 為、半導体検査装置の大きさを小さく出来、且つ、複数の半導体装置を収納する事 が可能である。また、半導体検査装置の大きさが小さい事から、容易に持ち運びが可 能且つ、移動しながらの検査も可能となる。さらに、 RF電源の電源供給源をバッテリ 一でまかなう事で、電源供給元がな 、場所でも検査が可能である。 [0093] According to the semiconductor device of claim 22 of the present invention, since the power is supplied to the semiconductor device using the RF power supply, the terminal of the semiconductor integrated circuit and the semiconductor inspection device do not come into contact with each other. The size of the inspection apparatus can be reduced, and a plurality of semiconductor devices can be accommodated. In addition, since the size of the semiconductor inspection apparatus is small, it can be easily carried and inspected while moving. Furthermore, by using a single battery as the power source for the RF power supply, it is possible to inspect even where there is no power source.
[0094] 本発明の請求項 23記載の半導体装置によれば、半導体集積回路内に具備してい る BIST回路を動作させる為のプログラムに半導体検査装置に装着可能なメモリカー ドを使用する事で、開発者が容易にプログラムを変更出来、量産出荷中などに検査 プログラムの変更、解析'評価をする際のプログラム変更が容易である。 [0094] According to the semiconductor device of claim 23 of the present invention, a memory card that can be attached to the semiconductor inspection apparatus is used for the program for operating the BIST circuit included in the semiconductor integrated circuit. The developer can easily change the program, and the inspection program can be changed and the program can be changed when analyzing and evaluating during mass production.
[0095] 本発明の請求項 24記載の半導体装置によれば、 RF発信機を用いて半導体集積 回路内部に検査プログラムを転送することにより、電源供給手段が非接触で行われ た場合でも、半導体装置、及び、半導体集積回路に対して検査プログラム転送用に 配線を引き回すこともなぐ入出力パットに対してコンタクトを取る必要がない。 According to the semiconductor device of claim 24 of the present invention, even if the power supply means is performed in a non-contact manner by transferring an inspection program into the semiconductor integrated circuit using an RF transmitter, the semiconductor device There is no need to make contact with the input / output pad that does not route wiring for transferring the inspection program to the device and the semiconductor integrated circuit.
[0096] 本発明の請求項 25記載の半導体装置によれば、電源配線と基板上に形成された 全ての半導体集積回路毎の間にアンチヒューズを備えることで、電源ショート等により
過電流が流れると電源ショート等の不良の半導体集積回路は共通の電源配線とは 切り離され、良品の半導体集積回路の電源電圧の降下を防ぐことができる。 According to the semiconductor device of claim 25 of the present invention, the antifuse is provided between the power supply wiring and all the semiconductor integrated circuits formed on the substrate, so that the power supply is short-circuited. When an overcurrent flows, a defective semiconductor integrated circuit such as a power supply short circuit is disconnected from the common power supply wiring, and a drop in power supply voltage of a good semiconductor integrated circuit can be prevented.
[0097] 本発明の請求項 26記載の半導体装置によれば、電波発信機から発信される電波 を受信するため RFコイルを基板の裏面に形成して、基板表面の電源配線に電圧を 供給するためのスルーホールを備えることで、従来大きな面積を占めていた RFコィ ルの配置面積をなくすことができるため小チップィ匕或いは基板上に形成される半導 体集積回路の形成数を減少させることは無!、。 According to the semiconductor device of claim 26 of the present invention, an RF coil is formed on the back surface of the substrate to receive a radio wave transmitted from the radio wave transmitter, and a voltage is supplied to the power supply wiring on the substrate surface. By providing a through-hole for this purpose, it is possible to eliminate the layout area of the RF coil that previously occupied a large area, so the number of semiconductor integrated circuits formed on a small chip or substrate can be reduced. No!
[0098] 本発明の請求項 27記載の半導体装置によれば、検査の PASS/FAIL情報を記憶し ておくテストデータ格納領域と、テストデータ格納領域に格納された PASS/FAIL情報 を転送する揮発性レジスタと、揮発性レジスタの内容により P/N Junction電流を流す か否かを行う P/N Junction素子を備えることで、自動検査の結果を外部装置に送るこ となく PASS/FAIL情報が分力るようになり例えば非接触での検査後そのままエミッショ ン装置を備えた組み立て装置システム (未表示)での良品のみの組み立てが可能と なる。 [0098] According to the semiconductor device of claim 27 of the present invention, a test data storage area for storing inspection PASS / FAIL information, and a volatile memory for transferring the PASS / FAIL information stored in the test data storage area. And a P / N junction element that determines whether or not to pass a P / N junction current depending on the contents of the volatile register and PASS / FAIL information without sending the result of automatic inspection to an external device. For example, only non-defective products can be assembled in an assembly system (not shown) equipped with an emission device as it is after non-contact inspection.
[0099] 具体的にはェミッション装置により基板上に形成されている半導体集積回路上の P/ N Junction素子中のダイオードの熱による発光パターンを 1基板毎に取り込みその情 報に従って良品のみをダイシングした後拾うことで良品のみの組み立てを行うことが 可能となる。 [0099] Specifically, the emission pattern due to the heat of the diode in the P / N junction element on the semiconductor integrated circuit formed on the substrate by the emission device is taken for each substrate, and only non-defective products are diced according to the information. After picking up the product, it is possible to assemble only good products.
[0100] 本発明の請求項 28記載の半導体装置によれば、検査の PASS/FAIL情報を記憶し ておくテストデータ格納領域と、テストデータ格納領域に格納された PASS/FAIL情報 を転送する揮発性レジスタと、電源配線と、基板上に形成された全ての半導体集積 回路毎の間にアンチヒューズとを備えることで、例えば Fail情報が揮発性レジスタに格 納されているときにアンチヒューズが切れるので、自動検査の結果を外部装置に送る ことなく PASS/FAIL情報が分力るようになり例えば非接触での検査後そのままパター ン認識装置を備えた組み立て装置システムでの良品のみの組み立てが可能となる。 [0100] According to the semiconductor device of claim 28 of the present invention, a test data storage area for storing inspection PASS / FAIL information and a volatile memory for transferring the PASS / FAIL information stored in the test data storage area. By providing an anti-fuse between each register, power supply wiring, and all the semiconductor integrated circuits formed on the substrate, for example, the anti-fuse is blown when Fail information is stored in the volatile register. Therefore, PASS / FAIL information can be divided without sending the result of automatic inspection to an external device.For example, it is possible to assemble only non-defective products in an assembly device system equipped with a pattern recognition device as it is after non-contact inspection. It becomes.
[0101] 具体的にはパターン認識装置により 1基板毎のヒューズのパターンを取り込み、そ の情報に従って良品のみをダイシングした後拾うことで良品のみの組み立てが可能と なる。
[0102] 本発明の請求項 29記載の半導体装置によれば、検査の PASS/FAIL情報を記憶し ておくテストデータ格納領域と、テストデータ格納領域に格納された PASS/FAIL情報 を転送する揮発性レジスタと、揮発性レジスタの内容により電波を発信するか否かを 決定する RF発信回路を備えることで、自動検査の結果を非接触の状態で分かるの で、例えば非接触での検査後そのまま電波受信装置を備えた組み立て装置システム での良品のみの糸且み立てが可能となる。 [0101] Specifically, it is possible to assemble only non-defective products by fetching a fuse pattern for each board using a pattern recognition device, dicing only non-defective products according to the information, and picking them up. [0102] According to the semiconductor device of claim 29 of the present invention, a test data storage area for storing inspection PASS / FAIL information, and a volatile memory for transferring the PASS / FAIL information stored in the test data storage area. Since it is possible to know the result of automatic inspection in a non-contact state by providing an RF transmitter circuit that determines whether or not to transmit radio waves according to the contents of the volatile register and the volatile register, for example, as it is after the non-contact inspection Only a good product can be stowed in an assembly system equipped with a radio wave receiver.
[0103] 具体的には電波受信装置により RF発信回路から発信される電波発信パターンを 1 基板毎に取り込み、その情報に従って良品のみをダイシングした後拾うことで良品の みの組み立てが可能となる。 [0103] More specifically, it is possible to assemble only non-defective products by capturing the radio wave transmission pattern transmitted from the RF transmitter circuit by the radio wave receiving device for each substrate, dicing only the non-defective products according to the information, and picking up.
[0104] 本発明の請求項 30記載の半導体装置によれば、検査時の温度を検知する温度検 知回路と、検査温度等の情報を格納するテストデータ格納領域と、テストデータ格納 領域の検査時の書き込み/消去の温度情報及び書き込み/消去のレベル判定検査 の読み出し時の温度情報を受けて検査の規格を変更する検査規格変更回路とを備 えることで、搬送時や倉庫に保存中といった温度管理できない場所での検査が可能 となる。 According to the semiconductor device of claim 30 of the present invention, a temperature detection circuit that detects a temperature at the time of inspection, a test data storage area that stores information such as an inspection temperature, and an inspection of the test data storage area It is equipped with an inspection standard changing circuit that changes the inspection standard based on the temperature information at the time of writing / erasing and the temperature information at the time of reading of the writing / erasing level judgment inspection, so that it can be stored at the time of transportation or in the warehouse. Inspection at a place where temperature control is not possible is possible.
[0105] 請求項 31によれば、電源パッドとグランドパッドの最小ピンのコンタクト数で半導体 集積回路のテストが可能になる。コンタクト数が大幅に削減可能であり、安価なハード ウェアで並列数の高いテストが可能、その結果テストコストを削減する事ができる。さ らにコンタクト数が大幅に削減されたことによりコンタクト不良による歩留まり低下を抑 ff¾することができる。 [0105] According to claim 31, the semiconductor integrated circuit can be tested with the minimum number of contacts of the power supply pad and the ground pad. The number of contacts can be greatly reduced, and high-parallel tests can be performed with inexpensive hardware, resulting in a reduction in test costs. In addition, since the number of contacts is significantly reduced, it is possible to suppress a decrease in yield due to contact failure.
[0106] 請求項 32によれば、非接触な電源供給を可能にし、インターフェースの配線等テ スト装置に起因する電源系のノイズを完全に排除することができ、並列テストの品質 を向上することができる。 [0106] According to claim 32, non-contact power supply is possible, noise in the power supply system caused by the test device such as interface wiring can be completely eliminated, and the quality of the parallel test is improved. Can do.
[0107] 請求項 33によれば、ウェハ上にある不良チップに対して容易に電源を遮断する事 ができて不良の隣接チップへの温度上昇、ノイズと!/、つた干渉を排除することができ[0107] According to claim 33, it is possible to easily cut off the power to a defective chip on the wafer, and to eliminate the temperature rise, noise,! Can
、並列テストの品質を向上することができる。 Can improve the quality of parallel testing.
[0108] 請求項 34および 35によれば、非接触で電力供給と入出力データの通信を可能に し、テスト装置起因の電源ノイズや回路起因のパッド回路の動作に伴うノイズを完全
に排除することができる。また PN接合による発光素子を用いることにより通常の CM OSプロセスで発光素子を低コストに集積することができる。 [0108] According to claims 34 and 35, the power supply and the input / output data can be communicated in a non-contact manner, and the power supply noise caused by the test apparatus and the noise caused by the operation of the pad circuit are completely eliminated. Can be eliminated. In addition, by using a light emitting element with a PN junction, the light emitting element can be integrated at a low cost by a normal CM OS process.
[0109] 請求項 36によれば、並列テストを実現できるテスト装置のアーキテクチャを提供す る。 [0109] According to claim 36, there is provided an architecture of a test apparatus capable of realizing a parallel test.
[0110] 請求項 37によれば、半導体集積回路力もの出力を無線で行うことにより PN接合の 発光素子に比べて積分時間が不要となり高速な読みだしが可能になる。また半導体 集積回路へのデータ入力は光入力により、低ノイズで高帯域である。また半導体集 積回路の無線回路は送信専用であるため最小のアンテナの搭載でありアンテナによ るチップ面積増加を最小に抑制できる。 [0110] According to claim 37, since the output of the semiconductor integrated circuit is performed wirelessly, integration time is not required as compared with the light emitting element of the PN junction, and high-speed reading is possible. Data input to the semiconductor integrated circuit is low noise and high bandwidth due to optical input. In addition, since the radio circuit of the semiconductor integrated circuit is dedicated for transmission, it can be equipped with the smallest antenna, and the increase in the chip area due to the antenna can be minimized.
[0111] 請求項 38によれば、収束光の変調が不要で安価な光源を用いることができテスト 装置のコストを削減する事できる。また半導体集積回路側においても高コストな光信 号の復調回路が不要となる。 [0111] According to claim 38, it is possible to use an inexpensive light source that does not require modulation of convergent light, and the cost of the test apparatus can be reduced. Also, a costly optical signal demodulator is not required on the semiconductor integrated circuit side.
[0112] 請求項 39によれば、無線による送信機能を搭載した半導体集積回路の非接触並 列テスト時、送信データの発信元の集積回路の特定が可能となる。 [0112] According to claim 39, in the non-contact parallel test of the semiconductor integrated circuit equipped with the wireless transmission function, it is possible to identify the integrated circuit that is the transmission data transmission source.
[0113] 請求項 40および 41によれば、非接触並列テストにおける識別 IDの設定において 誤書き込みの可能性を完全に排除することができる [0113] According to claims 40 and 41, it is possible to completely eliminate the possibility of erroneous writing in the setting of the identification ID in the non-contact parallel test.
請求項 42によれば、識別 IDを半導体集積回路に作り込んでおくことにより、識別 I According to claim 42, the identification I is obtained by incorporating the identification ID into the semiconductor integrated circuit.
Dの設定の行程を省略することができる。ダイシング後の状態にぉ ヽてもウェハ上で の位置の特定が容易にできる。 The process of setting D can be omitted. Even if it is in a state after dicing, the position on the wafer can be easily identified.
[0114] 請求項 43によれば、半導体集積回路の非接触並列テストを実現することができる。 [0114] According to claim 43, a non-contact parallel test of a semiconductor integrated circuit can be realized.
[0115] 請求項 44によれば、半導体集積回路の非接触並列テストを実現することができる。 [0115] According to claim 44, a non-contact parallel test of a semiconductor integrated circuit can be realized.
また収束光の変調が不要で安価な高出力の光源を用いることができる。 In addition, an inexpensive high-power light source that does not require modulation of convergent light can be used.
図面の簡単な説明 Brief Description of Drawings
[0116] [図 1]図 1は本発明の実施の形態 1を示すフロー図 FIG. 1 is a flowchart showing Embodiment 1 of the present invention.
[図 2]図 2は本発明の実施の形態 2を示すフロー図 FIG. 2 is a flowchart showing Embodiment 2 of the present invention.
[図 3]図 3は本発明の実施の形態 3を示すブロック図 FIG. 3 is a block diagram showing Embodiment 3 of the present invention.
[図 4]図 4は本発明の実施の形態 3を示す回路構成図 FIG. 4 is a circuit configuration diagram showing Embodiment 3 of the present invention.
[図 5]図 5は本発明の実施の形態 3を示す回路構成図
[図 6]図 6は MaskROMから命令を示す図 FIG. 5 is a circuit configuration diagram showing Embodiment 3 of the present invention. [Figure 6] Figure 6 shows instructions from MaskROM
[図 7]図 7は本発明の実施の形態 3において検査プログラムを示す図 FIG. 7 is a diagram showing an inspection program according to Embodiment 3 of the present invention.
[図 8]図 8は本発明の実施の形態 4を示すブロック図 FIG. 8 is a block diagram showing a fourth embodiment of the present invention.
圆 9]図 9は本発明の実施の形態 4を示す回路構成図 9) FIG. 9 is a circuit configuration diagram showing Embodiment 4 of the present invention.
[図 10]図 10は本発明の実施の形態 4において外部装置の説明図 FIG. 10 is an explanatory diagram of an external device in the fourth embodiment of the present invention.
[図 11]図 11は本発明の実施の形態 4にお 、て外部装置の説明図 FIG. 11 is an explanatory diagram of an external device in Embodiment 4 of the present invention.
[図 12]図 12は本発明の実施の形態 5を示すブロック図 FIG. 12 is a block diagram showing a fifth embodiment of the present invention.
圆 13]図 13は本発明の実施の形態 5を示す回路構成図 [13] FIG. 13 is a circuit configuration diagram showing Embodiment 5 of the present invention.
[図 14]図 14は本発明の実施の形態 5おいて外部装置の説明図 FIG. 14 is an explanatory diagram of an external device in the fifth embodiment of the present invention.
[図 15]図 15は本発明の実施の形態 5おいて外部装置の説明図 FIG. 15 is an explanatory diagram of an external device according to the fifth embodiment of the present invention.
圆 16]図 16は本発明の実施の形態 6を示す回路構成図 [16] FIG. 16 is a circuit configuration diagram showing Embodiment 6 of the present invention.
圆 17]図 17は本発明の実施の形態 6において検知回路の説明図 17] FIG. 17 is an explanatory diagram of the detection circuit in the sixth embodiment of the present invention.
[図 18]図 18は本発明の実施の形態 6において電源レベルの推移を示すグラフ 圆 19]図 19は本発明の実施の形態 7を示す回路構成図 [FIG. 18] FIG. 18 is a graph showing the transition of the power supply level in the sixth embodiment of the present invention. 圆 19] FIG. 19 is a circuit configuration diagram showing the seventh embodiment of the present invention.
[図 20]図 20は本発明の実施の形態 7において検知回路の説明図 FIG. 20 is an explanatory diagram of a detection circuit in the seventh embodiment of the present invention.
[図 21]図 21は本発明の実施の形態 7にお ヽて電源レベルの推移を示すグラフ 圆 22]図 22は本発明の実施の形態 8を示す回路構成図 [FIG. 21] FIG. 21 is a graph showing the transition of the power supply level in the seventh embodiment of the present invention. [22] FIG. 22 is a circuit configuration diagram showing the eighth embodiment of the present invention.
圆 23]図 23は本発明の実施の形態 8の他の例を示す回路構成図 [23] FIG. 23 is a circuit configuration diagram showing another example of the eighth embodiment of the present invention.
圆 24]図 24は本発明の実施の形態 9を示す回路構成図 24] FIG. 24 is a circuit configuration diagram showing Embodiment 9 of the present invention.
圆 25]図 25は本発明の実施の形態 9の他の例を示す回路構成図 25] FIG. 25 is a circuit configuration diagram showing another example of the ninth embodiment of the present invention.
圆 26]図 26は本発明の実施の形態 9の他の例を示す回路構成図 26] FIG. 26 is a circuit configuration diagram showing another example of the ninth embodiment of the present invention.
圆 27]図 27は本発明の実施の形態 10を示す回路構成図 [27] FIG. 27 is a circuit configuration diagram showing the tenth embodiment of the present invention.
圆 28]図 28は本発明の実施の形態 10の他の例を示す回路構成図 圆 29]図 29は本発明の実施の形態 10の他の例を示す回路構成図 圆 30]図 30は本発明の実施の形態 10を示す回路構成図 圆 28] FIG. 28 is a circuit configuration diagram showing another example of the tenth embodiment of the present invention. 圆 29] FIG. 29 is a circuit configuration diagram showing another example of the tenth embodiment of the present invention. 圆 30] FIG. Circuit configuration diagram showing Embodiment 10 of the present invention
圆 31]図 31は本発明の実施の形態 11を示す回路構成図 [31] FIG. 31 is a circuit configuration diagram showing the eleventh embodiment of the present invention.
圆 32]図 32は本発明の実施の形態 12を示す構成図及び要部拡大図 圆 33]図 33は本発明の実施の形態 13を示す構成図及び要部拡大断面図
圆 34]図 34は本発明の実施の形態 14を示す回路構成図 32] FIG. 32 is a block diagram showing the twelfth embodiment of the present invention and an enlarged view of the main part. 圆 33] FIG. 33 is a block diagram showing the thirteenth embodiment of the present invention and an enlarged sectional view of the main part. [34] FIG. 34 is a circuit configuration diagram showing Embodiment 14 of the present invention.
[図 35]図 35は本発明の実施の形態 14を示す P/N Junction素子の構成図 FIG. 35 is a block diagram of a P / N junction element showing Embodiment 14 of the present invention.
[図 36]図 36は図 35の拡大断面図 FIG. 36 is an enlarged cross-sectional view of FIG.
圆 37]図 37は本発明の実施の形態 15を示す構成図及び要部拡大図 37] FIG. 37 is a block diagram showing the fifteenth embodiment of the present invention and an enlarged view of the main part.
圆 38]図 38は本発明の実施の形態 15を示す回路構成図 38] FIG. 38 is a circuit configuration diagram showing Embodiment 15 of the present invention.
圆 39]図 39は本発明の実施の形態 16を示す構成図及び要部拡大図 [39] FIG. 39 is a block diagram showing the sixteenth embodiment of the present invention and an enlarged view of the main part.
圆 40]図 40は本発明の実施の形態 16を示す回路構成図 40] FIG. 40 is a circuit configuration diagram showing Embodiment 16 of the present invention.
圆 41]図 41は本発明の実施の形態 17を示す回路構成図 [41] FIG. 41 is a circuit configuration diagram showing Embodiment 17 of the present invention.
圆 42]図 42は本発明の実施の形態 17において温度検知回路の構成図 42] FIG. 42 is a block diagram of the temperature detection circuit in the embodiment 17 of the present invention.
[図 43]図 43は本発明の実施の形態 17において検査規格変更手段のブロック図 圆 44]図 44は本発明の実施の形態 18を示す回路構成図 [FIG. 43] FIG. 43 is a block diagram of the inspection standard changing means in Embodiment 17 of the present invention. 圆 44] FIG. 44 is a circuit configuration diagram showing Embodiment 18 of the present invention.
[図 45]図 45は本発明の実施の形態 18において、テスト装置からの入力信号を示す 波形図 FIG. 45 is a waveform diagram showing an input signal from the test apparatus in Embodiment 18 of the present invention.
[図 46]図 46は本発明の実施の形態 18において、テスト装置への出力信号を示す波 形図 FIG. 46 is a waveform diagram showing an output signal to the test apparatus in Embodiment 18 of the present invention.
圆 47]図 47は本発明の実施の形態 19を示す回路構成図 [47] FIG. 47 is a circuit configuration diagram showing Embodiment 19 of the present invention.
圆 48]図 48は本発明の実施の形態 20を示す回路構成図 48] FIG. 48 is a circuit configuration diagram showing Embodiment 20 of the present invention.
圆 49]図 49は本発明の実施の形態 21を示す回路構成図 49] FIG. 49 is a circuit configuration diagram showing Embodiment 21 of the present invention.
[図 50]図 50は本発明の実施の形態 22を示すテスト装置の断面図 FIG. 50 is a sectional view of a test apparatus showing Embodiment 22 of the present invention.
[図 51]図 51は図 50の上面図 FIG. 51 is a top view of FIG.
圆 52]図 52は本発明の実施の形態 23を示すテスト装置の断面図 52] FIG. 52 is a sectional view of a test apparatus showing Embodiment 23 of the present invention.
[図 53]図 53は図 52の上面図 [Figure 53] Figure 53 is a top view of Figure 52
[図 54]従来例を示すフロー図 [Fig.54] Flow chart showing a conventional example
符号の説明 Explanation of symbols
101 ウェハの拡散完了 101 Completed wafer diffusion
102 搬送工程 102 Transport process
103 待機工程 103 Standby process
104 PCM測定工程
105 ウェハ状態検査工程 104 PCM measurement process 105 Wafer condition inspection process
106 組立工程 106 Assembly process
107 ノ ッケージ状態検査工程 107 Knocking condition inspection process
108 製品出荷 108 Product shipment
200 検査の流れを示すフローチャート 200 Flow chart showing the flow of inspection
201 検査開始 201 Inspection started
202 検査進渉情報参照 202 Inspection progress information reference
203 検査の中断 203 Interruption of inspection
204 検査の節目 204 Inspection milestones
205 検査の一定周期 205 Period of inspection
206 検査進涉情報記憶 206 Inspection progress information memory
207 検査終了 207 Inspection finished
301 半導体集積回路 301 Semiconductor integrated circuit
303 外部装置 303 External device
400 検査手段 400 Inspection methods
401 検査対象回路 401 Circuit under test
402 進拔情報記憶手段 402 Advance information storage means
403 計数手段 403 Counting means
404 検査プロ記憶手段 404 inspection professional storage means
405 電力受信手段 405 Power receiving means
406 電力供給手段 406 Power supply means
500 進拔情報通信手段 500 information communication means
600 検査プロ受信手段 600 inspection professional receiving means
601 検査プロ送信手段 601 Inspection Pro Transmission Means
800 半導体集積回路 800 Semiconductor integrated circuit
801 電源端子 801 Power supply terminal
802 検知回路 802 detection circuit
806 A/Dコンバータ
807 判定回路 806 A / D converter 807 judgment circuit
808 電源レベルの推移を示すグラフ 808 Graph showing power supply level transition
809 電源レベルの推移 809 Power supply level transition
810 第一の電源判定レベル 810 First power judgment level
811 第二の電源判定レベル 811 Second power judgment level
902 検知回路 902 detection circuit
903 マルチプレクサ 903 multiplexer
904 静電容量 904 capacitance
909 判定回路 909 judgment circuit
910 電源レベルの推移を示すグラフ 910 Graph showing power level transition
911 電源レベルの推移 911 Power supply level transition
912 電源判定レベル 912 Power judgment level
913 パッケージ 913 packages
914 リード 914 leads
1000 半導体集積回路 1000 Semiconductor integrated circuit
1001 現在時刻転送用の時計 1001 Clock for current time transfer
1002 時刻情報格納用メモリ 1002 Time information storage memory
1003 時刻情報格納用メモリの情報を取り込むラッチ回路 1003 Latch circuit that captures time information storage memory information
1004 半導体集積回路外部力も現在時刻情報を取り込むラッチ回路 1004 Latch circuit that captures current time information from external power of semiconductor integrated circuit
1005 1004, 1005のラッチされた情報を減算する減算回路 1005 Subtracting circuit that subtracts 1004, 1005 latched information
1006 検査プログラム格納メモリのアドレスを格納するメモリ 1006 Memory for storing the address of inspection program storage memory
1007 プログラムカウンタ 1007 Program counter
1008 検査プログラム格納メモリ 1008 Inspection program storage memory
1009 命令レジスタ 1009 Instruction register
1010 制御回路 1010 Control circuit
1011 周辺回路 1011 Peripheral circuit
1012 命令アドレス格納メモリ 1012 Instruction address storage memory
1012 半導体検査装置
1013 半導体検査装置に具備された経過時間演算回路 1100 半導体検査装置 1012 Semiconductor inspection equipment 1013 Elapsed time arithmetic circuit provided in semiconductor inspection apparatus 1100 Semiconductor inspection apparatus
1101 複数の半導体装置 1101 Multiple semiconductor devices
1102 半導体装置 1102 Semiconductor devices
1103 RF電源受信機を具備した半導体集積回路 1103 Semiconductor integrated circuit with RF power receiver
1104 RF電源発信機 1104 RF power transmitter
1105 バッテリー 1105 battery
1106 コンセント 1106 outlet
1107 複数の半導体装置群 1107 Multiple semiconductor devices
1108 RF電源受信機 1108 RF power receiver
1109 半導体装置固定器具 1109 Semiconductor device fixtures
1110 VSS電源供給口 1110 VSS power supply port
1111 VDD電源供給口 1111 VDD power supply port
1200 半導体検査装置 1200 Semiconductor inspection equipment
1201 複数の半導体装置 1201 Multiple semiconductor devices
1202 半導体装置 1202 Semiconductor devices
1203 RF送受信機を具備した半導体集積回路 1203 Semiconductor integrated circuit with RF transceiver
1204 RF送受信機 1204 RF transceiver
1205 メモリカード揷入口 1205 Memory card entry
1206 メモリカード 1206 Memory card
1300,1331,1341 半導体装置 1300,1331,1341 Semiconductor devices
1301,1332,1342 ウエノ、等の基板 1301,1332,1342 Ueno, etc.
1302,1333,1343 半導体集積回路 1302,1333,1343 Semiconductor integrated circuit
1303,1334,1344 電源配線 1303, 1334, 1344 Power supply wiring
1304,1335,1345 接地配線 1304,1335,1345 Ground wiring
1305,1338,1348 アンチヒューズ 1305,1338,1348 Antifuse
1306 RFコイル 1306 RF coil
1307 スルーホール
1308 絶縁膜 1307 Through hole 1308 Insulating film
1309, 1336, 1346, 1351 フラッシュメモリ等の不揮発性半導体記憶装置 1309, 1336, 1346, 1351 Nonvolatile semiconductor memory devices such as flash memory
1310 メモリアレイ 1310 Memory array
1311 ユーザー領域メモリアレイ 1311 User area memory array
1312 テストデータ格納領域 1312 Test data storage area
1313 アドレスデコーダ 1313 Address decoder
1314 読み出し書き込み回路 1314 Read / write circuit
1315 書き換え制御回路 1315 Rewrite control circuit
1316 PASS/FAIL Data書き込み制御回路 1316 PASS / FAIL Data write control circuit
1317 電源回路 1317 Power circuit
1318 検査及び制御回路 1318 Inspection and control circuit
1319 コマンドデコーダ 1319 Command decoder
1320 データ MUX 1320 Data MUX
1 ό21 Data Processing Unit 1 ό21 Data Processing Unit
1322, 1339, 1349 揮発性レジスタ 1322, 1339, 1349 Volatile registers
1323 P/N Junction素子 1323 P / N Junction element
1324 アドレスカウンタ 1324 Address counter
1325 入出力データバス 1325 I / O data bus
1326 出力バス 1326 output bus
1327 入力バス 1327 Input bus
1328 アドレスバス 1328 Address bus
1329 トランジスタ 1329 Transistors
1330 ダイオード 1330 diode
1337, 1347 メモリ部 1337, 1347 Memory part
1340 抵抗 1340 resistance
1350 RF発信回路 1350 RF transmitter circuit
1352 温度検知回路 1352 Temperature detection circuit
1353 温度情報データ書き込み制御回路
1354 検査規格変更回路 1353 Temperature information data write control circuit 1354 Inspection standard change circuit
1355 ダイオード等の Thermal Sensor 1355 Thermal sensors such as diodes
1356 A/Dコンバータ 1356 A / D Converter
1357 A/Dコンバータの結果を記憶するレジスタ 1357 Register to store A / D converter result
1358電源レベル変更用レジスタ 1358 Power supply level change register
1359 昇圧回路 1359 Booster circuit
1360 レギユレータ 1360 Regulator
2100 拡散完了から製品出荷までを示す従来のフロー 2100 Conventional flow from completion of diffusion to product shipment
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明を実施するための最良の形態について、図面を参照しながら説明する The best mode for carrying out the present invention will be described below with reference to the drawings.
(実施の形態 1) (Embodiment 1)
以下、本発明の実施の形態 1について図 1を参照して説明する。図 1の 100は拡散 完了から製品出荷までを示すフローであり、 101はウェハの拡散完了、 102は搬送ェ 程、 103は次工程への待機工程、 104はウェハの PCM (Process Control Module)を 測定する PCM測定工程、 105はウェハ状態で検査を実施するウェハ状態検査工程 、 106はパッケージに封止する組立工程、 107はパッケージに封止された製品を検 查するパッケージ状態検査工程、 108は製品出荷である。従来、固定された場所で 実施されていたウェハ状態検査工程 105とパッケージ状態検査工程 107を搬送工程 102、待機工程 103、 PCM測定工程 104、組立工程 106に振り分け、検査を実施す ることでウェハ状態検査工程 105とパッケージ状態検査工程 107は無くなる。 Hereinafter, Embodiment 1 of the present invention will be described with reference to FIG. In Fig. 1, 100 is the flow from the completion of diffusion to product shipment, 101 is the completion of wafer diffusion, 102 is the transfer process, 103 is the standby process for the next process, 104 is the PCM (Process Control Module) of the wafer PCM measurement process to measure, 105 is a wafer state inspection process to inspect in the wafer state, 106 is an assembly process to seal in the package, 107 is a package state inspection process to inspect the product sealed in the package, 108 is It is a product shipment. The wafer condition inspection process 105 and the package condition inspection process 107, which were conventionally performed in a fixed location, are assigned to the transfer process 102, standby process 103, PCM measurement process 104, and assembly process 106, and the wafer is then inspected. The condition inspection process 105 and the package condition inspection process 107 are eliminated.
(実施の形態 2) (Embodiment 2)
以下、本発明の実施の形態 2について図 2を参照して説明する。図 2の 200は検査 の流れを示すフローチャートであり、 201は検査進拔情報参照、 202は検査開始、 2 03は検査の中断、 204は検査の節目、 205は検査の一定周期、 206は検査進拔情 報記憶、 207は検査終了である。電源投入後、検査進拔情報 201を参照し、検査開 始 202となる。検査の途中で中断 203が発生した場合、検査進拔情報記憶 206に検 查進拔情報を記憶し、中断 203が発生しなければ検査を継続する。検査の節目 204
に該当する場合、検査進拔情報記憶 206に検査進拔情報を記憶し、検査の節目 20 4に非該当であれば検査を継続する。検査の一定周期 205に該当する場合、検査進 拔情報記憶 206に検査進拔情報を記憶し、検査の一定周期 205に非該当であれば 検査を継続する。検査進拔情報記憶 206に検査進拔情報を記憶した後、検査終了 2 07であれば検査は終了し、検査終了 207でなければ、検査を継続する。 Hereinafter, Embodiment 2 of the present invention will be described with reference to FIG. 200 in FIG. 2 is a flowchart showing the flow of inspection, 201 is inspection inspection information reference, 202 is inspection start, 203 is inspection interruption, 204 is inspection milestone, 205 is inspection period, 206 is inspection Progress information storage, 207 is the end of the examination. After the power is turned on, the inspection progress information 201 is referred to, and the inspection start 202 is obtained. If an interruption 203 occurs during the inspection, the inspection progress information is stored in the inspection progress information storage 206, and if the interruption 203 does not occur, the inspection is continued. Inspection milestone 204 If this is the case, the test progress information is stored in the test progress information storage 206, and the test is continued if it does not correspond to the test point 204. If the inspection period is 205, the inspection progress information is stored in the inspection progress information storage 206. If the inspection period 205 is not satisfied, the inspection is continued. After the test progress information is stored in the test progress information storage 206, if the test is completed 207, the test is completed. If the test is not completed 207, the test is continued.
(実施の形態 3) (Embodiment 3)
本発明の実施の形態 3の概略を図 3を用いて説明する。 301は半導体集積回路、 3 03は外部装置、 400は検査手段、 401は検査対象回路、 402は進拔情報記憶手段 、 403は計数手段、 404は検査プログラム記憶手段(以下、検査プロ記憶手段)、 40 5は電力受信手段、 406は電力供給手段である。外部装置 303内にある電力供給手 段 406により発せられた電源は半導体集積回路 301内の電力受信手段 405が受信 する。電力受信手段 405が電源を受信すると検査手段 400は進拔情報記憶手段 40 2から検査の進拔情報を読み出し、進拔情報を使用して検査プロ記憶手段 404にァ クセスして検査プログラムを読み出し、検査対象回路 401に対して検査を実施する。 進拔情報記憶手段 402に対する進拔情報の書き込みは計数手段 403から信号が出 力された場合と検査手段 400が進拔情報書込命令を実行した場合と電力受信手段 405から電源遮断信号が出力された場合に行う。 An outline of the third embodiment of the present invention will be described with reference to FIG. 301 is a semiconductor integrated circuit, 3 03 is an external device, 400 is an inspection means, 401 is a circuit to be inspected, 402 is a progress information storage means, 403 is a counting means, 404 is an inspection program storage means (hereinafter referred to as an inspection program storage means) 405 is a power receiving means, and 406 is a power supplying means. The power source 405 in the semiconductor integrated circuit 301 receives the power source generated by the power supply unit 406 in the external device 303. When the power receiving means 405 receives the power supply, the inspection means 400 reads the progress information of the inspection from the advance information storage means 402, and uses the advance information to access the inspection pro storage means 404 and read the inspection program. The inspection target circuit 401 is inspected. The progress information is written to the advance information storage means 402 when the signal is output from the counting means 403, when the inspection means 400 executes the advance information write command, and when the power receiving means 405 outputs a power shutoff signal. If you do.
本実施形態の装置の具体的な進拔情報の読み出しと検査手順を図 4を用いて説 明する。電力受信手段 405は電力供給手段 406から電源を受信すると検査手段 40 0内の POR (POWER ON RESET回路)へ電源を供給する。 POI^¾CTRL (CON TROL回路)ヘリセット信号を出力し、 CTRLは進拔情報記憶手段 402内の PC記憶 ヒューズから ROMアドレスを読み出し、 PC (PROGRAM COUNTER回路)にセッ トする。検査プロ記憶手段 404である MaskROMから命令を読み出し、 IR(INSTR UCTION RESISTER回路)にセットする。図示してないが、メモリ階層化の為、 Ma skROMと IRの間に RAMを置いても良い。命令は図 6に示すように OP CODE,テ スト番号、入力パターン、期待値から構成されており、 OP CODEは CTRLへ、テスト 番号は進拔情報記憶手段 402へ、入力パターンは検査対象回路 401へ、期待値は CMP (COMPARE回路)へそれぞれ送られる。検査対象回路 401から出力される
値と期待値を CMPで比較し、結果を進拔情報記憶手段 402内のテスト番号に対応 した検査結果記憶ヒューズに書き込む。なお、検査プロ記憶手段 404である MaskR OMから読み出された命令が検査終了を示す場合、進拔情報記憶手段 402内の検 查終了に対応した検査終了記憶ヒューズに書き込む。 The specific progress information reading and inspection procedure of the apparatus of this embodiment will be described with reference to FIG. When receiving power from the power supply means 406, the power receiving means 405 supplies power to a POR (POWER ON RESET circuit) in the inspection means 400. A reset signal is output to POI ^ ¾CTRL (CON TROL circuit), and CTRL reads the ROM address from the PC storage fuse in progress information storage means 402 and sets it in the PC (PROGRAM COUNTER circuit). The instruction is read from MaskROM which is inspection pro storage means 404 and set in IR (INSTR UCTION RESISTER circuit). Although not shown, a RAM may be placed between MaskROM and IR for memory hierarchy. As shown in Fig. 6, the instruction consists of OP CODE, test number, input pattern, and expected value. OP CODE is sent to CTRL, test number is sent to progress information storage means 402, and input pattern is sent to the circuit under test 401. The expected value is sent to CMP (COMPARE circuit). Output from test target circuit 401 The value is compared with the expected value by CMP, and the result is written in the inspection result storage fuse corresponding to the test number in the progress information storage means 402. When the instruction read from the Mask ROM which is the inspection program storage unit 404 indicates the end of the inspection, it is written in the inspection end storage fuse corresponding to the end of the inspection in the advance information storage unit 402.
[0120] 本実施形態の装置の具体的な進拔情報の書き込みを図 4と図 7を用いて 3種類説 明する。図 7は検査プロ記憶手段 404である MaskROM内に格納する検査プロダラ ムを表している。 1つ目は検査手段 400内の CTRLが PORからリセット信号を受け取 ると計数手段 403を動作させる。計数手段 403は一定の周期毎に進拔情報書込信 号を CTRLに対して出力し、 CTRLは ROMアドレスを進拔情報記憶手段 402内の P C記憶ヒューズに記憶する。 2つ目は CTRLが電力受信手段 405内の電源遮断を検 知する検知手段力も電源遮断信号を受け取ると ROMアドレスを記憶する。 3つ目は 図 7に示す進拔情報書込命令を実行すると ROMアドレスを記憶する。 [0120] Three types of writing of specific progress information of the apparatus of this embodiment will be described with reference to Figs. FIG. 7 shows an inspection program stored in the Mask ROM which is the inspection program storage means 404. First, when the CTRL in the inspection unit 400 receives a reset signal from the POR, the counting unit 403 is operated. The counting means 403 outputs a progress information write signal to the CTRL at regular intervals, and the CTRL stores the ROM address in the PC storage fuse in the progress information storage means 402. The second is that the CTRL detects the power shutoff in the power receiving means 405 and also stores the ROM address when the power shutoff signal is received. Third, the ROM address is stored when the progress information write command shown in Figure 7 is executed.
[0121] なお進拔情報記憶手段 402の具体例として図 4ではヒューズを用いた力 図 5に示 すように不揮発性メモリを用いることも可能である。 As a specific example of the progress information storage means 402, a force using a fuse in FIG. 4 can be used as shown in FIG.
(実施の形態 4) (Embodiment 4)
本発明の実施の形態 4の概略を図 8を用いて説明する。 500は進拔情報通信手段 である。実施の形態 3では進拔情報記憶手段 402は半導体集積回路 301内に存在 したが、実施の形態 4では外部装置 303内に置く場合である。 An outline of the fourth embodiment of the present invention will be described with reference to FIG. 500 is an advanced information communication means. In the third embodiment, the progress information storage unit 402 exists in the semiconductor integrated circuit 301, but in the fourth embodiment, the progress information storage means 402 is placed in the external device 303.
[0122] 本実施形態の装置の具体例を図 9と図 10、 11を用いて説明する。進拔情報記憶 手段 402の具体例はヒューズや不揮発性メモリを用いている(図 10、 11)。外部装置 303内の進拔情報記憶手段 402に対するアクセスは半導体集積回路 301内の進拔 情報通信手段 500と外部装置 303内の進拔情報通信手段 500を介して行う。 [0122] A specific example of the apparatus of the present embodiment will be described with reference to Figs. A specific example of the advance information storage means 402 uses a fuse or a nonvolatile memory (FIGS. 10 and 11). Access to the progress information storage means 402 in the external device 303 is performed via the progress information communication means 500 in the semiconductor integrated circuit 301 and the progress information communication means 500 in the external device 303.
[0123] 実施の形態 4では外部装置 303内に進拔情報記憶手段 402を持つ為、半導体集 積回路 301を小面積にすることができ、かつ記憶容量を増やすことができる。 In the fourth embodiment, since the progress information storage means 402 is provided in the external device 303, the area of the semiconductor integrated circuit 301 can be reduced and the storage capacity can be increased.
(実施の形態 5) (Embodiment 5)
本発明の実施の形態 5の概略を図 12を用いて説明する。 600は検査プロ受信手段 、 601は検査プロ送信手段である。実施の形態 3では検査プログラムは半導体集積 回路 301内の検査プロ記憶手段 404となる MaskROMに格納されていた力 実施の
形態 5では外部装置 303内に検査プログラムを置いておき、半導体集積回路 301内 に送信する場合である。 An outline of the fifth embodiment of the present invention will be described with reference to FIG. Reference numeral 600 denotes inspection professional reception means, and reference numeral 601 denotes inspection professional transmission means. In the third embodiment, the inspection program is stored in the Mask ROM serving as the inspection program storage means 404 in the semiconductor integrated circuit 301. In the fifth embodiment, an inspection program is placed in the external device 303 and transmitted to the semiconductor integrated circuit 301.
[0124] 本実施形態の装置の具体的な検査プログラムの転送手順について図 13と図 14、 1 5を用いて説明する。半導体集積回路 301内の検査プロ記憶手段 404の具体例は 不揮発性メモリ、外部装置 303内の検査プロ記憶手段 404の具体例はヒューズゃ不 揮発性メモリを用いている(図 14、 15)。電力受信手段 405は電源を受信すると検査 手段 400内の PORへ電源を供給する。 PORは CTRLヘリセット信号を出力し、 CTR Lは進拔情報記憶手段 402内の PC記憶ヒューズから ROMアドレスと検査プログラム 番号を読み出し、 ROMアドレスを PCにセットし、検査プログラム番号を検査プロ受信 手段 600へセットする。検査プロ受信手段 600は検査プロ送信手段 601に対して検 查プログラム番号に対応する検査プログラムを送信するように要求する。検査プロ送 信手段 601は外部装置 303内の検査プロ記憶手段 404から検査プログラム番号に 対応した検査プログラムを読み出し、検査プロ受信手段 600に送信する。検査プ口受 信手段 600は受け取った検査プログラムを半導体集積回路 301内の検査プロ記憶 手段 404に書き込む。その後、検査プロ記憶手段 404である不揮発性メモリから命令 を読み出し、 IRにセットする。なお検査プログラムの最終行には次の検査プログラム の送信を要求する命令を挿入しておく。 [0124] A specific inspection program transfer procedure of the apparatus of the present embodiment will be described with reference to FIGS. A specific example of the inspection program storage means 404 in the semiconductor integrated circuit 301 uses a nonvolatile memory, and a specific example of the inspection program storage means 404 in the external device 303 uses a fuse or a nonvolatile memory (FIGS. 14 and 15). When the power receiving means 405 receives the power, it supplies power to the POR in the inspection means 400. POR outputs a reset signal to CTRL, CTR L reads ROM address and inspection program number from PC storage fuse in 402, sets ROM address to PC, and receives inspection program number Set to 600. The inspection professional receiving means 600 requests the inspection professional transmission means 601 to transmit the inspection program corresponding to the inspection program number. The inspection professional transmission means 601 reads the inspection program corresponding to the inspection program number from the inspection professional storage means 404 in the external device 303 and transmits it to the inspection professional reception means 600. The inspection port receiving means 600 writes the received inspection program into the inspection professional storage means 404 in the semiconductor integrated circuit 301. Thereafter, the instruction is read from the non-volatile memory which is the inspection professional storage means 404 and set in the IR. An instruction requesting transmission of the next inspection program is inserted in the last line of the inspection program.
[0125] 実施の形態 5では外部装置 303内に検査プロ記憶手段 404を持たせ、かつ検査プ ログラムの分割送信をする為、半導体集積回路 301を小面積にすることができ、かつ 検査プログラムの記憶容量を増やすことができる。 In the fifth embodiment, since the inspection program storage means 404 is provided in the external device 303 and the inspection program is divided and transmitted, the semiconductor integrated circuit 301 can be reduced in area, and the inspection program The storage capacity can be increased.
(実施の形態 6) (Embodiment 6)
以下、本発明の実施の形態 6について図 16を参照して説明する。図 16の 301は半 導体集積回路、 400は検査手段、 401は検査対象回路、 402は進拔情報記憶手段 、 801は電源端子、 802は検知回路であり、図 17は検知回路 802を説明する為の図 で、 806は A/Dコンバータ、 807は判定回路であり、図 18の 808は電源レベルの推 移を示すグラフであり、横軸は時間 [t]、縦軸は電源レベル [V]を示し、 809は電源 レベルの推移、 810は第一の電源判定レベル、 811は第二の電源判定レベルである
[0126] 半導体集積回路 301を検査する際、電源端子 801に供給される電源レベルを検知 回路 802力検知し、検知回路 802の A/Dコンバータ 806が電源レベルを制御信号 に変換し、判定回路 807が電源レベルの推移 809を判定する。第一の電源判定レべ ル 810を電源レベルの推移 809が下回ると検査手段 400を通して検査進拔情報 40 2を記憶し、第二の電源判定レベル 811を電源レベルの推移 809が下回ると検査手 段 400を通して検査対象回路 401の検査を中断する。電源判定レベルに差を持た せている理由は、第一の電源判定レベル 810で進拔情報を記憶することで、進拔情 報記憶手段への誤書き込みを防止し、第二の電源判定レベル 811で検査を中断す る事で、検査品質を落とさない為である。 Hereinafter, Embodiment 6 of the present invention will be described with reference to FIG. In FIG. 16, 301 is a semiconductor integrated circuit, 400 is an inspection means, 401 is an inspection target circuit, 402 is a progress information storage means, 801 is a power supply terminal, 802 is a detection circuit, and FIG. 17 illustrates the detection circuit 802. 806 is an A / D converter, 807 is a decision circuit, 808 in FIG. 18 is a graph showing the transition of the power level, the horizontal axis is time [t], and the vertical axis is the power level [V 809 is the transition of the power level, 810 is the first power judgment level, and 811 is the second power judgment level [0126] When inspecting the semiconductor integrated circuit 301, the power supply level supplied to the power supply terminal 801 is detected by the detection circuit 802, and the A / D converter 806 of the detection circuit 802 converts the power supply level into a control signal, and the determination circuit 807 determines the transition 809 of the power supply level. When the power level transition 809 falls below the first power judgment level 810, the inspection progress information 402 is stored through the inspection means 400, and when the power level transition 809 falls below the second power judgment level 811, the tester The inspection of the circuit under test 401 is interrupted through the stage 400. The reason for the difference in the power judgment level is that the advance information is stored at the first power judgment level 810 to prevent erroneous writing to the advance information storage means, and the second power judgment level. This is because the inspection quality is not degraded by interrupting the inspection at 811.
(実施の形態 7) (Embodiment 7)
以下、本発明の実施の形態 7について図 19を参照して説明する。図 19の 301は半 導体集積回路、 400は検査手段、 401は検査対象回路、 402は進拔情報記憶手段 、 801は電源端子、 902は検知回路、 903はマルチプレクサ、 904は静電容量、図 2 0は検知回路 902を説明する為の図で、 806は A/Dコンバータ、 909は判定回路、 図 21の 911は電源レベルの推移を示すグラフであり、横軸は時間 [t]、縦軸は電源 レベル [V]を示し、 911は電源レベルの推移、 912は電源判定レベルである。 The seventh embodiment of the present invention will be described below with reference to FIG. In FIG. 19, 301 is a semiconductor integrated circuit, 400 is an inspection means, 401 is a circuit to be inspected, 402 is a progress information storage means, 801 is a power supply terminal, 902 is a detection circuit, 903 is a multiplexer, 904 is a capacitance, 20 is a diagram for explaining the detection circuit 902, 806 is an A / D converter, 909 is a determination circuit, 911 in FIG. 21 is a graph showing the transition of the power level, the horizontal axis is time [t], vertical The axis shows the power level [V], 911 is the power level transition, and 912 is the power judgment level.
[0127] 半導体集積回路 301を検査する際、電源端子 801に供給される電源レベルを検知 回路 902力検知し、検知回路 902の A/Dコンバータ 806が電源レベルを制御信号 に変換し、判定回路 909が電源レベルの推移 911を判定する。電源判定レベル 912 を電源レベルの推移 911が下回ると検知回路 902がマルチプレクサ 903を通して半 導体集積回路内の静電容量 904を選択する。 [0127] When inspecting the semiconductor integrated circuit 301, the power supply level supplied to the power supply terminal 801 is detected by the detection circuit 902, and the A / D converter 806 of the detection circuit 902 converts the power supply level into a control signal, and the determination circuit 909 determines the transition 911 of the power level. When the power supply level transition 911 falls below the power supply judgment level 912, the detection circuit 902 selects the electrostatic capacitance 904 in the semiconductor integrated circuit through the multiplexer 903.
(実施の形態 8) (Embodiment 8)
以下、本発明の実施の形態 8について図 22を参照して説明する。図 22の 301は半 導体集積回路、 400は検査手段、 401は検査対象回路、 402は進拔情報記憶手段 、 801は電源端子、 902は検知回路、 903はマルチプレクサ、 904は静電容量である 。検知回路 902と電源レベルの推移を示すグラフ 910 (図 21)を用いる力 ここでは 図の説明を割愛する。 Embodiment 8 of the present invention will be described below with reference to FIG. In FIG. 22, 301 is a semiconductor integrated circuit, 400 is an inspection means, 401 is an inspection target circuit, 402 is a progress information storage means, 801 is a power supply terminal, 902 is a detection circuit, 903 is a multiplexer, and 904 is a capacitance. . Force using the detection circuit 902 and the graph 910 (FIG. 21) showing the transition of the power supply level The explanation of the figure is omitted here.
[0128] 半導体集積回路 301を検査する際、電源端子 801に供給される電源レベルを検知
回路 902力検知し、検知回路 902の A/Dコンバータ 806が電源レベルを制御信号 に変換し、判定回路 909が電源レベルの推移 911を判定する。電源判定レベル 912 を電源レベルの推移 911が下回ると検知回路 902がマルチプレクサ 903を通して半 導体集積回路外の静電容量 904を選択する。 [0128] When inspecting the semiconductor integrated circuit 301, the power supply level supplied to the power supply terminal 801 is detected. The circuit 902 detects the force, the A / D converter 806 of the detection circuit 902 converts the power level into a control signal, and the determination circuit 909 determines the transition 911 of the power level. When the power supply level transition 911 falls below the power judgment level 912, the detection circuit 902 selects the capacitance 904 outside the semiconductor integrated circuit through the multiplexer 903.
[0129] 次に本発明の実施の形態 8のもう一つの実施例について図 23を参照して説明する 。図 23の 301は半導体集積回路、 400は検査手段、 401は検査対象回路、 402は 進拔情報記憶手段、 801は電源端子、 902は検知回路、 903はマルチプレクサ、 90 4は静電容量であり、 913はパッケージ、 914はリードである。検知回路 902と電源レ ベルの推移を示すグラフ 910を用いる力 ここでは図の説明を割愛する。 Next, another example of the eighth embodiment of the present invention will be described with reference to FIG. In FIG. 23, 301 is a semiconductor integrated circuit, 400 is an inspection means, 401 is a circuit to be inspected, 402 is a progress information storage means, 801 is a power supply terminal, 902 is a detection circuit, 903 is a multiplexer, and 904 is a capacitance. 913 is a package, and 914 is a lead. Force using the detection circuit 902 and the graph 910 showing the transition of the power supply level The explanation of the figure is omitted here.
[0130] 半導体集積回路 301を検査する際、電源端子 801に供給される電源レベルを検知 回路 902力検知し、検知回路 902の A/Dコンバータ 806が電源レベルを制御信号 に変換し、判定回路 909が電源レベルの推移 911を判定する。電源判定レベル 912 を電源レベルの推移 911が下回ると検知回路 902がマルチプレクサ 903を通してパ ッケージ 913のリード 914にある静電容量 904を選択する。 [0130] When inspecting the semiconductor integrated circuit 301, the power supply level supplied to the power supply terminal 801 is detected by the detection circuit 902, and the A / D converter 806 of the detection circuit 902 converts the power supply level into a control signal, and the determination circuit 909 determines the transition 911 of the power level. When the power supply level transition 911 falls below the power judgment level 912, the detection circuit 902 selects the capacitance 904 on the lead 914 of the package 913 through the multiplexer 903.
(実施の形態 9) (Embodiment 9)
図 24、図 25は本発明の請求項 19に対応する実施の形態 9の検査経過時間情報 管理する為の回路構成例を示すものである。 24 and 25 show circuit configuration examples for managing the inspection elapsed time information according to the ninth embodiment corresponding to claim 19 of the present invention.
[0131] 図 24において、 1000は半導体集積回路内部の請求項 19の検査経過時間情報 管理する為の回路、 1001は現在時刻情報を示す回路、半導体集積回路内部おい ては、 1002は 1001の現在時刻情報を格納するメモリ、 1003は 1002の時刻格納用 メモリの情報を取り込むラッチ回路、 1004は 1001の現在時刻情報を取り込むラッチ 回路、 1005は 1003, 1004のラッチに回路に取り込まれた時刻情報を減算する減算 回路、 1006は 1007のプログラムカウンタにロードするアドレス情報を格納するメモリ 、 1008は検査プログラムが格納されたメモリ、 1009は命令レジスタ、 1010は制御回 路、 1011は時間経過情報を利用して動作する周辺回路である。 [0131] In FIG. 24, 1000 is a circuit for managing the inspection elapsed time information in claim 19 inside the semiconductor integrated circuit, 1001 is a circuit showing current time information, 1002 is the current 1001 inside the semiconductor integrated circuit Memory that stores time information, 1003 is a latch circuit that captures the information in the 1002 time storage memory, 1004 is a latch circuit that captures the current time information of 1001, 1005 is the time information captured by the circuit in the latches 1003 and 1004 Subtraction circuit for subtraction, 1006 is a memory for storing address information to be loaded into the program counter of 1007, 1008 is a memory for storing an inspection program, 1009 is an instruction register, 1010 is a control circuit, 1011 is using time-lapse information Peripheral circuit operating.
[0132] 具体的には、 16進数 (2進数)に変換された現在時刻情報 1001と、時刻情報を取 り込める数を所有したラッチ回路 1004とが接続され、内部信号 ACTLATがアクティブ になるとラッチ回路 1004に時刻情報が取り込まれる。同時に、時刻格納用メモリ 100
2に接続されたラッチ回路 1003に時刻格納用メモリ 1002の時刻情報が取り込まれる 。ラッチ回路 1003,1004の情報は減算回路 1005によってラッチ回路 1004の現在 時刻情報とラッチ回路 1003の先に記憶されていた時刻情報の差分が求められる。 減算された結果はアドレス格納メモリ 1006に格納されたアドレス値をひとつ指し示す 論理構造になっている。アドレス格納メモリ 1006の指し示されたアドレス情報は内部 信号 ACTADRがアクティブになるとプログラムカウンタ 1007にロードされ、プログラム カウンタ 1007の指し示めす検査プログラムが格納されたメモリ 1008のデータが命令 レジスタ 1009に読み出され、制御回路 1010で命令が解読され、周辺回路 1011が 時間経過に伴った動作を行う。また、時刻格納用メモリ 1002の情報は、内部信号 AC TEWがアクティブになるとラッチ回路 1004に取り込まれている情報に書き換えられる [0132] Specifically, the current time information 1001 converted to hexadecimal (binary) is connected to the latch circuit 1004 that owns the number that can capture the time information, and latches when the internal signal ACTLAT becomes active. Time information is captured in the circuit 1004. At the same time, memory for time storage 100 The time information of the time storage memory 1002 is taken into the latch circuit 1003 connected to 2. The information of the latch circuits 1003 and 1004 is obtained by the subtraction circuit 1005 to obtain the difference between the current time information of the latch circuit 1004 and the time information stored in front of the latch circuit 1003. The subtracted result has a logical structure that points to one address value stored in the address storage memory 1006. The address information pointed to by the address storage memory 1006 is loaded into the program counter 1007 when the internal signal ACTADR becomes active, and the data in the memory 1008 that stores the test program pointed to by the program counter 1007 is read into the instruction register 1009. Then, the instruction is decoded by the control circuit 1010, and the peripheral circuit 1011 performs the operation over time. The information in the time storage memory 1002 is rewritten to the information captured in the latch circuit 1004 when the internal signal AC TEW becomes active.
[0133] 一方、図 25において、命令アドレス格納メモリ 1012は図 24の命令レジスタ 1009と 同等の働きをするが、命令アドレス格納メモリ 1012は検査経過時間情報専用の命令 レジスタである。さらに、減算回路 1005によって処理された検査経過時間情報は命 令レジスタをそのまま指し示す論理構造になっている。その為、図 24記載のプロダラ ムカウンタ 1007、プログラム格納メモリ 1008を経由する事無く制御回路 1010へ信 号を伝達出来る。 On the other hand, in FIG. 25, the instruction address storage memory 1012 functions in the same way as the instruction register 1009 in FIG. 24, but the instruction address storage memory 1012 is a dedicated instruction register for the inspection elapsed time information. Further, the test elapsed time information processed by the subtraction circuit 1005 has a logical structure that directly points to the instruction register. Therefore, the signal can be transmitted to the control circuit 1010 without going through the program counter 1007 and the program storage memory 1008 shown in FIG.
[0134] さらに、図 26は時間経過情報を演算処理する回路 1013を半導体集積回路内部 1 000から半導体検査装置 1012へ移した場合の一例であり、動作自体は先に述べた 同様の動作をする。 Further, FIG. 26 shows an example of the case where the circuit 1013 for processing time lapse information is moved from the semiconductor integrated circuit 1 000 to the semiconductor inspection apparatus 1012, and the operation itself performs the same operation as described above. .
(実施の形態 10) (Embodiment 10)
図 27〜30は本発明の請求項 22に対応する実施の形態 10の RF電源を具備した 半導体検査装置の回路構成例を示すものである。 27 to 30 show circuit configuration examples of the semiconductor inspection apparatus provided with the RF power supply according to the tenth embodiment corresponding to claim 22 of the present invention.
[0135] 図 27において、 1100は半導体検査装置、 1101は複数の半導体装置、 1102は 半導体装置、 1103は RF電源受信機を具備した半導体集積回路、 1104は RF電源 発信機、 1105ίまノ ッテリーである。図 28, 29にお!/ヽて、 1106ίまコンセント、 1107ίま 複数の半導体装置群である。図 30において、 1108は RF電源受信機、 1109は半導 体装置固定器具、 1110は VSS電源供給口、 1111は VDD電源供給口である。
[0136] 具体的には、図 27〜28によると、半導体検査装置内部に RF電源発信機 1104を 具備し、その電源供給源を半導体検査装置 1100内部にバッテリーを具備する。また は、半導体検査装置 1100外部から得る為にコンセント 1106を具備する。半導体検 查装置 1100に具備された RF電源発信機 1104は、 RF電源受信機を具備した半導 体集積回路 1103に電波を発信する事で半導体集積回路 1103は電力を得る事が 出来る。 RF電源発信機 1104を用いて非接触で半導体装置 1102に電源を供給す る為、半導体検査装置 1100内に複数の半導体装置を具備出来る。 In FIG. 27, 1100 is a semiconductor inspection device, 1101 is a plurality of semiconductor devices, 1102 is a semiconductor device, 1103 is a semiconductor integrated circuit equipped with an RF power receiver, 1104 is an RF power transmitter, and 1105ί. is there. In FIGS. 28 and 29, there are a plurality of semiconductor device groups such as 1106ί. In FIG. 30, 1108 is an RF power receiver, 1109 is a semiconductor device fixture, 1110 is a VSS power supply port, and 1111 is a VDD power supply port. Specifically, according to FIGS. 27 to 28, an RF power transmitter 1104 is provided in the semiconductor inspection apparatus, and a battery is provided in the semiconductor inspection apparatus 1100 as its power supply source. Alternatively, an outlet 1106 is provided to obtain the semiconductor inspection apparatus 1100 from the outside. The RF power transmitter 1104 provided in the semiconductor detection device 1100 transmits electric waves to the semiconductor integrated circuit 1103 provided with the RF power receiver, whereby the semiconductor integrated circuit 1103 can obtain power. Since power is supplied to the semiconductor device 1102 in a non-contact manner using the RF power source transmitter 1104, a plurality of semiconductor devices can be provided in the semiconductor inspection device 1100 .
[0137] さらに、図 29によれば、複数の半導体装置 1101を 1以上の個数まとめた複数の半 導体装置群 1107に 1つの RF電源発信機 1104とバッテリー 1105またはコンセント 1 106を具備する事も可能である。図 30は半導体検査装置外部に RF電源発信機 11 04を具備する場合である。 Furthermore, according to FIG. 29, one RF power transmitter 1104 and one battery 1105 or outlet 1 106 may be provided in a plurality of semiconductor device groups 1107 in which one or more semiconductor devices 1101 are collected. Is possible. FIG. 30 shows a case where an RF power transmitter 1104 is provided outside the semiconductor inspection apparatus.
(実施の形態 11) (Embodiment 11)
図 31は本発明の請求項 23に対応する実施の形態 11の自動で検査する為の検査 プログラム外部力 入力する手段としてメモリカードを検査装置に挿入する事で RF発 信機を用いてする為の回路構成例を示すものである。 FIG. 31 shows an embodiment of the present invention corresponding to claim 23 of the present invention because the test program for automatically inspecting an external force is input by using an RF transmitter by inserting a memory card into the inspection device. An example of the circuit configuration is shown.
[0138] 図 31において、 1200は半導体検査装置、 1201は複数の半導体装置、 1202は 半導体装置、 1203は RF送受信機を具備した半導体集積回路、 1204は RF送受信 機、 1205はメモリカード揷入口、 1206はメモリカードである。 In FIG. 31, 1200 is a semiconductor inspection device, 1201 is a plurality of semiconductor devices, 1202 is a semiconductor device, 1203 is a semiconductor integrated circuit equipped with an RF transceiver, 1204 is an RF transceiver, 1205 is a memory card inlet, Reference numeral 1206 denotes a memory card.
[0139] 具体的には、 RF送受信機 1204により検査プログラムを RF送受信機を具備した半 導体集積回路 1203に転送するのだが、始めに、半導体集積回路に電源が投入され ると、プログラム転送許可信号が半導体集積回路 1203から内部に備え付けられた R F送受信機から RF送受信機 1204に転送され、メモリカード挿入口 1205に差し込ま れたメモリカード 1206にプログラム転送許可信号が転送されメモリカード 1206に記 憶された検査プログラムが RF送受信機 1204を介して RF送受信機を具備した半導 体集積回路 1203に転送され、その検査プログラムを利用して、半導体集積回路 12 03は自動で検査を実行することが出来る。 [0139] Specifically, the inspection program is transferred to the semiconductor integrated circuit 1203 equipped with the RF transceiver by the RF transceiver 1204. When power is first applied to the semiconductor integrated circuit, the program transfer permission is granted. The signal is transferred from the RF transmitter / receiver installed in the semiconductor integrated circuit 1203 to the RF transmitter / receiver 1204, and the program transfer permission signal is transferred to the memory card 1206 inserted into the memory card insertion slot 1205 and stored in the memory card 1206. The transferred inspection program is transferred to the semiconductor integrated circuit 1203 equipped with the RF transceiver via the RF transceiver 1204, and the semiconductor integrated circuit 1203 can automatically perform the inspection using the inspection program. I can do it.
(実施の形態 12) (Embodiment 12)
図 32に本発明の実施の形態 12における半導体装置の構成を示す。
[0140] 以下に図 32を参照しながら本発明の半導体装置の実施形態 12を説明する。 FIG. 32 shows the configuration of the semiconductor device according to the twelfth embodiment of the present invention. [0140] Hereinafter, a semiconductor device according to a twelfth embodiment of the present invention will be described with reference to FIG.
[0141] 図 32において、 1300は半導体装置、 1301はウェハ等の基板、 1302は基板 130 1上に形成された半導体集積回路、 1303は半導体集積回路 1302に一括して電源 を供給する電源配線、 1304は半導体集積回路 1302を一括して接地する接地配線 、 1305は半導体集積回路 1302と電源配線 1303の間に形成されているアンチヒュ ーズである。 [0141] In FIG. 32, 1300 is a semiconductor device, 1301 is a substrate such as a wafer, 1302 is a semiconductor integrated circuit formed on the substrate 1301, 1303 is a power supply wiring that collectively supplies power to the semiconductor integrated circuit 1302, Reference numeral 1304 denotes a ground wiring for collectively grounding the semiconductor integrated circuit 1302, and 1305 denotes an antifuse formed between the semiconductor integrated circuit 1302 and the power supply wiring 1303.
[0142] 尚本実施形態では半導体集積回路 1302と電源配線 1303の間にアンチヒューズ を形成する例にっ 、て説明する。 In this embodiment, an example in which an antifuse is formed between the semiconductor integrated circuit 1302 and the power supply wiring 1303 will be described.
[0143] 基板 1301上に形成された半導体集積回路 1302は電源配線 1303に例えば 1.8V を供給して、接地配線 1304に例えば 0Vを供給する事により半導体集積回路 1302 内部の検査回路 (ここでは未表示)で基板 1301上の全ての半導体集積回路を一括 して検査を行う。 [0143] The semiconductor integrated circuit 1302 formed on the substrate 1301 supplies, for example, 1.8 V to the power supply wiring 1303 and supplies 0 V to the ground wiring 1304, for example. In the display), all the semiconductor integrated circuits on the substrate 1301 are inspected collectively.
[0144] この時電源端子のショートといった不良の半導体集積回路が存在したとき電源配線 1303は共通のため半導体集積回路の全ての電源電圧は降下して 、ま 、検査がで きなくなってしまう。 [0144] At this time, when a defective semiconductor integrated circuit such as a short circuit of the power supply terminal exists, since the power supply wiring 1303 is common, all the power supply voltages of the semiconductor integrated circuit are lowered and cannot be inspected.
[0145] ここで電源配線 1303と基板 1301上に形成された全ての半導体集積回路 1302毎 の間に備えられたアンチヒューズ 1305は電源ショート等により過電流が流れると切れ ることにより共通の電源配線 1303とは不良の半導体集積回路は切り離される。この 構成により、電源電圧の降下を防ぐことができる。なお半導体集積回路 1302と接地 配線 1304の間にアンチヒューズを形成してもよい。 [0145] Here, the antifuse 1305 provided between the power supply wiring 1303 and every semiconductor integrated circuit 1302 formed on the substrate 1301 has a common power supply wiring because it breaks when an overcurrent flows due to a power supply short circuit or the like. A semiconductor integrated circuit which is defective from 1303 is separated. With this configuration, it is possible to prevent a power supply voltage drop. Note that an antifuse may be formed between the semiconductor integrated circuit 1302 and the ground wiring 1304.
(実施の形態 13) (Embodiment 13)
図 33に本発明の実施の形態 13における半導体装置の構成を示す。 FIG. 33 shows the configuration of the semiconductor device according to the thirteenth embodiment of the present invention.
[0146] 以下に図 33を参照しながら本発明の半導体装置の実施形態 13を説明する。 The semiconductor device according to the thirteenth embodiment of the present invention is described below with reference to FIG.
[0147] 図 33にお!/ヽて、 1306は RFコィノレ、 1307は電源酉己線 1303と RFコィノレ 1306をつ なぐスルーホール、 1308はスルーホールを形成するための保護絶縁膜である。 [0147] In FIG. 33, 1306 is an RF coiner, 1307 is a through hole connecting the power supply line 1303 and the RF coiner 1306, and 1308 is a protective insulating film for forming a through hole.
[0148] 電波発信機 (未表示)から発信される電波を基板 1301の裏面に形成した RFコイル[0148] RF coil formed on the back surface of the substrate 1301 by radio waves transmitted from a radio wave transmitter (not shown)
1306で受信して、基板 1301表面にスルーホール 1307を通して基板 1301の表面 に形成される電源配線 1303に電圧を供給する。
[0149] この構成により、従来大きな面積を占めていた RFコイル 1306の配置面積をなくす ことができるため小チップィ匕或いは基板 1301上に形成される半導体集積回路 1302 の形成数を減少させることは無 、。 The signal is received at 1306 and a voltage is supplied to the power supply wiring 1303 formed on the surface of the substrate 1301 through the through hole 1307 on the surface of the substrate 1301. [0149] With this configuration, the arrangement area of the RF coil 1306, which previously occupied a large area, can be eliminated, so that the number of semiconductor integrated circuits 1302 formed on a small chip or substrate 1301 is not reduced. ,.
(実施の形態 14) (Embodiment 14)
図 34に本発明の実施の形態 14における半導体記憶装置の構成を示す。 FIG. 34 shows the configuration of the semiconductor memory device according to the fourteenth embodiment of the present invention.
[0150] 図 35、 36に本発明の実施の形態 14における P/N Junction素子の構成を示す FIGS. 35 and 36 show the configuration of the P / N junction element according to Embodiment 14 of the present invention.
以下に図 34及び図 35、 36を参照しながら本発明の半導体記憶装置の実施形態 1 4を説明する。 Embodiment 14 of the semiconductor memory device of the present invention will be described below with reference to FIG. 34 and FIGS.
[0151] 図 34において、 1309はフラッシュメモリ等の不揮発性半導体記憶装置、 1310はメ モリアレイ、 1311はユーザーが使用するユーザー領域メモリアレイ、 1312は検査の PASS/FAIL情報等を格納するテストデータ格納領域、 1313はアドレスデコーダ、 13 14は読み出し及び書き込み時にメモリセルのドレインに対して読み出し/ Verify時は センスし、書き込み時は高電圧を印加する読み出し/書き込み回路、 1315は書き換 え制御回路、 1316はテストデータ格納領域 1312に検査の PASS/FAIL情報を自動 で書き込む PASS/FAIL Data書き込み制御回路、 1317は高電圧を発生させる昇圧 回路等の電源回路、 1318は書き換えアルゴリズムコントローラ及び検査回路を含め た検査及び制御回路、 1319はコマンドデコーダ、 1320はデータ入出力切り替え回 路を含めた Data MUX, 1321は書き込みデータの生成及び書き換え時の期待値を 生成して PASS/FAILを判定する DPU、 1322はテストデータ格納領域 1312に検査 の PASS/FAIL情報が書き込まれた直後及び電源立ち上げ時にテストデータ格納領 域 1312の検査 PASS/FAIL情報を転送して格納する揮発性レジスタ、 1323は揮発 性レジスタ 1322の格納データに従って P/N Junction電流を流すか否かを行う P/N Ju nction素子、 1324はアドレスを内部発生するアドレスカウンタ、 1325はフラッシュメモ リ 1309の入出力データバス、 1326は読み出し/書き込み回路 1314から出力される 出力バス、 1327は外部からの書き込みデータや DPU1321からの書き込みデータ 等を読み出し/書き込み回路 1314に入力する入力バスである。 [0151] In FIG. 34, 1309 is a non-volatile semiconductor memory device such as a flash memory, 1310 is a memory array, 1311 is a user area memory array used by the user, and 1312 is test data storage for storing PASS / FAIL information for inspection, etc. Area, 1313 is an address decoder, 1314 is a read / write circuit that senses when reading / verifying the drain of the memory cell during read / write, and a high voltage is applied during write, 1315 is a rewrite control circuit, 1316 is a PASS / FAIL Data write control circuit that automatically writes test PASS / FAIL information to the test data storage area 1312, 1317 is a power supply circuit such as a booster circuit that generates high voltage, and 1318 includes a rewrite algorithm controller and test circuit Inspection and control circuit, 1319 is command decoder, 1320 is data MUX including data input / output switching circuit, 1321 is write Generate expected value at the time of generation and rewriting of judgment data and judge PASS / FAIL DPU 1322 stores test data immediately after test PASS / FAIL information is written in test data storage area 1312 and at power on Inspection of area 1312 A volatile register that transfers and stores PASS / FAIL information, 1323 is a P / N junction element that determines whether or not to pass a P / N junction current according to the data stored in volatile register 1322, and 1324 is Address counter that generates addresses internally, 1325 is the input / output data bus of the flash memory 1309, 1326 is the output bus that is output from the read / write circuit 1314, 1327 is the external read data, the read data from the DPU1321, etc. This is an input bus that is input to the write circuit 1314.
[0152] 図 35、 36にお!/、て、 1329ίま卜ランジスタ、 1330ίまダイ才ードである。 [0152] In FIGS. 35 and 36 !, 1329ί is a transistor, and 1330ί is a die.
[0153] ここでは不揮発性半導体装置をフラッシュメモリとして説明する。
[0154] まず、フラッシュメモリ 1309の通常の書き換え動作は外部からアドレスバス 1328と 入出力データバス 1325に書き込み/消去コマンド及び書き込みの場合は書き込み アドレス、書き込みデータを入力する。ブロック消去コマンドの場合はメモリアレイ 131 0の分割されたブロックアドレスを入力する。入力したコマンドをコマンドデコーダ 131 9で解読して書き換えアルゴリズムコントローラを含めた制御回路 1318が書き換え制 御回路 1315にアルゴリズムの命令を送る。ここで言うアルゴリズムとは書き込み及び 書き込み Verifyや消去及び消去 Verifyのことである。命令を受けて書き換え制御回路 1315はアルゴリズムに従つて電源回路 1317に必要な電圧を指示して電源回路 13 17は書き換えに必要な電圧をアドレスデコーダ 1313及び読み出し/書き込み回路 1 314を通じてメモリアレイ 1310に供給することで行う。一方 DPU1321は書き込み時 は書き込みデータを、消去時は" 1"データを期待値として書き換えを行う。また、消去 時はメモリアレイ 1310を分割したブロックで行うため、消去 Verify時にアドレスカウン タ 1324が消去領域に従ってアドレスを自動発生する。また、ページ書き込みといつ たような同時に複数のアドレスを書き込む場合の Verify時にも同様にアドレスカウンタ 1324が書き込みアドレス範囲に従ってアドレスを自動発生する。 Here, the nonvolatile semiconductor device is described as a flash memory. First, in a normal rewrite operation of the flash memory 1309, a write / erase command and a write address and write data in the case of writing are input to the address bus 1328 and the input / output data bus 1325 from the outside. In the case of a block erase command, the divided block address of the memory array 1310 is input. The command decoder 1319 decodes the input command, and the control circuit 1318 including the rewrite algorithm controller sends an algorithm command to the rewrite control circuit 1315. The algorithm here is write and write verify, erase and erase verify. In response to the instruction, the rewrite control circuit 1315 instructs the power supply circuit 1317 according to the algorithm and the power supply circuit 1317 supplies the voltage necessary for rewrite to the memory array 1310 through the address decoder 1313 and the read / write circuit 1 314. Do by supplying. On the other hand, the DPU1321 rewrites the write data at the time of writing and "1" data at the time of erasing as the expected value. Since the memory array 1310 is divided into blocks when erasing, the address counter 1324 automatically generates an address according to the erasure area at the time of verifying the erase. Similarly, the address counter 1324 automatically generates an address according to the write address range at the time of verifying when writing a plurality of addresses at the same time as the page write.
[0155] 一方検査時に動作は、ウェハの状態では外部から電源を供給すると検査モードに 入るようになっており、検査及び制御回路 1318の検査フローに従って検査を自動で 行う。 On the other hand, during the inspection, the operation enters the inspection mode when power is supplied from the outside in the state of the wafer, and the inspection is automatically performed according to the inspection flow of the inspection and control circuit 1318.
[0156] 例えば書き込みの自動検査の動作について説明すると、検査及び制御回路 1318 が書き込み命令を出し、命令を受けて書き換え制御回路 1315はアルゴリズムに従つ て電源回路 1317に必要な電圧を指示して電源回路 1317は書き換えに必要な電圧 をアドレスデコーダ 1313及び読み出し/書き込み回路 1314を通じてメモリアレイ 13 10に供給する。通常の書き込みと異なる点はアドレス及びデータを外部力も入力す るのではなくアドレスはアドレスカウンタ 1324、データは DPU1321で内部生成する 点である。以上の様に検査を自動で行った結果例えば書き換えで Failした場合、 DP U 1321から Fail情報が検査及び制御回路 1318に送られ、検査はそこでストップする 。次に検査及び制御回路 1318は PASS/FAIL Data書き込み制御回路 1316に命令 を送り、この命令を受けて PASS/FAIL Data書き込み制御回路 1316は電源回路 131
7に書き込みに必要な電圧を指示して電源回路 1317は書き込み電圧をアドレスデコ ーダ 1313及び読み出し/書き込み回路 1314を通じてテストデータ格納領域 1312 に供給することで PASS/FAIL情報をテストデータ格納領域 1312に書き込む。この直 後検査及び制御回路 1318は揮発性レジスタ 1322に対してテストデータ格納領域 1 312に格納した FAIL Dataを転送する命令を発行する。尚この FAIL Dataは電源の立 ち上げ時も揮発性レジスタ 1322に転送するようになつている。この揮発性レジスタ 13 22に格納して!/、るデータは P/N Junction素子 1323と検査及び制御回路 1318に入 力される。検査及び制御回路 1318はこの Fail Dataが入力されるとフラッシュメモリ 13 09をロックして、電源が供給されても全回路が動作しないようになっている。 [0156] For example, the operation of the automatic write check will be described. The check and control circuit 1318 issues a write command. Upon receiving the command, the rewrite control circuit 1315 instructs the power supply circuit 1317 to specify the necessary voltage. The power supply circuit 1317 supplies a voltage necessary for rewriting to the memory array 1310 through the address decoder 1313 and the read / write circuit 1314. The difference from normal writing is that the address and data are generated internally by the address counter 1324 and the data by the DPU1321 instead of inputting the address and data by external force. As a result of the automatic inspection as described above, for example, when a rewrite fails, Fail information is sent from the DPU 1321 to the inspection and control circuit 1318, and the inspection stops there. Next, the inspection and control circuit 1318 sends a command to the PASS / FAIL Data write control circuit 1316. Upon receiving this command, the PASS / FAIL Data write control circuit 1316 receives the power supply circuit 131. The power supply circuit 1317 supplies the write voltage to the test data storage area 1312 through the address decoder 1313 and the read / write circuit 1314 by instructing the voltage required for writing to 7, and the PASS / FAIL information is supplied to the test data storage area 1312. Write to. Immediately after this, the inspection and control circuit 1318 issues a command to transfer the FAIL data stored in the test data storage area 1312 to the volatile register 1322. This FAIL Data is transferred to the volatile register 1322 when the power is turned on. The data stored in the volatile register 1322 is input to the P / N junction element 1323 and the inspection and control circuit 1318. When this Fail Data is input, the inspection and control circuit 1318 locks the flash memory 1309 so that the entire circuit does not operate even when power is supplied.
[0157] 図 35、 36に P/N Junction素子 1323の構成及びデバイス構造を示している。上記 の様に揮発性レジスタ 1322に格納されているデータはトランジスタ 1329のゲートに 入力される。トランジスタ 1329は活性ィ匕されダイオード 1330と電源回路 1317から供 給されている電圧が接続される。尚この電圧はダイオード 1330のブレークダウン電 圧よりも高い電圧である。ダイオード 1330にブレークダウン電流が流れると熱を発生 する。この熱の発生を例えばェミッション装置により検出することで PASS/FAIL判定を 行うことが可能となりェミッション装置を備えた組み立て装置システムによって組むか 否かを判別することができる。 FIGS. 35 and 36 show the configuration and device structure of the P / N junction element 1323. As described above, the data stored in the volatile register 1322 is input to the gate of the transistor 1329. The transistor 1329 is activated and connected to the voltage supplied from the diode 1330 and the power supply circuit 1317. This voltage is higher than the breakdown voltage of the diode 1330. When breakdown current flows through the diode 1330, heat is generated. By detecting the generation of this heat with, for example, an emission device, it is possible to make a PASS / FAIL determination, and it is possible to determine whether or not the assembly device system is equipped with the emission device.
[0158] 検査の終了力否力も全回路の停止力否かによって熱の発生の有無で検出できる。 [0158] The inspection end force or not can also be detected by the presence or absence of heat generation based on whether or not the entire circuit is stopped.
[0159] この様な構成により自動検査の結果を外部装置に送ることなく PASS/FAIL情報が 分力るようになり例えば非接触での検査後そのままェミッション装置を備えた み立 て装置システム (未表示)での良品のみの^ aみ立てが可能となる。 [0159] With such a configuration, the PASS / FAIL information can be divided without sending the result of automatic inspection to an external device. For example, a stand-alone device system with an emission device as it is after non-contact inspection ( It is possible to make only good products (not shown).
[0160] 具体的にはェミッション装置により基板上に形成されている半導体集積回路上の P/ N Junction素子 1323中のダイオード 1330の熱による発光パターンを 1基板毎に取り 込みその情報に従って良品のみをダイシングした後拾うことで良品のみの組み立て を行う。 [0160] Specifically, the P / N junction element 1323 on the semiconductor integrated circuit formed on the substrate by the emission device captures the light emission pattern due to the heat of the diode 1330 in the 1323 for each substrate, and only non-defective products according to the information Assembling only good products by picking up after dicing.
[0161] 尚ここでは書き込みの検査を例にあげたが他の検査の PASS/FAIL情報についても 同様にテストデータ格納領域 1312に格納される。 [0161] In this example, the write test is taken as an example, but the PASS / FAIL information of other tests is also stored in the test data storage area 1312 in the same manner.
(実施の形態 15)
図 37に本発明の実施の形態 15における半導体装置の構成を示す。 (Embodiment 15) FIG. 37 shows the configuration of the semiconductor device according to the fifteenth embodiment of the present invention.
[0162] 図 38に本発明の実施の形態 15における半導体記憶装置の構成を示す。 FIG. 38 shows a configuration of the semiconductor memory device according to the fifteenth embodiment of the present invention.
[0163] 以下に図 37及び 38を参照しながら本発明の半導体記憶装置の実施形態 15を説 明する。 Hereinafter, a semiconductor memory device according to a fifteenth embodiment of the present invention will be described with reference to FIGS. 37 and 38.
[0164] 図 37において、 1331は本発明の実施の形態 15の半導体装置、 1332はウェハ等 の基板、 1333は基板 1332上に形成された実施の形態 15の半導体集積回路、 133 4は半導体集積回路 1333に一括して電源を供給する電源配線、 1335は半導体集 積回路 1332を一括して接地する接地配線、 1336は発明の実施の形態 15のフラッ シュメモリ等の不揮発性半導体記憶装置、 1337は半導体記憶装置 1336のメモリ部 、 1338は半導体集積回路 1333と電源配線 1334の間に形成されているアンチヒュ ーズ、 1339はテストデータ格納領域 1312に検査の PASS/FAIL情報が書き込まれた 直後及び電源立ち上げ時にテストデータ格納領域 1312の検査 PASS/FAIL情報を 転送して格納する揮発性レジスタ、 1340はアンチヒューズ 1338に流れる電流を制 御する抵抗である。 In FIG. 37, 1331 is the semiconductor device according to the fifteenth embodiment of the present invention, 1332 is a substrate such as a wafer, 1333 is the semiconductor integrated circuit according to the fifteenth embodiment formed on the substrate 1332, and 1334 is the semiconductor integrated circuit Power supply wiring for supplying power to the circuit 1333 at once, 1335 is ground wiring for grounding the semiconductor integrated circuit 1332 at once, 1336 is a nonvolatile semiconductor memory device such as the flash memory of Embodiment 15, and 1337 is The memory section of the semiconductor memory device 1336, 1338 is an anti-fuse formed between the semiconductor integrated circuit 1333 and the power supply wiring 1334, 1339 is immediately after the test PASS / FAIL information is written in the test data storage area 1312 and the power supply Test data storage area 1312 at the time of startup A volatile register that transfers and stores PASS / FAIL information, 1340 is a resistor that controls the current flowing through the antifuse 1338.
[0165] 図 38において、 1310はメモリアレイ、 1311はユーザーが使用するユーザー領域メ モリアレイ、 1312は検査の PASS/FAIL情報等を格納するテストデータ格納領域、 13 13はアドレスデコーダ、 1314は読み出し及び書き込み時にメモリセルのドレインに 対して読み出し/ Verify時はセンスし、書き込み時は高電圧を印加する読み出し/書き 込み回路、 1315は書き換え制御回路、 1316はテストデータ格納領域 1312に検査 の PASS/FAIL情報を自動で書き込む PASS/FAIL Data書き込み制御回路、 1317は 高電圧を発生させる昇圧回路等の電源回路、 1318は書き換えアルゴリズムコント口 ーラ及び検査回路を含めた検査及び制御回路、 1319はコマンドデコーダ、 1320は データ入出力切り替え回路を含めた Data MUX, 1321は書き込みデータの生成及 び書き換え時の期待値を生成して PASS/FAILを判定する DPU、 1324はアドレスを 内部発生するアドレスカウンタ、 1325はフラッシュメモリ 1309の入出力データバス、 1326は読み出し/書き込み回路 1314から出力される出力バス、 1327は外部力もの 書き込みデータや DPU1321からの書き込みデータ等を読み出し/書き込み回路 13 14に入力する入力バスである。
[0166] 尚、通常書き換え及び検査は実施の形態 14と同様である。 In FIG. 38, 1310 is a memory array, 1311 is a user area memory array used by the user, 1312 is a test data storage area for storing PASS / FAIL information of inspection, 13 13 is an address decoder, 1314 is read and read Sense at read / verify for memory cell drain during write, read / write circuit that applies high voltage during write, 1315 is rewrite control circuit, 1316 is test data storage area 1312 PASS / FAIL for inspection PASS / FAIL Data write control circuit that automatically writes information, 1317 is a power supply circuit such as a booster circuit that generates a high voltage, 1318 is a test and control circuit including a rewrite algorithm controller and test circuit, and 1319 is a command decoder 1320: Data MUX including data input / output switching circuit, 1321: Generates write data and generates expected value when rewriting PASS / FAIL judgment DPU, 1324 is the address counter that generates the address internally, 1325 is the input / output data bus of the flash memory 1309, 1326 is the output bus output from the read / write circuit 1314, 1327 is the external data write data And an input bus for inputting write data from the DPU 1321 to the read / write circuit 1314. [0166] The normal rewriting and inspection are the same as in the fourteenth embodiment.
[0167] ここで揮発性レジスタ 1339に検査の Fail情報が格納されていると揮発性レジスタ 1 [0167] Here, if the fail information of the inspection is stored in the volatile register 1339, the volatile register 1
339の電源と抵抗 1340を介して接地配線 1335が電気的に接続される。この時アン チヒューズ 1338に電流が流れて切れる構造になっていて、アンチヒューズ 1338が 切れているか否かにより Pass/Fan判定が可能となる。 The ground wiring 1335 is electrically connected through the power supply 339 and the resistor 1340. At this time, current flows through the antifuse 1338 so that it is blown, and Pass / Fan determination is possible depending on whether or not the antifuse 1338 is blown.
[0168] また、検査の終了も本発明の実施の形態 3ようにヒューズを切るため検査の終了もこ のヒューズが切れて 、るか否かで判定できる。 [0168] Further, since the end of the inspection also blows the fuse as in the third embodiment of the present invention, the end of the inspection can be determined by whether or not this fuse is blown.
[0169] これらのヒューズが切れているかいないかを例えばパターン認識装置により検出す ることで PASS/FAIL判定を行うことが可能となりパターン認識装置を備えた組み立て 装置システムによって組むか否かを判別することができる。 [0169] By detecting whether or not these fuses are blown by, for example, a pattern recognition device, it is possible to make a PASS / FAIL determination, and determine whether or not the assembly is performed by an assembly device system equipped with the pattern recognition device. be able to.
[0170] この様な構成により自動検査の結果を外部装置に送ることなく PASS/FAIL情報が 分力るようになり例えば非接触での検査後そのままパターン認識装置を備えた組み 立て装置システム (未表示)での良品のみの^ aみ立てが可能となる。 [0170] With such a configuration, PASS / FAIL information can be divided without sending the result of automatic inspection to an external device. For example, an assembly system with a pattern recognition device as it is after non-contact inspection (not yet) It is possible to make only good products in (Display).
[0171] 具体的にはパターン認識装置により 1基板毎のヒューズのパターンを取り込み、そ の情報に従って良品のみをダイシングした後拾うことで良品のみの組み立てを行う。[0171] Specifically, the pattern recognition device captures the fuse pattern for each board, dices only the non-defective product according to the information, and picks up the non-defective product.
(実施の形態 16) (Embodiment 16)
図 39に本発明の実施の形態 16における半導体装置の構成を示す。 FIG. 39 shows the configuration of the semiconductor device according to the sixteenth embodiment of the present invention.
[0172] 図 40に本発明の実施の形態 16における半導体記憶装置の構成を示す。 FIG. 40 shows the configuration of the semiconductor memory device according to the sixteenth embodiment of the present invention.
[0173] 以下に図 39及び 40を参照しながら本発明の半導体記憶装置の実施形態 16を説 明する。 [0173] Hereinafter, a sixteenth embodiment of the semiconductor memory device of the present invention will be described with reference to FIGS. 39 and 40. FIG.
[0174] 図 39において、 1341は本発明の実施の形態 16の半導体装置、 1342はウェハ等 の基板、 1343は基板 1342上に形成された実施の形態 16の半導体集積回路、 134 4は半導体集積回路 1343に一括して電源を供給する電源配線、 1345は半導体集 積回路 1342を一括して接地する接地配線、 1346は発明の実施の形態 16のフラッ シュメモリ等の不揮発性半導体記憶装置、 1347は半導体記憶装置 1346のメモリ部 、 1348は半導体集積回路 1343と電源配線 1344の間に形成されているアンチヒュ ーズ、 1349はテストデータ格納領域 1312に検査の PASS/FAIL情報が書き込まれた 直後及び電源立ち上げ時にテストデータ格納領域 1312の検査 PASS/FAIL情報を
転送して格納する揮発性レジスタ、 1350は揮発性レジスタの内容に従って電波を発 信する力否かを決定する RF発信回路である。 In FIG. 39, 1341 is the semiconductor device according to the sixteenth embodiment of the present invention, 1342 is a substrate such as a wafer, 1343 is the semiconductor integrated circuit according to the sixteenth embodiment formed on the substrate 1342, and 1344 is the semiconductor integrated circuit. Power supply wiring for supplying power to the circuit 1343 at once, 1345 is ground wiring for collectively grounding the semiconductor integrated circuit 1342, 1346 is a nonvolatile semiconductor memory device such as the flash memory of Embodiment 16, and 1347 is The memory section of the semiconductor memory device 1346, 1348 is an anti-fuse formed between the semiconductor integrated circuit 1343 and the power supply wiring 1344, 1349 is immediately after the test PASS / FAIL information is written in the test data storage area 1312 and the power supply Test data storage area 1312 inspection PASS / FAIL information at startup A volatile register 1350 for transferring and storing is an RF transmission circuit that determines whether or not it is capable of transmitting radio waves according to the contents of the volatile register.
[0175] 図 40において、 1310はメモリアレイ、 1311はユーザーが使用するユーザー領域メ モリアレイ、 1312は検査の PASS/FAIL情報等を格納するテストデータ格納領域、 13 13はアドレスデコーダ、 1314は読み出し及び書き込み時にメモリセルのドレインに 対して読み出し/ Verify時はセンスし、書き込み時は高電圧を印加する読み出し/書き 込み回路、 1315は書き換え制御回路、 1316はテストデータ格納領域 1312に検査 の PASS/FAIL情報を自動で書き込む PASS/FAIL Data書き込み制御回路、 1317は 高電圧を発生させる昇圧回路等の電源回路、 1318は書き換えアルゴリズムコント口 ーラ及び検査回路を含めた検査及び制御回路、 1319はコマンドデコーダ、 1320は データ入出力切り替え回路を含めた Data MUX, 1321は書き込みデータの生成及 び書き換え時の期待値を生成して PASS/FAILを判定する DPU、 1324はアドレスを 内部発生するアドレスカウンタ、 1325はフラッシュメモリ 1309の入出力データバス、 1326は読み出し/書き込み回路 1314から出力される出力バス、 1327は外部力もの 書き込みデータや DPU1321からの書き込みデータ等を読み出し/書き込み回路 13 14に入力する入力バスである。 [0175] In FIG. 40, 1310 is a memory array, 1311 is a user area memory array used by the user, 1312 is a test data storage area for storing PASS / FAIL information of inspection, 13 13 is an address decoder, 1314 is read and read Sense at read / verify for memory cell drain during write, read / write circuit that applies high voltage during write, 1315 is rewrite control circuit, 1316 is test data storage area 1312 PASS / FAIL for inspection PASS / FAIL Data write control circuit that automatically writes information, 1317 is a power supply circuit such as a booster circuit that generates a high voltage, 1318 is a test and control circuit including a rewrite algorithm controller and test circuit, and 1319 is a command decoder 1320: Data MUX including data input / output switching circuit, 1321: Generates write data and generates expected value when rewriting PASS / FAIL judgment DPU, 1324 is the address counter that generates the address internally, 1325 is the input / output data bus of the flash memory 1309, 1326 is the output bus output from the read / write circuit 1314, 1327 is the external data write data And an input bus for inputting write data from the DPU 1321 to the read / write circuit 1314.
[0176] 尚、通常書き換え及び検査は実施の形態 14及び実施の形態 15と同様である。 Note that normal rewriting and inspection are the same as in the fourteenth and fifteenth embodiments.
[0177] ここで揮発性レジスタ 1349に検査の Fail情報が格納されて 、ると RF発信回路 135 0から電波が送信される。従って、電波が発信されている力否かで Pass/F l判定が可 能となる。 Here, when the fail information of the inspection is stored in the volatile register 1349, a radio wave is transmitted from the RF transmission circuit 1350. Therefore, Pass / Fl determination is possible depending on whether or not the radio wave is transmitted.
[0178] また、検査の終了も本発明の実施の形態 4のように検査終了に伴い電波が発信さ れるので、検査の終了も電波の認識で判定できる。 [0178] Further, since the radio wave is transmitted at the end of the inspection as in the fourth embodiment of the present invention, the end of the inspection can also be determined by the recognition of the radio wave.
[0179] これらの電波発信の有無を例えば RF受信装置により認識して、 PASS/FAIL判定を 行うことが可能となり電波受信装置を備えた組み立て装置システムによって組む力否 かを判別することができる。 [0179] The presence / absence of these radio wave transmissions can be recognized by, for example, an RF receiving device, and a PASS / FAIL determination can be made, so that it is possible to determine whether or not the assembling apparatus system equipped with the radio wave receiving device is used.
[0180] この様な構成により自動検査の結果を非接触の状態で分力るので、例えば非接触 での検査後そのまま電波受信装置を備えた み立て装置システム (未表示)での良 品のみの糸且み立てが可能となる。
[0181] 電波受信装置により RF発信回路 1350から発信される電波発信パターンを 1基板 毎に取り込み、その情報に従って良品のみをダイシングした後拾うことで良品のみの 組み立てを行う。 [0180] With such a configuration, the result of automatic inspection is divided in a non-contact state. For example, only non-defective products in a stand-up device system (not shown) equipped with a radio wave receiver as it is after non-contact inspection It becomes possible to stand up the thread. [0181] The radio wave receiving device transmits the radio wave transmission pattern transmitted from the RF transmission circuit 1350 for each board, dices only the non-defective product according to the information, and picks it up to assemble only the non-defective product.
(実施の形態 17) (Embodiment 17)
図 41に本発明の実施の形態 17における半導体装置に内蔵して ヽる不揮発性半 導体記憶装置の構成を示す。 FIG. 41 shows the configuration of a nonvolatile semiconductor memory device built in the semiconductor device according to the seventeenth embodiment of the present invention.
[0182] 図 42に本発明の実施の形態 17における半導体装置に内蔵している不揮発性半 導体記憶装置内の温度検知回路の構成を示す。 FIG. 42 shows the configuration of the temperature detection circuit in the nonvolatile semiconductor memory device built in the semiconductor device according to Embodiment 17 of the present invention.
[0183] 図 43に本発明の実施の形態 17における半導体装置に内蔵している不揮発性半 導体記憶装置内の検査規格変更手段のブロック図を示す。 FIG. 43 shows a block diagram of the inspection standard changing means in the nonvolatile semiconductor memory device built in the semiconductor device according to the seventeenth embodiment of the present invention.
[0184] 以下に図 41、図 42、図 43を参照しながら本発明の半導体装置の実施形態 17を説 明する。 [0184] Hereinafter, a semiconductor device according to a seventeenth embodiment of the present invention will be described with reference to FIGS. 41, 42, and 43. FIG.
[0185] 図 41において、 1351は本発明の実施の形態 17のフラッシュメモリ等の不揮発性 半導体記憶装置、 1310はメモリアレイ、 1311はユーザーが使用するユーザー領域 メモリアレイ、 1312は検査の PASS/FAIL情報や温度等を格納するテストデータ格納 領域、 1313はアドレスデコーダ、 1314は読み出し及び書き込み時にメモリセルのド レインに対して読み出し/ Verify時はセンスし、書き込み時は高電圧を印加する読み 出し/書き込み回路、 1315は書き換え制御回路、 1317は高電圧を発生させる昇圧 回路等の電源回路、 1318は書き換えアルゴリズムコントローラ及び検査回路を含め た検査及び制御回路、 1319はコマンドデコーダ、 1320はデータ入出力切り替え回 路を含めた Data MUX, 1321は書き込みデータの生成及び書き換え時の期待値を 生成して PASS/FAILを判定する DPU、 1323は揮発性レジスタ 1322の格納データ に従って P/N Junction電流を流すか否かを行う P/N Junction素子、 1324はアドレス を内部発生するアドレスカウンタ、 1325はフラッシュメモリ 1309の入出力データバス 、 1326は読み出し/書き込み回路 1314から出力される出力バス、 1327は外部から の書き込みデータや DPU1321からの書き込みデータ等を読み出し/書き込み回路 1314に入力する入力バス、 1352は書き込み消去時及び読み出し時等の温度を検 知する温度検知回路、 1353は温度検知回路 1352の情報をテストデータ格納領域 1
312に自動で書き込む温度情報データ書き込み制御回路、 1354はテストデータ格 納領域 1312の検査時の書き込み/消去の温度情報及び書き込み/消去のレベル判 定検査の読み出し時の温度情報を受けて検査の規格を変更する検査規格変更回路 である。 In FIG. 41, 1351 is a nonvolatile semiconductor memory device such as a flash memory according to the seventeenth embodiment of the present invention, 1310 is a memory array, 1311 is a user area memory array used by a user, and 1312 is a PASS / FAIL check. Test data storage area for storing information, temperature, etc., 1313 is an address decoder, 1314 is a read / write sense with respect to the memory cell drain, a read / verify sense, and a write / read to which a high voltage is applied Write circuit, 1315 is a rewrite control circuit, 1317 is a power supply circuit such as a booster circuit for generating a high voltage, 1318 is a test and control circuit including a rewrite algorithm controller and a test circuit, 1319 is a command decoder, and 1320 is a data input / output switch. Data MUX 1321, including the circuit, generates the expected value when generating and rewriting the write data and determines PASS / FAIL DPU, 1323 is a P / N junction element that determines whether or not the P / N junction current flows according to the data stored in the volatile register 1322, 1324 is an address counter that internally generates an address, and 1325 is input / output data for the flash memory 1309 1326 is an output bus that is output from the read / write circuit 1314, 1327 is an input bus that inputs external write data, write data from the DPU 1321, etc. to the read / write circuit 1314, and 1352 is at the time of write erase and read Temperature detection circuit that detects temperature such as 1353 is the temperature detection circuit 1352 information for test data storage area 1 Temperature information data write control circuit that automatically writes to 312; 1354 receives test / data storage area 1312 write / erase temperature information during inspection and write / erase level judgment inspection temperature information during reading This is an inspection standard changing circuit that changes the standard.
[0186] 図 42において、 1355はダイオード等の Thermal Sensor, 1356は Thermal Sensor 1355の電圧レベルをデジタル情報に変換する A/Dコンバータ、 1357は A/Dコンパ ータ 1356の結果を記憶するレジスタである。 In FIG. 42, 1355 is a thermal sensor such as a diode, 1356 is an A / D converter that converts the voltage level of the thermal sensor 1355 into digital information, and 1357 is a register that stores the result of the A / D converter 1356. is there.
[0187] 図 43おいて、 1358は検査及び制御回路 1318内の電源レベル変更用レジスタ、 1 359は電源回路 1317内の昇圧回路、 1360は電源回路内のレギユレータである。 通常の書き換え動作は本発明の実施の形態 14と同様である。 In FIG. 43, reference numeral 1358 denotes a power supply level changing register in the inspection and control circuit 1318, reference numeral 1359 denotes a booster circuit in the power supply circuit 1317, and reference numeral 1360 denotes a regulator in the power supply circuit. The normal rewriting operation is the same as that in Embodiment 14 of the present invention.
[0188] 一方検査時の動作は、ウェハの状態では外部から電源を供給すると検査モードに 入るようになっており、検査及び制御回路 1318の検査フローに従って検査を自動で 行う。 On the other hand, the operation at the time of inspection is to enter the inspection mode when power is supplied from the outside in the state of the wafer, and the inspection is automatically performed according to the inspection flow of the inspection and control circuit 1318.
[0189] 例えば書き込みの自動検査の動作について説明すると、検査及び制御回路 1318 が書き込み命令を出し、命令を受けて書き換え制御回路 1315はアルゴリズムに従つ て電源回路 1317に必要な電圧を指示して電源回路 1317は書き換えに必要な電圧 をアドレスデコーダ 1313及び読み出し/書き込み回路 1314を通じてメモリアレイ 13 10に供給する。通常の書き込みと異なる点はアドレス及びデータを外部力も入力す るのではなくアドレスはアドレスカウンタ 1324、データは DPU1321で内部生成する 点である。 [0189] For example, the operation of the automatic writing test will be described. When the checking and control circuit 1318 issues a write command, the rewrite control circuit 1315 instructs the power supply circuit 1317 according to the algorithm to specify the necessary voltage. The power supply circuit 1317 supplies a voltage necessary for rewriting to the memory array 1310 through the address decoder 1313 and the read / write circuit 1314. The difference from normal writing is that the address and data are generated internally by the address counter 1324 and the data by the DPU1321 instead of inputting the address and data by external force.
[0190] この時検査及び制御回路 1318は書き込み中であることを温度検知回路 1352に 伝達して温度検知回路 1352は温度を計測し計測が終わったことを検査及び制御回 路 1318に伝達する。この伝達及び温度測定結果を受けて温度情報書き込み制御 回路 1353を活性ィ匕させる。温度情報書き込み制御回路 1353は電源回路 1317に 書き込みに必要な電圧を指示して電源回路 1317は書き込み電圧をアドレスデコ一 ダ 1313及び読み出し/書き込み回路 1314を通じてテストデータ格納領域 1312に 供給することで温度情報をテストデータ格納領域 1312に書き込む。 At this time, the inspection and control circuit 1318 notifies the temperature detection circuit 1352 that writing is in progress, and the temperature detection circuit 1352 measures the temperature and notifies the inspection and control circuit 1318 that the measurement is completed. The temperature information writing control circuit 1353 is activated in response to the transmission and the temperature measurement result. The temperature information write control circuit 1353 instructs the power supply circuit 1317 to specify the voltage required for writing, and the power supply circuit 1317 supplies the write voltage to the test data storage area 1312 through the address decoder 1313 and the read / write circuit 1314. Information is written into the test data storage area 1312.
[0191] この直後検査及び制御回路 1318は検査規格変更回路 1354に対してテストデー
タ格納領域 1312に格納した温度情報を転送する命令を発行する。尚この温度情報 は電源の立ち上げ時も検査規格変更回路 1354に転送するようになっている。検査 規格変更回路 1354は検査及び制御回路 1318を通して電源回路 1317に書き込み 及び消去時の温度情報と書き込み及び消去のレベル検査時読み出し温度情報に従 つた補正検査電圧レベルを指定して電源回路 1317は電源を供給する。 [0191] Immediately after this, the inspection and control circuit 1318 sends test data to the inspection standard changing circuit 1354. The command to transfer the temperature information stored in the data storage area 1312 is issued. This temperature information is transferred to the inspection standard changing circuit 1354 even when the power is turned on. Inspection Standard change circuit 1354 specifies power supply circuit 1317 through inspection and control circuit 1318, and specifies the corrected inspection voltage level according to the temperature information at the time of writing and erasing and the reading temperature information at the time of writing and erasing. Supply.
[0192] ここで図 42を用いて前記温度測定手段を説明する。 Here, the temperature measuring means will be described with reference to FIG.
[0193] ダイオード等の Thermal Sensorl355 (以下ここではダイオードとする)は温度により 電位差が変わる。この電圧値の変化を A/Dコンバータ 1356によりデジタル値に変換 する。前記デジタル値をレジスタ 1357に転送することで温度情報をレジスタ 1357に 記憶しておく。前記温度情報を検査及び制御回路 1318が前記の手段によりテストデ ータ格納領域 1312に書き込む。 [0193] The potential difference of Thermal Sensorl355 (hereinafter referred to as a diode) such as a diode varies depending on the temperature. This voltage value change is converted to a digital value by the A / D converter 1356. By transferring the digital value to the register 1357, the temperature information is stored in the register 1357. The inspection and control circuit 1318 writes the temperature information in the test data storage area 1312 by the above means.
[0194] 次に図 43を用いて前記検査規格変更手段を説明する。 [0194] Next, the inspection standard changing means will be described with reference to FIG.
[0195] テストデータ格納領域 1312に書き込んである温度情報を検査規格変更回路 1354 に転送して昇圧回路 1359の電圧レベルをレギュレートするレギユレータ 1360の電 圧レベルを変更する検査及び制御回路内の電源レベル変更用レジスタ 1358に対し て前記温度情報と読み出し時の温度情報を補正する様に前記レギユレータ 1360の 電圧レベルデータに変換して転送する。前記電圧レベル変換データにより例えば書 き込み及び消去後レベル検査時の検査規格の電圧レベルを変更することが出来る。 [0195] The temperature information written in the test data storage area 1312 is transferred to the inspection standard changing circuit 1354 to regulate the voltage level of the booster circuit 1359. The regulator for changing the voltage level of the 1360 and the power supply in the control circuit The level information is converted into voltage level data of the regulator 1360 and transferred to the level change register 1358 so as to correct the temperature information and the temperature information at the time of reading. For example, the voltage level of the inspection standard at the time of level inspection after writing and erasing can be changed by the voltage level conversion data.
[0196] この構成により、搬送時や倉庫に保存中といった温度管理できない場所での検査 が可能となる。 [0196] With this configuration, it is possible to perform inspection at a place where temperature control is not possible, such as during transportation or storage in a warehouse.
(実施の形態 18) (Embodiment 18)
図 44は、本発明の実施の形態 18における電源パッドおよびグランドパッドのみで のテストを実現した半導体集積回路の構成図である。図において半導体集積回路 1 900は内部回路 1905、内部回路のセルフテストを実行するセルフテスト回路 1904、 電源変調回路 1906で構成される。これらの回路は電源パッド 1901とグランドパッド 1 902から電力を供給される。内部回路 1905は半導体集積回路の主要な回路であり 、集積回路外部と通常信号パッド 1903を介して通常動作を実行する。 FIG. 44 is a configuration diagram of a semiconductor integrated circuit that realizes a test using only the power supply pad and the ground pad according to the eighteenth embodiment of the present invention. In the figure, a semiconductor integrated circuit 1900 includes an internal circuit 1905, a self-test circuit 1904 for executing a self-test of the internal circuit, and a power supply modulation circuit 1906. These circuits are powered by power pad 1901 and ground pad 1 902. The internal circuit 1905 is a main circuit of the semiconductor integrated circuit, and executes a normal operation outside the integrated circuit and through a normal signal pad 1903.
[0197] 以下セルフテスト回路 1904の実行について説明する。セルフテスト回路は電源変
調回路 1906からのコマンドやマイクロコード等の入力信号を受けて起動し内部回路 1905にテストパターンを与えてテストを実行する。テスト結果は電源変調回路 1906 に書き戻される。 Hereinafter, execution of the self-test circuit 1904 will be described. The self-test circuit Upon receiving an input signal such as a command or microcode from the tuning circuit 1906, the system is started and a test pattern is given to the internal circuit 1905 to execute the test. The test result is written back to the power supply modulation circuit 1906.
[0198] 電源パッド 1901にはセルフテスト回路 1904への入力信号および出力信号が重畳 される。図 45、 46を用いて、電源パッドへの信号の重畳の概念を説明する。図 45、 4 6はテスト装置カゝらみた電源パッドへの電源電圧および電源電流波形を示す。図に お 、てテスト装置力もの入力信号は入力信号 1907のように通常の電源電位より高!ヽ サージ状のパルスの時系列として与えられ、電源変調回路 1906内でコンパレータ等 によりデジタル信号に変換され、セルフテスト回路 1904に与えられる。サージ状のパ ルスの時系列は、図では直接に内部回路 1905に伝搬するように見える力 実際に は電源変調回路 1906および電源配線のバイノスコンデンサに吸収されほとんど内 部回路に伝搬することはな 、。 [0198] An input signal and an output signal to the self-test circuit 1904 are superimposed on the power supply pad 1901. The concept of signal superposition on the power supply pad will be described with reference to FIGS. Figures 45 and 46 show the power supply voltage and power supply current waveforms to the power supply pad as seen from the test equipment. In the figure, the input signal of the test equipment is higher than the normal power supply potential as input signal 1907! 与 え It is given as a time series of surge-like pulses and converted into a digital signal by a comparator etc. in the power supply modulation circuit 1906 And supplied to the self-test circuit 1904. The time series of surge-like pulses is a force that appears to propagate directly to the internal circuit 1905 in the figure. Actually, it is absorbed by the power supply modulation circuit 1906 and the binos capacitor of the power supply wiring, and is hardly propagated to the internal circuit. Nah ...
[0199] セルフテスト回路 1904の出力信号は電源変調回路 1906で電源グランド間の電流 パルスに変換され、テスト装置側で出力信号 1908のような時系列の電流パルスとし て検出される。テスト装置では電流パルスをデジタルパルスに変換しテスト結果を記 録判定する。 [0199] The output signal of the self-test circuit 1904 is converted into a current pulse between the power supply grounds by the power supply modulation circuit 1906, and is detected as a time-series current pulse like the output signal 1908 on the test device side. The test device converts the current pulse into a digital pulse and records the test result.
[0200] 半導体集積回路の内部から外部へ電流パルスとして出力することにより、電圧出力 する場合より高い SN比が容易に得られる。なぜなら内部力 外部に電圧パルスを与 えるに大容量の電源昇圧回路が必要になり、これらをテスト装置側に備えることは容 易であるが回路側に集積することはコスト上困難である。 [0200] By outputting current pulses from the inside to the outside of the semiconductor integrated circuit, a higher S / N ratio can be obtained more easily than when voltage is output. This is because a large-capacity power booster circuit is required to apply voltage pulses to the external force, and it is easy to provide these on the test device side, but it is difficult to integrate them on the circuit side.
[0201] 本実施形態によれば電源パッドとグランドパッドのみの最小ピン数で半導体集積回 路のセルフテストを実行できる。その結果少ないコンタクト数により安価なハードゥエ ァで並列数の高いテストが可能となりテストコストを削減する事ができる。さらに最小コ ンタクト数によりコンタクト不良による歩留まり低下を抑制することができる。 [0201] According to the present embodiment, a self-test of a semiconductor integrated circuit can be executed with a minimum number of pins including only a power supply pad and a ground pad. As a result, with a small number of contacts, it is possible to perform a test with a high parallel number with an inexpensive hard disk, and the test cost can be reduced. Furthermore, a decrease in yield due to contact failure can be suppressed by the minimum number of contacts.
[0202] なお本実施形態は信号の重畳先として電源パッドを選択したがグランドパッドを選 択しても電源電圧レベルがグランド電位になるだけであり同様の効果が得られるのは いうまでもない。さらに本実施形態では、電源パッドに混入したノイズによる誤動作の 問題を解決するために入力信号 1907の電位を電源ノイズのレベルに合わせて十分
高くとることや、入力信号 1907に特別な時系列データパターンを設定し電源変調回 路 1906でデータパターンにマッチする入力信号 1907のみ有効なデータとしてセル フテスト回路 19004に入力することにより信頼性の高いテストが実施できる。 [0202] In the present embodiment, the power supply pad is selected as the signal superimposition destination. However, even if the ground pad is selected, only the power supply voltage level becomes the ground potential, and the same effect can be obtained. . Furthermore, in this embodiment, in order to solve the problem of malfunction caused by noise mixed in the power supply pad, the potential of the input signal 1907 is sufficiently adjusted to match the power supply noise level. High reliability is achieved by setting a special time-series data pattern in the input signal 1907 and inputting only the input signal 1907 that matches the data pattern in the power modulation circuit 1906 as valid data to the self-test circuit 19004. Tests can be performed.
(実施の形態 19) (Embodiment 19)
図 47は、本発明の実施の形態 19における光電力変換素子による電力供給および 信号入力と、発光素子による信号出力により非接触テストを実現した半導体集積回 路の構成図である。図において半導体集積回路 2000は主要な機能が集積された 内部回路 2005、内部回路のセルフテストを実行するセルフテスト回路 2004、復調 回路 2007、光電力変換素子 2007と発光素子 2008で構成される。内部回路 2005 はテスト以外の通常動作では電源パッド 2001、グランドパッド 2002より電力を供給さ れる。 FIG. 47 is a configuration diagram of a semiconductor integrated circuit in which a non-contact test is realized by power supply and signal input by the optical power conversion element and signal output by the light emitting element in Embodiment 19 of the present invention. In the figure, a semiconductor integrated circuit 2000 is composed of an internal circuit 2005 in which main functions are integrated, a self-test circuit 2004 for executing a self-test of the internal circuit, a demodulating circuit 2007, an optical power conversion element 2007, and a light-emitting element 2008. The internal circuit 2005 is supplied with power from the power supply pad 2001 and the ground pad 2002 in normal operation other than the test.
[0203] 以下テスト状態について説明する。テスト状態では光電力変換素子が電力供給と セルフテスト回路への信号入力を担 、、発光素子がセルフテスト回路力 の信号出 力を担う。 [0203] The test state will be described below. In the test state, the optical power conversion element is responsible for power supply and signal input to the self-test circuit, and the light-emitting element is responsible for signal output of the self-test circuit power.
[0204] 光電力変換素子 2007は CMOSプロセスで形成可能な PN接合で形成され、半導 体レーザなどの収束光を照射することにより電力を発生する。照射された収束光は P N接合の空乏層で電子 ホール対を発生し起電力を発生する。電圧および電流駆 動能力は PN接合の直並列により調整される。復調回路 2006は発生した電圧を内 部の電源レギユレ一タで定電圧に制御して電源パッド 2001に供給する。テスト装置 力 の収束光はセルフテスト回路 2004へのコマンドやマイクロコード等の入力信号 が変調される。強度等で変調された収束光は復調回路 2006内部の検波回路でデ ジタル信号に変換されセルフテスト回路 2004に入力される。 [0204] The optical power conversion element 2007 is formed by a PN junction that can be formed by a CMOS process, and generates electric power by irradiating convergent light such as a semiconductor laser. The irradiated focused light generates electron hole pairs in the depletion layer of the PN junction and generates electromotive force. The voltage and current drive capability is adjusted by series-parallel of PN junctions. The demodulator circuit 2006 controls the generated voltage to a constant voltage by an internal power supply regulator and supplies it to the power supply pad 2001. The converging light from the test equipment is modulated by commands to the self-test circuit 2004 and input signals such as microcode. The convergent light modulated by intensity or the like is converted into a digital signal by the detection circuit in the demodulation circuit 2006 and input to the self-test circuit 2004.
[0205] 発光素子 2008は CMOSプロセスで形成可能な薄!ヽ空乏層厚の PN接合より発生 するェミッション現象を直列に挿入されたトランジスタで制御する。セルフテスト回路 2 004はテスト結果やテストの進拔信号を発光素子 2008を駆動し光パルスとしてテスト 装置に送信する。発光素子として PN接合によるブレイクダウンによる近赤外光を用 いてもよい。 [0205] The light emitting device 2008 controls the emission phenomenon generated from a PN junction with a thin depletion layer thickness that can be formed by a CMOS process by a transistor inserted in series. The self-test circuit 2 004 drives the light emitting element 2008 to transmit the test result and the test progress signal as a light pulse to the test apparatus. As the light emitting element, near infrared light by breakdown by PN junction may be used.
[0206] 本実施形態によればテスト時、非接触による電力供給と入力および出力データの
やりとりを可能にし、電気的コンタクトが不要となり並列テスト数を飛躍的向上すること ができる。また非接触によりテスト装置のインターフェースボード等に起因する電源ノ ィズの影響 (電気的コンタクトが必要な従来の構成では超並列テスト時はすべての D UTを同一のレギュレーションに保つことは困難である)を完全に排除し、超並列テス トであっても各非測定半導体集積回路 (DUT)の電源レギュレーションを均一に保つ ことができ、テストの均一性を保証することができる。まだ接触テストでは問題となる半 導体集積回路のパッド回路の動作によるノイズも完全に排除することができ入出力の データ転送速度を高速にすることができる。 [0206] According to the present embodiment, during the test, the non-contact power supply and the input and output data This enables communication and eliminates the need for electrical contacts, which can dramatically improve the number of parallel tests. In addition, the influence of power supply noise caused by the interface board of the test equipment due to non-contact (In the conventional configuration that requires electrical contact, it is difficult to keep all DUTs at the same regulation during massively parallel testing. ) Is completely eliminated, and even in a massively parallel test, the power regulation of each non-measurement semiconductor integrated circuit (DUT) can be kept uniform, and the uniformity of the test can be guaranteed. The noise due to the operation of the pad circuit of the semiconductor integrated circuit, which is still a problem in the contact test, can be completely eliminated, and the input / output data transfer speed can be increased.
[0207] 本実施形態では発光素子に通常の CMOSプロセスによる PN接合による発光素子 を用いた為、テスト装置側で受光するには数 msレベルの積分時間が必要であるが、 セルフテスト回路力 のテスト結果のデータ量は比較的低容量であるため低ビットレ ートであっても十分実用的である。通常の CMOSプロセスで最小トランジスタ程度の 面積ペナルティで発光素子が実現できる効果が大き 、。 [0207] In this embodiment, since a light emitting element using a PN junction by a normal CMOS process is used as the light emitting element, an integration time of several ms level is required to receive light on the test apparatus side. Since the data volume of the test results is relatively low, even a low bit rate is practical enough. The effect of realizing a light-emitting device with an area penalty of about the smallest transistor in a normal CMOS process is great.
[0208] なお発光素子を通常のレーザや LED等の素子で実現すればコストの点を除 、てよ り高ビットレートの通信ができることはいうまでもない。また光電力変換素子に関しても 同様で、より高速高効率の素子を用いればコストの点を除いてより高ビットレートの通 信ができる。 [0208] Needless to say, if the light emitting element is realized by an element such as a normal laser or LED, communication at a higher bit rate is possible except for the cost. The same applies to the optical power conversion element. If a higher-speed and higher-efficiency element is used, communication at a higher bit rate can be performed except for the cost.
[0209] さらに本実施形態によれば、ウェハ上で並列テストを実施中に判明した不良チップ に対し収束光の照射を停止するのみで容易に電源を遮断し以降のテストから除外す ることができる。その結果不良チップの隣接チップへの異常な温度上昇、基板ノイズ といった干渉を排除することができ、超並列テストにおけるテストの品質を向上するこ とがでさる。 [0209] Furthermore, according to the present embodiment, it is possible to easily shut off the power supply and simply exclude it from the subsequent test by simply stopping the irradiation of the convergent light to the defective chip found during the parallel test on the wafer. it can. As a result, it is possible to eliminate interference such as abnormal temperature rise and substrate noise of the defective chip to the adjacent chip, and improve test quality in the massively parallel test.
(実施の形態 20) (Embodiment 20)
図 48は、本発明の実施の形態 20における光電力変換素子による電力供給および 信号入力と、無線データ送信による信号出力により、非接触テストを実現した半導体 集積回路の構成図である。本実施の形態は実施の形態 19において発光素子を無 線データ送信回路に置き換えたものである。 FIG. 48 is a configuration diagram of a semiconductor integrated circuit that realizes a non-contact test by power supply and signal input by the optical power conversion element and signal output by wireless data transmission in Embodiment 20 of the present invention. In the present embodiment, the light emitting element in the nineteenth embodiment is replaced with a wireless data transmission circuit.
[0210] 図において半導体集積回路 3000はセルフテスト回路 2004の出力を無線データ
送信回路 3001で高周波に変調してアンテナ 3002より輻射する。無線データ送信回 路 3001は通常の微細 CMOS (例えば 0.13 μ mプロセスで ft=40— 80GHzが実現 可能)の場合、数 GHzの発信が可能である。 5GHz発信の場合アンテナは 1/4波長 で 1.5cm程度の大きさであり短縮すれば数ミリの各半導体集積回路に集積可能であ る。テスト装置のアンテナは近傍に設置することが可能であるため送信出力およびァ ンテナの輻射効率が問題になることはない。 [0210] In the figure, the semiconductor integrated circuit 3000 uses the self-test circuit 2004 output as wireless data. The signal is modulated to a high frequency by the transmission circuit 3001 and radiated from the antenna 3002. When the wireless data transmission circuit 3001 is an ordinary fine CMOS (for example, ft = 40—80 GHz can be realized with a 0.13 μm process), it can transmit several GHz. In the case of 5 GHz transmission, the antenna is about 1.5 cm in 1/4 wavelength, and if it is shortened, it can be integrated into several millimeters of semiconductor integrated circuits. Since the antenna of the test equipment can be installed in the vicinity, the transmission output and the antenna radiation efficiency will not be a problem.
[0211] 本実施形態によればテスト時、実施の形態 19と同様に非接触による電力供給と入 力および出力データのやりとりを可能にし、電気的コンタクトが不要となり並列テスト 数を飛躍的向上することができる。さらに半導体集積回路力もの出力を無線で行うこ とにより PN接合の発光素子に比べて積分時間が不要となりより高速な読みだしが可 能になる。無線をテスト装置へのデータ転送のみに適応することにより、最小のアン テナの搭載ですみ (受信の用途に用いないため受信感度の問題が生じない)、アン テナによるチップ面積増加を最小に押さえることができる。アンテナ 3002の設置形態 は、集積回路の外周、スクライブレーン等に設けたり、専用の配線レイヤーを最上層 に追加して形成することができる。 [0211] According to the present embodiment, during the test, as in the case of the nineteenth embodiment, non-contact power supply and input / output data exchange are possible, and no electrical contact is required, and the number of parallel tests is dramatically improved. be able to. In addition, since the output of semiconductor integrated circuits is performed wirelessly, integration time is not required compared to PN junction light-emitting elements, enabling faster reading. By adapting the radio only to data transfer to the test equipment, it is possible to install the smallest antenna (no reception sensitivity problem because it is not used for reception), and minimize the increase in chip area due to the antenna. be able to. The antenna 3002 can be installed on the outer periphery of the integrated circuit, on a scribe lane, or by adding a dedicated wiring layer to the top layer.
[0212] 無線による非接触での並列テストの場合、発信元が明確な光によるデータ通信と違 い発信元を明らかにする必要があるこのため本実施の形態では無線データ送信回 路 3001に半導体集積回路に固有な識別 IDを設定している。送信される無線データ はすべて識別 IDのデジタル情報を含みテスト装置はどの半導体集積回路力 の情 報であるかが判断できる。この識別 IDはテスト開始の直前にテスト装置力 半導体集 積回路にダウンロードしたり、半導体集積回路の製造工程において作り込むことがで きる。製造工程において固有 IDを作り込む場合 (EB描画、ヒューズなど)冗長ビットを 設けることが好ましい。作り込む識別 IDは少なくともウェハ単位で固有にすることが好 ましぐロット単位あるいは完全に固有な値にすることが、不良解析等の点で最も好ま しい。 [0212] In the case of a wireless non-contact parallel test, it is necessary to clarify the transmission source, which is different from data communication using clear light. Therefore, in this embodiment, the wireless data transmission circuit 3001 includes a semiconductor. An identification ID unique to the integrated circuit is set. All transmitted wireless data includes digital information of identification ID, and the test equipment can determine which semiconductor integrated circuit power information. This identification ID can be downloaded to the test equipment power semiconductor integrated circuit immediately before the start of the test, or can be created in the manufacturing process of the semiconductor integrated circuit. When creating a unique ID in the manufacturing process (EB drawing, fuse, etc.), it is preferable to provide redundant bits. The identification ID to be created is preferably unique at least in units of wafers, and it is most preferable in terms of defect analysis to be a unique value in lot units or completely unique values.
(実施の形態 21) (Embodiment 21)
図 49は、本発明の実施の形態 21における光電力変換素子による電力供給と、無 線データ送信による信号入出力により、非接触テストを実現した半導体集積回路の
構成図である。本実施の形態は実施の形態 20において光電力変換素子による信号 入力(テスト装置力 のデータ受信)の機能を無線データ受信回路に置き換えたもの である。 FIG. 49 shows a semiconductor integrated circuit in which a non-contact test is realized by power supply by the optical power conversion element and signal input / output by wireless data transmission in Embodiment 21 of the present invention. It is a block diagram. In the present embodiment, the function of signal input (data reception of test equipment power) by the optical power conversion element in Embodiment 20 is replaced with a wireless data reception circuit.
[0213] 図において半導体集積回路 4000は、テスト時光電力変換素子 2007の出力電圧 を平滑回路 4001内部の電源レギユレ一タで定電圧に制御して電源パッド 2001に供 給する。セルフテスト回路の入出力信号は無線データ送受信回路 4002によりアンテ ナ 4003を経由してテスト装置と通信する。テスト装置からの無線データを受信する必 要があるために、受信感度が要求されるがテスト装置の無線の出力を大きくすること によりアンテナ 4003が大きくなるのを最小限に抑えることができる。 [0213] In the figure, the semiconductor integrated circuit 4000 controls the output voltage of the test optical power conversion element 2007 to a constant voltage by the power supply regulator in the smoothing circuit 4001 and supplies it to the power supply pad 2001. The input / output signals of the self-test circuit communicate with the test equipment via the antenna 4003 by the wireless data transmission / reception circuit 4002. Since it is necessary to receive wireless data from the test equipment, reception sensitivity is required, but the increase in the antenna 4003 can be minimized by increasing the wireless output of the test equipment.
[0214] 無線による非接触での並列テストの場合、テスト装置へアップロード信号は識別 ID を設定する必要がある。テスト装置力ものダウンロード信号に関してはすべての半導 体集積回路に共通なマイクロコードなどのダウンロードには識別 IDは不要であるが、 個別のテスト制御には識別 IDが設定されたデータが必要である。無線データ送受信 回路 4002はデータの識別 IDを判読して識別 IDが設定値とマッチした場合のみセル フテスト回路 2004に伝達する。 [0214] In case of wireless non-contact parallel test, it is necessary to set the identification ID for the upload signal to the test equipment. With regard to the download signal of the test equipment, an identification ID is not required for downloading microcode etc. common to all semiconductor integrated circuits, but data with an identification ID is required for individual test control. . The wireless data transmission / reception circuit 4002 reads the data identification ID and transmits it to the self-test circuit 2004 only when the identification ID matches the set value.
[0215] 以下識別 IDが製造工程にお 、て作り込まれな 、場合の設定方法にっ 、て説明す る。無線データ送受信回路 4002は識別 IDが設定されて 、な 、状態で受信し実行で きるのは識別 IDの設定機能のみである。送信に関しては識別 IDが未設定であること を示す IDを収束光の照射中に一定期間発振する。この機能は無線データ送受信回 路の初期診断に用いられる。ひとたび識別 IDが設定されると識別 IDがマッチしない 力ぎり無線データ送受信回路はテスト装置力もの識別 IDの設定を含むダウンロード 信号をセルフテスト回路に伝送しな 、。 [0215] The following describes how to set the identification ID when it is not created in the manufacturing process. The wireless data transmission / reception circuit 4002 is set with an identification ID, and only the identification ID setting function can be received and executed in the state. For transmission, an ID indicating that the identification ID has not been set oscillates for a certain period during irradiation of convergent light. This function is used for initial diagnosis of wireless data transmission / reception circuits. Once the identification ID is set, the identification ID does not match. The power transmission / reception circuit does not transmit the download signal including the identification ID setting to the self-test circuit.
[0216] テスト装置で最初に識別 IDを設定する場合、収束光の有無で単一の半導体集積 回路のみ活性し所望の識別 IDを設定する。ひとたび識別 IDが設定された半導体集 積回路は、識別 IDによりコマンドをブロックできるため収束光照射状態に保つ。この 収束光照射状態は識別 IDが揮発メモリに格納するときは必須である。識別 IDが電気 ヒューズを含む不揮発性のメモリに格納される場合は必須でな 、。 [0216] When the identification ID is first set by the test apparatus, only a single semiconductor integrated circuit is activated and the desired identification ID is set with or without convergent light. Once a semiconductor integrated circuit with an identification ID is set, commands can be blocked by the identification ID, so it is kept in the convergent light irradiation state. This focused light irradiation state is indispensable when the identification ID is stored in the volatile memory. This is not required if the identification ID is stored in non-volatile memory including an electrical fuse.
[0217] 本実施形態によればテスト時、非接触による電力供給と入力および出力データの
やりとりを可能にし、電気的コンタクトが不要となり並列テスト数を飛躍的向上すること ができる。またテスト装置には収束光の変調が不要で安価な光源を用いることができ コストを削減する事が出来る。さらに半導体集積回路には光データの復調回路が不 要となる。 [0217] According to the present embodiment, during the test, the non-contact power supply and the input and output data This enables communication and eliminates the need for electrical contacts, which can dramatically improve the number of parallel tests. In addition, the test apparatus does not require modulation of the convergent light, and an inexpensive light source can be used, thereby reducing the cost. In addition, a semiconductor integrated circuit does not require an optical data demodulation circuit.
[0218] また本実施の形態では、無線による試験の場合、必須となる識別 IDの概念と無線 データ送受信回路に集積する識別 IDの設定プロトコルを提供するものである。 [0218] Further, in this embodiment, in the case of a wireless test, an essential concept of identification ID and an identification ID setting protocol integrated in the wireless data transmission / reception circuit are provided.
(実施の形態 22) (Embodiment 22)
図 50、 51は、本発明の実施の形態 22における光電力変換素子による電力供給お よび信号入力と、発光素子による信号出力により非接触テストを実現した半導体集積 回路のテスト装置の断面および上面の構成図である。 FIGS. 50 and 51 are cross sections and top views of a test apparatus for a semiconductor integrated circuit in which a non-contact test is realized by power supply and signal input by an optical power conversion element and signal output by a light emitting element in Embodiment 22 of the present invention. It is a block diagram.
[0219] 図においてテスト装置はテスト装置筐体 5001、プリント基板 5004に半導体集積回 路ウェハ 5006上の半導体集積回路に対応するようにアレイ上に配置された電力供 給&データ送信用レーザ光源 データ受信用光センサ 5002とレーザ駆動回路 データ通信回路 5003の対、放熱器兼ウェハホルダ 5007と制御回路 5008で構成さ れる。 [0219] In the figure, the test apparatus is a laser source for power supply and data transmission arranged on the array so as to correspond to the semiconductor integrated circuit on the semiconductor integrated circuit wafer 5006 on the test apparatus casing 5001 and the printed circuit board 5004. It consists of a pair of a receiving optical sensor 5002 and a laser drive circuit data communication circuit 5003, a radiator / wafer holder 5007, and a control circuit 5008.
[0220] 放熱器兼ウェハホルダ 5007は半導体集積回路の発熱と光電力変換素子の発熱を 吸収する。また光電力変換素子の直下は貫通してきたレーザの乱反射を抑える為に 開口を設けることが望ましい。 [0220] The radiator / wafer holder 5007 absorbs the heat generated by the semiconductor integrated circuit and the photoelectric conversion element. Moreover, it is desirable to provide an opening directly under the optical power conversion element in order to suppress irregular reflection of the laser that has penetrated.
[0221] テスト装置筐体 5001に設けられた開口部 5005からレーザによる電力供給および データのダウンロード、半導体集積回路力 のアップロード光信号が受け渡しされる 。レーザ駆動回路—データ通信回路 5003はレーザ光源の電力調節、ダウンロード 信号の変調、データ受光センサからのアップロード信号の信号処理を実行する。制 御回路 5008はレーザ駆動回路—データ通信回路 5003の制御、各半導体集積回 路のテストのフェイルパスの状態、テスト項目の処理の進拔状態のデータログを記憶 する。データログを参照することにより各半導体集積回路のテスト結果が判定できる。 [0221] From the opening 5005 provided in the test apparatus casing 5001, power supply by laser, data download, and upload optical signal of semiconductor integrated circuit power are delivered. Laser drive circuit—data communication circuit 5003 executes power adjustment of a laser light source, modulation of a download signal, and signal processing of an upload signal from a data light receiving sensor. The control circuit 5008 stores the data log of the control of the laser drive circuit-data communication circuit 5003, the state of the fail pass of the test of each semiconductor integrated circuit, and the progress of the processing of the test item. The test result of each semiconductor integrated circuit can be determined by referring to the data log.
[0222] 本実施形態によれば、これまで説明してきた光通信による半導体集積回路の非接 触並列テストを実現するテスト装置を提供することができる。なお本実施の形態では データ受光用センサを各半導体集積回路毎に設けたが、 CCDの様な撮像素子で数
チップ毎に一つの構成でも同様の効果が得られる。 [0222] According to the present embodiment, it is possible to provide a test apparatus that realizes a non-contact parallel test of a semiconductor integrated circuit by optical communication described so far. In this embodiment, a data receiving sensor is provided for each semiconductor integrated circuit. The same effect can be obtained with one configuration for each chip.
(実施の形態 23) (Embodiment 23)
図 52、 53は、本発明の実施の形態 23における光電力変換素子による電力供給と 、無線データの送受信による信号入出力によりにより非接触テストを実現した半導体 集積回路のテスト装置の構成図である。 52 and 53 are configuration diagrams of a test apparatus for a semiconductor integrated circuit that realizes a non-contact test by supplying power with the optical power conversion element and signal input / output by wireless data transmission / reception in Embodiment 23 of the present invention. .
[0223] 図においてテスト装置はテスト装置筐体 6001、プリント基板 5004に半導体集積回 路ウェハ 5006上の半導体集積回路に対応するようにアレイ上に配置された電力供 給レーザ光源 6002とレーザ駆動回路 6003の対、無線データ送受信回路 6004、無 線データ送受信回路のアンテナアレイ 6006、放熱器兼ウェハホルダ 5007と制御回 路 5008で構成される。実施形態 22と異なる点は半導体素子のアップロード信号の 受信および半導体集積回路へのダウンロード信号に無線を採用した点である。本実 施形態では半導体ウェハ全面を覆うようなアンテナアレイ 6006を設けて 、る。アンテ ナアレイは送受信のビーム特性を各半導体集積回路に集中することができて、微小 なアップロード信号を高 SNで受信すること、感度の悪 、半導体集積回路のアンテナ に向けて高電場強度のダウンロード信号を供給することができる。 [0223] In the figure, the test apparatus is a power supply laser light source 6002 and a laser drive circuit arranged on an array so as to correspond to a semiconductor integrated circuit on a semiconductor integrated circuit wafer 5006 on a test apparatus casing 6001 and a printed circuit board 5004. It consists of a pair of 6003, a wireless data transmission / reception circuit 6004, an antenna array 6006 of a wireless data transmission / reception circuit, a radiator / wafer holder 5007, and a control circuit 5008. The difference from the twenty-second embodiment is that wireless is used for receiving the upload signal of the semiconductor element and for the download signal to the semiconductor integrated circuit. In this embodiment, an antenna array 6006 is provided so as to cover the entire surface of the semiconductor wafer. The antenna array can concentrate the beam characteristics of transmission and reception on each semiconductor integrated circuit, receive a small upload signal with high SN, poor sensitivity, download signal with high electric field strength toward the antenna of the semiconductor integrated circuit Can be supplied.
[0224] 本実施形態によれば、これまで説明してきた無線通信による半導体集積回路の非 接触並列テストを実現するテスト装置を提供することができる。本実施形態では、収 束光の変調が不要で安価な光源を用いることができる。 [0224] According to the present embodiment, it is possible to provide a test apparatus that realizes a non-contact parallel test of a semiconductor integrated circuit by wireless communication described so far. In this embodiment, it is possible to use an inexpensive light source that does not require the modulation of the convergent light.
[0225] なおテスト装置として実施の形態 22の特徴を取り入れても同様の効果が得られるこ とは言うまでもない。 It goes without saying that the same effect can be obtained even if the features of Embodiment 22 are incorporated as a test apparatus.
産業上の利用可能性 Industrial applicability
[0226] 本発明にかかる半導体装置の検査方法は、製品の拡散力も出荷までの間に存在 するゥヱハの搬送工程、待機工程、組立工程、組立品の搬送工程の何れかの工程 に、ウェハ状態検査工程、並びにパッケージ状態検査工程を振り分けて検査を実施 することで、検査時間を見かけ上「0」に出来、検査が途中で中断された場合、或いは 工程を跨る場合も検査進拔情報が記憶されているため、検査場所を固定することなく 、検査専用の場所が不要で、且つどの工程でも検査が可能で、検査専門の工程を 削減することが可能となり、検査コストを 0にすることが出来るため、全ての半導体製
品の検査手法及び検査装置として有用である c
[0226] The method for inspecting a semiconductor device according to the present invention includes a wafer state in any one of a wafer transport process, a standby process, an assembly process, and an assembly transport process in which product diffusion power exists before shipment. By inspecting the inspection process and the package status inspection process, the inspection time can be apparently set to “0”, and the inspection progress information is stored even when the inspection is interrupted or crosses the process. Therefore, there is no need for a dedicated inspection site without fixing the inspection location, and any process can be inspected, and the number of inspection specialized processes can be reduced, thereby reducing the inspection cost to zero. Made of all semiconductors because it can C is useful as an inspection method and inspection apparatus goods
Claims
請求の範囲 The scope of the claims
[I] 半導体製品の拡散完了から出荷までの間に、ウェハの搬送工程、待機工程、組立 工程、組立品の搬送工程の少なくとも何れかの工程を含み、前記何れかの工程中に ウェハ状態検査工程並びにパッケージ状態検査工程を振り分けて検査を行うことを 特徴とする半導体装置の検査方法。 [I] Between the completion of the diffusion of the semiconductor product and the shipment, it includes at least one of a wafer transfer process, a standby process, an assembly process, and an assembly transfer process. A method of inspecting a semiconductor device, wherein the inspection is performed by distributing the process and the package state inspection process.
[2] 請求項 1記載の半導体装置の検査方法を実施するための検査装置を半導体集積 回路内に有する半導体装置であって、前記検査装置は、前記何れかの工程中に検 查が完了したとき、あるいは前記工程中の検査が途中で中断されたときに検査進拔 情報を記録し、前記検査進拔情報を参照することで前記工程中の検査の続きを実施 可能な手段を有することを特徴とする半導体装置。 [2] A semiconductor device having an inspection device for carrying out the semiconductor device inspection method according to claim 1 in a semiconductor integrated circuit, wherein the inspection device has completed the inspection during any one of the steps. Or the inspection progress information is recorded when the inspection in the process is interrupted, and the inspection progress information in the process can be continued by referring to the inspection progress information. A featured semiconductor device.
[3] 前記半導体集積回路に電源を供給することで前記検査装置による検査を行う請求 項 2記載の半導体装置。 3. The semiconductor device according to claim 2, wherein the inspection by the inspection apparatus is performed by supplying power to the semiconductor integrated circuit.
[4] 前記検査装置は、マスク ROMを用いる請求項 3記載の半導体装置。 4. The semiconductor device according to claim 3, wherein the inspection device uses a mask ROM.
[5] 前記検査装置は、 RAMを用いる請求項 4記載の半導体装置。 5. The semiconductor device according to claim 4, wherein the inspection device uses a RAM.
[6] 前記検査装置は、半導体集積回路外部から検査のためのソフトウェアを半導体集 積回路内部の不揮発性半導体記憶装置へ転送する請求項 3記載の半導体装置。 6. The semiconductor device according to claim 3, wherein the inspection device transfers software for inspection from outside the semiconductor integrated circuit to a nonvolatile semiconductor memory device inside the semiconductor integrated circuit.
[7] 前記検査進拔情報を格納する記憶手段としてヒューズを用いる請求項 2記載の半 導体装置。 7. The semiconductor device according to claim 2, wherein a fuse is used as storage means for storing the inspection progress information.
[8] 前記検査進拔情報を格納する記憶手段として不揮発性半導体記憶装置を用いる 請求項 2記載の半導体装置。 8. The semiconductor device according to claim 2, wherein a non-volatile semiconductor memory device is used as the memory means for storing the inspection progress information.
[9] 前記検査進拔情報を外部に記憶する手段を有する請求項 2記載の半導体装置。 9. The semiconductor device according to claim 2, further comprising means for storing the inspection progress information outside.
[10] 前記検査進拔情報を格納する記憶手段として電源を供給する装置上に備えられた 半導体記憶装置を用いる請求項 9記載の半導体装置。 10. The semiconductor device according to claim 9, wherein a semiconductor memory device provided on a device that supplies power is used as the memory means for storing the inspection progress information.
[I I] 前記検査進拔情報は ROMアドレスまたは RAMアドレスである請求項 2記載の半 導体装置。 [I I] The semiconductor device according to claim 2, wherein the inspection progress information is a ROM address or a RAM address.
[12] 前記半導体集積回路内部にカウンタを有し、一定の周期で前記検査進拔情報を 記憶する請求項 2または 9記載の半導体装置。 12. The semiconductor device according to claim 2, further comprising a counter inside the semiconductor integrated circuit, wherein the inspection progress information is stored at a constant cycle.
[13] 前記検査進拔情報を検査の節目に合わせて記憶する請求項 2または 9記載の半導
体装置。 [13] The semiconductor according to claim 2 or 9, wherein the inspection progress information is stored in accordance with an inspection section. Body equipment.
[14] 前記半導体集積回路に出力される電源遮断信号が活性化されたときに、前記検査 進拔情報を記憶する請求項 2または 9記載の半導体装置。 14. The semiconductor device according to claim 2, wherein the inspection progress information is stored when a power-off signal output to the semiconductor integrated circuit is activated.
[15] 前記半導体集積回路内の電源端子に検知回路を有し、電圧の低下を検知したとき に、前記検査進拔情報を記憶する請求項 2または 9記載の半導体装置。 15. The semiconductor device according to claim 2, further comprising a detection circuit at a power supply terminal in the semiconductor integrated circuit, wherein the inspection progress information is stored when a voltage drop is detected.
[16] 前記半導体集積回路内の電源パスに静電容量を有し、予期しない電源遮断時に おいては外部力もの電源ノ スを遮断し、半導体集積回路内の静電容量の電源パス を開放し、その間に前記検査進拔情報を記憶する請求項 2記載の半導体装置。 [16] The power supply path in the semiconductor integrated circuit has a capacitance. When the power supply is unexpectedly cut off, the power supply node of external power is cut off and the power supply path of the capacitance in the semiconductor integrated circuit is opened. 3. The semiconductor device according to claim 2, wherein the inspection progress information is stored during that time.
[17] 前記半導体集積回路外の電源パスに静電容量を有し、予期しない電源遮断時に お!、ては外部の電源投入装置力もの電源パスを遮断し、半導体集積回路外の静電 容量の電源パスを開放し、その間に前記検査進拔情報を記憶する請求項 2記載の 半導体装置。 [17] The power supply path outside the semiconductor integrated circuit has a capacitance, and when the power supply is unexpectedly cut off, the power supply path outside the semiconductor integrated circuit is cut off and the capacitance outside the semiconductor integrated circuit The semiconductor device according to claim 2, wherein the power supply path is opened and the inspection progress information is stored in the meantime.
[18] 前記半導体集積回路を覆うパッケージに静電容量を備える請求項 17記載の半導 体装置。 18. The semiconductor device according to claim 17, wherein the package covering the semiconductor integrated circuit has a capacitance.
[19] 検査実行時間を管理し、各検査の前後の検査実行時間を比較することで経過時間 を把握し、検査判定基準を可変する請求項 2記載の半導体装置。 [19] The semiconductor device according to [2], wherein the inspection execution time is managed, the elapsed time is grasped by comparing the inspection execution times before and after each inspection, and the inspection criterion is varied.
[20] 各検査の検査実行時間を記憶し、次検査の検査実行時間とを比較する回路を半 導体装置回路外部に具備し、電源投入時に半導体集積回路外部から経過時間情 報を転送する請求項 19記載の半導体装置。 [20] A request for storing the test execution time of each test and comparing the test execution time of the next test outside the semiconductor device circuit, and transferring elapsed time information from the outside of the semiconductor integrated circuit when the power is turned on Item 20. A semiconductor device according to Item 19.
[21] 各検査の検査実行時間を記憶し、次検査の検査実行時間とを比較する回路を半 導体装置回路内部に具備し、経過時間情報を半導体集積回路内部に記憶しておく 請求項 19記載の半導体装置。 21. A test execution time of each test is stored, a circuit for comparing the test execution time of the next test is provided in the semiconductor device circuit, and elapsed time information is stored in the semiconductor integrated circuit. The semiconductor device described.
[22] 前記半導体集積回路に電源を投入する手段として、 RF発信機を具備した検査装 置を用いて、半導体集積回路内に具備した RF受信機に電波を送信することで電源 に変換する請求項 3記載の半導体装置。 [22] Claim that, as means for turning on the power to the semiconductor integrated circuit, an inspection device equipped with an RF transmitter is used to convert the power to the power by transmitting radio waves to the RF receiver provided in the semiconductor integrated circuit. Item 4. A semiconductor device according to Item 3.
[23] 前記半導体集積回路を自動で検査をするためのソフトウェアを外部から入力する為 の手段として、メモリカードを検査装置に挿入することで、メモリカードに記憶された検 查プログラムが検査対象半導体集積回路内部に転送され、検査を実行する請求項 6
記載の半導体装置。 [23] As a means for inputting software for automatically inspecting the semiconductor integrated circuit from the outside, the inspection program stored in the memory card is inserted into the inspection device by inserting the memory card into the inspection device. Claim 6 that is transferred into the integrated circuit to perform the test. The semiconductor device described.
[24] 前記半導体集積回路を自動で検査をするためのソフトウェアを外部から入力する為 の手段として、 RF発信機を具備した装置を用いて、半導体集積回路内に具備した R F受信機に電波を送信することで検査プログラムが検査対象半導体集積回路内部に 転送され、検査を実行する請求項 6記載の半導体装置。 [24] As a means for inputting software for automatically inspecting the semiconductor integrated circuit from the outside, a device including an RF transmitter is used to transmit radio waves to the RF receiver included in the semiconductor integrated circuit. 7. The semiconductor device according to claim 6, wherein the inspection program is transferred to the inside of the semiconductor integrated circuit to be inspected by transmitting the information and executed.
[25] 基板と、前記基板の表面上に一括して形成される複数の半導体集積回路と、前記 半導体集積回路の電源を一括で供給することで自動で検査を行う検査装置とを備え た請求項 3記載の半導体装置であって、 [25] A claim, comprising: a substrate, a plurality of semiconductor integrated circuits formed on the surface of the substrate at once, and an inspection device that automatically performs inspection by supplying power to the semiconductor integrated circuits all at once. Item 3. A semiconductor device according to Item 3,
前記半導体集積回路全てに一括で接続される電源配線と、前記半導体集積回路 全てに接続される接地配線と、前記半導体集積回路と前記電源配線との間あるいは 前記半導体集積回路と前記接地配線の間に前記半導体集積回路毎に挿入されるヒ ユーズとを備えた半導体装置。 A power supply wiring connected to all of the semiconductor integrated circuits, a ground wiring connected to all of the semiconductor integrated circuits, and between the semiconductor integrated circuit and the power supply wiring or between the semiconductor integrated circuit and the ground wiring. And a fuse inserted into each semiconductor integrated circuit.
[26] 前記 RF受信機のコイルを前記基板の裏面に備え、スルーホールを通して基板表 面で前記電源配線あるいは RF送受信回路に接続する請求項 24記載の半導体装置 26. The semiconductor device according to claim 24, wherein a coil of the RF receiver is provided on the back surface of the substrate, and is connected to the power supply wiring or the RF transceiver circuit on the substrate surface through a through hole.
[27] 基板と、前記基板の表面上に一括して形成される複数の半導体集積回路と、前記 半導体集積回路の電源を一括で供給することで自動で検査を行う検査装置とを備え た請求項 3記載の半導体装置であって、 [27] A claim, comprising: a substrate; a plurality of semiconductor integrated circuits formed on the surface of the substrate at once; and an inspection device that automatically performs inspection by supplying power to the semiconductor integrated circuit collectively. Item 3. A semiconductor device according to Item 3,
検査の PASS/FAIL情報を記憶しておくテストデータ格納領域と、テストデータ格納 領域に格納された PASS/FAIL情報を転送する揮発性レジスタと、揮発性レジスタの 内容により P/N Junction電流を流すか否かを行う P/N Junction素子とを備え、前記半 導体集積回路の良品不良品を P/N Junction素子で識別できることを特徴とする半導 体装置。 Test data storage area for storing PASS / FAIL information for inspection, volatile register for transferring PASS / FAIL information stored in the test data storage area, and P / N junction current depending on the contents of the volatile register A semiconductor device comprising: a P / N junction element that determines whether the semiconductor integrated circuit is non-defective or defective by the P / N junction element.
[28] 基板と、前記基板の表面上に一括して形成される複数の半導体集積回路と、前記 半導体集積回路の電源を一括で供給することで自動で検査を行う検査装置とを備え た請求項 3記載の半導体装置であって、 [28] A board, a plurality of semiconductor integrated circuits formed on the surface of the substrate at once, and an inspection device that automatically performs inspection by supplying power to the semiconductor integrated circuit all at once. Item 3. A semiconductor device according to Item 3,
検査の PASS/FAIL情報を記憶しておくテストデータ格納領域と、テストデータ格納 領域に格納された PASS/FAIL情報を転送する揮発性レジスタと、電源配線と、基板
上に形成された全ての半導体集積回路毎の間に配置されるアンチヒューズとを備え 、前記揮発性レジスタの内容によりアンチヒューズが切れる力否かを決定することで、 前記半導体集積回路の良品不良品を識別できることを特徴とする半導体装置。 Test data storage area for storing inspection PASS / FAIL information, volatile registers for transferring PASS / FAIL information stored in the test data storage area, power supply wiring, and board An antifuse disposed between all the semiconductor integrated circuits formed above, and determining whether or not the antifuse can be blown according to the contents of the volatile register. A semiconductor device characterized by being able to identify non-defective products.
[29] 基板と、前記基板の表面上に一括して形成される複数の半導体集積回路と、前記 半導体集積回路の電源を一括で供給することで自動で検査を行う検査装置とを備え た請求項 3記載の半導体装置であって、 [29] A substrate, a plurality of semiconductor integrated circuits collectively formed on the surface of the substrate, and an inspection device that automatically performs inspection by supplying power to the semiconductor integrated circuits all at once. Item 3. A semiconductor device according to Item 3,
検査の PASS/FAIL情報を記憶しておくテストデータ格納領域と、テストデータ格納 領域に格納された PASS/FAIL情報を転送する揮発性レジスタと、揮発性レジスタの 内容により電波を発信するか否かを決定する RF発信素子とを備え、前記半導体集 積回路の良品不良品を前記 RF発信素子で識別できることを特徴とする半導体装置 Test data storage area that stores the PASS / FAIL information of inspection, volatile register that transfers PASS / FAIL information stored in the test data storage area, and whether to transmit radio waves depending on the contents of the volatile register A semiconductor device, wherein a non-defective product of the semiconductor integrated circuit can be identified by the RF transmitter element
[30] 半導体記憶装置と、前記半導体記憶装置の書き込みあるいは消去時の温度を検 知する温度センサ回路と、検査温度の情報を格納するテストデータ格納領域と、テス トデータ格納領域の検査時の書き込み/消去の温度情報及び書き込み/消去のレべ ル判定検査の読み出し時の温度情報を受けて検査の規格を変更する検査規格変更 回路とを備え、前記温度センサ回路の温度を前記半導体記憶装置に自動で記憶し て、前記温度に従って自動で検査規格を補正する請求項 3記載の半導体装置。 [30] A semiconductor memory device, a temperature sensor circuit for detecting a temperature at the time of writing or erasing the semiconductor memory device, a test data storage area for storing information on inspection temperature, and a writing at the time of testing the test data storage area An inspection standard changing circuit that receives the temperature information at the time of reading / erasing temperature information and the temperature information at the time of reading of the writing / erasing level judgment inspection to change the inspection standard, and 4. The semiconductor device according to claim 3, wherein the semiconductor device is automatically stored and the inspection standard is automatically corrected according to the temperature.
[31] 請求項 1記載の半導体装置の検査方法を用いた検査装置を有する半導体集積回 路であって、電源パッド、グランドパッドおよびセルフテスト回路を備え、前記電源パッ ドおよび前記グランドパッドは信号ピンと併用され、前記セルフテスト回路は前記電源 ノッドおよびグランドパッドに重畳された入出力信号によりセルフテストを実行するこ とを特徴とする半導体集積回路。 31. A semiconductor integrated circuit comprising an inspection device using the semiconductor device inspection method according to claim 1, comprising a power pad, a ground pad, and a self-test circuit, wherein the power pad and the ground pad are signals. A semiconductor integrated circuit, which is used in combination with a pin, and the self-test circuit performs a self-test by an input / output signal superimposed on the power supply node and the ground pad.
[32] 請求項 1記載の半導体装置の検査方法を用いた検査装置を有する半導体集積回 路であって、光電力変換素子を備え、駆動電力が外部の収束光による前記光電力 変換素子への選択的な照射により供給されること特徴とする半導体集積回路。 [32] A semiconductor integrated circuit having an inspection apparatus using the method for inspecting a semiconductor device according to claim 1, comprising an optical power conversion element, and driving power is supplied to the optical power conversion element by external convergent light. A semiconductor integrated circuit which is supplied by selective irradiation.
[33] 請求項 32記載の半導体集積回路のテスト方法であって、テスト中に不良と判定さ れた半導体集積回路には収束光を遮断し以降のテストから除外することを特徴とす る半導体集積回路のテスト方法。
[33] The method for testing a semiconductor integrated circuit according to claim 32, wherein the semiconductor integrated circuit determined to be defective during the test is configured to block the convergent light and exclude it from the subsequent tests. Integrated circuit test method.
[34] 請求項 1記載の半導体装置の検査方法を用いた検査装置を有する半導体集積回 路であって、光電力変換素子と発光素子を備え、前記光電力変換素子は駆動電力 の供給と外部データの受信を担い、前記発光素子は内部データの送信を担うことを 特徴とする半導体集積回路。 34. A semiconductor integrated circuit comprising an inspection apparatus using the inspection method for a semiconductor device according to claim 1, comprising an optical power conversion element and a light emitting element, wherein the optical power conversion element supplies a driving power and externally. A semiconductor integrated circuit, wherein the semiconductor integrated circuit is responsible for receiving data, and the light emitting element is responsible for transmitting internal data.
[35] 発光素子として PN接合のブレイクダウンによる近赤外光を用いた請求項 34記載の 半導体集積回路。 35. The semiconductor integrated circuit according to claim 34, wherein near-infrared light by PN junction breakdown is used as the light emitting element.
[36] 請求項 34記載の半導体集積回路のテスト装置であって、データ受信用の受光セン サ素子と、電力供給とデータ送信の機能を担うレーザ光源とを複数備え、前記半導 体集積回路をゥヱハ状態で非接触でテストすることを特徴とする半導体集積回路の テスト装置。 36. The semiconductor integrated circuit test apparatus according to claim 34, comprising a plurality of light receiving sensor elements for receiving data, and a plurality of laser light sources responsible for power supply and data transmission, and the semiconductor integrated circuit A test apparatus for semiconductor integrated circuits, characterized in that a non-contact test is performed in a woofer state.
[37] 請求項 1記載の半導体装置の検査方法を用いた検査装置を有する半導体集積回 路であって、光電力変換素子と無線データ送信回路を備え、前記光電力変換素子 は駆動電力の供給と外部データの受信を担い、前記無線データ送信回路は内部デ ータの送信を担うことを特徴とする半導体集積回路。 [37] A semiconductor integrated circuit comprising an inspection device using the method for inspecting a semiconductor device according to claim 1, comprising an optical power conversion element and a wireless data transmission circuit, wherein the optical power conversion element supplies driving power. A semiconductor integrated circuit characterized in that it receives external data and the wireless data transmission circuit is responsible for transmission of internal data.
[38] 請求項 1記載の半導体装置の検査方法を用いた検査装置を有する半導体集積回 路であって、光電電力変換素子と無線データ送信回路を備え、前記光電力変換素 子は駆動電力の供給のみを担い、前記無線データ送信回路は内部データの送信と 受信を担うことを特徴とする半導体集積回路。 [38] A semiconductor integrated circuit having an inspection apparatus using the method for inspecting a semiconductor device according to claim 1, comprising a photoelectric power conversion element and a wireless data transmission circuit, wherein the optical power conversion element has a driving power. A semiconductor integrated circuit characterized in that it is responsible only for supply and the wireless data transmission circuit is responsible for transmission and reception of internal data.
[39] 前記無線データ送信回路は半導体集積回路に固有の識別 IDを送信する請求項 3 7または 38記載の半導体集積回路。 39. The semiconductor integrated circuit according to claim 37, wherein the wireless data transmission circuit transmits an identification ID unique to the semiconductor integrated circuit.
[40] 請求項 37記載の半導体集積回路のテスト方法であって、前記無線データ送信回 路は半導体集積回路に固有の識別 IDを送信する際、識別 IDを光電力変換素子経 由で設定することを特徴とする半導体集積回路のテスト方法。 [40] The method for testing a semiconductor integrated circuit according to claim 37, wherein the wireless data transmission circuit sets the identification ID via an optical power conversion element when transmitting a unique identification ID to the semiconductor integrated circuit. A method for testing a semiconductor integrated circuit.
[41] 請求項 38記載の半導体集積回路のテスト方法であって、前記無線データ送信回 路は半導体集積回路に固有の識別 IDを送信する際、識別 IDを光電力変換素子に 収束光の照射の有無で選択し、無線経由で設定することを特徴とする半導体集積回 路のテスト方法。 41. The semiconductor integrated circuit test method according to claim 38, wherein when the wireless data transmission circuit transmits an identification ID unique to the semiconductor integrated circuit, the identification ID is irradiated to the optical power conversion element. A method for testing a semiconductor integrated circuit, which is selected based on the presence or absence of the device and is set via wireless.
[42] 半導体集積回路のウェハ内のチップ毎に異なるもしくは唯一の識別 IDをプロセス
工程において予め形成した請求項 39記載の半導体集積回路。 [42] Process different or unique identification ID for each chip in a semiconductor integrated circuit wafer 40. The semiconductor integrated circuit according to claim 39, which is formed in advance in a process.
[43] 請求項 37記載の半導体集積回路のテスト装置であって、データの受信用の無線 データ受信装置と、電力供給とデータ送信を担う複数の収束光源とを備え、半導体 集積回路をゥヱハ状態で非接触でテストすることを特徴とする半導体集積回路のテス ト装置。 [43] The semiconductor integrated circuit test device according to claim 37, comprising: a wireless data receiving device for receiving data; and a plurality of convergent light sources for supplying power and transmitting data; A test system for semiconductor integrated circuits characterized by non-contact testing.
[44] 請求項 38記載の半導体集積回路のテスト装置であって、データの送信受信用の 無線データ送受信装置と、電力供給を担う複数の収束光源とを備え、半導体集積回 路をゥヱハ状態で非接触でテストすることを特徴とする半導体集積回路のテスト装置
[44] The semiconductor integrated circuit test device according to claim 38, comprising: a wireless data transmitting / receiving device for transmitting and receiving data; and a plurality of convergent light sources for supplying power, wherein the semiconductor integrated circuit is in a woofer state. Semiconductor integrated circuit test apparatus characterized by non-contact test
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005215554 | 2005-07-26 | ||
JP2005-215554 | 2005-07-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007013386A1 true WO2007013386A1 (en) | 2007-02-01 |
Family
ID=37683283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/314549 WO2007013386A1 (en) | 2005-07-26 | 2006-07-24 | Method for inspecting semiconductor device, semiconductor device, semiconductor integrated circuit, method and equipment for testing semiconductor integrated circuit |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007013386A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010537448A (en) * | 2007-08-24 | 2010-12-02 | ヴェリジー(シンガポール) プライベート リミテッド | Wafer boat for semiconductor testing |
KR20130083824A (en) * | 2010-06-17 | 2013-07-23 | 하마마츠 포토닉스 가부시키가이샤 | Semiconductor integrated circuit device inspection method and semiconductor integrated circuit device |
EP2584599A4 (en) * | 2010-06-17 | 2016-05-18 | Hamamatsu Photonics Kk | Detection method for semiconductor integrated circuit device, and semiconductor integrated circuit device |
CN112557881A (en) * | 2020-12-22 | 2021-03-26 | 上海华岭集成电路技术股份有限公司 | Method for managing and controlling test quality of integrated circuit |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01287482A (en) * | 1988-05-13 | 1989-11-20 | Mitsubishi Electric Corp | Semiconductor device measurement system |
JPH08184642A (en) * | 1994-12-29 | 1996-07-16 | Seiwa Denki Kk | Chip sorter |
JPH09129697A (en) * | 1995-10-27 | 1997-05-16 | Sony Corp | Article processor |
JP2000227459A (en) * | 1999-02-05 | 2000-08-15 | Sharp Corp | Semiconductor integrated circuit, its test method, and probe jig used for test |
JP2001085480A (en) * | 1999-09-10 | 2001-03-30 | Mitsubishi Electric Corp | Method of manufacturing semiconductor device and semiconductor integrated circuit device |
WO2002063675A1 (en) * | 2001-02-02 | 2002-08-15 | Hitachi, Ltd. | Integrated circuit, method of testing integrated circuit and method of manufacturing integrated circuit |
JP2005085215A (en) * | 2003-09-11 | 2005-03-31 | Denso Corp | Semiconductor integrated circuit device and device for inspecting the semiconductor integrated circuit device |
-
2006
- 2006-07-24 WO PCT/JP2006/314549 patent/WO2007013386A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01287482A (en) * | 1988-05-13 | 1989-11-20 | Mitsubishi Electric Corp | Semiconductor device measurement system |
JPH08184642A (en) * | 1994-12-29 | 1996-07-16 | Seiwa Denki Kk | Chip sorter |
JPH09129697A (en) * | 1995-10-27 | 1997-05-16 | Sony Corp | Article processor |
JP2000227459A (en) * | 1999-02-05 | 2000-08-15 | Sharp Corp | Semiconductor integrated circuit, its test method, and probe jig used for test |
JP2001085480A (en) * | 1999-09-10 | 2001-03-30 | Mitsubishi Electric Corp | Method of manufacturing semiconductor device and semiconductor integrated circuit device |
WO2002063675A1 (en) * | 2001-02-02 | 2002-08-15 | Hitachi, Ltd. | Integrated circuit, method of testing integrated circuit and method of manufacturing integrated circuit |
JP2005085215A (en) * | 2003-09-11 | 2005-03-31 | Denso Corp | Semiconductor integrated circuit device and device for inspecting the semiconductor integrated circuit device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010537448A (en) * | 2007-08-24 | 2010-12-02 | ヴェリジー(シンガポール) プライベート リミテッド | Wafer boat for semiconductor testing |
US9146274B2 (en) | 2007-08-24 | 2015-09-29 | Advantest Corporation | Wafer boat for semiconductor testing |
KR20130083824A (en) * | 2010-06-17 | 2013-07-23 | 하마마츠 포토닉스 가부시키가이샤 | Semiconductor integrated circuit device inspection method and semiconductor integrated circuit device |
EP2584599A4 (en) * | 2010-06-17 | 2016-05-18 | Hamamatsu Photonics Kk | Detection method for semiconductor integrated circuit device, and semiconductor integrated circuit device |
EP2584600A4 (en) * | 2010-06-17 | 2016-05-18 | Hamamatsu Photonics Kk | Semiconductor integrated circuit device inspection method and semiconductor integrated circuit device |
KR101878993B1 (en) * | 2010-06-17 | 2018-07-16 | 하마마츠 포토닉스 가부시키가이샤 | Semiconductor integrated circuit device inspection method and semiconductor integrated circuit device |
CN112557881A (en) * | 2020-12-22 | 2021-03-26 | 上海华岭集成电路技术股份有限公司 | Method for managing and controlling test quality of integrated circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6189120B1 (en) | Testing system for evaluating integrated circuits, a burn-in testing system, and a method for testing an integrated circuit | |
JP2950475B2 (en) | Built-in self-test with memory | |
US7736916B2 (en) | System and apparatus for using test structures inside of a chip during the fabrication of the chip | |
US20070232240A1 (en) | Probing system for integrated circuit devices | |
US8125235B2 (en) | Apparatus for mass die testing | |
US20120229159A1 (en) | Test interface board and test system including the same | |
US6825682B2 (en) | Test configuration for the functional testing of a semiconductor chip | |
US9612276B2 (en) | Test device and test system including the same | |
CN107076782A (en) | The assembling device tested for probe card | |
WO2007013386A1 (en) | Method for inspecting semiconductor device, semiconductor device, semiconductor integrated circuit, method and equipment for testing semiconductor integrated circuit | |
WO2007113968A1 (en) | Semiconductor integrated circuit testing method and information recording medium | |
TWI392884B (en) | Method and circuit for testing a multi-chip package | |
CN113075532A (en) | Chip detection method and chip detection device | |
US8225149B2 (en) | Semiconductor testing apparatus and method | |
JP5153089B2 (en) | Inspection method of semiconductor integrated circuit | |
US20060198206A1 (en) | Semiconductor device and inspection method of the same and electromagnetic detection equipment | |
Thomas-Brans et al. | New diagnostic forensic protocol for damaged secure digital memory cards | |
JP2006287035A (en) | Semiconductor wafer and testing method of ferroelectric memory device | |
CN113075533B (en) | Chip detection method and chip detection device | |
Gadek et al. | Testing of the front-end hybrid circuits for the CMS Tracker upgrade | |
US20040108867A1 (en) | System for and method of assessing chip acceptability and increasing yield | |
Ouimet et al. | Analysis of 0.13 μm CMOS technology using time resolved light emission | |
US20220310186A1 (en) | Chip detection method and device | |
US6771089B1 (en) | Test fixture having an adjustable capacitance and method for testing a semiconductor component | |
Allum et al. | A 200C capable embedded EEPROM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06781471 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |